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INTRODUCTION 1
1.1 Reinforced Concrete

Figure 1.1. Concrete com-

ponents quanti-

ties. [1]

Concrete is a composite material constituted of coarse and

�ne aggregates bonded together with a �uid cement which

hardens over time. More speci�cally the �uid cement con-

sists of water and cement, and the aggregates are gravel and

sand.

Fig. 1.1 gives more detailed informations on the standard

quantities of the above mentioned components in the con-

crete composition. The ratio of water and cement is indirectly

proportional to the material strength, thus by increasing the

cement percentage an improvement in terms of strength can

be obtained.

Concrete has a good strength in terms of compression, but

its tensile strength is of about 1/10 of the compressive one.

Moreover its ductility is not excellent as well.

The above mentioned weaknesses can be counteracted by the

inclusion of some reinforcement having higher tensile strength

and/or ductility giving then rise to Reinforced Concrete (RC).

The reinforcement is represented by steel reinforcing bars (rebars), and they are embed-

ded in the concrete before this is poured. Fig. 1.2 gives an illustration of how reinforced

concrete is usually produced.

Reinforcements are normally designed in particular regions where unacceptable cracking

and/or structural failure may occur. [2]

Figure 1.2. Fresh concrete being poured into a framework containing steel rebas. [3]

1



1. Introduction Michele De Filippo

1.2 Project Outlines

The main objective of this report is the analysis of RC structures due to static and dynamic

loading conditions through di�erent methodologies.

RC theory is implemented to analytical and numerical static analyses on a sample beam,

and to numerical dynamic analyses on a sample column.

The numerical analyses are carried out through the Finite Element Method (FEM).

1.3 Analytical and Numerical Static Analyses

Figure 1.3. General Outline of Analytical and Numerical

Static Analyses.

A general step-by-step outline of

this part of the report is given

by Fig. 1.3. Material proper-

ties of concrete and steel are duly

statistically evaluated, for di�er-

ent occurrence probabilities, in or-

der to show how they a�ect the

structural behavior of RC, and the

maximum bearing load.

They are then implemented for

the de�nition of the materials'

constitutive models. Analyti-

cal static analyses are performed

through limit state calculations

in accordance with Eurocode 2

prescriptions. Such computa-

tion methods have been used

for decades for performing struc-

tural calculations of RC buildings.

Their main advantage is the cal-

culation celerity, while their weak-

ness is that calculations can only

be performed at one cross-section per time.

The numerical analyses are carried out through the de�nition of a Concrete Damage-

Plasticity model, and a steel plastic model then implemented into the FEM.

FE computations are, instead, slower but provide informations regarding the whole struc-

ture.

The results are then analyzed, discussed, and compared in order to evaluate the di�erent

aspects and limitations of both theories.

2
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1.4 El Centro Earthquake

Figure 1.4. El Centro Earthquake Location. [4]

Figure 1.5. El Centro Earthquake recorded ac-

celerations in time domain.

The earthquake data chosen to perform

the simulations are derived from the El

Centro earthquake of 1940 on the US west

coast. Fig. 1.4 displays the geographical

location of El Centro. The earthquake

was the result of a rupture in the Imperial

Valley, which is 8 km to the east of El

Centro. It had a moment magnitude of

6.9, and was characterized as a moderate-

sized destructive event. The recorded

accelerations in time domain are shown in

Fig. 1.5.

However the event caused signi�cant

damage since most of the buildings in

that area were made up of masonry.

Fig. 1.6 and 1.7 show two photos

of the consequences of the earthquake.

[4]

For the current analysis the application

of such acceleration time series would not

lead to any meaningful result to typi-

cal RC structures. Hence the data are

manipulated and adjusted to make the

earthquake frequency rise in order to

provoke damage and a plastic response.

Figure 1.6. El Centro Earthquake damage
to a masonry construction. [4]

Figure 1.7. Destroyed construction after El
Centro earthquake. [4]

3
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1.5 Numerical Dynamic Analyses

The second part of the project focuses on the numerical modeling of RC dynamic response.

Fig. 1.8 shows the step-by-step outline for the numerical dynamic analyses.

Some of the steps previously introduced are also implemented in this analysis since the

same types of concrete and steel are used to model the column as well.

By the de�nition of the numerical models for concrete and steel the FE models are built-

up, and their eigenfrequencies are extracted through a modal analysis.

As previously mentioned the earthquake data are then adjusted in order to provoke more

meaningful dynamic responses.

From the models build-ups and such data manipulation the FE analyses are carried out.

Finally the obtained results are compared and analyzed.

Figure 1.8. General Outline of Analytical and Numerical Dynamic Analyses.

4



STRENGTH AND

DEFORMATION PROPERTIES

OF CONCRETE AND STEEL 2
In the present chapter a statistical approach is introduced for the evaluation of concrete

compressive and steel strengths for the reinforced concrete beam. A simpli�ed approach

is instead implemented for calculating concrete tensile strength and both materials'

deformation properties. Such values are required for the Limit State and Finite Element

(FE) Analyses.

Material properties are usually obtained from multiple tests performed on specimens

of di�erent sizes. The uncertainty related to the material behavior pushes companies to

study statistically such properties as stochastic variables.

In the following a statical approach is implemented for evaluating concrete compressive

and steel strengths.

The same procedure may be carried out also for other material properties, such as con-

crete tensile strength and deformation properties, but in this case a simpli�ed approach,

according to Eurocode 2, is preferred for their determination.

The types of concrete and steel for the RC design are speci�ed in Tab. 2.1, and they

are chosen in accordance to Eurocode 2 standards.

Materials for RC Design

Concrete Steel

C20/25 B450C

Table 2.1.
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2. Strength and Deformation Properties of Concrete and Steel Michele De Filippo

2.1 Concrete compressive strength and steel strength

When designing any type of RC structure it is a designer's duty to specify the strength

of concrete that has to be assumed for the design. Such an assumption recognizes the

variability of concrete as a structural material.

The uncertainty may be higher in a non-homogeneous material, such as concrete, and lower

in a more homogeneous one, like steel.

The variation of concrete compressive strength is usually assumed to follow a normal dis-

tribution. The characteristic strength is the strength below which no more than 5% of all

the tested specimen from the chosen concrete mix will fall. Equally it can be expected

that 95% of all the samples will have strengths in excess of the characteristic strength.

The above expressed concepts are illustrated in Fig. 2.1 and 2.2. [5]

Figure 2.1. Histogram of Concrete Com-
pression Strength. [5]

Figure 2.2. Normal Distribution of Con-
crete Compression Strength.
[5]

In Fig. 2.1 it is reported the number of specimens, cubes for example, falling into

determined compressive strength intervals, and in Fig. 2.2 the histogram is approximated

to a normal distribution.

The concept of characteristic strength is also displayed, and such value is usually 1.64 σ

times smaller than the mean value, where σ is the standard deviation.

Thus :

fck = fcm − 1.64 σ (2.1)

where

fck Characteristic Compressive Strength of Concrete [MPa]

fcm Mean Compressive Strength of Concrete [MPa]

However the designer usually chooses a value of design strength even lower than the

characteristic one in order to ensure structural safety. Such value is determined by dividing
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2.1. Concrete compressive strength and steel strength Aalborg University

the characteristic strength by a partial safety factor γc, as shown in Eq.2.2.

fcd = αi
fck
γc

(2.2)

where

fcd Design Characteristic Compressive Strength of Concrete [MPa]

αi = 0.8 + 0.2 fcm
88 [-]

The same identical approach can be applied to steel strength, with the only di�erence

that this latter �ts more likely a log-normal distribution.

The normal and log-normal distribution parameters of concrete and steel strengths are

determined from their characteristic and median strengths. The statistical approach is

implemented in order to de�ne the design strength values �tting the ones given by using

the partial safety factors suggested by the Eurocode 2, of 1.50 and 1.15, respectively for

concrete and steel.

The concrete compressive and steel strengths are, respectively, summarized in Tab. 2.2

and 2.3. The nomenclature used for steel parameters is alike the concrete's one, where the

subscript 'y' applies to steel and 'c' to concrete.

Strength Properties Concrete C20/25

fcm [MPa] fck [MPa] fcd [MPa]

20.0 28.0 11.5

Table 2.2.

Strength Properties Steel B450C

fym [MPa] fyk [MPa] fyd [MPa]

479.2 450.0 391.3

Table 2.3.

The obtained results show a way lower standard deviation for steel than for concrete

resulting in a more narrow probability density function (PDF). This latter statement is in

accordance with what was expected since, as previously introduced, concrete production

and composition lead to more uncertainties than in steel. Moreover also the design per-

centile is evaluated showing values of 5 · 10−4% for concrete, and 1 · 10−7% for steel.
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2.2 Concrete Tensile Strength

The tensile and compressive strengths of concrete are not proportional against each other,

and particularly for higher strength grades an increase in compressive strength leads only

to a minor raise of the tensile strength. For this reason two di�erent formulas, Eq. 2.3

and Eq. 2.4, are presented for calculating the median tensile strength of concrete. [6]

fctm = 0.3 (fck)
2
3 Concrete Grades ≤ C50/60 (2.3)

fctm = 2.12 ln(1 + 0.1 (fck + ∆f) Concrete Grades ≥ C50/60 (2.4)

where

fctm Concrete Median Tensile Strength [MPa]

∆f = 8 MPa

In this projec, as shown in Tab. 2.2, the chosen concrete grade is C20/25, thus Eq. 2.3

is used.

An evaluation of lower and upper values of the characteristic tensile strength, fctk,min and

fctk,max, may be estimated by using Eq. 2.5 and 2.6. [6]

fctk,min = 0.7 fctm (2.5)

fctk,max = 1.3 fctm (2.6)

2.3 Deformation Properties

In this section the properties governing the deformation of the two materials are presented,

and the implemented procedure for their evaluation is illustrated.

2.3.1 Concrete Deformation Properties

The modulus of Elasticity, E, commonly known as Young's modulus, measures, the re-

sistance to elastic deformations. It can also be treated as a stochastic variable, as it is

previously done for concrete compressive and steel strengths, but for the present analysis

only the determination of a median value is performed.

For concrete two di�erent types of Young's moduli can be de�ned: tangent (Eci) and

secant (Ec1). A physical representation of these two is given in the concrete non-linear

constitutive model presented in Fig. 2.3.
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2.3. Deformation Properties Aalborg University

Figure 2.3. Schematic representation for the compressive concrete stress-strain relation for

uniaxial compression. [6]

The tangent Young's modulus, also generally called median Young's modulus (Ecm),

according to Eurocode 2, can be computed from the value of concrete compressive

characteristic strength as illustrated in Eq. 2.7.

Ecm = 22000

(
fck + 8

10

)0.3

(2.7)

Moreover this latter is double checked from the values of deformation properties given

in function of concrete grade illustrated in Fig. 2.4.

The secant Young's modulus, strain at peak value of stress (εc1), limit strain before cracking

(εc,lim), and plasticity number
(
k = Eci

Ec1

)
are also evaluated according to Fig. 2.4. [6]

The ones corresponding to the chosen concrete grade are highlighted.
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Figure 2.4. Concrete Deformation Properties for di�erent Concrete Grades. [6]

When a material is contracted in one direction, it then tends to expand in the other

two directions perpendicular to the direction of contraction. The Poisson's ratio, ν, is the

negative ratio of transverse to axial strain, thus describing how much the material expands

in two directions when contracting in the other one.

In the case of concrete, for a range of stresses 0.6 fck < σc < 0.8 fck, the Poisson's ratio

νc ranges between 0.14 and 0.26. Regarding the signi�cance of νc for the present design, a

rough estimation of νc = 0.20 meets the required accuracy. [6]

2.3.2 Steel Deformation Properties

Figure 2.5. Steel stress-strain

relation for uni-

axial compres-

sion/tension. [7]

A representation of the reinforcement steel stress-strain

relation is provided in Fig. 2.5.

Given a value of yielding strain (εsy), usually of

1.86·10−3, the steel Young's modulus can be easily eval-

uated as Esm =
fym
εsy

, and it corresponds, approximately,

to a value of 210000 MPa.

From Fig. 2.5 it can be noticed that no limit strain is

given due to the high ductility of the material. The strain

limit would be of around 1 · 10−2, corresponding to a so

high value that the Eurocode 2 does not specify it.

The Poisson's ratio for reinforcement steel, νs, is esti-

mated to be of 0.25.
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LIMIT STATE ANALYSES 3
In the present chapter ultimate limit and serviceability state analyses are performed to

determine the maximum bearing load that the beam can carry, and its vertical displacement

due to such load. Di�erent RC behavior models are implemented for both analyses.

