
Master’s Thesis

Design of Spectral Beamsplitter for
Hybrid Thermoelectic / Photovoltaic
Concentrated Solar Energy Devices

Enok Johannes Haahr Skjølstrup

June 2016

Department of Physics and Nanotechnology
Aalborg University

Skjernvej 4A
9220 Aalborg East





Department of Physics and Nanotechnology
Aalborg University

Skjernvej 4A
9220 Aalborg East

Telefon 99 40 92 15
Fax 99 40 92 35

Http://nano.aau.dk

Title:
Design of Spectral Beamsplitter for Hybrid
Thermoelectic / Photovoltaic Concentrated
Solar Energy Devices

Theme:
Master’s Thesis

Project Period:
Spring Semester 2016

Project Group:
5.236

Participant(s):
Enok Johannes Haahr Skjølstrup

Supervisor(s):
Thomas Søndergaard

Copies: 3

Page Numbers: 109

Date of Completion:
June 8, 2016

Synopsis:

The purpose of this thesis is to optimize
the design of a beamsplitter for a hybrid
system consisting of a solar cell and a ther-
moelectric element. The beamsplitter con-
sists of more than 100 alternating layers of
Si3N4 and SiO2 deposited on glass with an
outer layer of MgF2, and the thicknesses
of all these layers are optimized in order
to maximize the efficiency of the hybrid
system. Thus the thesis considers the opti-
mization of a complicated function of more
than 100 variables.
Two equivalent transfer matrix methods
are applied to calculate the transmittance,
reflectance, and absorbance through the
beamsplitter, and for a microcrystalline
and an amorphous solar cell the efficiency
of the hybrid system is calculated and op-
timal thicknesses for the layers are found.
Due to higher order band gaps it is found
impossible to construct a low-wavelength-
pass beamsplitter, but good results are ob-
tained for a high-wavelength-pass beam-
splitter. The efficiency of the microcrys-
talline solar cell is higher than the amor-
phous, but the relative improvement in ef-
ficiency by using the hybrid system with
a high-wavelength-pass beamsplitter is al-
most twice as large for the amorphous.
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Preface

Preface

This report is a master’s thesis written by a 10th semester physics student at Aalborg
University, Denmark.
The thesis studies the design and optimization of a beamsplitter to be implemented in a
hybrid system consisting of a solar cell and a thermoelectric element, and the readers of
the thesis are assumed to have some knowledge of optics and optimization.
In the thesis vectors are denoted with an arrow like ~E, unit vectors with a hat like ẑ and
matrices with a double arrow like

↔
T . Citations are referred to using the Vancouver method

where a reference is denoted with a number like [1] and a bibliography is found in the end
of the thesis.
The numerical calculations are made using Matlab R2015b. An important part of the
thesis consists of the developed Matlab code which can be found in the author’s Dropbox
folder from the following link:
https://www.dropbox.com/sh/i9rm4o4fthu6hsa/AACdq3RaUUDPM-UqDwMjt060a?dl=0,
referred to as [30] during the thesis. To run the code, save all the files from the folder and
run the MAIN FILE which calls all the other functions.
A big thanks to Thomas Søndergaard for good supervision and help during the project.
Also thanks to the ph.d students Morten Rishøj Thomsen and Søren Jacob Bruun to let
me use their super computer to the large computations.

Aalborg University, June 8, 2016.

Enok Johannes Haahr Skjølstrup
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Danish Summary

Danish Summary

I dette speciale er der arbejdet med at optimere designet af en beamsplitter som skal
bruges i et hybridsystem sammen med en solcelle og et termoelektrisk element.

Solceller kan omdanne sollys til elektricitet og består af et halvledende materiale, typisk
silicium eller galiumarsenid, som bl.a er karakteriseret ved at de har et båndgab. Hvis
fotonenergien fra lyset er mindre end båndgabsenergien kan lyset ikke omdannes i sol-
cellen, hvillet medfører at kun lys med bølgelængder under 900-1100 nm kan udnyttes
af en solcelle. Idéen med beamsplitteren i specialet er at den kun skal lade de relevante
bølgelængder ramme solcellen, mens de længere bølgelængder skal dirigeres til et ter-
moelektrisk element, som termisk kan omdanne varme til elektricitet, hvilket medfører
at effektiviteten for hybridsystemet bliver større end for solcellen alene. Beamsplitteren
består af mere end 100 lag af skiftevis siliciumnitrid, Si3N4, og siliciumdioxid, SiO2, belagt
på glas med et ydre lag af magnesiumfluorid, MgF2, og specialet handler om at optimere
alle disse tykkelser for at opnå højest mulig effektivitet af hybridsystemet. Forskellige de-
signs af hybridsystemet er foreslået, og det er fundet bedst at bruge et design hvor de korte
bølgelængder reflekteres til solcellen mens de lange transmitteres til det termoelektriske
element.
Specialet består af tre dele. Første del består af kapitel 2 til 5 og indeholder al den rel-
evante teori for specialet. Der tages i kapitel 2 udgangspunkt i Maxwells ligninger som
bruges til at opstille en bølgeligning for det elektriske felt i en uendelig beamsplitter, som
løses analytisk vha. Blochs teorem og båndgab ses at opstå. Derefter bruges to ækviva-
lente transfermatrixmetoder til at beregne transmittansen, reflektansen og absorbansen
gennem en endelig beamsplitter. Der ses at eksistere områder hvor transmittansen er nul,
hvilket svarer til båndgabene.
Solceller studeres nærmere i kapitel 3 og udtryk for deres effektivitet udledes. Dette
gøres først for en ideel solcelle uden tab, og senere tages effekter med som begrænser ef-
fektiviteten og som i langt højere grad beskriver rigtige solceller. Kapitel 4 handler om
termoelektriske elementer og et udtryk for deres effektivitet udledes. Ved at kombinere
effektiviteterne for solcellen og det termoelektriske element opstilles en samlet effektivitet
for hybridsystemet. En teoretisk behandling af optimeringsproblemet findes i kapitel 5,
hvor der som startgæt vælges at benytte en kvartbølgestruktur. Tre forskellige optimer-
ingsmetoder studeres i detaljer og deres konvergens analyseres.
Andel del af specialet starter i kapitel 6 hvor teorien fra første del implementeres i Matlab.
Optimeringsproblemet løses med de tre implementerede optimetingsmetoder, og Nelder-
Mead metoden findes at være klart bedre end gradientmetoderne. Specialets vigtigste
resultater findes i kapitel 7, hvor optimerede strukturer for beamsplitteren er beregnet
når både en mikrokrystallinsk og en amorf solcelle benyttes. Effektiviteten for en enkelt
solcelle er højest for den mikrokrystallinske, men forbedringen i effektivitet ved at anvende
hybridsystemet er størst for den amorfe. Dette skyldes at den har en mindre båndgabs-
bølgelængde og dermed udnytter en mindre del af solspektret. Da den samtidig har en
lavere effektivitet end den mikrokrystallinske så er den relative forbedring størst for den
amorfe, og er fundet til at være næsten dobbelt så stor som for den mikrokrystallinske.
Ved at studere reciprociteten for lys indsendt på beamsplitteren er det fundet bedst at
vende beamsplitteren om så lyset er indfaldende fra glassiden. Højere ordens båndgab ses
at opstå hvilket forhindrer muligheden for at lave en beamsplitter som transmitterer de
korte bølgelængder og reflekterer de lange.
Tredje og sidste del af specialet består af to appendiks.
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1. Introduction

