
Pre-Analyses Dependency Scheduling with

Multiple Threads

Nichlas Korgaard Møller

Supervisor: Bent Thomsen

June 12, 2016

1

Title:

Pre-Analyses Dependency

Scheduling with Multiple Threads

Project period:

P10, Spring Semester 2016

Project Group:

dpt109f16

or nmalle11@student.aau.dk

or nkm182@hotmail.com

Authors:

Nichlas Korgaard Møller

Supervisor:

Bent Thomsen

Total Pages: - 132 pages

Appendix: - 42 pages included in the 132

pages and a folder containing code.

Completion date: - 12-06-2016

Synopsis:

This report contain information on how to

utilize multiple cores from the CPU with a

different abstraction than threads. The ab-

straction created was tasks. The tasks can

be seen as a to do list, where a previous

task has to be finished before the next task,

these tasks may be run concurrently if they

do not affect one another. The report suc-

ceeded in creating a dependency sched-

uler with comparable performance or bet-

ter than the existing solutions for manag-

ing threads. The report conducts multiple

micro benchmarks and a real application

test with a spreadsheet, where it succeeds

in speeding up the spreadsheet.

The content of the report is free to use, yet a official publication (with source references) may only be made

by agreement from the authors of the report.

mailto:dpt109f16@cs.aau.dk

Contents
Contents 3

1 Introduction 5
1.1 Introduction . 5

1.2 Summary . 8

1.3 Background . 8

1.4 Related Work . 10

2 Analysis 12
2.1 Problem statement . 12

3 Design 14
3.1 The Dependency Scheduler process . 14

3.2 The Algorithm . 15

3.3 Architecture of the Dependency Scheduler 18

3.4 Parser for UPPAAL . 19

3.5 Writing a Parser for the Scheduler . 24

4 Implementation 29
4.1 Dependency Scheduler Implementation Method Details 29

4.2 Examples . 34

4.3 Implementation of Scheduler into Spreadsheet 45

4.4 Micro Benchmarks Implementation . 55

5 Benchmark 65
5.1 The Systems . 65

5.2 Micro Benchmarks . 65

5.3 Micro Benchmarks Graphs . 68

5.4 Spreadsheet Benchmarks . 74

5.5 Spreadsheet Benchmark Graphs . 77

6 Discussion 81
6.1 General Discussion of the Sections . 81

6.2 Pros and Cons . 85

3

4 CONTENTS

6.3 Remarks . 85

7 Conclusion and Future Work 87
7.1 Conclusion . 87

7.2 Future Works . 88

Bibliography 89

8 Appendix 92
8.1 Tables . 92

8.2 Code . 110

1 Introduction

1.1 Introduction
The technology of the multi-/many-core era, where programmers have to handle the cores

with the abstraction of threads is still containing many problems. The computation may

have to be predictable and end up with consistent results in the end of the program. To en-

sure predictable code, monitors, semaphores, locks, observer pattern, future and promises

had to be implemented[13, Chapter 18-19][11]. New model designs with multi-/many-core

in mind have to be created[11]. Multitasking introduces problems such as deadlocks[24,

P. 425-427], livelocks, racing conditions[28], Amdahl’s law[8]. As software developer it

becomes difficult to use the multi-/many-cores, as the hardware gets more complex, caches

on the multi-/many-core can be implemented in different sizes, access times to RAM vary

and the number of cores vary with different speeds between chips.[11]

With Open Multi-Processing (OpenMP)[3] there are numerous of ways to use multiple

threads or cores. OpenMP is an open API which is portable to personal computers up

to super computers. On a super computer it can be used together with Message Passing

Interface (MPI). Alternatively OpenMP’s extensions can be used for non-shared memory

systems. The OpenMP language is a languages that extends support for use of multiple

Figure 1.1: This figure has been taken from [29] and illustrates the extensions of OpenMP.

threads, figure 1.1. OpenMP has been written for C, C++ and Fortran. It allows different

5

6 CHAPTER 1. INTRODUCTION

control structures to use the cores in parallel such as parallel for, or user defined threads

making the user enable to write their own parallel code. OpenMP has synchronization

clauses which enables the user to define critical code which only will run specific code parts

serial instead of parallel. It can be changed to always have a specific number of threads, or

control its internal scheduling of loop iterations. MPI libraries[6] have been created to be

used on clusters or for general multiple thread applications. These MPI libraries are used

to solve general purpose parallel programming solution with no dependency. The most

common MPI libraries are found in Fortran, C and in C++, most MPI libraries are open

sourced. The concept of MPI is to create synchronization and communication between a

set of processors. These sets are mapped to different computers/servers/nodes which are

connected together. These MPI libraries are meant to split up the program and run the split

up parts on the different processors, send messages back and forth, for either results sharing

or new programs to execute and in the end synchronize the result[6].

Today GPUs can be used to calculate parallel data, but the GPUs are hard to program to,

and might not always be reliable as it gives unexpected results[1].

There are functional languages that exploits parallel structures or loops to become parallel,

with either implemented GPU use or use of multiple threads. Where they shift the focus

of the programmer to step from a single threaded ideology to a more multi-threaded focus.

Harlan is written with a Scheme syntax that calculates various results on the GPU and

transfers the memory[5]. Brahma for F# can calculate results on the GPU[7]. C++ AMP

developed by Microsoft which features both the use of multiple threads and interface with

the GPU and with DirectX[16]. There are libraries like Paralution[9] which has multiple

solutions in a library for multiple threads(OpenMP), for OpenCL, for CUDA created in

C++ and FORTRAN.

There are general solutions from Microsoft with their scheduler[22] which features task

stealing, thread injection, this has been implemented in .NET 4.0.

A program can only be parallel to a certain degree, the multi-core chips hardware structure

will affect the results. This report will include functions from .NET[19], these functions

will be used for thread handling. .NET’s scheduler does not take dependency into accord,

the user will have to implement it by themselves. In the 3.0 version of .NET they imple-

mented thread pool[23] which uses the existing threads in the windows system, with this

thread pool they also implemented a way to stop a thread with Waitone to wait until it

have been set with AutoResetEvent [15]. These functionalities has been implemented on

the Linux .NET version where the threads will be created on start up. The idea is to use

1.1. INTRODUCTION 7

the available hardware, as the CPU is often not fully used, as the process of programming

multi-threaded programs can be difficult.

All of these languages and libraries have something in common, they do not take care of

dependency between tasks at runtime, it is left for the programmer to ensure.Most of them

solve specific problems like parallelism of loops. They do not use the idea that multiple

single methods could be run concurrently at the same time if they do not depend on shared

data. This report investigate some of the multi-thread problems with another perspective

than the usual. As the perspective of this report will be how to change the optics of the

programmer to be what depends upon this piece of code. Therefore the programmer has to

change their train of thought to the following: figure 1.2, 1.3, and 1.4

A. Execute A.

B � A. Wait for A then execute B.

Figure 1.2: A does not have a dependency. B depends on A. A can be executed. After A has

completed its task, B can then be execute.

A. Execute A.

B. Execute B.

Figure 1.3: A does not have a dependency. B does not have have a dependency. Both can

be executed concurrently.

A. Execute A.

B � A. Wait for A then execute B.

C. Execute C.

Figure 1.4: A does not have a dependency. B depends on A. C does not have a dependency. A

and C can concurrently be executed. After A has completed its task, B can then be executed.

A application is to use the preliminary data from UPPAAL[10] and execute it on functions

corresponding to the UPPAAL system names. Which in this case could be system names

A,B,C they are the same template system in UPPAAL. Another system which has to be

8 CHAPTER 1. INTRODUCTION

implemented in UPPAAL is a system representing the CPU with multiple cores. The cores

can either be busy or available. The system names A,B, and C could ex correspond to

method names that has been created in a program. What makes the systems different is

that the dependency should be implemented by the user as well as how it works should be

implemented in UPPAAL. In one such implementation of UPPAAL the dependency can

be implemented with bool arrays for the three systems. The three systems has then been

programmed to check if they have dependencies in their bool array. If a system does not

have a dependency and a core is available to execute the thread, it can then execute the

thread. If the system has a dependency it has to check if the system, that it is dependant on,

has been executed then it can execute if there is an available core. With this UPPAAL can

be used to verify if it executes correctly in a written program.

Another application could be to use spreadsheets, as the spreadsheet can be divided into

dependencies. Such as a cell in a spreadsheet ex A1 can be dependant on another cell in

the spreadsheet A2. If A1 is dependant on A2 then A2 should be executed before A1 can

be executed. With this idea it becomes possible to make an analysis on the spreadsheets

dependencies. Which will enable the possibility to execute multiple calculations concur-

rently.

1.2 Summary
This report will start with an analysis of the current problem, as we lack a library in general

which will handle multiple threads with different abstraction than threads. It will contain

a chapter in design of the dependency scheduler and how it can be used together with UP-

PAAL. Which implementations the user can do themselves to use a virtual override, which

features and flaws the design contains. As well as a diagram showing what the scheduler

do and how it works. The report will contain information about the different functions

within the scheduler, with examples of how they are used with simple implementation,

there will also be an example of a solution Microsoft has created. The report will feature

micro benchmarks on its performances. The report will have a real application test spread-

sheet benchmark which will be compared to the original solution using a single thread.

Lastly the report will contain a discussion/conclusion and a future works. The appendix

will contain the information gathered from the benchmarks in tables, and the library code.

1.3 Background
Microsoft’s .NET [19] contains partial parallel solutions of the common algorithms. It con-

tain LINQ to database coding, different task libraries, Async methods, Thread handling.

1.3. BACKGROUND 9

.NET strives to be as general in its solution as it possible can be.

Microsoft have created a task scheduler [22], which requires to define the number of

threads available for this scheduler. It does not have any dependency implemented and

will execute as soon as the main thread has started the task. It features task stealing, thread

injection/retirement for maximum throughput and task inlining.

Microsoft have created a thread pool [23], which accesses the available threads in the

system. The utilization of the threads will save time, as only existing threads will be used,

designers can create more threads if necessary.

Microsoft have created a lazy class known from functional languages [18], which only

evaluates when required. This is used together with Microsoft’s scheduler [22] to handle

multiple threads.

Microsoft have multiple delegates one of them is Action [14], this can be used as a Thunk

from functional languages. The Action(Thunk) is a small dummy argument which is used as

a delay to calculate specific segments of code. Action can be used with multiple parameters

in a delegate to pass variables to a function or a calculation.

Microsoft have a Reflection method [21] which can call code based on a class type and on

a method name. The Reflection method can be given multiple parameters to be used in the

called methods.

Microsoft have implemented a way to easy use multiple threads [20] in a for loop with

Parallel.For. Which splits the data among the available cores.

Microsoft C# features Generics [17], which can be used instead of upcasting and down-

casting. This is the better solution in C# compared to casting.

Microsoft released AutoResetEvent [15] together with the Thread Pool. This can be used as

a bit operator to indicate the thread can continue after Thread.Sleep has been used, or when

a thread has to wait until another thread awaken the thread that has used Thread.Sleep.

Microsoft have created the library C++ AMP[16] which uses DirectX to interface with the

GPU thus removes the need to go through either CUDA or OpenCL. AMP can be used

with multiple threads on the CPU.

Larsen, Kim G., Paul Pettersson, and Wang Yi [10] is a tool paper on UPPAAL which

was created to solve problems with models. These models can be used to verify different

reachability questions such as: If there will be a deadlock or if it reaches a specific state.

10 CHAPTER 1. INTRODUCTION

Sestoft, Peter[25] has developed a spreadsheet in C#, where the user can define their own

functions and most of standard operations known from spreadsheets are implemented.

Sestoft, Peter[26] has written a paper on how to measure the speed of software, or deter-

mine if a new solution is faster than an old one. This paper gives multiple advices on how

to perform tests and how better tests are made.

Sestoft, Peter[27] has written a book "Spreadsheet Implementation Technology: Basics and

Extensions” which contains informations on the spreadsheet[25]. It contains information

on, what a spreadsheet is, the referencing other spreadsheet uses for cells, architecture, im-

plementation of the spreadsheet, the functions, support graphs and much more information.

LibreOffice [4] is another spreadsheet with fully implemented OpenCL use. It uses the

CPU, APU or the GPU whichever has the most computational power.

Libreoffice spreadsheets[12] is the source that [2] used for its tests, as well as this report

uses to compare against.

1.4 Related Work
Hill, Mark D., and Michael R. Marty[8] summarizes Amdahl’s Law and how critical it is

for the multi-core era. They also investigate different multi-core chips and compare them

on graphs for which chips theoretically can get the best results.

Lee, Edward A. [11] states, there exist alternatives to threads such as the observer pat-

tern. He argues that much of the difficulty is a consequence of the abstraction for con-

currency which threads bring. The consequences was concluded as experts had written a

multi-threaded program, to figure out four years later that it could cause a deadlock. As the

paper concludes the use of threads is not ideal, as "But nontrivial multi-threaded programs

are incomprehensible to humans."[11].

Alglave, Jade, et al[1] investigate GPU concurrency by studying concurrent behaviour of

deployed GPUs, where the current specifications of languages and hardware are inconclu-

sive. To back their claims is a litmus test which they have created by using a low-level lan-

guage for the GPU to check the hardware for problems. The Litmus tests weak behaviour

and ideas for GPU programming, which are supported by official tutorials, as false. This

paper was created to prove there was an error in vendor documentations and asking for a

clearer documentation.

Holk, Eric, et al[5] is the language/tool Harlan which uses the language Scheme to do GPU

calculations. This language features automatic memory transfer from and to the GPU.

1.4. RELATED WORK 11

PARALUTION [9] is a tool created for various sparse iterative solvers for multi/many core

CPU and GPU devices. These solutions are created in C++ and Fortran.

Message Passing Interface Forum has published several documentations on Message Pass-

ing Interface(MPI)[6] where a lot of different libraries and standards is based upon.

OpenMP Architecture Review Board[3] is a collection of companies which update and use

Open Multi-Processing. They have multiple documents, examples, introductions, books,

and wikipedia[29] on how to use OpenMP and how OpenMP is used. As well sources and

documentation on its implementation.

Padua, David has written Encyclopedia of Parallel Computing[24, P. 425-427], which con-

tains the description of a deadlock, how to detect a deadlock and how to avoid or prevent

deadlocks.

Wheeler, David has written Secure programmer: Prevent race conditions[28], which ex-

plains race conditions and their weaknesses, with most claims being security problems.

Whereas many different race conditions can be in software.

Mark Michaelis has written Essential C#[13], which contains a lot of information about

C# in general for .NET library before and with .NET 4.0. It contains some of the more

normal ways to do concurrent programming with threads, with the use of monitors, locks

and semaphores.

Grigorev, Semyon [7] has created BRAHMA a tool to use GPU programming in F#, it uses

part F# syntax and part OpenCL syntax.

AMD[2] is an article about the speed up gained in spreadsheets with the use of the APU

compared to a single core CPU.

2 Analysis
This chapter will summarize the problems with multitasking on multi-core chips.

2.1 Problem statement
It is difficult to write and debug multiple-/many-core programs as they can have unexpected

errors. The unexpected errors, problems, considerations:

• Racing condition: Where multiple threads manipulate the same data and read/write

does not work as expected. An example can be both threads count up once for every

time they access the data. But only one thread count will be counted up because they

both read at the same time, thus not being aware of other thread.

• Deadlock: Is example: When the two threads can no longer move forward because

they lack a resource the other thread manages, thus creating a stalemate between two

or more threads.

• Livelock: Is in the same category as deadlock. The Livelock is created by the use of

multiple threads managing the same data but never being able to settle as they change

the shared data, making the threads change the shared data over and over.

• Debugging: In languages without an integrated development environment (IDE) as

Fortran, C and C++ it is not easy to figure out where the code went wrong, or if the

threads intertwined with the same data.

• Thread creation: when should a new thread be created, how many threads can the

many/multi-core handle, is there a limitation in data size, input/output restriction.

When are the threads terminated if terminated.

• Handle the threads: when should monitors, semaphores, mutex, locks, atomic locks,

fence, blocks be used and how are they best used, eventually is there performance

issues of using them.

• Threads to core ratio: does a thread use an entire core, can a core have multiple

threads, how does many threads affect the core, is more threads better or worse.

• Readability of the program: When does a new thread start and what does it work on

while the other threads or the main thread is working.

12

2.1. PROBLEM STATEMENT 13

• Cache usage: How does the cache work best on multiple cores as the L1 cache is

local, the L2 cache is shared between two cores, and then L3 cache shared between

all cores.

• CPU hardware:

– How does Intel’s Hyper Threading affect the threads performance and when is

it activated/deactivated.

– How does AMD’s Turbo Core affect threads in general and when is it activat-

ed/deactivated.

– Can the software influence Hyper Threading and Turbo Core or are they con-

trolled by the hardware and BIOS (Basic Input/Output system also known as

motherboard software)

– Power saving functions, do they affect the results or the core performance.

– Architecture differences, that affect the computation.

– Differences in instruction sets.

– Differences in speed Ghz/Mhz on the processors, number of cycles.

There will always be the pros and cons of whether to use a single thread versus using

multiple threads, and various studies throughout time speaking for and against doing one

or another. If programs are time critical it can use multiple threads for a better result. There

are many libraries which tries to solve the general problems, mainly in Fortran, C and

C++ such as MPI libraries. None of these considers dependency as of any importance as

the dependency is created by the user and has to be solved by the user. There is a lack of a

general solutions for local multiple core programs which uses two or more cores. There is a

lack of solutions that uses dependency. For example one solution that requires dependency

could be spreadsheets, where the user defines that they require a calculation with a specific

cell. That specific cell can depend on calculations from other cells and so forth. However,

the dependency can be converted to other forms of programs where one thing is dependant

to execute before another.

The solution this report want to create is a dependency scheduler that handles most of the

above mentioned problems, or lessens the burden of the above problems.

3 Design
This chapter is how the problems can be solved and the design of the solution.

3.1 The Dependency Scheduler process
The solution which is contemplated, is a Dependency Scheduler. Which handles all the

threads that the CPU can manage. This will be achieved through .NET’s thread pool, which

can get the minimum number of threads corresponding to the number of threads the used

CPU has. The thread pool is used to keep track of the threads, this is managed by .NET, and

they are all created from system start up, so no additional time has to be used for creating

new threads.

The dependency scheduler has to be created as minimalistic as possible to not affect threads

too much or make any busy waiting. .NET have a lot of functions and among the functions

is WaitOne which can be used to prevent busy waiting while the thread sleeps.

The dependency scheduler primarily uses Reflection. However, Reflection is not easy to fig-

ure out how to use. Therefore the dependency scheduler required another primary method

that is simpler to use. The simpler method that the dependency scheduler will use is Action.

Action was also chosen because it is faster than Reflection which have a large overhead.

The naming convention of the methods strived to be as convenient as possible or as under-

standable as possible. In Reflection’s case the methods had to be understandable rather than

convenient. The method names had to be different because of the function params which

enables a method to take as many parameters as required. In the similar case for Action it

could keep the same name, as it does not use params.

The scheduler is a dependency scheduler it requires a dependency system based on integers,

which requires the name it is given to be an integer and the dependencies is required to be

a list of integers. For a better abstraction it is recommended to use enum for the names of

the methods and convert the methods to integers.

The scheduler will then handle the dependency if there is any if not it will execute the task

right away. The scheduler is finished at the time that all tasks has finished and removed

from its internal list.

14

3.2. THE ALGORITHM 15

3.2 The Algorithm
The Dependency Algorithm is started up at the time a task has been added. When a task is

added a new thread is created to handle the scheduler. The scheduler then proceed to first

create a AutoResetEvent which is a wait handler for itself. Then it proceeds to look at the

list where the tasks are inserted. It starts from the first task to check if it is worked on, if not

it will check if it got any dependencies. If it does not have a dependency it will start a new

thread for the task and afterwards mark the bool for the TaskItem that it is being worked

on to indicate that it should not start this item again. If the TaskItem have dependencies it

will check the list if there is any of the dependencies which it needs to fulfil before it can

execute. After it has traversed all the tasks that it could start up, it will start to look through

the list if any of the tasks has finished, if a task has finished it will be removed from the

list. If the dependency scheduler is running and is removing tasks while the main thread is

adding tasks, the system will go into an exception. This can be avoided while adding tasks

with the method AddingTaskLock, when there are no more tasks which needs to be added,

AddingTaskUnlock has to be used else the dependency scheduler will endlessly wait and

never awaken the main thread. The tasks will indicate they have finished when one of the

worker threads has finished running its task and written back to TaskItem that it is done.

The scheduler will check if the list is empty if it is empty it will proceed to awaken itself

and the main thread. Then finish the scheduler and the scheduler thread. If the list is not

empty it will proceed to wait until a thread has finished or until a new task has been added.

When it has been re-awoken it will call itself with recursion and start anew from the top,

unless the list is empty where it will finish the thread.

The implementation of tasks has been implemented with list from C# and the dependencies

has been added as a list, which is used as an access list to the number of tasks that is required

to finish the different dependencies.

16 CHAPTER 3. DESIGN

List is empty = null

AddTask(Action, 5) An action and the name five.

List = 0,0,0,0,1

AddTask(Action, 5) again same action, same name.