The Limit States of design (LSD) are conditions beyond which a structure no longer

ful�lls certain design criteria. The condition imposing such ful�llment is usually the degree

of the load, while the criteria may refer to structural integrity, �tness for use or design

requirements.

If a structure is designed according to LSD, then it is proportioned to resist all the actions

that may occur during its design life with an appropriate level of reliability at each limit

state.

LSD requires a structure to satisfy two principal states: Ultimate Limit State (ULS) and

Serviceability Limit State (SLS).

� The ULS consists of an agreed computational condition satisfying engineering de-

mands for strength and stability under design loads. It represents the condition at

which the maximum strength of the two materials, concrete and steel, is implemented

to obtain the maximum bearing load that the structure can carry.

� The SLS is a computational check proving that under the action of characteristic

design loads the structural behavior complies with, and does not exceed, the SLS

design criteria values. Such criteria values include stress limits, deformation limits

(de�ections, rotations and curvatures), �exibility (or rigidity) limits, dynamic be-

havior limits, cracks width control and other dispositions regarding the durability of

the structure and its level of daily service and human comfort. [8]

In the following, at �rst, the RC behavior is introduced, then the materials' constitutive

models for concrete and steel are presented. Secondly through the implementation of such

material models into the RC cross-section the maximum bearing moment is evaluated in

accordance to the Eurocode 2 dispositions for the ULS. The maximum bearing load is

then calculated in function of the chosen static system. Finally the vertical displacement

is calculated according to the Eurocode 2 dispositions for the SLS with reference to the

maximum bearing load computed in the ULS.
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3. Limit State Analyses Michele De Filippo

3.1 Behavior of RC Beam

Figure 3.1. Static System and force

diagrams used for the

analysis.

A beam is de�ned as an element having one

dimension (length) much bigger than the other two

(height and width).

Beams usually assume a bending behavior due to the

loads they are designed to carry, resulting in a small

curvature. For the current analysis the static system

has been assumed as represented in Fig. 3.1. Hence

the beam has to counteract the loading moment with

an equal and opposite bending moment developed by

the combined action of concrete and rebars.

The beam cross-section has then a part reacting in

tension and another one in compression, respectively

corresponding to positive and negative normal

stresses. The neutral axis separates them, and it is

de�ned as the axis where normal stresses are none.

Its distance from the upper edge of the cross-section

is named xn. The compressed and tensed faces develop respectively two equal and opposite

forces at a certain distance which generate the previously introduced resisting bending

moment.

The beam cross-section geometrical properties are illustrated In Fig. 3.2 (a), and they are

summarized in Tab. 3.1.

Moreover in Fig. 3.2 four examples of RC stress distributions are given.

The condition of linear stress distribution is represented In Fig. 3.2 (b), in which concrete

does not reach its maximum strength in compression, and neither in tension.

In Fig. 3.2 (c) the condition of linear stress distribution is represented again, but in this

case concrete reaches its maximum strength in compression and also in tension. As result

several cracks open on the tensile face, concrete is not able to support such a high tensile

stress, and the rebars thus counteract such weakness.

Figure 3.2. (a) Beam Cross-Section (b) Linear Stress Distribution (c) Linear Stress Distribution

with Tensile Failure in Concrete (d) Linear Stress Distribution with no tension in

Concrete (e) Concrete experimental stress distribution on the compressed face and

no tension in Concrete
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Cross-Section Properties

b [mm] H [mm] c [mm] d [mm] As [mm2] As [mm2]

280.0 470.0 45.0 425.0 4φ16 = 803.8 2φ8 = 100.5

Table 3.1. Beam Cross-Section Properties as indicated in Fig. 3.2

Therefore the rebar on the tensile face has the duty to provide an equal and opposite

force to the one produced by the compression face. In order to do that the rebar on the

tensile face yields. The rebar on the compressive face may yield too, but such condition

need to be veri�ed. The cracking of concrete on the tensile face lead to a reduction of the

neutral axis depth xn.

The same condition as in Fig. 3.2 (b) is represented in Fig. 3.2 (d), but the contribution

of concrete in the tensile face is omitted since it only had a minor impact.

The stress distribution is �nally displayed in its more realistic shape in Fig. 3.2 (e), thus in

a non-linear distribution with a softening part after the peak stress. This latter corresponds

to the same constitutive model as represented in Fig.2.3 rotated of 90°.

3.2 Concrete and Steel Constitutive Models

In this section the constitutive models used for concrete in compression and for steel in

compression and tension are presented. A constitutive model for concrete in tension is not

derived since concrete is assumed to not react in tension.

Ideally the concrete compressive behavior should likely match the one represented in

Fig. 2.3. However an approximation of this behavior is carried out leading to a trustful

and simpler solution. Such model is commonly known as Parabola - Rectangle.

The curves are represented in Fig. 3.3, and are obtained with Eq.3.1 and 3.2 by inserting

into fc the values of concrete compression strength summarized in Table 2.2. [6]

σc
fc

= −
(

k η − η2

1 + (k − 2) η

)
for |εc| < |εc,1| (3.1)

σc
fc

= 1 for |εc| ≥ |εc,1| (3.2)

where

fc Values of median, characteristic and design concrete compression strength [MPa]

η = εc
εc1

[-]

εc Concrete Strain [-]
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Figure 3.3. Concrete Parabole-Rectangle Compression Model for Median, Characteristic and

Design values of concrete compression strength.

Regarding the constitutive relationship for reinforcement steel the elastic perfect-plastic

model is used with reference to steel yield strength values summarized in Table 2.3.

Fig. 3.4 represents the obtained constitutive models.

Figure 3.4. Steel Elastic Perfect-Plastic Model for Median, Characteristic and Design values of

steel strength.
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3.3 Ultimate Limit State

The material models shown in the previous section are now implemented in the ULS for

evaluating the maximum bearing moment that the RC cross-section can carry.

By substituting the obtained Parabola-Rectangle model into the compression face of Fig.

3.2 (d) the RC cross-section behavior turns to the one displayed in Fig. 3.5.

Figure 3.5. (a) Beam Cross-Section (b) Linear Strain Distribution (c) Compressive parabole-

rectangle stress distribution on the compressed face and no tension in Concrete (d)

Compressive stress-block stress distribution on the compressed face and no tension

in Concrete (e) Forces resulting in horizontal equilibrium and resisting moment

In Fig. 3.5 (b) the linear strain distribution for bending behavior of the beam is shown.

It is displayed that the strain of the lower rebars (εs) always exceeds the yielding strain

(εsy). As previously discussed the upper rebars strain (ε′s) may otherwise be smaller than

the yielding one. The variable a�ecting the eventual yielding of the upper rebars is the

distance of the neutral axis from the upper edge of the cross-section. For a �xed position

of the upper rebars the minimum value of xn providing yielding in the upper rebars can be

calculated from a simple linear interpolation. Such calculation leads to a minimum value

of neutral axis depth of 96.1 mm.

The usage of di�erent values of concrete strength (median, characteristic and design)

implicates a change of xn, thus resulting in a possible modi�cation of the stress contribution

given by the upper rebars (σ′s) which of course a�ects the resisting bearing moment of the

cross-section, and eventually the cracking mechanism also.

According to what is previously stated the stress in the upper rebars is evaluated as shown

in Eq. 3.3 and 3.4.

if xn < 96.1 mm σ′s = Es ε
′
s (3.3)

if xn ≥ 96.1 mm σ′s = fy (3.4)

15



3. Limit State Analyses Michele De Filippo

Figure 3.6. Parabola-Rectangle

Stress distribution over

rectangle stress distri-

bution of width equal

to concrete compressive

strength.

In Fig. 3.5 (c) the parabola-rectangle stress dis-

tribution is shown. Since the ratio of the parabola-

rectangle area is approximately the 80 % of the rect-

angle of width fc area, represented in Fig. 3.6, a

simpli�ed stress model can be introduced.

Fig. 3.5 (d) represents this latter, commonly known

as stress-block distribution. The principle on its

basis is to approximate the non-linear parabola-

rectangle shape to a simply rectangular one with the

same area. In order to obtain such result the stress-

block height is decreased by the factor β = 0.8.

Finally in Fig. 3.5 (e) the produced normal forces

are displayed in their application points.

The compressive force developed by the concrete

compression face is logically placed in the middle

of the stress-block, thus at a distance from the up-

per edge of κ xn, with κ = β/2 = 0.4.

The neutral axis depth, xn, is calculated by satisfying the condition of horizontal

equilibrium, while the maximum bearing moment can be computed through the moment

equilibrium as shown in Eq. 3.5.

Mr = fc β xn b (d− κ xn) +A′s σ′s (d− c) (3.5)

The same approach can be implemented into another ULS model.

This latter is alike the one introduced above besides an hypothesis of linear compressive

stress distribution in concrete. Such statement approximates the concrete compressive

constitutive model shown in Fig. 2.3 to a linear one with Young's modulus equal to Ec1.

A representation of the simpli�ed linear model is given in Fig. 3.7.

Figure 3.7. (a) Beam Cross-Section (b) Linear Strain Distribution (c) Linear stress distribution

on the compressed face and no tension in Concrete (d) Forces resulting in horizontal

equilibrium and resisting moment
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Figure 3.8. Linear Stress distribution

over rectangle stress dis-

tribution of width equal

to concrete compressive

strenght.

As shown in Fig. 3.7 (b) the strain distribution is

still linear, thus the relations derived for determining

if the upper rebars yield or not, displayed in Eq. 3.3

and 3.4, are still valid.

Fig. 3.7 (c) illustrates the above mentioned linear

stress distribution on the compressive face. In this

case the same approach previously introduced can

be used again as well for calculating the compressive

force provided by the concrete compressive face. In

Fig. 3.8 the linear stress distribution is shown over

the rectangle on of width equal to fc. In such case

it is clear that the area occupied by the linear stress

distribution is 50% of the rectangle's one.

Moreover by knowing that the center of gravity of

a triangle rectangle is at 1/3 of its height, and

by imposing the moment equilibrium of the forces

displayed in Fig. 3.7 (e) the derivation of the maximum bearing moment, shown in Eq.

3.6, can be easily carried out.

Mr =
fc xn b

2

(
d− xn

3

)
+A′s σ′s (d− c) (3.6)

From the static system introduced in Fig. 3.1, and by assuming that the analyzed

cross-section is at the beam mid-length the maximum bearing load can be calculated as

illustrated in Eq. 3.7.

Mmax = 2 P ↔ Pmax =
Mr

2
(3.7)

The results obtained from the median, characteristic and design strength values shown

in Tables 2.2 and 2.3 using Eq. 3.5, 3.6 and 3.7 are shown in Fig. 3.9 and 3.10.
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Figure 3.9. Maximum Bearing Load against Concrete Compressive Strength

Figure 3.10. Maximum Bearing Load against Rebars Strength

From the above �gures a mean di�erence of roughly about 7.28 kN can be appreciated,

corresponding to a percentage of mean di�erence between the two methods results of about

12.40%.

Moreover the load partial safety factor can also be evaluated from the ratio of the design

load over the characteristic one, providing as results 1.26 and 1.36, respectively for the

stress-block and linear stress distributions.

Surely the stress-block distribution gives a more reliable result since it is closer to the real

behavior of concrete. The linear stress distribution is thought as a fair approximation of

the above mentioned distribution and that is correct, but it is not simplifying the max-

imum bearing moment calculation that much. As result the stress-block distribution is

preferred, and only this latter's results are taken into account in the following.
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3.4 Serviceability Limit State

Figure 3.11. Point in which the ver-

tical displacement in

tracked.

The SLS is used in this project in order to evaluate

the magnitude of the vertical displacements due

to the loads shown in Fig. 3.9 and 3.10. Such

displacements are tracked at the mid-length of the

beam, thus in the point circled in red in Fig. 3.11.

The vertical displacement is mainly function of the

beam �exural rigidity. This latter is de�ned as the

force couple required to bend the structure of one

unit of curvature, or more simply as the resistance

provided by a structure while undergoing bending.

The �exural rigidity is mathematically represented by the product of the Young's modulus

and moment of inertia (E I). [9]

In the case of a RC beam the Young's modulus is not uniquely de�ned since the cross-

section is composed by concrete and steel having di�erent values of Young's moduli.

Moreover the moment of inertia is not clearly well de�ned due to concrete's cracking

when bending at ULS.

To overcome the �rstly mentioned problem the homogenization factor, n, is introduced. Its

purpose it to 'homogenize' the RC cross-section to a homogeneous one constituted only by

concrete for instance. In order to do that the homogenization factor needs to be multiplied

to the steel contribution therms when calculating the moment of inertia, and it is de�ned

as n = Es
Ec
. Such operation allows to count the rebars' areas to be n times the actual ones

due to the di�erence in terms of Young's modulus between steel and concrete.