After the oil crisis in the 1970s the world seriously opened the eyes for renewable energy
sources instead of coal, oil and gas. Since then several different renewable energy sources
have been found and developed such as energy from wind, water and the sun. These three
energy sources do not pollute and damage the environment like the fossil fuels coal, oil,
and gas do. Over the last 30 years a lot of research has taken place in order to increase the
efficiency of these renewable energy sources, especially the solar cells which partly is the
topic of this thesis. The solar cells consist of semiconductor materials such as silicon (Si)
or Gallium Arsenide (GaAs) and converts the energy from the sun into electricity. These
semiconductors have a band gap of approximately 1.1-1.4 eV [32] implying that only light
with wavelengths below approximately 900-1100 nm can be converted into electricity. For
wavelengths above these values the photon energy of the light is too small and can only
be converted to heat in the solar cells which leads to a decrease in their efficiency. [11]
To avoid the waste of energy to heat for the long wavelengths not usable by the solar cell,
an idea is to incorporate the solar cell as a component in a hybrid system also consisting
of a thermoelectric element as another component, and different designs of the hybrid
system have been suggested. The thermoelectric element thermally converts heat into
electricity and its efficiency is independent of the wavelengths of light, thus it can utilize
the long wavelengths not usable by the solar cell. In [26] two designs are presented,
where the first considers a solar cell operating at low temperatures placed on top of a
concentrator with a thermoelectric element beneath. The idea in this design is that the
long wavelengths not utilized by the solar cell are concentrated onto the thermoelectric
element and there converted into electricity. In the other design the position of the solar
cell and the concentrator has been switched, such that light is concentrated onto a solar
cell placed on top of a thermoelectric element, and in this design the solar cell must be
operating at high temperatures. For an illustration of the designs see [26].
For the efficiency of the hybrid system to be as high as possible, it is crucial that the right
wavelengths are converted into electricity in the right components. Both the solar cell and
the thermoelectric element have an efficiency where only that of the solar cell depends
on the wavelength. Hence a cut off wavelength exists that divides the entire wavelength
interval from the solar spectrum into different regions, in which the efficiency of one of
the components is higher than the other. The wavelengths of the applied solar spectrum
range from 280-2500 nm. The cut off wavelengths between these regions determine how to
ideally divide the solar spectrum, and if this can be done perfectly a general optimization
method for choosing these cut off wavelengths is presented in [4]. Here three different
kinds of solar cells are studied in a hybrid system consisting of two different thermoelectric
elements, and for perfectly sharp cut off wavelengths the efficiency of the hybrid system is
found. The relative improvement of the efficiency compared to single cells is found to be
between 11 and 41% depending on the solar cell type and thermoelectric efficiency, thus
it is worthwhile researching in such hybrid systems, as their efficiency significantly exceed
that of single solar cells.
A disadvantage of the design suggested in [26] is that the long wavelengths have to be
transmitted through the solar cell before they enter the thermoelectric element. Some
of these wavelengths are maybe reflected by the solar cell and are thereby not utilized
anywhere. With the solar cell placed on top of the thermoelectric element it must have a
high operating temperature, otherwise the heat decreases its efficiency.
Another design of the hybrid system is suggested in [33], where the idea is to use a
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Chapter 1. Introduction

(a) Design of the hybrid system using a low-
wavelength-pass beamsplitter, which transmits
the short wavelengths onto the solar cell and
reflects the long wavelengths onto the thermo-
electric element. Figure from [33].

(b) Design of the hybrid system using a high-
wavelength-pass beamsplitter, which reflects
the short wavelengths onto the solar cell and
transmits the long wavelengths onto the ther-
moelectric element. Figure modified from [33].

Figure 1.1: Two conceptually very different designs of the hybrid system. The
left design uses a low-wavelength-pass beamsplitter while a high-wavelength-pass
beamsplitter is used at right. Importantly notice that the positions of the solar
cell and thermoelectric element are switched in the two designs. The left design in
suggested in [33] while the right design is an important modification to be studied
in this thesis.

beamsplitter to divide the solar spectrum into the different regions. A concentrator is
used to focus the light onto a low-wavelength-pass beamsplitter, which transmits the short
wavelengths onto the solar cell and reflects the long wavelengths onto the thermoelectric
element as illustrated in Fig. 1.1a. The reason for applying a concentrator is that it
is larger than the beamsplitter and is thereby able to collect light from a larger area,
implying that more light is directed onto the beamsplitter, and in [33] the concentration
ratio can be several hundreds. In addition the price of a concentrator per area is also lower
than the price of a beamsplitter per area. A disadvantage in applying the concentrator
is that some light is reflected or absorbed in it implying that not all the light is directed
onto the beamsplitter, but the gain of receiving more light onto the beamsplitter is greater
than the losses in the concentrator. With the design in Fig. 1.1a the solar cell and the
thermoelectric element have to be spatially separated in contrast to one of the designs in
[26], which is an advantage because present solar cells and thermoelectric elements can be
put together as components in the hybrid system once a beamsplitter is constructed. As
seen in the figure the incident angle varies across the beamsplitter and is chosen to be 45◦
in the center, and the deviation from 45◦ at the edges depends on the concentrator.
An idea to yet another design of the hybrid system is found in [2] and is illustrated in Fig.
1.2. Instead on a concentrator as in Fig. 1.1 the sunlight is incident on a large parabolic
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Figure 1.2: Left figure inspired by [2] shows another design of the hybrid sys-
tem. Incident sunlight hits a large parabolic reflector which reflects the light onto
a curved mirror directing it onto a high-wavelength-pass beamsplitter, that reflects
the short wavelengths onto the solar cell and transmits the long wavelengths onto
the thermoelectric element. Right figure shows two beamsplitters, in the upper one
the structure changes across the beamsplitter, while the structure is the same across
beamsplitter in the lower .

reflector, which reflects the light onto a curved mirror in the focal point of the reflector. The
mirror reflects the light onto a high-wavelength-pass beamsplitter that reflects the short
wavelengths onto the solar cell and transmits the long wavelengths onto the thermoelectric
element. The advantage of this design is that the reflector is larger than the beamsplitter
and is able to collect light that was otherwise not hitting the beamsplitter. A disadvantage
of the design is that both the mirror, the beamsplitter, and the thermoelectric element
shadow for the light that was intended to hit the reflector. But as before the advantage
of applying the reflector is much greater than its disadvantage.
In [33] the structure of the beamsplitter itself is not considered, and is thus assumed to be
perfect in that sense that it can transmit the short wavelengths and reflect the long with a
perfectly sharp cut off. A solar cell of GaAs is applied and an optimized cut off wavelength
is found to be 900 nm. In practice, such a beamsplitter consists of many alternating layers
of different materials and can not have a perfectly sharp cut off wavelength. Some of the
layers in the beamsplitter can be absorbing, especially for the short wavelengths, and with
the design in Fig. 1.1a the short wavelengths have to pass through the entire beamsplitter
before they are utilized in the solar cell. A way to avoid this problem is to construct a high-
wavelength-pass beamsplitter, which instead reflects the short wavelengths and transmits
the long, with the positions of the solar cell and the thermoelectric element switched as
illustrated in Fig. 1.1b, which is a modification on the design suggested in [33].

Where [33] assumed a perfect beamsplitter with a perfectly sharp cut off, this thesis
investigates theoretically how to construct the beamsplitter. Both designs in Fig. 1.1 are
studied, starting with the high-wavelength-pass beamsplitter in Fig. 1.1b and considering
a low-wavelength-pass beamsplitter in Sec. 7.5 where it is found that due to higher order
band gaps it is impossible to construct. In the thesis first an ideal solar cell with a band
gap wavelength of 900 nm is considered in the hybrid system, and later two more realistic
solar cells, a microcrystalline and an amorphous, are studied. For the ideal solar cell
the efficiency is linearly increasing for wavelengths below the band gap wavelength and
zero otherwise, thus the optimal cut off wavelength for the beamsplitter is 900 nm like
in [33], and the ideal transmittance is a step function being zero for wavelengths below
900 nm and one otherwise as seen in Fig. 1.3a. In the region where the transmittance
is zero, the reflectance is ideally equal to one implying that no absorption is present
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Chapter 1. Introduction

(a) Ideal transmittance for a high-wavelength-
pass beamsplitter and an ideal solar cell. The
wavelength interval from 280-2500 nm is di-
vided into two regions, where the short wave-
lengths are directed onto the solar cell and the
long wavelengths onto the thermoelectric ele-
ment.

(b) Ideal transmittance for a high-wavelength-
pass beamsplitter and a real solar cell. The
wavelength interval from 280-2500 nm is di-
vided into three regions, where the short wave-
lengths are directed onto the thermoelectric el-
ement, the medium long onto the solar cell and
the long wavelengths onto the thermoelectric
element.

Figure 1.3: Ideal transmittances for a high-wavelength-pass beamsplitter for an
ideal and a real solar cell.

in an ideal beamsplitter. For real solar cells the efficiency is much lower than in the
ideal case, especially for the short and long wavelengths, implying that for real solar
cells, a region of small wavelengths where the efficiency is actually smaller than that of
the thermoelectric element exists. For such a solar cell the ideal transmittance of the
beamsplitter consists of three regions instead of two for the ideal solar cells. For the short
wavelengths the transmittance is ideally one, for medium long wavelengths it is zero and
for long wavelengths it is one again as illustrated in Fig. 1.3b.
The beamsplitter is constructed using more than 100 alternating layers of silicon nitride,
Si3N4, and silicon dioxide, SiO2 deposited on glass with an outer layer of magnesium
fluoride, MgF2. The thesis investigates how to choose the thicknesses of all these layers
in order to maximize the efficiency of the hybrid system, leading to a huge optimization
problem with more than 100 variables. It is furthermore studied how the number of layers
in the beamsplitter affect the total efficiency and optimal beamsplitter structures are found
for both solar cell types. The efficiency depends on the incident angle and is found when
the angle varies from 35-55◦ for a structure optimized to an angle of 45◦. If the efficiency
is strongly dependent on angle in that interval, an idea is to compose the beamsplitter of
different structures optimized for different incident angles. This is illustrated in the upper
part of Fig. 1.2b where the structure varies across the beamsplitter. If the efficiency is
almost constant in that interval it is enough to use just one optimized structure for the
entire beamsplitter as illustrated in the lower part of Fig. 1.2b, which turns out to be the
case for the beamsplitter optimized in this thesis.

