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Chapter 1

Introduction

1.1 Cooperative Localization

Location awareness is a feature which is essential for the development of applica-
tions in several aspects of commercial, public service and military sectors. Infor-
mation collected by a mobile node though is useful only in case where the location
of the node is known. A satellite navigation system termed as global navigation
system is utilised by techniques, such as the Global Positioning System (GPS), in
order to fulfil outdoor purposes. There are several cases though, the so–called
GPS–denied environments [14], where the performance of the corresponding ap-
plications decays significantly. A very common environment where this situation
arises are dense urban areas. In such cases the surroundings of the nodes i.e
tall buildings affect the quality of the information exchange between the different
agents. As a result numerous of applications are unable to fulfil their purposes.

An example of the importance for high quality information exchange can be
considered a rescue crew in case of an earthquake. Assuming that the members of
the crew are in the area of interest but due to the presence of the fallen buildings
the available equipment fails to provide reliable information regarding the location
of the crew. As a result the rescue mission can be hardly coordinated and the task
of guiding the crew to the target becomes very difficult. Another case related to
a case of emergency can be considered the case of an ambulance in urban area
where the surroundings consists of tall buildings, tunnels or narrow streets i.e in
Paris. The mission of the ambulance is to recover the location of the patient as fast
as possible, but due to the surroundings the task of finding the corresponding lo-
cation is very difficult and the life of the patient gets in danger. Finally, a scenario
which is a very common situation on a high way is the case where many tracks
are stacked the one behind the other making a convoy. As a result the convoy of
trucks acts like a wall to the surrounding vehicles which blocks the communication
and affects the accuracy of the corresponding positioning applications. These char-
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4 Chapter 1. Introduction

acteristic examples indicate the there need for location–aware technologies which
will overcome this kind of complications. One approach to fulfil such task it the
case where each wireless node has the capability to localize by itself.

A new paradigm which aims to contribute to the direction of self localization
is cooperative localization. The main scenario in cooperative localization is that
each mobile device (or else node) can obtain knowledge regarding its location
by exploiting information from the surrounding nodes either these are mobile or
static(anchor). In order to fulfil such task, each sensor needs a processing unit and
a corresponding algorithm for self-localization.

A wide range of devices trying to localize themselves, with different level of
mobility such as laptops or mobile phones, could be considered. Since there is not
any particular application to fulfil such task all the devices share the same goal
of obtaining information regarding their location. All the devices which could
provide valid knowledge regarding their location could be taken into account by
the surrounding devices for the needs of cooperative localization. A main issue
that should be considered in such case though, is the fact that several devices are
characterized by privacy policies thus no information can be obtained regarding
their position [5].

In order to represent the relation between different nodes a measure that ex-
press the distance can be used. This relation can be expressed by a range of dif-
ferent positioning systems. There are several techniques which are are widely
used in the field of location awareness. Popular techniques applied for posi-
tioning purposes are Time of Arrival (ToA) and Received Signal Strength (RSS).
Wireless networks that support radio technologies such as the WideBand(WB) and
Ultra–Wideband (UWB) are well known for utilizing ToA measurements. There
exist other positioning position information techniques, such as Time Difference of
Arrival (TDOA), applied for localization purposes but they not considered in the
current work.

A common aspect of TOA and RSS is the fact that in both cases the target
node is localized by performing triangulation via the collaboration of multiple
base nodes. In order to obtain an unambiguous estimation for the position of
the mobile node a minimum number of three different distance measurements is
required. For the case of TOA , each distance measurement is obtained by taking
into account the travel time of the radio signal from a single transmitter to a mobile
single receiver. On the other hand, in cases where the corresponding make use of
the RSS technique the distance measurements are obtained by measuring variation
on the strength of the signal from the transmitter node to the receiver node. An
example that corresponds to the localization process followed by TOA and RSS is
provided in figure 1.1.
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(a) Potential target location if the mobile
agent m1 is one of the the two points of the
intersection of the circles surrounding the
base nodes b1,b2.

(b) Final location is the point which lies on
the circle surrounding the base node b3.

Figure 1.1: A trivial example which illustrates the localization process followed by TOA and RSS. In
cases where the available measurements do not fulfil the requirement of the minimum observations
the corresponding outcome is characterised by an ambiguity regarding the location of the target
node like in the first subfigure. In cases where the basic requirement is fulfilled, like in the second
subfigure, the applied techniques yield a single outcome.

Even though the two techniques rely on distance, their use gets complicated
because of some of their characteristics. The implementation of ToA even though
is a reliable technique for locating a target node, it is characterized by several draw-
backs. First of all, a basic parameter which should be fulfilled in order to obtain the
desired information has to do with the fact that all the nodes must be synchronized
precisely [15, pp.5]. In any other case the presence of a timing error can lead to
a false distance measurement. Another parameter which should be taken into ac-
count is the fact that the positions of the base nodes should be known. In any other
case this knowledge is obtained through other static nodes or via GPS–equipped
dynamic nodes [15, pp.5]. The implementation of the RSS technique on the other
hand requires that there is previous knowledge regarding the transmitted power
at some reference distance. Another drawback which is common in both cases is
that for the corresponding approaches the measurements are assumed to be ideal.
That kind of scenario though does not hold in the real world. Contrariwise, it is
very common the case where the corresponding measurements are highly affected
by the surroundings.

1.1.1 Cooperative Localization versus a non-cooperative scenario

The so far conducted analysis focus on the main reasons why the implementation
of the Cooperative Localization paradigm can be beneficial for the purposes of out-
doors positioning. In order to provide a more representative explanation regarding
the advantages of the paradigm as well as how the methodology operates a simple
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example is provided in figure 1.2.
According to the localization set–up introduced in the example, three different

base nodes (a1,a2,a3) are attempting to localize the two mobile nodes (m1,m2) of
the scenario. In both cases though, the requirement of the three different distance
measurements is not fulfilled. In each case only two measurements are available
thus the mobile target cannot be localized through triangulation. In particular the
base node a2 is unable to communicate with the mobile node m2 while the same
case holds between the base node a3 and the mobile node m1. This difficulty arises
from the fact that the two mobile nodes are outside of the communication range of
the corresponding base nodes. As a result the corresponding algorithm yields an
ambiguous estimation about the position of each node since two possible locations
are obtained.

(a) A non–cooperative scenario that yields an am-
biguous estimation regarding the location of m1.

(b) A scenario where the two mobile agents
m1, m2 cooperate and an ambiguous estimation
regarding the location of m1 is obtained.

Figure 1.2: A trivial example which illustrates the benefits of the implementation of the cooperative
localization paradigm. For the current scenario the main task it to estimate the location of m1. The
position of m2 is also unknown but some position information is available.

In order to overcome this difficulty we can consider the scenario of cooperative
localization. While position of the mobile devices is considered to be unknown but
they can provide information regarding their position. Thus, a third distance mea-
surement can be obtained,in such case triangulation can be applied, or any other
position information that can be helpful in order to distinguish the two intersec-
tions.

1.2 Problem Analysis

So far we have introduced the basic idea that relies upon the Cooperative Local-
ization paradigm as well as the main advantages of the approach compared to the



1.2. Problem Analysis 7

current approaches such as the GPS. The current section aims to introduce the basic
approach to form the fundamentals of Cooperative Localization to a mathematical
pattern. In order to develop that kind of methodology there is the need to analyse
the different aspects when considering a network.For the current work a network is
generated once a connection is established in between different agents, abbreviated
as nodes, participating it the same graph.Two main categories of nodes, anchors
and mobiles, participate in a graph:

An anchor node is characterized by a static behaviour, meaning that the corre-
sponding position remains unaltered over time. Therefore the coordinates of the
anchor node are considered fixed for the problem.A mobile node is characterized
by a dynamic behaviour which in practise means that the corresponding location
varies over time. Thus there is the need to develop a framework in order to cap-
ture the dynamic behaviour of the mobile agent. The variation on the positions
depends on aspects such as velocity, acceleration etc, thus the development of a
mobility model should take these aspects into account.

One of the main questions that need to be answered when developing a coop-
erative localization framework is whether a communication link can be established
or not. In order to obtain the measurements that are required so that we can track
an agent a basic requirement that needs to be fulfilled has to do with the fact that
the agents can exchange information. Therefore a framework is required in order
to make the distinction upon the agents that are capable of having a connection and
those that are not. Signal propagation is affected by the transmission environment,
thus parameters such as fading or the transmission power have a severe impact
on the connectivity issue. Another parameter that should be taken into account
when considering the connectivity issue has to do with the dynamic behaviour of
the mobile agent. In such case the distance in between the different agents par-
ticipating in the network varies and as a result the impact from the transmission
environment differs over time. Thus there is a need for a framework that addresses
all these aspects of the connectivity problem.

Once a connection is established in between the agents the process of exchang-
ing information begins. For each of the established links a distance observation is
obtained for the nodes. The process of information exchange is characterised by
several uncertainties, introduced by the signal propagation environment, thus each
of the measurements may have an error. Consequently the collected data is charac-
terised by a level of inaccuracy. Thus the mathematical pattern which is developed
in order to represent the collected data should take these aspects into account.

Derived on this methodology the general mathematical pattern upon Coopera-
tive Localization is formulated, is as follows:

• The mobility model describing the dynamic behaviour of the mobile agents.

• The connectivity model which describes the dynamic relationship of infor-
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mation exchange in between the agents.

• The range model describing the noise introduced in the range measurements.

Each of the different steps can be viewed as an interconnection block. In such
case the relation in between the different blocks can be represented as follows:

Figure 1.3: Schematic representation of the Cooperative Localization process.

The basic task of the Cooperative Localization paradigm is to provide an out-
put regarding the location of the agent. The so far conducted analysis on the
problem describes the different aspects that should be taken into account consid-
ering the nature of the problem. Once the different stages are distinguished and
the corresponding mathematical patterns are developed the next step is to develop
a technique that yields an output based on the these patterns. In such case the
localization problem can be addressed as an estimation problem. An ordinary
localization system, i.e a wireless positioning system (WPLS), provides distance
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measurements which in such case those could be the TOA measurements. Assum-
ing that the model that describes the dynamic behaviour of the target is known, an
estimation technique can be implemented in order to obtain an estimate regarding
the location of the target.

1.3 Existing work on the field of Cooperative Localization

The research in the field of Cooperative Localization as well as the a network re-
search in general requires a simulation pattern that provides realistic conditions so
that the obtained results may not be misleading. Thus it is desired that the con-
struction of the corresponding models is done in way so that it is close to real time
circumstances.

One of the main concepts when considering a dynamic network is related with
the mobility pattern that characterise the behaviour of the mobile participants. The
so far conducted research in the field of Cooperative Localization that refers upon
the mobility aspect provides a detailed overview regarding the different param-
eters such as velocity, acceleration etc. There exist several approaches upon this
issue in the corresponding literature that address the problem from various points
of view. Thus it is up to the designer of the application to select the one that fits bet-
ter to a particular application. The interested reader could even find several studies
that make a classification upon the different approaches in [ref:mobile_research]
or in [ref:mobile_research_1]. The so far developed approaches though are con-
sidered to provide a fairly simple and sufficient approach to capture the basic
characteristics of the current issue thus no further investigation is conducted.

Another issue that needs to be addressed as well is the one related with the
inaccuracy introduced in the distance measurements. The general pattern that is
followed for the current aspect of the estimation problem is similar like the one
introduced in [15, pp.29]. The current approach in the existing literature has as
well covered the main aspects of the problem. An obvious comment that can be
discussed upon the general pattern is that it is not related with one of the main
aspects of the current issue which in this case is distance. New approaches on
the field of location awareness though attempt to address that issue like the one
proposed in [4]. Therefore no further investigation takes place on this issue in the
current thesis.

On the other hand the so far developed methods in the field of cooperative
localization lack of expressing the issue of whether two agents can exchange in-
formation or not. Even though several approaches have been proposed, none of
them succeeds to express all the aspects considering the connectivity aspect of the
paradigm. Each of the different approaches satisfy partially the main aspects of
the problem, none of them though attempts to combine all the parameters such as
distance,mobility or time dependency at once. Therefore the main investigation of
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the current thesis focus on conducting an analysis upon the different aspects of the
connectivity issue.

1.4 State of the art methods

The main task of the current thesis is to investigate the spatial relationships de-
veloped in a Network with Dynamic Connectivity. In the current work,the term
network is used to describe the relationship developed in between different agents
(abbreviated as nodes) aiming to exchange information with each other. We seek
to develop a method describing the way that this relationship varies over time. So
far there exist two proposals in the literature:

1. A Connectivity model introduced by Savic and Zazo.[12]

2. A Connectivity model introduced by Henk Wymmersch.[14]

A common aspect of the two proposals is the fact that both of them take into
account the main parameter of the problem which in our case is distance. Beyond
that though different approaches are followed to address the problem. Each of the
following approaches addresses different aspects of the problem, such as transmis-
sion power or the mobility of the nodes, but in the same time they are characterized
by several drawbacks.

• The main disadvantage of the proposal of Savic and Zazo is that the connec-
tivity of the network is considered as a spatial relationship in between the
different participants which is independent on time.

• On the other hand the deterministic function of Henk Wymeersch is a proposal
that considers ideal signal propagation scenario, (ignoring e.g signal fading)
which is not the case for real applications.

1.5 Problem Statement

The current work aims to overcome the impracticalities of the so far developed
approaches. Therefore a connectivity model is introduced where the following
parameters are taken into account:

• The dynamic behaviour of the nodes(e.g the move of mobile nodes.)

• Distance and the way that this aspect affects the connectivity in between the
agents.

One of the issues considering a network with multiple communication links,which
can be represented by a graph, is to evaluate the way that this relationship evolves
over time. So far no such measure is proposed that can address the time evaluation
over a graph. Therefore the current work also addresses the following issues:
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• The time dependency of the connectivity.

• A metric that represents the time dependency of a dynamic network.

One of the main aspects when considering a model is what kind of strategy can
be followed to calibrate the model. Hence the thesis another task of the thesis is
the following:

• Develop a calibration strategy for the proposed model.

1.6 Thesis outline

The thesis is organized as follows:
Chapter 2 The general notation of the network is presented. Chapter 2 also

introduces mobility model that describes the dynamic behaviour of the nodes as
well as the model upon the distance measurements are obtained.

Chapter 3 A presentation of the state of the art methods that address the con-
nectivity issue. An analysis upon the advantages and disadvantages of the two
methods is conducted alongside with the main aspects of the problem.

Chapter 4 A Markovian model to address the connectivity issue is proposed and
a topological analysis along with an analysis on the time domain are conducted.

Chapter 5 The Markovian model is dual paramteric. This chapter proposes
methods upon model calibration can be based..

Chapter 6 A metric that evaluates the correlation of a dynamic network over
time is introduced. A review of the performance of the model as well as upon the
performance of the methods for obtaining the parameters of the model takes place
with respect to the proposed metric.

Chapter 7 This chapter makes the conclusion of the thesis and presents the
outcomes from the conducted research.





Chapter 2

Notation Topology, Mobility model
and Range Error model

The current chapter introduces a number of sets which describe the topology of
the network. The notation will be used throughout the master thesis. We also
introduce the methods upon which address issues such as the mobility of the nodes
and the model upon the noisy measurements are obtained.

2.1 Network topology and notation

For each wireless device that participate in the topology of the network a vertex,
abbreviated node, is added in a graph and for each of the established communica-
tion links an edge is drawn. To illustrate this the simplest cooperative localization
scenario is used as an example and it is presented in figure 2.1.

Figure 2.1: An illustration of a simple cooperative localization scenario with a topology consisting of
three nodes. Three anchor nodes marked with blue and two mobile marked with green and specified
by a unique number.

The given example illustrates a particular time instance n of the network topol-
ogy. The network topology varies over time thus there is a need for an index to
specify each time instance of the corresponding graph. For n = 0 the network
topology is generate while N is a finite time elapsed. Hence , we state:

n ∈ N ≡ discrete time index of the dynamical system (2.1)

The nodes that participate in a graph are characterised by different properties.
Specific categories of nodes participate in a graph and they are labelled as follows:

13
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• m ≡ mobile node

• a ≡ anchor node

Based on the current categorization the different categories of nodes are grouped
in disjoint sets as follows:

• Um(n) set of mobile nodes in network at time n.

• Ua(n) set of anchor nodes in network at time n.

At any given time instance n the number of nodes participating in a graph are
represented as follows: U(n) = Um(n) ∪Ua(n).

Each edge drawn in the graph represents a communication link established in
between the agents. The set of edges expressing all the links established in a graph
in a particular time instance is expressed as follows:

E(n) =
{
(r, t) : ae(r,t)(n) = 1

}
. (2.2)

where ae(r,t)(n) is an link indicator defined as follows:

ae(r,t) =

{
1 connection
0 no connection

(2.3)

Once a communication link is established in between the agents they start to
exchange information. In case of cooperative localization the information take the
form of noisy distance observations. The set containing all the available distance
observation at time slot n si defined as:

D(n) =
{
(r, t) : (r, t) ∈ E(n)

}
. (2.4)

2.2 Dynamic behaviour of the mobile node

A key aspect in a network research is the simulation pattern upon this survey is
based. The characteristics of the network as well as the measuring performance
are severely affected by the simulation environment. Therefore, it is important
to develop or follow simulation patterns which are as close as possible to real
conditions. One of the main parameters, considering a dynamic network, is the
behaviour of the mobile agents. There exist several models to fulfil such purpose
in the corresponding literature. Several studies have taken place on the field in
order to classify the developed models. Such a survey can be found in [2] , [8] and
[6].

