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“The most important property of a program is whether it accomplishes the intention
of its user."

C. A. R. Hoare
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Support for temporal features has been added to the latest SQL Standard SQL:2011.
Many DBMS vendors like IBM, Oracle, TeraData and now Microsoft provide some
kind of temporal support. The goals of this thesis is to explore temporal concepts
in general, examine temporal support as provided by the SQL Server 2016, and to
find out if it is possible to work around any limitations that may be encountered.
This SQL Server has been chosen because of practical reasons. To achieve these
goals a relational model has been made, which is used as basis for the evaluation of
the temporal support. Prototypes have been made for some of the missing tempo-
ral features that were discovered. The conclusion is that even if temporal support
in the SQL Server is very limited, when considering the theoretical possibilities, it
is still be very useful for some use cases.
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Chapter 1

Introduction

Database management systems (DBMS), that support time varying aspect of the
data are said to be temporal. But, what does this entail, how well is it defined, how
is it supported and what can be done to work around any possible deficiencies?
Those are examples of some of the questions that needs to be addressed before
any new technology is adopted.

Temporal data and DBMS support for this kind of data, is a research topic that has
been heavily studied for at least last 30 years and continues to attract the attention
of researchers even today. Many books and papers have been published on this
subject. A publishing overview, outdated but comprehensive, is given in [1]. Most
of the researchers have been proposing to extend the relational model. The earliest
proposals, like HQuel, TQuel, DM/T, TempSQL and IXSQL are mentioned in
[2]. Some controversies regarding those different models have surfaced [3]. Some
proposals have even been heavily criticised. The best example of this is probably
given by an article [4] written by Darwen and Date criticising the TSQL2 approach
[5].

It seems that different camps have been formed in the research community that
still exists today. Two of these are predominant in the research community. Both
of these camps agree however on one thing, and that is that the SQL standard
needs an extension. The biggest difference of opinion seem to be about the need
for extending or modifying the relational model itself to achieve temporal support.
Maybe that is one of the main reasons that major database vendors have been very
slow to adopt temporal concepts in their products.

1
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However, some vendors have been adding temporal support to their products.
The most prominent representatives of these are Oracle, starting with flashback
queries [6], DB2 [7] and TeraData [8]. They did it in spite of unavailable SQL
standardisation. With the acceptance of the SQL:2011 standard, which includes
temporal support [3], we can hope that more and more vendors will do the same.
One of the vendors that has taken this path and joined other vendors is Microsoft
with their SQL Server 2016 [9] product.

The most recently published overview, as of this writing, of the DBMS and their
support for temporal data is given in [10]. Although not comprehensive it does
give fairly good overall picture.

1.1 Motivation

In the 1980’s researchers recognised the need to address temporal or time-varying
aspects of the data [1]. Hardware was becoming cheaper, disk space larger and as
a result more data could be saved and subsequently archived for longer periods.
The tendency was clear. Archived data, once available, could then be analysed.
New technologies such as data mining and data warehousing emerged in the 1990’s
and big data in 2000’s.

There are many possible use cases for the temporal data. Some of them could be
formulated as:

• Versioning of the data: When working on an article, the content manage-
ment system is required to provide the possibility for the user to go back to
previous versions of the article.
• Auditing: Medical journal systems are required to provide history on "who"

did "what" and "when" for auditing purposes.
• Scheduling/planning: Scheduling software is required to disallow double

bookings.
• Statistics: Company needs software to measure success of their online sales

in regards to campaigns they are running.

More examples are listed in [7], with an interesting case that suggests that data
had to be retained for longer periods because of the legal requirements. Moreover,
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it seems also that customers are expecting more and more from their temporal
database vendors as the managed data sizes evolve and become larger. Those
customers also have very different temporal needs, and therefore some interesting
querying patterns have been observed and studied and possible solutions have been
presented [11].

The mentioned use cases suggest that there may be many different scenarios and
requirements. Difficulties possibly arise when working with temporal data but the
need for temporal support is evident. Therefore if an organisation or company
wants to adopt technologies supporting temporal data, an assessment is needed
regarding temporal concepts in general and their concrete support in DBMS. Some
vendors even suggest [7] that there are many work hours to be saved when using
DBMS with temporal support versus coding an in-house custom solution in the
application layer.

1.1.1 What is the problem?

In this section we are going to look into some examples, which illustrate the need
for addressing temporal issues. Database tables are loosely described, but the focus
is mainly kept on the temporal aspects, as to not worry too much about overall
model, constraints, types, etc. Likewise, sample values shown do not necessarily
represent values of the underlying types. They are mainly used for an easier
interpretation of the sample values.

1.1.2 Example 1 : Timestamps for created and updated events

We start of this example by looking at Figure 1.1). There are five attributes, and
most of them should be self-explanatory. The primary key for this table is PNO. This
is also indicated in the table header. The attribute FEE represents the membership
fee for each player. For easier interpretation of the sample data by the reader,
values for the column FEE are displayed with the currency symbol prepended. The
column CREATED shows when a row has been recorded in the database and the
column UPDATED when a row was last updated. The time part has been omitted
from the output. Let us assume that values for those two attributes are set by the
system, i.e. not by the end user.
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PNO NAME CITY FEE CREATED UPDATED

P1 Michael Copenhagen $100 2010-01-01 2012-01-01

P2 Simon Berlin $110 2011-04-01 2011-04-01

P3 Allan Paris $90 2012-01-01 2012-09-01

Figure 1.1: PLAYER with sample data

Looking into the sample data we can observe that it contains two date attributes.
The date values for the attribute CREATED is created when the row is inserted and
is never updated again, but the values for UPDATED can and will change over time.
Let us now look at the same table after the FEE is updated for player P1 by reducing
it down to $80.

PNO NAME CITY FEE CREATED UPDATED

P1 Michael Copenhagen $80 2010-01-01 2016-01-01

P2 Simon Berlin $110 2011-04-01 2011-04-01

P3 Allan Paris $90 2012-01-01 2012-09-01

Figure 1.2: P1 row after update in PLAYER table

We notice two things in this example. First, the value for UPDATED has been
updated to the current date value which is set to 1. January 2016. This becomes
the valid or effective date for the new fee. Secondly, by updating FEE we have lost
information about what fee P1 was paying previously. Answering queries like "How
many times the fee changed for the player P1 during last year?", and "What was
the total income from membership fees last year?" may be required, but neither
of these queries can be answered correctly. Because data changes in this way some
historical information will inevitably be lost, and because of that we will need to
address this problem.

1.1.3 Example 2 : Event time-stamping

For this example let us now look at the table PLAYER_FEE_SINCE, shown in Figure
1.3. This table has only three attributes. Those are PNO, FEE and SINCE. The
attribute SINCE represents a year from which the fee has been valid and is updatable
by the user. The primary key for this table consists of the attributes PNO and SINCE,
since we can not have a player paying the fee more than once for the same year.
We want again to change the fee for P1 by reducing it to $80. Just like we did in
the first example. Let us now look at what a possible scenario is.
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PNO FEE SINCE

P1 $100 2012

P2 $110 2011

P3 $90 2012

(a) before

PNO FEE SINCE

P1 $100 2012

P1 $80 2016

P2 $110 2011

P3 $90 2012

(b) after

Figure 1.3: PLAYER_FEE_SINCE table before and after the fee is changed

This example illustrates a possible solution to the query problems we identified in
1.1.2. We have replaced the update statement with an insert, and redefined the
primary key. This change seems to enable us to somehow construct the history
around player’s membership fees. We can say that player P1’s fee has been $100
from the year 2012 until the year 2016, and that fee is set down to $80 as of
2016, and will be current until this fact is changed. Let us now, for the moment,
imagine that this player is no longer a member and has no fee, but we want to
keep a record of him, i.e. we do not want to completely delete him from the table.
How do we do this? It turns out that this is not possible by using the current
model. Therefore there is a need to introduce two attributes to the model that
will represent a period. A period with a designated start and end time.

1.1.4 Example 3 : Need for two different time dimensions

In the examples we have presented so far, each had different semantics regard-
ing the attributes UPDATED and SINCE. The first one, based on UPDATED, indicates
transaction or log time of a change, and is not updatable by the end user. The
second one, based on the SINCE attribute, is updatable and has been used to rep-
resent years for which some player fee has been valid. Sometimes it is necessary
to support both of these semantically different time dimensions inside the same
table.

PNO CONTACT FEE SINCE UPDATED

P1 JO $100 2012 2011-12-01

P1 MA $80 2016 2015-12-01

P1 JO $80 2016 2016-05-01

P2 RI $110 2011 2010-12-01

Figure 1.4: Changes across two different time dimensions.
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The fee for player P1 has been recorded on 1. December 2011 for the year 2012,
and has remained the same up until year 2016, when it was reduced to $80. This
was recorded on 1. December 2015. Furthermore, the contact person for this
player has been changed from JO to MA. However, on may 1. the player has been
reassigned to his previous contact person. Validity time for a player fee is implied
by the attribute SINCE, contact information however is pertinent to specific valid
time and is implied by the attribute UPDATED. To be able to record shown data we
had to remove the SINCE attribute from the primary key. Once again, we will need
a different model if we are to manage this kind of data.

1.1.5 Example 4 : Need for periods

Let us now look into an example that uses two fully temporal and related tables.
Table PLAYER_LICENSE stores licensed players. Licenses are obtained from an or-
ganisation and are valid for some period. Players can only join clubs if they are
licensed. Second table SQUAD is used for storing player-club relations, which means
that the player is under contract in that club for the specified period. The player
must be licensed for the duration of the contract period. Tables are shown in
figure 1.5. Attributes used for primary keys are underlined in the table headers.
Foreign key references (player and club) are not shown but are assumed to exist.

PNO FROM TO

P1 2008 2012

P1 2014 2016

P2 2007 2015

P3 2010 2013

(a) PLAYER_LICENSE. Players with
valid license periods.

PNO CNO FROM TO

P1 C1 2009 2012

P1 C1 2014 2016

P2 C1 2007 2010

P3 C1 2011 2013

(b) SQUAD. Players with club con-
tracts.

Figure 1.5: Licensed players with club contracts.