14



1.1. Overview

1.1 Overview

The thesis overall consists of three parts. The first part consists of chapter 2 to 5 and
contains all the relevant theory in the thesis, while the second part in chapter 6 and 7
contains applications and results of the theory. The third part consists of two appendices
with tables of optimized thicknesses and link to Matlab code.

In chapter 2 the beamsplitter is introduced as the most important part of the hybrid sys-
tem. It is studied in detail and the occurrence of band gaps are explained for an infinite
beamsplitter. Two equivalent transfer matrix methods dealing with a finite beamsplitter
are derived, and they are shown to give the same results as the infinite beamsplitter when
the number of layers is large enough. Furthermore the structure matrix for the beamsplit-
ter considered in the thesis is introduced.
The solar cell is introduced in chapter 3 as another component of the hybrid system. First
an ideal solar cell without any loss is considered and a theoretical limit of its efficiency is
found. Afterwards limiting factors are introduced in order to describe a real solar cell and
an expression for its efficiency derived.
In chapter 4 the thermoelectric element is introduced as the last component of the hybrid
system. The basic principles behind thermoelectricity is explained and an expression for
the efficiency of the thermoelectric element is derived.
Chapter 5 deals with the optimization problem where the initial guess is first presented.
Afterwards three different optimization methods are studied in detail in order to solve the
optimization problem.
Chapter 6 contains a Matlab implementation of the theory derived in chapter 2 to 5. The
transfer matrix methods are implemented and verified and a solution of the optimization
problem using the three optimization methods is given. The optimized structure is com-
pared to that of the initial guess to assess the quality of the optimization, and the three
optimization methods are compared based on their performance and time consumption.
In chapter 7 the important results in the thesis are presented, starting with the results
for an ideal solar cell. The efficiency is found as a function of number of layers and inci-
dent angle, and the same is done for a microcrystalline and an amorphous solar cell. The
orientation of the beamsplitter is considered, and the low-wavelength-pass beamsplitter is
studied and is found to be impossible to construct due to higher order band gaps.
A conclusion of the thesis is found in chapter 8 and the two appendices are found at the
end of the thesis.
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2. The beamsplitter

In this chapter the beamsplitter is studied in detail as it is the most important component
of the hybrid system. It is constructed of alternating layers of silicon nitride, Si3N4, and
silicon dioxide SiO2 deposited on glass with an outer layer of magnesium fluoride, MgF2,
to reduce the reflectance from air into the beamsplitter.
First the basic theory dealing with an infinite beamsplitter is explained, starting with
Maxwell’s equations and ending with a solution of the wave equation in the beamsplitter,
and it is seen that band gaps occur. Two transfer matrix methods are introduced which
are available for a finite beamsplitter. The first considers only the electric field but treats
both its normal and tangential components, while the second considers both the electric
and magnetic field but treats only the tangential component of the fields. The methods
are equivalent and the first is called the electric field method while the second is called
the admittance method. In Sec. 6.2 it will be investigated which method gives the fastest
result when implemented in Matlab.

2.1 Maxwell’s Equations and the Electromagnetic Wave Equations

The macroscopic Maxwell’s equations are given by

~∇× ~E(~r, t) = −∂
~B(~r, t)
∂t

, (2.1)

~∇× ~H(~r, t) = ∂ ~D(~r, t)
∂t

+ ~J(~r, t), (2.2)
~∇ · ~D(~r, t) = ρ(~r, t), (2.3)
~∇ · ~B(~r, t) = 0. (2.4)

Here ~E is the electric field, ~D the electric displacement, ~H the magnetic field, ~B the
magnetic induction, ~J the current density and ρ the charge density, which are all functions
of position ~r and time t. Introducing the macroscopic polarization ~P and magnetization
~M the general constitutive relations which describe the properties of the medium under
influence of the fields are given by

~D(~r, t) = ε0 ~E(~r, t) + ~P (~r, t), (2.5)
~H(~r, t) = µ−1

0
~B(~r, t)− ~M(~r, t), (2.6)

where ε0 is the permittivity of vacuum and µ0 the permeability of vacuum. Through-
out this thesis only non-magnetic materials are considered, i.e. ~M(~r, t) = ~0 such that
~B(~r, t) = µ0 ~H(~r, t) and the relative permeabilities are µ(~r) = 1 for all the considered
materials. Furthermore, materials are assumed linear, local and isotropic, resulting in
~D(~r) = ε0ε(~r) ~E(~r) and the effect of induced charge and current densities are incorporated
into the dielectric constants ε(~r) of the materials. [25] In addition only materials without
free charges or free currents are studied.
Maxwell’s equations in Eq. (2.1) to (2.4) are linear differential equations, where the op-
erators ~∇× and ~∇· only work on the spatial part and ∂

∂t only works on the temporal
part. Hence the solution of the equations can be split up into a product of a spatial and
a temporal part. Working with monochromatic waves and e−iωt as the time dependence,
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Chapter 2. The beamsplitter

the fields can be expressed as

~E(~r, t) = ~E(~r)e−iωt and ~H(~r, t) = ~H(~r)e−iωt. (2.7)

The wave equations are derived using Maxwell’s equations where all the fields vary as in
Eq. (2.7). Taking the curl of Eq. (2.1) and substituting the expression for ~∇ × ~H from
Eq. (2.2) gives

~∇× ~∇× ~E(~r)− k2
0ε(~r) ~E(~r) = ~0, (2.8)

where k0 = ω/c is the wave number in vacuum and c is the speed of light in vacuum. Ana-
logue calculations can be made for the magnetic field, which results in the wave equation
[25]

~∇× 1
ε(~r)

~∇× ~H(~r)− k2
0 ~H(~r) = ~0. (2.9)

Applying the vector identity ~∇ × ~∇× = ~∇~∇ · −∇2 from [16] and using that ~∇ · ~E = 0
because of no free charges, the wave equation in Eq. (2.8) can be written as

∇2 ~E(~r) + k2
0ε(~r) ~E(~r) = ~0. (2.10)

Dividing this equation by ε(~r) an eigenvalue problem appears, where the operator 1
ε(~r)∇

2

works on the eigenfunctions ~E(~r), giving rise to the eigenvalues −k2
0. Similar Eq. (2.9) is

an eigenvalue problem for the magnetic field. The primary focus will now be on solving
these wave equations for the electric and magnetic field in the beamsplitter. But before
this can be done it is necessary to know how the fields behave across all the interfaces in
the beamsplitter, and therefore the next section deals with reflections and transmission at
in interface.

2.2 Reflection and Transmission at an Interface

As mentioned the beamsplitter consists of alternating layers of materials with different
refractive index. At each interface in the beamsplitter some light is reflected and some light
is transmitted, and this happens in accordance with the following boundary conditions at
an interface between material 1 and 2. [16]

E1t = E2t, ε1E1n = ε2E2n, H1t = H2t, µ1H1n = µ2H2n, (2.11)

where the number denotes the medium while t and n denotes the tangential and normal
part of the fields, respectively.
When an arbitrarily polarized plane wave is incident at an interface, it can be split up into
an s polarized plane wave and a p polarized plane wave. For s polarization the electric
field is parallel to the interface, while for p polarization the magnetic field is parallel to the
interface, as illustrated in Fig. 2.1 where only the electric fields are shown. The interface
separates two media with dielectric constants ε1 and ε2, which in general can be complex.
The incident plane wave is given by ~E1e

i(~k1·~r−ωt), thus propagating in the direction of ~k1
which lies in the xz plane of the figures and (~k1, ~E1, ~H1) form a right handed set. The
reflected wave is propagating in the direction of ~k1r whose z component is opposite to
that of ~k1. In order for (~k1r, ~E1r, ~H1r) to be a right handed set either the tangential part
of ~E1r or ~H1r must change sign compared to the incident wave. In [25] the sign change
for p polarization occurs for the electric field while it occurs for the magnetic field in [19],
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2.2. Reflection and Transmission at an Interface

Figure 2.1: Reflection and transmission for s and p polarization. For s polariza-
tion the electric field is parallel to the interface thus along the y axis, while for p
polarization the electric field is in the xz plane. Figure inspired by [25].

and for s polarization the sign change occurs for the magnetic field in both books. In
this thesis it is chosen to stick to the convention in [25] as seen in Fig. 2.1. It is seen in
the figures that the x-component of ~k1 must be conserved across the interface, while the
z-component changes. The propagation directions in the two media are thus given by

~k1 = (kx, kz1), ~k2 = (kx, kz2), (2.12)

where the norm of the vectors are k1 = |~k1| = k0n1 and k2 = |~k2| = k0n2, respectively,
where n =

√
ε is the refractive index of the materials.