The second di�culty is vanquished by considering di�erent behaviors of the RC cross-

section as illustrated in Fig. 3.12 .

Figure 3.12. Di�erent Beam Behaviors used in SLS: (a) Linear Stress Sistribution (b) Linear

Stress distribution with Tensile Failure in Concrete (c) Parabole-Rectangle Stress

Distribution on the compressed face and Failure on the Tensile one

The dashed areas in the above �gure represent the part of the concrete beam giving

contribution to resist the bending load.

In Fig. 3.12 (a) the case in which no cracks occur in the cross-section is represented. This

latter is analysed in order to evaluate how much more contribution would no cracks give to
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reduce the vertical displacement. However such case is considered to be the less realistic

since the ULS load is applied, thus cracks on concrete's tensile face are expected to occur.

In Fig. 3.12 (b) the linear stress distribution case, previously introduced in the ULS and

illustrated in Fig. 3.7, is illustrated. This latter's results in terms of maximum bearing

load were shown to diverge from the most realistic one, however its results in terms of

displacement are also analyzed.

In Fig. 3.12 (c) the most realistic stress relationship is shown, with a parabola-rectangle

distribution on the compressed face and the concrete tensed faced cracked.

The obtained results are summarized in Fig. 3.13 where behaviors A, B and C respectively

correspond to the ones in Fig. 3.12 (a), (b) and (c).

Figure 3.13. Vertical Displacement against Load Magnitude.

In the above illustrated results the huge di�erence in terms of displacement between non-

cracked (Behavior A) and cracked (Behaviors B and C) con�guration can be appreciated.

Such result was expected since the non-cracked cross-section has a higher moment of inertia

and thus a higher �exural rigidity.

Behaviors B and C give almost the same result for similar values of load. Such statement

makes sense since, with the vertical displacement calculation, the only di�erence between

them would then be the distance of the neutral axis from the upper edge, which in the

ULS calculations was almost alike. However the usage of median, characteristic and design

values of concrete and steel strength gave di�erent values of maximum bearing load, which

a�ect also the vertical displacement magnitude.
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MATERIAL MODELS FOR FE

ANALYSES 4
In this chapter the concrete and steel material models used in the non-linear FE analyses

are presented.

For many years, researchers have been working toward the successful application of

FE analyses to the design of RC structures. The aim was to provide a more accurate

method than the simpli�ed and approximate done shown in the previous chapter. Despite

promising research in this area, only a few practical FE based design tools have been

implemented in standard structural engineering technology. The goal of this study is to

develop and validate such a tool regarding one particular concrete model: The Concrete

Damage-Plasticity Model. [10]

Moreover RC is constituted also of rebars, thus also a plasticity model for steel needs to

be introduced.

In the next chapter is then shown how to implement both together into a FE model to

well represent the RC behavior.

4.1 Concrete Damage-Plasticity Model

The Concrete Damage-Plasticity (CDP) Model is based on the combination of damage

mechanics and plasticity. Its goal is to be able to describe the important characteristics of

the failure process of concrete when subjected to multi-axial loading. [11]

The model assumes the two main failure mechanisms of tensile cracking and compressive

crushing. It consists of an isotropic hardening plastic model. The evolution of the yield

surface is managed by the plastic strains, ε̃plt and ε̃plc , respectively tensile and compressive.
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4.1.1 Strength Hypothesis and CDP Parameters

Very often it is assumed the hypothesis that concrete behavior resembles the one described

by the Drucker-Prager criterion. The shape of this latter is conic (as illutrated in Fig. 4.1),

which implicates no complications in numerical application due to its smoothness. However

the drawback is in the non-fully consistence with concrete behavior. [14]

Figure 4.1. Drucker-Prager Yield Surface in a 3D view and in the deviatioric plane. [14]

The CDP model is a modi�cation of the above mentioned Drucker-Prager strength

hypothesis. Such modi�cation edits the shape of the yield surface in the deviatoric plane.

The yield surface has not to be a circle since concrete strengths in compression and tension

are not equal, thus the surface extension on the compressive and tensile meridian cannot

be the same as it is in the case of a circle. The parameter Kc governs this shape.

Figure 4.2. CDP yield surface representation in

the deviatoric plane

The physical meaning of the parameter

Kc is the ratio of the distances between the

hydrostatic axis and respectively compres-

sion and tension meridian in the deviatoric

plane. [14]. For a value of 1 the CDP

yield turns to the Drucker-Prager circular

shape. According to experimental results

conducted on concrete samples such value

can be assumed to be of 2/3, leading to a

yield surface shape as given in Fig. 4.2.

The shape of the CDP yield surface in the

meridional plane assumes the form of a hy-

perbola.

An illustration of this latter is given in Fig.

4.3. Its shape is adjusted through the plas-

tic potential eccentricity, more commonly

known as eccentricity.
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It represents the distance between the vertex of the hyperbola and the intersection of

the hyperbola asymptote with the hydrostatic axis.

Figure 4.3. CDP yield surface in the meridional

plane. [14]

It is usually a small number expressing

the approximation of the hyperbola to its

asymptote. In the case in which the

eccentricity, ε coincides with 0 the yield

surface in the meridional plane becomes

a straight line as in the Drucker-Prager

criterion. Usually it is recommended to

assume a value of ε = 0.1. [14]

The state of the material is described also

by the ratio of the strength in biaxial state

to the one in uniaxial state
(
fb0
fc0

)
. A

physical interpretation of the meaning of

such parameter is given by Fig. 4.4. Experimental results lead to a value of such parameter

of approximately 1.16.

Figure 4.4. Strength of concrete under biaxial stresses. [14]

Another parameter needed for de�ning concrete behavior is the dilation angle (ψ). This

latter represents the inclination of the yield surface to the hydrostatic axis in the meridional

plane. [14] Physically such parameter is interpreted as the concrete friction angle, and for

the chosen class of concrete a value of 22◦ can be assumed.
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Finally viscous e�ects can also be taken into account through the viscosity parameter. In

the current analysis viscosity is ignored, thus a value of the viscosity parameter of 0 is

assumed.

In Table 4.1 the above mentioned values of CDP parameters are summarized.

CDP Parameters

ψ [◦] ε [-] fb0
fc0

[-] Kc [-] Viscosity Parameter [-]

22 0.1 1.16 0.667 0

Table 4.1.

4.1.2 General Framework

The damage-plasticity constitutive model is based on a damage, and a plasticity part.

In this subsection these two aspects of the model are introduced in the mentioned order.

Damage is implemented in the model in the only case in which cyclic loads are applied to

the structure. The damage-plasticity model reduces to an isotropic hardening plasticity

model in static conditions.

Damage is introduced into the model through the so called tensile and compressive

damage variables, dt and dc. They evolve within increases in plastic tensile and compressive

strains (ε̃plt and ε̃plc ). Damage leads to a degradation of the 'elastic' Young's modulus, which

is controlled by dt and dc. Such variables are assumed to be in function of plastic strains,

temperature and other �eld variables. In the case of analysis the in�uence of temperature

and �eld variables is not taken into account, thus the damage variables are derived only

in function of plastic strains as indicated in Eq. 4.1 and 4.2.

dt = dt(ε̃
pl
t ); 0 ≤ dt ≤ 1 (4.1)

dc = dc(ε̃
pl
c ); 0 ≤ dc ≤ 1 (4.2)

The damage variables can have values from 0, representing undamaged material, to 1,

which represent a full loss of sti�ness. [12] The constitutive model results to be degraded

by the e�ect of damage, which lowers the Young's modulus, thus the values of the stresses

are necessarily lowered. The relationships given in Eq. 4.3 and 4.4 describe the value of

such stress in function of the plastic strains and damage variables.

σt = (1− dt) E0 (εt − ε̃plt ) (4.3)
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σc = (1− dc) E0 (εt − ε̃plc ) (4.4)

Or in vectorial form as in Eq. 4.5

σ = (1− dt) σt + (1− dc) σc (4.5)

The plasticity model is based on the e�ective values of stresses, which are independent

of damage. The model is described by the yield function, �ow rule and loading-unloading

conditions. The evolution of the yield function is governed by the hardening variables,

which will now be introduced. [11]

The plasticity part of the model is presented in the following. The yield function is as

given in Eq. 4.6

fp(σ, κp) = F (σ, qh1, qh2) (4.6)

where qh1(κp) and qh2(κp) are dimensionless functions managing the size and shape of

the yield function as shown in Fig. 4.5 and 4.6. The rate of hardening variable, κp, is

connected to the rate of plastic strain by an evolution law. [11]

The �ow rule is given in Eq. 4.7

ε̇p = λ̇
∂gp
∂σ

(σ, κp) (4.7)

where

ε̇p Rate of plastic strain

λ̇ Rate of plastic multiplier

gp Plastic Potential

The loading-unloading conditions are illustrated in Eq. 4.8.

fp ≤ 0, λ̇ ≥ 0, λ̇fp = 0 (4.8)
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Figure 4.5. Evolution of yield surface in the
deviatoric plane during harden-
ing for a constant volumetric
stress. [11]

Figure 4.6. Evolution of yield surface in the
meridional plane during hard-
ening for a constant volumetric
stress. [11]

4.1.3 Tensile and Compressive Stress-Strain Relationships

Concrete exhibits a complex non-linear behavior. Failure in tension is characterized by

softening, which means decreasing stresses with increasing strains. This latter is also

accompanied by irreversible (plastic) deformations. [11]

Under uniaxial tensile loading the stress-strain response is linear elastic until the failure

tensile stress, σt0, is reached. Beyond such value some micro-cracks occur. This

phenomenon is represented with a softening stress-strain response. [12]

This latter statement makes physical sense since as concrete starts cracking its capacity

becomes lower and lower. The post-failure tensile relationship also de�nes the interaction

with concrete since as the stress carried in tension by concrete decreases, the one carried by

rebars should increase in order to satisfy the overall equilibrium. Such behavior is usually

referred in literature as 'tension sti�ening'.

Fig. 4.7 provides an illustration of the above mentioned concrete tensile stress-strain

relationship.
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Figure 4.7. Response of Concrete in Uniaxial Tensile Loading. [12]

For the tensile behavior the relation proposed by Wang and Hsu [14] is implemented.

This latter is resumed in Eq. 4.9 and 4.10.

σt = Ec εt for |εt| ≤ |εcr| (4.9)

σt = fcm

(
εcr
εt

)n
for |εt| > |εcr| (4.10)

where

εt Tensile total strains [-]

εcr Tensile strain at concrete cracking [-]

n Rate of weakening [-]

Concrete weakening is simulated through the above mentioned rate of weakening n. Its

value varies from 1.5, for a very weak tensile response leading to a tensile stress almost none,

to 0.4, for a less weak response. The case of n = 1.5 provides a simulation closer to the

ULS assumptions since concrete is almost non responding in tension once εcr is superseded.

Also some intermediate values of n are taken into account in order to illustrate how such
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factor a�ects the tensile response of concrete. Fig. 4.8 shows concrete tensile stress-strain

relationships according to 4.9 and 4.10.

Figure 4.8. Concrete Tensile Stress-Strain Relationships in function of the total strains.

The numerical analyses are carried out in function of the so called cracking strains ε̃ckt .

The cracking strains physically represent the strains after cracking, de�ned as the di�erence

between the total strain (εt) and the elastic strain for the undamaged material (εel0t), as

shown in Eq. 4.11. [14] The elastic strain de�nition is also given in Eq. 4.12.

ε̃ckt = εt − εel0t (4.11)

εel0t =
σt
Ec

(4.12)

An illustration of the above mentioned concepts is given in Fig. 4.7, and Fig. 4.9

illustrates the stress-strain relationship in function of cracking strains.
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Figure 4.9. Concrete Tensile Stress-Strain Relationships in function of the total strains.

Another manner of representing the 'tension sti�ening' is by means of the concrete

fracture energy (Gf ). It represents the most useful parameter in the analysis of cracked

concrete structures. A representation of this latter is given in Fig. 4.10.

Figure 4.10. Post-failure stress-fracture energy

curve. [12]

The fracture energy is de�ned as the

area under the tensile stress - displace-

ment evidenced in gray. The de�ni-

tion of such parameter is carried out in

function of the maximum tensile stress

and the maximum displacement that

concrete can allow.

For the case of analysis a fracture en-

ergy of 0.25 N/mm is chosen, thus

providing a maximum tensile displace-

ment of 0.25 mm, which gives good

physical sense.
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On the other hand, in compression the response is linear until the initial yield stress σc0.