List = 0,0,0,0,2

AddTask(OtherAction, 5) different action, same name.

List = 0,0,0,0,3

AddTask(NewAction, 7, Dependencies(5)) This task’s name is seven, and it depends

upon the name five.

List = 0,0,0,0,3,0,1

The newly added task cannot be executed before the first three tasks has been executed

with the name five, resulting in:

List = 0,0,0,0,0,0,1

Then the last added task can be executed.

List = 0,0,0,0,0,0,0

Figure 3.1: This illustrates how the dependency list works.

The explanation of dependency can be seen at figure 3.1.

All of the threads are background threads the programmer has to use WaitForTasks that will

stop waiting till all tasks has finished.

For another abstraction of the algorithm take a look at figure 3.2 and 3.3. Where it starts

in Start Main Thread Execution which is entered with the main thread to add tasks to the

scheduler. The other method of adding the tasks is to start up the scheduler in the case

it sleeps or it has not been initiated. After the first AddTask it will start up the Scheduler

Scheduler Thread Start where it will traverse the list and add all the possible tasks to

threads, to afterwards traverse tasks again to remove them in case any have finished. When

the list is empty it will finish the scheduler thread, and no additional threads but the main

thread will be remaining.

3.2. THE ALGORITHM 17

Figure 3.2: A flow diagram over the main thread AddTask interaction.

18 CHAPTER 3. DESIGN

Figure 3.3: A simplified flow diagram over the internal dependency scheduler.

3.3 Architecture of the Dependency Scheduler
The consideration made was from the observations of task groups. Where in some optimal

task groups one person will delegate works tasks to available team members. This ideol-

ogy can resemble concurrent programming where the main thread delegates the task to

other threads, decided by the programmer. Then the idea came why not create a scheduler

that does the programmers job of deciding when a thread is created and used. This way

multitasking will increase in abstraction and remove a part of the programmers problem.

The dependency scheduler require several elements:

• Thread pool: A thread pool which handles all the threads. The handling of threads

includes, to create the threads, give information on how many logical threads the

processor has and when the threads are terminated.

3.4. PARSER FOR UPPAAL 19

• Tasks: A task that contains information on what the threads have to execute.

• Task List: A task list that contains the created tasks.

• Add Tasks: There is required a way to add the tasks to the task list before a task can

be used.

• Scheduler: A scheduler that provides an algorithm on how the threads will use the

tasks from the task list.

• Wait For Tasks: It is required to get information on when the tasks has ended.

• Remove Tasks from Task List: To get information on when the tasks has finished, the

task list can be emptied.

• Stop/Start the Scheduler: The scheduler should not use more computational power

than required so a way to stop and start the scheduler is required.

• Dependency: The dependency require a way for a task to come before another task

or multiple tasks.

3.4 Parser for UPPAAL
In UPPAAL there are many ways to solve the analysis part of multiple tasks, this section

will introduce one way to create such a system. Figure 3.6 represents the average function,

which might have dependencies and it takes a specific amount of time which y represents.

Figure 3.8 represents the physical cores of the CPU or the logical threads, which each can

execute a task such as figure 3.6. For the two systems to work together they need checks

seen at figure 3.7 and 3.9. This code interact with the global declaration seen at figure 3.4.

With these components a dependency system is created in UPPAAL. UPPAAL can proceed

to run simulation to see if it ends in a deadlock. Another possibility is to use the verification

where a query can be added, this query will be checked in every possible situation to be

checked if it is true.With this you can ensure that the tasks you have analysed do not end

up in a deadlock.

The parser for UPPAAL is a simple implementation where, it corresponds to the names

given in the global declaration in UPPAAL. Such as for example figure: 3.5.

20 CHAPTER 3. DESIGN

Figure 3.4: The Declaration(Erklæring) contains the Dependency.

Figure 3.5: The System Declaration(SystemErklæring) contains the different systems from

UPPAAL which can be given any name.

As seen on 3.5 a function can be named this way. With the line "system CPU, SomeFunc-

tion, SomeFunction2, HelloWorld, HelloWorld2, SomeFunctionWorld, SomeFunctionWorld2;”

can be copied into C# as a string after removing "system” and "CPU,” and the semicolon.

3.4. PARSER FOR UPPAAL 21

Figure 3.6: This is a representation of an average function.

Figure 3.7: The System Declaration(SystemErklæring) for the average function on how it

works.

Figure 3.8: This is a representation of the cores or logical threads of the CPU.

22 CHAPTER 3. DESIGN

Figure 3.9: The System Declaration(SystemErklæring) for the CPU core/thread and its

code on how it works.

For the dependency of the above string look at figure 3.4 which contains the dependency.

For using dependency in C# it should be changed to jagged edges array: "bool[][] depend

= new bool[6][]” "6” corresponding to the number of functions and in front of every line

it require a "new bool[]” before "{ ”. Now the start parameters has been prepared, the

algorithm can be executed at listing 3.1 and the functions it uses are found at 3.2.

Listing 3.1: This code is using a parser for UPPAAL.

1 DependencyTaskParser DTP = new DependencyTaskParser(DS

);

2 UPPAAL U = new UPPAAL ();

3 string uppaalMethods = "SomeFunction ,SomeFunction2 ,

HelloWorld ,HelloWorld2 ,SomeFunctionWorld ,

SomeFunctionWorld2";

4 bool [][] dependUppaal = new bool [6][]

5 {

6 new bool[] {false ,false ,false ,false ,false ,false},

// SomeFunction

7 new bool[] {true ,false ,false ,false ,false ,false},

// SomeFunction2

8 new bool[] {false ,false ,false ,false ,false ,false},

// HelloWorld

9 new bool[] {false ,false ,false ,false ,false ,false},

// HelloWorld2

10 new bool[] {true ,true ,false ,false ,false ,false}, //

SomeFunctionWorld

11 new bool[] {true ,true ,false ,false ,true ,false} //

SomeFunctionWorld2

12 };

3.4. PARSER FOR UPPAAL 23

13 DTP.GiveAnalysis(typeof(UPPAAL), U, uppaalMethods ,

dependUppaal);

14 DS.WaitForTasks ();

Listing 3.2: These are the UPPAAL functions used.

1 class UPPAAL

2 {

3 int a = 0;

4 public void SomeFunction ()

5 {

6 a+=250;

7 }

8 public void SomeFunction2 ()

9 {

10 a += 50;

11 }

12 public void HelloWorld ()

13 {

14 Console.WriteLine("Hello World");

15 }

16 public void HelloWorld2 ()

17 {

18 Console.WriteLine("Hello Worlds");

19 }

20 public void SomeFunctionWorld ()

21 {

22 Console.WriteLine("Hello World" + a);

23 a += 20;

24 }

25 public void SomeFunctionWorld2 ()

26 {

27 Console.WriteLine("Hello World" + a);

28 }

29 }

Listing3.1 will always result in "Hello World300” and "Hello World320" is written in that

order and "Hello World" and "Hello Worlds" can come in a random order before, after or

in between.

24 CHAPTER 3. DESIGN

3.5 Writing a Parser for the Scheduler
The parser is a user written function which uses the scheduler. The parser is a interpreter

from one type of input to another input readable for the scheduler. For every type of differ-

ent input, a new parser is required. Another function a parser could have, could be to merge

tasks together. An example can be seen at listing 3.3.

Listing 3.3: These are user parser function

1 class TaskParser

2 {

3 int _name ,_row ,_col;

4 List <int > _dependency = new List <int >();

5 string _method;

6 Sheet _sheet;

7 public TaskParser(int name , List <int > dependency , string

methodName)

8 {

9 _name = name;

10 _dependency = dependency;

11 _method = methodName;

12 }

13 public int GetName () { return _name; }

14 public string GetMethod () { return _method; }

15 public List <int > GetDependency () { return _dependency; }

16 }

17

18 class DependencyTaskParser

19 {

20 //Using the Dependency Scheduler

21 DependencyScheduler DS;

22 // Creates an offset for the different names

23 int _offset = 1000, _resetNumber;

24

25 public DependencyTaskParser(DependencyScheduler

DependencyScheduler)

26 {

27 DS = DependencyScheduler;

28 DS.IncreaseDependencyList(_offset);

29 }

30

31 public DependencyTaskParser(DependencyScheduler

DependencyScheduler ,int offset)

3.5. WRITING A PARSER FOR THE SCHEDULER 25

32 {

33 DS = DependencyScheduler;

34 _offset = offset;

35 _resetNumber = offset;

36 DS.IncreaseDependencyList(_offset);

37 }

38

39 //Reset will continue to increase however , this allows it

to be reset.

40 public void ResetOffset ()

41 {

42 _offset = _resetNumber;

43 }

44

45 /// <summary >

46 /// Give the Classtype from where the Tasks are from , the

class they operate on , the list of systems from UPPAAL

where you have renamed to the function names ,

dependency that you created in UPPAAL

47 /// </summary >

48 public void GiveAnalysis(Type classType , object initClass ,

string methodNames , bool [][] dependency)

49 {

50 DS.AddingTaskLock ();

51 string [] splitter = methodNames.Split(’,’);

52 int startoffset = _offset;

53

54 List <TaskParser > ArrayTaskParser = new List <TaskParser

>();

55 bool[] accessList = new bool[splitter.Length];

56 DS.IncreaseDependencyList(_offset + splitter.Length);

57 for (int i = 0; i < splitter.Length; i++)

58 {

59 List <int > dependencyList = new List <int >();

60 for (int j = 0; j < splitter.Length; j++)

61 {

62 if (dependency[i][j])

63 {

64 dependencyList.Add(j + startoffset);

65 }

66 }

67

68 if (dependencyList.Count <= 0)

26 CHAPTER 3. DESIGN

69 {

70 DS.AddTaskNamed(classType , RemoveWhitespace(

splitter[i]), initClass , _offset + i);

71 accessList[i] = true;

72 }

73 else

74 {

75 ArrayTaskParser.Add(new TaskParser(_offset + i

, dependencyList , RemoveWhitespace(

splitter[i])));

76 accessList[i] = false;

77 }

78

79 }

80 TasksPartTwo(ArrayTaskParser ,classType ,initClass ,

accessList);

81 _offset += splitter.Length;

82 DS.AddingTaskUnlock ();

83 }

84

85 /// <summary >

86 /// This method is to be sure that the dependency is

correctly placed so there is no risk of the dependant

to run before the function it depends on.

87 /// This is able to run while the Scheduler is running and

the cleaning is disabled.

88 /// </summary >

89 private void TasksPartTwo(List <TaskParser > ArrayTaskParser

, Type classType , object initClass , bool[] accessList)

90 {

91 bool canRun = true;

92 List <int > currentList;

93 for (int i = 0; i < ArrayTaskParser.Count; i++)

94 {

95 canRun = true;

96 currentList = ArrayTaskParser[i]. GetDependency ();

97 for (int j = 0; j < currentList.Count; j++)

98 {

99

100 if (! accessList[currentList[j]-_offset])

101 {

102 canRun = false;

103 }

3.5. WRITING A PARSER FOR THE SCHEDULER 27

104 }

105 if (canRun)

106 {

107 DS.AddTaskNamedAndDependencies(classType ,

ArrayTaskParser[i]. GetMethod (), initClass ,

ArrayTaskParser[i]. GetName (),

ArrayTaskParser[i]. GetDependency ());

108 accessList[ArrayTaskParser[i]. GetName () -

_offset] = true;

109 ArrayTaskParser.RemoveAt(i);

110 i--;

111 }

112 }

113 if (ArrayTaskParser.Count > 0)

114 TasksPartTwo(ArrayTaskParser , classType , initClass

, accessList);

115 }

116

117 private static string RemoveWhitespace(string str)

118 {

119 return string.Join("", str.Split(default(string []),

StringSplitOptions.RemoveEmptyEntries));

120 }

121 }

The first class TaskParser is to temporary maintain data that has not been added as a task

yet. GiveAnalysis requires the classtype where the methods should be called from. The

Initclass is if there is an object it has to use to access the data if the methods are non static.

MethodNames are the row from System Declaration, which will be split up on run time. To

ensure regardless of number of tasks it should work with DS.AddingTaskLock, DS in this

case is the Dependency Scheduler which is required to create the tasks. Then the methods

are split up into separate strings to afterwards create the access list which determines which

functions has been used, as the methods are required to be inserted into the correct order

with their dependencies. If not the tasks can risk not seeing the dependencies and just

execute the task. The dependencies are determined and changed into a list corresponding

to the schedulers list. Afterwards the size of the dependencylist is increased. If there was

no dependency the task is inserted into the scheduler right away. If not it will be inserted

into a list with the TaskParser. In the next part it will check if the dependency is executed

if the dependency is executed will add the task and remove the task from the list, if not it

will continue through the list until the next execution-able element has been found. If it has

28 CHAPTER 3. DESIGN

a dependency to itself or a dependency that has a dependency back and forth they will end

in a deadlock.

4 Implementation

4.1 Dependency Scheduler Implementation Method
Details

This will serve as a reference on how it works as well as how it is used. The full library

code can be seen at section 8.2 listing 8.1

4.1.1 Technology Used

This program uses technology from .NET 3.0 which introduced ThreadPool and AutoRe-

setEvent - it is recommended to get the latest version of .NET. The system works on Win-

dows and Linux, Mac is currently untested. This Dependency Scheduler also uses Reflec-

tion to call functions. All the threads are background threads taken from the usual system

tasks in Windows, on Linux it is started with the program and limits the amount of threads.

4.1.2 Initialization

When the Dependency Scheduler is being initialized it can be initialized with an empty

constructor which gets access to the threads existing in the .NET framework. This con-

structor also accesses OptimalTaskSize() which is used to determine the maximum number

of threads the parallel solutions should use which is the number of threads the CPU has.

Beyond this it has multiple settings which is meant to be used after the object is initialized.

Public void SetMaxThreads(int)

set the threadpool to use a maximum amount that it may use based on a number the designer

gives it.

Public void SetMaxThreads()

sets the threadpool to the maximum amount from .NET, which can be assigned.

Public void SetMinThreads()

sets the threadpool to the minimum amount from .NET, which can be assigned which nor-

mally would be the amount of physical CPU threads.

29

30 CHAPTER 4. IMPLEMENTATION

Public void SetMinThreads(int)

is currently untested as thread amount can be set below the number of logical threads the

CPU has. However the maximum number of threads is the more interesting part as it will

use as many threads a possible.

Public void SetThreadsForMyCPU()

is the function that that sets the available threads to be only the physical threads plus one

thread for the Dependency Scheduler itself.

4.1.3 Additional Helper Functions

Public void WriteNumberofThreads()

will write to a console how many threads the system has currently assigned to the program.

Public void IncreaseDependencyList(int size)

is used to increase the Dependency Scheduler’s dependency list as the list is the size based

on the number of dependencies, if the normal addtask functions are used this will be used

automatically.

Public void AddingTaskLock()

this will be used if there is many tasks that has to be added, using this will insure that the

scheduler does not remove finished jobs which can give access problems when two threads

access the same list.

Public void AddingTaskUnlock()

this is used when the tasks have been added and the scheduler safely can remove finished

jobs from the list, this will also restart the scheduler if it went to sleep.

Public void WaitForTasks()

when all tasks are done the main thread will wake up again after this has been used. Always

remember to AddingTaskUnlock() if you locked the tasks as then the program will lock up.

Public list<int> Dependencies(params int[] dependencies)

can be used to add the dependencies.

4.1. DEPENDENCY SCHEDULER IMPLEMENTATION METHOD DETAILS 31

4.1.4 User Functions

Public void AddTask(Type classType, string methodName, object InitClass, params
object[] objs)

because the functions uses Reflection it requires the classType and the methodName, if

there is an object required it should be passed with InitClass, if its a static function it

should take a null parameter, params object[] takes all the information the function needs

if the function needs any parameter. This is a task that will run as soon as possible as it

does not depend on anything and nothing depends on this task.

Public void AddTaskNamed(Type classType, string methodName, objec InitClasst,
int name, params object[] objs)

same as AddTask can be named which means other tasks can depend on this task and will

be run as soon as possible.

Public void AddTaskNamedAndDependencies(Type classType, string methodName,
object InitClass, int, list<int> dependencies, params object[] objs)

same as AddTaskNamed but another task can both depend on this task and this task can

depend on as many tasks as the designer wants it to.

Public void AddTaskDependenciesNoName(Type classType, string methodName,
object InitClass, list<int> dependencies, params object[] objs)

this is the same as AddTaskNamedAndDependencies with Named excluded as some tasks

only depend on some information but nothing after it will depend on this task.

Public void ParallelForTask(Type classType, string methodName, object InitClass,
int from, int to, params object[] objs)

this is the same as AddTask it will depend upon a method structured with two integers, for

the initial integer to count upto the other integer is used to for loop. This is made to most

efficiently use the threads of the CPU and to do the least amount of calls through Reflection.

Public void ParallelForTaskNamed(Type classType, string methodName, object
InitClass, int from, int to, int name, params object[] objs)

the same as for AddTaskNamed where it depends on a specific structure as ParallelForT-

ask()

32 CHAPTER 4. IMPLEMENTATION

Public void ParallelForTaskNamedAndDependencies(Type classType, string
methodName, object InitClass, int from, int to, int name, list<int> dependencies,
params object[] objs)

the same as for AddTaskNamedAndDependencies where it depends on a specific structure

as ParallelForTask()

Public void ParallelForTaskDependenciesNoName(Type classType, string
methodName, object InitClass, int from, int to, list<int> dependencies, params
object[] objs)

the same as for AddTaskDependenciesNoName where it depends on a specific structure as

ParallelForTask()

Public void AddTask(Action action)

This function takes an action and will execute the action, this is like a thunk. This task will

run as soon as possible as it does not depend on anything and nothing depends on this task.

Public void AddTask(Action action, int name)

This function takes a action and a integer for the name. This task will run as soon as possible

as it does not depend on anything and others might depend on this task.

Public void AddTask(Action action, int name, list<int> dependencies)

This function takes a action, a integer and a list of integers that is the dependencies. This

task will run as soon as the dependencies has been fulfilled as others might depend on this

task.

Public void AddTask(Action action list<int> dependencies)

This function takes an action and a list of integers that is the dependencies. This task will

run as soon as the dependencies has been fulfilled, nothing will depend on this task.

4.1.5 TaskItem

This is an object the internal Dependency Scheduler uses. It contains the information for

the MethodInfo. The information it contains is:

• If the task has been started.

• If the task has finished.

• Do the task have a name.

4.1. DEPENDENCY SCHEDULER IMPLEMENTATION METHOD DETAILS 33

• What dependencies does the task have if any.

• Does it require a special object to access a method.

• All the required parameters.

Where each constructor in the object is for the minimal information or maximum amount

of information the Dependency Scheduler needs. This can also just contain an Action used

as a Thunk. This contain the same but without the special object and the extra parameters.

4.1.6 Internal Working of the Dependency Scheduler

Private void InitScheduler()

this will start up the Dependency Scheduler if it has not been started yet, if it has been

started this will awake the scheduler in case it sleeps. All task methods will call this func-

tion. The unlock method will call this function in case there is no thread running.

Private void ThreadScheduler(Object threadContext)

Is called upon from InitScheduler() where it will start up and initialize a waitHandle for

the WaitForTasks() which will be used to wake up the main thread. After this it will call

SchedulerWork() which will handle the tasks. After it has been run it will check if the work

list is empty if it is it will wake up the main thread and the scheduler thread. If the tasklist

is not empty the scheduler will begin to wait. if the tasklist is empty after the wait it will

stop the scheduler, else it will continue to run.

Private void SchedulerWork()

will check if there is any jobs. If there is a job it will traverse the list and check for de-

pendencies, if the dependencies has been fulfilled or there is none it will call upon a thread

from the threadpool with the task ThreadInvoker(Object threadContext). All available jobs

will be occupied, then it will start to remove the finished jobs to empty out the list. If it

removed something from the list is will start the SchedulerWork() again else it will go back

to wait.

Private void ThreadInvoker(Object threadContext)

this will call ThreadExecution(TaskItem) to execute the code, it will then write to the Task-

Item and will awake the scheduler thread to remove this job or look if a new job is ready.

34 CHAPTER 4. IMPLEMENTATION

Public Virtual void ThreadExecution(TaskItem TI)

this will take the information from TaskItem to call the Reflection or the Action(thunk).

This can be overwritten by the programmer if another behaviour is wanted with the use of

TaskItem.

4.1.7 Parser

This currently has one function:GiveAnalysis(Type classType, object initClass, string method-

Names, bool[][] dependency) GiveAnalysis is based upon information you give UPPAAL.

The parser has ParserItem instead of TaskItem to create the tasks in the correct order. The

Parser takes the Dependency Scheduler as an object which can give information to the

scheduler.

Public void GiveAnalysis(Type classType, object initClass, string methodNames,
bool[][] dependency)

First it will take a string of information from the methods which will be run. This will be

split into a numbers of functions. If there is a bool[] for the method it will look into it to

determine if there is a dependency if there is it will be converted to a list<int> containing

the number of the functions which it depends upon. It will then add the task to the scheduler

if it does not depend on anything. If it depend on something all its information will be put

into a list. It will then traverse the list and if what it depends on has been given to the

Scheduler, it will give the next piece of information and remove the current item from the

list. This will continue until it has added all tasks.