It is seen in the figures that the conserved x-component of the propagation direction is
given by

kx = k1 sin(θ1), (2.13)

where θ1 is the angle of incidence as illustrated in the figure. The z-components of the
propagation directions are thus given by

kz1 =
√
k2

0ε1 − k2
x, kz2 =

√
k2

0ε2 − k2
x (2.14)

It is noticed that these two components in general can be complex thus describing evanes-
cent waves, which is a wave propagating in one direction and exponentially damped in
another direction. This happens when the argument of the square root in Eq. (2.14)
becomes negative, i.e when 1 − n1/n2 sin2 θ1 < 0. This is never fulfilled if n1 < n2, thus
the transmitted wave is always propagating if the incident medium has a lower refractive
index than the receiving medium. Thereby a propagating transmitted wave always exist
when light is incident from air into any material. In the other case, n1 > n2, evanescent
waves occur if the incident angle exceeds the critical angle given by θc = sin−1(n2/n1) and
total internal reflection occurs.

The reflection and transmission depend on the polarization, and can be calculated using
the Fresnel reflection and transmission coefficients which for s polarization can be written
as [25]

ρs12(θ1) = kz1 − kz2
kz1 + kz2

, τ s12(θ1) = 2
√
kz1kz2

kz1 + kz2
, (2.15)
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Chapter 2. The beamsplitter

and for p polarization written as

ρp12(θ1) = ε2kz1 − ε1kz2
ε2kz1 + ε1kz2

, τp12(θ1) = 2n1n2
√
kz1kz2

ε2kz1 + ε1kz2
. (2.16)

It is important to remember that these coefficients apply when the light is incident from
medium 1 into medium 2 denoted by the subscript 12. Furthermore ρ12 = −ρ21, τ12 = τ21
and |ρ12|2+|τ12|2 = 1 for both polarizations. This is different from [25] where the condition
is |ρ12|2 + kz2/kz1|τ12|2 = 1, but the coefficients in Eq. (2.15) and (2.16) have the factor
kz2/kz1 incorporated. It is furthermore noticed that the condition |ρ12|2+|τ12|2 = 1 is only
true when both kz1 and kz2 are real. Imaginary wave vectors can be due to either total
internal reflection or imaginary refractive indices, and in both cases it is difficult to define
transmittance. Any measurement of light intensity is hard to make in an absorbing media,
as the intensity depends on the measurement position. The beamsplitter considered in this
thesis is surrounded by air on both sides, hence it makes sense to define the transmittance
as the ratio of light intensities transmitted and incident on the beamsplitter as both these
intensities are measured in air, which is a non-absorbing medium.
The amplitude of the reflected and transmitted fields are for both polarizations given by

E2(~r) = τ12(θ1)E1(~r), E1r(~r) = ρ12(θ1)E1(~r). (2.17)

It is noticed that all the coefficients depend on the incident angle θ1. This is due to the
fact that kx depends on θ1 through Eq. (2.13), while kz1 and kz2 depends on kx through
Eq. (2.14) and hence also on θ1. It is possible to write down an explicit expression for
the coefficients depending on θ1, but in practice the coefficients are applied as they are
written now.
For p polarized light the Brewster angle θB is the angle of incidence where all the light
is transmitted through the interface and no light is reflected. The physical understanding
of this phenomena is due to the oscillating electric dipoles in the materials, which do
not radiate at all in the direction of their dipole moments. [25] Hence when p polarized
light is incident at an interface where the incident angle equals the Brewster angle, the
dipole moments of the refracted light point in the same direction as the reflected light
was supposed to. These dipoles do not radiate in this direction, and therefore no reflected
light is found. This happens when θ1 + θ2 = 90◦, where θ1 is the incident angle and θ2 is
the refracted angle, and from Snell’s law n1 sin θ1 = n2 sin θ2 with θ1 = θB the Brewster
angle is found to be [17]

θB = tan−1
(
n2
n1

)
. (2.18)

It is noticed that the Brewster angle only exists for p polarization. For s polarization
the electric field is parallel to the interface implying that all the dipole moments also are
parallel to the interface, thus reflected light always exists.
With the achieved knowledge about how the fields and wave vectors behave across an
interface, the next section deals with the beamsplitter, and analytic solutions of the wave
equations in Eq. (2.9) and (2.10) are found.
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2.3. Band Gaps in the Beamsplitter

2.3 Band Gaps in the Beamsplitter

In this section the beamsplitter is introduced, where it is assumed that is consists of
infinitely many layers, and the origin of band gaps are explained. This is done by solving
the wave equations in Eq. (2.9) and (2.10) by applying Blochs theorem. Later in Sec. 2.4
a method dealing with a beamsplitter consisting of only a finite number of layers will be
derived, and it is shown that if the number of layers is large enough, the same results are
obtained as for the infinite structure.

Figure 2.2: The beamsplitter consisting of two different materials. The blue re-
gions describe material 1 with refractive index n1 and thickness a1 while the green
regions describe material 2 with refractive index n2 and thickness a2. In this section
it is assumed that this structure is repeated infinitely many times. s polarized light
with direction given by ~k in the xz plane is incident on the beamsplitter, giving rise
to an electric field parallel with all the interfaces. Figure inspired by [28].

The beamsplitter shown in Fig. 2.2 consists of two different materials and is periodic
in the z direction and considered as infinite in the other directions. The blue regions
describe material 1 with refractive index n1 and thickness a1 while the green regions
describe material 2 with refractive index n2 and thickness a2, and the total period is
~Λ = Λẑ = (a1 +a2)ẑ. In the figure the light is s polarized and this case is studied in detail
where the focus is on solving the wave equation for the electric field in Eq. (2.10), and
similar calculations can be made for p polarized light for solving the wave equation for
the magnetic field in Eq. (2.9). For the beamsplitter in Fig. 2.2 the wave equation in Eq.
(2.10) is valid in both media, and can thus be written as [28]

∇2 ~E(~r) =
{
−k1

2 ~E(~r) , 0 < z < a1

−k2
2 ~E(~r) , −a2 < z < 0.

(2.19)

kx is conserved through the structure, hence a solution of Eq. (2.19) is given by [25]

~E(~r) =
{

(Aeikz1z +Be−ikz1z)eikxxŷ , 0 < z < a1

(Ceikz2z +De−ikz2z)eikxxŷ , −a2 < z < 0,
(2.20)

where it is remembered from Eq. (2.12) that k2
x + k2

zj = k2
j for j = {1, 2}, and A,B,C

and D are constants. In the rest of this section, only the magnitude E(~r) of the field in
Eq. (2.20) is considered, where ~E(~r) = E(~r)ŷ and only a two dimensional position vector
~r = (x, z) is considered.
The solution in Eq. (2.20) is only valid inside one period from −a2 to a1, and to find the
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Chapter 2. The beamsplitter

electric field outside this period Blochs theorem is used, which states that

E(~r) = ei
~kB ·~ru~kB

(z), (2.21)

where u~kB
(z) is a function that is periodic in the z direction with same period Λ as

the structure, and ~kB is a Bloch wave vector which is different from ~k1 and ~k2. If the
entire beamsplitter was made of material 1 the field will propagate with wave vector ~k1,
and similar with ~k2 if the entire beamsplitter was made of material 2. But when the two
materials are put together to form the beamsplitter, the wave vector is not just alternating
between ~k1 and ~k2 in the two materials. Reflection occurs at every interface giving rise
to interference between the different waves which influences the propagation. Hence in
the beamsplitter the electric field is propagating as a plane wave modulated by a periodic
function with the same period as the structure. For a position outside the first period the
field is found using Eq. (2.21)