In the plastic range between σc0 and the ultimate stress, σcu, the response is characterized

by stress hardening. Beyond σcu a softening regime takes place. [12]

The compressive stress-strain response is given in Fig. 4.11.

Figure 4.11. Response of Concrete in Uniaxial Compressive Loading. [12]

Such response may easily be obtained by extensively applying Eq. 3.1 also for values of

|εc| ≥ |εc,1|. The obtained stress-strain relationships are illustrated in Fig. 4.12.

Figure 4.12. Compressive Stress-Strain Relationships for softening response in function of total

strains.
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However the numerical analyses are, for the compressive part, carried out with reference

to plastic strains. Inelastic strains, ε̃inc , are de�ned by subtracting the elastic part,

corresponding to the undamaged material (εel0c), to the total strains (εc). The above

mentioned concept is similar to the one of cracking strain, and is summarized in Eq.

4.13 and 4.14.

ε̃inc = εc − εel0c (4.13)

εel0c =
σc
Ec

(4.14)

When converting then inelastic strains to plastic strains it is needed to assume a stress

threshold from which the response is assumed to be non-linearly elastic. Experimental

tests show evidence of almost lack of linearity in the concrete compressive behavior, but in

most numerical analyses the initial elastic non-linearity can be neglected. The threshold is

assumed thus at a stress value of 0.4 fc. Such statement well �ts the compressive stress-

strain relationship provided in Eq. 3.1.

Fig. 4.7 and 4.11 also show the unloading behavior within the plastic regime. As previously

introduced, after plastic deformations occur the initial Young's modulus, E0, results to be

damaged, and thus decreased. The unloading response appears to be weakened. The

plastic strains can then be computed, in the compressive and tensile case, respectively as

in Eq. 4.15 and 4.16.

ε̃plc = εc −
dc

(1− dc)
σc
E0

(4.15)

ε̃plt = εt −
dt

(1− dc)
σt
E0

(4.16)

In case of undamaged material (dc = 0, dt = 0) the plastic strains reduce to the

inelastic ones, de�ned for the compressive case in Eq. 4.13. The compressive stress-strain

relationship in function of plastic strains is given in Fig. 4.13
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Figure 4.13. Compressive Stress-Strain Relationships for softening response in function of plastic

strains.

A perfect plastic response is however preferred since its implementation is simpler, and

it does not signi�cantly a�ect the solution. Moreover it also resembles more the parabola-

rectangle stress distribution viewed in the previous chapter. The compressive stress-strain

relationship for perfect plastic response in function of plastic strains is given in Fig. 4.14.

Figure 4.14. Compressive Stress-Strain Relationships for perfect plastic response in function of

plastic strains.
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4.1.4 Cyclic Behavior

When the loads from static turn to dynamic the damage mechanics becomes much more

complex. Cyclic behavior includes opening and closing of previously formed micro-cracks.

Experimentally it is observed that the elastic sti�ness partially recovers when the load

changes sign in a cyclic load. Such sti�ness recovery e�ect is usually referred in literature

as unilateral e�ect, and it represents an essential aspect of concrete cyclic behavior.

The recovery is more conspicuous when load changes from tension to compression. [12]

The damage of Young's modulus is de�ned in function of the degradation variable d as

shown in Eq. 4.17.

E = E0 (1− d) (4.17)

where

E0 Initial undamaged Young's modulus [MPa]

The degradation variable is function of the stress state and compressive and tensile

damage parameters, dc and dt. Thus Eq. 4.18 follows.

(1− d) = (1− stdc)(1− scdt) (4.18)

where

st and sc Two parameters de�ning the sti�ness recovery in function of stress reversals.

They are de�ned as in Eq. 4.19 and 4.20.

st = 1− wt r∗(σ11) 0 ≤ wt ≤ 1 (4.19)

sc = 1− wc (1− r∗(σ11)) 0 ≤ wt ≤ 1 (4.20)

where

σ11 Stress in a sample direction [MPa]

r∗(σ11) = 1 if σ11 > 0

r∗(σ11) = 0 if σ11 < 0

wt and wc are the, so called, weight factors which control the recovery of sti�ness upon

load reversal. [12].
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To sum up with reference to Eq. 4.18 it can then be stated that the degradation of

sti�ness when cyclic loads are applied is mainly function of the compressive and tensile

damage. The sti�ness recovery is function of the weight factors, that for values of 0

introduce no recovery, and for values of 1 gives full recovery. Fig. 4.15 illustrates how

damage parameter and weight factor a�ect concrete cyclic behavior. The concrete model

is loaded in tension, and it is responding elastically, until it reaches its maximum tensile

strength, corresponding to the point A. Within increasing strain the material is then

softening until at the point B the model is unloaded. However at that stage the material

sti�ness is already damaged thus the unloading Young's modulus results to be smaller

than the initial elastic one, and the rate of its reduction is determined by the damager

parameter dt. The unloading process brings the stress state from B to C, where there is

a plastic strain. In case the material was not unloaded at B, it would have followed the

dashed path, thus including tension sti�ening in the model. At the point C the model

is subjected to load reversal, and the weight factor wc determines the rate of sti�ness

recovery when going from tensile to compressive stress. For full recovery (wc = 1) the

Young's modulus coincides with initial elastic one. Upon compression load the material

hardens and then softens as previously discussed. In case of no recovery (wc = 0) the

model would have followed the dashed stress path. At D the model is unloaded again, and

the damage parameter dc determines the degradation of Young's modulus.

Upon unloading the stress is brought to zero at the point E, and plastic strain is present

here as well since the strain is di�erent from 0. At E the material is reloaded, and now again

the tensile weight factor determines the sti�ness recovery rate. However at this stage the

tensile Young's modulus is already degraded in function of dt and dc. No sti�ness recovery

is assumed, and the concrete is 'tension sti�ening' again, and so on.

Figure 4.15. E�ect of damage parameters and weight factors on concrete cyclic behavior. [12]
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Figure 4.16. Stress-strain relation

for (cyclic) compressive

loading. [13]

In order to implement the previously mentioned

behavior into the FE model the damage parameters

and weight factors have to be de�ned.

The evolution of the compressive damage compo-

nent, as previously discussed, is directly linked to

the plastic strains. Sinha, Gerstle & Tulun (1964)

[13] proposed a relationship for deriving the com-

pressive concrete damage parameter in function of

the plastic strains, material properties, and a con-

stant factor called bc, with 0 ≤ bc ≤ 1. In Fig. 4.16

a representation of the cyclic behavior relationship

is given for two di�erent values of bc. The bc pa-

rameter then seems to control the amount of damage to include in function of the plastic

strains evolution. Sinha, Gerstle & Tulun (1964) chose a value of 0.7 since it seems to

include damage more gradually and realistically into the model, and moreover their tests

were carried out on a C20/25 concrete, thus perfectly �tting the current analysis.

The concrete damage parameter, dc, is found through the relationship given in Eq. 4.21.

[13]

dc = 1− σc E
−1
c

ε̃plc (1/bc − 1) + σc E
−1
c

(4.21)

A representation of the obtained results for median, characteristic and design

compressive strength values over inelastic strains is given in Fig. 4.17

Figure 4.17. Compressive damage parameter evolution with compressive inelastic strains.
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Figure 4.18. Stress-strain relations

for (cyclic) tensile

loading. [13]

The same concept applied for the tensile damage

parameter. Fig. 4.18 gives an illustration

The evolution of the tensile damage component

is directly linked to the tensile cracking strains.

Reinhardt and Cornelissen (1984) [13] proposed a

relationship for deriving the tensile concrete damage

parameter. Such equation is based on the same

principles as in Eq. 4.21, and it is given in Eq. 4.22.

A constant factor, experimentally derived, called bt,

is introduced, and is set to be 0.1. [13]

dt = 1− σt E
−1
c

ε̃plt (1/by − 1) + σy E
−1
c

(4.22)

A representation of the obtained tensile damage

parameters over inelastic strains is given in Fig. 4.19

Figure 4.19. Tensile damage parameter evolution with tensile cracking strains.

The weight factors used for modeling the sti�ness recovery are given in Tab. 4.2. The

compressive sti�ness recovery is modeled with the maximum weight factor, while the tensile

one with the lowest.

Weight Factors

- wc [%] wt [%]

min 10 70

max 20 80

Table 4.2.

36



4.2. Rebar Plastic Model Aalborg University

4.2 Rebar Plastic Model

Figure 4.20. Mises yield surface in a 3D prin-

cipal stresses space. [16]

The de�nition of steel is carried out by as-

suming an elasto-plastic model with Mises

yield surface, and associated plastic �ow.

Moreover the material model may also in-

clude either hardening or perfect plastic be-

havior.

The Mises yield criterion assumes yielding

to be independent of the pressure stress

since its shape does remains constant along

the hydrostatic axis.

The Mises yield surface is de�ned by in-

putting the value of uniaxial yield stress as

a function of the uniaxial equivalent plastic

strain. [17] Isotropic hardening means that

the yield surface changes size uniformly so

that the yield stress increases in all the directions when plastic strains develop. [17]

In the case of analysis a perfect plastic behavior is preferred for modeling the rebars. Such

model is chosen since it well �ts the steel behavior. An illustration of the implemented

model is given in Fig. 3.4. Moreover, for the rebar as well, the constitutive model needs to

be expressed in function of plastic strains. The elastic part of the stress-strain relationship

is thus removed, leading to a perfect plastic model as shown in Fig. 4.21.

Figure 4.21. Steel Perfect-Plastic Model in function of plastic strains.
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STATIC NON-LINEAR FE

ANALYSES 5
In this chapter the general framework on the basis of the non-linear FE analysis is

introduced, with its relative solution method for time-independent problems. A shell and a

solid model of the RC beam are built up. The �nite elements constituting the models are

illustrated. Finally the models' set-up and the results are shown and commented.

The FE analyses are carried out with ABAQUS/CAE

5.1 Introduction to Non-Linear FE Analysis

In structural mechanics, as introduced in the previous chapter, materials may yield, harden

or soften, leading to non-linearities in their constitutive models. Non-linear problems result

to give more di�culties in describing them by realistic mathematical and numerical models.

The analyst is required to put much more e�ort in non-linear analyses than for linear cases.

Computational cost is also a big concern since the solving time is much increased.[18] Non-

linearities can be introduced through material, contact and/or geometric non-linearities.

For the case of analysis the constitutive models result to be non-linear, as discussed in the

previous chapter, since plasticity is introduced to model concrete and steel behavior. No

geometric non-linearities are given since the beam geometry is quite regular, and neither

contact ones are present.

The usual FE equation implemented is given in Eq. 5.1

[K] {D} = {R} (5.1)

where

[K] Sti�ness Matrix [N/mm]

{D} Displacement Vector [mm]

{R} Loads Vector [N]

For non-linear FE analyses the solution cannot immediately be obtained for {D} through
Eq. 5.1 since informations are neededto construct [K], and {R} is now known a priori. An

iterative process needs to be carried out to obtain {D} and its connected [K], such that

equilibrium is provided through Eq. 5.1. [18] The satisfactory end of the above process

for every iteration is usually argued in literature as solution convergence.

A further disadvantage on non-linear analysis is that solutions cannot be superposed since

the equilibrium equations are non-linear.

The applied solution method is introduced as it follows.
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Time-Independent Solution Methods

Figure 5.1. Hardening and Softening

behavior compared to a

linear one. [18]

One of the iterative solution methods that can be

applied for the previously introduced process is in-

troduced for static problems.

The Newton-Raphson iterative method is given in

the following, for more informations regarding other

static solution methods please refer to [18].

Let's suppose to analyse a 1D problem where u is

the displacement, k the sti�ness, and P the load.

As shown in Fig. 5.1 the k u provides a linear inter-

pretation of the problem, however the relationship

can either non-linearly harden or soften. It is clear

that, if P is known in advance, by applying Eq. 5.1

a solution for u cannot be reached. The displacement, u, is instead obtained by iterations

over increasing steps corresponding to load variations. The calculation procedure use the

tangent sti�ness k0.

Fig. 5.2 gives an illustration of the Newton-Raphson iterations. The �rst iteration is car-

ried out for a step-load of ∆P1 giving a load of P1 with a tangent sti�ness of kt0. This

latter intersect the load in A, at which a displacement of a corresponds. However the

load value at a is lower than P1 of a value of ePA, thus the solution did not converge yet.

Then in a the tangent sti�ness kta is used. This latter brings the iteration to the point

B and subsequently to b, for which the load is still lower than P1. The above process is

carried out until the displacement corresponding to the point 1 is found. Another itera-

tion is then required to �nd the values of k and u giving equilibrium. The implemented

procedure is exactly alike the one previously introduced, and so on for more values of loads.