4.2 Examples
This section will illustrate small examples of how the code can be used. They will all share

the same code that they will use for illustration purposes.

Listing 4.1: These are some simple methods and a enum they share for the examples.

1 public enum MethodNames

2 {

3 Default = 0,

4 HelloWorld ,

5 DoSomething ,

6 UseParameter

7 };

8

9 public class Methods

4.2. EXAMPLES 35

10 {

11 public static void HelloWorld ()

12 {

13 Console.WriteLine("Hello World!");

14 }

15

16 public static void DoSomething ()

17 {

18 int i = 5 * 20;

19 Console.WriteLine("i is 5*20 equal: {0}", i);

20 }

21

22 public static void Default ()

23 {

24 Console.WriteLine("This function is named default");

25 }

26

27 public void UseParameter(string s)

28 {

29 Console.WriteLine(s);

30 }

31 }

Listing 4.2: These are the start up to use the dependency Scheduler and to use the methods UsePa-
rameter.

1 DependencyScheduler DS = new DependencyScheduler ();

2 Methods M = new Methods ();

As a standard the library DLL also has to be included into References(Library) to use the

dependency scheduler, and Using Dependency_Scheduler at the directives. For the Reflec-

tion solution it will also be necessary to add Using System.Reflection to the directives.

4.2.1 Dependency Scheduler Reflection

This is a part of the standard solution which uses reflection.

Listing 4.3: This code is an example of Reflection being used from the library.

1 DS.AddingTaskLock ();//Lock so the tasks cannot be

removed from the task list

2 DS.AddTask(typeof(Methods), "HelloWorld", null); //Has

no name

36 CHAPTER 4. IMPLEMENTATION

3 DS.AddTask(typeof(Methods), "DoSomething", null); //

Has no name

4 DS.AddTask(typeof(Methods), "Default", null); //Has no

name

5 DS.AddTask(typeof(Methods), "UseParameter", M,"Write

Me"); //Has no name

6 DS.AddingTaskUnlock ();// Unlock so the tasks can be

removed from the task list again.

7 DS.WaitForTasks (); //Wait for the above tasks to

finish.

8 //With Dependencies

9 Console.WriteLine("Now With Dependencies");

10 DS.AddingTaskLock ();//Lock so the tasks cannot be

removed from the task list

11 DS.AddTaskNamed(typeof(Methods), "HelloWorld", null , (

int)MethodNames.HelloWorld); // Adding a task with

a name

12 DS.AddTaskNamedAndDependencies(typeof(Methods), "

DoSomething", null , (int)MethodNames.DoSomething ,

DS.Dependencies ((int)MethodNames.HelloWorld)); //

Adding a task with a name and a dependency

13 DS.AddTaskDependenciesNoName(typeof(Methods), "Default

", null , DS.Dependencies ((int)MethodNames.

DoSomething , (int)MethodNames.HelloWorld)); //

adding a task with no name but with a dependency

14 DS.AddTaskDependenciesNoName(typeof(Methods), "

UseParameter", M, DS.Dependencies ((int)MethodNames

.HelloWorld), "Write Me"); // adding a task with no

name but with a dependency

15 DS.AddingTaskUnlock ();// Unlock so the tasks can be

removed from the task list again.

16 DS.WaitForTasks (); //Wait for the above tasks to

finish.

For DS.AddTask in listing 4.3 it requires the class it will call the method from, then the

name of the method that should be called the name could be ”HelloWorld" as in listing

4.3. If it is a static method its object should be null, whereas if it should use an object

like Methods then the object should be passed as in listing 4.3 line 4 which is the Methods

created in listing 4.2 line 2. If the task requires additional parameter they can just be added,

one after another like Console.WriteLine. For a concrete example take a look on listing

4.3 line 4, it uses the class Methods (listing 4.1 and its method UseParameter, this is not a

4.2. EXAMPLES 37

static method that is why we need the object Methods listing 4.2 which will be passed to the

reflection class and at last the parameter or parameters which are needed for the method.

The first Line is the task lock added to ensure there will not be any problems internally

in the dependency scheduler. The next 4 lines are 4 methods with no dependency. Then

on line 6 the lock is unlocked making the scheduler able to delete tasks again. On line 7

the main thread will wait until all tasks have been completed. For the rest of the reflection

program we use dependency. Line 11 gets a name HelloWorld that the scheduler will also

use internally. Line 12 requires that HelloWorld has been run before DoSomething can be

executed. Line 13 No one is dependant on Default but it depends on both HelloWorld and

DoSomething. Line 14 No one is dependant on UseParameter but it depends on HelloWorld

and can be run after HelloWorld has executed.

For simplicity the next examples are structured in the exact same way as this one.

4.2.2 Dependency Scheduler Action

This is a part of the standard solution which uses action (thunk).

Listing 4.4: This code is an example of Action being used from the library.

1 Action A1 = delegate () { Methods.HelloWorld (); }; //

Actions the scheduler later will call.

2 Action A2 = delegate () { Methods.DoSomething (); };

3 Action A3 = delegate () { Methods.Default (); };

4 Action A4 = delegate () { M.UseParameter("Write Me");

};

5 DS.AddingTaskLock ();//Lock so the tasks cannot be

removed from the task list

6 DS.AddTask(A1); // Adding a task with no requirement

7 DS.AddTask(A2); // Adding a task with no requirement

8 DS.AddTask(A3); // Adding a task with no requirement

9 DS.AddTask(A4); // Adding a task with no requirement

10 DS.AddingTaskUnlock ();// Unlock so the tasks can be

removed from the task list again.

11 DS.WaitForTasks (); //Wait for the above tasks to

finish.

12 //With Dependencies

13 Console.WriteLine("Now With Dependencies");

14 DS.AddingTaskLock ();//Lock so the tasks cannot be

removed from the task list

15 DS.AddTask(A1 , (int)MethodNames.HelloWorld); // Adding

a task with a name

38 CHAPTER 4. IMPLEMENTATION

16 DS.AddTask(A2, (int)MethodNames.DoSomething , DS.

Dependencies ((int)MethodNames.HelloWorld)); //

Adding a task with a name and a dependency

17 DS.AddTask(A3, DS.Dependencies ((int)MethodNames.

DoSomething , (int)MethodNames.HelloWorld)); //

Adding a task with no name but with dependencies

18 DS.AddTask(A4, DS.Dependencies ((int)MethodNames.

HelloWorld)); // adding a task with no name but

with a dependency

19 DS.AddingTaskUnlock ();// Unlock so the tasks can be

removed from the task list again.

20 DS.WaitForTasks (); //Wait for the above tasks to

finish.

In listing 4.4 it uses action instead of Reflection as shown in listing 4.3. On line 1-4 the

Actions gets defined. On line 5 the task lock is added, to ensure there will not be any

problems internally in the dependency scheduler. On line 6-9 tasks gets added without a

name, thus executing the tasks concurrent. On line 10 the task lock is unlocked, making

the scheduler able to remove completed tasks. On line 11 the main thread will start to wait

until all the tasks has completed and removed from the schedulers list. On line 15-18 the

tasks get added again but with names, and dependencies. Line 15 the task does not have

any dependencies. Line 16 the task is dependant on line 15. Line 17 is dependant on both

line 15 and line 16. Line 18 is only dependant on line 15.

4.2.3 Dependency Scheduler Virtual

This is how it works, the idea is to use it with a enum name for the different functions like

illustrated in listing 4.1 where it contains an enum called MethodNames.

Listing 4.5: This code is an example of Virtual Override being used on the library.

1 class DSC : DependencyScheduler

2 {

3 public override void ThreadExecution(TaskItem TI)

4 {

5 if (TI.getName () == (int)MethodNames.HelloWorld)

6 Methods.HelloWorld ();

7 else if (TI.getName () == (int)MethodNames.DoSomething)

8 Methods.DoSomething ();

9 else if (TI.getName () == (int)MethodNames.UseParameter

)

10 {

4.2. EXAMPLES 39

11 Methods M = (Methods)TI.getObj ();

12 M.UseParameter ((string)TI.getObjs ()[0]);

13 }

14 else

15 Methods.Default ();

16 }

17 }

18

19 class Program

20 {

21 static void Main(string [] args)

22 {

23 DSC DSC = new DSC();

24 Methods M = new Methods ();

25 DSC.AddingTaskLock ();//Lock so the tasks cannot be

removed from the task list

26 DSC.AddTask(null , (int)MethodNames.HelloWorld); //

Adding by using the name.

27 DSC.AddTask(null , (int)MethodNames.DoSomething); //

Adding by using the name.

28 DSC.AddTask(null); // Adding the default task with no

name.

29 DSC.AddTaskNamed(typeof(Methods), "", M,(int)

MethodNames.UseParameter , "Write This"); // Adding

the task with dummy arguments , and with additional

information required from the function.

30 DSC.AddingTaskUnlock ();// Unlock so the tasks can be

removed from the task list again.

31 DSC.WaitForTasks ();//Wait for the above tasks to

finish.

32 Console.WriteLine("Now With Dependencies");

33 DSC.AddingTaskLock ();//Lock so the tasks cannot be

removed from the task list

34 DSC.AddTask(null , (int)MethodNames.HelloWorld); //

Adding by using the name.

35 DSC.AddTask(null , (int)MethodNames.DoSomething , DSC.

Dependencies ((int)MethodNames.HelloWorld)); //

Adding by using the name and a dependency.

36 DSC.AddTask(null , DSC.Dependencies ((int)MethodNames.

DoSomething , (int)MethodNames.HelloWorld)); //

Adding the default task with no name but with

dependency.

40 CHAPTER 4. IMPLEMENTATION

37 DSC.AddTaskNamedAndDependencies(typeof(Methods), "", M

, (int)MethodNames.UseParameter , DSC.Dependencies

((int)MethodNames.HelloWorld), "Write This"); //

Adding by using the name and a dependency.

38 DSC.AddingTaskUnlock ();// Unlock so the tasks can be

removed from the task list again.

39 DSC.WaitForTasks ();//Wait for the above tasks to

finish.

40 }

41 }

As the former examples this will execute in the same order, however, this is different as

you can override the thread execution method and make direct calls instead of indirect

calls through Reflection and Action. As shown on line 28 in listing 4.5, by using the normal

reflection method, objects and parameters can be passed to the ThreadExecution, which in

turn can then be run.

4.2.4 Microsoft Scheduler

This is the standard solution from Microsoft, where the user has to decide upon them selves

how the dependency should be solved.

Listing 4.6: This code is an example of Microsoft Scheduler. Taken from [22]

1 LimitedConcurrencyLevelTaskScheduler lcts = new

LimitedConcurrencyLevelTaskScheduler (12);

2 TaskFactory factory = new TaskFactory(lcts);

3 Methods M = new Methods ();

4 var taskrun = factory.StartNew (() =>

5 {

6 Methods.HelloWorld ();

7 });

8 var taskrun2 = factory.StartNew (() =>

9 {

10 Methods.DoSomething ();

11 });

12 var taskrun3 = factory.StartNew (() =>

13 {

14 Methods.Default ();

15 });

16 var taskrun4 = factory.StartNew (() =>

17 {

18 M.UseParameter("Write Me");

4.2. EXAMPLES 41

19 });

20 taskrun.Wait();

21 taskrun2.Wait();

22 taskrun3.Wait();

23 taskrun4.Wait();

24 //Now with Dependency

25 Console.WriteLine("Now With dependency");

26 var taskrun5 = factory.StartNew (() =>

27 {

28 Methods.HelloWorld ();

29 });

30 taskrun5.Wait();

31 var taskrun6 = factory.StartNew (() =>

32 {

33 Methods.DoSomething ();

34 });

35 var taskrun8 = factory.StartNew (() =>

36 {

37 M.UseParameter("Write Me");

38 });

39 taskrun6.Wait();

40 taskrun8.Wait();

41 var taskrun7 = factory.StartNew (() =>

42 {

43 Methods.Default ();

44 });

45 taskrun7.Wait();

46

47 }

48 }

49 /// <summary >

50 /// Provides a task scheduler that ensures a maximum

concurrency level while

51 /// running on top of the ThreadPool.

52 /// </summary >

53 public class LimitedConcurrencyLevelTaskScheduler :

TaskScheduler

54 {

55 /// <summary >Whether the current thread is processing work

items.</summary >

56 [ThreadStatic]

57 private static bool _currentThreadIsProcessingItems;

58 /// <summary >The list of tasks to be executed.</summary >

42 CHAPTER 4. IMPLEMENTATION

59 private readonly LinkedList <Task > _tasks = new LinkedList <

Task >(); // protected by lock(_tasks)

60 /// <summary >The maximum concurrency level allowed by this

scheduler.</summary >

61 private readonly int _maxDegreeOfParallelism;

62 /// <summary >Whether the scheduler is currently processing

work items.</summary >

63 private int _delegatesQueuedOrRunning = 0; // protected by

lock(_tasks)

64

65 /// <summary >

66 /// Initializes an instance of the

LimitedConcurrencyLevelTaskScheduler class with the

67 /// specified degree of parallelism.

68 /// </summary >

69 /// <param name=" maxDegreeOfParallelism">The maximum

degree of parallelism provided by this scheduler.</

param >

70 public LimitedConcurrencyLevelTaskScheduler(int

maxDegreeOfParallelism)

71 {

72 if (maxDegreeOfParallelism < 1) throw new

ArgumentOutOfRangeException("

maxDegreeOfParallelism");

73 _maxDegreeOfParallelism = maxDegreeOfParallelism;

74 }

75

76 /// <summary >Queues a task to the scheduler.</summary >

77 /// <param name="task">The task to be queued.</param >

78 protected sealed override void QueueTask(Task task)

79 {

80 // Add the task to the list of tasks to be processed.

If there aren ’t enough

81 // delegates currently queued or running to process

tasks , schedule another.

82 lock (_tasks)

83 {

84 _tasks.AddLast(task);

85 if (_delegatesQueuedOrRunning <

_maxDegreeOfParallelism)

86 {

87 ++ _delegatesQueuedOrRunning;

88 NotifyThreadPoolOfPendingWork ();

4.2. EXAMPLES 43

89 }

90 }

91 }

92

93 /// <summary >

94 /// Informs the ThreadPool that there ’s work to be

executed for this scheduler.

95 /// </summary >

96 private void NotifyThreadPoolOfPendingWork ()

97 {

98 ThreadPool.UnsafeQueueUserWorkItem(_ =>

99 {

100 // Note that the current thread is now processing

work items.

101 // This is necessary to enable inlining of tasks

into this thread.

102 _currentThreadIsProcessingItems = true;

103 try

104 {

105 // Process all available items in the queue.

106 while (true)

107 {

108 Task item;

109 lock (_tasks)

110 {

111 // When there are no more items to be

processed ,

112 // note that we ’re done processing ,

and get out.

113 if (_tasks.Count == 0)

114 {

115 --_delegatesQueuedOrRunning;

116 break;

117 }

118

119 // Get the next item from the queue

120 item = _tasks.First.Value;

121 _tasks.RemoveFirst ();

122 }

123

124 // Execute the task we pulled out of the

queue

125 base.TryExecuteTask(item);

44 CHAPTER 4. IMPLEMENTATION

126 }

127 }

128 // We’re done processing items on the current

thread

129 finally { _currentThreadIsProcessingItems = false;

}

130 }, null);

131 }

132

133 /// <summary >Attempts to execute the specified task on the

current thread.</summary >

134 /// <param name="task">The task to be executed.</param >

135 /// <param name=" taskWasPreviouslyQueued "></param >

136 /// <returns >Whether the task could be executed on the

current thread.</returns >

137 protected sealed override bool TryExecuteTaskInline(Task

task , bool taskWasPreviouslyQueued)

138 {

139 // If this thread isn ’t already processing a task , we

don ’t support inlining

140 if (! _currentThreadIsProcessingItems) return false;

141

142 // If the task was previously queued , remove it from

the queue

143 if (taskWasPreviouslyQueued) TryDequeue(task);

144

145 // Try to run the task.

146 return base.TryExecuteTask(task);

147 }

148

149 /// <summary >Attempts to remove a previously scheduled

task from the scheduler .</summary >

150 /// <param name="task">The task to be removed.</param >

151 /// <returns >Whether the task could be found and removed

.</returns >

152 protected sealed override bool TryDequeue(Task task)

153 {

154 lock (_tasks) return _tasks.Remove(task);

155 }

156

157 /// <summary >Gets the maximum concurrency level supported

by this scheduler.</summary >

4.3. IMPLEMENTATION OF SCHEDULER INTO SPREADSHEET 45

158 public sealed override int MaximumConcurrencyLevel { get {

return _maxDegreeOfParallelism; } }

159

160 /// <summary >Gets an enumerable of the tasks currently

scheduled on this scheduler.</summary >

161 /// <returns >An enumerable of the tasks currently

scheduled.</returns >

162 protected sealed override IEnumerable <Task >

GetScheduledTasks ()

163 {

164 bool lockTaken = false;

165 try

166 {

167 Monitor.TryEnter(_tasks , ref lockTaken);

168 if (lockTaken) return _tasks.ToArray ();

169 else throw new NotSupportedException ();

170 }

171 finally

172 {

173 if (lockTaken) Monitor.Exit(_tasks);

174 }

175 }

176 }

Microsoft Scheduler[22] includes code which has to be used for multiple threads. Microsoft

Scheduler does not have any kind of dependency which is the reason why taskrun8 has been

placed before taskrun7 as this did not depend upon taskrun7 to finish. TaskScheduler itself

is only an abstract class which requires the implementation done by LimitedConcurren-

cyLevelTaskScheduler. The implementation can be found at [22].

4.3 Implementation of Scheduler into Spreadsheet
This is the dependency scheduler implemented into spreadsheet [25]. The solution that was

implemented used the idea of turning the support graph around to the dependency graph.

The new dependency graph could be used right away, but it was not efficient as too many

tasks was created for the dependency scheduler to properly handle it. However, the first

part of the solution was solved, the tasks was concurrent and independent. Then a new

simpler dependency graph could be made with all the tasks that could be run concurrent

and was grouped together, the same for the next task depending on, the tasks not depending

on anything. Thus the tasks could be split up between the processors without too much

46 CHAPTER 4. IMPLEMENTATION

overhead.

The original architecture of the spreadsheet can be found at figure: 4.1. The changed ar-

chitecture of the spreadsheet can be found at figure: 4.2. The dependency scheduler was

changed into a singleton making all the sheets use the same dependency scheduler. The

spreadsheet traverses all non-null cells and if a cell IsNumber it will not be included in

the dependency scheduler. IsNumber is a bool that is true when the cell is a NumberCell.

The support graph gathers information from all cells with calculations then make the infor-

mation into a dependency graph and then analyses the results. The analysis is used in the

dependency scheduler which calculates all the cells from the analysis.

4.3. IMPLEMENTATION OF SCHEDULER INTO SPREADSHEET 47

Figure 4.1: Original spreadsheet architecture replicated from [27, p.30]

48 CHAPTER 4. IMPLEMENTATION

Figure 4.2: This is the changed architecture of the original spreadsheet architecture repli-

cated from [27, p.30]

Listing 4.7: This code is just the things we save or use shortly in the analysis

1 private List <SupportSet > SupportSets;

2 private List <SupportSet > TempList;

3 private List <List <SupportSet >> FinishedSets;

4 private bool IsOverlapping = false , isCell = true;

5 private int [][] IDMatrix;

6 private List <int >[][] DependencyMatrix , TempDependencyMatrix;

4.3. IMPLEMENTATION OF SCHEDULER INTO SPREADSHEET 49

7 private bool [][] DependencyMatrixCalc ,

TempDependencyMatrixCalc;

8 private struct xyCoordinate { public int col;public int row;};

9 private List <xyCoordinate > partTaskList = new List <

xyCoordinate >();

10 private List <List <xyCoordinate >> FullTaskList = new List <List <

xyCoordinate >>();

11 private int modifier = 4, MinimumNumberofTasks = 10;

12 public bool PreAnalysisFinished = false;

Listing 4.8: This code is the pre-analysis, with the traversal of the non-empty cells, with a new
implementation to get the support set, to afterwards convert them to a dependencies. It has been chosen
to use a lot of RAM for the analysis instead of extra processing power.

1 public void PreAnalysis ()

2 {

3 int counter = 0;

4 IDMatrix = new int[Cols][];

5 DependencyMatrix = new List <int >[Cols][];

6 TempDependencyMatrix = new List <int >[Cols][];

7 DependencyMatrixCalc = new bool[Cols][];

8 TempDependencyMatrixCalc = new bool[Cols][];

9 for (int i = 0; i < Cols; i++)

10 {

11 IDMatrix[i] = new int[Rows];

12 DependencyMatrix[i] = new List <int >[Rows];

13 TempDependencyMatrix[i] = new List <int >[Rows];

14 DependencyMatrixCalc[i] = new bool[Rows];

15 TempDependencyMatrixCalc[i] = new bool[Rows];

16 for (int j = 0; j < Rows; j++)

17 {

18 IDMatrix[i][j] = counter;

19 DependencyMatrix[i][j] = new List <int >();

20 TempDependencyMatrix[i][j] = new List <int >();

21 DependencyMatrixCalc[i][j] = false;

22 TempDependencyMatrixCalc[i][j] = false;

23 counter ++;

24 }

25 }

26

27 Console.WriteLine("Cols {0}, Rows {1}", Cols , Rows);

28 DependencyScheduler_Singleton DSS =

DependencyScheduler_Singleton.Instance;

50 CHAPTER 4. IMPLEMENTATION

29

30 SupportSet SSTemp = null;

31 SupportCell SC = null;

32 SupportArea SA = null;

33 cells.Forall ((col , row , cell) =>

34 {

35 //If the cell is a number no reason to use power on

confirming it is a number when the spreadsheet

already have done that.