E(~r + ~Λ) = eikB ·(~r+~Λ)u~kB
(z + Λ) = eikB ·~ru~kB

(z)eikBzΛ = E(~r)eikBzΛ, (2.22)

where kBz is the z component of kB. Because of the periodicity of the structure in the z
direction it is enough to describe the field for Bloch wave vectors inside 1. Brillouin zone
thus −π/Λ ≤ kBz ≤ π/Λ. Applying Eq. (2.22) the electric field can be calculated at an
arbitrary position in the beamsplitter. [28]

2.3.1 Boundary Conditions

For the solution in Eq. (2.20) to describe a physical field it must fulfil the boundary
conditions in Eq. (2.11). For s polarization the electric field is entirely tangential, so at
the interface z = 0 the coefficients in Eq. (2.20) must satisfy

A+B = C +D, (2.23)

From Maxwell’s equations ~∇ × ~E = iωµ0 ~H, thus the tangential part of ~H is Hx =
1/iωµ0(~∇× ~E)x = 1/iωµ0

∂E(~r)
∂z . Thus differentiating the field in Eq. (2.20) with respect

to z and inserting z = 0 yields

kz1(A−B) = kz2(C −D). (2.24)

These two equations contain four unknowns, thus to solve them Blochs theorem as ex-
pressed in Eq. (2.22) is applied. At the interface z = a1 the electric field must satisfy
E(x, a1) = E(x,−a2 + Λ) = E(x,−a2)eikBzΛ, yielding

Aeikz1a1 +Be−ikz1a1 = (Ce−ikz2a2 +Deikz2a2)eikBzΛ. (2.25)

The same is done with the differentiated field at the interface z = a1 yielding

kz1
(
Aeikz1a1 −Be−ikz1a1

)
= kz2

(
Ce−ikz2a2 −Deikz2a2

)
eikBzΛ. (2.26)

The four equations in Eq. (2.23) to (2.26) contain four unknowns and can thus be solved.
Exactly the same can be done for p polarization where the wave equation for the magnetic
field in Eq. (2.9) simplifies to

∇2 ~H(~r) =
{
−k1

2 ~H(~r) , 0 < z < a1

−k2
2 ~H(~r) , −a2 < z < 0,

(2.27)
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because ε(~r) is a constant in each layer and can thus be taken outside the curl operator
in Eq. (2.9). Hence it is seen that Eq. (2.27) is similar to Eq. (2.19) with ~H replaced by
~E. Four equations with four unknowns are found and it can be shown that the non-trivial
solution occurs when the following equation is satisfied

cos(kBΛ) = cos(a1kz1) cos(a2kz2)− 1
2

(
pm + 1

pm

)
sin(a1kz1) sin(a2kz2), (2.28)

where pm depends on the polarization like

pm =
{
kz2
kz1

, for s polarization
kz2
kz1

ε1
ε2
, for p polarization.

(2.29)

Since cos(kBΛ) is always between -1 and 1 for a real kB, solutions to Eq. (2.28) only
exist when the absolute value of its right hand side does not exceed unity. Otherwise the
Bloch wave vector kB becomes imaginary and the wave becomes exponentially damped,
which in an infinite beamsplitter means that it can not propagate. Hence there are some
frequencies where no waves can propagate through the beamsplitter, and these frequencies
are called band gaps and can be seen on a dispersion relation. [25] When sine and cosine
are periodic functions, the right hand side of Eq. (2.28) becomes periodic, implying that
band gaps also occur at higher frequencies. These are called higher order band gaps and
will be further explained in Sec. 7.5.1.
The sizes of the band gaps depend on the refractive indices and the thicknesses of the
materials, and greater difference between the refractive indices results in larger band gaps.
A way to choose the thicknesses of the materials to maximize the band gap is to make
the structure as quarter wave layers, where the idea is to achieve constructive interference
between the beams reflected from the front and back of each interface. The phase change
for a reflection at an interface from low refractive index to higher refractive index is π,
and to achieve constructive interference, the phase shift from propagating in one direction
in every medium must be π/2. It can be shown that this occurs when the thicknesses are
given by [17]

a1 = λ0
4n1 cos θ1

and a2 = λ0
4n2 cos θ2

(2.30)

where θ1 and θ2 are the propagation angles in the respective materials, and can be calcu-
lated using Snell’s law and λ0 is the design wavelength at which the band gap is desired.
Two examples of dispersion relations are shown in Fig. 2.3 where the refractive indices
are n1 = 2.015 and n2 = 1.544 and the light is s polarized. To have a maximal band
gap around 600 nm the structure must consist a quarter wave layers in accordance with
Eq. (2.30), thus the thicknesses are chosen to be a1 =75 nm and a2 =100 nm for an
incident angle of 0◦. The band gaps are marked with yellow rectangles and are seen to be
periodic. For a quarter wave structure the small band gaps disappear, and the reason for
those in the figures is that the structure is only close to a quarter wave structure, this will
be elaborated in Sec. 7.5.1. These figures are further developments of [23], which is the
authors 4th semester project at Aalborg University, and only considered the band gaps in
photonic crystals with light incident perpendicular to the structure. This is the case in
Fig. 2.3a while the incident angle is 45◦ in Fig. 2.3b. The thicknesses of the materials are
the same in the two figures and are almost quarter wave layers for an incident angle of 0◦,
and the thicknesses will change if the angle was 45◦. In the figures the band gaps are seen
to occur at a higher frequency for 45◦ than for 0◦. Notice that these figures are only valid
for s polarization, and similar figures can be made for p polarization.
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(a) Dispersion relation for an incident angle of
0◦, where the yellow rectangles mark the band
gaps.

(b) Dispersion relation for an incident angle of
45◦, where the yellow rectangles mark the band
gaps.

Figure 2.3: Dispersion relations for incident angles of 0◦ and 45◦. Notice that the
band gaps occur at higher frequency for 45◦ than for 0◦.

The wave equations in Eq. (2.9) and (2.10) are scale invariant with respect to length, and
it can thus be shown that the size of the band gap ∆λ scales linear with the thicknesses
of the materials when their refractive indices are kept constant. The middle of the band
gap, λm scales linear too, and the gap-midgap ratio ∆λ/λm becomes independent of the
thicknesses, and is a more useful characterization than the band gap size. [15] Due to
the scale invariance it is convenient to work with dimensionless units in the dispersion
relation, which is achieved by normalising the thicknesses of the individual layers by the
total period. Similar the frequency and the Bloch wave vector are normalised resulting in
[28]

d1 = a1
Λ , d2 = a2

Λ (2.31)

K = kBΛ, Ω = k0Λ = ω

c
Λ (2.32)

With these thicknesses the period is Λ =175nm and the dimensionless thicknesses become
d1 = 3

7 and d2 = 4
7 , and these thicknesses are used in the dispersion relations in Fig. 2.3.

2.4 The Electric Field Transfer Matrix Method

Until now only an infinite beamsplitter has been studied and the occurrence of band
gaps have been explained. A way to deal with a finite beamsplitter is by transfer matrix
methods, which describe how the field changes through the structure. It is difficult to
measure the band gaps directly, and a way to deal with this problem is to consider the
transmittance through the crystal, which is defined as the ratio of the intensity of the
light that has passed through the crystal and the intensity of the incident light. If the
transmittance is zero at some frequency no light can propagate and a band gap exists at
that frequency. Therefore in this section based on [17] it is shown how to calculate the
transmittance through a beamsplitter by using the electric field transfer matrix method.
Throughout this section light is incident from left and any measurement must take place
to the right of the crystal. In Sec. 2.4.1 reciprocity is studied where light is incident from
right and a measurement takes place at left of the crystal.
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As mentioned in Sec. 2.2 a part of the light is reflected at every interface and another
part transmitted. Hence in each layer there are forward and backward propagating waves
which is also seen in the solution of the electric field in Eq. (2.20). Inside a material the
magnitude of the electric field can be written as

E(~r) = (E+eikzz + E−e−ikzz)eikxx, (2.33)

where E+ and E− describe the fields propagating forth and back, respectively. The case
of a single medium with refractive index n and thickness a is illustrated in Fig. 2.4, where
light is incident perpendicular to the medium to simplify the figure which is the case for
all figures in this section. The incident angle is incorporated into kz, see Eq. (2.13) and

Figure 2.4: Propagation in a medium with refractive index n and thickness a.
Figure from [23].