The different studies classify the performance of the mobility models by tak-
ing into account several criteria. Thus it is crucial to specify the criteria upon the
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selection of the corresponding model is made. The mobility model is designed to
describe the movement pattern of the mobile agents, and the way that the corre-
sponding location , velocity and acceleration vary over time. [6, pp.2]. Complicated
models exist which might focus on a specific aspect of the dynamic behaviour.
Therefore there is the need for a model that can capture the deviation in the gen-
eral mobile pattern followed by an agent.

A dynamic system consists of a various number of mobile and static agents
which form an instant network. The mobile agents travel all around the area of
interest freely and they leave or enter the area by following an arbitrary fashion.
As a result the network topology varies rapidly over time. Additionally the speed
of the object is affected by different factors such as acceleration, obstacle avoidance,
etc. Considering these aspects, there is a need for a mobility model that can capture
these characteristics so that the overall evolution of the network topology is as
representative as possible [3].

The so far conducted research on the field [2], has shown that the mobility
models which are characterised by a memoryless behaviour (i.e the next state has
no dependency with the states that preceded it) , create unrealistic patterns. There-
fore another criterion that needs to be fulfilled is that the next state of the object
should have a level a dependency in between the future state of the object and the
states that preceded it. Considering the nature of the problem, a fair assumption
that can be made is that the next location of the mobile agent should depend on
the current state of the agent or in other words the corresponding mobility model
should meet the first order Markov property. The particular property implies that
x(n − 2) ⊥⊥ x(n)|x(n − 1). In order to provide a better understanding of this
relationship, a graphical representation is introduced in figure 2.2.

Figure 2.2: An illustration of process that meets the Markov property. The current state of the process
depends only on the state that preceded it and is independent with the past.

In the current work did not consider any novel mobility model, but on the
criteria mentioned above, we adopt the mobility model introduced in [1]. The
reason why we make this choice is due to the fact that is fulfils the Markov property.
Another advantage of the model it is structured on a simple manner thus it can be
easily adopted by the connectivity model.

2.2.1 General form of the mobility model

In the following we make a presentation of the mobility model [1] that describes
the dynamic behaviour of the mobile node over the graph. The new state x(n) of
the agent is expressed with respect to the state x(n− 1) that preceded it along with
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some process vector z(n). The process vector is used to capture the variation of the
position depending on parameters such as velocity or acceleration. Based on this
characteristics the general form of the mobility model can then be defined as:

x(n) = F · x(n− 1) + z(n). (2.5)

The F matrix is the transition matrix whereas x(n − 1) is the preceding state
vector. The form of the transition matrix depends on the order of the mobility
model and in particular the parameters (such as position, velocity) included in the
state vector. The process vector z(n) can be furthermore expressed as follows:

z(n) = G · q(n). (2.6)

where q(n) is modelled as:

q(n) ∼ (0, σ2
z · I). (2.7)

The process noise z(n) is a mapping of the WGN vector q(n) ,with the correspond-
ing covariance matrix, which is transformed by the matrix G.

Derived on this, the process noise then is distributed as:

z(n) ∼ (0, Σ), (2.8)

where the process covariance matrix can be expressed as:

Σ = E[G · q(n) · q(n)T · G)] = σ2
z · G · GT (2.9)

First order mobility model

For the first order mobility model, the state vector x(n) represents only the position
of the node for the current time instance. The variation on the position of the agent
over time relies only on the variation of the speed.Thus x(n) can be expressed as
follows:

x(n) = p(n) ∈ R2, (2.10)

where p(n) represents the coordinates of the node on the 2–D grid.

The parameters that contribute at the state equation can be obtained by taking
into account the equation introduced in [1]. Derived on this, the corresponding
matrices take the following form:

F = I, G = ∆t · I, (2.11)

Hence, the process covariance matrix can then be expressed as follows:

Σ = σ2
z (∆t)2 · I. (2.12)

.
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Second order mobility model

The so far conducted research on the field has shown that by including velocity
in the states, a more realistic node movement trace is created ([2, pp.7]). A basic
advantage of the current model is the fact that can be easily be extended to a
second order form where the variation on the location relies on the acceleration of
the mobile agent. The state vector x(n) is expressed as follows:

x(n) =
[

p(n)
υ(n)

]
, (2.13)

where υ(n) ∈ R2 represents the velocity.

The components of the corresponding linear equation can be obtained by dis-
cretizing the first order differential equation introduced in [1, pp.92]. Derived on
this, the corresponding matrices can then be expressed as:

F =

[
1 ∆t
0 1

]
⊗ I, G =

[
∆t2

2
∆t

]
, (2.14)

where ⊗ denotes the Kronecker product.

The covariance matrix of the process vector can then be expressed as:

Σ = σ2
q ·
[

∆t4

4
∆t3

2
∆t3

2 ∆t2

]
⊗ I (2.15)

2.3 Range error model

The estimate of the location of a mobile object relies on the knowledge of the dy-
namic behaviour of the object as well as the available range measurements. Each of
the available observations though is characterised by a level og inaccuracy. Several
factors may occur and affect the inaccuracy of the measurements which reflect the
impact from the propagation environment.

In cases of dense urban areas the surroundings of the object have a severe
impact on the corresponding accuracy. A possible reflection on a high building ,
an obstacle a neighbour of the agent etc, corrupts the information obtained by the
corresponding signal. Even in cases where the agent travels on a plain terrain free
of obstacles, the available information is also inaccurate. Other reasons such as
ionospheric scintillation, hardware delay, thermal noise etc [4] also have an impact
to the obtained measurement.

Derived on these, there is a need for a mathematical model for the error intro-
duced in the measurements. The current work does not consider a novel model
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upon this issue but instead we follow the model introduced in [15, pp.29-30] where
the measurement is represented as follows:

drt = ||pr − pt||2 + w. (2.16)

where e corresponds to the noise introduced in the measurement. For each of the
measurements the corresponding error is considered to be independent to the rest
of the available measurements. By taking into account these considerations e is
modelled as follows:

w ∼ N(0, σ2
w) (2.17)

2.4 Simulation scenarios

The current work investigates the connectivity status and how that varies over time.
The simulations are conducted by taking into account different simulation environ-
ments depending on the number of the agents participating in the corresponding
graph. In many cases trivial scenarios are investigated where the connectivity sta-
tus of a pair of agents is considered. For the cases where a group of nodes, anchor
or static, participate in the graph a specific simulation pattern is followed.

The basic simulation concepts are the following:
Static two agents connectivity scenario: The current simulation scenario inves-

tigates the connectivity status in between a pair of agents while they remain static
over time. The main reason why we select the particular set up has to do with the
fact that we want to see the the influence one of the basic aspects of the problem,
in such case time, affects the exchange of information.

Dynamic two agents connectivity scenario: At the current set up we consider
a pair of agents where at least one of the nodes has a dynamic behaviour over
time. The mobile agent travels all around the simulation area without considering
any boundary. The current set up provides provides information regarding the
sensitivity of the connectivity status when except time, the variation of another
aspect of connectivity, in such case distance, affect the connectivity in between the
agents.

The trivial extended network connectivity scenario:The simulation environ-
ment spans midrange 8 km × 8 km urban area. A number of 13 anchor nodes are
placed all over the simulation area in a way such that it is easier to form triangu-
lation. On the other hand the number of agents that travel all over the simulation
area is up to 50. The environment takes into account different cases for the mobile
agents thus the speed variance σ2

z differs from one object to the other.
It is desired for the nodes to remain in the simulation area without violating

the borders. Due to the dynamic behaviour of the nodes over time such case in
almost unavoidable. Thus there is a need for a method to avoid such case. One
approach that constrains the positions of the agents inside the simulation area is
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the one that introduces walls on the boundaries of the area. In such case though
the trajectories of the nodes are affected which reflects to an interference to the
mobility model. Therefore there is a need for a method that allows to the mobility
model to describe the trajectories of the nodes without any external intervention.

Based on this desire, we choose in our study to transform the simulation area
into a torus. In such case the agent continues travelling and reappears on the other
side of the simulation area as soon as it reaches one boundary of the simulation
area. In order to obtain a visual inspection about the form of the floor plan and
how the position evolves with respect to the toroid shape an illustration over two
consecutive time instances is provided in figure 2.3.

Cooperative localization paradimg aims to overcome the impracticalities intro-
duced by the so far applied technologies which mainly arise in dense urban areas.
The current set up provides information regarding the way that the connection in
between multiple agents varies over time in an environment relevant to a possible
application of the paradigm.

(a) Simulation region in 2–D (b) Transformation of the simulation
region into a torus

Figure 2.3: An illustration floor plan where the simulation scenario takes place. The blue points cor-
respond to the location of the anchor nodes where the green nodes illustrate the mobile nodes.Each
of the agents has is labelled with a number used as an identifier.





Chapter 3

State of the art methods

One of the main aspects in the field of location awareness is the one related with
the connectivity status in between the agents participating in a dynamic network.
The particular aspect is the one that indicates whether a communication link can
be established in between the agents or not. The following chapter presents the
two basic approaches utilized to address the particular issue for Cooperative lo-
calization purposes. The first approach, introduced by Savic and Zazo, proposes a
probabilistic model to address the problem whereas the method proposed by Henk
Wymeersch uses a decision rule to define whether the nodes can exchange informa-
tion or not. One of the main factors that affect the connection between the nodes
is related with the distance between the nodes. The common aspect in the two
methods is the fact that distance is considered as a basic parameter to address the
connectivity issue denoted as R. For the current work the distance parameter of
the probabilistic model is denoted as R whereas for the rule of Henk Wymmersch is
expressed as RH to avoid any possible conflict. In case of the connectivity model
proposed by Henk Wymeersch distance is the only parameter upon the decision is
made whereas in case of the model of Savic and Zazo exploits the probability of
having a connection over distance. The current chapter aims to provide a deeper
analysis regarding the characteristics of the models and highlight the advantages
and disadvantages of each method.

3.1 Connectivity model by Savic and Zazo

The model proposed by Savic and Zazo introduces a probabilistic approach to ad-
dress the problem of the spatial connection between two nodes. The probabilistic
model takes the form of a function similar to the one that corresponds to the prob-
ability density function (pdf) of a Gaussian distribution. Unlike the Gaussian pdf
though, the corresponding input comes only from the non–negative side of the x
axis thus the graphical representation of the function in the 2–D grid looks like a

21
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representation of a one sided Gaussian pdf. The probabilistic function introduced
by Savic and Zazo expresses the probability of establishing a connection in between
the agents as a ratio in between the distance that interpolates in between the agents
and a range parameter R that controls the probability. Hence the probabilistic func-
tion reads:

P(E(r, t) ∈ U) =: exp(−||xt − xr||2/2R2). (3.1)

One of the main advantages of the probabilistic approach is that states the
idea that connection in between the agents is characterised by a level of ambiguity
besides the interpolated distance. The Cooperative Localization paradimg arises
from the necessity for a method that overcomes the impracticalities introduced by
the signal propagation environment to the so far developed technologies i.e GPS.
In a real time environment signal propagation is affected by several parameters,
such as transmission power fading etc. Hence addressing the connectivity issue
from a probabilistic approach introduces a method where those parameters are
also considered. The ambiguity for having a connection though is also affected by
the settings of the applied technology. In cases though where for i.e the transmis-
sion power is high, the influence from the signal propagation environment is less
than in cases where the opposite condition regarding the transmission power. Thus
the probability for having a connection is not the same for different set–ups. Thus
there is a need for a distinction in between the different settings. Therefore the con-
trol parameter R is also an advantage for the model since it can be interpreted as a
parameter can express different characteristics of a possible set–up such as trans-
mission power. The current approach is also characterized by several properties
that fit very well with the nature of the problem. These properties are:

1. lim||xt−xr ||→0 P(xt, xr) = 1. Meaning that while the mobile node gets closer to
the transmitter the probability converges to 1. In practice the model states the
idea that when the nodes are very close the one with the other it is very likely
that they can exchange information since the affect from the transmission
environment is low.

2. lim||xt−xr ||→∞ P(xt, xr) = 0. This property indicates that when the agents are
far distant from each other the transmission power is very low so the inter-
ference from the signal propagation environment severely affects the signal
path and as a result the connection is more likely to fail.

3. Another property of the model is that in cases where the node returns to
a position that has already been before the corresponding probability is the
same. The model is only distance dependent. The current property states
the idea that if for example (in case of an anchor node and a mobile node)
the mobile node returns in the same position then the probability of having
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a connection is the same as in the first time. However there is no guarantee
of having a connection there again.

4. No time–evolution is included in the model. Considering the case where a
connection is established in between the nodes, there is no guarantee that
the connection is on for the next i.e nanosecond. The probability is drawn
independently thus, according to the model, a different connectivity status
could be established in a very short time period.

5. Assuming that the node remains static in its position the probability does
not change. Considering the nature of the problem, the current property ex-
presses the idea that when the user is in a place where he has the connection
it is safe to stay on the current location so that the particular connectivity
status is retained .

6. Due to the time–independence of the model another assumption that can be
made is that once a connection has been established then the connection may
last for an infinite amount of time.

The current model even though it proposes a more realistic approach to ex-
press the connectivity status between two nodes compared to the one proposed by
Henk Wymeersch, it is also characterized by several obvious drawbacks. The main
disadvantage of the model is that it expresses connectivity as a static relationship
between the nodes without taking into account the dynamic behaviour of the nodes
and also whether the nodes were related in the past or not. Another drawback is
the fact that considering for example a scenario which includes a base node and
a mobile node, in case where the mobile node remains static (i.e a car when the
traffic light is red) the probability remains the same regardless the time instance.
In such case it must be assumed that the impact of fading is constant over time
thus the probability should not be altered. That kind of assumption is not fulfilled
in a real time environment. In order to obtain a better idea regarding this consid-
eration, a simple experiment is conducted. The simulation set–up considers the
static agents connectivity scenario. In order to determine of either the two nodes
can be connected or not the probability obtained by the model of Savic and Zazo
is compared with a time independent value drawn from a uniform distribution
which it is assumed that it represents fading. The results of the experiment are
introduced in figure 3.1.

The experiment takes into account ten different time instances. As it can be
seen from the results the connectivity status varies over the considered time pe-
riod. Therefore it is unrealistic to express a relationship, such as connectivity,
characterised by a dynamic behaviour over time as a static relationship in between
the agents which in this case corresponds to the probabilistic output of the model.
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Figure 3.1: A static scenario ,considering the coordinates of the node, over different discrete time
instances.ae corresponds to the connectivity status for each instance

3.2 Connectivity model by Henk Wymeersch

The second approach introduced my Henk Wymeersch uses a simple rule to define
whether the two agents can exchange information or not. The only parameter
upon the distinction in between the different connectivity status is made is the
interpolated distance in between the nodes. According to the particular approach
a connection can be established in between the agents in cases where the inter-
polated distance does not exceed the corresponding transmitting radius RH. The
mathematical formulation of the rule is then expressed follows:

(r, t) =
{
∈ E if ||xt − xr|| ≤ RH

6∈ E otherwise
(3.2)

The main advantage which characterizes the particular approach is the fact
that it can be easily adapted by the dynamic behaviour of the nodes. This can
be done by simply inserting the new positions of the nodes with respect to the
corresponding mobility model. Another property of the model is that, considering
that the nodes remain static, the connectivity status remains the same. In other
words, if for example we have a mobile phone which has a good connection to a
particular position we do know that if we stay in the same position we will keep
having a connection. Also, in case that we return in the same position we are aware
of the kind of connectivity we will have. Considering this situation from a real life
point of view this can be interpreted as the following example: a user is in the



3.3. Comparison between the two approaches 25

living room and his device is connected to the network, when the user reallocates
to the kitchen the connection to th network drops. In such case the user is aware
that if he returns in the location where the device was connected to the network a
a communication link will be established again.

On the other hand, that kind of approach is characterised by some obvious
drawbacks. The main disadvantage of the connectivity model proposed by Henk
Wymeersch is that the affect from the signal propagation environment, such as fad-
ing, is not taken into consideration. In such case ideal conditions for signal prop-
agation must me assumed, in the sense that the transmission power constantly
overcomes the impact from the signal propagation environment. Such an approach
could be followed in cases where we are considering a plane terrain without high
buildings or materials which can affect the signal propagation or in general an en-
vironment that does not affect the signal path. Cooperative localization paradigm
mainly focus in areas where the impact from the signal propagation environment
is relatively high thus an alternative approach is required in order to overcome the
impracticalities introduced to the far developed technologies. Another characteris-
tic of the model is the behaviour of the model at the boundary of the transmission
radius. For ||xt − xr|| = RH we can be sure that a connection can be established,
whereas when ||xt − xr|| = RH + ε (where ε is a very small value) the connectivity
drops. The connectivity status is a very sensitive issue and it is quite possible that
the connectivity might drop by even making a small step. The disadvantage of the
particular approach though is the level of certainty in both cases. By seeing the
issue from a probabilistic approach it is unrealistic for the probability to drop from
1 abruptly to zero.