Let us now consider a few cases that would be relevant when working with tables
like these two.

1. Should it be possible to insert (’P1’, 2006, 2010) into PLAYER_LICENSE?
2. Should it be possible to delete (’P1’, 2008, 2012) from PLAYER_LICENSE?
3. Should it be possible to insert (’P1’, ’C2’, 2010, 2011) into SQUAD?
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The short answer is no to all of these questions, and to prevent that from happening
we will need to define and use temporal primary and foreign keys, and constraints.
Generally, we want to prevent overlapping of period values in a specific table.
However, for case (2) we want to ensure that periods in one table overlaps the
period for relevant rows in another table. As we do not want a case where a player
is under contract but not licensed.

1.2 Scope and problem statement

Necessity to address problems when dealing with time varying data was motivated
by customer requirements in my current company. Furthermore, announced tem-
poral support in the up-coming SQL Server 2016 [9], DBMS which our customers
uses, has been the main reason to choose this platform for investigating temporal
challenges and possible solutions. No other considerations or criteria have been
used.

Let us now reiterate some of the points mentioned in the introduction so far. They
are:

• Many temporal concepts are investigated and well described in the literature.
• Some temporal support is provided by leading database vendors.
• SQL:2011 standard includes section on temporal support.
• Customers are requesting support for temporal data. And tendency is rising.

Taking all this into account, it seems it would be worthwhile and generally useful,
to try and implement full temporal support for an existing non-temporal database
for which temporal requirements exist. Some of the questions that we want to ad-
dress are: "What are SQL Server limitations regarding temporal support if any?",
"Is it possible to work around those limitations?" and in the end "Is it worth the
trouble?". Our relational starting point is described in Chapter 3.

The hope is to be able to provide insight and give answers to those questions
from an adopter’s perspective. Temporal challenges have been dealt with in the
application space for the most part so far. Now, the question is "Was it preference
or necessity?".



Chapter 2

Temporal concepts

2.1 Time point, scale

The concept of time in a temporal database world is somewhat different then our
understanding of the time in the real world. In the real world we think of an
instant of time or a time point as of something that does not have duration. For
example if someone has a meeting at 10:00 in the morning we intuitively think of
that point in time as one with no duration. In the temporal database world time
is viewed as a finite set of discrete instants or time points in some time domain.
Each time instant has a duration. The duration may be a year, a day, an hour, a
microsecond, etc.

time1 2 3 4 5 6 7

(a) Timeline with time points or time instants

1 1 1 1 1 1

(b) Scale or granularity

1. 2. 3. 4. 5. 6.

(c) Chronons

2 5

(d) The interval [2:5]

Figure 2.1: Illustration of different time concepts1.

8
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The time domain can be represented by integers, as in the Figure 2.1, or by
the rational numbers with a defined scale [12]. For example, we could choose a
numeric type NUMERIC(8, 6) to represent time points, let us say, minutes with a scale

that supports representation of microseconds. Therefore, the scale of a real number, in

this context, is also a duration of an instant and is also called a granularity or a chronon

[13] in the temporal database literature.

2.2 Intervals

An interval in a temporal context is defined as the time between two events and repre-

sented as a set of contiguous chronons [13]. Another definition is that interval is an or-

dered set of discrete and contiguous time points, with a specified start and end. Data type

representing an interval, on the other hand, also need to satisfy certain properties [12].

Those properties are: 1. Two unary operators BEGIN and END exist, that take an interval

as a parameter and return the first and the last point respectively. 2. BEGIN(i) ≤ END(i).

And 3. Defined binary operator ∈ such that p ∈ i, if and only if BEGIN(i) ≤ p ≤ END(i).

The duration of an interval can be defined as the number of time points between the

start and endpoint. In Figure 2.1 we have marked an interval [2:5], which includes the

points {2, 3, 4, 5} and we can observe that the cardinality of this set is equal to the

interval duration as represented on the timeline for the specified scale.

Intervals are unfortunately called periods in SQL:2011 [3] because the keyword interval

has been taken. We will use the term interval when we are talking about the general

concept outside of the specific SQL context, and period otherwise. Interval duration is

also called span and time distance [13].

As we have already seen, an interval is denoted in notational terms by squared brackets

surrounding the respective start and endpoint. If the start point of an interval is equal to

the end point of an closed-closed interval, we say that interval duration is 1. In general

all intervals with unit duration are called unit intervals [12].

1Slightly modified version of the relationship between time domain, chronons and interval as
presented in [2].
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There are four types of intervals. Their definitions regarding some point p with start in

point s and end in point e are:

[s : e] = {p : s ≤ p ≤ e} and s ≤ e (closed)

[s : e) = {p : s ≤ p < e} and s < e (closed-opened)

(s : e] = {p : s < p ≤ e} and s < e (open-closed)

(s : e) = {p : s < p < e} and s < e (open)

(2.1)

2.3 Time concepts

2.3.1 User-defined time

In the temporal database literature [13] there are three main distinctions regarding dif-

ferent concepts of time. Those are transaction time, valid time and user-defined time.

User-defined time or en event time is a concept that is known and already used in the

database world. It could be used to represent a persons birthday, hiring date, or a date

of a past or an upcoming event. As there is already support for this kind of time it will

not be discussed further. Therefore, in what follows, we are going to focus on transaction

and valid time only.

2.3.2 Transaction time

Transaction time is the time when a fact is stored in a database. It refers therefore only

to the past. Tables supporting transaction time are also called history tables, as they

preserve historical record of any data modification that might have been done. We can

say that besides supporting access to the current state of the data transaction time tables

also support access to the previous states or versions of the data. It is not possible to

modify transaction time. No alternations to the history are possible. Transaction time

is also called system time.

2.3.3 Valid time

Valid time represents a time when we believe that some fact is true. It is often used

to represent the past but it can also be used to represent present and future time. As

our beliefs can change so can valid time. Let us look at an example. We record in our

database that some historical event took place in the period from the year 1956 to the
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year 1960. At some later point we learn that this was not true and that in fact that event

took place from the year 1955 to 1960. Therefore it is necessary to correct it and make

changes in the database. Another example could be that our vacation plans change and

as a consequence we need to change the planned period to some other. Valid time is also

called application or business time.

2.3.4 Bitemporal tables

We have seen in the previous two sections that transaction and valid time represent two

semantically different time dimensions, orthogonal to each other. One represents the

time of state changes inside the database and another represents the time when some

fact is held to be true in the modelled world.

1 2 3 4 5 6 7 Transaction-time

Valid-time

1

2

3

4

5

Figure 2.2: Validity of some fact according to transaction time

Tables that support both of these time dimensions are called bitemporal. Figure 2.2

represents valid time variation of a fact against the transactional time. Let us say that

the current time is 7, then we can observe that at transaction time 1, TT for short, the

system has recorded that valid time, VT for short, has the interval [2:3]. Furthermore,

at TT = [3:4] we can observe that VT = [1:2], and that at TT = [6:6] the valid time is

not specified, indicating that valid time information for a fact has been deleted at time

6. Different shades of gray in Figure 2.2 represent different values that are valid during

valid time intervals.

Another way to represent bitemporal data is of course in tabular form as shown in Figure

2.3. The sample data shows four different fees for specified valid time and transaction

time for when the fee was changed.
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PNO FEE VT_FROM VT_TO SYS_FROM SYS_TO

P1 $110 2 4 1 2

P1 $70 2 3 2 3

P1 $90 1 3 3 5

P1 $20 2 5 5 6

Figure 2.3: PLAYER_FEE with valid and transaction times.

Please note that there is no primary key constraints defined. We will discuss them later

in this chapter. Each row shown in Figure 2.3 represents or states a fact about player

fee for valid time. Therefor there must not be any overlapping periods. Overlapping and

some other temporal predicates are also discussed later on.

2.4 Concepts of now and until changed

Now is a temporal variable managed by a DBMS and indicates that a fact is valid until

present time. That means that, for example, for the interval [3:now ] variable now is

evaluated and becomes known when user asks for it. If current time is 10 then the

interval is evaluated to [3:10]. That implies that variable now is bound to the current

system time, and therefore changes as time progresses. In some temporal database

literature [12] it is also called "the moving point now".

The temporal variable UC, which means until changed is a marker used for transactional

time and indicates which row represents the current state of a fact. When a current state

is changed then a end or to point is set to the current time and a new row is marked

with UC. If we look at Figure 2.3 we can see that there are no current rows as all of

them have been "closed". This "closing" time is indicated by the SYS_TO column.

Taking the same example from Figure 2.3 we can now add an extra row (P1, $10, 5,

now, 6, UC). This row now states that the fee for player P1 is $10 from time 5 to present

time and that it is recorded at time 6 and that this fact is current until changed. This

change is shown in Figure 2.4.

The UC marker is usually represented by a maximal value of the underlaying data type.

For the data type representing years it may be 9999, for dates it may be the value of

9999-12-31 and so forth. For examples used here it is taken to be 99.

However, the concepts UC and now have some semantical distortions [14]. For example,

taking previously mentioned sample, if the current time is 10 and we are to ask "Which

players will be charged $10 fee at time 11?", we will not get the correct answer. That
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PNO FEE VT_FROM VT_TO SYS_FROM SYS_TO

P1 $110 2 4 1 2

P1 $70 2 3 2 3

P1 $90 1 3 3 5

P1 $20 2 5 5 6

P1 $10 5 now 6 UC

Figure 2.4: PLAYER_FEE with a valid and transaction times.

is because the variable now will be evaluated to 10. If we are, at the same time, to ask

question for how long player P1 has been charged a $10 fee we will again get the wrong

answer. The duration of the period [6 : 99] does not represent actual duration in regard

to the question we are asking.

2.5 Interval operators

In the temporal database world there are variety of interval operators that can be used

to form temporal predicates. Some of the operators that will be discussed here are taken

from Date et al. [12]. They have been largely based on Allen’s operators [15], but there

are a few name changes and additions. Some of them are shown in Figure 2.5. A more

complete overview is given in Appendix A.

The intervals i and j are assumed to be closed. In fact, all intervals presented in this

thesis are closed unless otherwise noted. Also those that can be inferred from the sample

data. With interval.s we denote start point of the interval, and with interval.e the end.