Figure 5.2. Iterations procedure to convergence for two load levels P1 and P2. [18]
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5.2 Finite Elements

A shell and a solid FE models are built up with the CDP model introduced in the previous

chapter. The present section's aim is to introduce the FE which are implemented in the

above mentioned models.

5.2.1 Shell Elements

Shell elements are characterized for having a signi�cantly smaller dimension in the thick-

ness direction than the other two dimensions. Shell FE analyses can be carried out either

for thin or thick shell elements. Thin shell elements are described by classical Kirch-

ho� theory, while thick shell elements' kinematic relations are based on Reissner-Mindlin

theory.[19]

For the current case thick elements are preferred since a shell model is used as an approx-

imation of the RC beam, that in reality has a non-zero thickness.

The chosen shell section is homogeneous along the length of the beam, and it is de�ned

by a shell thickness, a Poisson's ratio, rebar layers, and material models for concrete and

steel. However the shell elements' thickness changes according to the FE analyses results

in function of the de�ned Poisson's ratio ν. Triangular and quadrilateral conventional shell

elements could have been chosen for building up the shell model. Quadrilateral shell ele-

ments are however preferred since they can more accurately describe the bending behavior.

Figure 5.3. Illustration of chosen ele-

ments for the shell model.

[20]

Moreover two di�erent types of interpolation func-

tions can be applied to the shell elements: linear and

quadratic, respectively leading to the creation of the

S4 and S8 elements, including 4 and 8 nodes. An il-

lustration of such elements is given in Fig. 5.3. In

the case of analysis the RC beam is mainly subjected

to bending, thus quadratic elements shall give more

accurate results since they can better represent such

behavior. However acceptable results are also ex-

pected to be obtained from a linear elements mesh

since the phenomenon of shear locking should not

occur. The linear element may then be lock-free be-

cause they are bended in the direction perpendicular

to their surface.

Another important aspect in the choice of the shell

elements is the integration method. For the case

of a bending beam the strains linearly change along

its thickness, and the stress distribution is assigned

in correspondence to the strains' one. As previously

illustrated the RC cross-section is subjected to nega-

tive (compressive) and positive (tensile) stresses when bending. The shell element provides

informations only in the so called section points, which are the integration points along
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the thickness.

If reduced integration is applied, meaning that only one integration point is used instead

of four leading informations loss.

In this case is preferable to choose a greater amount of section points in order to better

represent the bending behavior.

The position of the section points along the thickness of the beam is function of the chosen

integration method.

Gauss quadrature integration tends to accumulate them to the edges in function of the

amount of section points chosen. An illustration of such concept is given in Fig. 5.4.

The Simpson integration, shown in Fig. 5.5, give always an uneven amount of section

points. This type of integration tends to place one section point always in the middle, and

then equally distribute the resting points along the beam thickness.

Figure 5.4. Section points for Gauss quadrature integration. [21]

Figure 5.5. Section points for Simpson integration. [21]

For the case of analysis the Simpson integration is preferred since it can better model the

RC cross-section strain and stress distribution. An amount of 11 section points is taught

to be su�cient, meaning that from top to bottom edge there is approximately one section

point every 5.8 cm.

The position of the integration points in the quadrilateral element are not a�ected by

the choice of using a Simpson integration, thus their position is equal to the one for

Gauss quadrature integration. An illustration of their placement in isoparametric local

coordinates is given in Fig. 5.6 (a).
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Fig. 5.6 (b) is instead showing the position of the section points along the thickness for

an example of 5 section points. Face SPOS and SNEG respectively refer to positive and

negative surface.

Figure 5.6. Integration points in a quadrilater element. [19]

Figure 5.7. Multi-layer shell element including

rebars layers. [22]

At last the rebar needs to be de�ned.

Rebars are modelled through additional

layers that can be oriented along the

longitudinal direction of the beam, or either

along the width one. Fig. 5.7 gives

an illustration of the above mentioned

concept. For the case of analysis two rebar

layers need to be de�ned, since the RC

beam geometry includes upper and lower

rebars. To such layers is then assigned the

elasto-plastic model for steel as outlined in

the previous chapter.

The rebars layer are smeared on the whole

rebars surface, which has size equal to the concrete one. According to the amount of rebar

and to their area the layer is de�ned for providing equal steel area.
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5.2.2 Solid Elements

In order to provide a more realistic and reliable solution a 3D FE model has to be created.

The solid elements library provided by ABAQUS/CAE includes isoparametric elements.

They are generally preferred for their cost-e�ectiveness. For a solid model the computa-

tional cost becomes of primary interest since the analysis turns to be way more complex.

Figure 5.8. Illustration of chosen ele-

ments for the solid model.

[20]

An illustration of the chosen solid elements is given

in Fig. 5.8. Such elements are provided with

a linear and quadratic interpolation function as

well, and they are respectively referred as C3D8

and CRD20, including 8 and 20 nodes. The same

concepts expressed for the �rst- and second-order

interpolation function shell elements apply to the

solid ones as well. Linear interpolation function

elements give constant strain with the element, thus

the �nal solution may be a�ected by the model

mesh. Moreover the higher-order content of the

solution is generally not very accurate. On the other

hand quadratic interpolation function elements are

capable to represent linear strain �elds, and they

are particularly e�ective for bending problems.

[23]

First-order isoparametric elements also su�er 'shear

locking' when performing in bending problems.

They cannot provide a good bending solution since

the linear interpolation function cannot describe

accurately the problem, thus providing sti�er solutions. Such problem may be avoided by

using reduced integration, but with the disadvantage of allowing spurious singular modes.

Second-order isoparametric elements are locking-free, and, as previously introduced, their

linear strain �eld can describe quite accurately bending behavior within thin FE. [23] An

illustration of the physical meaning of linear and quadratic interpolation function is given

in Fig. 5.9.

Figure 5.9. Illustration of �rst- and second-order interpolation function of solid elements. [24]

44



5.3. Shell Model Set-Up Aalborg University

5.2.3 Truss Elements

In a 3D FE model solid elements are used to describe concrete regions, and truss

elements are inserted for simulating the presence of rebars. in this context a

'truss element' is a 1D element that can randomly be oriented in a 3D space.

Such element has one node at each extremity of the element, and it is able

to transmit only axial forces. Fig. 5.10 gives an example of truss element.

Figure 5.10. Example of truss element ran-

domly oriented in a 3D space. [25]

By de�nition trusses have no rotational de-

grees of freedom (DOF), they only have

three translational DOF (depicted as Dx,

Dy, Dz in Fig. 5.10) per node. [25]

A cross-sectional area corresponding to the

rebar is given to every truss element. Steel

material properties, previously introduced,

are also applied to them.

In RC concrete applications they are usu-

ally implemented in order to model rebar

by embedding them to the concrete model.

Their behavior is then entirely dependent

on the concrete one.

5.3 Shell Model Set-Up

The models are set up in the FE software Abaqus. Three models are built up including

median, characteristic and design material properties, with its respective maximum loads

previously computed in the ULS analysis.

The model set-up is shown in Fig. 5.11.

Figure 5.11. Representation of Beam Shell Model Set-Up

The loads are applied over 200 mm wide areas (in the x-direction). The yellow-circled

points are datum points, which are created in order to de�ne the load area.

The boundary conditions impose no translational displacement in the x- and y-direction

on one end of the beam, and no translational displacement in the y-direction on the other
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end.

Tension sti�ening is introduced in the model through the stress-strain relationship

illustrated in Fig. 4.9 with n = 1.5.

The mesh is de�ned simply by specifying a general elements size. An illustration of the

bending behavior of the shell RC beam for the design case is given in Fig. 5.12

Figure 5.12. Example of Beam Shell Model De�ection for the design case
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5.4 Solid Model Set-Up

The solid model set-up results to be a little bit more complex than the shell one.

In this case the application of the boundary conditions directly on the model leads to

unreliable bending results. When creating FE models it is the analyst's duty to ensure

that the model behavior resembles its expectations. An illustration of the solid model

set-up is given in Fig. 5.13.

Figure 5.13. Representation of Beam Solid Model Set-Up

The mesh is constituted over its height of 11 elements. The reason of such choice is

that more elements are required along the beam height in order to well de�ne the bending

behavior. The amount of elements is de�ned matching the number of section points chosen

for the shell model, in order to make better match the results.

The concrete beam is placed over two blocks made of 'elastic concrete'. Moreover such

blocks are placed over shell slabs made of a semi-rigid material. The boundary conditions

are applied on the bottom of such slab, and they are identical to the shell case.

With this model set-up the semi-rigid slab is capable of simply rotating around the pins

without experiencing any deformation, the elastic blocks deform elastically and the RC

beam follows such deformation providing a good bending behavior.

The parts are constrained by de�ning master and slave surfaces. The slave surfaces follow

the deformations of the master surfaces.

The lower and upper rebars can also be seen in the model set-up above, and they are

embedded into the concrete beam.

Tab. 5.1 underlines how the elastic, and semi-rigid materials are de�ned.
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Additional Materials for Solid Model Set-Up

Part Behavior E [MPa] ν

Elastic Block Elastic 30000 0.20

Semi-Rigid Slab Elastic 3000000 0.49

Table 5.1.

An illustration of the bending behavior of the RC beam is provided in Fig. 5.14 for the

design case.

Figure 5.14. Example of Beam Solid Model De�ection for the design case.

Due to the higher complexity of the model if the tensile behavior of concrete is given

through the stress strain relationships, shown in Fig. 4.9, a converged solution results hard

to reach. Thus the fracture energy approach is preferred for inserting tension sti�ening in

the model.
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5.5 Analysis of the Results

In this section the results derived from the above mentioned models set-up are shown and

discussed for both models.

5.5.1 Convergence Analysis

At �rst the convergence analysis is shown in order understand for both models which ele-

ment is more e�ective and with how many elements.

For the shell model the used elements are shown in Fig. 5.15

Figure 5.15. Shell Elements used in the convergence analysis. [19]

The convergence analysis results for the shell model are illustrated in Fig. 5.16 and

5.17, and the rate of di�erence in terms of maximum vertical displacement (umax) and

computation time when increasing the seeds size are given in Tab. 5.2 and 5.3.

Figure 5.16. Convergence Analysis for Shell Model
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Figure 5.17. Computation Time against Number of Elements for the Shell Model

Convergence Rates of Vertical Displacements

Elements Increase S4R [%] S4 [%] S8R [%]

31 - 80 0.23 0.23 0

80 - 180 0.093 0.14 0

180 - 341 0.046 0.093 0

Table 5.2.

Percentages of increase of computation time

Elements Increase S4R [%] S4 [%] S8R [%]

31 - 80 26.31 97.14 82.97

80 - 180 104.16 157.97 113.95

180 - 341 416.32 287.64 559.78

Table 5.3.

As it can be deducted the quadratic element o�ers the best performance since it con-

verges way faster than the linear ones. The same result is obtained also using linear

elements but only at the �nest mesh. It is however important to notice that displacement

results di�er each other in the order of the second decimal number, and such a distance is

not even visible by the human eye. Such statement is con�rmed by the very low conver-

gence rates of vertical displacements shown in Table 5.2.

An important aspect of FE modeling is also the computation time. The �nest mesh con-

stituted by S8 elements leads to way slower computations than the linear elements' case.
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It can be noticed that the percentages of increase of computation time are generally very

high when raising the amount of elements to the maximum one.

To conclude the S8 element provides the most precise results even with a coarse mesh,

nonetheless the linear elements results are also judged to be reliable.

On the other hand the elements used for the solid model are illustrated in Fig. 5.18,

5.19, and 5.20.

Figure 5.18. CRD8R:

1x1x1 inte-

gration point

scheme. [23]

Figure 5.19. C3D8: 2x2x2

integration

point scheme.

[23]

Figure 5.20. C3D20:

3x3x3 inte-

gration point

scheme.[23]

The convergence analysis results for the solid model are illustrated in Fig. 5.21 and 5.22,

and the rate of di�erence in terms of maximum vertical displacement and computation time

when increasing the seeds size are given in Tab. 5.4 and 5.5.

Figure 5.21. Convergence Analysis for Solid Model
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Figure 5.22. Computation Time against Number of Elements for the Solid Model

Convergence Rates of Vertical Displacements

Elements Increase C3D8R [%] C3D8 [%] C3D20 [%]

From 341 to 880 -4.57 0.11 -0.017

From 880 to 1980 -2.66 2.97 -0.013

From 1980 to 7920 -3.48 0.53 -0.012

Table 5.4.