36 if (!cell.isNumber ())

37 {

38 SSTemp = cell.GetSupportSet ();

39 DependencyMatrixCalc[col][row] = true;

40 if (SSTemp != null)

41 {

42 List <SupportRange > ranges = SSTemp.GetRanges ()

;

43 foreach (SupportRange SR in ranges)

44 {

45 if (SR.Count == 1)

46 {

47 SC = (SupportCell)SR;

48 DependencyMatrix[SC.col][SC.row].Add(

IDMatrix[col][row]);

49 }

50 else

51 {

52 SA = (SupportArea)SR;

53 for (int i = SA.colInt.min; i <= SA.

colInt.max; i++)

54 for (int j = SA.rowInt.min; j <=

SA.rowInt.max; j++)

55 DependencyMatrix[i][j].Add(

IDMatrix[col][row]);

56 }

57 }

58 }

59 }

60 });

61 // AnalysisComplete now Set threads through the task.

62 xyCoordinate tempXY;

63 FullTaskList.Clear();

64 partTaskList.Clear();

4.3. IMPLEMENTATION OF SCHEDULER INTO SPREADSHEET 51

65 do

66 {

67 //The if is here for because of the first time.

68 if (partTaskList.Count > 0)

69 FullTaskList.Add(new List <xyCoordinate >(

partTaskList));

70 partTaskList.Clear();

71 for (int i = 0; i < Cols; i++)

72 {

73 for (int j = 0; j < Rows; j++)

74 {

75 if (DependencyMatrixCalc[i][j])

76 {

77 if (DependencyMatrix[i][j].Count == 0 ||

DependencyMatrix[i][j]. Count ==

TempDependencyMatrix[i][j].Count)

78 {

79 tempXY.col = i;

80 tempXY.row = j;

81 partTaskList.Add(tempXY);

82 TempDependencyMatrixCalc[i][j] = true;

83 DependencyMatrixCalc[i][j] = false;

84 }

85 }

86 }

87 }

88 // Cleanup dependencyGraphs

89 for (int i = 0; i < Cols; i++)

90 {

91 for (int j = 0; j < Rows; j++)

92 {

93 if (TempDependencyMatrixCalc[i][j])

94 {

95 SSTemp = cells[i, j]. GetSupportSet ();

96 if (SSTemp != null)

97 {

98 List <SupportRange > ranges = SSTemp.

GetRanges ();

99 foreach (SupportRange SR in ranges)

100 {

101 if (SR.Count == 1)

102 {

103 SC = (SupportCell)SR;

52 CHAPTER 4. IMPLEMENTATION

104 TempDependencyMatrix[SC.col][

SC.row].Add(IDMatrix[i][j

]);

105 }

106 else

107 {

108 SA = (SupportArea)SR;

109 for (int k = SA.colInt.min; k

<= SA.colInt.max; k++)

110 for (int l = SA.rowInt.min

; l <= SA.rowInt.max;

l++)

111 TempDependencyMatrix[k

][l].Add(IDMatrix[

i][j]);

112 }

113 }

114 }

115 TempDependencyMatrixCalc[i][j] = false;

116 }

117 }

118 }

119 } while (partTaskList.Count > 0);

120 PreAnalysisFinished = true;

121 }

Listing 4.9: This code is the actual split up of tasks that will happen aften the analysis, if the analysis
has been run it will no longer run the analysis.

1 public void RecalculateFull () {

2

3 if (! PreAnalysisFinished)

4 PreAnalysis ();

5

6 DSS.AddingTaskLock ();

7 List <Action <int , int >> ActionsList = new List <Action <int ,

int >>();

8 List <int > ActionsListA = new List <int >();

9 List <int > ActionsListB = new List <int >();

10 int SplitSize = 0, count = 0;

11

12 for (int i = 0; i < FullTaskList.Count; i++)

13 {

4.3. IMPLEMENTATION OF SCHEDULER INTO SPREADSHEET 53

14 ActionsList.Clear();

15 ActionsListA.Clear();

16 ActionsListB.Clear();

17 if(FullTaskList[i]. Count < MinimumNumberofTasks)//DSS.

GetNumberofThreads ())

18 {

19

20 for(int j = 0; j < FullTaskList[i]. Count; j++)

21 {

22 Action <int , int > action = delegate(int k, int l)

23 {

24 cells[k, l].Eval(this , k, l);

25 };

26 ActionsList.Add(action);

27 ActionsListA.Add(FullTaskList[i][j].col);

28 ActionsListB.Add(FullTaskList[i][j].row);

29

30 }

31 if(i == 0)

32 DSS.AddTask(ActionsList , i + 1, DSS.Dependencies

(i), ActionsListA , ActionsListB);

33 else

34 DSS.AddTask(ActionsList , i+1, DSS.Dependencies(i),

ActionsListA , ActionsListB);

35 }

36 else

37 {

38 SplitSize = FullTaskList[i].Count / (DSS.

GetNumberofThreads () * modifier);

39 count = 0;

40 for (int j = 0; j < FullTaskList[i].Count; j++)

41 {

42 Action <int , int > action = delegate(int k, int l)

43 {

44 cells[k, l].Eval(this , k, l);

45 };

46 ActionsList.Add(action);

47 ActionsListA.Add(FullTaskList[i][j].col);

48 ActionsListB.Add(FullTaskList[i][j].row);

49 count ++;

50 if(count >= SplitSize)

51 {

52 if (i == 0)

54 CHAPTER 4. IMPLEMENTATION

53 DSS.AddTask(ActionsList , i + 1, DSS.

Dependencies(i), ActionsListA ,

ActionsListB);

54 else

55 DSS.AddTask(ActionsList , i+1, DSS.

Dependencies(i), ActionsListA ,

ActionsListB);

56 ActionsList.Clear();

57 ActionsListA.Clear();

58 ActionsListB.Clear();

59 count = 0;

60 }

61 }

62 if (i == 0 && ActionsList.Count > 0)

63 DSS.AddTask(ActionsList , i + 1, DSS.Dependencies

(i), ActionsListA , ActionsListB);

64 else if(ActionsList.Count > 0)

65 DSS.AddTask(ActionsList , i + 1, DSS.Dependencies

(i), ActionsListA , ActionsListB);

66 }

67 }

68

69 DSS.AddingTaskUnlock ();

70 DSS.WaitForTasks ();

71 }

For this spreadsheet the dependency scheduler was modified to be able to take a list of Ac-

tion<int,int> with input of lists of corresponding integers. The dependency scheduler was

changed into a singleton, thus it was not recreated on every single sheet but shared between

every sheet. In listing 4.8 it makes the analysis of the spreadsheet with the build in support

graph. This support graph was changed into a dependency graph, the dependencies was

compared to see if they could run concurrent. A ID matrix was created to give a unique

integer for each cell. As well as two bool multiple arrays was added, to not recalculate

the same cells multiple times as the analysis iterates over the spreadsheet to change the

support graphs into dependencies. The analysis takes a lot of RAM as it duplicates depen-

dencies in lists twice, as it is faster than removing the information from the newly created

dependencies, making this just a comparison of the number of dependencies in each list.

In listing 4.9 If there is enough tasks it will split up the tasks in new dependencies to the

number of logical threads times four on the computer, making the CPU use 100% of its

capacity to calculate the spreadsheet, but if there is too few tasks it will calculate them on a

4.4. MICRO BENCHMARKS IMPLEMENTATION 55

single thread. The logical threads times four has been found to be the ideal number through

multiple tests.

4.4 Micro Benchmarks Implementation
This is all the micro benchmarks where every single function has been implemented as a

primary part of the dependency scheduler, making the access of a few tasks differently,

compared to the final solution for the Dependency Scheduler.

Listing 4.10: This code is all the different tests conducted to determine how the scheduler will work
most efficiently. The tests are inspired by [26] specific on the Timer and on Mark1-3.

1 Tester T = new Tester ();

2 int size = 100000000;

3

4 T.Initarray(size);

5 DependencyScheduler DS = new DependencyScheduler ();

6 DS.WriteNumberofThreads ();

7

8 Timer t = new Timer();

9

10 DS.AddingTaskLock ();

11 DS.ParallelForTask(typeof(Tester), "OperateonDataFor",

T, 0, size);

12 DS.AddingTaskUnlock ();

13 DS.WaitForTasks ();

14 double runningTime = t.CheckMs ();

15 T.Initarray(size);

16 Timer t2 = new Timer();

17 for (int j = 0; j < size; j++)

18 {

19 T.OperateonData(j);

20 }

21 double runningTime2 = t2.CheckMs ();

22 T.Initarray(size);

23

24 Timer t3 = new Timer();

25 Parallel.For(0, size -1, k =>

26 { T.OperateonData(k); }

27);

28 double runningTime3 = t3.CheckMs ();

29 T.Initarray(size);

30

56 CHAPTER 4. IMPLEMENTATION

31 Timer t4 = new Timer();

32 DS.AddingTaskLock ();

33 DS.ParallelForTaskReflection(typeof(Tester), "

OperateonData", T, 0, size);

34 DS.AddingTaskUnlock ();

35 DS.WaitForTasks ();

36 double runningTime4 = t4.CheckMs ();

37 T.Initarray(size);

38

39 Action <object > function1 = delegate (object a) { T.

OperateonData ((int)a); };

40

41 Timer t5 = new Timer();

42 DS.AddingTaskLock ();

43 DS.ParallelForTaskReflection(function1 , 0, size);

44 DS.AddingTaskUnlock ();

45 DS.WaitForTasks ();

46 double runningTime5 = t5.CheckMs ();

47 T.Initarray(size);

48

49 DependChange DC = new DependChange ();

50 Timer t6 = new Timer();

51 DC.AddingTaskLock ();

52 DC.ParallelForTaskReflection(typeof(Tester), "

OperateonData", T, 0, size);

53 DC.AddingTaskUnlock ();

54 DC.WaitForTasks ();

55 double runningTime6 = t6.CheckMs ();

56 T.Initarray(size);

57

58 Action <object , object > function2 = delegate (object a,

object b) { T.OperateonDataFor ((int)a, (int)b);

};

59

60 Timer t8 = new Timer();

61 DS.AddingTaskLock ();

62 DS.ParallelForTaskReflection(function2 , 0, size);

63 DS.AddingTaskUnlock ();

64 DS.WaitForTasks ();

65 double runningTime8 = t8.CheckMs ();

66 T.Initarray(size);

67

4.4. MICRO BENCHMARKS IMPLEMENTATION 57

68 Action action1 = delegate () { T.OperateonDataFor (0, (

size / 12) * 1); };

69 Action action2 = delegate () { T.OperateonDataFor ((

size / 12) * 1, (size / 12) * 2); };

70 Action action3 = delegate () { T.OperateonDataFor ((

size / 12) * 2, (size / 12) * 3); };

71 Action action4 = delegate () { T.OperateonDataFor ((

size / 12) * 3, (size / 12) * 4); };

72 Action action5 = delegate () { T.OperateonDataFor ((

size / 12) * 4, (size / 12) * 5); };

73 Action action6 = delegate () { T.OperateonDataFor ((

size / 12) * 5, (size / 12) * 6); };

74 Action action7 = delegate () { T.OperateonDataFor ((

size / 12) * 6, (size / 12) * 7); };

75 Action action8 = delegate () { T.OperateonDataFor ((

size / 12) * 7, (size / 12) * 8); };

76 Action action9 = delegate () { T.OperateonDataFor ((

size / 12) * 8, (size / 12) * 9); };

77 Action action10 = delegate () { T.OperateonDataFor ((

size / 12) * 9, (size / 12) * 10); };

78 Action action11 = delegate () { T.OperateonDataFor ((

size / 12) * 10, (size / 12) * 11); };

79 Action action12 = delegate () { T.OperateonDataFor ((

size / 12) * 11, size); };

80

81 Timer t9 = new Timer();

82 DS.AddingTaskLock ();

83 DS.AddLambda(action1);

84 DS.AddLambda(action2);

85 DS.AddLambda(action3);

86 DS.AddLambda(action4);

87 DS.AddLambda(action5);

88 DS.AddLambda(action6);

89 DS.AddLambda(action7);

90 DS.AddLambda(action8);

91 DS.AddLambda(action9);

92 DS.AddLambda(action10);

93 DS.AddLambda(action11);

94 DS.AddLambda(action12);

95 DS.AddingTaskUnlock ();

96 DS.WaitForTasks ();

97 double runningTime9 = t9.CheckMs ();

98 T.Initarray(size);

58 CHAPTER 4. IMPLEMENTATION

99

100 Lazy <int > lazy1 = new Lazy <int >(() => T.

OperateonDataFor2 (0, (size / 12) * 1));

101 Lazy <int > lazy2 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 1, (size / 12) *

2));

102 Lazy <int > lazy3 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 2, (size / 12) *

3));

103 Lazy <int > lazy4 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 3, (size / 12) *

4));

104 Lazy <int > lazy5 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 4, (size / 12) *

5));

105 Lazy <int > lazy6 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 5, (size / 12) *

6));

106 Lazy <int > lazy7 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 6, (size / 12) *

7));

107 Lazy <int > lazy8 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 7, (size / 12) *

8));

108 Lazy <int > lazy9 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 8, (size / 12) *

9));

109 Lazy <int > lazy10 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 9, (size / 12) *

10));

110 Lazy <int > lazy11 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 10, (size / 12) *

11));

111 Lazy <int > lazy12 = new Lazy <int >(() => T.

OperateonDataFor2 ((size / 12) * 11, size));

112

113 Timer t10 = new Timer();

114 DS.AddingTaskLock ();

115 DS.AddLazy(lazy1);

116 DS.AddLazy(lazy2);

117 DS.AddLazy(lazy3);

118 DS.AddLazy(lazy4);

119 DS.AddLazy(lazy5);

4.4. MICRO BENCHMARKS IMPLEMENTATION 59

120 DS.AddLazy(lazy6);

121 DS.AddLazy(lazy7);

122 DS.AddLazy(lazy8);

123 DS.AddLazy(lazy9);

124 DS.AddLazy(lazy10);

125 DS.AddLazy(lazy11);

126 DS.AddLazy(lazy12);

127 DS.AddingTaskUnlock ();

128 DS.WaitForTasks ();

129 double runningTime10 = t10.CheckMs ();

130 T.Initarray(size);

131

132 LimitedConcurrencyLevelTaskScheduler lcts = new

LimitedConcurrencyLevelTaskScheduler (12);

133 TaskFactory factory = new TaskFactory(lcts);

134 Timer t11 = new Timer();

135

136 var taskrun = factory.StartNew (() =>

137 {

138 T.OperateonDataFor (0, (size / 12) * 1);

139 });

140 var taskrun2 = factory.StartNew (() =>

141 {

142 T.OperateonDataFor ((size / 12) * 1, (size / 12) *

2);

143 });

144 var taskrun3 = factory.StartNew (() =>

145 {

146 T.OperateonDataFor ((size / 12) * 2, (size / 12) *

3);

147 });

148 var taskrun4 = factory.StartNew (() =>

149 {

150 T.OperateonDataFor ((size / 12) * 3, (size / 12) *

4);

151 });

152 var taskrun5 = factory.StartNew (() =>

153 {

154 T.OperateonDataFor ((size / 12) * 4, (size / 12) *

5);

155 });

156 var taskrun6 = factory.StartNew (() =>

157 {

60 CHAPTER 4. IMPLEMENTATION

158 T.OperateonDataFor ((size / 12) * 5, (size / 12) *

6);

159 });

160 var taskrun7 = factory.StartNew (() =>

161 {

162 T.OperateonDataFor ((size / 12) * 6, (size / 12) *

7);

163 });

164 var taskrun8 = factory.StartNew (() =>

165 {

166 T.OperateonDataFor ((size / 12) * 7, (size / 12) *

8);

167 });

168 var taskrun9 = factory.StartNew (() =>

169 {

170 T.OperateonDataFor ((size / 12) * 8, (size / 12) *

9);

171 });

172 var taskrun10 = factory.StartNew (() =>

173 {

174 T.OperateonDataFor ((size / 12) * 9, (size / 12) *

10);

175 });

176 var taskrun11 = factory.StartNew (() =>

177 {

178 T.OperateonDataFor ((size / 12) * 10, (size / 12) *

11);

179 });

180 var taskrun12 = factory.StartNew (() =>

181 {

182 T.OperateonDataFor ((size / 12) * 11, size);

183 });

184 taskrun.Wait();

185 taskrun2.Wait();

186 taskrun3.Wait();

187 taskrun4.Wait();

188 taskrun5.Wait();

189 taskrun6.Wait();

190 taskrun7.Wait();

191 taskrun8.Wait();

192 taskrun9.Wait();

193 taskrun10.Wait();

194 taskrun11.Wait();

4.4. MICRO BENCHMARKS IMPLEMENTATION 61

195 taskrun12.Wait();

196 double runningTime11 = t11.CheckMs ();

197 T.Initarray(size);

198

199 bool [][] depend = new bool [12][]

200 {

201 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

202 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

203 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

204 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

205 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

206 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

207 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

208 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

209 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

210 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

211 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */ ,

212 new bool[] {false , false , false , false , false , false , false ,

false , false , false , false , false } /* No Dependency for

test */

213 };

62 CHAPTER 4. IMPLEMENTATION

214 string methods = "OperateonDataForUPPAAL1 ,

OperateonDataForUPPAAL2 , OperateonDataForUPPAAL3 ,

OperateonDataForUPPAAL4 , OperateonDataForUPPAAL5 ,

OperateonDataForUPPAAL6 , OperateonDataForUPPAAL7 ,

OperateonDataForUPPAAL8 , OperateonDataForUPPAAL9 ,

OperateonDataForUPPAAL10 , OperateonDataForUPPAAL11

, OperateonDataForUPPAAL12";

215

216 DependencyTaskParser DTP = new DependencyTaskParser(DS

);

217 Timer t12 = new Timer();

218 DTP.GiveAnalysis(typeof(Tester), T, methods , depend);

219 DS.WaitForTasks ();

220 double runningTime12 = t12.CheckMs ();

221 T.Initarray(size);

222

223 Thread thread = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL1));

224 Thread thread2 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL2));

225 Thread thread3 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL3));

226 Thread thread4 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL4));

227 Thread thread5 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL5));

228 Thread thread6 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL6));

229 Thread thread7 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL7));

230 Thread thread8 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL8));

231 Thread thread9 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL9));

232 Thread thread10 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL10));

233 Thread thread11 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL11));

234 Thread thread12 = new Thread(new ThreadStart(T.

OperateonDataForUPPAAL12));

235 Timer t13 = new Timer();

236 thread.Start();

237 thread2.Start ();

4.4. MICRO BENCHMARKS IMPLEMENTATION 63

238 thread3.Start ();

239 thread4.Start ();

240 thread5.Start ();

241 thread6.Start ();

242 thread7.Start ();

243 thread8.Start ();

244 thread9.Start ();

245 thread10.Start();

246 thread11.Start();

247 thread12.Start();

248 thread.Join();

249 thread2.Join();

250 thread3.Join();

251 thread4.Join();

252 thread5.Join();

253 thread6.Join();

254 thread7.Join();

255 thread8.Join();

256 thread9.Join();

257 thread10.Join();

258 thread11.Join();

259 thread12.Join();

260 double runningTime13 = t13.CheckMs ();

261

262 Console.WriteLine("Running Time For scheduler {0} ms ,

singleThread {1} ms , parallel.for {2} ms,

Scheduler Reflection Parallel.for {3} ms ,

Scheduler Lambda {4} ms , Scheduler Virtual Direct

Call {5} ms , Lambda OneCall Per thread {6} ms ,

Lambda Delay per Thread {7} ms , Lazy per Thread

{8} ms, Microsoft Scheduler {9} ms , UPPAAL Parser

{10} ms, Threads with no scheduler {11} ms",

runningTime , runningTime2 , runningTime3 ,

runningTime4 , runningTime5 , runningTime6 ,

runningTime8 , runningTime9 , runningTime10 ,

runningTime11 , runningTime12 , runningTime13);

In listing 4.10 there is 10 different tests conducted. From line 8-14 the Standard Reflection

solution is used, which splits up the tasks to the number of logical threads on the CPU. Line

16-21 is the Single Thread regular calculation. Line 24-28 is the Parallel.For solution from

Microsoft. Line 31-36 is the Reflection.For solution which makes every single operation

to a thread called through Reflection. Line 39-46 is the Lambda.For solution which uses

64 CHAPTER 4. IMPLEMENTATION

a Action<object> and makes a thread for every single operation. Line 49-55 is the Virtu-

alOverride which splits up as the Standard Reflection solution. Line 58-65 is the Lambda

Standard which uses Action<object,object> with boxing and unboxing but only as many

method calls as VirtualOverride or Standard Reflection. Line 68-97 is the Action(Thunk)

which uses Action where the programmer has to predefine what it has to execute. Line 100-

129 is the Lazy Evaluation which uses Lazy<int> which requires a return result, but as the

results was written to an object it returned zero. Line 132-196 is the Microsoft Scheduler

which has to be split up, and wait for each task, unless they are added to a list. Line 199-

220 is the UPPAAL Parser, which uses a predetermined split up data as the lambda uses.