(2.14). The propagation in the medium is described by the matrix
↔
T =

(
eikza 0

0 e−ikza

)
. (2.34)

Hence the field after propagation through the material is given by(
E+

2
E−2

)
=
↔
T

(
E+

1
E−1

)
, (2.35)

where the field changes from (E+
1 , E

−
1 ) to (E+

2 , E
−
2 ). It is noticed that Eq. (2.35) gives the

fields after propagation in terms of the incident fields. This is opposite to e.g [17] where
the incident field is given in terms of the propagated fields, thus described by(

E+
1

E−1

)
=
↔
S

(
E+

2
E−2

)
, (2.36)

where
↔
S =

↔
T
−1

. The procedure of the transfer matrix method considered in this thesis
is different from [17], because the methods consider the structure from different sides but
the results are shown to be equivalent.
At an interface between materials with refractive indices n1 and n2 both reflection and
transmission occur as explained in Sec. 2.3.1, and is illustrated in Fig. 2.5. It can be
shown that the interface is described by the matrix

↔
T 12 = 1

τ21

(
1 −ρ12
−ρ12 1

)
, (2.37)
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where ρ12 and τ21 are the reflection and transmission coefficients in Eq. (2.15) and (2.16),
and it is remembered that τ12 = τ21. Hence the field after the interface is given by(

E+
2

E−2

)
=
↔
T 12

(
E+

1
E−1

)
. (2.38)

This is again opposite to [17] where

Figure 2.5: Interface between two media with refractive indices n1 and n2. Figure
from [23].

(
E+

1
E−1

)
= 1
τ12

(
1 ρ12
ρ12 1

)(
E+

2
E−2

)
. (2.39)

It can be shown that
↔
T 12 =

↔
T
−1
21 , hence Eq. (2.38) and (2.39) are equivalent.

The two kinds of matrices in Eq. (2.34) and (2.37) serve as building blocks in the electric
field transfer matrix method, because any beamsplitter can be described by appropriate
multiplications of these matrices. For the beamsplitter in Fig. 2.2 a unit cell can be
defined as the smallest possible structure that is repeated, and is illustrated in Fig. 2.6.
First the field is refracted into the cell, then it propagates a distance a1 in material 1, then
it is refracted at an interface and propagates a distance a2 in material 2. The dotted line
at the right of the figure is not included in the unit cell, because it is equivalent to the
most left line and must not be included twice.

Figure 2.6: Unit cell where the field first is refracted into the structure, then
it propagates a distance a1 in material 1, then it is refracted at an interface and
propagates a distance a2 in material 2. The dotted line at the right of the figure is
not included in the unit cell. Figure from [23].
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The unit cell can be described by the matrix(
E+

4
E−4

)
=
↔
T 2
↔
T 12

↔
T 1
↔
T 21

(
E+

1
E−1

)
=
↔
T u

(
E+

1
E−1

)
, (2.40)

where matrices with one subscript describes propagation in that particular medium, matri-
ces with two subscripts describe reflection and transmission at an interface and subscript
u means unit cell. From the unit cell matrix it is possible to construct a matrix describing
a structure consisting of K unit cells given by

↔
T s =

↔
T
K

u =
(
T11 T12
T21 T22

)
, (2.41)

where the subscript s means structure. All the information about the structure is built
into the structure matrix

↔
T s including all the multiple reflections, and it only depends on

the number of unit cells, the thicknesses and refractive indices of the materials.
It is noticed that the determinants of the matrices in Eq. (2.34) and (2.37) both equal
1, hence the determinant of

↔
T s also equals 1. As explained earlier every layer of the

beamsplitter contains a wave propagating forth and back, but the boundary conditions
require that there is no wave propagating back after passage of the entire beamsplitter as
illustrated in Fig. 2.7. After passage of the entire beamsplitter the field is given by

Figure 2.7: Beamsplitter consisting ofK unit cells. To the right of the beamsplitter
there is no light propagating back. Figure from [23].

(
E+
K

E−K

)
=
(
E+
K

0

)
=
(
T11 T12
T21 T22

)(
E+

1
E−1

)
(2.42)

Utilizing that the determinant of the structure matrix is 1 it can be shown that the
reflectance R = |ρ|2 and transmittance T = |τ |2 are given by

R =
∣∣∣∣T21
T22

∣∣∣∣2 ; T = 1
|T22|2

. (2.43)

According to [17] the incident field is given in terms of the transmitted field through the
entire structure, which with the same boundary conditions as in Fig. 2.7 yields(

E+
1

E−1

)
=
(
S11 S12
S21 S22

)(
E+
K

0

)
. (2.44)

When
↔
S1 =

↔
T
−1
1 ,

↔
S2 =

↔
T
−1
2 and

↔
S ij =

↔
T
−1
ij for every matrix in the structure, then

↔
S s =

↔
T
−1
s for the entire structure as well and the determinant of

↔
S s also equals 1. Hence

↔
S s =

(
S11 S12
S21 S22

)
=
(
T22 −T12
−T21 T11

)
. (2.45)
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Combining Eq. (2.44) and (2.45) it can be shown that the reflectance and transmittance
are given by

R =
∣∣∣∣S21
S11

∣∣∣∣2 =
∣∣∣∣T21
T22

∣∣∣∣2 ; T = 1
|S11|2

= 1
|T22|2

. (2.46)

This is the same as the reflectance and transmittance in Eq. (2.43) showing that the two
procedures of the transfer matrix method give the same results.
With the transfer matrix method derived it is possible to calculate the transmittance
through the beamsplitter. [17]

2.4.1 Reciprocity

In this subsection the reciprocity principle is explained briefly.
Lorentz’ reciprocity theorem states that the electric field at right of a structure when light
is incident from left is equivalent to the field at left of the structure when light is incident
from right. [25] The principle of the theorem is illustrated in Fig. 2.8 where situation 1
considers light incident from left and observation at right and opposite in situation 2.

Figure 2.8: Lorentz’ reciprocity theorem states that the electric field at the right
of a structure when light is incident from left is equivalent to the field at left of the
structure when light is incident from right. Hence the two situations in the figure
are equivalent. Figure from [23].

The light that passes through the entire beamsplitter is determined by the transmittance
T = 1/|T22|2. Hence the transmittance must be the same as if light was incident from right.
This is not the case for the reflected field due to possible absorption in the beamsplitter.
When at least one of the refractive indices have a non-zero imaginary part a portion
of the incident field is absorbed. The orientation of the beamsplitter has an impact on
the reflectance and absorbance, because there is difference between whether the light is
reflected or absorbed first as illustrated in Fig. 2.9. Here a simple structure consisting of a
metal film deposited on glass is considered, and the orientation of the structure is studied
where it is assumed that absorption only occurs in the metal. The transmittance is shown
by the horizontal arrow and the reflectance by the vertical arrow. The transmittance is
independent of the orientation while the left figure has the highest reflectance. [19]
In section 7.4 it will be shown that the reciprocity principle is valid for the optimized
beamsplitter and the optimal orientation of it will be found.
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Figure 2.9: A simple structure consisting of a metal film deposited on glass where
it is assumed that absorption only takes place in the metal. Light is incident from
left in both cases but the structure is reversed. The transmittance is the same in
both cases but the reflectance is higher in the left figure where the light enters the
metal before the glass. Figure from [19].

2.5 The Admittance Transfer Matrix Method

In this section another transfer matrix method based on admittance is studied. The
method in Sec. 2.4 considers only the electric field of the light but treats both its normal
and tangential components. The admittance method studied in this section considers both
the electric and magnetic field of the light but treats only the tangential components of
the fields denoted E and H. Hence both methods study two kinds of fields and are thereby
equivalent, but the advantage of the admittance method is that according to Eq. (2.11) the
tangential components of the fields are conserved across an interface. Hence propagation
matrices corresponding to Eq. (2.34) are the only building blocks in the admittance
method, and it is therefore expected that this method is faster computationally than the
electric field transfer matrix method. Whether this is the case will be investigated in Sec.
6.2. In this section light is always incident from left.

The optical admittance is defined by

η = H
E
. (2.47)

In free space the admittance is η0 =
√
ε0/µ0 while it is η = nη0 in a material with refractive

index n. Notice that η0 is the reciprocal of the vacuum impedance Z0 =
√
µ0/ε0.

Consider p polarized light incident on a material of refractive index n and thickness a as
seen in Fig. 2.10. The material is surrounded by air and its interfaces are denoted α and
β. As in Sec. 2.4 the electric field of the forward propagating light is denoted ~E+ and the
backward propagating denoted ~E−. The positive z direction is into the structure which
is opposite of [19]. The tangential components of ~E+ and ~E− are opposite and are at
interface β given by

E+
β = E+ cos θ′, E−β = −E− cos θ′, (2.48)

where E+ is the magnitude of ~E+ and similar for E−, and θ′ is the propagation angle
in the material as seen in Fig. 2.10 which can be calculated using Snell’s law. At every
position the electric field consists of a forward and backward propagating wave, thus

Eβ = E+
β + E−β . (2.49)

29



Chapter 2. The beamsplitter

Figure 2.10: Propagation in a medium with refractive index n and thickness a
where the interfaces are denoted α and β. The incident light is described by k+ at
left of the layer with E+ related. The tangential components of the electric fields
are calculated along the positive x direction and all magnetic fields point out of the
plane. The incident angle is θ while the refracted angle is θ′. Figure inspired by
[19].