3.3 Comparison between the two approaches

The so far analysis on the different approaches mainly focus on the characteristic
properties of the methods and provides an intuition regarding the advantages and
disadvantages of each method. The current subsection aims to provide a deeper
analysis upon the behaviour of the two approaches based on simulation scenarios
which represent trivial cases considering the connectivity issue. In that way we
aim to highlight the differences im between the different methods in a more prac-
tical manner. Therefore a variation of the dynamic agents connectivity scenario.
In that way we seek to illustrate the sensitivity of the connectivity issue even in
cases when only one of the agents travels in the simulation area. The connectivity
status in case of the model of Savic and Zazo is defined by making a comparison
between the corresponding probability and a value, different over the correspond-
ing time instances, which is drawn from a uniform distribution. For the needs of
the simulation R and RH are equal even though the two parameters represent dif-
ferent parameters. Along with the illustration connectivity status determined by
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each method, an illustration of the variation of distance over time instances is also
provided, so we can examine the influence of this aspect to each of the methods.
The obtained results are introduced in figure 3.2.

Figure 3.2: Comparison between the models. The first figure illustrates the connectivity status with
respect to the model proposed by Henk Wymeersch , the second figure illustrates the connectivity
status with respect to the model proposed by Savic and Zazo whereas the third figure illustrates the
variation of the distance expressed in meters (m).

The results indicate that one of the main differences in between the different
approaches is the behaviour of the methods over time. The connectivity model
of Henk Wymeersch yields a flat output depending strictly on distance whereas
the output from the probabilistic model tends to fluctuate over time. This kind
of result is expected since the model of Savic and Zazo is characterised, due to the
probabilistic structure, by uncertainty regardless distance whereas the connectivity
model of Henk Wymeersch yields a constant outcome based strictly to distance. In
order to provide a more representative illustration of the differences the location
of the mobile node along with the corresponding connectivity status are illustrated
for each model in figures 3.3 and 3.4 ccordingly.

Figure 3.3: Positions and connectivity status with respect to the model of Henk Wymeersch.
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Figure 3.4: Positions and connectivity status with respect to the model of Savic and Zazo.

The conducted simulation provides an overview regarding the connectivity sta-
tus between the nodes for a limited time period. In order to obtain an overall idea
about the spatial relationship over time and investigate a more realistic scenario an
extended simulation takes place where 10000 different discrete time instances are
taken into account. The obtained results are illustrated in figure 3.5.

Figure 3.5: Comparison between the models. The first figure illustrates the connectivity status with
respect to the model proposed by Wymeersch , the second figure illustrates the connectivity status
with respect to the model proposed by Savic and Zazo .

The obtained results illustrate the same pattern as the one introduced in figure
3.2 but in a more extended version. the model proposed by Savic and Zazo has a
more dense behaviour over time. A new aspect though is that the mobile node has
the tendency to return into a region where the connection with the anchor node
can be restored. The density of the results do not allow any further investigation
in the current form thus the analysis will take place over shorter time periods.

Firstly the comparison in between the different methods focus on the time pe-
riod where a communication link is established for the first time and ends at the
time slot where the connection drops for the first time with respect to the proposal
of Henk Wymeersch. The obtained results are illustrated in figure 3.6.
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Figure 3.6: Comparison between the models. The first figure illustrates the connectivity status with
respect to the model proposed by Henk Wymeersch , the second figure illustrates the connectivity
status with respect to the model proposed by Savic and Zazo.The time period lasts until the first drop
of the communication link with respect to the model of Henk Wymeersch.

The main task of the simulation is to provide an overview about the connec-
tivity status over a long time period. So far we have illustrated the trivial case
where the connectivity is established for the time instance until the time when the
connectivity drops for the first time. At this point we will proceed by illustrating
the time period when the connection is established again after the first drop. The
results are illustrated in figure 3.7.

Figure 3.7: Comparison between the models. The first figure illustrates the connectivity status with
respect to the model proposed by Henk Wymeersch , the second figure illustrates the connectivity
status with respect to the model proposed by Savic and Zazo.The time period lasts from the first time
the communication link is restored.

An interesting outcome from the simulation study, considering the connectivity
model of Henk Wymmersch, is that once the connection is lost for the first time the
connectivity status tends to fluctuate over time. Considering the main idea upon
the the particular connectivity model is based this simply means that the agent
move in the boundary of the transmission radius hence the agent exits and enters
in the transmission area frequently. On the other hand the probabilistic approach
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is characterised by a higher fluctuation due to the fact that a longer distance inserts
a higher level of uncertainty for the connectivity outcome.

The obtained results indicate that both approaches are characterised by a kind
of paradox considering the nature of the problem. The agents attempt to connect
in a time varying environment where nodes, i.e individuals vehicles etc, move all
around changing the layout of the area upon the signal is propagated. Nevertheless
the criteria in both approaches, regardless if the they are probabilistic or determin-
istic, remain unaltered. In case of the connectivity model of Henk Wymeersch the
propagation environment is totally ignored whereas from the very first moment
whereas in case of the probabilistic approach the affect in the propagation path in
a dynamic environment is considered as static.

A new outcome from the extended simulation study is that in both approaches
a state of no connection is in many cases followed by a state where a communica-
tion link is established in between the nodes. The so far followed methods though
do not address this kind of issue since the structure of both the models is not state
based.

3.4 Conclusion

The current chapter introduced the so far developed approaches in the field of lo-
cation awareness which address the issue of connectivity. The existing methods
fulfil different requirements of the problem. On one hand the connectivity model
proposed by Henk Wymeersch is characterised by time dependency which relies on
the mobility model. As long as the trajectory of the node is within the transmis-
sion radius the agents are connected with each other whereas the opposite scenario
holds for the case where the corresponding trajectory is located outside the trans-
mission area. The unrealistic aspect of the particular approach has mainly to do
with the fact that the signal propagation environment is not considered as a part
of the connectivity issue. On the other hand the probabilistic model introduced
by Savic and Zazo proposes a more realistic approach since the affect of the prop-
agation environment is considered as an aspect of the connectivity issue but it is
also characterized by several drawbacks,i.e the dynamic change of the propagation
environment and time independence. The conducted analysis indicated that a con-
nectivity method should fulfil account some basic requirements. One of the main
issues is related with the distance and the affect from the propagation environment
on a time varying basis and not through a constant manner. Another issue which
should be addressed by the model is the fact that there is a relationship between
the current connectivity status with the one that preceded it. A very common ap-
proach to address that type of issues is to develop methods that fulfil the first order
Markov property.





Chapter 4

The Markovian model

The connectivity status in between the nodes is a spatial relationship characterised
by a variational behaviour over a time period. The simulation study indicated that
one of the main characteristics of this behaviour is the fact that the next connec-
tivity status is dependent to the current status regardless what happened in the
past. Considering the nature of the problem this is to say that if for example a
connection is established at the current time instance it is quite possible that the
nodes will remain connected the following time instance regardless if no connec-
tion was established two time instances before. A very interesting result of the
so far conducted analysis is also the fact that if two nodes are not connected the
current time there is a strong possibility that at the next step a transaction from the
status of no connection to a status of connection can occur. The common aspect of
all the different scenarios though is the fact that they fulfil the first order Markov
property. Derived on this outcome the current work proposes a Markovian model
to address the connectivity issue. The fundamental idea about the model is based
upon the proposal by Savic and Zazo, the Markovian approach of the mode aims to
extend the original proposal in the time domain. The following chapter introduces
the fundamentals upon the Markovian model is based starting with the theoretical
analysis. Furthermore a simulation study is conducted in order to investigate the
way that the original proposal adopts the updated approach. Therefore an analy-
sis upon the behaviour of the Markovian model in the time domain is conducted.
Finally a discussion takes place regarding the properties of the model parameters
as well as a preliminary analysis about methods upon the model parameters can
be obtained.

4.1 Markov chain

Therefore the connectivity status over a time period could be considered as a
Markov chain since it meets the following requirement:
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P(Xn = s|X0 = x0, · · · , Xn−1 = xn−1) = P(Xn = s|Xn−1 = xn−1) (4.1)

Two different cases hold for the connectivity status in between the agents, either
the agents can exchange information with each other or not. Considering the two
cases as different states of a Markov model, the first case could be indicated as S0

whereas the second scenario could take the form of state S1. Thus, the discrete
number of states can then be expressed as a set that takes the following form:

S = (S0, S1) (4.2)

At each time instance the connectivity status has a probability to remain at the
same state the very next moment and a probability of transition to the next state.
An example of this type of process is illustrated in figure 4.1

S0

p11

S1

p22

p12

p21

Figure 4.1: An example of a 2–state Markov model .

The corresponding probabilities could then be represented in the matrix form
P where:

P =

[
p11 p12

p21 p22

]
(4.3)

P is a stochastic matrix, which is to say that it fulfils the following properties
([7, pp.195]):

• P has non–negative entries.

• The sum over the rows is equal to 1: ∑j pij = 1.

Based on the second property of the stochastic matrix, the transition matrix P can
be rewritten as follows:

P =

[
1− α α

β 1− β

]
, where α, β ≥ 0 (4.4)
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Distribution over the states

The distribution over the given states can take the form of a stochastic row vector.
Since the connectivity status can take only two states, the stochastic is formed with
respect to the probability of establishing a communication link and the probability
that the opposite case may occur. The distribution over the different time slots can
then be expressed as follows:

π(n+1) = [π
(n+1)
1 , π

(n+1)
2 ] = π(n)P = (π(n−1)P)P = · · · = πPn. (4.5)

Eigenvalue Decomposition

The main parameter that characterizes the distribution over the different time in-
stances is the form of the transition matrix P. In order to obtain a better idea
regarding the entries of the transition matrix and the way that the entries vary
over time, a structure analysis is conducted. The first step of the analysis is to
obtain the eigenvalues λi of P. In order to obtain the eigenvalues of P we have to
solve the following equation:

det|P− λI| = 0 (4.6)

The solution of the equation introduced in (4.6) yields:

1. λ1 = 1

2. λ2 = 1− α− β.

Based on the obtained solution the transition matrix can be reformulated as
follows:

P = U
[

1 0
0 1− α− β

]
U−1, (4.7)

where U the matrix containing the corresponding eigenvectors.
The current form of P provides an easier way to analyse the structure of the

transition matrix over the different time instances. For the n + 1 time instance the
transition matrix takes the following form:

Pn = U
[

1 0
0 (1− α− β)n

]
U−1 (4.8)

The power of the transition matrix is characterised by two properties. The first
property is that for n = 0, P = I where I is the identity matrix. The interpretation
of this property considering the nature of the connectivity problem is to say that
if for example the two agents are connected , then if the clock does not run the
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agents will surely remain connected. The second property of P is that while the
time elapses converges to a steady form. In order to explain why this phenomenon
occurs, an analytical expression for the entries of the n–th power of P is provided.

Based on the form of Pn introduced in equation (4.8) the element which is
placed in the first row and the first column can be written as follows [13] :

p(n)11 = A + B(1− α− β)n, for some A and B. (4.9)

For n = 0:
p(0)11 = 1 => A + B = 1. (4.10)

For n = 1:
p(1)11 = 1− α => 1− α = A + B(1− α− β). (4.11)

The solution of the equations (4.8),(4.10) yields:

(A, B) =
(β, α)

β + α
(4.12)

By following the same methodology for the rest of the components, Pn can be
rewritten as follows:

Pn =

[
β

β+α + α
β+α (1− α− β)n α

β+α −
α

β+α (1− α− β)n

β
β+α −

β
β+α (1− α− β)n α

β+α + β
β+α (1− α− β)n

]
(4.13)

We do know though that there exists the following property:

1− α− β < 1 => lim
n→∞

(1− α− β)n = 0. (4.14)

Therefore the transition matrix over the different time slots converges to the
following form:

lim
n→∞

Pn =

[
β

β+α
α

β+α
β

β+α
α

β+α

]
(4.15)

This property in practise means that the transition matrix becomes independent
of the time evolution.

Stationary Distribution

The row vector π = [π0, π1] is called a stationary distribution of the chain if the
corresponding entries fulfil the following properties ([7, pp.207]):

1. πj ≥ 0 for all j, and ∑j πj = 1.

2. π = π limn→∞ Pn.
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Once the basic properties of the stationary distribution are stated, the next step
is to investigate the form of π with respect to the form of the transition matrix
when n→ ∞ as it is formed in equation 4.15. Therefore the second property of the
stochastic vector can be rewritten as follows:

[π0, π1] = [π0, π1]

[
β

β+α
α

β+α
β

β+α
α

β+α

]
(4.16)

The system of linear equations yields:

1. απ0 − βπ1 = 0

2. βπ1 − απ0 = 0.

The obtained system of equations does not yield a unique vector as a solution
since the equations are linearly dependent. In order to obtain the final form of the
stochastic vector we can utilize the first property of the stochastic vector. In other
words we can simply insert π1 = 1− π2 in either of the obtained equations. The
solution of the corresponding system of equations yields:

[π0, π1] = [
β

β + α
,

α

β + α
] (4.17)

Simulations

The connectivity model proposed by Savic and Zazo is characterised by having
the ability to adopt the influence of several parameters when considering signal
propagation environment, such as fading, signal power etc. On the other hand it is
also characterised by the fact that the corresponding probabilities are independent
over time. In order to overcome this impracticality a very simple approach is to
combine it with two state Markov model. In such case the probability of having as
well as the probability for not having a connection form the stationary distribution.
Thus in that case the stationary vector introduced in equation (4.17) is expressed
as:

[π0, π1] = [exp(−||xt − xr||2/2R2), 1− exp(−||xt − xr||2/2R2)] (4.18)

A basic component of the two state Markov model is the transition matrix P.
The main aspect when forming P is to define α and β. Based on the form of the
stationary distribution there is a single relationship in this two parameters thus
there is an infinite solution of pairs which could satisfy this relationship. Therefore
an arbitrary choice upon one of these parameters is made, in order to form P, and
the other is selected accordingly. Based on this methodology on forming P several
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realizations are conducted in order to investigate the behaviour of the Markovian
model. The obtained results are illustrated along with those corresponding to the
model of Savic and Zazo in order to demonstrate the differences in between the
two approaches. Therefore a simulation study takes place with respect to the static
agents connectivity scenario. The current simulation set up provides an overview
regarding the differences in between the the two models while the only aspect of
the problem that varies is time.

There exists an infinite amount of different examples upon the comparison can
be made. For the current simulation set up we consider cases of connectivity upon
we can have an intuition regarding the connectivity status beforehand. Therefore
we choose to illustrate the results from the following simulation set ups:

• A simulation set up where the two agents are closely spaced thus it is ex-
pected that it is more likely to have a connection.

• A simulation set up where the two agents are far distant with each other
hence a connection is more likely to fail.

In both cases the obtained results from the model of Savic and Zazo are illus-
trated first while the results from the Markovian approach follow.

The time variation of the connectivity status when the mobile agent is relatively
close to the base node is illustrated in figure 4.2.

Figure 4.2: The current simulation scenario illustrates the behaviour of the model when the
probability for having a connection is relatively high. The probability is the same for both the
models:π0 = 0.83. Settings for the Markovian model: R = 10,α = 0.05,β = 0.27.

The results from the simulation scenario which investigates the variation on
connectivity when the agents are relatively far the one from the other are illustrated
in figure 4.3.
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Figure 4.3: The current simulation scenario illustrates the behaviour of the model when the proba-
bility for having a connection is relatively low. In both cases the probability is the same :π0 = 0.48.
Settings for the Markovian model: R = 10,α = 0.31,β = 0.3.

The main conclusion that can be made based on the obtained results is that the
Markovian model yields a more stable behaviour over time. That kind of tendency
is expected since the next state depends on the state the preceded it. Thus in cases
where for example there exists a connection for the current state it is more possible
that a similar case can repeat from the next state compared to a scenario for having
a connection in the future while no connection is established in the present. The
same case holds for the scenario where the current state has no connection estab-
lished. Generally, this kind of pattern fits the nature of the problem. Considering
the case where a connection is established in between two agents at an arbitrary
time instance it is quite possible that the agents will remain connected the very
next moment so they can exchange information. A general outcome that can be
obtained with respect to the simulation results is that considering the connectivity
as a problem we do know that the connectivity status, regardless if the connection
is established or not, has in general a flat response over time. The transitions from
one state to the other occur but in general the do not follow a consecutive pattern
as the one introduced by the original model.

Time Correlation

The Markovian approach inserts time as an aspect of the connectivity status. One
of the main issues that characterise time is the correlation among the different
time instances. Considering the nature of the problem, the correlation among the
different time instances can be interpreted as the probability of having the same
connectivity status over a time period of N. The first step when conducting such
an analysis is to investigate what is the average outcome for the connectivity status
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over a long time period. For the Markovian model the expectation reads:

E[ae] = 1 · π0 + 0 · π1 = π0 =
β

β + α
(4.19)

We seek to investigate the case where a pair of agents remains connected over
a long time period. That kind of relationship can be expressed as follows:

Rae(k) := E[ae(n + k) = 1|ae(n) = 1] = P(ae(n + k) = 1ae(n) = 1 and ae(n) = 1)

= P(ae(n) = 1)P(ae(n + k) = 1|ae(n) = 1)

For k = 1 , with respect to equation (4.17) and the form of P introduced in (4.4)
the probability for having a connection the moment right after the connection is
established is expressed as:

P(ae(n) = 1 and ae(n + 1) = 1) = P(ae(n) = 1)P(ae(n + 1) = 1|ae(n) = 1)

=
β

β + α
· (1− α)

For k = 2, we want to obtain the probability for having a connection two mo-
ments after the connectivity is established for the first time. Due to the Markov
property a state depends only on the state that preceded it and it is independent
to the past, in our case this means that: (n + 2) ⊥⊥ n ∩ (n + 2)|(n + 1). Therefore
the probability is expressed as follows:

E[ae(n + 2) = 1|ae(n) = 1] = P(ae(n) = 1 and ae(n + 2) = 1)

= P(ae(n) = 1)P(ae(n + 2) = 1|ae(n + 1) = 1 or ae(n + 1) = 0)

= P(ae(n) = 1)(P(ae(n + 2) = 1|ae(n + 1) = 1) ∪P(ae(n + 2) = 1|ae(n + 1) = 0))

=
β

β + α
· ((1− α)2 + αβ)

The same procedure can be followed for the rest of the cases in order to obtain
the probability for the N different instances. A more simple approach though can
be followed in order to obtain the correlation among the different time instances.
This can be done by exploiting properties of the transition matrix. Based on equa-
tion (4.5), the distribution for the n + k–th distance can be written as:

π(n+k) = π(n) · Pk. (4.20)

The probability for having, after k time instances connection again can then be
expressed as:
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E[ae(n + k) = 1|ae(n) = 1] = π
(n)
0 · P

k
11. (4.21)

Generally each of the entries of the k–th power of P expresses all the possible
transitions starting from state i and ending to state j over a time period of k. So
for example the Pk

11 component expresses all the possible transitions from a state of
connection to a state of connection while Pk

12 expresses all the possible transitions
from a state of connection to a state where connectivity is lost and so on.