The operators equals, overlaps, meets and merges are commutative. The operator meets

is combination of Allan’s operators meets and met by. Likewise, operator overlaps is a

combination of overlaps and overlapped by. The operator merges is or’ed combination of

overlaps, overlapped by, meets and met by.

The predicate for testing if two intervalsmeet (or are adjacent) includes the variable scale,

as can be observed in Figure 2.5. In our examples so far the scale (or granularity) has

been 1. It is worth noting that if intervals i and j have been defined as half-open, then the

predicate could be formulated without a scale. It would simply be: (i.e = j.s)∨(i.s = j.e).
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Intervals i and j Operator Condition

i
j

i EQUALS j i.s = j.s ∧ i.e = j.e

i
j

i INCLUDES j i.s ≤ j.s ∧ i.e ≥ j.e

i
j

i BEFORE j i.e < j.s

i
j

i OVERLAPS j i.s ≤ j.e ∧ i.e ≥ j.s

i j i MEETS j (i.e + scale = j.s)∨

(j.e + scale = i.s)

i j

i
j

i MERGES j i OVERLAPS j ∨ i MEETS j

i
j

i BEGINS j i.s = j.s ∧ i.e ∈ j

Figure 2.5: Interval operators

In Figure 2.6 we show some other scales/granularities as well. They are defined over

sample data types. It should be noticed that, for type DATE, scale or granularity is shown

as one day and not as an integer 1. That is because of the underlying data type. For

type SECOND it is assumed to be an integer. On the other hand, for MILISECOND it is type

NUMERIC(3,3) and for MICROSECOND it is type NUMERIC(6,6).

Type Scale/Granularity

DATE 1 day

SECOND 1

MILISECOND 0,001

MICROSECOND 0,000001

Figure 2.6: Scales/granularities for different types
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2.6 Coalescing

The coalescing operation is somewhat similar to the duplicate elimination. When per-

forming a duplicate elimination we consider if two rows are equivalent. Two rows are

equvalent if all their attribute values are. In temporal tables two rows are value-equivalent

if values of their non-timpestamp attributes, also called explicit attributes, are equivalent.

Coalescing is an unary operation. It takes temporal relation as input, and produces

normalized or packed relation regarding interval values of it’s timestamp attribute. The

resulting relation is union compatible to the input relation [16].

PNO FEE VT_FROM VT_TO

P1 $110 2 4

P1 $110 5 7

(a) Value-equivalent and adjacent rows

PNO FEE VT_FROM VT_TO

P1 $110 2 7

(b) After coalescing

Figure 2.7: Coalescing two value-equivalent rows that have adjacent valid-times.

Temporal relation is coalesced when there are no value-equivalent tuples such that their

timestamp intervals are adjacent (meet) or overlap. Performing coalescing operations on

a relation which is already coalesced has no effect [17]. Figure 2.7 shows an example of

a coalescing operation. If the fee for player P1 is $110 for time points I1 = {2, 3, 4} and
the same for time points I2 = {5, 6, 7}, then the set of all time points for which the fee is

valid is J = I1∪ I2. The resulting interval [2 : 7] is then obtained by taking the smallest

interval point for the start and largest for the end, i.e. interval [MIN(J) : MAX(J)].

The result can be observed in table b), from Figure 2.7. This operation, as already

suggested, can only be applied to the rows that are value-equivalent and their intervals

meet or overlap. If we were to make a union of two disjoint interval sets then the result

will contain gaps and gaps are not allowed in intervals by definition.

Let us now consider what would happen if the second row from our running example

has the following values: (P1, $100, 3, 7). The first and second row now overlap. And

coalescing on the timestamp attribute only, will give the same interval, namely interval

[2 : 7]. However, because the rows are not value-equivalent we are not allowed to perform

coalescing. Now, the question arises, should such a row be allowed into the table to begin

with. We will look into this and some related issues in Section 2.7.
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2.7 Key constraints

Date et al. in their book [12] identify three potential problems that need to be addressed

when working with temporal data. Problems are identified as problem of: contradic-

tion, redundancy and circumlocution. Let us now consider each of these by looking into

examples representing those problems.

PNO FEE VT_FROM VT_TO

P1 $110 2 4

P1 $100 3 6

Figure 2.8: Contradiction problem.

Example in Figure 2.8 shows two facts about player P1. The first one states that the fee

is $110 for time points 2, 3 and 4. Second one states that the fee is set to $100 for time

points 3, 4, 5 and 6. Those two statements are clearly in contradiction regarding points

3 and 4. The first one states that the fee for those points is $110 and second one that

the fee is $100. If we define a database table as a set of true propositions or facts, then

those two statements will violate this definition.

The second example regarding redundancy, is shown in Figure 2.9. This example illus-

trates that the same fact is stated twice, namely that the fee for player P1 is $110 for time

point 4. This problem could be solved by coalescing those two rows into one, stating

that the fee is $110 for points [2:5].

PNO FEE VT_FROM VT_TO

P1 $110 2 4

P1 $110 4 6

Figure 2.9: Redundancy in temporal data.

Last example, Figure 2.10 under (a), shows the problem of circumlocution. That is, using

two statements or rows, to state something that could be stated using a single statement.

This is a somewhat similar problem to the previous one, but with adjacent intervals with

no time points in common. Two rows in this example could also be coalesced, but not

always. It depends on the predicate of the table. If we consider a similar, valid time,

table with presidents and their terms in office then we can not perform coalescing or

packing, because in doing so we will lose information on their exact periods in office.

This is illustrated in the same figure under (b).

The necessity for using some kind of temporal keys should be obvious from those exam-

ples. Furthermore, temporal foreign keys would also be necessary in some cases. Figure
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PNO FEE VT_FROM VT_TO

P1 $110 2 4

P1 $110 5 6

(a) can be coalesced

PRESIDENT VT_FROM VT_TO

Reagan 1981 1984

Reagan 1985 1988

(b) can not be coalesced

Figure 2.10: Example of two possible circumlocution cases.

2.11 shows two tables, first representing players and second player-club relationship. Let

us now suppose that before a player can join a club for some period, the player needs

to be "valid" in the player table for that very same period. To enforce this kind of re-

quirement DBMS has to support foreign temporal keys. As an example, if player P1 has

joined a club C1 during time points [2:4] it should not be possible to delete or modify

the valid time period for this player in such a way that would violate the requirement.

PNO VT_FROM VT_TO

P1 2 4

P2 3 6

(a) player

PNO CNO VT_FROM VT_TO

P1 C1 2 4

P2 C1 4 5

(b) squad

Figure 2.11: Dependant valid times in two different tables.

2.8 Querying in general

In conventional database systems querying is performed on the current state of the

database. Temporal querying is the ability to query a specific state of the database

regarding one or more time dimensions. If we take a look at the example shown in

Figure 2.4, then we can perform queries on both valid and transaction time. A sample

query regarding the valid time could be formulated as: "Get a player’s fee for valid time

period as of time point 3". Or, another one, "Get average fee for players during the

valid time period [2:4]". Queries regarding transaction time could be formulated in a

similar way, but they will always refer to present or past time. Combining both valid and

transaction time periods we could query across two different time dimensions. Effectively

asking about our modelled "beliefs" regarding valid times that are held and recorded at

some specific transaction time. Taking our current example we could formulate this kind

of query as: "What have we believed that the fee was for player P1, at transaction time

3 for the period [2:4]?".
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2.9 Join and aggregate functions

Temporal join is a type of join between two tables, both containing compatible timestamp

attributes.

Joins, in general, can be represented by the following statement [2]

R.A θ Q.B (2.2)

They are called theta joins where R and Q are relations and A and B are attributes

with compatible data types. The theta operator θ is based on the following predicates/-

operators: =, 6=, <,>,≤ or ≥. The temporal join involves attributes of temporal data

types, such as time intervals. Temporal joins can therefore be defined as joins that are

based on interval operators. Operators like before, overlap and meet, which have been

discussed in 2.5.

To illustrate temporal join we will reuse the example from Figure 2.4. We want to select

all player pairs that were or will be paying members at some overlapping point in time.

Listing in 2.1 assumes the existence of the type generator INTERVAL and an operator

OVERLAPS in the DBMS.

1 SELECT P1.PNO, P2.PNO FROM

2 PLAYER_FEE P1, PLAYER_FEE P2

3 WHERE P1.PNO < P2.PNO AND

4 INTERVAL(P1.VT_FROM, P1.VT_TO)

5 OVERLAPS INTERVAL(P2.VT_FROM, P2.VT_TO)

Listing 2.1: Temporal join

This temporal join can be represented in the more general form as

ΠA1, A2, ... An(σC ∧R.interval INTERVALOPQ.interval(R × Q)) (2.3)

Where C is a non temporal predicate and INTERVALOP is an interval operator. If we denote

temporal predicate with T we can formulate temporal join even shorter.

R onT
C Q (2.4)

Aggregate functions, in general, could be divided into selective (MIN, MAX) and cumulative

(AVG, SUM, COUNT) functions. In our example from Figure 2.4, regarding player fees,
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aggregate function could be used to compute SUM of the fees for specific time points. Or,

to find the largest fee for each time point using the MAX function across all players.

Temporal aggregation can be based on six different temporal ranges [11]. Those temporal

ranges are: point in time, instantaneous, three different windowing functions and user

defined function. Computing the sum of the fees per time point would be an example

of an aggregate function overpoint in time range. Kaufmann [11], in his thesis, suggests

that the most common use case for temporal aggregation in the SAP system is of the

instantaneous type. An example of this aggregation type is given by Kaufmann and is

showed in an adopted version in Figure 2.12.

PNO FEE VT_FROM VT_TO

P1 $110 2 4

P2 $90 3 6

P1 $120 5 7

(a) player fees

SUM VT_FROM VT_TO

$110 2 2

$200 3 4

$210 5 6

$120 7 7

(b) temporal sum

Figure 2.12: Instantaneous temporal aggregation.
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Tables and relationships

In this chapter we are going to introduce tables and relations between them forming a

running example that will be used in subsequent chapters as a basis for discussing various

temporal topics that we mentioned in Chapter 2.