Line 223-260 is the Threads No Scheduler solution which uses plain threads to do the same

job as the other tasks. The threads should have minimal overhead as they are created just

before the timer.

All the above tasks was executed independent from one another, without any dependency

to determine current speed of the scheduler compared to Microsoft Scheduler.

5 Benchmark
This chapter is about the micro benchmark and the benchmark that have been conducted.

All the tables for micro benchmarks can be found at 8.1.

5.1 The Systems
In this report the most relevant component will be the processor. Some of the tests also use

RAM access, to save results temporary or for the duration of the program. GPU is shown as

LibreOffice chooses the piece of hardware with most computational power, in most cases

it will pick the APU’s that both the Laptops have.

System Name Processor Amount of RAM DDR3 or DDR4 Frequency GPU

Desktop i7-5930K 32 GB DDR4 2666Mhz Club3D 49 290x RoyalAce 4GB VRAM

Laptop 1 i7-6700HQ 16 GB DDR4 2133Mhz Geforce GTX 970m

Laptop 2 i5-3230M 8 GB DDR3 1600 Mhz Geforce GT 635M

Table 5.1: The systems that have been tested on.

5.2 Micro Benchmarks
There was conducted four micro benchmarks:5.1,5.2,5.3,5.4. These tests will be run through

10 times for each of the different tests. The larger amount of tests will give better estima-

tions of the average result. The tests conducted are to figure out what the best implemen-

tations of the dependency scheduler would be, all the implementations can be found at

section 4.4:

• Standard: The use of Reflection with the scheduler, with the standard method being

to split the task up into the amount of threads available from the processor.

• Single Thread: The regular calculation of the results without the scheduler.

• Parallel.For: The function from Microsoft that it used as a normal for loop but with

parallelism.

• Reflection.For: Using the scheduler to add every calculation as its own task.

65

66 CHAPTER 5. BENCHMARK

• Lambda.For: Using the scheduler with Lambda.For where every calculation has its

own task.

• VirtualOverride: Using virtual Override on the schedulers ThreadExecution and make

direct calls instead of action or reflection calls.

• Lambda Standard: Using Lambda as the standard solution with only creating the

optimal number of tasks.

• Action (Thunk): Using Action through the scheduler to calculate the results, split up

to a static amount of tasks.

• Lazy Evaluation: Using Lazy evaluation together with the scheduler, with a static

amount of tasks.

• Microsoft Scheduler: The comparable solution from Microsoft, with static amount of

threads and tasks.

• UPPAAL Parser: This is the UPPAAL Parser, which uses Reflection.

• Threads No Scheduler: Is the solution that is with created threads and started with

the timer, this should be close to most optimal solution with no overhead.

This test is conducted with cache use, it is created to give an idea on how well it runs with

different techniques and how does it compare to an existing solution.

Listing 5.1: This is micro benchmark code for double writing to RAM. The tests are inspired by
[26] specific on the multiply test.

1 public void OperateonDataFor(int low , int high)

2 {

3 for (int i = low; i < high; i++)

4 {

5 testarray[i] = 1.1 * (double)(i & 0xFF);

6 testarray[i] = testarray[i] * testarray[i] *

testarray[i] * testarray[i] * testarray[i] *

7 testarray[i] * testarray[i] * testarray[i] *

testarray[i] * testarray[i] *

8 testarray[i] * testarray[i] * testarray[i] *

testarray[i] * testarray[i] *

9 testarray[i] * testarray[i] * testarray[i] *

testarray[i] * testarray[i];

10 }

5.2. MICRO BENCHMARKS 67

11 }

Listing 5.2: This is micro benchmark code for double without writing to RAM. The tests are in-
spired by [26] specific on the multiply test.

1 public void OperateonDataFor(int low , int high)

2 {

3 for (int i = low; i < high; i++)

4 {

5 double testarray = 1.1 * (double)(i & 0xFF);

6 testarray = testarray * testarray * testarray *

testarray * testarray *

7 testarray * testarray * testarray * testarray

* testarray *

8 testarray * testarray * testarray * testarray

* testarray *

9 testarray * testarray * testarray * testarray

* testarray;

10 }

11 }

Listing 5.3: This is micro benchmark code for int writing to RAM. The tests are inspired by [26]
specific on the multiply test.

1 public void OperateonDataFor(int low , int high)

2 {

3 for (int i = low; i < high; i++)

4 {

5 testarray[i] = 1 * (int)(i & 0xFF);

6 testarray[i] = testarray[i] * testarray[i] *

testarray[i] * testarray[i] * testarray[i] *

7 testarray[i] * testarray[i] * testarray[i] *

testarray[i] * testarray[i] *

8 testarray[i] * testarray[i] * testarray[i] *

testarray[i] * testarray[i] *

9 testarray[i] * testarray[i] * testarray[i] *

testarray[i] * testarray[i];

10 }

11 }

Listing 5.4: This is micro benchmark code for int without writing to RAM. The tests are inspired
by [26] specific on the multiply test.

68 CHAPTER 5. BENCHMARK

1 public void OperateonDataFor(int low , int high)

2 {

3 for (int i = low; i < high; i++)

4 {

5 int testarray = 1 * (int)(i & 0xFF);

6 testarray = testarray * testarray * testarray *

testarray * testarray *

7 testarray * testarray * testarray * testarray

* testarray *

8 testarray * testarray * testarray * testarray

* testarray *

9 testarray * testarray * testarray * testarray

* testarray;

10 }

11 }

5.3 Micro Benchmarks Graphs

Figure 5.1: Double not written to RAM, listing5.2 all the numbers are measured in mil-

liseconds. From table 8.13. Laptop 1 5.1. Lower is better.

5.3. MICRO BENCHMARKS GRAPHS 69

Figure 5.2: Double written to RAM, listing5.1 all the numbers are measured in millisec-

onds. From table 8.14. Laptop 1 5.1. Lower is better.

Figure 5.3: Integer not written to RAM, listing5.4 all the numbers are measured in mil-

liseconds. From table 8.15. Laptop 1 5.1. Lower is better.

70 CHAPTER 5. BENCHMARK

Figure 5.4: Integer written to RAM, listing5.3 all the numbers are measured in millisec-

onds. From table 8.16. Laptop 1 5.1. Lower is better.

Figure 5.5: Double not written to RAM, listing5.2 all the numbers are measured in mil-

liseconds. From table 8.21. Laptop 2 5.1. Lower is better.

5.3. MICRO BENCHMARKS GRAPHS 71

Figure 5.6: Double written to RAM, listing5.1 all the numbers are measured in millisec-

onds. From table 8.22. Laptop 2 5.1. Lower is better.

Figure 5.7: Integer not written to RAM, listing5.4 all the numbers are measured in mil-

liseconds. From table 8.23. Laptop 2 5.1. Lower is better.

72 CHAPTER 5. BENCHMARK

Figure 5.8: Integer written to RAM, listing5.3 all the numbers are measured in millisec-

onds. From table 8.24. Laptop 2 5.1. Lower is better.

Figure 5.9: Double not written to RAM, listing5.2 all the numbers are measured in mil-

liseconds. From table 8.5. Desktop 5.1. Lower is better.

5.3. MICRO BENCHMARKS GRAPHS 73

Figure 5.10: Double written to RAM, listing5.1 all the numbers are measured in millisec-

onds. From table 8.6. Desktop 5.1. Lower is better.

Figure 5.11: Integer not written to RAM, listing5.3 all the numbers are measured in mil-

liseconds. From table 8.8. Desktop 5.1. Lower is better.

74 CHAPTER 5. BENCHMARK

Figure 5.12: Integer written to RAM, listing5.4 all the numbers are measured in millisec-

onds. From table 8.7. Desktop 5.1. Lower is better.

5.4 Spreadsheet Benchmarks
The benchmark is based on a spreadsheet where tasks have been split up to the amount of

cores available. The spreadsheets used in this section is from [12]. The parallel solution will

create an analysis of the spreadsheet, which will afterwards be used for the recalculations.

All the parallel tests are conducted with the finished analysis, then use the finished analysis

in the dependency scheduler. LibreOffice version 5.1.3, has been used. The LibreOffice

version 5.1.3 has the acceleration implemented from [2] which determines what piece of

hardware is the fastest and then use it on the spreadsheet.

5.4.1 Spreadsheet Building Design

The spreadsheet used in this subsection is Building Design converted to XMLSS standard

for [25] to be able to read it. The parallel solution requires a lot of RAM which may

effect systems with 8GB RAM or less. The spreadsheet is in the area of architecture with

constructing buildings with energy conservations as stated in the benchmark [12].

Listing 5.5: This is the spreadsheet test Building Design from the original program for Desktop 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 13.463 ,40 ms

5.4. SPREADSHEET BENCHMARKS 75

Listing 5.6: This is the spreadsheet test Building Design from the parallel solution, after the analysis
has finished for Desktop 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 2.668 ,10 ms

Listing 5.7: This is the spreadsheet test Building Design from the original program for Laptop 1 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 15 ,369.50 ms

Listing 5.8: This is the spreadsheet test Building Design from the parallel solution, after the analysis
has finished for Laptop 1 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 4.653 ,00 ms

Listing 5.9: This is the spreadsheet test Building Design from the original program for Laptop 2 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 20.690 ,20 ms

Listing 5.10: This is the spreadsheet test Building Design from the parallel solution, after the anal-
ysis has finished for Laptop 2 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 14.604 ,50 ms

5.4.2 Spreadsheet Ground Water Daily

The spreadsheet used in this subsection is Ground Water Daily converted to XMLSS stan-

dard for [25] to be able to read it. The parallel solution requires a lot of RAM which may

effect systems with 12GB RAM or less. The spreadsheet is in the statistical domain. It can

be used to analyse ground water data, as stated in the benchmark [12].

Listing 5.11: This is the spreadsheet test Ground Water Daily from the original program for Desktop
5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 38.327 ,90 ms

76 CHAPTER 5. BENCHMARK

Listing 5.12: This is the spreadsheet test Ground Water Daily from the parallel solution, after the
analysis has finished for Desktop 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 7.142 ,70 ms

Listing 5.13: This is the spreadsheet test Ground Water Daily from the original program for Laptop
1 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 45.996 ,50 ms

Listing 5.14: This is the spreadsheet test Ground Water Daily from the parallel solution, after the
analysis has finished for Laptop 1 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 10.562 ,30 ms

Listing 5.15: This is the spreadsheet test Ground Water Daily from the original program for Laptop
2 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 54.208 ,20 ms

Listing 5.16: This is the spreadsheet test Ground Water Daily from the parallel solution, after the
analysis has finished for Laptop 2 5.1

1 === Benchmark workbook called:

2 [Workbook full recalculation] Average of the 10 runs: 34.305 ,30 ms

5.4.3 Combined LibreOffice Results

Listing 5.17: This is the spreadsheet test on both Building Design and Ground Water Daily from
LibreOffice for Desktop 5.1

1 Building Design: 68.39 ms , 63.78 ms, 122.40 ms - avg 84.86 ms

2 Ground Water :16181.39 ms, 15845.72 ms, 15852.80 ms - avg 15959 ,97

ms

Listing 5.18: This is the spreadsheet test on both Building Design and Ground Water Daily from
LibreOffice for Laptop 1 5.1

1 Building Design: 214.97 ms , 206.12 ms, 206.77 ms - avg 209.29 ms

5.5. SPREADSHEET BENCHMARK GRAPHS 77

2 Ground Water: 17921.10 ms, 17274.84 ms, 17759.94 ms - avg 17651.96

ms

Listing 5.19: This is the spreadsheet test on both Building Design and Ground Water Daily from
LibreOffice for Laptop 2 5.1

1 Building Design: 1338.52 ms , 1156.21 ms , 1178.11 ms - avg 1224 ,28

ms

2 Ground Water: 33233.99 ms, 32965.25 ms, 33351.79 ms - avg 33183.68

ms

5.5 Spreadsheet Benchmark Graphs

5.5.1 Spreadsheet Building Design

Figure 5.13: Spreadsheet data all the numbers are measured in milliseconds. Data listing

5.5,5.6,5.17, Desktop 5.1. Lower is better.

78 CHAPTER 5. BENCHMARK

Figure 5.14: Spreadsheet data all the numbers are measured in milliseconds. Data listing

5.7,5.8,5.18, Laptop 1 5.1. Lower is better.

Figure 5.15: Spreadsheet data all the numbers are measured in milliseconds. Data listing

5.9,5.10,5.19, Laptop 2 5.1. Lower is better.

5.5. SPREADSHEET BENCHMARK GRAPHS 79

5.5.2 Spreadsheet Ground Water Daily

Figure 5.16: Spreadsheet data all the numbers are measured in milliseconds. Data listing

5.11,5.12,5.17, Desktop 5.1. Lower is better.

Figure 5.17: Spreadsheet data all the numbers are measured in milliseconds. Data listing

5.13,5.14,5.18, Laptop 1 5.1. Lower is better.

80 CHAPTER 5. BENCHMARK

Figure 5.18: Spreadsheet data all the numbers are measured in milliseconds. Data listing

5.15,5.16,5.19, Laptop 2 5.1. Lower is better.

6 Discussion
This chapter will be about the general discussion on the previous sections.

6.1 General Discussion of the Sections
Contains some discussion about each section.

6.1.1 Design

The design of the dependency scheduler can be suited to many needs. The Dependency

Scheduler is intended as an unchangeable library. The Dependency Scheduler could be

improved upon with the following points:

• It could be open sourced.

• It could have generic implemented instead of casting.

• Fully implement Action with up to 19 parameters.

• A dynamic item class (TaskItem) which could be used by the scheduler and changed

by the user. Thus making virtual override faster by removing boxing and unboxing

action from the current solution with Object.

The design would be easier to reconstruct after a multitude of tests and figuring out what

it might lack. The first issue with the dependency scheduler was the way to handle threads,

the decision ended up being the thread pool implemented from Microsoft .NET library, as

the other solution was to handle the threads in the scheduler. Handling the threads in the

scheduler could be possible as they needs to be assigned to a custom made thread pool

which a newly created thread could handle, where each thread had a start and stop for

when it could perform a task. The threads handling could be handled in a way where no

unnecessary actions should be made. In theory it will have worked the same way as the

current scheduler, with a small risk of being less effective on a larger amount of tasks.

As well as finding the CPU information would be required to get the dynamic amount of

threads, from computer to computer. The next problem was the implementation of waiting

on tasks, the Thread.Sleep function was first used, it gave some okay results on specific

encounters and had to be tweaked for the amount of milliseconds it slept. The Scheduler

81

82 CHAPTER 6. DISCUSSION

ended up with using WaitOne as it is dynamic and works best in each case. Another problem

with waiting in the main thread was to make the main thread do nothing, to not consume

computational power, thus a wait handle was found instead of the previous sleep and a

check statement, which is handled by the scheduler. The scheduler itself needed a way

to not consume more computational power than required. Which means that after it has

traversed all tasks and all jobs have been started, it will go to sleep like the main thread, it

will then be awoken by a task thread or the main thread with a new task before it starts all

over again. Unfortunately the dependency scheduler have some overhead which makes a lot

of small tasks inefficient, but the overhead is required to properly handle dependency. There

was an alternative idea for dependency system by using string names instead of integers.

The problem with this approach is it would have resulted in a very large overhead. The

current system uses the list as an access list without traversing the list. One of the solutions

for a lot of parallel data is a parallel.for solution with Reflection or with Action, which

decrease number of tasks and increases task size, the most optimal thread size found was

using the number of logical threads available from the CPU, which it utilizes automatically

in the Parallel.for Reflection solution.

6.1.2 Implementation

As mentioned earlier generic could be implemented, but this would require a lot of extra

programming to make it generic. The implementation seems to be sufficient at the given

time, with only small room for improvements for the current solution. The spreadsheet

implementation could be implemented in the Workbook, but it was chosen to be in the

Sheet as it had direct access to the cells, figure 4.2. The analysis is possible with less RAM,

but as the projects main focus was not how to create efficient analyses it was deemed

acceptable. Another speculation could be to use some additional ram to store every split

up to the scheduler, eliminating the small single threaded part left after the pre-analysis,

making the program speed up a little extra.

6.1.3 Benchmarks

Micro Benchmarks

The benchmark section shows interesting results with the CPU. The micro benchmarks

are mostly used to determine if a process way is faster or slower than the other processes.

The Desktop 5.1, where the micro benchmark solution has different victors for figure 5.9

Lambda Standard which is 0.1 ms faster than the Action. However, the Lambda Standard

is an Action<object,object>. The fastest solution Lambda Standard is 32.4 times faster than

6.1. GENERAL DISCUSSION OF THE SECTIONS 83

SingleThread, when doubles are not written to RAM. For figure 5.10 the fastest is Action

(Thunk) where Microsoft Scheduler is 7.3 ms behind. The fastest solution Action (Thunk)

is 6.17 times faster than SingleThread, while writing doubles to RAM. For figure 5.12

the fastest is Lambda Standard, with Virtual Override 0.1 ms behind. The fastest solution

Lambda Standard is 32.44 times faster than SingleThread, when integers are not written

to RAM. For figure 5.11 Action (Thunk) is the fastest with Threads No Scheduler 12.8 ms

behind. The fastest solution Action (Thunk) is 7.12 times faster than SingleThread, while

writing integers to RAM.

For the Laptop 1 5.1 the micro benchmarks fluctuates with different results as the fastest.

For figure 5.1 Lambda Standard is the fastest and behind it Action(Thunk) 2.4 ms be-

hind. The fastest solution Lambda Standard is 22.37 times faster than SingleThread, when

doubles are not written to RAM. For figure 5.2 Threads No Scheduler is the fastest with

Microsoft Scheduler behind it with 2 ms. The fastest solution Threads No Scheduler is 3.91

times faster than SingleThread, while writing doubles to RAM. For figure 5.3 Lambda

Standard is the fastest with Virtual Override just behind with 0.2 ms. The fastest solution

Lambda Standard is 20.18 times faster than SingleThread, when integers are not written to

RAM. For figure 5.4 Action(Thunk) is the fastest and behind it Threads No Scheduler 0.2

ms later. The fastest solution Action Thunk is 4.11 times faster than SingleThread, while

writing integers to RAM.

For the Laptop 2 5.1 the micro benchmarks yet again fluctuates with different results as

the fastest. For figure 5.5 Lambda standard and Action (Thunk) have the same time, with

Threads No Scheduler 0.2 ms behind. The fastest solution Lambda Standard and Action

(Thunk) is 17.23 times faster than SingleThread, when doubles are not written to RAM. For

figure 5.6 Microsoft Scheduler is the fastest, with Threads No Scheduler 4.3 ms behind. The

fastest solution Microsoft Scheduler is 2.41 times faster than SingleThread, while writing

doubles to RAM. For figure 5.7 Virtual Override is the fastest with Lambda Standard be-

hind 0.1 ms. The fastest solution Virtual Override is 17.18 times faster than SingleThread,

when integers are not written to RAM. For figure 5.8 Threads No Scheduler is the fastest

with Microsoft Scheduler right behind with 3.7 ms. The fastest solution Threads No Sched-

uler is 2.48 times faster than SingleThread, while writing integers to RAM.

The conclusion on the micro benchmarks is that, the scheduler is highly efficient in most

cases. These results indicate the most efficient solutions are Action (Thunk), Lambda Stan-

dard and Virtual Override. The implementation of all the different methods might affect

the speed of the scheduler as TaskItem contains more information, as well as more checks

to figure out which functions are currently used.

84 CHAPTER 6. DISCUSSION

Real Application Benchmark

The spreadsheet used is from [12] where the spreadsheet used is Building Design converted

to XMLSS standard for [25] to be able to read it. The benchmarks figure: 5.13,5.14,5.15

gives good results. The parallel solution on figure 5.13 is 5.05 times faster than the original

solution. However, LibreOffice was much faster, it was 158.65 times faster than the original

solution. The parallel solution on figure 5.14 is 3.30 times faster than the original solution.

Once again LibreOffice was faster, it was 73.44 times faster than the original solution. The

parallel solution on figure 5.15 is 1.42 times faster than the original solution. LibreOffice

solution is still better on the Building Design spreadsheet with 16.90 times faster than the

original solution. These results are blazingly fast both for LibreOffice and for the depen-

dency scheduler, even when the dependency scheduler does not use APU or GPU and as

the spreadsheet contains 937303 cells of which 39519 are unique. Even with a simple anal-

ysis of dependency the results has improved fivefold on a hexa-core processor, three and a

half fold on a quad core processor and one and a half fold on a duo core processor. Based

on the micro benchmarks if there were no dependency the highest possible results would

be 6.17 times faster on a hexa-core processor instead of 5.05 times faster from figure 5.13,

3.91 times faster on a quad cores processor instead of 3.30 times faster from figure 5.14

and 2.41 times faster on a duo core processor instead of 1.42 times faster from figure 5.15.