Based on the form of P from equation (4.13) as well as the form of the stationary
vector from equation (4.17) the form of correlation introduced in equation (4.21)
can be rewritten as follows:

E[ae(n + k) = 1|ae(n) = 1] =
β

β + α
· ( β

β + α
+

α

β + α
(1− α− β)n). (4.22)

For a very large number of k the correlation converges to a steady state which
is expressed as:

lim
k→∞

E[ae(n + k) = 1|ae(n) = 1] =
β

β + α
· ( β

β + α
) =

β2

(β + α)2 = E2[αe]. (4.23)

Based on these results a simulation is conducted with respect to the static agents
connectivity scenario. The simulation set up considers two characteristic cases of
connectivity: i) a case where the probability of having a connection is very high
ii) a case where the connectivity is quite likely that it will drop. Along with the
results from the theoretical derivation of the time correlation an illustration of
the numerical estimation of the time correlation is also provided. The numerical
estimation of the ACF is obtained by making use of the unbiased ACF estimator
[11]:

R̂ae(k) :=


1

N−k ∑N−k−1
n=0 X(n)X(n + k)0 ≤ k ≤ N − 1

R̂ae(−k)− N + 1 ≤ k ≤ 0
0 otherwise

(4.24)

The simulation takes place in a prolonged time period thus the overall results
are illustrated in a very dense manner. In order to provide a closer look to the
results, a zoomed in illustration of the first few instances is also provided. The
results from a case where the two agents are closely spaced are illustrated in figure
4.4.



40 Chapter 4. The Markovian model

(a) The first subfigure of (a) illustrates the results from the theoretical derivation of the ACF whereas the
second subfigure of (a) illustrates the results from the numerical estimation of the ACF.

(b) For the zoomed in illustration of the results the same order of illustration with case (a) is followed.

Figure 4.4

The second simulation scenario investigates time correlation when the static
agents are far distant the one to the other. An illustration of the obtained results is
provided in figure 4.5.
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(a) The first subfigure of (a) illustrates the results from the theoretical derivation of the ACF whereas the
second subfigure of (a) illustrates the results from the numerical estimation of the ACF.

(b) For the zoomed in illustration of the results the same order of illustration with case (a) is followed.

Figure 4.5

Based on the obtained results in both cases the distribution becomes stationary
over time. That type of outcome meets the results of the theoretical derivation of
the ACF. In cases where the probability of having a connection is high correlation
the distribution over a prolonged time period whereas for the interpolated distance
in between the agents is long the distribution becomes stationary in a short time
period.

That type of outcomes meet the behaviour of connectivity over a long time
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period. For the first case, where the agents are closely spaced with each other,
it is expected that the agents will remain consecutively connected over long time
periods until the connection drops. Thus the distribution needs a longer time
period until it becomes independent on time. On the other hand in cases where the
two agents are relatively far the one to the other the agents will remain connected
over short time periods followed by longer time periods with no connection. Hence
the distribution takes a shorter path to time independence.

4.2 Analysis of the ACF

The preliminary analysis upon the behaviour of the ACF over time indicated that
there exist different cases regarding the time required for the distribution to be-
come stationary. Another issue though that needs to be answered is what type
of behaviour characterises the ACF until it yields a flat response over time. The
stationary distribution consists of two parameters with an infinite pair of options
for the same distribution. Thus we seek to investigate the variation of the outcome
of the ACF for different pair of parameters. Therefore a step by step analysis is
conducted starting with the most characteristic cases.

The main cases are separated into two groups depending on the probability of
having a connection:

• A case where the probability for having a connection is high.

• A case where the connectivity is more likely to fail.

The preliminary analysis indicated that the first group is mainly characterised by
three types of behaviour with respect to the convergence of the ACF:

• A flat response of the ACF.

• A case where the ACF converges fast.

• Smooth response of the ACF yields over time.

The two groups have common characteristics. The only difference for the sec-
ond group there exists a case where the ACF fluctuates over time before converging
to the steady state. In order to obtain a visual inspection upon the characteristic
cases of the AFC, the different scenarios are illustrated in figure 4.6 . For the needs
of the simulations we are considering the static case connectivity scenario all over
the section. The reason why we follow this simulation scenario has do with the
fact that the main interest upon the analysis of the ACF is to investigate the affect
on connectivity which is related strictly on time.
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(a) flat response of the ACF

(b) Fast convergence of the ACF

(c) Smooth response of the ACF

(d) Fluctuation of the ACF

Figure 4.6

The next question that needs to be answered from the ACF analysis is what are
the main factors that affect the ratio of the ACF convergence to the steady state. In
order to proceed with this type of analysis a basic choice is made: The focus of the
analysis is made upon the behaviour of the convergence ratio over the first time
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instance expressed by the following equation:

E(an+1 = 1|an = 1) =
β

β + α
· (1− α). (4.25)

The following time instances are expected to follow a behaviour based on the
first time instance. In order to simplify our work this type of investigation is
called first ACF coefficient analysis and the output of the corresponding function
introduced in (4.25) is denoted by c. The behaviour of the output is depended
to the form of the inputs which in this case are α, β. Based on this observations
the first order component analysis can then be expressed in a form of function as
follows:

[0, 1]× [0, 1]→ [0, 1]. (4.26)

There exists an exceptional case for (α, β) = (0, 0) where c = ∞. This sce-
nario though is not considered since that case corresponds to 0–th instance of the
transition matrix where no time evolution takes place. In order to obtain a vi-
sual inspection regarding the behaviour of Rae(1) over the different pairs of (α, β)

a plot involving the different coefficients of the first order component analysis is
illustrated in figure 4.7.

Figure 4.7: First ACF coefficient analysis over the region of α and β.

The obtained results indicate that the output of the corresponding result is
mainly affected by the value of α. This tendency occurs because of the factor
1− α which has the major impact on the value of Rae(1). There exist two extreme
cases for Rae(1). The first case holds for Rae(1) = 1 where in such case α =
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0. Considering the nature of the problem this means that once a connection in
between the two agents is established the same connectivity status remains all over
the time period regardless the value of β. An example of this scenario is illustrated
in figure 4.8.

Figure 4.8: Flat response of the ACF where the two nodes remain connected all over the time period.
The x axis represents time whereas the y axis corresponds to the value of c.

The second case holds for the case where Rae(1) = 0. There exist two possibili-
ties for the current case. The first possibility holds for α = 1. In such case the ACF
is initially characterised by a fluctuation over time. The main characteristic of the
current scenario is the fact that in case where a connection is established, there is
not any case of remaining on the same status the next time instance. An example of
this scenario is illustrated in figure 4.9. The second possibility holds when β = 0.
In such case when the connectivity status switches to a state where no connection
is established then the two agents loose connection permanently. The graphical
representation of the ACF for the current possibility yields a flat zero response all
over the time period.
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Figure 4.9: A scenario where c = 0 consequently the ACF is characterised by a fluctuation.The x axis
represents time whereas the y axis corresponds to the value of c.

Once the basis of the analysis is defined and the main characteristics of the
first ACF coefficient analysis are specified, the next step is to investigate the con-
vergence ratio over the time period. Therefore an analysis upon this issue is con-
ducted to investigate the factors that mainly affect the time elapsed for the ACF
in order to reach the steady state. The main scenarios that are considered on the
analysis correspond to the extreme cases:

• A case where the correlation between a state and the one that preceded it is
high.

• A case where two consecutive time instances are weakly correlated.

For all the different cases all the coefficients of the two state Markov model are
taken into account. The corresponding values are demonstrated in tables whereas
a figure illustrating the convergence of the ACF is also provided.

The first simulation scenario considers the case where Rae(1) = 0.92. Two
different forms of the coefficients are illustrated. In both cases the form of the
transition matrix as well as the form of the stationary distribution are arbitrary
chosen. The common aspect in both cases is the value of Rae(1). The corresponding
values of the components for the first case are illustrated in table 4.1.

Table 4.1: high value of Rae (1)→ slow convergence

π0 π1 α β P00

0.9515 0.0485 0.0331 0.5786 0.9669

The particular form of the coefficients yield the form of the convergence of the
ACF illustrated in figure 4.10. As it can be seen from the results, the corresponding
ratio of convergence for the particular form is relatively high. The ratio indicates a
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sudden drop from the first time instance to the second and smooth but short path
to the steady state follows.

Figure 4.10

The analysis proceeds with another case for the same value of Rae(1). The same
process is followed to form the components of the two state Markov model and the
obtained values are demonstrated in table 4.2.

Table 4.2: high Rae (1)→ slower convergence

π0 π1 α β P00

0.9379 0.0621 0.0191 0.2888 0.9809

The graphical representation of the current form of the Markov model is pro-
vided in figure 4.11. Unlike the first case, the current form of the Markov model
introduces a smooth pattern to the ACF convergence ratio as well as a longer time
period is required to reach the steady state.

Figure 4.11

The second case,considering the level of correlation, investigates a simulation
scenario where Rae(1) = 0.002. The first example where the components of the
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Markov model meet this requirement is illustrated in table 4.3.

Table 4.3: low convergence component fast convergence

π0 π1 α β P00

0.1129 0.8871 0.9823 0.1250 0.0177

The particular form of the coefficients yields the graphical representation il-
lustrated in figure 4.12. As it can be seen from the obtained results the ratio is
characterised by a sudden drop and a very small fluctuation over the first two time
slots. The general pattern indicates a fast convergence to the steady state.

Figure 4.12

Another case for the same value of c is considered. The corresponding form of
the components is introduced in table 4.4.

Table 4.4: low convergence component slow convergence

π0 π1 α β P00

0.3056 0.6944 0.9935 0.4371 0.0065

The graphical representation that corresponds to the current form of the Marko-
vian model is demonstrated in figure 4.13. As it can be seen from the obtained
results, the current form of the coefficients introduces a higher fluctuation of con-
vergence than before which yields a longer path to reach the steady state.
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Figure 4.13

4.2.1 Conclusion

The current section provided an analysis on the ACF of the two state Markov model.
In order to do so, a basic choice is made: The analysis is conducted with the focus
on the first coefficient of the ACF. The obtained results indicated that there exists a
variation on the convergence ratio fo the ACF for the same level of correlation. That
kind of behaviour though is expected. The basic factor that affects the convergence
ratio is the first component of the transition matrix. In cases where P00 is very
close to π0 the convergence to the steady state is very fast or even flat. On the
other hand in cases where a long time period is required for P00 to converge to π0,
the corresponding pattern for the convergence ratio of the ACF is prolonged and in
most cases smooth. The selection upon the entries of P is an important issue for the
Markovian model. The connectivity in between a pair of agents is expected to have
a time dependency that decays over time until the distribution becomes stationary
thus the connectivity in between the agents is no longer time dependent. For the
same outcome of the first ACF coefficient an infinite amount of pairs (α, β) can
be selected. Considering the a nature of the connectivity issue it is preferable to
select a pair of entries that introduces a smooth pattern until ACF converges. The
analysis indicated that the entry that mainly affects the outcome of the first ACF
component is α. Thus one way to address the issue of selecting the pair of entries
could be by setting α such that, along with outcome of the first ACF component,
the pair of entries meet the properties of the connectivity issue.
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4.3 ACF coefficients analysis

One of the mains aspects of the connectivity problem is the correlation among the
different time instances. Therefore an analysis of the Markovian model is provided.
To do so a basic choice is made: The focus of the analysis is made with respect
to the first component of the function denoted as Ra(1). The conducted analysis
on the behaviour of the ACF indicated that the convergence of Ra relies on the
form of P00. In order to obtain a deeper idea regarding the overall behaviour of
Ra over the different components of the function a more thorough investigation
is required. Thus an analysis is conducted to investigate the relationship among
the different components. Since Ra consists of an infinite number of coefficients
the investigation focus on the relevance among characteristic coefficients of ACF
with respect to the first component. In particular the relevance is considered as
having a repetition of the same pattern among the closest component to Ra(1), in
that case Ra(2), and the more distant component,in that case Ra(∞). The cases are
as follows:

• Ra(1) = Ra(2).

• Ra(1) = Ra(∞).

Considering the first scenario among the different coefficients of Ra, the current
relationship can be rewritten as follows:

β

β + α
· (1− α) =

β

β + α
· (β · α + (1− α)2). (4.27)

The equation introduced in (4.27) can be rewritten in a one sided factorization
equation form as follows:

β

β + α
· (1− α− β · α− (1− α)2) = 0. (4.28)

The solutions of the current equation correspond to the case where the pattern
of Ra introduced at the first time instance repeats in the second. The cases are as
follows:

• α = 0⇒ π0 = 1

• β = 0⇒ π0 = 0

• α + β = 1⇒ π0 = β

By following the same methodology as the one introduced for the first case, the
second scenario can be expressed as follows:

β

β + α
· (1− α) = lim

n→∞

β

β + α
· ( β

β + α
+

α

β + α
(1− α− β)n) = (

β

β + α
)2. (4.29)
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The current relationship can be expressed as a one sided factorised relationship as
follows:

β

β + α
· (1− α− β

β + α
) = 0. (4.30)

The scenarios where the same pattern introduced for where Ra(1) follows the
same behaviour after after a very long time period holds for the following cases:

• α = 0⇒ π0 = 1.

• β = 0⇒ π0 = 0.

• α + β = 1⇒ π0 = β

. For both cases the solutions are identical. That type of result is expected for the
first two solutions , since in both cases Ra yields a flat response over the different
time instances where for the first solution the agents are connected permanently
whereas the opposite scenario holds for the second solution. The last solution
corresponds to the scenario where the response of Ra is flat over time but the
connectivity status is not constant. This kind of scenario holds for the case where
rows of the transition matrix are identical or else P11 = π0. In such case P is
independent on time from the very first time instance. An illustration of the three
different cases is provided in figure 4.14.
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(a) Flat 1 response of the ACF→Infinite duration of con-
nectivity.

(b) Flat 0 response of the ACF→Permanent loss of connec-
tion.

(c) Flat response with an ambiguity regarding the con-
nectivity status.

Figure 4.14

The common aspect of the three cases, is that the Markovian model is indepen-
dent on time thus it neglects to the model of Savic and Zazo. Derived on this we can
claim that the Markovian model is a generalization of the model of Savic and Zazo.
To verify this conclusion simple simulation scenario is conducted. The connectivity
status for the model of Savic and Zazo is defined with respect to the correspond-
ing probabilities. In case of the Markovian model the obtained probabilities from
the model of Savic and Zazo are treated as the stationary distribution. Since the
transition matrix is independent on time then the stationary distribution forms the
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rows of P. In order to provide a fair comparison the probabilities for both models
are compared with a random value drawn from a uniform distribution which is
common for the two models for the same time instance. The components of the
Markovian model drawn from an arbitrarily chosen distribution are introduced in
table 4.5.

Table 4.5: flat response of an arbitrary scenario where α + β = 1.

π0 π1 α β

0.1353 0.8647 0.1353 0.8647

The obtained results are illustrated in figure 4.15. As it can be seen from the
results the two models introduce identical behaviour as expected. The same be-
haviour is expected to be obtained also from the two other solutions. For α = 0 the
two models will yield a permanent connection for the two agents all over the time
period whereas for β = 0 then α = 1 thus even of there was a connection at time
t = 0, connection drops at time t = 1, and remains at a status where no connection
exists permanently.

Figure 4.15: Comparison of the two models when Ra yields a flat response. The x axis represents the
time instances and the y axis represents the connectivity status.
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4.3.1 Pairwise selection of α, β based on the ACF coefficients analysis

The analysis upon the characteristic moments of the ACF indicated that there exist
three basic scenarios upon the relationship in between the entries of the stochastic
matrix that lead to a flat output of the ACF. The next question that needs to be
answered is what is the affect on the output of the ACF when the pair of values
exceeds the area formed by the interconnection of these points. A visual inspection
of the interconnection region is provided in figure 4.16.

Figure 4.16: The diagonal of the rectangular region separates the area where the pair of entries of P
yields a fluctuation to the ACF compared to the area that takes the form of a lower triangle and a
where the pair of values yields a smooth pattern to the ACF.