Table data will be illustrated with some sample values. As we did in Chapter 2, in some

cases values presented will not necessarily represent those of the underlaying data type.

We wanted to make sample values more readable and keep the focus on temporal aspects.

A complete overview regarding the running example and its database diagram and rele-

vant SQL create statements is given in Appendix B.

For all sample data the UC mark is set to be 9999-12-31. Current time, or now, is

assumed to be 1. April 2016 unless otherwise noted.

3.1 Predicates

Table rows are true propositions/statements, or facts, about modelled data. Therefore,

the table predicate has a generalised form for all propositions. When creating conven-

tional database tables we do not often think about predicates in a formal way. However,

regarding temporal data, they are necessary and very useful so that we can reason about

data that can span across different time dimensions. This reasoning will also help us

greatly in formulating necessary constraints. In the table descriptions that follow they

are therefore used and formally stated.

20
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3.2 Players

The table player represents the registration of players in an association. Table is of

bitemporal type. Predicate for this table is: "Player PNO with the name NAME is registered

and the membership fee is set to FEE during period VT_FROM to VT_TO as recorded during

the period SYS_FROM and SYS_TO.". A player can be registered as a member without

paying a membership fee. Paying members are provided with additional services. The

figure shows some sample values for this table.

PNO NAME FEE VT_FROM VT_TO SYS_FROM SYS_TO

P1 Michael $110 2000-01-01 9999-12-31 2016-01-01 9999-12-31

P2 Anders $70 2002-04-15 9999-12-31 2016-01-01 9999-12-31

P3 Jeppe $90 2001-06-01 9999-12-31 2016-01-01 9999-12-31

P4 Vladimir $20 2004-10-01 2005-10-01 2016-01-01 9999-12-31

P5 John $20 2018-01-01 9999-12-31 2016-01-01 9999-12-31

Figure 3.1: Sample data for table PLAYER.

3.3 Player licences

Player licences are recorded for their validity periods. To be able to join squads, i.e. sign

a contract, a player must have a valid licence issued by some authoritative authority.

There are different types of licences and they are also shown. Licences can be issued

only to registered players. Predicate for this table is: "Registered player PNO has a

licence of type TYPE during the period VT_FROM to VT_TO".

PNO TYPE VT_FROM VT_TO

P1 Junior 2009-01-01 2013-12-31

P2 Senior 2008-04-15 9999-12-31

P3 Senior 2009-06-01 9999-12-31

P4 Goldie 2010-01-01 2012-01-01

Figure 3.2: Sample data for table PALYER_LICENCE.

3.4 Clubs

Table clubs stores data about registered clubs. The attribute SINCE indicates the time

when the club has been registered. This is a special case of an event based table where

we can deduce valid time periods. Clubs can not be logically unregistered as it can be
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done with players. The table represents a historical record of club registrations and is

mainly used to illustrate the possibility to partially represent historical records using a

single attribute.

CNO NAME SINCE

C1 Dial Square 1886-01-01

C1 Arsenal 1914-01-01

C2 Liverpool 1892-01-01

C3 Chelsea 1905-01-01

Figure 3.3: Sample data for table CLUB.

3.5 Club managers

This valid-time table is used for the club managers as the section title indicates. The club

managers are registered with their contract periods that they signed with their respective

clubs. The predicate for this table is: "Manager named NAME has signed a contract with

club CNO for the period VT_FROM to VT_TO".

CNO NAME VT_FROM VT_TO

C1 Wenger 1996-01-01 1999-12-31

C1 Wenger 2000-01-01 2011-12-31

C1 Wenger 2012-01-01 2018-01-01

Figure 3.4: Sample data for table MANAGER.

3.6 Squads

Only licensed players are able to join clubs, that is, sign contracts with those clubs. This

is a valid time table. Valid time represents the duration of contracts. The duration of

a contract in this table must be equal to or subinterval of the player’s licence period.

Predicate for this table is: "Licensed player PNO has signed contract with club CNO during

the period VT_FROM to VT_TO for which player has a valid licence.".

PNO CNO VT_FROM VT_TO

P1 C1 2010-06-01 2013-05-31

P2 C1 2008-10-01 2011-02-01

P4 C1 2010-01-01 2012-01-01

Figure 3.5: Sample data for table SQUAD.
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Temporal support

In this chapter we are going to look at and examine temporal support in Microsoft’s

SQL Server 2016 [18]. It has been released on June 1, 2016. We will refer to it as SQL

Server from this point on. The SQL Server has been released when this thesis was being

completed, and because of that there was not sufficient time to use it. However, the final

version does not have any significant changes in regards to the temporal support when

compared to the beta version.

4.1 System-time support

In the running example, which has been described in Chapter 3, the system time support

is demonstrated for the table PLAYER. System time support is also called versioning in the

SQL Server. This name perhaps also suggests the intended purpose of the system-time

support.

4.1.1 Enabling history (versioning)

To support system time or versioning, Microsoft has provided extensions to both DDL

and DML for the SQL Server [9]. System time attributes are defined with DATETIME2

type (and with that type only). There are two of them, making a pair, that indicates

start and end time of the period.The SQL extension PERIOD FOR SYSTEM_TIME enables

user to define a period and specify which attributes are to be used to form it. Periods

are defined as closed-open. When defining system time attributes, user also specifies via

built-in extensions ALWAYS AS ROW START and ALWAYS AS ROW END that attribute values

23
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are to be generated as start and end value of the period. Furthermore, user also have

the possibility to specify that those attributes need to be hidden. Hiding attributes will

prevent them from automatically showing up in select * queries. However, if explicitly

included in a select list, they will be shown to the user. They can be hidden by using

the SQL extension HIDDEN. Parts of the relevant create statement is shown in Listing 4.1.

Full listing for player create statement is shown in Appendix B.

-- From-to attributes

SYS_FROM DATETIME2 GENERATED ALWAYS AS ROW START HIDDEN NOT NULL

SYS_TO DATETIME2 GENERATED ALWAYS AS ROW END HIDDEN NOT NULL

-- Defining a period

PERIOD FOR SYSTEM_TIME (SYS_FROM, SYS_TO)

-- Enabling versioning using specific name for history table

SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.PLAYER_HISTORY)

Listing 4.1: Parts of create statement enabling versioning.

System versioning is explicitly enabled by using SYSTEM_VERSIONING = ON, and name of

the table that is created by the system in which the system will record any changes to

the original table. The history table can also be created by the user but has to be union

compatible. If the name of the history table is not specified, the system will create one

following predefined naming pattern. By using two tables the system separates current

and past states of the data.

After successfully enabling versioning, the user is free to modify schema of the versioned

(current state) table. However, there are some minor limitations. The user can not

change the type of an attribute to a different type that is not compatible. For example,

it is allowed to change VARCHAR to CHAR, but changing INT to NUMERIC is not. Even if the

table is empty. Any schema changes to the versioned table are automatically propagated

to the history table as well. This shows that SQL Server supports schema evolution of

the versioned tables, in such a way, that is completely transparent to the user.

The user has no system provided abilities to modify data in the history table directly.

Every modification in the versioned table is reflected in the history table by creating pre-

vious versions. Modifications can be performed by: insert, update and delete statements.

We will look into semantics of each in Section 4.1.2.

In the running-example diagram, found in Appendix B, the history table is shown as an

support table without any foreign key relations to the table PLAYER. It should be noted

that it is possible to disable and enable versioning as many times as the user wants. Each
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time the user enables versioning, the user can choose a different table for history as long

as this table is union compatible. This provides users with an opportunity to partition

history data across many tables, and could be very useful for very large data sets, that

have been accumulated over long periods of time. However, only one history table can

be active and used by the system at any given time.

The SQL Server also has built-in support for dealing with large data sets in an efficient

way. Figure 4.1 shows temporal in-memory architecture that SQL Server uses to optimise

access to current and recent history data. Memory optimised tables reside in memory

and provide fast access. In addition, transactions performed on memory optimised tables

are fully ACID compliant.

Figure 4.1: SQL Server temporal in-memory architecture. Source: [19], used
with permission from Microsoft.

Further information on versioning can be found in reference [9], where some additional

remarks are mentioned regarding creation of the versioned tables. Most importantly:

1. There must be primary key definitions for the versioned table 2. There is exactly one

PERIOD FOR SYSTEM_TIME definition, and 3. PERIOD columns are always assumed to be

non-nullable (even if not specified).

4.1.2 Modifying data

A general note before we go into different examples and considering the setup for the

current running example. First, values for existing system time columns SYS_FROM and

SYS_TO can not be modified in any way by the user1. Second, history table is completely

1During an insert user can provide default values.
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read only from the user perspective2. Current time in the following examples is assumed

to be 1. April 2016.

INSERTING : Semantics of inserting data into the player table is almost identical to the

conventional insert. Data is inserted into target table and period columns are automat-

ically updated. Nothing is recorded in the history table. Example of inserting data is

shown in Figure 4.2.

INSERT INTO PLAYER VALUES(’P1’, ’Michael’, ’$110’, ’2000-01-01’, ’9999-12-31’);

(a) SQL for inserting P1.

PNO NAME FEE VT_FROM VT_TO SYS_FROM SYS_TO

P1 Michael $110 2000-01-01 9999-12-31 2016-04-01 9999-12-31

(b) Table player after inserting.

PNO NAME FEE VT_FROM VT_TO SYS_FROM SYS_TO

(c) Player history after inserting.

Figure 4.2: System-time insert.

If the user specifies system time period columns, in his insert statement, then values for

those columns will be of built-in function DEFAULT.

UPDATING : To update the fee for player P1, the conventional update statement is used.

What happens underneath is the following. Before a row is updated, it is inserted into

history table with an adjusted period. Then, the row to be updated is removed and a

new one is inserted. Periods for current and previous row will meet, after the operation

is committed. The result of the operation is illustrated in Figure 4.3. Because we have

assumed that current time is 1. April 2016, attributes SYS_TO and SYS_FROM in appropriate

rows are set to this value.

In general, all updates are allowed in the current table. Even modification of primary

key values, unless such modification will violate the foreign key or any other constraints.