These results are quite impressive as the Spreadsheet[25] already was very fast in the first

place.

The other spreadsheet used is Ground Water Daily converted to XMLSS standard. For the

figure 5.16 the parallel solution is 5.37 times faster than the original solution. The parallel

solution is 2.23 times faster than LibreOffice solution. For the figure 5.17 the parallel solu-

tion is 4.35 times faster than the original solution. The parallel solution is 1.67 times faster

than LibreOffice solution. For the figure 5.18 the parallel solution is 1.58 times faster than

the original solution. The LibreOffice solution is 1.03 times faster than the parallel solution.

The results gathered shows that the CPU’s flexibility in its concurrency can give a large

boost in performance, even when the GPU has more computational power than the CPU.

The comparison gives an interesting idea that the CPU’s strength is flexibility whereas the

GPU’s strength lies in brute force calculation. Nevertheless the pure CPU performance is

quite excellent even in comparison to the GPU’s throughput.

6.1.4 Alternative thought process to Dependency Scheduler

Without the abstraction the dependency scheduler provide, it would have been difficult to

create a concurrent solution. As the first thing that could have been done was creating mon-

6.2. PROS AND CONS 85

itors or semaphores around the cells calculation. However, for this to work properly either

the thread should start at the last points of the support graph, where a thread has to be cre-

ated for every end to minimize overhead. Or another possibility would be to create a thread

for every cell after the monitors or semaphores has been implemented, this would give a lot

of overhead and a lot of threads waiting for a result from a previous cell. Another problem

that could arise was if a part of the formula could be calculated, but the thread started is

waiting for a result from another thread. The thread waiting for a result in another thread

might happen even if the support graph is used to find the end points. To sum up, when

using the abstraction threads with the ideas of locks, monitors, semaphores, it becomes

difficult to understand the abstraction, as well as how to minimize overhead, or use correct

amount of threads.

6.2 Pros and Cons
The dependency scheduler solves various problems if used correctly. It can solve condition

racing, deadlocks, livelocks, but if used in a brute force way it will continue to have the

same multitasking problems as usual. It uses C# which can observe other threads than

the main thread making it easier to debug than on Fortran, C or C++. The dependency

scheduler takes care of everything about thread creation, thread handling, and interleaving.

The dependency scheduler can with the use of multiple threads grant a little better use of

the cache for single core programs. The dependency scheduler increases readability but

this has not been tested among programmers, there cannot be drawn a definite conclusion.

The user created parsers should diversify what the dependency scheduler should be able

to do as the dependency scheduler should be as minimalistic as possible. The dependency

scheduler lack MPI which makes it unable to work on clusters with multiple processors. It

still deadlocks if a task have dependency to itself. If it should deadlock it will not consume

processing power while this is the case, only for the tasks that can be run without the

deadlock. If the dependency scheduler gets too many small tasks, the scheduler will end

up creating an overhead. The dependency scheduler gives another abstraction to threads,

which can help solve some programming problems. The dependency scheduler is easier

to debug as it can use visual studio or mono, which in debug enables the programmer to

observe whatever thread the programmer wishes.

6.3 Remarks
All in all the implementation seems highly efficient, as it is comparable with Microsoft

Scheduler. The interesting thing about the scheduler is the dependency which makes it

86 CHAPTER 6. DISCUSSION

possible to give another abstract than making a lot of waits, locks, creating new threads,

interleaving of threads.

7 Conclusion and Future Work

7.1 Conclusion
The report solved the problem with using multiple threads. The abstraction of threads can

be difficult, but the abstraction was changed to tasks with a dependency. With the depen-

dency scheduler it changed the focus from multitasking problems to dependency between

tasks. If the different abstractions the dependency scheduler gives, is understood and mas-

tered then a lot of the general multitasking problems can be solved. The results from the

micro benchmark suggest that the dependency scheduler is comparable to the existing solu-

tion Microsoft Scheduler, or regular thread spawning, which does not take dependency into

consideration. The results is from various micro benchmarks using integers and double cal-

culation, locally on chip and RAM and cache. The micro benchmark gives an idea on which

implementations is the fastest on the dependency scheduler as well as how does it compare

to the existing solutions in performance. The results contains tests on two spreadsheets with

a parallel implementation with a simple analysis on run time, which gave positive results

for all tested processors. The results were then compared to LibreOffice newer version

which includes OpenCL implementation to calculate the cells on the spreadsheet. In the

first benchmarks Building Design LibreOffice is a lot faster. However, in the Ground Water

Daily spreadsheet the parallel solution with only the processor, is faster. The spreadsheet

tests might indicate that the processor has been underestimated in its power to do concur-

rent tasks, whereas more calculative power from the APU or GPU is best used if many of

the same actions are used repeatedly. Thus it can be concluded that the dependency sched-

uler has a favourable performance and gives a much needed abstraction from threads as

well as the regular multitasking problems. The report uses C# for its solution thus making

debugging easier than on Fortran, C and C++ which is regularly used for parallel solutions.

The results gotten from the dependency scheduler in the report is blazingly fast as it al-

most get the most performance out of the processor in a spreadsheet. The spreadsheet was

used as the real application benchmark, which gave impressive results with a hexa-core

processor speeding up a spreadsheet fivefold.

87

88 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 Future Works
One of these directions could be to make it use C# Generic, which would make the virtual

override better. Action could be fully implemented with up to 19 different constants. It

could become a template for a possible way to handle multiple threads. It could be stepping

stone for it to become a scheduler behind the scenes that should be implemented in a

programming language and be solved at compile time, so no further time should be used

on runtime to split up the tasks, granting a better concurrent language. The report might

inspire other abstraction for threads, which might be easier to perceive than threads. The

dependency scheduler could be used in critical systems where performance is important,

as well as the program may not end up in a deadlock. As the dependency scheduler is

quite dynamic it could be used in regular application, even if the applications have low

concurrency, as the dependency scheduler might speed up small parts of the program where

concurrency is present. Further studies to implement a OpenMP and a MPI system into the

dependency scheduler to handle distributed systems. Use the dependency scheduler as an

inspiration to create a reactive system which handles tasks differently.

Bibliography
[1] Jade Alglave, Mark Batty, Alastair F Donaldson, Ganesh Gopalakrishnan, Jeroen

Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. Gpu concurrency: weak

behaviours and programming assumptions. In Proceedings of the Twentieth Interna-

tional Conference on Architectural Support for Programming Languages and Oper-

ating Systems, pages 577–591. ACM, 2015.

[2] AMD. Collaboration and open source at amd: Libreof-

fice. http://developer.amd.com/community/blog/2015/07/15/

collaboration-and-open-source-at-amd-libreoffice/.

[3] OpenMP Architecture Review Board. The openmpő api specification for parallel

programming. http://openmp.org/wp/.

[4] LibreOffice Community. Libreoffice. https://www.libreoffice.org/

download/libreoffice-fresh/.

[5] Holk et al. harlan. https://github.com/eholk/harlan. Last checked 14-12-2015.

[6] Message Passing Interface Forum. Mpi documents. http://www.mpi-forum.org/

docs/.

[7] Semyon Grigorev. Brahma.fsharp. https://sites.google.com/site/semathsrprojects/home/brahma-

fsharp.

[8] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer,

(7):33–38, 2008.

[9] PARALUTION Labs. Paralution. http://www.paralution.com/.

[10] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International

Journal on Software Tools for Technology Transfer (STTT), 1(1):134–152, 1997.

[11] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[12] LibreOffice. Benchmark. https://gerrit.libreoffice.org/gitweb?p=

benchmark.git;a=tree.

89

http://developer.amd.com/community/blog/2015/07/15/collaboration-and-open-source-at-amd-libreoffice/
http://developer.amd.com/community/blog/2015/07/15/collaboration-and-open-source-at-amd-libreoffice/
http://openmp.org/wp/
https://www.libreoffice.org/download/libreoffice-fresh/
https://www.libreoffice.org/download/libreoffice-fresh/
http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/
http://www.paralution.com/
https://gerrit.libreoffice.org/gitweb?p=benchmark.git;a=tree
https://gerrit.libreoffice.org/gitweb?p=benchmark.git;a=tree

90 BIBLIOGRAPHY

[13] Mark Michaelis. Essential C# 4.0 (3rd Edition) (Microsoft Windows Development

Series). Addison-Wesley Professional, 2010.

[14] Microsoft. Action<t> delegate. https://msdn.microsoft.com/en-us/library/

018hxwa8(v=vs.110).aspx.

[15] Microsoft. Autoresetevent class. https://msdn.microsoft.com/en-us/

library/system.threading.autoresetevent(v=vs.110).aspx.

[16] Microsoft. C++ amp (c++ accelerated massive parallelism).

https://msdn.microsoft.com/da-dk/library/hh265137.aspx. Last Checked 14-12-

2015.

[17] Microsoft. Generics (c# programming guide). https://msdn.microsoft.com/

en-us/library/512aeb7t.aspx.

[18] Microsoft. Lazy<t> class. https://msdn.microsoft.com/en-us/library/

dd642331(v=vs.110).aspx.

[19] Microsoft. .net framework. https://www.microsoft.com/net/default.aspx.

[20] Microsoft. Parallel.for method. https://msdn.microsoft.com/en-us/library/

system.threading.tasks.parallel.for(v=vs.110).aspx.

[21] Microsoft. Reflection (c# and visual basic). https://msdn.microsoft.com/

en-us/library/ms173183.aspx.

[22] Microsoft. Taskscheduler class. https://msdn.microsoft.com/en-us/library/

system.threading.tasks.taskscheduler(v=vs.110).aspx.

[23] Microsoft. Threadpool class. https://msdn.microsoft.com/en-us/library/

system.threading.threadpool(v=vs.110).aspx?

[24] David Padua. Encyclopedia of parallel computing, volume 4. Springer Science &

Business Media, 2011.

[25] Peter Sestoft. Corecalc and funcalc spreadsheet technology in c#. http://www.itu.

dk/people/sestoft/funcalc/.

[26] Peter Sestoft. Microbenchmarks in java and c#. Electronic Proceedings in Theoretical

Computer Science, 2013.

https://msdn.microsoft.com/en-us/library/018hxwa8(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/018hxwa8(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.autoresetevent(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.autoresetevent(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/512aeb7t.aspx
https://msdn.microsoft.com/en-us/library/512aeb7t.aspx
https://msdn.microsoft.com/en-us/library/dd642331(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd642331(v=vs.110).aspx
https://www.microsoft.com/net/default.aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel.for(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel.for(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms173183.aspx
https://msdn.microsoft.com/en-us/library/ms173183.aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.threadpool(v=vs.110).aspx?
https://msdn.microsoft.com/en-us/library/system.threading.threadpool(v=vs.110).aspx?
http://www.itu.dk/people/sestoft/funcalc/
http://www.itu.dk/people/sestoft/funcalc/

BIBLIOGRAPHY 91

[27] Peter Sestoft. Spreadsheet Implementation Technology: Basics and Extensions (MIT

Press). The MIT Press, 2014.

[28] David Wheeler. Secure programmer: Prevent race conditions. IBM.

WWW document {cited 18 March, 2007 from http://www-128.ibm.

com/developerworks/linux/library/l-sprace. html }, 2008.

[29] referenced by http://openmp.org/ Wikipedia. Openmp. https://en.

wikipedia.org/wiki/OpenMP.

http://openmp.org/
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/OpenMP

8 Appendix

8.1 Tables

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 11 10 8 8 9 8 9 9 8 9

Single 162 162 162 162 162 162 162 162 162 162

Parallel.For 80 80 88 82 82 80 81 80 81 80

Reflection.For 5229 5229 5219 5247 5228 5209 5190 5222 4589 5198

Lambda.For 146 144 144 144 145 145 145 144 107 147

VirtualOverride 25 26 18 25 23 26 22 25 14 18

Lambda Stan-

dard

5 5 5 5 5 5 5 5 5 5

Action (Thunk) 5 5 5 5 5 6 5 5 5 5

Lazy 7 9 7 7 8 7 8 7 7 7

Microsoft

Scheduler

6 6 6 6 7 6 6 6 6 6

UPPAAL Parser 6 6 6 6 6 6 6 6 6 6

Threads No

Scheduler

11 10 9 6 7 6 6 5 6 7

Table 8.1: All the results are measured in milliseconds. This test is double calculation

without writing it to the RAM. Desktop 5.1.

92

8.1. TABLES 93

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 181 185 213 188 184 178 184 206 187 192

Single 997 993 994 994 994 995 998 996 995 994

Parallel.For 243 251 251 254 238 237 243 270 258 235

Reflection.For 5523 5452 5503 5456 5440 5436 5475 5284 5465 5486

Lambda.For 674 682 796 667 652 659 643 520 664 698

VirtualOverride 239 236 213 232 210 207 214 172 224 227

Lambda Stan-

dard

390 395 357 392 388 387 396 385 388 381

Action (Thunk) 159 158 164 157 157 175 157 170 157 158

Lazy 370 335 354 332 346 335 331 354 333 332

Microsoft

Scheduler

159 161 159 185 160 160 160 160 196 185

UPPAAL Parser 337 356 377 348 367 355 355 360 337 334

Threads No

Scheduler

197 180 157 214 157 201 199 169 153 199

Table 8.2: All the results are measured in miliseconds. This test is double calculation with

writing it to the RAM. Desktop 5.1.

94 CHAPTER 8. APPENDIX

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 9 9 8 11 9 9 8 8 8 8

Single 162 162 162 164 162 162 162 162 162 162

Parallel.For 91 82 86 81 80 80 81 81 91 81

Reflection.For 5192 5084 4785 5175 5191 5216 5193 5191 5262 5237

Lambda.For 146 146 107 144 144 145 147 144 143 145

VirtualOverride 5 5 5 6 5 5 5 5 5 5

Lambda Stan-

dard

5 5 5 5 5 5 5 5 5 5

Action (Thunk) 5 5 5 6 5 5 5 5 5 6

Lazy 9 7 7 7 7 8 7 7 7 7

Microsoft

Scheduler

6 6 9 6 6 6 6 7 6 6

UPPAAL Parser 6 6 6 6 6 6 6 7 7 6

Threads No

Scheduler

11 12 5 8 8 12 6 9 5 5

Table 8.3: All the results are measured in milliseconds. This test is int calculation without

writing it to the RAM. Desktop 5.1.

8.1. TABLES 95

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 122 139 124 131 128 118 142 140 133 121

Single 789 784 784 774 783 783 782 777 784 783

Parallel.For 208 200 189 204 201 194 196 202 206 199

Reflection.For 5371 5354 4380 5393 5308 5333 5276 5288 4973 5275

Lambda.For 480 474 356 455 435 472 474 462 393 481

VirtualOverride 169 134 114 164 160 162 158 160 113 163

Lambda Stan-

dard

220 229 197 214 203 128 203 234 199 236

Action (Thunk) 128 102 130 102 119 101 106 104 107 99

Lazy 199 191 191 214 190 103 191 208 192 192

Microsoft

Scheduler

148 103 104 103 148 103 138 102 104 103

UPPAAL Parser 214 228 213 196 209 185 208 193 215 189

Threads No

Scheduler

103 145 102 140 101 103 104 102 103 149

Table 8.4: All the results are measured in miliseconds. This test is int calculation with

writing it to the RAM. Desktop 5.1.

96 CHAPTER 8. APPENDIX

Standard 8,9 avg ms

SingleThread 162 avg ms

Parallel.For 81,4 avg ms

Reflection.For 5156 avg ms

Lambda.For 141,1 avg ms

VirtualOverride 22,2 avg ms

Lambda Standard 5 avg ms

Action (Thunk) 5,1 avg ms

Lazy Evaluation 7,4 avg ms

Microsoft Sched-

uler

6,1 avg ms

UPPAAL Parser 6 avg ms

Threads No

Scheduler

7,3 avg ms

Table 8.5: The average of the tests are measured in milliseconds. This is for double without

writing it to the RAM. Desktop 5.1.

Standard 189,8 avg ms

SingleThread 995 avg ms

Parallel.For 248 avg ms

Reflection.For 5452 avg ms

Lambda.For 665,5 avg ms

VirtualOverride 217,4 avg ms

Lambda Standard 385,9 avg ms

Action (Thunk) 161,2 avg ms

Lazy Evaluation 342,2 avg ms

Microsoft Sched-

uler

168,5 avg ms

UPPAAL Parser 352,6 avg ms

Threads No

Scheduler

182,6 avg ms

Table 8.6: The average of the tests are measured in milliseconds. This is for double with

writing it to the RAM. Desktop 5.1.

8.1. TABLES 97

Standard 8,7 avg ms

SingleThread 162,2 avg ms

Parallel.For 83,4 avg ms

Reflection.For 5152,6 avg ms

Lambda.For 141,1 avg ms

VirtualOverride 5,1 avg ms

Lambda Standard 5 avg ms

Action (Thunk) 5,2 avg ms

Lazy Evaluation 7,3 avg ms

Microsoft Sched-

uler

6,4 avg ms

UPPAAL Parser 6,2 avg ms

Threads No

Scheduler

8,1 avg ms

Table 8.7: The average of the tests are measured in milliseconds. This is for int without

writing it to the RAM. Desktop 5.1.

Standard 129,8 avg ms

SingleThread 782,3 avg ms

Parallel.For 199,9 avg ms

Reflection.For 5195,1 avg ms

Lambda.For 448,2 avg ms

VirtualOverride 149,7 avg ms

Lambda Standard 206,3 avg ms

Action (Thunk) 109,8 avg ms

Lazy Evaluation 187,1 avg ms

Microsoft Sched-

uler

115,6 avg ms

UPPAAL Parser 205 avg ms

Threads No

Scheduler

115,2 avg ms

Table 8.8: The average of the tests are measured in milliseconds. This is for int with writing

it to the RAM. Desktop 5.1.

98 CHAPTER 8. APPENDIX

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 13 14 14 14 16 14 16 15 18 16

Single 183 188 189 186 181 188 183 186 189 184

Parallel.For 144 146 155 144 147 144 143 144 147 144

Reflection.For 6625 8025 6436 8018 7765 6425 7856 7986 7977 7911

Lambda.For 191 261 192 255 194 194 252 258 259 255

VirtualOverride 26 35 26 33 26 26 36 35 36 35

Lambda Stan-

dard

8 8 8 9 8 8 8 8 9 9

Action (Thunk) 8 11 11 11 11 11 11 11 11 11

Lazy 13 13 12 13 14 14 11 11 13 14

Microsoft

Scheduler

10 14 10 10 10 10 12 12 12 12

UPPAAL Parser 11 12 10 12 12 12 12 12 12 10

Threads No

Scheduler

11 11 10 8 20 11 9 11 10 17

Table 8.9: All the results are measured in milliseconds. This test is double calculation

without writing it to the RAM. Laptop 1 5.1.

8.1. TABLES 99

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 248 240 250 237 240 246 250 233 250 232

Single 947 954 926 932 931 928 916 950 951 957

Parallel.For 390 372 367 367 371 364 368 377 388 373

Reflection.For 7345 8518 7436 8552 8445 7388 8367 7343 8404 8545

Lambda.For 679 840 695 849 809 728 918 711 824 866

VirtualOverride 230 289 230 281 294 231 298 227 323 300

Lambda Stan-

dard

358 406 384 378 367 355 376 387 352 353

Action (Thunk) 236 302 234 246 242 247 244 229 242 245

Lazy 411 428 448 402 460 386 405 410 402 421

Microsoft

Scheduler

232 234 230 236 262 238 257 238 262 234

UPPAAL Parser 409 416 428 419 430 405 425 415 424 422

Threads No

Scheduler

248 253 253 234 241 233 248 236 228 229

Table 8.10: All the results are measured in miliseconds. This test is double calculation with

writing it to the RAM. Laptop 1 5.1.

100 CHAPTER 8. APPENDIX

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 13 16 16 15 14 16 14 17 15 13

Single 182 181 189 186 183 183 182 184 184 182

Parallel.For 154 146 144 155 143 145 145 149 157 144

Reflection.For 7977 7687 6432 7742 7878 7986 6596 7988 7946 6789

Lambda.For 250 186 191 256 254 251 193 255 253 195

VirtualOverride 12 9 9 9 9 9 9 9 9 9

Lambda Stan-

dard

8 16 8 9 9 8 8 8 8 9

Action (Thunk) 11 11 11 11 11 11 11 10 11 11

Lazy 14 11 13 13 14 14 13 14 13 13

Microsoft

Scheduler

30 12 10 12 9 10 12 9 12 12

UPPAAL Parser 12 19 13 12 12 13 12 12 12 12

Threads No

Scheduler

11 11 11 11 11 11 9 10 10 11

Table 8.11: All the results are measured in milliseconds. This test is int calculation without

writing it to the RAM. Laptop 1 5.1.