The geometrical outcome of the interconnection region forms a triangle that
splits the area upon the pair of values can be selected in half. A new question that
needs to be answered due to the particular outcome is what are the differences in
between the selection of a pair of entries located in the upper triangle compared to
a pair of values located in the lower triangle. In practise this leads to a situation
where the sum along the inverse diagonal, where the coefficients of the matrix
which lead to the next are located, is larger than the sum of the main diagonal.
The outcome of this situation is that the connectivity status is more likely to transit
to the next state rather than staying at the current state. As a result the output of
the ACF is characterised by a fluctuation which means that for the particular pair
of values the model does not meet the Markov property. An example of such an
outcome is illustrated in figure 4.13. Derived on this we can deduce that one of the
basic requirements that need to be fulfilled by the pair of entries so that the model
meets the Markov property is the following:

α + β ≤ 1. (4.31)
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4.4 Linear relationship of the components of P

The Markovian model introduces a generalization of the model proposed by Savic
and Zazo. The current approach states the idea that the probability for having a
connection obtained by the initial model corresponds to a stationary distribution.
In such case the probability for having a connection the current state depends also
on the state that preceded it. The relationship in between the two approaches can
be expressed as follows:

π0 = e
−|x1−x2 |2

2·R2 =
β

β + α
(4.32)

The original approach introduces a single parameter, denoted as R,that con-
trols the corresponding probability thus characterizes the behaviour of the model.
Treating the corresponding probability as a stationary distribution introduces two
entries for P, α and β, in the design of the corresponding model. Thus the infras-
tructure of the Markovian model consists of three basic parameters which need to
be specified when constructing the model.

The main advantage when considering the Markovian approach to address the
connectivity issue is that a model characterised by more than one parameters in-
troduces a higher degree of freedom to the corresponding design. Thus the current
model provides a flexible approach when considering the settings of a possible ap-
plication. On the other hand, the corresponding parameters are characterised by
several limitations which need to be considered when designing the model.

4.4.1 Limitations upon the α and β coefficients

The entries α and β of P introduce a high degree of freedom upon the selection of
the corresponding values. The main relationship in between α and β is expressed
in equation (4.32). Assuming that the value of R, the equation introduced in (4.32)
can be rewritten such that one of the entries ,i.e β, can be expressed as a function
of the second component. The current relationship can be expressed as follows:

β

α + β
= π0 ⇒ β = π0 · (α + β)⇒ β · (1− π0) = π0 · α⇒ β =

π0 · α
π1

(4.33)

The current equation expresses the linear relationship in between the compo-
nents of the Markovian model. There exits an infinite combination of input and
output values which could form the stationary distribution. Each of the possible
outcomes though must fulfil the requirements of the stationary distribution intro-
duced in 4.1. Derived on this there exist several cases that introduce a limitation
upon the degree of freedom for each of the values of α and β. The limitation is
introduced by the ratio π0·α

π1
. The different cases can then be listed as follows:

• π0
π1

< 1, the limitation is introduced in the selection of β .
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• π0
π1

> 1, the limitation is introduced in the selection of α .

• π0
π1

= 1, there is no limitation upon the selection of the components.

In order to obtain a visual inspection upon the possible outcomes an illustration
of the different cases is provided in figure 4.17. The limitation upon the selec-
tion of the corresponding entry is introduced by the intersection of the equation
introduced in (4.33) with the requirements of the stationary distribution.

(a) π0
π1

< 1, thus the selection upon the selection of α

is restricted.

(b) π0
π1

> 1, thus the selection upon the value of β is
restricted.

(c) π0
π1

= 1, the selection of the components is free of
limitations.

Figure 4.17: Illustration upon the different cases for the limitation upon the selection ofβ. The boxes
illustrate the possible values for the components with respect to the requirements of the stationary
distribution. The line illustrated in the figures corresponds to the input output relationship of the
components for a fixed ratio π0

π1
. The intersection in between the different aspects introduces the

limitation upon the selection of the corresponding component.
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The obtained results indicate that the design of a model where one of the en-
tries, α and β, is constant is not a trivial task. In such case, i.e when α is constant,
the main requirement that needs to be fulfilled is that 0 ≤ α ≤ αmax, where αmax

corresponds to the intersection point in between the rectangular area which rep-
resents the theoretical feasible region of the values and the representation of the
linear relationship in between the values.

4.5 Model parameters

The Markovian model is characterised by a level of flexibility that allows to the
model to become adoptive under different circumstances. One of the main aspects
when considering the model is what kind of methods can be derived so we can
select the proper model design. The linear relationship in between the entries of
P indicates that the Markovian approach of the original model inserts one extra
parameter to a possible design. Thus when considering a possible implementation
of the model we are seeking for methods to calibrate a dual parametric model
which for the Markovian model are denoted as R and α. The analysis upon the
ACF coefficients along with the restrictions from the linear relationship in between
the entries of P narrows down the region upon α can be selected so that the model
meets the Markov property. By inserting the linear combination in between the
entries of P expressed in equation (4.33) into the outcome from the AFC coefficients
analysis expressed in (4.31) we can deduce that on of the minimum requirements
that the α parameter should fulfil is the following:

α + β ≤ 1⇔ α +
π0

π1
· α ≤ 1⇔ α(π0 + π1) ≤ π1 ⇔ α ≤ π1 (4.34)

No further information upon α can be obtained though by the so far conducted
analysis. Hence in order to calibrate the α we need some information from the sig-
nal propagation environment upon the model may be implemented. On the other
hand, there is not any need for the R parameter to fulfil any particular property.
The calibration of R is mainly related with the signal propagation environment
or it can be done in a theoretical level is comparison with another method that
address the connectivity issue i.e the model of Henk Wymeersch.

4.5.1 Setting the α parameter

A possible implementation of the Markovian model in a specific region can be con-
ducted with by having a set data available. One approach to set the α is in cases
where the data set provides information regarding the maximum time length that
a node was consecutively connected to the network. The theoretical expression
considering a time length of k upon this relationship reads:
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∞

∑
k=0

k · (1− α)k · α. (4.35)

The total expectation is expressed of terms which form an infinite sequence. In
order to obtain the expectation for the duration length the first step is to investigate
whether this sequence converges or not. To do so we can utilize the D’Alembert’s
criterion which is expressed as follows:

lim
n→∞

|an|
|an+1|

< 1 (4.36)

By inserting the sequence which expresses the length of duration in the criterion
the equation introduced in (4.36) can be rewritten as follows:

lim
k→∞

(k + 1) · (1− α)k+1 · α
k · (1− α)k · α = (1− α) · lim

k→∞

(k + 1)
k

= (1− α) < 1, (4.37)

thus the criterion is fulfilled.
Once the convergence of the series has been verified, the next step in our anal-

ysis is to compute the value where the sum converges. The first step of the current
task is to provide the analytical expression of the series:

∞

∑
k=0

k · (1− α)k · α = (1− α) + 2 · (1− α)2 + . . . k · (1− α)k. (4.38)

.
There exists a common ratio r in between the terms of the sequence expressed

as follows:

r =
(k + 1)

k
· (1− α). (4.39)

.
The form of the series can be interpreted as geometric series.A very common

approach to express geometric series is as it follows :

Sk = d · 1− rk

1− r
, where d = 1− α for the current problem. (4.40)

.
Derived on this and with respect to the current form of r and d, Sk can be

expressed as follows:

Sk = (1− α) ·
1− ( (k+1)

k · (1− α))k

1− (k+1)
k · (1− α)

. (4.41)

.
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Since we are seeking for behaviour of Sk while k → ∞ the main focus is upon
the terms of the equation related to k. By inserting the result from equation (4.37),
equation (4.41) can be rewritten as follows:

lim
k→∞

Sk = (1− α) · (1− (1− α)k

1− (1− α)
). (4.42)

.
The only term that depends on k is (1− α) < 1 which goes to 0 when k → ∞,

thus the final form of the equation can be expressed as follows:

lim
k→∞

Sk =
1− α

α
(4.43)

.

4.6 Connectivity of a mobile agent with neighbouring base
nodes

The so far conducted research of the current work,considering the different con-
nectivity models, focus on the main characteristics of each model and an analysis
is provided regarding the advantages and disadvantages of each approach. One
of the main deficiencies when attempting to conduct a deeper analysis arises from
the act that the so far developed approaches are structured in a way such that no
straight forward comparison can be made on a general basis. To illustrate this ar-
gument we introduce the behaviour of the two models on a topological basis. So
far we investigated the behaviour of the models with respect to a network with the
minimum amount of participants, the current section investigates the behaviour
of of the model when multiple agents participate in the network. In our research
we consider the simplest case where a mobile agent communicate with two anchor
nodes. An extension of the conclusion based on the obtained results is expected to
be straight forward when considering larger networks.

4.6.1 The model of Savic and Zazo

The model proposed by Savic and Zazo exploits the probabilistic variation of hav-
ing a connection depending on distance. A main characteristic of the current ap-
proach is the fact that the established connections are independent with each other.
Thus when considering a scenario where a mobile agent abbreviated as 1 attempts
to connect with two anchor nodes abbreviated as 2 and 3 respectively the corre-
sponding probabilities can be expressed as follows:

E[a12(n)] = P[a12(n) = 1|x1, x2] = e
−|x1−x2 |2

2·R2 (4.44)

and
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E[a13(n)] = P[a13(n) = 1|x1, x3] = e
−|x1−x3 |2

2·R2 (4.45)

Derived on these, the probability for the mobile agent to have a connection with
both the other two agents can be expressed as follows:

E[a12(n) · a13(n)] = P[a12(n) = 1|(x1, x2), a13(n) = 1|x1, x3] (4.46)
Since the two incidents are independent with each other the equation intro-

duced in (4.46) can be rewritten as follows:

E[a12(n)] ·E[a13(n)] = e
−(|x1−x2 |2+|x1−x3 |2)

2·R2 (4.47)

In order to obtain a visual inspection upon the current relationship, a simple
experiment is conducted. A mobile agent travels around a predefined simulation
area whereas the two other nodes are considered to be anchor nodes thus their
location remains static over time. The corresponding probabilities are obtained
with respect to the model of Savic and Zazo and the obtained results are illustrated
in figure 4.18.

(a) A case where the Diameter of
the output exceeds the distance
in between the base nodes

(b) A case where the Diameter of
the output is shorter than the dis-
tance in between the base nodes

(c) A case where the Diame-
ter of the circular output equals
the distance in between the base
nodes

Figure 4.18: A contour plot of the function introduced in Equation (4.46). The x and y axis represents
correspond to the coordinates of the agents. The location of the base nodes is marked with a red
cross.
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As it can be seen from the illustrated results, the output of the function intro-
duced in Equation (4.46) takes the form of a circular Gaussian PDF. The particular
form of the output is expected since the form of the function is similar to the
equation that corresponds to the Normal distribution. Based on the results we can
deduce that there exist three characteristic cases for the output of the function:

• The diameter of the circle exceeds the distance D in between the base nodes.

• The diameter of the circle equals the distance in between the base nodes.

• The diameter of the circle is shorter than the distance in between the base
nodes.

The main factor that affects the output of the function is the parameter of the model
of Savic and Zazo denoted as R. Thus one of the main considerations when using
such model is how to define the parameter in a way that fits the requirements of
the implemented application.

4.6.2 The Connectivity model of Henk Wymeersch

The connectivity model proposed by Henk Wymmersch introduces a fairly simple
approach to define of either a connection in between two agents can be estab-
lished or not, depending on distance. Considering the case where the mobile
agent(denoted as 1) attempts to connect with two base nodes(denoted as 2 and
3 accordingly) where each of them has a given radius R1 and R2, then the mobile
agent is connected with the base nodes if it is located in the circular surfaces A1,A2

where:
A1 = [||x1 − x2||2 < RH1 ] and A2 = [||x1 − x3||2 < RH2 ] (4.48)

Considering the case where the mobile agent attempts to connect with two base
nodes simultaneously then the in order for this case to come true, we should con-
sider that the corresponding distances are dependent since both of them depend
on the location of x1. Thus the case where 1 is connected with the first 2 cannot
be investigated in separate with the case where 1 attempts to connect with the 3.
Derived on this the corresponding function can be expressed as follows:

E[a12(n) · a13(n)] = A1 ∩ A2 (4.49)

.
In order to obtain a geometrical representation a simple experiment is con-

ducted. Two base nodes are randomly placed on predefined simulation area with
the same transmission radius which is equal to the distance between them. In
the same time a mobile agent travels around all over the simulation area. The
corresponding results are illustrated in figure 4.19.
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(a) The location of the base nodes
along with the transmission ra-
dius

(b) The area where the mobile
agent is connected with the base
nodes simultaneously.

Figure 4.19: An illustration of the case where a mobile agent is connected with two base nodes with
respect to the connectivity model of Henk Wymeersch.Both base nodes have a transmission radius
which is equal to the distance between them. The first subfigure illustrates the location of the base
nodes along with the transmission radius whereas the second subfigure illustrates the area where
the mobile agent is connected with the base nodes simultaneously.

The obtained results indicate the differences in between the two approaches on
a topological level. The area of interest for the model of Savic and Zazo takes the
from of a circular pdf whereas in case of the model of Henk Wymmersch it similar
to a rugby ball. Thus the models cannot be compared on a topological level. The
same argument holds for networks with more participants.

4.6.3 Setting the R parameter

The Markovian model is a generalization of the approach introduced by Savic and
Zazo. The initial model is characterised by a single parameter, denoted as R, which
can be interpreted as the signal power. A possible implementation of the Markovian
model requires the specification of the particular component thus there is a need
of a pattern upon this choice can be conducted. Ideally the model can be calibrated
by making use of mass data. This case does nit hold for the current work though.
Thus there is need to develop an alternative method upon such choice can be made.
A common practise in such case is to calibrate the parameters of one model with
respect to another approach followed in the same field. For the current case this
can be done through the connectivity model of Henk Wymeersch.

There are several difficulties when attempting to set the range parameter of the
model of Savic and Zazo with respect to the model of Henk Wymeersch. The main
difficulty has to do with the fact that the two approaches are completely differ-
ent. In the first case the proposal considers a probabilistic approach to address
the issue while on the other hand the model of Henk Wymeersch is defined with
respect to a deterministic function. In order to obtain a visual inspection upon the
differences in between the different approaches an illustration of the output of the
corresponding functions is provided in figure 4.20.
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Figure 4.20: The x axis represents the distance in between the agents whereas the y axis represents
the probability for having a connection.

As it can be seen from the results the output of the probabilistic model can
be considered as a one sided Gaussian kernel while the output of the model of
Henk Wymeersch takes the form of a rectangle. Thus a comparison in between the
two approaches requires to find a way to fit the one shape to the other. Such task
though is by default quite difficult.

One approach to calibrate the range parameter of the probabilistic model is set
R such that the two methods to have a similar performance within the transmission
radius. In such case R should be set in a way such that the probability for having
a connection within the transmission radius is relatively very high. A simple ap-
proach to fulfil such task is to express R as a function of probability , denoted as ε,
so we can tune the parameter of the probabilistic model of Savic and Zazo to is as
close to RH as we wish with respect to ε. Derived on this, R can be expressed in
accordance with RH by making use of the following probabilistic rule:

R(ε) =

√
−

R2
H

2 · lnε
, where 0 < ε < 1 (4.50)

.
In order to obtain an visual inspection upon the behaviour of the probabilistic

rule an illustration of a case where R is calibrated with respect to RH for a specific
value of ε. The obtained results are illustrated in figure 4.21.
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Figure 4.21: A static scenario where the range parameter is calibrated such that the two models
introduce a similar performance.ε = 0.95

As it can be seen from the results as long as the distance in between the agents is
within the transmission radius the corresponding part of the one Gaussian function
gets close to the upper side of the rectangular output of the model of . While the
probability gets closer to 1 the surface included in between the output within the
transmission radius shrinks. Thus one way to calibrate R with respect to RH is to
tune the model parameter such that it has a close performance with the model of
Henk Wymeersch in a bounded area.



Chapter 5

Model Calibration

The so far developed work introduces a generalization of the original model pro-
posed by Savic and Zazo in the time domain. A basic characteristic of the model is
that it is based on multiple parameters thus it can be adopted by different set ups.
The original model has a single parameter , R, whereas the generalization to the
Markovian model that addresses the initial model as a stationary distribution adds
an extra parameter in the overall set up.

A fair question when considering models, is what kind of strategy can be fol-
lowed in order to select the corresponding parameters. In case of the Markovian
model the parameters,α and β, of the stationary distribution are related with each
other thus an estimation of one of the parameters,i.e α, reflects directly on the
other. On the other hand the parameter ,R, of the initial model can be obtained in
separate since it is not dependent on the rest of the parameters. Contrariwise an
estimation of R reflects on the estimation of α.

Addressing the calibration of the model as an estimation problem we are seek-
ing for methods to estimate the model parameters (α, R). The model parameters
are estimated with respect to a given data set which in our case corresponds to
the pairwise connectivity status aei j(n) for a particular time instance given the po-
sitions (xi, xj) of the agents of that moment. The dataset is for a single link is
denoted as A(d) = (aeij(n)

(d)|(xi(n), xj(n))(d))
There exist several criteria upon the corresponding methodologies can be devel-

oped. The most commonly used are the Mean–Square Error(MSE) and the Max-
imum a posterior Probability (MAP). When no prior information is available re-
garding the probability distribution of the estimated variable MAP neglects to the
Maximum Likelihood(ML) estimation. The current work develops a mathematical
framework upon the principle of the ML estimator in order to obtain estimates
upon α and R. In case of R no prior information is considered so far thus the ML
estimation is followed.