From Maxwell’s equations it is found that ~H = 1/(ωµ0)~k× ~E and for p polarization ~H is
entirely tangential thus H = ~H. Calculating H as the sum of the magnetic field for the
forward and backward propagating wave yields

H = k

ωµ0
(E+ + E−) (2.50)

where k = |~k| = nk0. Combining Eq. (2.48) and (2.50) gives the tangential magnetic field
at interface β

Hβ = k

ωµ0 cos θ′ (E
+
β − E

−
β ). (2.51)

Similar can be done for s polarization and the general result is written as

Hβ = η(E+
β − E

−
β ), (2.52)

where the admittance is given by

η =
{
k/(ωµ0 cos θ′) for p polarization
k cos θ′/(ωµ0) for s polarization.

(2.53)

For absorbing media it is convenient to work with wave vectors instead of angles, where
cos θ′ = kz/k and kz depends on the incident angle θ from Eq. (2.14). Hence the admit-
tance in Eq. (2.53) is written

η =
{
η0n

2k0/kz for p polarization
η0kz/k0 for s polarization.

(2.54)
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With this way of defining the directions of ~E and ~H the Eqs. (2.49) and (2.52) are the
same as obtained in [19] and the remaining part of this section follows the calculations
there. Adding and subtracting Eq. (2.49) and (2.52) yields

E+
β = 1

2(Hβ/η + Eβ) (2.55)

E−β = 1
2(−Hβ/η1 + Eβ). (2.56)

The fields at α is found in terms of the fields at β by the phase shifts

E+
α = E+

β e
−iδ (2.57)

E−α = E−β e
iδ, (2.58)

where δ = kza. At interface α the field can be shown to be

Eα = E+
α + E−α = Eβ cos δ − i sin δ

η
Hβ. (2.59)

Analogue calculations can be made for the magnetic field, and in combination with Eq.
(2.59) the result is (

Eα
Hα

)
=
↔
T 1

(
Eβ
Hβ

)
, (2.60)

where
↔
T 1 =

(
cos δ −i sin δ/η
−iη sin δ cos δ

)
. (2.61)

The matrix
↔
T 1 is called the characteristic matrix of the layer and its determinant equals 1.

It is found in [19] by changing the sign on δ due to the opposite z direction. It relates the
tangential components E and H at the incident interface with E and H after transmission
through the layer.

↔
T 1 describes propagation in a material with refractive index n and

thickness a and corresponds to Eq. (2.34). It serves as the only building block in the
admittance method since no interface matrices corresponding to Eq. (2.37) are needed
because no changes occur in the tangential components of the fields across an interface.
For a beamsplitter consisting of many layers it is easy to generalise the admittance method.
The unit cell is the same as in Fig. 2.6 and described by(

Eα
Hα

)
=
↔
T 1
↔
T 2

(
Eγ
Hγ

)
=
↔
T u

(
Eγ
Hγ

)
, (2.62)

where γ is the last interface in the unit cell similar to the dotted line in Fig. 2.6. For
a beamsplitter consisting of K unit cells the final interface is called Ω and the structure
matrix of the beamsplitter is

↔
T s =

↔
T
K

u . (2.63)

The incident field is given in terms of the final transmitted field (EΩ,HΩ) by(
Eα
Hα

)
=
↔
T s

(
EΩ
HΩ

)
. (2.64)
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Notice that this is opposite to Sec. 2.4 where the transmitted field was given in terms of
the incident field, but as it was also shown is the section the two procedures give the same
result. The determinant of

↔
T s equals 1 as it is the product of matrices with determinants

of 1. Eq. (2.64) is normalized by dividing by EΩ yielding(
Eα/EΩ
Hα/EΩ

)
:=
(
B
C

)
=
↔
T s

(
1
η0

)
, (2.65)

where η0 occurs because there is air at right of the structure. Define the input optical
admittance by

Y = Hα
Eα

. (2.66)

Combining Eqs. (2.65) and (2.66) gives Y = C/B which is calculated from
↔
T s and η0.

The reflection coefficient for the structure can be shown to be

ρ = η0 − Y
η0 + Y

, (2.67)

where η0 is the admittance of the incident medium which depends on the polarization
according to Eq. (2.54) The reflectance is the absolute square of the coefficient in Eq.
(2.67) and yields

R =
∣∣∣∣η0B − C
η0B + C

∣∣∣∣2 . (2.68)

The transmittance and absorbance is calculated in the next subsection. [19]

2.5.1 Transmittance in the Admittance Method

Calculating the transmittance in the admittance method is more complicated than in
the electric field method. The intensity of the light described by the Poynting vector
is calculated before and after the structure, and the transmittance is the ratio of these
intensities. The structure is equivalent to the one in Fig. 2.7 where the first interface is
called α and the final interface called Ω.
The Poynting vector is defined as

~S = ~E × ~H, (2.69)

and describes an energy flux density where the fields are entire fields, not the tangen-
tial parts. Often the time averaged energy flux density is more interesting and for time
harmonic fields its mean value is

〈~S〉 = 1
2Re(

~E × ~H∗), (2.70)

where ∗ denotes complex conjugated. The intensity of light flowing into a volume V is an
integral of the normal component of the time averaged Poynting vector over the boundary
of V .

I =
∫
δV
〈~S〉 · n̂ dA, (2.71)

where n̂ is a normal vector and dA is an area element at the boundary of V . [25]
The intensity of the incident light is calculated as the integral in Eq. (2.71) over the
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interface α in Fig. 2.10. Similar the intensity of the transmitted light is calculated at the
final interface called Ω. At the first interface ~E and ~H are the forward propagating waves
and n̂ = −ẑ, hence

〈~Sα〉 · n̂ = 1
2Re(E

+
αH

+∗
α cos θ′) = 1

2Re(E
+
αH+∗

α ), (2.72)

where Eα and Hα are the tangential parts as earlier. The fields at interface α is given
in terms of the fields at Ω from Eq. (2.65), thus Eα = BEΩ and Hα = CEΩ. Inserting
E+
α = 1/2(Eα +Hα/η0) and Hα = η0Eα gives

〈~Sα〉 · n̂ = 1
8η0
|EΩ|2|η0B + C|2, (2.73)

where η0 is the admittance of air as it is the material left of the structure. At interface Ω
the intensity is

〈~SΩ〉 · n̂ = 1
2Re(EΩHΩ) = 1

2Re(ηair)|EΩ|2. (2.74)

The intensities are found by integrating Eq. (2.73) and (2.74) over the interfaces along
x in Fig. 2.10. The structure is considered infinite in the x direction and none of the
integrands depend on x. The ratio of the intensities is therefore the same as the ratio of
Eq. (2.73) and (2.74), thus giving the transmittance

T = 4η0Re(ηair)
|η0B + C|2

. (2.75)

The absorbance is A = 1−R− T and applying R and T in Eq. (2.68) and (2.75) gives

A = 4η0Re(BC∗ − ηair)
|η0B + C|2

. (2.76)

In Eq. (2.75) and (2.76) η0 and ηair are the same because there is air on both sides of the
structure. If the structure is placed on a substrate, replace ηair by ηsubstrate.
It is now possible to calculate the reflectance, transmittance and absorbance using the
admittance method. [19]

2.6 Structure Matrices for the Beamsplitter

In this section the structure matrices for the considered beamsplitter are found.
In both transfer matrix methods studied so far the structure consisted of two alternating
materials with air on both sides. When fabricating the beamsplitter the layers have to be
deposited on glass. The material Si3N4 has a higher refractive index than SiO2, why it is
suggested to put SiO2 on both sides of the crystal. Furthermore MgF2 has a lower real
part of the refractive index than SiO2, and to reduce the reflectance into the structure the
outermost layer is MgF2. A structure consisting of 3 unit cells is illustrated in Fig. 2.11.
The electric field transfer matrix method considers the transmitted field in terms of the
incident field, hence the matrices have to multiplied from right to left in the figure giving
the structure matrix

↔
T s =

↔
T g,a

↔
T g
↔
T 2g

↔
T
K−1
u

↔
T 2
↔
T 32

↔
T 3
↔
T a,3, (2.77)

33



Chapter 2. The beamsplitter

Figure 2.11: Beamsplitter consisting of 3 unit cells with an extra front layer of
MgF2 and extra rear layer of SiO2 deposited on glass. Figure inspired by [23].

where g is glass and a is air and matrices like
↔
T j is propagation in material j described by

Eq. (2.34), and matrices like
↔
T ij describe interfaces between material i and j described

by Eq. (2.37), and the unit cell matrix
↔
T u is given in Eq. (2.40).