Percentages of increase of computation time

Elements Increase C3D8R [%] C3D8 [%] C3D20 [%]

From 341 to 880 11.51 -43.93 1.37

From 880 to 1980 -4.25 65.67 1.54

From 1980 to 7920 312.26 489.88 5.53

Table 5.5.

From the convergence analysis it can clearly be seen that both linear and quadratic

elements mesh tend to converge with increasing amount of elements. In this case the rates

of convergence are higher. The results di�erence is also more evident, for example for the

coarsest mesh the vertical displacements are between a range of around 18 mm to almost

22 mm. For an amount of elements even higher than 7920 the results would have probably

converged even more. However the convergence analysis is stopped at such point since the

computation time already increased dramatically. It is curious to notice that in some case

by increasing the amount of elements the computation time decreases, meaning that the
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solutions convergence, at each step, sometimes tend to be faster with �ner mashes.

A mesh constituted by C3D20 elements converges faster, in fact its convergence rate is

within the second decimal number. However in general solid models computations result

to be slower.

To sum up, for the solid model as well, the more reliable results are provided by the

quadratic elements. Linear elements' results are also precise, but only with the �nest

mesh.

5.5.2 The In�uence of Rate of Weakening

In this subsection the in�uence of the rate of weakening on shell model results in terms of

normal stresses and vertical displacements is investigated.

As previously introduced the rate of weakening (n) a�ects the tensile behavior of concrete,

de�ned through Eq. 4.10.

The stress distributions for di�erent values of n is given in Fig. 5.23, 5.24, 5.25, 5.26, and

5.27.

Figure 5.23. Normal Stress

Distribution

for n = 0.4

Figure 5.24. Normal Stress

Distribution

for n = 0.5

Figure 5.25. Normal Stress

Distribution

for n = 0.75

Figure 5.26. Normal Stress
Distribution
for n = 1

Figure 5.27. Normal Stress
Distribution
for n = 1.5
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As expected the normal stresses are a�ected, especially in tension, by the change of rate

of weakening. The tensile stress distributions resemble the curves illustrated in Fig. 4.8,

which also match the a priori expectations.

The compressive normal stresses should also be a�ected by a variation of n, or, more

logically, by a change in tensile stresses. As the positive (tensile) stresses vary, the negative

ones also have to change in order to satisfy normal equilibrium conditions. However the

above �gures evidence a very small di�erence in terms of compressive stresses. Almost no

variation is given since as concrete carries less and less tensile stresses, the rebar 'absorbs'

such loss of stresses, thus no increase in concrete compressive stresses is required.

The in�uence of n on the maximum vertical displacements (umax) is shown in Fig. 5.28

Figure 5.28. Maximum Vertical Displacement values with varying rate of weakening.

According to what was previously introduced by raising n the contribution of concrete

in tension decreases, and the one of the rebars increase. The above results also give good

physical sense since once the rebars are in plastic zone the strains increase more rapidly,

thus introducing more ductility in the model, and providing higher displacements. Fig.

5.28 shows that in the case of analysis the same thing is happening.

5.5.3 The In�uence of Fracture Energy

In this subsection the in�uence of fracture energy on solid model results in terms of normal

stresses and vertical displacements is investigated.

By increasing or decreasing the fracture energy in the model the displacement required for

producing fractures respectively increases or decreases linearly according to the relationship

given in Fig. 4.10.

A physical representation of such concept is given by Fig. 5.29 on a tensile displacement,

ut, tensile strength, σt graph.
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Figure 5.29. Representation of di�erent fracture energies on a stress against displacement graph.

Gf also regulates the amount of tension sti�ening to include in the model through the

decreasing tendency of tensile stress. For decreasing values of fracture energy the tensile

stresses in concrete get lower, thus providing higher displacement, and slightly higher

compressive stresses. Such concept is identical to the one expressed for the shell model

with the rate of weakening.

The maximum normal compressive stresses, σc,max, and vertical displacements, umax, are

plotted in function of varying values of Gf in Fig. 5.30

Figure 5.30. Maximum compressive stresses and vertical displacements against fracture energy.

The above mentioned expectations are met, and in this case as well the compressive

stresses variation is not high due to the presence of rebars. On the other hand the RC

beam displacement di�erence between minimum and maximum fracture energies is of the

order of about 1 mm.
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5.5.4 Comparison of Shell and Solid Models Results

In this subsection the obtained results for the two previously introduced FE models are

presented and discussed.

At �rst the FE analyses are carried out with respect to the maximum loads based on the

ULS calculations, deriving then the maximum vertical displacement (umax). However the

two models' bearing capacities are found to be slightly higher than the ones at the ULS.

Another analysis is thus carried out for deriving the value of the maximum loads the two

FE models can carry (Pmax), and the maximum normal compressive stress (σc,max).

The above mentioned analyses are performed for median, characteristic and design values

(d, k, m) of concrete compressive strength (fc), and rebars strength (fy). The obtained

results for the shell and solid models are given in Tab. 5.6, and the percentages of di�er-

ence between shell and solid results are summarized in Tab. 5.7.

Shell Models Results

- fc [MPa] fy [MPa] umax [mm] σc,max [MPa] Pmax [kN]

d 11.5 391.3 21.5 11.2 69.8

k 20.0 450.0 22.9 19.0 84.8

m 28.0 479.2 26.9 23.5 89.7

Solid Models Results

d 11.5 391.3 19.1 11.4 72.1

k 20.0 450 19.8 19.8 88.6

m 28.0 479.2 22.6 25.1 94.0

Table 5.6. Comparison of Shell and Solid FE Models Results

- umax [%] σc,max [%] Pmax [%]

d 11.30 -3.84 -3.36

k 13.36 -4.31 -4.45

m 15.98 -7.02 -4.85

Table 5.7. Percentages of di�erence between Shell and Solid Models' Results

From the above tables good similarities can generally be appreciated between the FE

models results.

Roughly the solid model appears to be sti�er than the shell one, thus providing lower

displacements, and higher stresses and maximum bearing load, which makes good physical

sense. However the solid model is more accurate than the shell one, thus its behavior

provides more likely a better representation of the RC beam behavior.

The maximum vertical displacements biggest di�erence is noted for the median strengths

case with 4.3 mm, corresponding to a 15.98 % di�erence. Moreover the di�erence in terms

of σc,max and Pmax is even lower, con�rming once more a good match between the two
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models.

However it can also be noticed how the maximum concrete compressive strengths of the

solid models got closer to the fc values depicted in Tab. 2.2.
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ANALYSES RESULTS 6
In this chapter the obtained results from ULS, SLS and FE analyses are compared and

analyzed. The applicability of the used methods is also discussed. Finally the RC beam

behavior under monotonic load is shown.

6.1 Stresses and Displacements Comparison

The obtained results are presented through values of maximum vertical displacement,

bearing loads, and compressive stresses. The limit state and FE analyses are carried out

for design, characteristic and median values of strength of concrete and steel. Fig. 6.1

shows values of umax for varying concrete compressive strengths.

Figure 6.1. Maximum vertical displacement values from SLS, and FE analyses in function of

concrete strength.

The SLS displacements are between the ones obtained for shell and solid FE models.

However the results show generally a good match in terms of displacements.

It is also clear how the behavior of the beam is a�ected by the materials strength de�nition.

It can be noticed how the FE models results follow more or less the same trend, while that

is not the case for the SLS ones. Such statement gives con�rmation that the de�nition of

concrete and steel strengths a�ects the results depending on the type of analysis that is

carried. FE and limit state methods are respectively analytical and numerical, thus their

di�erent approach justi�es the detected divergent behaviors.

59



6. Comparison of Static Analyses Results Michele De Filippo

Fig. 6.2 illustrates values of maximum bearing loads in function of concrete strengths.

Figure 6.2. Maximum bearing load values from ULS, and FE analyses in function of concrete

strength.

From the above results it can be appreciated an higher bearing capacity of the FE

models. The ULS calculations are less accurate than the FE ones. The limit state approach

is however on the 'safe side' since its values of Pmax are lower, which is in accordance with

the Eurocode 2 design principles. As it was already discussed in the last chapter the solid

model bearing capacity is slightly higher than the shell one.

Fig. 6.3 depicts the maximum compressive stresses (σc,max) in function of the bearing

loads. Also in this case the two approaches give a good match. It can be observed good

similarity between the two FE analyses' trends.

Figure 6.3. Maximum compressive stress values from ULS, and FE analyses in function of

maximum bearing loads.
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6.2 RC Beam Behavior due to Monotonic Loading

In this section the behavior of the beam due to monotonic loading is discussed. Such

analysis is carried out by extracting the FE results at certain load steps corresponding to

given percentages of the maximum bearing load. The �gures below show the normal stress

distribution for monotonically increasing loading.

Figure 6.4. Normal Stress

Distribution

for a load of

2% of Pmax.

Figure 6.5. Normal Stress

Distribution

for a load of

5% of Pmax.

Figure 6.6. Normal Stress

Distribution

for a load of

24% of Pmax.

Figure 6.7. Normal Stress

Distribution

for a load of

50% of Pmax.

Figure 6.8. Normal Stress

Distribution

for a load of

77% of Pmax.

Figure 6.9. Normal Stress

Distribution

for a load of

100% of Pmax.

In Fig. 6.4 the normal stress distribution is depicted for the 2 % of the maximum bearing

load. It can be seen an linear elastic behavior in tension, meaning that tensile cracking

did not occur yet. In compression the concrete behavior is also linear with a slight change

of slope close to the upper edge, meaning probably that plasticity is occurring.

In Fig. 6.5 the load is increased by a 3%, the tensile behavior is still linear elastic, while

the previously mentioned change of slope becomes more pronounced.

In Fig. 6.6 at a load of 24 % the compressive stress distribution is clearly non-linear, while

the maximum tensile strength is now reached.
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Figure 6.10. Illustration of

points in which the

stresses are tracked

at mid-length of

the beam.

At this step tension sti�ening is thus included in the

model. By further increasing the load until 50%, as

shown in Fig. 6.7, the shape of the stress distribu-

tion remains more or less alike, with a raise of ten-

sion sti�ening since the tensile stresses get closer to

0.

In Fig. 6.8 and 6.9 the load is brought up to, re-

spectively, 77% and 100%. Within the load aug-

mentation the compressive stresses tend to increase,

and the tensile ones to decrease. The normal stress

distribution with a load of Pmax represents the RC

beam behavior when carrying the maximum bearing

load, and it resembles very much the ULS stress pro-

�le.

Fig. 6.11 shows the evolution of tensile (σt) and

compressive (σc) stresses with monotonic loading at the lower and upper edges at mid-

length of the beam, as shown in Fig. 6.10.

Figure 6.11. Compressive and tensile stresses evolution with monotonic loading.

Through the above �gure informations can be extracted on the load step at which plas-

ticity is introduced in the model in tension and in compression.

The blue line represents the tensile stresses, and it shows an almost linear increase until

a load of about 7 kN. For higher loads the model responds plastically with the tensile

stresses tending asymptotically to 0.

62



6.2. RC Beam Behavior due to Monotonic Loading Aalborg University

Figure 6.12. Nodal point

where the load-

displacement data

are tracked at

mid-length of the

beam.

The interpretation of the compressive stresses, de-

picted by the red line, results however to be harder. Non-

linearities can be appreciated from a load of about 2 kN,

giving reason to the small non-linearity evidenced in Fig.

6.4.

Then it seems that the curve starts following the

same non-linear trend from a load of about 14

kN. An explanation for this phenomenon can be

given by comparing Fig. 6.5 and 6.6. They

both include plasticity in the compressive behav-

ior but with di�erent shapes. By then looking

at Fig. 6.6, 6.7, 6.8 and 6.9 the compressive

stress distribution maintains the same shape, cor-

responding to the non-linear trend previously men-

tioned.

Finally data regarding load-displacement for median,

characteristic and design values of materials strength are

extracted and plotted in Fig. 6.13. The chosen nodal

point from data extraction is the one giving maximum displacement, placed at the mid-

length of the beam, and it is evidenced in Fig. 6.12.

Figure 6.13. Load-displacement curves representation.

The above load-displacement curves make good physical sense since for a given value of

load the displacements result always higher for the case of lower materials strengths.

Fig. 6.13 also includes the displacements derived through the SLS analysis, which result

to almost coincide with the last point of the curves.
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ANALYSES 7
In this chapter a dynamic non-linear FE analysis is carried out for a RC column. Two

FE models are created using shell and solid FE. The eigenfrequencies of the column are

evaluated through a modal analysis, and damping is de�ned. The compressive and tensile

damage parameters are computed in order to describe the cyclic behavior in concrete. Fi-

nally the earthquake excitation is adjusted with reference to such eigenfrequencies in order

to provoke resonance in the structure.