Two different approaches are developed to estimate the model parameters. The

65



66 Chapter 5. Model Calibration

first approach develops the ML criterion for each of the parameters in separate.
The R parameter is independent to α whereas the opposite case holds for α. Thus
the first step in our method is to develop an ML criterion for R and then pass the
information to the ML criterion for α. In case of a real life environment in order
to develop requires in practise two different data sets. The first data set utilised to
estimate R requires a data set where the available observations are independent on
time. Thus the same type of measurements is repeated in between long time pe-
riods. On the other hand the ML criterion for α exploits the available information
where the available measurements are obtained over consecutive time instances.
The second approach address the estimation problem jointly for both the parame-
ters. Thus given a data set an ML criterion is developed that estimates jointly the
model parameters.

5.0.1 ML Estimator of R

The R parameter states the idea that the probability for having a connection re-
lies on additive aspects, rather than distance, that affect the connectivity status in
between the agents. Such an aspect could be considered for example the transmis-
sion power. Assuming that R expresses the power of the transmitted signal a basic
choice that can be made for the nodes participating in a graph is that the transmis-
sion power for a particular time instance is common for all the agents. In such case
the probability for several nodes to exchange information with each other varies
depending on the distance in between them. Thus given the distances in between
the agents of the graph the output of the connectivity status results a sequence
of data,denoted as A(d), that specify whether a connection can be established in
between the agents or not. Derived on these the Likelihood function reads:

Λ(R|A(d)) = P(aeij = a(d)eij |(xi, xj)
(d), R) (5.1)

The model proposed by Savic and Zazo reads:

P(aeij = a(d)eij |(xi, xj)
(d), R) =

 e
−|xi−xj |

2

2·R2 , if a(d)eij = 1

1− e
−|xi−xj |

2

2·R2 , if a(d)eij = 0
(5.2)

The connections in between the agents are considered to be independent with
each other, thus for a given data set A(d) with respect to equation introduced in
(5.2) the likelihood function for R can be rewritten as follows:

Λ(R|A(d)) = P(aeij = a(d)eij |(xi, xj)
(d), R) = a(d)eij |(xi, xj)

(d), R)

= ∏
a(d)eij =1

e
−|xi−xj |

2

2·R2 ∏
a(d)eij =0

1− e
−|xi−xj |

2

2·R2
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By making use of the properties of the exponential function the log likelihood
function reads:

lnΛ(R|A(d)) = ∑
a(d)eij =1

−|xi − xj|2

2 · R2 + ∑
a(d)eij =0

1− e
−|xi−xj |

2

2·R2 . (5.3)

The estimate for R corresponds to the point point that maximizes the likelihood
function. Derived on this the estimate for the parameter reads:

R̂ML = arg max
R

lnΛ(R|A(d)) (5.4)

We are seeking to maximize the output of the function introduced in (5.3).
A very common approach to accomplish such task is to compute the first order
derivative of the corresponding function. Derived on this another estimate of R
can be obtained as a solution of the following equation.

∂lnΛ(R|A(d))

∂R
= argmax

1
R3 ( ∑

a(d)eij =1

|xi − xj|2 − ∑
a(d)eij =0

e
−|xi−xj |

2

2·R2

1− e
−|xi−xj |2

2·R2

· |xi − xj|2) = 0

(5.5)

Note that there exist root finder algorithms that can be utilized in alternative.
In such case, methods such as the Gauss–Newton are applied to track the extreme
of the function. For the current case one extra step is required which os the compu-
tation of the second order derivative of the ML function. The root finder algorithm
tracks the extreme of the function when the first order derivative does not have
many zero crossings. Another requirement is that the initial point must be very
close to the solution. Thus there is need a strategy upon the initial point can be
obtained. Hence the ML criterion could be used as strategy to derive the initial
point. Consequently, in our case, the root finder algorithm relies on the perfor-
mance of the ML criterion. The same argument holds for all the different cases
that we develop the ML criterion.

5.0.2 ML Estimator of α

The estimation of the model parameters is a stepwise process in which the esti-
mation of one parameter relies on the estimation of the other. R parameter can be
estimated separately since the connectivity status relies upon distance whereas the
estimation of the parameters of the stationary distribution depend on R̂. Thus esti-
mation of α follows the estimation of R and the performance of the corresponding
estimator is affected by the performance of the estimator that preceded it. Derived
on this the likelihood function of α reads:
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The Markovian approach of the connectivity issue introduces a dependency in
between the current status of connection and the state that preceded it. Based
on this property and with respect to the form of the stationary distribution the
different time instances can be categorised in sets as follows:

1. A=
{

α, if aeij(n) = 0|aeij(n− 1) = 1
}

2. B=
{

α · π0(n)
π1(n)

, if aeij(n) = 1|aeij(n)(n− 1) = 0
}

3. Γ=
{

1− α · π0(n)
π1(n)

, if aeij(n) = 0|aeij(n− 1) = 0

4. ∆=
{

1− α, if aeij(n) = 1|aeij(n− 1) = 1
}

The static nodes connectivity scenario

The basic characteristic when considering the estimation of α is that unlike R̂ a
time evolution is involved. In such case the positions of the node evolve over
time consequently π0(n)

π1(n)
varies over time. The current subsection considers the case

where the nodes remain static over time thus π0(n)
π1(n)

is unaltered over the different
instances.

At any given time instance π0(n)
π1(n)

relies on R̂ as well as the distance dij in between

the agents. Thus with respect to the model proposed by Savic and Zazo π0(n)
π1(n)

can

be obtained as follows: (π0(n)
π1(n)
|dij), R̂). Since the node is considered to be static over

time the n index drops. Derived on this and as soon as the estimation upon π0
π1

is
obtained, the likelihood function for α when considering a single link reads:

Λ(α|A(d), R) = s0 · α|A| · (α ·
π0

π1
)|B| · (1− π0

π1
· α)|Γ| · (1− α)|∆| (5.6)

where s0 is defined as follows:

s0 =

{
π0(0), if a(d)eij (0) = 1

π1(0), if a(d)eij (0) = 0
(5.7)

Thus the estimate for α reads is expressed as:

α̂ML = arg max
α

Λ(α|A(d),R) (5.8)

Alternatively α̂ can be obtained as a solution of the following equation:
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∂Λ(α|A(d), R)
∂a

= s0(|A|α|A|−1 · (α · π0

π1
)|B| · (1− π0

π1
· α)|Γ| · (1− α)|∆|

+α|A| · π0

π1
· |B| · (α · π0

π1
)|B|−1 · (1− π0

π1
· α)|Γ| · (1− α)|∆|

−α|A| · (α · π0

π1
)|B| · |Γ|π0

π1
· (1− π0

π1
· α)|Γ|−1 · (1− α)|∆|

−α|A| · (α · π0

π1
)|B| · (1− π0

π1
· α)|Γ| · |∆| · (1− α)|∆|−1) = 0

(5.9)

The dynamic scenario

The estimation of α when considering the static scenario can be extended for the
case where the node is characterised by a dynamic behaviour regarding its location
over time. In such case the stationary distribution varies over time thus the prob-
abilities are estimated as follows:(π0(n)

π1(n)
|(xi(n), xj(n)), R). Derived on this the the

likelihood function of α introduced in equation (5.6) can be rewritten as follows:

Λ(α|A(d),R) = s0 · α|A| · (1− α)|∆| ·∏
n∈B

(α · π0(n)
π1(n)

) ·∏
n∈Γ

(1− α · π0(n)
π1(n)

) (5.10)

Hence estimate of α reads:

α̂ML = arg max
α

Λ(α|A(d),R) (5.11)

Moreover α̂ can be obtained as a solution of the following equation:

Λ(α|A(d),R)

∂a
= s0(|A| · α|A|−1 · (1− α)|∆| ·∏

n∈B
(α · π0(n)

π1(n)
) ·∏

n∈Γ
(1− α · π0(n)

π1(n)
)

+α|A| · (1− α)|∆| · |B|α|B|−1 ·∏
n∈B

π0(n)
π1(n)

·∏
n∈Γ

(1− α · π0(n)
π1(n)

)

+α|A| · (1− α)|∆| ·∏
n∈B

(α · π0(n)
π1(n)

) · (|Γ|α|Γ|−1 ·∏
n∈Γ

(
π0(n)
π1(n)

)− ∑
n∈Γ

(
π0(n)
π1(n)

))

−α|A| · |∆| · (1− α)|∆|−1 ∏
n∈B

(α · π0(n)
π1(n)

) ·∏
n∈Γ

(1− α · π0(n)
π1(n)

)) = 0

(5.12)
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Simulation Results

The current subsection aims to provide an evaluation of the performance of the
proposed estimators. Two different approaches are followed to fulfil such task. At
first each an evaluation on the performance of the estimator for the R parameter is
given since it is the one that is independent on the other parameters. In order to
obtain a full idea of the performance estimators a simultaneous estimation upon
the parameters α, R via a message passing algorithm.

The estimation of R̂ is characterised by the fact that no time evolution is re-
quired in order to estimate the parameter. A number of measurements along with
the corresponding connectivity status are sufficient to obtain an estimation upon
R̂. Derived on this a simulation scenario where a number of N measurements with
the connectivity status is considered to be known. The corresponding algorithm
provides an estimation upon R̂ by searching for the value that maximizes ML in
a specified region. The performance of the estimator is conducted with respect to
the mean error(ME) criterion, where ME is as follows:

MER̂ =
1
N
·

N

∑
i=1
|R̂(i)− R(i)| (5.13)

The components of the simulation set up as well as the result for ME are pro-
vided in table 5.1.

Table 5.1: Simulation parameters and result

candidates Search Region Number of Measurements ME
200 (8,35) 800 1.2

In order to provide a visual inspection upon the performance of the ML esti-
mator a snapshot from the first 20 realizations is provided in figure 5.1.

The results indicate that the ML estimator is in general a good approach to esti-
mate R̂. There exist several cases though where the estimator is characterised by an
extreme performance whether it is poor or accurate. In order to obtain a better idea
why this phenomenon occurs an in depth analysis based on the available informa-
tion is conducted. Since the available data are related to the connectivity status
and the corresponding measurements. The comparison in between a god accuracy
measurement of ML and the poorest performance of the criterion is illustrated in
figure 5.2.

The obtained results indicate that the performance of the ML criterion is high
when the output of the connectivity status yields a relatively sparse sequence out-
put. In contrary when the connectivity over time is relatively dense the ML crite-
rion fails to provide a good estimation for R̂.
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Figure 5.1: Illustration of the performance of the ML estimator for R. The x axis represents the true
values whereas the y represents the estimates.

Estimation of α via a Message Passing algorithm

Estimation of α is a stepwise process since it relies on available data , such as dis-
tance and connectivity status, but also to another parameter of the model which is
R. Another aspect that characterizes the estimation problem of α is time evolution,
thus an extra issue is added to the problem. In order to simplify the process of ob-
taining α̂ the problem is separated in different steps. The first step of the followed
methodology obtains an estimate of R̂ with respect to the process introduced in
5.0.2. As soon as R̂ is obtained the next step of the methodology passes the gath-
ered information in order to obtain an estimate upon π0

π1
in order to investigate the

possible limitations upon the search area for α. The last step of the methodology
provides information regarding the distance in between a pair of nodes and the
corresponding connectivity status over time. Finally an estimation upon α̂ is ob-
tained with respect to the available information and the ML criterion introduced
in (5.6). In order to evaluate the performance of the proposed methodology a
simulation scenario where two static agents attempt to exchange information is
considered. The simulation scenario is repeated for various distances and different
values of α and R in order to obtain an overall idea about the different aspects of
the problem and the corresponding impact on estimating α̂. A visual illustration
upon the performance of the proposed methodology is provided in figure 5.3.

The performance of the algorithm varies over he different pairs of (R,α). A basic
aspect that affects the accuracy of α̂ is the accuracy of R̂. In our case for example
this holds for the third instance illustrated in figure 5.3. On the other hand A good
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Figure 5.2: Illustration of the most accurate and the poorest performance of ML based on the given
data set.

estimate of R̂ does not necessarily yield a good estimation for α̂ as it can be seen
from instance 14 and also a poor estimate of R̂ does not necessarily yield a poor
estimate for α̂ i.e simulation instance 17. Thus a deeper investigation upon the
factors that affect the estimation of α̂ is required.

The followed methodology relies upon R̂ and the main source of information
which in that case is the connectivity status over the investigated over the time
period. Thus an analysis upon the influence of the available information and the
impact upon the estimation of α̂ is required. In order to simplify the investigation
we focus upon the extreme behaviour of the estimator. In figure 5.4 we illustrate
the connectivity status for the cases where the estimator yields the optimal result
as well as the case where the estimator introduced the poorest performance.

As it can be seen from the results the two cases follow a very different con-
nectivity pattern. On one hand for the case where the two agents spend most of
the time without having a connection, in such case the 1 − β component of the
Markovian model dominates on the output sequence of states, whereas when the
two agents are highly connected over time , in such case 1− α dominates the output
sequence of states, the algorithm can easier track a good estimate for α.

An interesting aspect though related with the two cases is that the correspond-
ing estimate for R̂ is poor in both cases. Nevertheless the estimator yields a good
estimate for the second case. Thus obtained information from the available data
set can compensate the impact from a poor estimation of R̂.

Another issue that can be considered is what happens if we follow the inverse
approach and in particular what is the output of the ML criterion for α̂ when
the estimator of R̂ introduces an extreme behaviour. Therefore we investigate the
impact of such behaviour along with the corresponding connectivity status. The
obtained results are illustrated in figure 5.5. The interesting issue upon this result
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Figure 5.3: An illustration of the performance of the followed methodology for R̂. The x axis repre-
sents the values for R and R̂ whereas the y axis illustrates the region for α and âα. The original pair
of values is represented by the green points denoted as ri whereas the estimated pairs are illustrated
by the red points denoted as ei for i = 1 . . . 20. A subset of the realizations is provided in order to
make the visual comparison feasible.

Figure 5.4: Illustration of the connectivity status for the extreme cases of the performance of the
estimator. The x axis represents time whereas the y axis represents the connectivity status.

has to do with the impact upon the estimation of α̂. The error introduced by the
estimator of ˆalpha is slightly higher (0.0190) when the estimator of R̂ yields the
optimal estimation compared to the error (0.0182) that corresponds to the poorest
estimation of R̂. The reason why this result occurs is related with the fact that ,
in case of the optimal performance of R̂,the two agents spend most of the time
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without having a connection with each other thus the component 1− β dominates
the output state of sequences. On the other hand the connectivity status is dense
over the investigated time period thus the provided information compensates the
impact from the poor performance from the estimator of R̂. Thus, depending on
the connectivity status, on one hand the estimator of α̂ compensates the impact
from a poor estimation of R̂ but on the other hand it is likely that the best estima-
tion of R̂ given the available does not yield a very good estimation for α̂ due to the
fact that the available information misleads the corresponding estimator. Derived
on this, we can deduce that the estimation of α̂ is a combinatorial issue depending
on the estimation of the model parameter as well as the available information.

Figure 5.5: Representation of the connectivity status in cases where the estimator of R̂ introduces an
extreme performance. The upper part of the figure corresponds to the poorest estimation whereas
the lower part corresponds to the optimal estimation.

The current section investigated the performance of the estimators considering
the problem of the model parameters as an estimation problem. The main interest
upon this investigation focus on the different aspects of the estimation problem
such as the available data set as well as the performance of a preceding estimator
in case of the α parameter. The simulation scenario focus on single pair of nodes
so that the size of the estimation problem provides us the opportunity to conduct
an in depth analysis easier. A basic requirement when conducting such research
is that different data sets are available for each of the parameters. Such a scenario
is rare in real life campaign measurements thus the investigation on methods to
estimate the model parameters continues with methods where the parameters can
be estimated jointly by the same data set.
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5.1 Joint estimation of R,α single link static nodes

The so far approach to acquire the model parameters introduced a message passing
algorithm in order to estimate the pair of parameters of R,α. At each step of the al-
gorithm the ML criterion is applied for the corresponding parameter. The obtained
results indicated that the accuracy of the output relies on several factors such as
the measurements or , in case of α, on the accuracy of the estimator that preceded
it. Another outcome of the followed approach is that even in cases where the out-
put of the ML criterion for R̂ results a poor estimation the corresponding result
for α̂ can be compensated depending on the available data set, hence even in cases
where the estimator of R yields a poor performance the estimator of alpha may
yield a more accurate estimate due to the available data. Thus the corresponding
estimator performs better when more factors are taken into account. Derived on
this it is expected that an estimator where the pair of parameters is jointly obtained
yields a more accurate estimation. Given a set of data A(n) where:

A(n) = (ae(n)|D(n)). (5.14)

The joint distribution for a single link reads:

f (A, α, R) = f (A|α, R) f (α, R) = f (A|α, R) · f (α|R) · f (R). (5.15)

where each of the introduced factors takes the following form:

1. f (R) ∼ U(o, p).

2. f (α|R) ∼ U(0, αmax).

3. f (A|α, R) = s0 · α|A| · (1− α)|∆| ·∏n∈B (α · e
−D(n)2

2·R̂2

1−e
−D(n)2

2·R̂2

) ·∏n∈Γ(1− α · e
−D(n)2

2·R̂2

1−e
−D(n)2

2·R̂2

).