8.1. TABLES 101

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 215 219 198 220 209 204 218 225 214 203

Single 866 834 842 822 809 832 790 810 835 797

Parallel.For 325 336 362 342 338 327 315 337 338 327

Reflection.For 6771 6857 7916 7616 8133 8265 6981 7359 7891 8203

Lambda.For 529 543 628 662 638 633 504 661 536 664

VirtualOverride 185 183 229 249 240 214 181 180 182 224

Lambda Stan-

dard

262 254 254 168 243 242 244 278 271 244

Action (Thunk) 188 191 200 216 224 215 202 186 196 185

Lazy 283 274 291 217 293 295 301 289 280 302

Microsoft

Scheduler

195 210 187 214 208 208 185 208 209 209

UPPAAL Parser 275 308 305 291 275 303 278 275 303 275

Threads No

Scheduler

181 207 200 207 217 216 181 198 217 181

Table 8.12: All the results are measured in miliseconds. This test is int calculation with

writing it to the RAM. Desktop Laptop 1 5.1.

102 CHAPTER 8. APPENDIX

Standard 15 avg ms

SingleThread 185,7 avg ms

Parallel.For 145,8 avg ms

Reflection.For 7502,4 avg ms

Lambda.For 231,1 avg ms

VirtualOverride 31,4 avg ms

Lambda Standard 8,3 avg ms

Action (Thunk) 10,7 avg ms

Lazy Evaluation 12,8 avg ms

Microsoft Sched-

uler

11,2 avg ms

UPPAAL Parser 11,5 avg ms

Threads No

Scheduler

11,8 avg ms

Table 8.13: The average of the tests are measured in milliseconds. This is for double without

writing it to the RAM. Laptop 1 5.1.

Standard 242,6 avg ms

SingleThread 939,2 avg ms

Parallel.For 373,7 avg ms

Reflection.For 8034,3 avg ms

Lambda.For 791,9 avg ms

VirtualOverride 270,3 avg ms

Lambda Standard 371,6 avg ms

Action (Thunk) 246,7 avg ms

Lazy Evaluation 417,3 avg ms

Microsoft Sched-

uler

242,3 avg ms

UPPAAL Parser 419,3 avg ms

Threads No

Scheduler

240,3 avg ms

Table 8.14: The average of the tests are measured in milliseconds. This is for double with

writing it to the RAM. Laptop 1 5.1.

8.1. TABLES 103

Standard 14,9 avg ms

SingleThread 183,6 avg ms

Parallel.For 148,2 avg ms

Reflection.For 7502,1 avg ms

Lambda.For 228,4 avg ms

VirtualOverride 9,3 avg ms

Lambda Standard 9,1 avg ms

Action (Thunk) 10,9 avg ms

Lazy Evaluation 13,2 avg ms

Microsoft Sched-

uler

12,8 avg ms

UPPAAL Parser 12,9 avg ms

Threads No

Scheduler

10,6 avg ms

Table 8.15: The average of the tests are measured in milliseconds. This is for int without

writing it to the RAM. Laptop 1 5.1.

Standard 212,5 avg ms

SingleThread 823,7 avg ms

Parallel.For 334,7 avg ms

Reflection.For 7599,2 avg ms

Lambda.For 599,8 avg ms

VirtualOverride 206,7 avg ms

Lambda Standard 246 avg ms

Action (Thunk) 200,3 avg ms

Lazy Evaluation 282,5 avg ms

Microsoft Sched-

uler

203,3 avg ms

UPPAAL Parser 288,8 avg ms

Threads No

Scheduler

200,5 avg ms

Table 8.16: The average of the tests are measured in milliseconds. This is for int with

writing it to the RAM. Laptop 1 5.1.

104 CHAPTER 8. APPENDIX

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 29 32 23 24 28 28 25 23 26 23

Single 296 311 293 294 291 296 290 292 291 293

Parallel.For 313 320 318 310 306 304 304 323 307 302

Reflection.For 15113 15145 14912 14877 14869 15123 14871 14875 14862 14881

Lambda.For 420 352 345 351 354 355 355 345 351 350

VirtualOverride 53 52 50 54 54 52 50 56 54 53

Lambda Stan-

dard

18 17 17 17 17 17 17 17 17 17

Action (Thunk) 18 17 17 17 17 17 17 17 17 17

Lazy 21 21 21 21 21 21 21 21 23 21

Microsoft

Scheduler

20 19 19 19 19 19 19 19 19 19

UPPAAL Parser 20 20 20 20 20 20 20 20 20 20

Threads No

Scheduler

18 17 17 17 17 17 19 17 17 17

Table 8.17: All the results are measured in milliseconds. This test is double calculation

without writing it to the RAM. Laptop 2 5.1

8.1. TABLES 105

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 706 798 705 739 735 707 683 676 733 646

Single 1485 1432 1408 1632 1536 1440 1423 1440 1495 1436

Parallel.For 1087 973 973 990 999 987 977 985 982 997

Reflection.For 15839 15782 15733 15958 15717 15477 15401 15536 15664 15499

Lambda.For 1543 1395 1421 1432 1433 1409 1427 1427 1416 1413

VirtualOverride 636 624 627 625 651 626 625 619 621 626

Lambda Stan-

dard

760 751 756 760 761 755 762 756 753 753

Action (Thunk) 685 660 645 671 650 634 626 648 684 636

Lazy 836 813 814 840 827 802 840 820 825 806

Microsoft

Scheduler

643 612 592 623 600 608 594 594 609 630

UPPAAL Parser 798 831 835 851 800 786 810 807 809 805

Threads No

Scheduler

668 586 588 591 641 605 632 598 632 607

Table 8.18: All the results are measured in miliseconds. This test is double calculation with

writing it to the RAM. Laptop 2 5.1

106 CHAPTER 8. APPENDIX

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 25 25 26 25 23 25 24 28 27 24

Single 296 289 290 294 292 296 290 288 290 295

Parallel.For 308 311 314 311 311 316 303 314 312 324

Reflection.For 14922 14909 14907 14874 14857 15006 14943 14915 14840 15420

Lambda.For 352 352 353 351 349 351 351 351 348 353

VirtualOverride 17 17 17 17 17 17 17 17 17 17

Lambda Stan-

dard

17 17 17 17 17 17 17 17 18 17

Action (Thunk) 18 18 18 18 18 18 18 18 18 18

Lazy 21 21 21 21 21 21 21 22 21 21

Microsoft

Scheduler

19 19 19 19 19 20 20 20 20 19

UPPAAL Parser 20 20 20 20 20 20 21 20 20 20

Threads No

Scheduler

17 17 17 17 17 17 17 17 19 17

Table 8.19: All the results are measured in milliseconds. This test is int calculation without

writing it to the RAM. Laptop 2 5.1

8.1. TABLES 107

Test name test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10

Standard 459 493 482 484 470 475 574 589 482 474

Single 1060 1044 1024 1014 1029 1026 1127 1125 1028 1020

Parallel.For 848 778 795 787 788 779 777 797 776 800

Reflection.For 15414 15359 15196 15224 15146 16260 17154 15734 15160 15127

Lambda.For 998 969 975 984 978 1121 1239 982 964 962

VirtualOverride 440 447 440 442 441 440 444 446 441 441

Lambda Stan-

dard

478 505 489 500 483 500 479 482 484 485

Action (Thunk) 425 430 425 407 418 430 442 418 416 425

Lazy 505 509 506 521 508 522 546 515 503 504

Microsoft

Scheduler

494 485 397 405 413 427 412 422 420 398

UPPAAL Parser 523 423 526 509 510 537 536 522 521 514

Threads No

Scheduler

418 515 397 420 432 428 412 402 409 403

Table 8.20: All the results are measured in miliseconds. This test is int calculation with

writing it to the RAM. Laptop 2 5.1

108 CHAPTER 8. APPENDIX

Standard 26,1 avg ms

SingleThread 294,7 avg ms

Parallel.For 310,7 avg ms

Reflection.For 14952,8 avg ms

Lambda.For 357,8 avg ms

VirtualOverride 52,8 avg ms

Lambda Standard 17,1 avg ms

Action (Thunk) 17,1 avg ms

Lazy Evaluation 21,2 avg ms

Microsoft Sched-

uler

19,1 avg ms

UPPAAL Parser 20 avg ms

Threads No

Scheduler

17,3 avg ms

Table 8.21: The average of the tests are measured in milliseconds. This is for double without

writing it to the RAM. Laptop 2 5.1

Standard 712,8 avg ms

SingleThread 1472,7 avg ms

Parallel.For 995 avg ms

Reflection.For 15660,6 avg ms

Lambda.For 1431,6 avg ms

VirtualOverride 628 avg ms

Lambda Standard 756,7 avg ms

Action (Thunk) 653,9 avg ms

Lazy Evaluation 822,3 avg ms

Microsoft Sched-

uler

610,5 avg ms

UPPAAL Parser 813,2 avg ms

Threads No

Scheduler

614,8 avg ms

Table 8.22: The average of the tests are measured in milliseconds. This is for double with

writing it to the RAM. Laptop 2 5.1

8.1. TABLES 109

Standard 25,2 avg ms

SingleThread 292 avg ms

Parallel.For 312,4 avg ms

Reflection.For 14959,3 avg ms

Lambda.For 351,1 avg ms

VirtualOverride 17 avg ms

Lambda Standard 17,1 avg ms

Action (Thunk) 18 avg ms

Lazy Evaluation 21,1 avg ms

Microsoft Sched-

uler

19,4 avg ms

UPPAAL Parser 20,1 avg ms

Threads No

Scheduler

17,2 avg ms

Table 8.23: The average of the tests are measured in milliseconds. This is for int without

writing it to the RAM. Laptop 2 5.1

Standard 498,2 avg ms

SingleThread 1049,7 avg ms

Parallel.For 792,5 avg ms

Reflection.For 15577,4 avg ms

Lambda.For 1017,2 avg ms

VirtualOverride 442,2 avg ms

Lambda Standard 488,5 avg ms

Action (Thunk) 423,6 avg ms

Lazy Evaluation 513,9 avg ms

Microsoft Sched-

uler

427,3 avg ms

UPPAAL Parser 512,1 avg ms

Threads No

Scheduler

423,6 avg ms

Table 8.24: The average of the tests are measured in milliseconds. This is for int with

writing it to the RAM. Laptop 2 5.1

110 CHAPTER 8. APPENDIX

8.2 Code

Listing 8.1: This code is the library code of the Dependency Scheduler.

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Threading.Tasks;

5 using System.Threading;

6 using System.Reflection;

7

8 namespace Dependency_Task_Scheduling

9 {

10 class TaskItem

11 {

12 private MethodInfo _methodInfo;

13 private bool _working = false , _done = false , _named ,

_actionbool;

14 private int _name;

15 private List <int > _dependant = new List <int >();

16 private object _operatingObj = null;

17 private object [] _objs = null;

18 private Action _action;

19

20 public TaskItem(MethodInfo methodInfo , object [] objs)

21 {

22 _methodInfo = methodInfo;

23 _named = false;

24 _objs = objs;

25 }

26 public TaskItem(MethodInfo methodInfo , int name , object []

objs)

27 {

28 _methodInfo = methodInfo;

29 _name = name;

30 _named = true;

31 _objs = objs;

32 }

33 public TaskItem(MethodInfo methodInfo , int name , List <int >

dependant , object [] objs)

34 {

35 _methodInfo = methodInfo;

36 _name = name;

8.2. CODE 111

37 _dependant.AddRange(dependant);

38 _named = true;

39 _objs = objs;

40 }

41 public TaskItem(MethodInfo methodInfo , List <int > dependant

, object [] objs)

42 {

43 _methodInfo = methodInfo;

44 _dependant.AddRange(dependant);

45 _named = false;

46 _objs = objs;

47 }

48 public TaskItem(MethodInfo methodInfo , object operatingObj

, object [] objs)

49 {

50 _methodInfo = methodInfo;

51 _named = false;

52 _operatingObj = operatingObj;

53 _objs = objs;

54 }

55 public TaskItem(MethodInfo methodInfo , int name , object

operatingObj , object [] objs)

56 {

57 _methodInfo = methodInfo;

58 _name = name;

59 _named = true;

60 _operatingObj = operatingObj;

61 _objs = objs;

62 }

63 public TaskItem(MethodInfo methodInfo , int name , List <int >

dependant , object operatingObj , object [] objs)

64 {

65 _methodInfo = methodInfo;

66 _name = name;

67 _dependant.AddRange(dependant);

68 _named = true;

69 _operatingObj = operatingObj;

70 _objs = objs;

71 }

72 public TaskItem(MethodInfo methodInfo , List <int > dependant

, object operatingObj , object [] objs)

73 {

74 _methodInfo = methodInfo;

112 CHAPTER 8. APPENDIX

75 _dependant.AddRange(dependant);

76 _named = false;

77 _operatingObj = operatingObj;

78 _objs = objs;

79 }

80 public TaskItem(Action action)

81 {

82 _action = action;

83 _named = false;

84 _actionbool = true;

85 }

86 public TaskItem(Action action , int name)

87 {

88 _action = action;

89 _actionbool = true;

90 _name = name;

91 _named = true;

92 }

93 public TaskItem(Action action , int name , List <int >

dependant)

94 {

95 _action = action;

96 _actionbool = true;

97 _name = name;

98 _named = true;

99 _dependant.AddRange(dependant);

100 }

101 public TaskItem(Action action , List <int > dependant)

102 {

103 _action = action;

104 _actionbool = true;

105 _named = false;

106 _dependant.AddRange(dependant);

107 }

108

109 // Corrospond to a Enumname

110 public int getName () { return _name; }

111 // Corrospond to a Enumname

112 public List <int > getDependencies () { return _dependant; }

113 public MethodInfo MethodInfo () { return _methodInfo; }

114 public bool IsWorking () { return _working; }

115 public bool isNamed () { return _named; }

116 public bool Work()

8.2. CODE 113

117 {

118 _working = true;

119 return _working;

120 }

121 public void Finished () { _done = true; }

122 public bool isDone () { return _done; }

123 public object getObj () { return _operatingObj; }

124 public object [] getObjs () { return _objs; }

125 public Action getAction () { return _action; }

126 public bool isAction () { return _actionbool; }

127 }

128

129 class DependencyScheduler

130 {

131 private int workerThreads , completionPortThreads ,

optimalThreadSize;

132 private bool runningScheduler = false , canRun = true ,

removedItem=false , addingTasks = false;

133 private AutoResetEvent waitHandle = new AutoResetEvent(

false), waitMain;

134 private List <TaskItem > workList = new List <TaskItem >();

135 private List <int > DependencyTasks = new List <int >(),

currentList;

136

137 // Recommanded to use and not handle the number of threads

by yourself.

138 public DependencyScheduler ()

139 {

140 OptimalTaskSize ();

141 ThreadPool.GetAvailableThreads(out workerThreads , out

completionPortThreads);

142 }

143

144 private void OptimalTaskSize ()

145 {

146 ThreadPool.GetMinThreads(out workerThreads , out

completionPortThreads);

147 optimalThreadSize = workerThreads;

148 }

149

150 /// <SchedulerWork >

151 /// Assign task to a thread , and remove tasks as they have

completed

114 CHAPTER 8. APPENDIX

152 /// </SchedulerWork >

153 private void SchedulerWork ()

154 {

155 //Start Job for it to work on linux set a parameter

int taskcount instead of workList.count

156 for (int taskNumber = 0; taskNumber < workList.Count;

taskNumber ++)

157 {

158 //Check if thread is already worked on

159 if (! workList[taskNumber]. IsWorking ())

160 {

161 //Check if there is dependencies if there is

check if they are fulfilled

162 currentList = workList[taskNumber].

getDependencies ();

163 if (currentList.Count > 0)

164 {

165 canRun = true;

166 for(int i = 0; i < currentList.Count;i++)

167 {

168 if (DependencyTasks[currentList[i]] >

0)

169 canRun = false;

170 }

171 if (canRun)

172 {

173 ThreadPool.QueueUserWorkItem(

ThreadInvoker , workList[taskNumber

]);

174 workList[taskNumber].Work();

175 }

176 }

177 else

178 {

179 ThreadPool.QueueUserWorkItem(ThreadInvoker

, workList[taskNumber]);

180 workList[taskNumber].Work();

181 }

182 }

183 }

184 // Remove job from List

185 if (! addingTasks)

186 {

8.2. CODE 115

187 removedItem = false;

188 for (int i = workList.Count - 1; i >= 0; i--)

189 {

190 if (workList[i]. isDone ())

191 {

192 if (workList[i]. isNamed ())

193 {

194 DependencyTasks[workList[i]. getName ()

]--;

195 removedItem = true;

196 }

197 workList.RemoveAt(i);

198

199 }

200 }

201 //This is required else if the last item was a

dependency it will get to be a standstill

202 if (removedItem)

203 SchedulerWork ();

204 }

205 }

206

207 //Start the job in a thread.

208 private void ThreadInvoker(Object threadContext)

209 {

210 TaskItem TI = (TaskItem)threadContext;

211 ThreadExecution(TI);

212 TI.Finished ();

213 // Signal a thread has finished

214 waitHandle.Set();

215 }

216

217 // Execute Thread

218 public virtual void ThreadExecution(TaskItem TI)

219 {

220 if (!TI.isAction ())

221 {

222 MethodInfo task = TI.MethodInfo ();

223 // Reflection invoke a method to do on a thread

224 task.Invoke(TI.getObj (), TI.getObjs ());

225 }

226 else

227 // Action or Thunk

116 CHAPTER 8. APPENDIX

228 TI.getAction ().Invoke ();

229 }

230

231 //Start the ThreadScheduler in a thread.

232 private void ThreadScheduler(Object threadContext)

233 {

234 waitHandle = new AutoResetEvent(false);

235 //Start the actual SchedulerWork

236 SchedulerWork ();

237 //Check if the tasks has finished

238 if(workList.Count == 0)

239 {

240 waitMain.Set();

241 waitHandle.Set();

242 }

243 //Wait until new jobs assignment or a thread has

finished

244 waitHandle.WaitOne ();

245

246 if (workList.Count > 0)

247 ThreadScheduler(null);

248 else

249 {

250 runningScheduler = false;

251 }

252 }

253

254 // Private InitScheduler

255 private void InitScheduler ()

256 {

257 //Start Scheduler if not started

258 if (! runningScheduler)

259 {

260 runningScheduler = true;

261 ThreadPool.QueueUserWorkItem(ThreadScheduler , null

);

262 //init the main thread to be able to sleep

263 waitMain = new AutoResetEvent(false);

264 }

265 else

266 {

267 // Restart scheduler if sleeping

268 waitHandle.Set();

8.2. CODE 117

269 }

270 }

271

272 // Increase Dependency List for the for methods

273 public void IncreaseDependencyList(int name)

274 {

275 for (int i = DependencyTasks.Count; i <= name; i++)

276 {

277 DependencyTasks.Add(0);

278 }

279 }

280

281 //set Amount of Threads

282 public void SetMaxThreads(int numberOfWorkerThreads)

283 {

284 if (numberOfWorkerThreads <= 1)

285 return;

286 ThreadPool.GetMaxThreads(out workerThreads , out

completionPortThreads);

287 ThreadPool.SetMaxThreads(numberOfWorkerThreads ,

numberOfWorkerThreads);

288 workerThreads = numberOfWorkerThreads;

289 }

290

291 //set Amount of Threads

292 public void SetMinThreads(int numberOfWorkerThreads)

293 {

294 if (numberOfWorkerThreads <= 1)

295 return;

296 ThreadPool.SetMinThreads(numberOfWorkerThreads ,

numberOfWorkerThreads);

297 workerThreads = numberOfWorkerThreads;

298 completionPortThreads = numberOfWorkerThreads;

299 }

300

301 //set Amount of Threads to corrospond to the number of

threads on your CPU +1 for scheduler.

302 public void SetThreadsForMyCPU ()

303 {

304 SetMinThreads ();

305 ThreadPool.SetMinThreads(workerThreads + 1,

completionPortThreads + 1);

118 CHAPTER 8. APPENDIX

306 ThreadPool.SetMaxThreads(workerThreads + 1,

completionPortThreads + 1);

307 }

308

309 //Get Maximum amount of threads.

310 public void SetMaxThreads ()

311 {

312 ThreadPool.GetMaxThreads(out workerThreads , out

completionPortThreads);

313 }

314

315 //Get the minimum threads , which is the number of threads

your CPU has , however the Scheduler will take one

thread.

316 public void SetMinThreads ()

317 {

318 ThreadPool.GetMinThreads(out workerThreads , out

completionPortThreads);

319 }

320

321 //Get information on the last used number of threads

either minimum or the highest.

322 public void WriteNumberofThreads ()

323 {

324 Console.WriteLine("WorkerThreads: {0},

CompletionPortThreads: {1}", workerThreads ,

completionPortThreads);

325 }

326

327 /// <summary >

328 /// This method is used if there is no requirements.

329 /// </summary >

330 public void AddTask(Type classType , string methodName ,

object initClass , params object [] objs)

331 {

332 MethodInfo Task = classType.GetMethod(methodName);

333 TaskItem TI = new TaskItem(Task , initClass , objs);

334 workList.Add(TI);

335 InitScheduler ();

336 }

337

338 /// <summary >

8.2. CODE 119

339 /// This method is used if something else requires this

one to be finished first.