DELETING : Deleting player P1 will copy the relevant row to the history, close the period,

and then remove original row from the current-state table. We have seen an example of

period closing technique in Figure 4.3. It essentially means that end time of a period is

set to the current system time. Figure 4.4 illustrates a delete operation.

2If versioning is turned off, user will be able to modify data in a regular way. After modifi-
cation, user will be able to turn versioning on and reuse modified table.



Chapter 4. Temporal support 27

UPDATE PLAYER SET FEE = ’$100’ WHERE PNO = ’P1’;

(a) SQL for updating P1.

PNO NAME FEE VT_FROM VT_TO SYS_FROM SYS_TO

P1 Michael $100 2000-01-01 9999-12-31 2016-04-01 9999-12-31

(b) Table player after updating P1.

PNO NAME FEE VT_FROM VT_TO SYS_FROM SYS_TO

P1 Michael $110 2000-01-01 9999-12-31 2016-01-01 2016-04-01

(c) Player history after update.

Figure 4.3: System-time update.

DELETE PLAYER WHERE PNO = ’P1’;

(a) SQL to delete P1.

PNO NAME FEE VT_FROM VT_TO SYS_FROM SYS_TO

(b) Table PLAYER after deleting P1.

PNO NAME FEE VT_FROM VT_TO SYS_FROM SYS_TO

P1 Michael $110 2000-01-01 9999-12-31 2016-01-01 2016-04-01

P1 Michael $100 2000-01-01 9999-12-31 2016-04-01 2016-04-02

(c) Table PLAYER_HISTORY after deletion.

Figure 4.4: System-time deletion.

It should be noted that the delete operation as illustrated, considering the sample data

for our running example, will not succeed. The SQL Server will indeed prevent it, because

of the foreign key constraint from PLAYER_LICENCE and SQUAD tables.

4.1.3 Querying

For querying the current and past states of versioned data, SQL Server provides five new

temporal operators. Those operators are:

• AS OF datetime: Operator is used to return state as of specified timeslice.
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• FROM start_datetime TO end_datetime: Operator is used to return rows where

system time period overlaps with the user specified period. Periods are treated as

closed-opened.

• BETWEEN start_datetime AND end_datetime. Similar to operator FROM TO,

with the difference that periods are compared as closed-closed.

• CONTAINED IN (start_datetime, end_datetime): Operator that returns rows

where the period is a subset of the user specified period.

• ALL: Operator that returns all states or versions, including the current state.

The first three operators listed correspond to operators defined in SQL:2011 [3]. The

last two operators are SQL Server specific.

Figure 4.5 with the sample code shows the result of selecting players by using SQL FOR

SYSTEM_TIME extension with operator ALL.

SELECT * FROM PLAYER FOR SYSTEM_TIME ALL;

(a) Select all players.

PNO NAME FEE VT_FROM VT_TO SYS_FROM SYS_TO

P1 Michael $110 2000-01-01 9999-12-31 2016-01-01 2016-04-01

P1 Michael $100 2000-01-01 9999-12-31 2016-04-01 2016-04-02

(b) Result of running select query.

Figure 4.5: System-time select by using operator ALL.

4.2 Valid-time support

The SQL Server 2016 does not provide built-in support for working with valid-time as-

pects of temporal data. In this section we will discuss challenges and possibilities when

implementing valid-time support. Our implementation relied on the SQL Server exten-

sion and programmability infrastructure. We have also used the SQL Server integration

possibility with CLR3. This integration possibility is described in [20].

Our implementation is based on theoretical concepts as discussed in Chapter 2, on

SQL:2011 standard (temporal features) as discussed in [3], and on a concrete example of

implementation as it has been presented in [7].

3Common Language Runtime, part of Microsoft’s .NET framework
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4.2.1 Temporal primary and foreign key constraints

As mentioned in Chapter 2, conventional primary and foreign key constraints are not

enough to ensure that there are no duplicate or contradictory temporal statements in the

table. Adding from and to attributes to primary key will not in it self prevent overlap.

If we look at the table in Figure 4.6, we can see that player P1 has two licences. First

one issued while he was junior and the second when he became a senior. The problem

is that the periods for these two different types of licences overlap. First row states that

the player has been Junior in period [2012:2013], and second that he was Senior at

that same time. Two statements that clearly contradict each other. We need to prevent

this from happening, and to do this we must add additional constraints to the table

definition. Constraint that will ensure that licence periods for the same player do not

overlap.

PNO TYPE VT_FROM VT_TO

P1 Junior 2009-01-01 2013-12-31

P1 Senior 2012-01-01 2016-05-31

Figure 4.6: Overlapping player rows in PLAYER_LICENCE.

Listing in 4.2 adds a constraint that will do just that. The constraint relies on a user-

defined function that takes player number, start and end date as parameters and returns

zero or one depending on if relevant rows overlap. If an insert or update will violate over-

lap constraint function will return 1, and 0 otherwise. Listing for user-defined function

FnPLOverlaps is included in Appendix C.

ALTER TABLE PLAYER_LICENCE

ADD CONSTRAINT ChkPLOverlap

CHECK (dbo.FnPLOverlaps(PNO, VT_FROM, VT_TO) = 0)

Listing 4.2: Adding constraint to prevent overlapping

Let us now consider the following temporal referential integrity problem. Players are

not able to sign contracts with clubs if they do not have a valid licence for the signing

period. Taking our running example, it concretely means that for a player to exists in

table SQUAD, the very same player must also exist in the PLAYER_LICENCE table and his

licence period must contain the period for which the player has signed a contract. Figure

4.7 illustrates this requirement for a single player P1.

The referential temporal integrity requirement must be enforced when a user modifies

data in table SQUAD as well as when data is modified in table PLAYER_LICENCE. For example

it should not be possible to change the licence period for a player when a player is under
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PNO TYPE VT_FROM VT_TO

P1 Junior 2009-01-01 2013-12-31

(a) P1’s licence period

PNO CNO VT_FROM VT_TO

P1 C1 2010-06-01 2013-05-31

(b) P1’s contract period with C1

Figure 4.7: Contract period must be contained in licence period.

contract in such a way, that temporal integrity is violated. Specification of conventional

foreign key from table SQUAD to table PLAYER_LICENCE referencing specific player without

using from attribute is not possible. That is because the primary key for the table

PLAYER_LICENCE is defined as the set of two attributes, namely PNO and VT_FROM.

Constraint check technique, and user-defined functions similar to the one used in the

previous example can not be used to enforce temporal integrity in all cases. The rea-

son is very simple. SQL Server does not enforce CHECK constraint when delete state-

ments are executed. Because of that, the user could delete a contracted player from the

PLAYER_LICENCE table without any checks being performed. So, to solve this problem

triggers are used. For the PLAYER_LICENCE table we defined the triggers for insert, up-

date and delete statements. For contracts in the SQUAD table defining a trigger for delete

statements is not necessary.

IF NOT EXISTS (

SELECT 1 FROM PLAYER_LICENCE PL INNER JOIN inserted I

ON PL.PNO = I.PNO

WHERE dbo.FnIsContainedIn(I.VT_FROM, I.VT_TO, PL.VT_FROM, PL.VT_TO) = 1

)

BEGIN

RAISERROR (’Contract-licence period constraint violation.’, 16, 1);

ROLLBACK TRANSACTION;

END

Listing 4.3: Checking if contract period is contained in licenced period

The Listing in 4.3 shows the body of the trigger that is used to enforce the requirement

that contract period is contained in licence period. Full trigger definition can be found in

Appendix C, Listing C.3. The listing bellow shows system reporting an error if contract-

licence constraint is violated by trying to insert an invalid contract period.
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INSERT INTO SQUAD (PNO, CNO, VT_FROM, VT_TO)

VALUES (1, 1, ’2015-01-01’, ’2016-12-31’)

-- Error message (shorten)

Contract-licence period constraint violation.

Msg 3609, Level 16, State 1, Line 125

The transaction ended in the trigger. The batch has been aborted.

Listing 4.4: Reporting error for an invalid contract period

The trigger for preventing licences to be deleted if their periods are referenced by contract

rows is shown in C.4. This trigger relies on the fact that licence periods do not overlap,

and that the contract period is contained in the licence period. Based on this we can

then test if any contract is contained by the deleted licence period, and if so error is

reported and transaction is rolled back.

4.2.2 Coalescing

The coalescing operation, also known as packing [12] and folding operation, is applied to

periods that overlap or meet. By doing so we get longest possible periods, i.e. (maximal

intervals), for value-equivalent rows. Figure 4.8 shows data based on the table SQUAD,

with some additional rows. These new rows represent contracts that club C2 obtained.

Let us now suppose that we want to find clubs that had signed up players for the longest

periods. From the Figure we can see that the longest period is obtained for club C1. This

period is from 2008-10-01 to 2013-05-31, with a duration of about 5 years. To be able to

answer these kind of queries we will need a generic operator that will, given a relation

with periods, return a packed form of that relation.

PNO CNO VT_FROM VT_TO

P1 C1 2010-06-01 2013-05-31

P2 C1 2008-10-01 2011-02-01

P4 C1 2010-01-01 2012-01-01

P2 C2 2011-03-01 2013-12-31

P3 C2 2014-01-01 2014-05-31

(a) unpacked contract periods

CNO VT_FROM VT_TO DURATION

C1 2008-10-01 2013-05-31 ~5 years

C2 2011-03-01 2014-05-31 ~3 years

(b) packed contract periods

Figure 4.8: Packing of contract periods by club.

It is important to note that by packing the set of periods, as we have seen in the previous

example, we in fact obtain canonical form of that set. By doing so we use the least number

of rows to represent the same period information, as a full set of rows will do. Figure 4.8
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demonstrates packing operation. Showing that the canonical form is in fact a unique rep-

resentation of the set, in the most compact form, can also be shown with help of unit inter-

vals. For example, with sets A = {[1 : 3], [2 : 4], [5 : 6]}, and B = {[1 : 6]}. Set of unit in-
tervals for both sets is identical, namely: A′ = B′ = {[1 : 1], [2 : 2], [3 : 3], [4 : 4], [5 : 5], [6 : 6]}.
Which implies that the canonical form of set A is in fact set B. And in general, two sets

of intervals represent the same time points if their sets of unit intervals are equal [12].