A widely used approach to represent statistical relationships graphically are factor
graphs. The factor graph, for a single link, that represents the joint distribution
introduced in equation (5.15) is illustrated in figure 5.6.
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Figure 5.6: Graphical representation of the joint distribution f (A, α, R). The corresponding factors
read: fa = f (R), fb = f (a|R), fc = f (A|α, R).

The estimate upon the pair of parameters R, α is obtained by maximizing the
output of MAP estimator introduced in equation (5.15). Derived on this, the esti-
mator takes the following form:

(R̂, α̂) = arg max
R,α

f (A|α, R) · f (α|R) · f (R). (5.16)

Based on the fact that the current form of the quantity R does not provide any
particular information about the corresponding parameter whereas α|R provides
information only about the size of the corresponding search region, the rule intro-
duced in equation (5.16) neglects to the ML criterion introduced in the following
equation:

(R̂, α̂) = arg max
R,α

f (A|α, R). (5.17)

The joint estimate for R, α is obtained when the following criterion is fulfilled:

∇ f (A|α, R) = J =

[
∂ f (A|α, R)

∂R
,

∂ f (A|α, R)
∂α

]T

= 0. (5.18)

By taking into account the form of f (A|α, R) the equation introduced in (5.18)
for the static case ,where the index n from D(n), the first component of the gradient
vector J can be rewritten as follows:
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J11 =
D2

R3 · α
|A| · (1− α)∆

[
(−1)ν · e

−D2

2·R2 ·
(

α · e
−D2

2·R2

1− e
−D2

2·R2

)|B|
·
(

1− α · e
−D2

2·R2

1− e
−D2

2·R2

)|Γ|

+|B| · s0 · α ·
(

α · e
−D2

2·R2

1− e
−D2

2·R2

)|B|−1

· e
−D2

2·R2

(1− e
−D2

2·R2 )2
·
(

1− α · e
−D2

2·R2

1− e
−D2

2·R2

)|Γ|

−s0 · α ·
(

α · e
−D2

2·R2

1− e
−D2

2·R2

)|B|
· e

−D2

2·R2

(1− e
−D2

2·R2 )2
· |Γ| ·

(
1− α · e

−D2

2·R2

1− e
−D2

2·R2

)|Γ|−1]
= 0.

(5.19)

where ν is defined as follows:

ν =

{
0, if s0 = π0

1, if s0 = π1
(5.20)

whereas the second component of the gradient vector J is written as follows:

J12 = s0 · (|A|α|A|−1 · (α · π0

π1
)|B| · (1− π0

π1
· α)|Γ| · (1− α)|∆|

+α|A| · π0

π1
· |B| · (α · π0

π1
)|B|−1 · (1− π0

π1
· α)|Γ| · (1− α)|∆|

−α|A| · (α · π0

π1
)|B| · |Γ|π0

π1
· (1− π0

π1
· α)|Γ|−1 · (1− α)|∆|

−α|A| · (α · π0

π1
)|B| · (1− π0

π1
· α)|Γ| · |∆| · (1− α)|∆|−1) = 0.

(5.21)

In order to obtain an intuition regarding the ML criterion for the joint distri-
bution, a simple experiment is conducted. The trivial static nodes connectivity
scenario over a time period of 600 time instances. The corresponding results are
illustrated in figure 5.7.
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Figure 5.7: Illustration of the results obtained by the joint estimation of the parameters R̂, α̂. The true
values of the parameters are represented by the red cross whereas the pair of estimates is illustrated
by the black circle.Search region=[35,55], α = 0.9,R = 43

5.1.1 Joint estimation of R, α multiple links-dynamic case

So far we introduced the joint estimation for α̂, R̂ via ML for a single communi-
cation link. The pairwise connectivity in between different nodes is considered to
be independent from on pair to the other. Consequently the extension of the ML
function for a single communication link to the Likelihood functions for a graph
is straight forward since the total ML function is the product from all the pairwise
Likelihood functions.The Likelihood function for the whole graph can be expressed
as follows:

Λ(α, R|A) = ∏
i>j

N

∏
n=0

P(aeij(n) = a(d)eij (n)|(xi(n), xj(n))(d), α, R) (5.22)

With respect to the general formulation of Likelihood function, the analytical
form of the function can then be expressed as follows:
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Λ(α, R|A) = α|A|(1− α)|∆| ∏
aeij (0)=1

e
−Dij2

2R2 ∏
aeij (0)=0

(1− e
−Dij2

2R2 )

∏
n∈Γ

(1− α · e
−Dij(n)

2

2·R2

1− e
−Dij(n)

2

2·R2

) ·∏
n∈B

α · e
−Dij(n)

2

2·R2

1− e
−Dij(n)

2

2·R2

(5.23)

The estimate upon the parameters of R, α corresponds to the pair of of values
that maximize the likelihood function:

(α̂, R̂) = arg max
R,α

Λ(α, R) (5.24)

Alternatively the estimate upon the pair of parameters can be obtained by max-
imizing the logarithm of ML. In such case the corresponding function reads:

lnΛ(α, R) = ∑
i>j

[
|A|lnα + |∆|ln(1− α) + ∑

aeij (0)=1

−Dij(n)2

2R2 + ∑
aeij (0)=0

ln(1− e
−Dij(n)2

2R2 )

+ ∑
n∈Γ

ln(1− α · e
−Dij(n)

2

2·R2

1− e
−Dij(n)

2

2·R2

) + |B|lnα + ∑
n∈B

−Dij(n)2

2R2 − ∑
n∈B

ln(1− e
−Dij(n)2

2R2 )
]

(5.25)

With respect to the log likelihood the Jacobian vector is then written as follows:

J =
[dlnΛ(α, R)

dR
,

dlnΛ(α, R)
dα

]T
(5.26)

where J11 reads:

dlnΛ(α, R)
dR

= ∑
i>j

[
∑

aeij (0)=1
Dij(0)2 − ∑

aeij (0)=0

e
−Dij(0)

2

2·R2

1− e
−Dij(0)

2

2·R2

+ ∑
n∈B

Dij(n)2

+ ∑
n∈B

e
−Dij(n)

2

2·R2

1− e
−Dij(n)

2

2·R2

− α ∑
n∈Γ
·

D2
ij · e

−Dij(n)
2

2·R2

(1− (α + 1) · e
−Dij(n)

2

2·R2 )(1− e
−Dij(n)

2

2·R2 )

] (5.27)

and J21 reads:

dlnΛ(α, R)
dα

= ∑
i>j

[ |A|
α

+
|B|
α
− |∆|

1− α
−

N

∑
n=0

e
−Dij(n)

2

2·R2

1− e
−Dij(n)

2

2·R2

]
(5.28)
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Table 5.2: My caption

True value Searching Grid Mean estimate bias Variance
R_t Search region E(R̂ML) E(R̂ML)− R E[E(R̂ML)− R̂ML)

2]

4.57km (1,10)km 3.87km -0.7km 2.96 km2

In order to obtain a visual inspection upon the behaviour of the ML function over
the graph, a simple experiment is conducted. A pair of parameters is arbitrarily
picked and the ML function estimates the corresponding values based on the avail-
able data set (in such case positions and the corresponding connectivity status over
time). The obtained results are illustrated in figure 5.8.

(a) Illustration of the performance of the ML
function over the graph

(b) Illustration of the output of the log likeli-
hood function over the graph

Figure 5.8: The current figure illustrates the output of the ML and log ML function over the graph.
The pair of true values is illustrated by the red cross.

5.1.2 Overview of the performance of the ML estimator via Monte Carlo
simulations

There exist several approaches to estimate the parameters of the Markovian model.
The current work proposed an ML estimator upon the corresponding parameters
to address this issue. Several examples have been illustrated so that we can have an
idea about the performance of the estimator. In order to obtain a comprehensive
idea about the performance of the ML estimator though, an extended experiment
is required. Therefore a number of 100 Monte Carlo simulations is conducted. A
pair of true values (Rt, αt) is arbitrarily picked and at each realization the estimator
attempts to provide as accurate estimates as possible by taking into account differ-
ent data sets. The obtained results as well as the rest of the elements considered
in each realization are illustrated individually for each of the parameters in the
following tables:
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Table 5.3: My caption

True value Mean estimate bias Variance
αt E(α̂ML) (E(α̂ML)− αt) E[(E(α̂ML)− α̂)2]

1.56·10−4 3.78·10−4 2.2·10−4 1.37·10−7

The results indicate the bias of the estimates is relatively high. In order to obtain
a better understanding why this phenomenon occurs a visual inspection over the
different pair of estimates obtained by the Monte Carlo simulations is provided in
figure 5.9.

Figure 5.9: Illustration of the results obtained by the joint estimation of the parameters R̂, α̂ via the
ML estimator. The red point corresponds to the true pair of parameters of the Markovian model. .

The illustrated results indicate that the performance of the estimator is affected
by the dense presence of outliers. The reason why this phenomenon occurs arises
from the fact that the estimator needs a larger amount of data to eliminate the
affect from the outliers and make more accurate estimates. In order to obtain a
better understanding about the performance of the estimator over the different size
of data sets the same simulation set up is repeated for a fewer time instances. The
initial experiment took investigated the evolution of the connectivity status over
300 time instances. The size of the data set shortens to 50 and 200 time instances
accordingly. The obtained results are illustrated in figure 5.10.
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(a) Estimates over 50 time instances

(b) Estimates over 200 time instances

Figure 5.10: The current figure illustrates how the estimates are spread over the search grid based
on different sizes of data set.

The results indicate while the size of the data shortens the presence of outliers
becomes more dense. The particular outcome is expected since the available infor-
mation becomes less while the time period shortens. The current work considers
a time period of 300 time instances ao that the simulation task is computationally
feasible in an amount of time that serves the purpose of the current work.

The same simulation pattern introduced before is followed but now instead of
changing the size of the data, 300, we change the R parameter over a wide grid. In
that way we obtain a more comprehensive idea regarding the performance of the
ML estimator considering possible applications on other systems. Another aspect
when considering R has to do with the fact that it affects the sparsity on the graph.
Therefore we are seeking to affect the affect on the performance of the ML criterion
under different connectivity conditions. Hence, we conduct the same simulation
pattern over a wide grid for R over [1, 36]. It is expected that the graph will become
less sparse while R increases. The obtained results are illustrated in figure 5.11.
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Figure 5.11: Illustration of the results obtained by the simulations over the grid [1,36].

.

The obtained results indicate that the error illustrates a variation over the grid,
i.e it does not yield a linearly increasing tendency. Considering the fact that higher
R corresponds to a higher level of connectivity the obtained results indicate that
there is some kind of trade off in between the level of connectivity and the error.
The error illustrates a linearly increasing tendency for a relatively low level of
connectivity even though R increases while the opposite outcome holds when the
level of connectivity is midrange. The error indicates a tendency to increase very
fast for high levels of connectivity. The size of the error per point of R could
be addressed as an indicator regarding the size of the required data so that the
estimator can make more accurate estimates.
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5.2 Model implementation

A well known technology used for data transmission is the Global System for Mo-
bile communications (GSM). GSM is a standard developed to describe the protocols
for digital cellular networks used for mobile phones. The transmission range for
cellular networks is from 1 km to 20 km. In cases of urban areas signal propaga-
tion is severely affected by the surroundings, consequently the usage of cell towers
with a range that reaches the upper bound becomes impractical in dense areas.
Therefore a common practise is to place several base stations, closely spaced with
each other, with short or midrange transmission capacity. In such case the trans-
mission range varies from 1 km to 5 km. Cooperative Localization paradigm aims
to overcome the impracticalities of the current technologies which mainly arise in
dense areas. Thus the focus of the current work is on this cases along with all the
corresponding information available, which in that case is the transmission range
of the areas of interest.

Considering all these aspects from the perspective of the connectivity model,
the corresponding information can be utilised in order to develop a mathematical
framework that captures the model parameter related to distance which in such
case is R. One approach to model phenomena with the particular type of properties
is the Rayleigh distribution. There exist other possible candidates, i.e the gamma
distribution, which can also represent these properties. In our case though the
available information is limited thus it is desired to develop a model a simple
as possible. Thus the usage of the Rayleigh distribution is preferable since it is a
single parameter model. Derived on this the R parameter can then be represented
as follows:

R ∼ Rayleigh(σ), where σ is the scale parameter of the distribution. (5.29)

The probability density function of R takes then the following form:

f (x; σ) =
x
σ2 · e

−x2

2·σ2 , x ≥ 0. (5.30)

The σ parameter is specified with respect to the available information about
the system. The choice of σ reflects on the form of the distribution. In cases
where a very good knowledge about the system is available, this information can
be expressed by a distribution with a scale parameter that introduces a narrow pick
in the corresponding pdf. Consequently the use of an estimator that utilizes the
prior information about the system, such as a Maximum a Posteriori estimator, is
affected by the prior pdf. On the other hand in cases where the information about
the system is not in detail or it is spread over the search region, it is preferable
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to formulate the distribution with a scale parameter that spreads the probability
mass over the search region. Based on these characteristics for σ it is important to
make a setting for the scale parameter that leads to representative formulation of
the pdf.

In order to obtain a visual inspection about the form of the distribution of R
with respect to the proposed model an illustration of the model is provided in
figure 5.12.

Figure 5.12: Prior probability for R for different settings of σ.

5.2.1 Prior information about the α parameter

The parameter that forms the original model as a stationary distribution, in such
case α, expresses how likely a pairwise connection is about to drop. Considering
the parameter in a real life environment, α is the parameter that reflects the effect
of the area of interest in the signal propagation. In cases where the area of interest
consists of tall buildings, tunnels or a subway then it is quite likely that the users
will loose connection quite often. On the other hand, in cases where the area of
interest is a plain terrain or a park then it is expected that the phenomenon of
loosing connection is rare. Derived on this setting the α parameter requires good
knowledge about the environment since there can be a significant different upon
the selection of α from the one case to the other.

A very commonly used prior for a probability variable is the Beta distribution.
Since the α parameter expresses such a variable modelling the prior info about the
parameter as a Beta distribution is an obvious choice:
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α ∼ Beta(a, b), where a, b are the shape parameters of the distribution. (5.31)

Where the probability density function of α takes then the following form:

f (x; a, b) =
x(a−1) · (1− x)(b−1)

B(a, b)
. (5.32)

where B(a, b) the so called Beta function expressed as:

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt. (5.33)

The fact that the model consists of two parameters indicates that a very good
prior knowledge about α is required. A special case of the Beta distribution with
a = b = 1 is the Uniform distribution. In order to obtain a visual inspection
about the possible form of the pdf of α considering the Markovian model, three
characteristic cases of the model are illustrated in figure 5.13.

Figure 5.13: The current figure illustrates three characteristic cases for the pdf of α. The red curve
corresponds to the case where is less likely to fail whereas the green curve corresponds to the
opposite scenario. On the other hand the blue curve corresponds to the exceptional case of the
uniform distribution when in practise no prior information is available.

The current work does not have any particular knowledge regarding a specific
case for alpha thus in for our study we are considering that α follows a uniform
distribution. In such case α is represented as follows:
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α ∼ Beta(1, 1). (5.34)

However given further related system information leads to a different setting
of the parameters of the prior pdf for α.

5.2.2 Estimation of (R̂, α̂) via a MAP estimator

The current work considers the GSM technology for data transmission. Derived on
this fact one extra piece of information upon the joint estimation over the graph. In
equation 5.16 the joint distribution for a single pair of nodes is introduced where
the prior information about is considered to follow a uniform distribution. Thus
an ML estimator is developed over the graph that is represented in equation (5.22).
The consideration upon the GSM technology and the mapping of the correspond-
ing knowledge upon urban areas to a Rayleigh model adds a prior information
about R that can be taken into account. Consequently the ML estimator introduced
in equation can be extended to a Maximum a Posteriori estimator by inserting the
corresponding piece of information to the function. To do so the corresponding
prior pdf is simply inserted to the corresponding factorization. Unlike R, the
modelling of α as a uniform distribution does not contribute to any additional
knowledge thus the corresponding pdf is neglected. The general formulation for
the Maximum a Posteriori Probability reads:

P(θ|x) = P(x|θ)
P(x)

=
P(x|θ) · P(θ)

P(x)
∝ P(x|θ) · P(θ). (5.35)

Based on these considerations and with respect to the equation introduced in
equation (5.30) the MAP estimator for the Markovian model is expressed as follows:

(α̂, R̂)MAP = arg max
α,R

1(α ∈ [0, 1]) · R
σ2 · e

−R2

2·σ2

·∏
i>j

N

∏
n=0

P(aeij(n) = a(d)eij (n)|(xi(n), xj(n))(d), α, R)

Comparison between the ML estimator and the MAP estimator

The consideration upon the GSM technology leads eventually to the development
of a the MAP estimator which adds one extra tool to the estimation of the model
parameters. As soon as the form of the MAP estimator is defined the next step in
our work is to evaluate what are the profits of having a prior knowledge about the
system compared to the ML approach that has been followed so far. Therefore the
experiment which is conducted to obtain an overall idea about the performance
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of ML is also conducted for the MAP estimator. Consequently the two estimators
are compared upon identical criteria. Note for the prior pdf of R, σ = 2.4 and
α ∼ Beta(1, 1). A visual inspection upon the behaviour of the corresponding pdf
can be obtained in figure 5.12. The results of the performance of the MAP estimator
are represented in tables 5.4 and 5.5 accordingly.