For a dynamic non-linear analysis it is preferred to analyse a column instead of a beam.

The reason of such choice is that a column is the structural element to which the earth-

quake excitation is directly applied. Moreover buildings failure due to earthquakes usually

occurs at �rst in the column.

The column cross-section is illustrated in Fig. 7.1, and its geometrical properties are given

in Table 7.1. The column height is 3.2 m. The materials used for modeling concrete and

steel are the same as for the beam, thus respectively C20/25 and B450C. In this case the

design value of such properties, given in Tables 2.2 and 2.3 are chosen.

Figure 7.1. Representation of column cross-section.

Cross-Section Properties

b [mm] H [mm] c [mm] d [mm] As = A′s [mm2]

450.0 450.0 45.0 455.0 3φ12 = 339.1

Table 7.1. Column Cross-Section Properties as indicated in Fig. 7.1
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7.1 Time-Dependent Solution Methods

In dynamic analyses the structure is subjected to a time-dependent load or displacement.

To each time step a certain value of load or displacement is associated. The FE approach

is implemented in order to �nd an equilibrium con�guration at every time step.

In this case a dynamic analysis is carried out for modeling the structure response to an

earthquake excitation, which is applied in terms of time-dependent displacements.

The FE models are built in the software Abaqus, and a dynamic implicit approach is

chosen.

In this latter a set of equilibrium equations are solved at each time increment.

When analyzing the dynamic response of a structure with elastic material properties the

FE approach is simply applying such equilibrium equations, as shown in Eq. 5.1, linear in

this case. Thus the global equations of motion are simply integrated through time for a

de�ned time step increment.

When turning to non-linear FE analyses, as previously introduced in the static case, the

problem becomes more complex. In such case Newton-Raphson iterations, illustrated in

Fig. 5.2, are used to �nd the equilibrium con�guration at each time step.

To sum up the time-dependent solution method for both cases, linear and non-linear, is

alike the one implemented in the static case, and is integrated through time

7.2 Shell Model Set-Up

Figure 7.2. Representation of Column Shell

Model set-up.

The shell model set-up is presented in this

section. A representation of this latter is

given in Fig. 7.2.

The applied boundary conditions are also

illustrated.

The displacement in the x-direction is con-

strained in the middle points at the up-

per and lower edge of the column. Then

at the upper edge the displacement is

constrained also in the z-direction over

the whole column width. In this way

the structure is free to rotate around

the x-axis. At the lower edge, over

the column width, the displacement is

constrained in the y-direction and time-

dependent displacements are applied in the

z-direction.
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Figure 7.3. Example of Column Shell Model

De�ection in the 1st eigenmode for

a unit displacement at the bottom.

Figure 7.4. Representation of Column Solid

Model set-up.

Quadratic elements (S8), as illustrated

in Fig. 5.3, are chosen since they better

�t the bending behavior of the column

even though they lead to an increase in

computation time.

Regarding the mesh only two elements are

used over the column width since the core

of the analysis is the bending behavior

which takes place in the z-direction and

around the x-axis.

The model is built up with an amount of

integration points over its thickness of 9, as

for the beam model. Such choice is justi�ed

by the fact that since the earthquake

excitation is applied in the z-direction

an higher amount of integration points

over the thickness would lead to a better

interpretation of the bending behavior.

Rebars along the column height are also

inserted in the model.

7.3 Solid Model Set-Up

The solid model set-up is presented in this

section. A representation of this latter is

given in Fig. 7.4. The model is built

up by assembling two semi-rigid slabs to

the top and the bottom sections of the

concrete column. Rebars are embedded

in the concrete column along the column

height.

The concrete column is tied to such slabs

through the tie constraint. The slabs region

are de�ned as master surfaces, and the

concrete ones as slave surfaces, thus the

concrete upper and lower faces follow the

slabs displacements and rotations.

The boundary conditions are applied to the

semi-rigid slabs. Displacements in the x-

direction are constrained along the middle

edge oriented along the z-direction at the

top and bottom surfaces.
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Figure 7.5. Example of Column Solid Model

De�ection in the 1st eigenmode for

a unit displacement at the bottom.

On the top section displacements are

set to be 0 in the z-direction along the

middle edge oriented in the x-direction.

At the bottom face on the middle edge

oriented in the x-direction displacements

are constrained in the y-direction, and

time-dependent displacements are applied

in the z-direction.

Fig. 7.5 gives an illustration of the bending

behavior of the solid model. Quadratic

elements (C3D20), as illustrated in Fig.

5.20, are chosen to build up the model.

Regarding the mesh only two elements are

used over the column width, like in the

shell one, for the same reason. Contrariwise

10 elements are included over the column

thickness to better represent the column

bending behavior.

However from Fig. 7.5 it can be derived

that the column seems to bend in a

physically realistic manner, thus the model is working correctly.

7.4 Eigenfrequencies Extraction and Damping De�nition

The eigenfrequency (ωn) is the frequency at which the system tends to oscillate in absence

of any driving or damping force. At each eigenfrequency various parts of the structure

tend to move together sinusoidally at the same frequency (eigenmodes). In case the

eigenfrequency matches the forced frequency, which represents the frequency of an applied

force, the amplitude of the vibration tends to increase. This phenomenon is commonly

known as resonance. [26]

The designer must then always be aware of what are the eigenfrequencies of the structure,

and of what are the usual forced frequencies at the building site, in order to avoid resonance

to occur.

Eigenfrequencies can be computed by solving the so called eigenvalue problem given in Eq.

7.1

([K]− {ω2
n} [M ]) {φ} = 0 (7.1)

where

{ωn} Natural eigenfrequencies vector [rad/s]

{φ} Eigenvector [-]
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For giving a better understanding of the structure dynamic behavior in resonance it is

fundamental to introduce damping.

Damping (ζ) is an in�uence on the structure that uses to reduce and restrict its oscillations.

Physically damping is produced by the dissipation of the energy stored in the oscillation,

and it can be de�ned as it follows. [27]

� No damping (ζ = 0): The structure oscillates with no decay in amplitude.

� Under-damping (0 ≤ ζ ≤ 1): The structure oscillates with the amplitude gradually

decreasing to zero.

� Critical damping (ζ = 1): The structure returns to equilibrium without oscillating.

The in�uence of damping on the resonance phenomenon is illustrated in Fig. 7.6, where

ω is the forced frequency.

Figure 7.6. Resonance amplitude change with damping ratio. [28]

In the above �gure it can be seen that the amplitude tends to increase when the ratio

ω/ωn tends to 1, thus when the forced frequency matches the eigenfrequency. The high

in�uence of ζ on the amplitude can also be appreciated.

The eigenfrequencies are then computed for the shell and solid model from Eq. 7.1,

and are summarized in Table 7.2. The eigenmodes are displayed in Fig. 7.7 and 7.8. As

expected the eigenfrequencies of the two models provide almost a perfect match.
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Eigenmode Shell Eigenfrequencies [Hz] Solid Eigenfrequencies [Hz]

1 10.26 10.54

2 30.47 31.29

3 57.11 58.60

4 87.29 89.54

Table 7.2. Eigenfrequencies of the shell and solid model.

Figure 7.7. Eigenmodes 1, 2, 3, and 4 for the shell model.

Figure 7.8. Eigenmodes 1, 2, 3, and 4 for the solid model.
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As previously discussed at the beginning of this chapter the dynamic implicit procedure

involves a time-integrated procedure. Damping is usually introduced in dynamic non-linear

analyses through a mass- and sti�ness-proportional damping, so called Raylegh damping.

Its approach is based on the proportionality of the damping matrix, [C], to the mass and

sti�ness matrices, respectively [K] and [M ]. Such statement is expressed in Eq. 7.2.

[C] = α [M ] + β [K] (7.2)

where

α Mass-proportional damping coe�cient [-]

β Sti�ness-proportional damping cooe�cient [-]

Relationships between the equations contained in Eq. 7.2 and orthogonality conditions

allow Eq. 7.2 to be rewritten as Eq. 7.3.

ζ =
1

2 ωn
α+

ωn
2
β (7.3)

The damping ratio then varies with the natural frequencies. The damping coe�cient, α

and β, are usually selected according to engineering judgment by specifying the damping

for the most signi�cant eigenmodes, and thus eigenfrequencies.

The structure will be mainly excited in a way to vibrate in the 1st and 2nd eigenmodes.

Damping ratios are then equally speci�ed at these eigenfrequencies for concrete and steel,

respectively as 5% and 2%.

If the damping ratios (ζi and ζj), associated with these two speci�ed eigenfrequencies

(ωi and ωj), are known, and set equal (ζi = ζj), the conditions associated with the

proportionality factors simplify, and two Raylegh damping factors can be computed as

in Eq. 7.4. [29]

β =
2ζ

ωi + ωj
α = ωi ωj β (7.4)

The values of Raylegh coe�cients are computed in function of the shell and solid models

eigenfrequencies given in Tab. 7.2, and the results are summarized in Tab. 7.3.

- Concrete (Shell) Steel (Shell) Concrete (Solid) Steel (Solid)

ζ [%] 5 2 5 2

α [rad/s] 31.93 12.10 31.09 12.43

β [s/rad] 3.91 ·10−3 1.56 ·10−3 3.81 ·10−3 1.52 ·10−3

Table 7.3. Raylegh coe�cients for the shell and solid model for concrete and steel.
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7.5 Earthquake Excitation

In this section the earthquake excitation data manipulation and adjustment to �t the

structure eigenfrequencies are presented.

The data used refer to El Centro earthquake, previously mentioned in the introduction,

and an illustration of them in time domain was given in Fig. 1.6.

Since the structure after the excitation ends will still vibrate it is needed to adjust the

earthquake data, and thus add trailing zeros. By such operation the FE model will then

continue to vibrate, �tting better the real behavior of the structure.

The length of the time domain needs to be prolongated until a certain time at which the

structure will stop to vibrate. Also the objective of the upcoming analysis is to obtain

the earthquake amplitudes in frequency domain. Such operation is carried out through

the famous Discrete Fourier transform (DFT). This latter transforms a function (or, as in

this case, a discrete set of data) of one variable, acceleration in this case, which lies in the

time domain (s), to another function (a discrete set of data) lying in the frequency domain

(Hz), and changes the basis of the data to cosines and sines.

The expression of this latter is given in Eq. 7.5.

F (ω) =

∫ +∞

−∞
f(t) e−iωtdt (7.5)

where

ω Set of frequencies points with constant frequency increment [Hz]

t Set of time points with constant time increment [-]

F (ω) Function in frequency domain

f(t) Function in time domain

Commonly such operation is instead computed through the so called Fast Fourier Trans-

form (FFT). This latter consists in an ingenious algorithm capable to reduce the complexity

of computing the DFT from O(n2), to O(n log n), where n is the data size. [30]

Such algorithm is extremely e�cient if the amount of data coincides with a power-of-2.

For the above mentioned reason the data size is increased to three power-of-2 as illustrated

in Tab. 7.4.

Power-of-2 Data size

212 4096

213 8192

214 16384

Table 7.4. Data size computed corresponding to powers-of-2.
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Figure 7.9. El Centro acceleration data extended to a 214 size.

Figure 7.10. Baseline Correction

Factor evolution in

time domain.

The acceleration data, illustrated in Fig. 7.9

for 214 time steps, are then integrated through

the trapezoidal rule to obtain velocities. However

the trailing zero accelerations result in a constant

value of velocity (drift) which is an unrealistic

hypothesis. The data are thus adjusted using the

baseline correction.

This latter works through the generation of a cosine

correction factor that is then added to the data. The

ratio of the correction factor over the drift against

time is represented in Fig. 7.10.

The velocity data and the baseline corrected ones

are represented in time domain in Fig. 7.11. The

di�erence between the original data and the baseline

corrected ones appears to be almost imperceptible. However a further integration of the

original velocity data would have lead to a linear variation of displacements resulting in a

wrong interpretation of the data.

Figure 7.11. El Centro velocities data extended to a 214 size.
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By applying the trapezoidal rule of integration once more the displacement data are

obtained. In such data a constant value of displacement is present again, but in such case

the baseline correction is not applied since it is realistic that after an earthquake excitation

there can still be residual displacements.

A representation of the obtained displacement data in time domain is given in Fig. 7.12.

Figure 7.12. El Centro displacement data extended to a 214 size.

Figure 7.13. Displacements Am-

plitude in Frequency

Domain.

A FFT is then performed obtaining the data con-

version to frequency domain. Fig. 7.13 gives a

representation of the amplitudes in frequency do-

main for the three performed power-of-2 increments.