An implementation of the coalescing operator PACK, as well as an implementation of the

unpacking operator UNPACK, is shown and explained in Section 4.2.5. Unpacking a set

of intervals is an opposite operation, where a new set of intervals is derived so that all

intervals in that set are unit intervals 2.2.

4.2.3 Modifying valid-time records

In this section we are going to look into semantics of doing insert, update and delete

operations on valid-time tables. For each of these operations we will present possible

solutions. Discussion and solutions will be based on the table PLAYER_LICENCE. The

sample data for this table is shown in Figure 3.3.

Inserting a new record into the temporal table is semantically equivalent to the conven-

tional insert. That is, if all table constraints, including temporal ones, are satisfied the

new record will be inserted into the table.

P1, Junior

insert
P1, Senior

result
P1, Junior P1, Senior

valid time2008 2009 2010 2011 2012 2013 2014 2015

Figure 4.9: Inserting a new temporal record.

In Figure 4.9 a new row with following values is inserted (P1, Senior, 2014-01-01,

2014-12-31). We can say, in general, that doing a temporal insert, if successful, will

result in an increased cardinality of the table. Cardinality will be increased by one.

That would semantically be equivalent to an ordinary insert statement.

Let us now consider the following update statement: "Player P1 has been licensed as

Junior+ during the period from 2011-01-01 to 2014-05-31", Listing 4.5. This update

statement if executed as is, without any modifications by the system, will result in two
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rows being updated. The first row for the period when the player was licensed as a

Junior, and second when the player was licensed as a Senior. This is clearly not what

is intended, and will not be allowed because of the constraint that prevents overlap. For

the user to be able to issue an update statement like this one, it needs to be modified on

the fly by the system. In the SQL Server the semantics of a statement can be modified

by using an INSTEAD OF TRIGGER. Using a trigger we would delete any existing rows for

player P1 for a given period and then perform an insert with provided values inside a

single transaction. The problem with this approach however is that results of the update

operation are not necessarily what the user intended. DB2 database system [7], DBMS

that supports temporal data based on SQL:2011, will reject this statement and report

an overlap error. In fact all conventional update and delete statements are also treated

as such, even if temporal attributes are involved.

UPDATE PLAYER_LICENCE SET

[TYPE] = ’Junior+’,

VT_FROM = ’2011-01-01’,

VT_TO = ’2014-05-31’

WHERE PNO = 1

Listing 4.5: Sample update

Listing 4.6 shows example of the same update statement that could be used to achieve

the desired result in DB2. Statement is based on SQL:2011 extension formulated as FOR

PORTION OF <period> FROM <start_date> TO <end_date> that can be used effectively for

temporal update and delete operations.

-- DB2 example

UPDATE PLAYER_LICENCE

FOR PORTION OF BUSINESS_TIME FROM ’2011-01-01’ TO ’2014-05-31’

SET TYPE = ’Junior+’

WHERE PNO = 1

Listing 4.6: Update for portion of time

Result of executing statement from Listing 4.6 with current data set is shown in Figure

4.10. Once again, this SQL statement is only used to demonstrate the effect of an update

operation and is not supported by the SQL Server.

Updating the licence type for player P1 has in our running example resulted in three rows.

In general, the number of rows after an update for a portion of time can decrease, increase

or remain unchanged. This will solely depend on the period that is being specified for

the update.
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P1, Junior P1, Senior

update
P1, Junior+

result
P1, Junior P1, Junior+ P1, Senior

valid time2008 2009 2010 2011 2012 2013 2014 2015

Figure 4.10: Updating valid-time record.

Semantics for delete operation are similar to update. They are differentiated from con-

ventional delete statements by using portion of time extension. It should be noted that

the result of the delete operation can decrease as well as increase the number of rows in

the table. If we consider a row: (P1, Junior, 2009-01-01, 2013-12-31), then deleting

P1 for period from 2010-01-01 to 2012-12-31 will produce two new rows. Namely (P1,

Junior, 2009-01-01, 2009-12-31) and (P1, Junior, 2013-01-01, 2013-12-31).

Listing 4.7 shows how the delete semantics of for portion of time can be achieved inside

the SQL Server by using a parametrised stored procedure.

EXEC DeletePlayerLicence @PNO = 1, @FROM ’2011-01-01’, @TO ’2014-05-31’

Listing 4.7: Deleting licence for specified period

4.2.4 Querying

In this section we are gonna look at three distinct queries concerning valid-time.

Query A: Get all pairs of players who were together in the same squad at some point.

SQL for this query is shown in Listing 4.8, and the result in Figure 4.11. We are joining

the same table on club id, and then applying a temporal predicate to take only those

records that overlap. Predicate t1.PNO < t2.PNO is used to eliminate redundant rows

and rows where the same player matches.

SELECT t1.PNO AS PNO1, t2.PNO AS PNO2

FROM SQUAD t1 INNER JOIN SQUAD t2 ON t1.CNO = t2.CNO

WHERE

dbo.FnIsOverlap(t1.VT_FROM, t1.VT_TO, t2.VT_FROM, t2.VT_TO) = 1

AND t1.PNO < t2.PNO

Listing 4.8: SQL for Query A
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PNO CNO VT_FROM VT_TO

P1 C1 2010-06-01 2013-05-31

P2 C1 2008-10-01 2011-02-01

P4 C1 2010-01-01 2012-01-01

(a) source table

PNO1 PNO2 CNO

P1 P2 C1

P1 P4 C1

P2 P4 C1

(b) query result

Figure 4.11: Query A. Players that have played together.

If we wanted to find exact overlapping period for players then we could use the case

statement shown in Listing 4.9.

(CASE

WHEN t1.VT_FROM > t2.VT_FROM THEN t1.VT_FROM ELSE t2.VT_FROM

END) AS OVERLAP_FROM,

(CASE

WHEN t1.VT_TO < t2.VT_TO THEN t1.VT_TO ELSE t2.VT_TO

END) AS OVERLAP_TO

Listing 4.9: Query A, overlapping period

The expression for finding overlapping periods can be expressed in more general terms

as:

[MAX(i.start, j.start) : MIN(i.end, j.end)] (4.1)

Let us now look at the next query, Query B. We want to get all players that are currently

under contract, displayed by their contract length. That is, we want to find a player that

has the longest contract.

Query B : Get all the active players (players under contract) ordered by the longest period

of they club contract.

This query is shown in Listing 4.10, and the result is shown in the Figure 4.12.

SELECT *,

DATEDIFF(day, VT_FROM, VT_TO) as NDAYS

FROM SQUAD

ORDER BY NDAYS DESC

Listing 4.10: SQL for Query B

If we wanted to find the longest contract length across all the clubs players played for,

then we could aggregate over the result by summing contract length for each player.
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PNO CNO VT_FROM VT_TO

P1 C1 2010-06-01 2013-05-31

P2 C1 2008-10-01 2011-02-01

P4 C1 2010-01-01 2012-01-01

(a) source table

PNO CNO NDAYS

P1 C1 1095

P2 C1 972

P4 C1 760

(b) query result

Figure 4.12: Query B. Players displayed by their contract length.

We move now to the last query that involves recursion. Queries that involve recursion

are not the most readable ones as we shall see. And they are also very hard to formulate

and express in SQL.

Query C : Get all pairs of players who were at the same squad at the same year, and also

display years when they were playing together and the squad they were playing for.

SQL for this query is shown in Listing 4.11, and the result is shown in the Figure 4.13.

WITH t1 AS (

SELECT *, (YEAR(VT_TO) - YEAR(VT_FROM)) AS NYEARS FROM SQUAD

), t2 AS (

SELECT PNO, CNO, YEAR(VT_FROM) AS VTS, NYEARS

FROM t1

UNION ALL

SELECT PNO, CNO, VTS, NYEARS - 1 AS NYEARS

FROM t2

WHERE NYEARS > 0

), t3 AS (

SELECT PNO, CNO, (VTS + NYEARS) AS XYEAR FROM t2

)

SELECT x1.PNO AS PNO1, x2.PNO AS PNO2, x1.CNO, x1.XYEAR AS YEAR

FROM t3 as x1, t3 as x2

WHERE x1.CNO = x2.CNO AND x1.XYEAR = x2.XYEAR AND x1.PNO < x2.PNO

ORDER BY x1.XYEAR, x1.PNO, x2.PNO

Listing 4.11: SQL for Query C

We start by computing period length in years of each contract and assigning the result

to table t1. Then we iterate over the result reducing the year by one until NYEARS has

reached zero. The result is assigned to table t2. Next, we calculate each year a player

has been under contract by adding the number of years to the period start year and

assign the result to table t3. At this point, table t3 will contain the following entries for

player P1: {(P1, C1, 2010), (P1, C1, 2011), (P1, C1, 2012), (P1, C1, 2013)}. The
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last step is to cross join table t3 on club id where years are equal and produce the final

result.

PNO CNO VT_FROM VT_TO

P1 C1 2010-06-01 2013-05-31

P2 C1 2008-10-01 2011-02-01

P4 C1 2010-01-01 2012-01-01

(a) source table

PNO1 PNO2 CNO YEAR

P1 P2 C1 2010

P1 P4 C1 2010

P2 P4 C1 2010

P1 P2 C1 2011

P1 P4 C1 2011

P2 P4 C1 2011

P1 P4 C1 2012

(b) query result

Figure 4.13: Query C. Players that have played together by year.

4.2.5 Interval data type

Interval (or period) as a data type does not exists in the SQL Server. In addition,

SQL:2011 standard does not introduce and specify interval data type either. This short-

coming forces the user to conceptually think of two chosen attributes as start and end

points of an interval, but unfortunately no support for any operations are provided. Fur-

thermore, many very important properties of an interval are not exposed or obvious to

the user. Properties such as kind of interval (open, closed, etc), duration of an interval

(or scale), first and last element of underlaying data type, i.e. type that interval uses

internally to represent interval points.

To overcome this problem I have created a user-defined interval and point data type in

C# by utilising the CLR integration possibilities that the SQL Server provides.