Table 5.4: Results from the MAP estimator for the R parameter

True value Searching Grid Mean estimate bias Variance
Rt Search Region E(R̂MAP) E(R̂MAP)− Rt E[E(R̂MAP)− R̂2

MAP]

4.57km (1,10)km 3.84km -0.73km 2.82km2

Table 5.5: Results from the MAP estimator for the α parameter

True value Mean estimate bias Variance
αt E(α̂MAP) E(α̂MAP)− α E[(E(α̂MAP)− α̂)2]

1.6·10−4 3.8·10−4 2.2 ·10−4 1.36·10−7

A visual inspection upon the obtained estimates over the different Monte Carlo
simulations is illustrated in figure 5.14.

Figure 5.14: Illustration of the results obtained by the joint estimation of the parameters R̂, α̂ via the
MAP estimator. The red point corresponds to the true pair of parameters of the Markovian model. .

The results indicate that no particular benefit can be obtained from the MAP es-
timator due to the prior information upon R. That kind of result is expected since
the available data set from the ML function dominates the factorization and as a re-
sult the contribution from the prior pdf has a minor influence to the corresponding
output.



Chapter 6

Model evaluation and performance

The so far conducted research of the current work investigates the connectivity of a
dynamic network. An analysis upon the advantages and the disadvantages of each
of the different approaches have been discussed through but a straight forward
comparison is not feasible on a particular domain since it is difficult to compare
the approaches i.e topologically. The same problem arises when attempting to
evaluate the performance of the ML estimator since no default approach exists to
address the estimation issue over a dynamically involved network. One way to
address both cases is by make the comparison on the time domain.

A main issue that arises when attempting to conduct such a comparison though
is the type of methodology that can be followed to investigate the time evolution
of a graph. The corresponding literature is characterised by the lack of relative
methodologies. One approach that can be followed to address that kind of issue is
the so called Jaccard index [9] also known as Jaccard coefficient which is a statistic
utilized to compare the similarity and diversity of sample sets. The main idea that
relies upon the Jaccard coefficient is that the correlation in between the different
sets is expressed as a ratio in between the common elements of the sets over the
total number of elements included in both sets. The corresponding relation con-
sidering that the sets investigate the similarities over the edge sets E1, E2 can then
be expressed as follows:

J(E1, E2) =
|E1 ∩ E2|
|E1 ∪ E2|

, where 0 6 J(E1, E2) ≤ 1 (6.1)

There exist a special case where both sample sets are empty. In such case we
define J(E1, E2) = 1.

An alternative approach that relies upon the same idea but instead of the simi-
larities it measures the dissimilarity in between sample sets is the so called Jaccard
distance which is expressed as follows:

dJ = 1− J(E1, E2) =
|E1 ∪ E2| − |E1 ∩ E2|

|E1 ∪ E2|
(6.2)
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6.1 Graph Consistency based on the Jaccard index

Once the correlation methodology is specified the next step is to investigate the
time correlation in between the graphs of particular set up and conduct an analy-
sis over the different states. The current simulation scenario is the trivial midrange
simulation scenario. We are mainly interested for the case where the case where a
communication link is established in between two agents and how this relationship
evolves over time. Therefore when we consider the Jaccard metric over k different
time instances and for the current simulation scenario we investigate the corre-
lation in between the first time instance and the k − 1 time instances that follow.
Thus the Jaccard component for the current simulation scenario can be expressed
as follows:

J(E1, E1+j) =
|E1 ∩ E2|
|E1 ∪ E1+j|

, for j = 1, . . . k. (6.3)

For the current scenario we investigate the consistency of the graph for the
Markovian connectivity model as well as the connectivity model of Henk Wymeersch.
The parameters for each of the connectivity approaches as well as the components
for the particular set up are as follows:

Table 6.1: Simulation parameters

realizations time instances α Radius R
100 100 0.7 20 13

The obtained results are illustrated in figure 6.1.
The results indicate that Jaccard metric captures the relationship in between

two consecutive time instances pretty well. On one hand the Jaccard metric illus-
trates the relationship in between graphs but on the other hand we cannot have
an idea how the graphs differ over time. Considering the case where for example
the number of participants in the graph remains the same over time, the metric
yields the number of connection that remain the same over time but there is no
information about the connectivity status regarding the cases where the connec-
tivity status was different from one case to the other. In order to provide a better
intuition regarding this consideration two trivial examples are illustrated in figures
6.2 6.3 where we illustrate how two different networks evolve over time and what
is the connection in between them.

The first example considers the scenario where a possible network with three
agents transits from a relatively sparse state to a state where all the agents are fully
connected with each other.
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Figure 6.1: Illustration of the Jaccard index for the connectivity models. The y axis corresponds to
the Jaccard component whereas the x represents the time instances. The first subfigure illustrates the
results for the connectivity model of Henk Wymeersc while the second subfigure illustrates the results
for the Markovian model.

(a) The location of the
base nodes along with
the transmission radius

(b) The area where the
mobile agent is con-
nected with the base
nodes simultaneously.

Figure 6.2: An illustration of the case where from a state where a single bidirectional communication
link the first time instance evolves to full network in between the agents.J(E1, E2) =

1
3 .

Whereas the second example considers the case where the connectivity status
in between the agents alters from one state to the other but the total number of
connection remains the same.

(a) First time instance
of the graph

(b) Second time in-
stance of the graph

Figure 6.3: An illustration of an example where a communication link drops in the meantime another
link is generated consequently the total number of connections remains unaltered.J(E1, E2) =

1
3 .



92 Chapter 6. Model evaluation and performance

In both cases the Jaccard index yields the same output even though the two
graphs evolved in a different manner. Thus there is a need for an additional metric
that provides information regarding the rate that the sparsity on the graph evolves
over time.

6.2 Jaccard index for the probabilistic model of Savic and
Zazo

The current section investigates the evolution of the connectivity on a dynamic
network with respect to the model of Savic and Zazo. The correlation in between
the graphs is estimated with respect to the Jaccard index. We follow the midrange
connectivity simulation scenario to conduct the analysis. A number of 100 Monte
Carlo simulations is conducted in order to obtain a comprehensive idea about the
performance of the model. For the current simulation scenario the range parameter
is arbitrarily chosen. The obtained results are illustrated in figure 6.4

Figure 6.4: Illustration of the performance of the model of Savic and Savic on a dynamic network.

The results indicate that there is a dependency in between the first time instance
and the one that follows. Furthermore the results illustrate that the output of the
model yields a relationship which becomes stationary over time. Considering the
main idea upon the model is based, meaning that the connection is independent
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on time, thus the model should be structured in a way that the time aspect is
considered.

The Markovian model states the idea that the output of the initial model forms
a stationary distribution of a Markov chain. Based on this approach each instance
of the model depends on the instance that preceded it. The particular approach
meets the obtained results from the original approach. Derived on this we can
claim that the proposed model generalizes the original model on the time domain
and overcomes the impracticalities introduced by the initial approach.

6.3 Comparison between the connectivity model of Henk
Wymeersch and the Makrovian model

The connectivity model of Henk Wymeersch introduces a straight forward criterion
upon we can deduce whether a communication link can be established or not. Even
though it is characterised by the obvious drawback that the impact of the surround-
ings is not taken into account there are several cases where the connectivity model
of Henk Wymeersch introduces a sufficient approach to address the connectivity is-
sue. In cases where for example the user is very close to the source of the signal or
in plane areas where there are not many obstacles in the propagation environment.
Thus we seek to investigate whether the Markovian model can adopt the behaviour
of the connectivity model of Henk Wymeersch. The comparison cannot take place
topologically therefore we use the Jaccard index in order to compare the two ap-
proaches on the time domain. The preliminary analysis upon the behaviour of the
connectivity model of Henk Wymeersch over time indicated that the corresponding
distribution tends to become stationary at the first 100 instances. An illustration of
this analysis is provided in figure 6.5.

Figure 6.5: Illustration of the behaviour of the connectivity model of Henk Wymeersch over time. Note
that for the current example RH = 10.
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One of the advantages of the Markovian model is the flexibility due to the dual
parametric structure. For each case upon the performance of the model is investi-
gated though, there is a need for a method to select each of the parameters. One
approach to adopt the range parameter of the Markovian model to the connectivity
model of Henk Wymeersch is by setting R with a with respect to the proportional
relationship in beetween the two paramters expressed in (4.50).

We are seeking to investigate whether the two approaches can follow a similar
pattern on time with respect to the Jaccard index. Thus once the method upon the
selection of the range parameter is defined, the next step of our approach is to de-
velop a method for selecting α so that the output of the Markovian model meets the
connectivity model of Henk Wymeersch. To do so we choose to develop a method
such that the first component of the Jaccard index of Markovian model is similar
to the corresponding component of the connectivity model of Henk Wymeersch de-
noted as J12. It is expected that the following time instances will follow the same
pattern. Derived on this α is estimated as follows:

∏
i>j

(1− α)|∆|J · ∏
aeij (0)=1

exp(−−|x2 − x1|22
2 · R2 ) = J12. (6.4)

where:
∆j = [aeij(1) = 1|aeij(0) = 1]. (6.5)

In order to obtain a better estimation upon J12 a number of 100 Monte Carlo sim-
ulations is conducted and the equation introduced in (6.4) is rewritten as follows:

100

∏
k=1

∏
i>j

(1− α)|∆j|k · ∏
aeij (0)=1

exp(−
−|xi − xj|22

2 · R2 ) =
100

∏
k=1

J12(k) (6.6)

At each iteration an estimate upon the corresponding equality is obtained by solv-
ing the following minimization problem :

minimize
α

f (x)

subject to 0 ≤ α ≤ 1.

Where f (α) = ∏i>j(1− α)|∆|J ·∏aeij (0)=1 exp(−−|x2−x1|22
2·R2 ) − J12.Finally the esti-

mate upon α corresponds to estimate per realization that minimizes the equation
introduced in 6.6. Based on the pair of the corresponding estimate a number of
100 Monte Carlo realizations is conducted for the two approaches on the same data
sets. The obtained results are illustrated in figure 6.6

The obtained results indicate that an offset is initially introduced in between
the two approaches. The corresponding behaviour of the Markovian model though
converges over time to the behaviour of the connectivity model of Henk Wymeersch.
Derived on this we can claim that the estimator for α yields the desired outcome on
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Figure 6.6: A comparison on the performance of the two approaches over time. The x axis represents
the time instances whereas the y axis corresponds to the output of the Jaccard index.ε = 0.8

the jaccardian index thus it is a good estimator. We can also argue that the Marko-
vian model can adopt the behaviour of the connectivity model of Henk Wymeersch.
Hence for the cases where the deterministic approach addresses the connectivity
issue sufficiently the same argument holds for the Markovian model.

6.4 Evaluation of the joint ML estimator

The current work proposed an ML estimator in order to obtain the model param-
eters. We are considering the GSM technology as a possible implementation for
the model therefore we will evaluate the performance of the estimator with respect
to the particular criterion. We introduced the results from 100 Monte Carlo sim-
ulations in section 5.1.2 the results from ML function for each of the realizations
along with the overall evaluation. Note that the simulations took place for 300
different time instances ,due to the heavy computational workload, even though it
takes more time for the distribution to become stationary. The corresponding like-
lihood functions are independent with each other thus they can from the overall
likelihood function of the simulations. The joint ML estimator over the 100 Monte
Carlo simulations reads:
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Λ(α, R|A) =
100

∏
k=1

∏
i>j

N

∏
n=0

P(aeij(n) = a(d,k)
eij (n)|(xi(n), xj(n))(d,k), α, R) (6.7)

The pair of estimates obtained by the individual likelihoods that maximizes the
overall likelihood is the estimate of the overall joint ML estimator. The true pair of
values along with the pair of estimates are as follows:

Table 6.2

Rt R̂ αt α̂

4.57 4.47 1.55 · 10−4 1.98 · 10−4

In order to evaluate the the impact of the biased estimation over time a num-
ber of 100 Monte Carlo simulations. The trivial midrange distance connectivity
scenario is considered for the simulations. The obtained results are illustrated in
figure 6.7.

Figure 6.7: A comparison on the performance of the two approaches over time. The x axis represents
the time instances whereas the y axis corresponds to the output of the Jaccard index.

The obtained results indicate that pair of estimates capture the behaviour of the
pair of true values. Thus we can conclude that the joint ML estimator provides a
good estimate for the problem at hand.

6.4.1 Obtaining the model parameters via a deterministic methods

An alternative method to obtain the model parameters is the one that utilizes deter-
ministic methods to address the issue of model calibration. For the current prob-
lem this can be done by addressing the task of obtaining the model parameters
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as a constrained minimization problem. In our case the constrained minimization
problem reads:

minimize
α

f (x)

subject to 0 ≤ α ≤ 1.

1 ≤ R ≤ 10.

where f (x) = −lnΛ(α, R|A) and lnΛ(α, R|A) form the joint log likelihood all
over the Monte Carlo simulation. The from of the log likelihood is the one intro-
duced in equation (5.25) but the corresponding sets are categorised with respect to
the obtained results from the Monte Carlo simulations.

The corresponding algorithm though requires an initial point which is very
close to the real value. Therefore the obtained estimates from the joint likelihood
function form the initial point for the algorithm. The solution of the constrained
problem along with the true pair of values are presented in the following table:

Table 6.3

Rt R̂ αt α̂

4.57 4.52 1.55 · 10−4 1.74 · 10−4

The obtained results indicate that the deterministic method yields a higher level
of accuracy compared to the estimate of the ML criterion. Nevertheless the effec-
tiveness of the algorithm relies on the initial point hence at the estimate of the ML
criterion. A combination of the two methods, where the constrained minimization
problem is preceded by the ML criterion, is expected to provide more accurate
results compared to a separate estimation via the ML criterion.

The obtained estimate via the ML criterion already introduced a similar be-
haviour compared to the pair of true values over time, with respect to the Jaccard
index. The updated result is expected to produce the same if not better outcome .
Therefore no additional simulations are conducted.





Chapter 7

Conclusion and Outlook

The primary objective of the thesis has been to propose a connectivity model ,on
a dynamic network, for localization purposes. The already existing approaches on
the field, a probabilistic model of Savic and Zazo and the connectivity model of
Henk Wymeersch of Henk Wymeersch, address different aspects of the issue such as
positions of the agents or impact of the surroundings. A key aspect that is not
taken into account in much detail though has to do with time. Therefore the main
focus of the current work is on this aspect and the way that connectivity varies due
to this aspect. Hence we introduce a Markovian model to address the connectivity
issue which is a generalization of the original proposal by Savic and Zazo in the
time domain.

The already existing methods even though they address the same problem they
are quite different with each other. Thus a comparison in between them consider-
ing a dynamic network is difficult to be done straight forward i.e topologically. The
Markovian model passes the initial approach to the time domain thus one way to
compare the different approaches is in the particular domain. A dynamic connec-
tivity network can be graphically represented by a graph. There is not any method
to compare graphs in the time domain. Therefore this thesis proposes the Jaccard
index in order to investigate how the connectivity of a graph evolves over time.
The Jaccard metric is a computationally efficient method upon we can investigate
the evolution of a dynamic graph over time. On the other hand it is a hard to de-
rive an analytical expression of the metric so we can have an expectation regarding
the outcome and evaluate it.

The model proposed by the current thesis consists of two parameters which
makes model more flexible and thus adoptive in different conditions. The com-
parison in between the Markovian model and rule of Henk Wymeerch indicated that
the proposed method can capture the behaviour of the existing method. Hence we
can claim that the proposed approach can cover more aspects of the connectivity
problem compared to the existing method.
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Several issues can be further considered about the model. One of the main
consideration takes place upon the expression of the alpha parameter. The dy-
namic behaviour of the environment alters the signal propagation environment
thus by making use of a static parameter to express the probabilist for loosing
a connection. A future direction upon this issue could consider a time dynamic
variation of the parameter with respect to the interpolated distance in between the
agents. Another consideration upon the connectivity model is that uses a partic-
ular approach to address each of the other modelling aspects of the Cooperative
Localization paradigm regarding the dynamic behaviour of the agents and the
noise introduced in the measurements. There exist many different mobile enti-
ties involving in a dynamic network, i.e vehicles, bicycles, human beings etc. The
corresponding mobility model may not capture the characteristics of the different
participants so different mobility models may be required to address the issue per
node. The range error model followed by the current work may also not be ef-
ficient for the signal propagation environment since many different factors may
occur which vary from one area to the other. The current task of this thesis was to
introduce a new approach to address the connectivity issue and validate the func-
tionality of the method. Hence we followed a simple approach to address different
aspects of the connectivity issue. A possible application of the model when con-
sidering a specific region could take these aspects into account. The main scope of
the current work is to propose a method upon such an application can be based.

The Markovian model is dual parametric. On one hand the flexibility of the
model makes it adoptive in different conditions but on the other hand we need a
method upon model calibration can be based. Therefore the current work proposes
an ML estimator in order to obtain the model parameters. The obtained results
indicated that the ML estimator is a good method for the calibration purposes
when considering the GSM technology as a possible application of the model. The
obtained results indicated that there is a dense presence of outliers on the estimates.
This means that the required data to address the necessities of the estimation task
for the model. There exist tools, such as the Cramer–Rao bound that can be used
to exploit information upon this matter.

One of the aspects that need to be addressed in the future is the behaviour
of the Markovian model when it is adopted by a possible application such as a
Cooperative Localization algorithm i.e the Variational Message Passing Algorithm
[10]. A study upon the behaviour of the model with respect to the corresponding
application could lead to a development of an application which is based upon the
structure of the Markovian model.
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