The FFT returns mirror data with respect to the so

called Nyquist frequency, represented by the vertical

black line, which is a half of the sample frequency.

The FFT results are thus represented again in Fig.

7.14 for a lower frequency interval. In such �gure

only a slight di�erence between the obtained data

set can be appreciated. A close-up of the highlighted

black square is given in Fig.7.15.

Figure 7.14. Displacements Amplitude in Frequency Domain for a lower frequency interval.
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Figure 7.15. Close-up of Displacements Amplitude in Fre-

quency Domain.

From such �gure it can be

deducted the di�erence be-

tween the powers-of-2 data

sizes. The blue line corre-

sponding to 212 data is obvi-

ously the less accurate since

it contains the lower amount

of data points. The orange

line (213 data) contains the

double of the data point of

the previously analyzed case,

thus in between two data

points of the blue line, the or-

ange one contains one point

more. The same concept ap-

plies for the case of the data size of 214. Then the shape of this latter is obviously smoother

and more precise than the ones corresponding to lower powers-of-2. Contrariwise the blue

line shape appears to be more piece-wise for the contrary reason.

After having tested the elastic dynamic behavior of the column the highest power-of-2 is

chosen for the upcoming analyses since it is the only one providing enough data points to

make the structure stop vibrating. Moreover, as it was already remarked in precedence, it

returns the most accurate results when transforming the data to frequency domain.

At this point the data need to be adjusted in order to make the forced frequency

match the eigenfrequency at a higher amplitudes. For such scope a reduction factor (r)

is introduced. The time domain is reduced by this factor to vary the frequency domain,

while the amplitudes will remain non-altered.

The procedure for deriving the displacements is alike the one previously introduced. The

obtained results in terms of displacements are given in Fig. 7.16

Figure 7.16. Squeezed Displacements Time Domain.

75



7. Dynamic Non-Linear FE Analyses Michele De Filippo

Figure 7.17. Amplitudes of Squeezed

Displacements in Fre-

quency Domain.

The used reduction factors are depicted in such

�gure. Those numbers were obtained through an

iterative process in which they were varying while

observing the changes in the frequency domain.

The FFT results of the above displacements are

given in Fig. 7.17.

Obviously the sampling frequencies vary in function

of r since the time steps are reduced by this latter.

The results of the FFT can then be compared only

for values below the Nyquist frequency, depicted by

the vertical black line again.

A close-up of Fig. 7.17, is given in Fig. 7.18, and it can give a better clari�cation of the

meaning of such reductions.

Higher importance is given to the �rst two eigenmodes, which are the most predominant

in the structural response.

The reduction factors are derived in a manner that the �rst two eigenfrequencies correspond

to some peaks of forced frequencies. The 4th eigenmode is disregarded since it takes place

at too high frequencies, which are occurring only in the very initial part of the earthquake

excitation, and the amplitudes is also not signi�cant. The same concept applies for the

3rd eigenmode even though it occurs at lower frequencies and has higher amplitudes, and

it can be slightly observed at the beginning of the excitation.

Figure 7.18. Close-up of amplitudes of squeezed displacements in frequency domain.
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RESULTS 8
The dynamic response of the structure is evaluated at �rst elastically, and then plastically

for the shell model. A plastic analysis of the solid model is then also carried out. Finally

the obtained results are analyzed and discussed.

8.1 Elastic Analyses of Shell Model

Figure 8.1. Point in which the nor-

mal stresses are tracked

in the shell model.

Preliminarily an elastic analysis is performed on

the shell model in order to test the resonance

phenomenon.

The normal stresses in the longitudinal direction of

the column (y-direction) are tracked in the point

highlighted in Fig. 8.1, and the obtained results are

given in Fig. 8.2.

It is important to remark that this kind of analysis

is carried out only for having an idea of how

the structure would respond to the earthquake

excitation. Such analysis is very useful since the

computation time of a dynamic non-linear problem

is way higher than the one of a linear problem.

However in elastic materials the stress values are

simply directly proportional to strains, while in a

plastic one the material model is, as previously

discussed, more complex.

The values of the normal stresses appear to be way higher than the maximum allowable

stress limits of concrete.

The application of these displacements time-series would then lead to the occurrence of

failure so soon that the dynamic response of the structure could not be observed. However

such an analysis is carried out only for an illustrative scope, and is presented in the next

section.
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Figure 8.2. Shell Model Elastic Dynamic Response to the earthquake excitation given in Fig.

7.16 and 7.17.

The overall stresses need then to be decreased by a certain new reducing factor (d). The

value of this latter is set to 17. The de�nition of d is carried out by reducing the normal

stresses and monitoring the amount of points crossing the concrete compressive strength

threshold. The decreased displacements in time domain are given in Fig. 8.3.

Figure 8.3. Squeezed and Decreased Displacements in Time Domain.

The aim of this analysis is to obtain three new earthquake excitations that would lead

to di�erent responses of the structure.

Since an elastic analysis is carried out the obtained new stresses are obviously proportional

to the ones shown in Fig. 8.2, and they are displayed in Fig. 8.4.

78



8.2. Plastic Analyses of Shell Model Aalborg University

Figure 8.4. Shell Model Elastic Dynamic Response to the earthquake excitation given in Fig.

8.3

8.2 Plastic Analyses of Shell Model

In this section the results of the plastic analyses carried out for the shell model are

presented.

Three analyses are implemented for the data illustrated in time domain in Fig. 7.16, and

in frequency domain in Fig. 7.17.

The obtained results in terms of normal stresses are tracked in the point depicted in Fig.

8.1, and they are illustrated in Fig. 8.5.

Figure 8.5. Shell Model Plastic Dynamic Response to the earthquake excitation given in Fig.

7.16 and 7.17.
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The models with r = 85 and r = 52 reach failure (non-convergence) in a very short

amount of elapsed time, while the one with r = 22 does not. The time step at which

failure occurs is dependent on the reduction factor r. Such results was also expected since,

as shown in Fig. 7.18, for higher reduction factors higher displacements amplitude are

obtained at all eigenfrequencies.

It can also be noticed that the maximum values of stresses concrete can carry result to

be slightly higher than the ones that are assigned to the material model (corresponding

to the design values depicted in Tables 2.2 and 2.3). This is due to the fact that the

concrete damage plasticity model, as previously mentioned, contains isotropic hardening

leading to a gradual expansion of the failure surface within increments in plastic strains.

Moreover such maximum values of normal stresses appear to be more or less equal each

other between the depicted series, and that is logical too since the material strengths used

are the same.

The same analysis is then carried out for the earthquake excitation reduced by the reduc-

tion factor d, thus with reference to the displacements given in Fig. 8.3. The obtained

results in terms of normal stresses are tracked in the same point, given in Fig. 8.1, and

they are illustrated in Fig. 8.6.

Figure 8.6. Shell Model Plastic Dynamic Response to the earthquake excitation given in Fig.

8.3.

From the above graph some interesting considerations can be extracted.

At the last time step of the three data series the �nal stress never perfectly coincides. Such

results were also expected since the three forced displacement series excite the structure

with di�erent frequencies, thus they lead it to vibrate in di�erent manners. Generally

higher reduction factors leads to higher values of normal stresses. That is also logical since

higher displacements amplitudes are given for higher reduction factors (see Fig. 7.18).
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Figure 8.7. Point in which

the normal

stresses are

tracked in the

solid model.

Moreover the maximum strength of concrete is never

reached, but the model is, in all cases, into plasticity. The

damage also plays an important role in such analysis since the

damage parameters increase with the inelastic strains leading

to a reduction of the initial Young's modulus, and thus a

reduction in terms of normal stresses.

8.3 Plastic Analyses of Solid Model

Plastic analyses are carried out for the solid model for the

earthquake excitation shown in Fig. 8.3. The obtained results

are tracked in Fig. 8.7, and they are displayed in Fig. 8.8.

The obtained results are almost alike the ones derived for the

shell model. The same considerations given for the shell case

results apply to the solid model ones as well.

Figure 8.8. Solid Model Plastic Dynamic Response to the earthquake excitation given in Fig.

8.3.
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8.4 Analysis and Comparison of the Results

In this section the obtained results are discussed and compared.

By introducing a time-dependent displacement the problem turned from static to dynamic.

Within a cyclic behavior the e�ect of damage and sti�ness recovery are included into the

CDP model.

Damping is also inserted in the model when the problem turns to dynamic.

From the above obtained results it can be observed that damping of RC structures is so

high that once the earthquake excitation stops the structure almost does not vibrate at

all.

However damage is considered to be the main problem of concrete in cyclic behavior. Once

the structure compressive and/or tensile damage increases the maximum bearing load de-

creases since concrete strength gets lower and lower.

Fig. 8.9 overlaps the shell and solid model dynamic responses for the time-dependent

displacements shown in Fig. 8.3 with a reduction factor, r, of 52. The two models seem

to respond quite similarly, and once the earthquake excitation ends the normal stresses

appear to be almost identical. The slight di�erences between these two responses may be

given by the fact that, when running the FE analyses, data were extracted at di�erent

amounts of time increments. Such choice was made in order to optimize and fasten the

computations, especially for the solid model.

Figure 8.9. Comparison of shell and solid models' dynamic responses for the forced displacement

reduced by r = 52 given in Fig. 8.3.
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In this chapter conclusions on the overall project are carried out.

Tab. 9.1 illustrates the results obtained in the static analyses with reference to the design

strength case for maximum vertical displacements (umax), maximum compressive stress in

concrete (σc,max), and maximum bearing load (Pmax). In general a very good match can

be appreciated between them, with percentages of main di�erences between analytical and

numerical analysis not exceeding 14%.

The limit state approach has been applied for decades to the design of RC structures,

while the FE one is a relatively new and more sophisticated method. The usage of such

numerical analyses for the design a simple structure, like a RC beam, is however not sug-

gested. Numerical methods are more likely useful to model complex geometries, where the

implementation of an analytical procedure is not recommendable.

However, in this report, the e�ciency of the CDP model was tested, giving, as shown in

the below table, very good results.

Regarding the two implemented FE models, shell and solid, they also gave a good match.

For this type of analysis, then, it would be recommended to use shell models for their

lower computation cost. However it is not certain that the same results would have been

achieved for a more complex geometry as well, for which a solid model remains the most

realistic and recommendable approach to use despite its high computation time.

It is also important to remark that FE analyses are very �exible, in the sense that by ma-

nipulating the material models the designer is able to run simulations including di�erent

e�ects. In this case, for example, in the shell models, the tensile stress-strain relationship

was adjusted in order to simulate the behavior of concrete for varying rate of weakening.

Also, in the solid models, a variation of fracture energy was applied, thus including higher

and lower tension sti�ening, to test how it a�ects the RC beam behavior.

- umax [mm] σc,max [MPa] Pmax [kN]

Limit State 19.44 11.5 52.2

Shell Model 21.5 11.2 69.8

Solid Model 19.07 11.4 72.5

Main Di�erence [%] 10.0 2.2 14.0

Table 9.1. Sum-up of static analyses results for the design strength case.
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Regarding the dynamic analyses some of the obtained results, for the shell and solid

model, are summarized in Tab. 9.2 with reference to maximum compressive and tensile

stresses (σc,max, σt,max ), and stress after the earthquake excitation (σc,fin). Such results

are tracked respectively for the shell and solid model in the points depicted in Fig. 8.1

and 8.7. The data refer to the case with a reduction factor, r, of 52.

In this case as well the two models generally gave a pretty good match, since the results

di�erence does not exceed 2.13 %.

The usefulness of FE applications in dynamic analyses is instead enormous. Modal and

dynamic implicit analyses are performed giving as output the deformed shape of the FE

mesh. It is unthinkable to reach the same results through an analytical approach.

As previously shown the earthquake data from El Centro were adjusted and manipulated

to match the structure eigenfrequency corresponding to the 1st eigenmode.

In reality the designer is required to use the inverse approach, thus manipulating the struc-

ture eigenfrequencies to get them as far as possible from the earthquake frequencies with

highest amplitudes.

It is also important to remark that computation time for non-linear dynamic FE analyses

is very high.

An essential aspect of such analyses is how the cyclic behavior a�ects the compressive and

tensile concrete strength, that gets lower and lower within an increasing amount of cycles,

thus giving maximum stresses in compression lower than the model speci�ed maximum

compressive and tensile strengths.

- σc,max [MPa] σt,max [MPa] σc,fin [MPa]

Shell Model -9.08 1.22 -0.94

Solid Model -9.07 1.21 -0.96

Di�erence [%] 0.11 0.82 2.13

Table 9.2. Sum-up of dynamic analyses results for the design strength case and for the case of

r = 52.
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