Code in Listing 4.12 shows shortened create statements for the user-defined interval type

and functions for creating intervals. The create assembly statement imports compiled

.NET dll that provides necessary definitions and implementation. The interval type that

has been implemented is based on integers and will be used to represent years in our

case. Interval points are constrained to values from 1 to 9999.
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CREATE ASSEMBLY [project] AUTHORIZATION [dbo]...

CREATE TYPE [dbo].[IntervalYear]...

CREATE FUNCTION [dbo].[IntervalYearCreate] (@s [nvarchar](MAX))

RETURNS [dbo].[IntervalYear]...

CREATE FUNCTION [dbo].[IntervalYearCreateCC] (@b [int], @e [int])

RETURNS [dbo].[IntervalYear]...

Listing 4.12: User-defined interval data type and utility functions.

There are many benefits that interval as a type provides. Some of them are: 1. User

does not need to worry about which kind of interval it is when performing interval

operations, because it is handled internally by the type methods. 2. Granularity or scale

is handled automatically. 3. Support for min/max and previous/next interval points

given an interval. 4. Automatic handling of until changed values. And 5. Given an

interval point it is easy to test if the point is contained in the interval.

Listing 4.13 demonstrates some of the use cases. Statements and operators are shortly

described within comments.

DECLARE @i1 IntervalYear, @i2 IntervalYear, @i3 IntervalYear

-- Create and assign an interval using type generator function

SET @i1 = IntervalYearCreateCC(2010, 2013)

-- Display user readable interval value

SELECT @i1.ToString() -- [2010:2013]

-- Display min/max and begin/end point.

SELECT @i1.First(), @i1.Last() -- 1, 9999

SELECT @i1.Begin(), @i1.End() -- 2010, 2013

-- Check if specific year is contained in the interval.

SELECT @i1.Contains(2010) -- 1

-- Create and assign some additional intervals using interval literals.

-- All four kind of intervals are supported.

SET @i1 = ’[2010:2013]’ SET @i2 = ’[2008:uc)’ SET @i3 = ’(2010:2012)’

-- Display interval i2 and show duration. Current year is 2016.

SELECT @i2.ToString(), @i2.Duration() -- [2008:9999], 8

-- Check if intervals overlap or meet. Those two operators are commutative.

SELECT @i1.Overlaps(@i2) -- 1
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SELECT @i1.Meets(@i2) -- 0

-- Get intersection interval for two overlapping intervals.

-- If intervals are not overlapping, an error occurs.

SELECT @i1.Intersect(@i2).ToString() -- [2010:2010]

-- Test if an interval is unit interval

SELECT @i1.Intersect(@i2).IsUnit() -- 1

Listing 4.13: User-defined interval type demo.

Now, with the interval data type in place, we turn our attention to pack C.5 and unpack

C.6 functions. These two functions are not implemented via CLR, but they both heavily

depend on the new interval type. We will not go into implementation details, but rather

discuss possible use cases for them. These two functions are, as mentioned, listed in full

in Appendix C.

Let us suppose that we want to find the maximal interval for a set of intervals. We could,

for example, be interested in finding a club with the longest contract interval across all

active players. Listing 4.14 demonstrates starting point for a possible solution utilising

the pack function.

DECLARE @TempTable dbo.IntervalBasedTable

INSERT INTO @TempTable VALUES (’[2010:2013]’), (’[2008:2011]’),

(’[2010:2012]’), (’[2000:2001]’)

SELECT DURING.ToString() AS DURING, DURING.Duration() AS DURATION

FROM dbo.IntervalPack(@TempTable)

ORDER BY DURATION DESC

-- Result

DURING DURATION

[2008:2013] 6

[2000:2001] 2

Listing 4.14: Finding maximal interval.

Intervals are inserted into a temporary table, which is then packed and the result dis-

played. Rows are ordered by duration of the intervals.

When trying to solve the problem for Query C 4.13, rather complex SQL with recursion

has been used. Let us now suppose that we wanted to find all the years for which the

player P1 had a licence but was without contract. SQL for this query with the result
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is shown in Listing 4.15. If we wanted to find the longest period (maximal interval) for

which a player was licensed but without club contract we would just pack the result.

We start by creating two temporary tables, one for licence and one for contract intervals.

We then unpack both and take the set difference by using the regular EXCEPT operator.

DECLARE @pl dbo.IntervalBasedTable

DECLARE @squad dbo.IntervalBasedTable

INSERT INTO @pl VALUES (’[2009:2013]’), (’[2014:2014]’)

INSERT INTO @squad VALUES (’[2010:2013]’);

WITH t (during) AS (

SELECT during.ToString() FROM dbo.IntervalUnpack(@pl)

EXCEPT

SELECT during.ToString() FROM dbo.IntervalUnpack(@squad)

)

SELECT * FROM t

-- Result

[2009:2009]

[2014:2014]

Listing 4.15: Finding interval difference by interval points.
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Results and findings

5.1 Support and limitations

The SQL Server 2016 provides support only for system-time aspect of temporal data

support. Enabling versioning on an existing table or creating a new one with history

support is straight forward and easy to use. The possibility to automatically hide system-

time attributes means that it will be easier to adopt this new technology because users

are not forced to change existing code, and can adopt this new feature on an as needed

basis. DML statements that have been used before enabling history will continue to work

without any modifications after history is enabled. The provided features for system-time

support seem adequate for the intended purpose, namely providing versioning support,

but that may be too limiting for some user needs. If the user just wants to keep track of

the data changes, or to save changes for some period of time it will be very easy to do

so. Querying historical records for specific time-slices is supported via FOR SYSTEM_TIME

extensions. Which means that the user can easily see previous states of the data and

possibly rollback any changes by using conventional SQL statements.

If the user wishes to use more complex temporal queries involving period operators or

wishes to aggregate over system-time data then such functionality needs to be built either

using user-defined functions, procedures and types or in combination with the application

code. Because the SQL Server does not provide any support for such requirements, the

usefulness will be determined solely by the concrete user needs.

The SQL Server’s support for memory-optimised temporal tables, which can provide

fast and scalable access to temporal data is a very practical and useful feature. Because

memory-optimised tables are also updatable, and are fully ACID compliant, they will be
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easily adoptable. Mainly because, seen from a user perspective, semantics of memory-

optimised temporal tables regarding synchronisation of updates to the disk are handled

automatically by the system. However, possibilities for conflict of two write operations

do exist. If they conflict one will "win" and the other needs to be resubmitted by the

user. Such conflicts can impact performance and scalability of the memory-optimised

tables.

Because the SQL Server does not provide period data type there is no direct support for

indexing periods as such. The SQL server does support various other index types that

can be utilised and are optimised for fast memory-based index scans.

Support for valid-time and therefore for bitemporal data is not provided by the SQL

Server, and the user is left alone to implement such support on its own. The extension

possibilities that the SQL Server provides do help in this regard, but without built-

in server support it is very hard, if not impossible, to build support as defined in the

SQL:2011 standard and mentioned in the literature to be general enough, so that it can

be reused across projects. Even if such support is built by the user it will be bound to

the relational model under consideration and will not be reusable if the model changes.

Created prototype includes support for temporal primary and foreign keys. It has been

demonstrated that triggers and stored procedures can be used to achieve additional

temporal support regarding updates and deletes of temporal data. However, this support

is pertinent to the relational model that has been used. The interval data type that has

been implemented and demonstrated is general in nature, and could be reused across

different models but most of the temporal operations using it will also need the knowledge

of the table(s) where this data type is used. Because of that generalisation is lost.

With user-defined interval data type it has been demonstrated that it is fairly easy to

provide support for:

1. Begin() and End() methods: which return start and the end of an interval respec-

tively.

2. First() and Last() methods: which return first and last possible point for an interval

respectively.

3. Duration()/Count(): which return duration of an interval.

4. Prev()/Next(): which return previous and next interval point respectively. Method

Prev() will fail on an interval where start = First(), and Next() will fail on an

interval where end = Last().
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5. Interval operators such as: Overlaps(), Meets(), Contains().

6. Set-like operators like: Intersect(), Union() and Minus(). Which will either fail or

return proper intervals.

7. Handling of different types of intervals

8. Handling of until changed values

9. Handling of interval constraints such as: start ≤ end, and minimal and maximal

allowed values.

Source code for the prototype is described in Appendix D and included as a zip package.



Chapter 6

Conclusion

6.1 Conclussion

System-time, or versioning support, in the SQL Server 2016 has been designed to solve

specific temporal problems and in my view they have succeeded in doing that. Use cases

like data auditing, where it is needed to keep track of changes, who made the changes and

when. Or for example point in time analysis, where analyst may be interested in finding

differences in trends over time are very well supported and will most probably satisfy user

needs. Therefore, the SQL Server 2016 temporal support is definitely worth considering

if an organisation has similar needs. In my own company we have already identified

several specific scenarios where versioning will perfectly fit in solving our problems.

From my own implementation experience to provide temporal support for valid-time it

seems that the problem is intrinsically difficult to solve because of the various ways that

temporal data can be used and modified. However, it seems that interval data type is a

fundamental building block in providing such support. It is therefore very unfortunate

that SQL:2011 standard did not introduce interval data type and supporting constructs.

An argument has been given in [3], that despite the recognised need for the definition

of period data type (interval is a reserved keyword in SQL), considerations regarding

compatibility with the existing software stack have prevailed. However, introduction

and acceptance of new data types, such as DATE/TIME/TIMESTAMP and others, into

standard is nothing new which makes the mentioned argument weaker. Working with

pairs of attributes which designate the start and end mark of an interval is almost like

using three attributes to represent year, month and a day rather then using a single

attribute of type DATE. It is just not good enough at least from an data abstraction

point of view. Furthermore, if an interval data type is not defined, is it then possible

44



Chapter 6. Conclussion 45

to create optimal interval-aware index structures that will be used to optimise access to

temporal data?

6.2 Future directions

Interval data type presented in this thesis is based on integers and can be used to represent

year-based intervals. It would be generally more useful if I had implemented an interval

interface so that inheritance and other object-oriented techniques could be used to easily

extend and create other interval types. Interval types based for example on date, date-

time, or numeric types. Or perhaps to create more specialised cases of those types. In

some applications it may be necessary to be able to represent for example money, pH or

temperature intervals.