340 /// </summary >

341 public void AddTaskNamed(Type classType , string methodName

, object initClass ,int name , params object [] objs)

342 {

343 MethodInfo Task = classType.GetMethod(methodName);

344 IncreaseDependencyList(name);

345 DependencyTasks[name]++;

346 TaskItem TI = new TaskItem(Task ,name , initClass ,objs);

347 workList.Add(TI);

348 InitScheduler ();

349 }

350

351 /// <summary >

352 /// This Methods will specify the task name and what it

depends upon.

353 /// </summary >

354 public void AddTaskNamedAndDependencies(Type classType ,

string methodName , object initClass , int name , List <

int > dependencies , params object [] objs)

355 {

356 MethodInfo Task = classType.GetMethod(methodName);

357 IncreaseDependencyList(name);

358 DependencyTasks[name]++;

359 workList.Add(new TaskItem(Task , name , dependencies ,

initClass , objs));

360 InitScheduler ();

361 }

362

363 /// <summary >

364 /// This Methods will only look at what it depends upon.

365 /// </summary >

366 public void AddTaskDependenciesNoName(Type classType ,

string methodName , object initClass , List <int >

dependencies , params object [] objs)

367 {

368 MethodInfo Task = classType.GetMethod(methodName);

369

370 workList.Add(new TaskItem(Task , dependencies ,initClass

, objs));

371 InitScheduler ();

372 }

120 CHAPTER 8. APPENDIX

373

374 /// <summary >

375 /// This method split the task into all availble threads

with no requirement. Before Using make sure to Lock

then unlock.

376 /// Just remember that the method should use 2 int

parameters for the for loops as the last parameters.

377 /// </summary >

378 public void ParallelForTask(Type classType , string

methodName , object InitClass , int from , int to, params

object [] objs)

379 {

380 MethodInfo Task = classType.GetMethod(methodName);

381 // TaskItem TI = new TaskItem(Task , InitClass);

382 //TI.setParallel ();

383 int max = to - from , threads = optimalThreadSize ,

setUpperBound , setLowerBound , listIndex = objs.

Length + 2;

384 object [] objstemp;

385 objstemp = new object[listIndex];

386 for (int i = 0; i < objs.Length; i++)

387 {

388 objstemp[i] = objs[i];

389 }

390 if (max < threads)

391 threads = max;

392 for (int i = 0; i < threads; i++)

393 {

394 if (i + 1 == threads)

395 {

396 setUpperBound = to;

397 setLowerBound = from + (max / threads) * i;

398 }

399 else

400 {

401 setUpperBound = from + (max / threads) * (i +

1);

402 setLowerBound = from + (max / threads) * i;

403 }

404 objstemp[listIndex - 2] = setLowerBound;

405 objstemp[listIndex - 1] = setUpperBound;

406 TaskItem TI = new TaskItem(Task , InitClass ,

objstemp);

8.2. CODE 121

407 workList.Add(TI);

408 }

409 InitScheduler ();

410 }

411

412 /// <summary >

413 /// This method split the task into all available threads

where all tasks are named and required to be run

before something else. Before Using make sure to Lock

then unlock.

414 /// Just remember that the method should use 2 int

parameters for the for loops as the last parameters.

415 /// </summary >

416 public void ParallelForTaskNamed(Type classType , string

methodName , object InitClass , int from , int to, int

name , params object [] objs)

417 {

418 MethodInfo Task = classType.GetMethod(methodName);

419 // TaskItem TI = new TaskItem(Task , InitClass);

420 //TI.setParallel ();

421 int max = to - from , threads = optimalThreadSize ,

setUpperBound , setLowerBound , listIndex = objs.

Length + 2;

422 object [] objstemp;

423 objstemp = new object[listIndex];

424 IncreaseDependencyList(name);

425 for (int i = 0; i < objs.Length; i++)

426 {

427 objstemp[i] = objs[i];

428 }

429 if (max < threads)

430 threads = max;

431 for (int i = 0; i < threads; i++)

432 {

433 if (i + 1 == threads)

434 {

435 setUpperBound = to;

436 setLowerBound = from + (max / threads) * i;

437 }

438 else

439 {

440 setUpperBound = from + (max / threads) * (i +

1);

122 CHAPTER 8. APPENDIX

441 setLowerBound = from + (max / threads) * i;

442 }

443 objstemp[listIndex - 2] = setLowerBound;

444 objstemp[listIndex - 1] = setUpperBound;

445 DependencyTasks[name]++;

446 TaskItem TI = new TaskItem(Task , name , InitClass ,

objstemp);

447 workList.Add(TI);

448 }

449 InitScheduler ();

450 }

451

452 /// <summary >

453 /// This method split the task into all availble threads

where all tasks are named and requires something else

to be run before this. Before Using make sure to Lock

then unlock.

454 /// Just remember that the method should use 2 int

parameters for the for loops as the last parameters.

455 /// </summary >

456 public void ParallelForTaskNamedAndDependencies(Type

classType , string methodName , object InitClass , int

from , int to , int name , List <int > dependencies , params

object [] objs)

457 {

458 MethodInfo Task = classType.GetMethod(methodName);

459 // TaskItem TI = new TaskItem(Task , InitClass);

460 //TI.setParallel ();

461 int max = to - from , threads = optimalThreadSize ,

setUpperBound , setLowerBound , listIndex = objs.

Length + 2;

462 object [] objstemp;

463 objstemp = new object[listIndex];

464 IncreaseDependencyList(name);

465

466 for (int i = 0; i < objs.Length; i++)

467 {

468 objstemp[i] = objs[i];

469 }

470 if (max < threads)

471 threads = max;

472 for (int i = 0; i < threads; i++)

473 {

8.2. CODE 123

474 if (i + 1 == threads)

475 {

476 setUpperBound = to;

477 setLowerBound = from + (max / threads) * i;

478 }

479 else

480 {

481 setUpperBound = from + (max / threads) * (i +

1);

482 setLowerBound = from + (max / threads) * i;

483 }

484 objstemp[listIndex - 2] = setLowerBound;

485 objstemp[listIndex - 1] = setUpperBound;

486 DependencyTasks[name]++;

487 TaskItem TI = new TaskItem(Task , name ,

dependencies , InitClass , objstemp);

488 workList.Add(TI);

489 }

490 InitScheduler ();

491 }

492

493 /// <summary >

494 /// This method split the task into all availble threads

this will run when the dependencies has been run.

Before Using make sure to Lock then unlock.

495 /// Just remember that the method should use 2 int

parameters for the for loops as the last parameters.

496 /// </summary >

497 public void ParallelForTaskDependenciesNoName(Type

classType , string methodName , object InitClass , int

from , int to , List <int > dependencies , params object []

objs)

498 {

499 MethodInfo Task = classType.GetMethod(methodName);

500 // TaskItem TI = new TaskItem(Task , InitClass);

501 //TI.setParallel ();

502 int max = to - from , threads = optimalThreadSize ,

setUpperBound , setLowerBound , listIndex = objs.

Length + 2;

503 object [] objstemp;

504 objstemp = new object[listIndex];

505

506 for (int i = 0; i < objs.Length; i++)

124 CHAPTER 8. APPENDIX

507 {

508 objstemp[i] = objs[i];

509 }

510 if (max < threads)

511 threads = max;

512 for (int i = 0; i < threads; i++)

513 {

514 if (i + 1 == threads)

515 {

516 setUpperBound = to;

517 setLowerBound = from + (max / threads) * i;

518 }

519 else

520 {

521 setUpperBound = from + (max / threads) * (i +

1);

522 setLowerBound = from + (max / threads) * i;

523 }

524 objstemp[listIndex - 2] = setLowerBound;

525 objstemp[listIndex - 1] = setUpperBound;

526 TaskItem TI = new TaskItem(Task , dependencies ,

InitClass , objstemp);

527 workList.Add(TI);

528 }

529 InitScheduler ();

530 }

531

532 /// <summary >

533 /// Choose yourself how many tasks a method should be

split into.

534 /// Just remember that the method should use 2 int

parameters for the for loops as the last parameters.

535 /// </summary >

536 public void ParallelForTaskSpecific(Type classType , string

methodName , object InitClass , int from , int to, int

numberofTasks , params object [] objs)

537 {

538 MethodInfo Task = classType.GetMethod(methodName);

539 int max = to - from , setUpperBound , setLowerBound ,

listIndex = objs.Length + 2;

540 object [] objstemp;

541 objstemp = new object[listIndex];

542 for (int i = 0; i < objs.Length; i++)

8.2. CODE 125

543 {

544 objstemp[i] = objs[i];

545 }

546 for (int i = 0; i < numberofTasks; i++)

547 {

548

549 if (i + 1 == numberofTasks)

550 {

551 setUpperBound = to;

552 setLowerBound = from + (max / numberofTasks) *

i;

553 }

554 else

555 {

556 setUpperBound = from + (max / numberofTasks) *

(i + 1);

557 setLowerBound = from + (max / numberofTasks) *

i;

558 }

559 objstemp[listIndex - 2] = setLowerBound;

560 objstemp[listIndex - 1] = setUpperBound;

561 TaskItem TI = new TaskItem(Task , InitClass ,

objstemp);

562 workList.Add(TI);

563 }

564 InitScheduler ();

565 }

566

567 /// <summary >

568 /// Choose yourself how many tasks a method should be

split into and if something has to be dependant upon

this.

569 /// Just remember that the method should use 2 int

parameters for the for loops as the last parameters.

570 /// </summary >

571 public void ParallelForTaskSpecificNamed(Type classType ,

string methodName , object InitClass , int from , int to,

int numberofTasks , int name , params object [] objs)

572 {

573 MethodInfo Task = classType.GetMethod(methodName);

574 int max = to - from , setUpperBound , setLowerBound ,

listIndex = objs.Length + 2;

575 object [] objstemp;

126 CHAPTER 8. APPENDIX

576 objstemp = new object[listIndex];

577 IncreaseDependencyList(name);

578 for (int i = 0; i < objs.Length; i++)

579 {

580 objstemp[i] = objs[i];

581 }

582 for (int i = 0; i < numberofTasks; i++)

583 {

584

585 if (i + 1 == numberofTasks)

586 {

587 setUpperBound = to;

588 setLowerBound = from + (max / numberofTasks) *

i;

589 }

590 else

591 {

592 setUpperBound = from + (max / numberofTasks) *

(i + 1);

593 setLowerBound = from + (max / numberofTasks) *

i;

594 }

595 objstemp[listIndex - 2] = setLowerBound;

596 objstemp[listIndex - 1] = setUpperBound;

597 DependencyTasks[name]++;

598 TaskItem TI = new TaskItem(Task , name , InitClass ,

objstemp);

599 workList.Add(TI);

600 }

601 InitScheduler ();

602 }

603

604 /// <summary >

605 /// Choose yourself how many tasks a method should be

split into and if something has to be dependant upon

this as well it depends upon something else.

606 /// Just remember that the method should use 2 int

parameters for the for loops as the last parameters.

607 /// </summary >

608 public void ParallelForTaskSpecificNamedAndDependencies(

Type classType , string methodName , object InitClass ,

int from , int to , int numberofTasks , int name , List <

int > dependencies , params object [] objs)

8.2. CODE 127

609 {

610 MethodInfo Task = classType.GetMethod(methodName);

611 int max = to - from , setUpperBound , setLowerBound ,

listIndex = objs.Length + 2;

612 object [] objstemp;

613 objstemp = new object[listIndex];

614 IncreaseDependencyList(name);

615 for (int i = 0; i < objs.Length; i++)

616 {

617 objstemp[i] = objs[i];

618 }

619 for (int i = 0; i < numberofTasks; i++)

620 {

621

622 if (i + 1 == numberofTasks)

623 {

624 setUpperBound = to;

625 setLowerBound = from + (max / numberofTasks) *

i;

626 }

627 else

628 {

629 setUpperBound = from + (max / numberofTasks) *

(i + 1);

630 setLowerBound = from + (max / numberofTasks) *

i;

631 }

632 objstemp[listIndex - 2] = setLowerBound;

633 objstemp[listIndex - 1] = setUpperBound;

634 DependencyTasks[name]++;

635 TaskItem TI = new TaskItem(Task ,name ,dependencies ,

InitClass , objstemp);

636 workList.Add(TI);

637 }

638 InitScheduler ();

639 }

640

641 /// <summary >

642 /// Choose yourself how many tasks a method should be

split into and if it depends upon something without

anything else depends on this.

643 /// Just remember that the method should use 2 int

parameters for the for loops as the last parameters.

128 CHAPTER 8. APPENDIX

644 /// </summary >

645 public void ParallelForTaskSpecificDependenciesNoName(Type

classType , string methodName , object InitClass , int

from , int to , int numberofTasks , List <int >

dependencies , params object [] objs)

646 {

647 MethodInfo Task = classType.GetMethod(methodName);

648 int max = to - from , setUpperBound , setLowerBound ,

listIndex = objs.Length + 2;

649 object [] objstemp;

650 objstemp = new object[listIndex];

651 for (int i = 0; i < objs.Length; i++)

652 {

653 objstemp[i] = objs[i];

654 }

655 for (int i = 0; i < numberofTasks; i++)

656 {

657

658 if (i + 1 == numberofTasks)

659 {

660 setUpperBound = to;

661 setLowerBound = from + (max / numberofTasks) *

i;

662 }

663 else

664 {

665 setUpperBound = from + (max / numberofTasks) *

(i + 1);

666 setLowerBound = from + (max / numberofTasks) *

i;

667 }

668 objstemp[listIndex - 2] = setLowerBound;

669 objstemp[listIndex - 1] = setUpperBound;

670 TaskItem TI = new TaskItem(Task , dependencies ,

InitClass , objstemp);

671 workList.Add(TI);

672 }

673 InitScheduler ();

674 }

675 /// <summary >

676 /// Add an action Task.

677 /// </summary >

678 public void AddTask(Action action)

8.2. CODE 129

679 {

680 TaskItem TI = new TaskItem(action);

681 workList.Add(TI);

682 InitScheduler ();

683 }

684 /// <summary >

685 /// Add an action Task. With a name for the scheduler.

686 /// </summary >

687 public void AddTask(Action action , int name)

688 {

689 IncreaseDependencyList(name);

690 DependencyTasks[name]++;

691 TaskItem TI = new TaskItem(action ,name);

692 workList.Add(TI);

693 InitScheduler ();

694 }

695 /// <summary >

696 /// Add an action Task. With a name for the scheduler and

dependency list.

697 /// </summary >

698 public void AddTask(Action action , int name , List <int >

dependencies)

699 {

700 IncreaseDependencyList(name);

701 DependencyTasks[name]++;

702 TaskItem TI = new TaskItem(action ,name ,dependencies);

703 workList.Add(TI);

704 InitScheduler ();

705 }

706 /// <summary >

707 /// Add an action Task. With a dependency list.

708 /// </summary >

709 public void AddTask(Action action , List <int > dependencies)

710 {

711 TaskItem TI = new TaskItem(action ,dependencies);

712 workList.Add(TI);

713 InitScheduler ();

714 }

715

716 /// <summary >

717 ///This lock is made so the scheduler will not remove

elements from the worklist while adding as this can

give problems.

130 CHAPTER 8. APPENDIX

718 /// </summary >

719 public void AddingTaskLock ()

720 {

721 addingTasks = true;

722 }

723

724 /// <summary >

725 ///This unlock is made so the scheduler will again remove

elements from the worklist at any given time a task

has finished.

726 ///It will also reignite the scheduler if it went to sleep

.

727 /// </summary >

728 public void AddingTaskUnlock ()

729 {

730 addingTasks = false;

731 InitScheduler ();

732 }

733

734 /// <summary >

735 /// MainThread Wait will wakeup when tasks are done , this

will wait on all tasks

736 /// </summary >

737 public void WaitForTasks ()

738 {

739 waitMain.WaitOne ();

740 }

741

742 /// <summary >

743 /// This just makes an int list from the enum you might

have created , you can give as many ints as you want.

744 /// </summary >

745 public List <int > Dependencies(params int[] dependencies)

746 {

747 List <int > depend = new List <int >();

748 for (int i = 0; i < dependencies.Length; i++)

749 depend.Add(dependencies[i]);

750 return depend;

751 }

752 }

753

754 class TaskParser

755 {

8.2. CODE 131

756 int _name;

757 List <int > _dependency = new List <int >();

758 string _method;

759 public TaskParser(int name , List <int > dependency , string

methodName)

760 {

761 _name = name;

762 _dependency = dependency;

763 _method = methodName;

764 }

765 public int GetName () { return _name; }

766 public string GetMethod () { return _method; }

767 public List <int > GetDependency () { return _dependency; }

768 }

769

770 class DependencyTaskParser

771 {

772 //Using the Dependency Scheduler

773 DependencyScheduler DS;

774 // Creates an offset for the different names

775 int _offset = 1000, _resetNumber;

776

777 public DependencyTaskParser(DependencyScheduler

DependencyScheduler)

778 {

779 DS = DependencyScheduler;

780 DS.IncreaseDependencyList(_offset);

781 }

782

783 public DependencyTaskParser(DependencyScheduler

DependencyScheduler ,int offset)

784 {

785 DS = DependencyScheduler;

786 _offset = offset;

787 _resetNumber = offset;

788 DS.IncreaseDependencyList(_offset);

789 }

790

791 //Reset will continue to increase however , this allows it

to be reset.

792 public void ResetOffset ()

793 {

794 _offset = _resetNumber;

132 CHAPTER 8. APPENDIX

795 }

796

797 /// <summary >

798 /// Give the Classtype from where the Tasks are from , the

class they operate on , the list of systems from UPPAAL

where you have renamed to the function names ,

dependency that you created in UPPAAL

799 /// </summary >

800 public void GiveAnalysis(Type classType , object initClass ,

string methodNames , bool [][] dependency)

801 {

802 DS.AddingTaskLock ();

803 string [] splitter = methodNames.Split(’,’);

804 int startoffset = _offset;

805

806 List <TaskParser > ArrayTaskParser = new List <TaskParser

>();

807 bool[] accessList = new bool[splitter.Length];

808 DS.IncreaseDependencyList(_offset + splitter.Length);

809 for (int i = 0; i < splitter.Length; i++)

810 {

811 List <int > dependencyList = new List <int >();

812 for (int j = 0; j < splitter.Length; j++)

813 {

814 if (dependency[i][j])

815 {

816 dependencyList.Add(j + startoffset);

817 }

818 }

819

820 if (dependencyList.Count <= 0)

821 {

822 DS.AddTaskNamed(classType , RemoveWhitespace(

splitter[i]), initClass , _offset + i);

823 accessList[i] = true;

824 }

825 else

826 {

827 ArrayTaskParser.Add(new TaskParser(_offset + i

, dependencyList , RemoveWhitespace(

splitter[i])));

828 accessList[i] = false;

829 }

8.2. CODE 133

830

831 }

832 TasksPartTwo(ArrayTaskParser ,classType ,initClass ,

accessList);

833 _offset += splitter.Length;

834 DS.AddingTaskUnlock ();

835

836 }

837

838 /// <summary >

839 /// This method is to be sure that the dependency is

correctly placed so there is no risk of the dependant

to run before the function it depends on.

840 /// This is able to run while the Scheduler is running and

the cleaning is disabled.

841 /// </summary >

842 private void TasksPartTwo(List <TaskParser > ArrayTaskParser

, Type classType , object initClass , bool[] accessList)

843 {

844 bool canRun = true;

845 List <int > currentList;

846 for (int i = 0; i < ArrayTaskParser.Count; i++)

847 {

848 canRun = true;

849 currentList = ArrayTaskParser[i]. GetDependency ();

850 for (int j = 0; j < currentList.Count; j++)

851 {

852

853 if (! accessList[currentList[j]-_offset])

854 {

855 canRun = false;

856 }

857 }

858 if (canRun)

859 {

860 DS.AddTaskNamedAndDependencies(classType ,

ArrayTaskParser[i]. GetMethod (), initClass ,

ArrayTaskParser[i]. GetName (),

ArrayTaskParser[i]. GetDependency ());

861 accessList[ArrayTaskParser[i]. GetName () -

_offset] = true;

862 ArrayTaskParser.RemoveAt(i);

863 i--;

134 CHAPTER 8. APPENDIX

864 }

865 }

866 if (ArrayTaskParser.Count > 0)

867 TasksPartTwo(ArrayTaskParser , classType , initClass

, accessList);

868 }

869

870 private static string RemoveWhitespace(string str)

871 {

872 return string.Join("", str.Split(default(string []),

StringSplitOptions.RemoveEmptyEntries));

873 }

874 }

	Contents
	Introduction
	Introduction
	Summary
	Background
	Related Work

	Analysis
	Problem statement

	Design
	The Dependency Scheduler process
	The Algorithm
	Architecture of the Dependency Scheduler
	Parser for UPPAAL
	Writing a Parser for the Scheduler

	Implementation
	Dependency Scheduler Implementation Method Details
	Examples
	Implementation of Scheduler into Spreadsheet
	Micro Benchmarks Implementation

	Benchmark
	The Systems
	Micro Benchmarks
	Micro Benchmarks Graphs
	Spreadsheet Benchmarks
	Spreadsheet Benchmark Graphs

	Discussion
	General Discussion of the Sections
	Pros and Cons
	Remarks

	Conclusion and Future Work
	Conclusion
	Future Works

	Bibliography
	Appendix
	Tables
	Code