In my implementation of packing and unpacking operators we have solved a special

case problem where the input is a set of intervals without any other attributes. For

those operators to be generally useful, they must pack and unpack rows based on value-

equivalence of the input rows. One possible solution to this problem is to introduce a

new data type that will represent a set of unit intervals, which can then be used to store

unpacked data per row.



Appendix A

Interval operators

Intervals i and j Operator Condition

i

j

i EQUALS j i.s = j.s ∧ i.e = j.e

i

j

i INCLUDES j i.s ≤ j.s ∧ i.e ≥ j.e

i

j

i INCLUDED_IN j j INCLUDES i

i

j

i PINCLUDES j Properly includes :

i.s < j.s ∧ i.e > j.e

i

j

i PINCLUDED_IN j Properly included in :

j PINCLUDES i

i

j

i BEFORE j i.e < j.s

i

j

i AFTER j i.s > j.e

i

j

i OVERLAPS j i.s ≤ j.e ∧ i.e ≥ j.s

i j i MEETS j (i.e + scale = j.s)∨
(j.e + scale = i.s)

i j

i

j

i MERGES j i OVERLAPS j ∨ i MEETS j

i

j

i BEGINS j i.s = j.s ∧ i.e ∈ j

i

j

i ENDS j i.e = j.e ∧ i.s ∈ j

Figure A.1: Interval operators as defined by Date et al. [12].
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Running example

B.0.1 Database diagram

Figure B.1: Database diagram for running example.
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B.0.2 Running example - DDL

CREATE TABLE dbo.PLAYER (

PNO INT NOT NULL,

NAME VARCHAR(255) NOT NULL,

FEE MONEY NOT NULL,

VT_FROM DATE NOT NULL,

VT_TO DATE NOT NULL,

SYS_FROM DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL,

SYS_TO DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL,

PRIMARY KEY (PNO),

UNIQUE (PNO, VT_FROM),

CONSTRAINT ChkPlayerFromLEQTo CHECK (VT_FROM <= VT_TO),

PERIOD FOR SYSTEM_TIME (SYS_FROM, SYS_TO)

)

WITH

(

SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.PLAYER_HISTORY)

);

CREATE TABLE dbo.PLAYER_LICENCE (

PNO INT NOT NULL,

[TYPE] INT NOT NULL,

VT_FROM DATE NOT NULL,

VT_TO DATE NOT NULL,

UNIQUE (PNO, VT_FROM),

CONSTRAINT ChkPLFromLEQTo CHECK (VT_FROM <= VT_TO),

CONSTRAINT FkPLRefPlayer FOREIGN KEY (PNO) REFERENCES PLAYER(PNO)

);

CREATE TABLE dbo.CLUB (

CNO INT NOT NULL,

NAME VARCHAR(255) NOT NULL,

SINCE DATE NOT NULL,

PRIMARY KEY(CNO),

UNIQUE (CNO, SINCE)

);

CREATE TABLE dbo.MANAGER (

NAME VARCHAR(255) NOT NULL,

CNO INT NOT NULL,

VT_FROM DATE NOT NULL,

VT_TO DATE NOT NULL,

PRIMARY KEY (NAME, VT_FROM),
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CONSTRAINT ChkManagerFromLEQTo CHECK (VT_FROM <= VT_TO),

CONSTRAINT FkMangerRefClub FOREIGN KEY (CNO) REFERENCES CLUB(CNO)

);

CREATE TABLE dbo.SQUAD (

PNO INT NOT NULL,

CNO INT NOT NULL,

VT_FROM DATE NOT NULL,

VT_TO DATE NOT NULL,

PRIMARY KEY (PNO, CNO, VT_FROM),

CONSTRAINT ChkSquadFromLEQTo CHECK (VT_FROM <= VT_TO),

CONSTRAINT FkSquadRefPlayer FOREIGN KEY (PNO) REFERENCES PLAYER(PNO),

CONSTRAINT FkSquadRefClub FOREIGN KEY (CNO) REFERENCES CLUB(CNO)

);

Listing B.1: DDL for running example
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Code examples

C.0.1 Temporal integrity

-- Test if [s1:e1] overlaps [s2:e2]

CREATE FUNCTION dbo.FnIsOverlap(

@s1 DATE, @e1 DATE, @s2 DATE, @e2 DATE

)

RETURNS BIT AS

BEGIN

RETURN (SELECT CASE WHEN (

@s1 <= @e2 AND @e1 >= @s2

) THEN 1 ELSE 0 END

)

END

-- Test if [s1:e1] contained in [s2:e2]

CREATE FUNCTION dbo.FnIsContainedIn(

@s1 DATE, @e1 DATE, @s2 DATE, @e2 DATE

)

RETURNS BIT AS

BEGIN

RETURN (SELECT CASE WHEN (

@s1 >= @s2 AND @e1 <= @e2

) THEN 1 ELSE 0 END

)

END

Listing C.1: User-defined helper functions used as interval operators
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CREATE FUNCTION dbo.FnPLOverlaps(

@pno INT, @start DATE, @end DATE

)

RETURNS BIT AS

BEGIN

DECLARE @retval BIT

SET @retval = 0

IF EXISTS (

SELECT * FROM PLAYER_LICENCE PL

WHERE PL.PNO = @pno AND PL.VT_FROM != @start

AND dbo.FnIsOverlap(PL.VT_FROM, PL.VT_TO, @start, @end) = 1

) BEGIN

SET @retval = 1

END

RETURN @retval

END

Listing C.2: User-defined function for overalpping check

CREATE TRIGGER dbo.TrCheckPeriodContainedIn

ON dbo.SQUAD

FOR INSERT, UPDATE AS

BEGIN

IF NOT EXISTS (

SELECT 1 FROM PLAYER_LICENCE PL INNER JOIN inserted I

ON PL.PNO = I.PNO

WHERE dbo.FnIsContainedIn(I.VT_FROM, I.VT_TO, PL.VT_FROM, PL.VT_TO) = 1

)

BEGIN

RAISERROR (’Contract-licence period constraint violation.’, 16, 1);

ROLLBACK TRANSACTION;

END

END

Listing C.3: Trigger enforcing that contract periods are contained in licenced

periods
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CREATE TRIGGER dbo.TrCheckContractPeriodsContainedBy

ON dbo.PLAYER_LICENCE

FOR DELETE AS

BEGIN

IF EXISTS (

SELECT 1 FROM SQUAD S INNER JOIN deleted D

ON S.PNO = D.PNO

WHERE dbo.FnIsContainedIn(S.VT_FROM, S.VT_TO, D.VT_FROM, D.VT_TO) = 1

)

BEGIN

RAISERROR (’Removing licence violates contract constraint.’, 16, 1);

ROLLBACK TRANSACTION;

END

END

Listing C.4: Trigger enforcing that licences can not be deleted if their periods

are referenced
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CREATE FUNCTION IntervalPack

(

@tbl dbo.IntervalBasedTable READONLY

)

RETURNS @xtbl TABLE (

during IntervalYear NOT NULL

)

AS

BEGIN

DECLARE @during IntervalYear

DECLARE MY_CURSOR CURSOR

LOCAL STATIC READ_ONLY FORWARD_ONLY

FOR

SELECT during

FROM @tbl

ORDER BY during.[Begin]

OPEN MY_CURSOR

FETCH NEXT FROM MY_CURSOR INTO @during

WHILE @@FETCH_STATUS = 0

BEGIN

--Do expanding

IF NOT EXISTS (SELECT * FROM @xtbl WHERE during.Includes(@during) = 1)

BEGIN

IF EXISTS (SELECT * FROM @xtbl WHERE during.Merges(@during) = 1)

BEGIN

UPDATE @xtbl SET during = during.[Union](@during) WHERE during.Merges(@during)

= 1

END

ELSE

BEGIN

INSERT INTO @xtbl VALUES(@during)

END

END

FETCH NEXT FROM MY_CURSOR INTO @during

END

CLOSE MY_CURSOR

DEALLOCATE MY_CURSOR

RETURN

END

Listing C.5: Pack function
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CREATE FUNCTION IntervalUnpack

(

@tbl dbo.IntervalBasedTable READONLY

)

RETURNS @xtbl TABLE (

during IntervalYear NOT NULL

)

AS

BEGIN

DECLARE @during IntervalYear

DECLARE MY_CURSOR CURSOR

LOCAL STATIC READ_ONLY FORWARD_ONLY

FOR

SELECT during

FROM @tbl

ORDER BY during.[Begin]

OPEN MY_CURSOR

FETCH NEXT FROM MY_CURSOR INTO @during

WHILE @@FETCH_STATUS = 0

BEGIN

--Do expanding

IF NOT EXISTS (SELECT * FROM @xtbl WHERE during.Equals(@during) = 1)

BEGIN

DECLARE @i int

DECLARE @unitInterval IntervalYear

SET @i = @during.[Begin]

WHILE @i <= @during.[End]

BEGIN

SET @unitInterval = dbo.IntervalYearCreateCC(@i, @i)

IF NOT EXISTS (SELECT * FROM @xtbl WHERE during.Equals(@unitInterval) = 1)

BEGIN

INSERT INTO @xtbl VALUES (@unitInterval)

END

SET @i = @i + 1

END

END

FETCH NEXT FROM MY_CURSOR INTO @during

END

CLOSE MY_CURSOR

DEALLOCATE MY_CURSOR

RETURN

END

Listing C.6: Unpack function
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Source code

Source code is attached in a zip file called source.zip. Visual studio project for interval

implementation is in file IntervalYear.cs inside Database1 directory. To enable CLR in

SQL Server 2016 please use CLRSupport.sql file. File Objects.sql contains definitions for

various user-defined functions and triggers. Other file names should be self-explanatory

regarding their intended usage.

Root

CLRSupport.sql

Database1

IntervalKind.cs

IntervalYear.cs

IntervalYearCreate.cs

IntervalYearPointExtensions.cs

Intervals.sql

Objects.sql

Pack.sql

PackDemo.sql

QueryA.sql

QueryB.sql

QueryC.sql

TablesCreate.sql

TablesDrop.sql

Unpack.sql

UnpackDemo.sql
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