The admittance transfer matrix method considers the incident field in terms of the trans-
mitted field, hence the matrices have to multiplied from left to right in the figure giving
the structure matrix

↔
T s =

↔
T 3
↔
T 2
↔
T
K

u

↔
T g, (2.78)

where the propagation matrices
↔
T j are given in Eq. (2.61) and the unit cell matrix in Eq.

(2.62).
The structure matrix looks simpler for the admittance method but its building blocks
are more complicated than the electric field method. In addition the expressions for the
reflectance and transmittance in Eq. (2.68) and (2.75) for the admittance are also more
complicated compared to Eq. (2.43). The two methods are equivalent but maybe one is
faster computationally which will be investigated in section 6.2.

2.7 Band Gaps described by the Transfer Matrix Methods

In this section it will be shown how to find the band gaps using one of the transfer matrix
methods, and that the methods give the same result as found in Sec. 2.3 where an infinite
beamsplitter was studied.
As mentioned earlier a band gap is characterized by that no light can propagate at that
frequency, which means that the transmittance is zero. To compare a transfer matrix
method with the method of infinite structures a large number of unit cells has to be
chosen, which in the calculations is set to K = 1000. Hence a beamsplitter with the
same dimensions and refractive indices as in Fig. 2.3 is considered consisting of 1000 unit
cells. The transmittance is calculated using Eq. (2.43) or Eq. (2.75), depending on which
transfer matrix method to apply for every frequency in some region and is plotted in Fig.
2.12a for θ = 0◦ and Fig. 2.12b for θ = 45◦. It is seen in both figures that there are four
band gaps and they are seen to occur at the same frequencies as in the dispersion relations
in Fig. 2.3. Hence it is shown that the two methods give the same result. Notice that
the band gaps occur at higher frequencies when the incident angle is 45◦ compared to 0◦,
which was also seen in the dispersion relations in Fig. 2.3. The fact that the position
of the band gaps depend on the incident angle will further explained and utilized in Sec.
7.1.2, where the angular dependence of the total efficiency of the hybrid system is studied
in detail.
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(a) Incident angle is 0◦. (b) Incident angle is 45◦.

Figure 2.12: Transmittances for incident angles of 0◦ and 45◦. Notice that the
band gaps occur at higher frequency for 45◦ in correspondence with Fig. 2.3.
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3. Efficiency of Solar Cells

In this chapter the basic ideas behind solar cells are explained and expressions for the
efficiency are derived. First this is done for an ideal solar cell without any losses and a
theoretical limit for its efficiency is found. Afterwards limiting factors are introduced and
the efficiency found for more realistic solar cells and this efficiency is much less than the
theoretical limit. In the Matlab implementation in Chapter 6 first the efficiency of an ideal
solar cell is used, and the optimization processes are tested on this. Later in Sec. 7.2 and
7.3 the efficiencies of more realistic solar cells are applied in the optimization process and
it is studied how much the efficiency of the hybrid system exceeds that of a single solar
cell.

3.1 Efficiency of an Ideal Solar Cell

In this section an ideal solar cell without any losses is described and its efficiency derived.
A solar cell is basically an electronic device that converts sunlight into electricity. When
sunlight is incident on a solar cell it gives rise to a current and a voltage thus generating
an output power. A solar cell is illustrated in Fig. 3.1 and consists of several parts to be
described. The front layer is antireflection coating which reduces the reflection from air
into the solar cell. For a solar cell of silicon with a refractive index of 3.4 the reflectance
from air for light incident perpendicular is approximately 30%. If glass with refractive
index 1.5 is deposited on top of the silicon, the reflectance from air into the silicon can be
reduced to approximately 18% depending on the glass thickness.

Figure 3.1: Illustration of a solar cell. The antireflection coating reduces reflection
from air into the solar cell. The emitter layer consists of an n-doped semiconductor
and the base layer of a p-doped semiconductor, hence the interface between emitter
and base is a pn junction. Electron-hole pairs are generated in the depletion layer of
the pn junction and the electrons dissipate their power in the external load. Figure
from [11]
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If a material with refractive index
√

1.5 · 3.4 ≈ 2.25 is deposited between the glass and
silicon the reflectance is further reduced. [11] In general the reflectance depends strongly
on the wavelength, and appropriate thicknesses of the glass and the antireflection layer
can further decrease the reflectance in a desired wavelength interval. In [13] antireflection
coating is deposited using ZnO, TiO2 and SiO2 with refractive indices in the visible region
of approximately 2, 2.6 and 1.45, respectively [1]. In the wavelength interval 420-600 nm
the reflectance is reduced to approximately 4%, but exceeds 15% for wavelengths above
700 nm. In the case of an ideal solar cell considered here, the reflectance is neglected and
it is assumed that all the light is directed into the solar cell.
The next two parts of the solar cell in Fig. 3.1 are the emitter and base layers. The
emitter is an n-doped semiconductor while the base is the same semiconductor that is
p-doped, and the interface between the two layers forms a pn junction. When brought
together electrons diffuse from the n-doped material into the p-doped while holes diffuse
in opposite direction. It is assumed that the diffused electrons from the n-doped material
all settle in a layer of width Wp in the p-doped region, where no free electrons are present.
Similar the diffused holes form a layer of width Wn with no free holes. Hence an electric
field is generated in the direction that prevents the diffusion, and a stationary depletion
layer with thickness W = Wn +Wp arises. [28] The doped materials outside the depletion
layer contain many free charges, but no electric field is present here. Hence the charges
move in random direction with no net motion, thus not contributing to a current in the
external loop. The same applies if more electrons are excited into the conduction band in
the regions outside the depletion layer. Inside the depletion layer, on the other hand, there
are no free charges but an electric field is present. Hence when an electron-hole pair is
generated, the presence of the electric field implies that electrons and holes are separated,
and that the electrons move in a net direction and generate a current. [11]
The external loop with a load resistance is connected to a front and a rear contact, and
when a voltage is present the electrons in the loop dissipate a power in the load resistance,
thereby lowering their energy and entering the solar cell again in the emitter layer. The
design of the front contacts has an impact on the efficiency, as the metal contact reflects
almost all the light in the interesting wavelength interval. Hence a large contact overshad-
ows a part of the solar cell, reducing the amount of photons to be absorbed. On the other
hand, a small contact implies a high series resistance of the front electrode, and the design
of the contact is a balance between these two competing factors. If the solar cell has area
Atot and the contact has area Ac the coverage factor is 1 − Ac/Atot and contributes to
a reduction of the efficiency. When assuming that the solar cell is ideal the area of the
contact is neglected and the coverage factor equals 1. [34]

The generation of an electron-hole pair requires the absorption of a photon, whose energy
is at least Eg which is the band gap energy of the semiconductor. If the photon energy
is less than Eg it cannot be absorbed and is just transmitted through the entire solar cell
without any contribution to the power generation and thereby efficiency. If the energy of
the photon is equal to Eg it is absorbed and an electron is excited from the top of the
valence band into the bottom of the conduction band, thus utilizing all the energy of the
photon. When the photon has an energy higher than the band gap, it is still absorbed
but the electron is excited to a higher state in the conduction band, from where it looses
its excess energy to heat and falls down to the conduction band edge. Hence the usable
energy is the band gap energy and the ideal efficiency ,ηideal, as a function of the photon
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energy can be expressed as [28]

ηideal(E) =
{

0 for E < Eg

Eg/E for E ≥ Eg,
(3.1)

or equivalently as a function of wavelength as E = hc/λ

ηideal(λ) =
{

0 for λ > λg

λ/λg for λ ≤ λg,
(3.2)

where λg is the band gap wavelength.

3.1.1 The Solar Spectrum

In this subsection the solar spectrum is presented.
The sun can be approximated as a black body with surface temperature 5800 K, whose
energy density is given by the Planck distribution [27]

u(ω) = ~
π2c3

ω3

e~ω/kT − 1
, (3.3)

where ~ is the reduced Planck’s constant and k is Boltzmann’s constant. Eq. (3.3) gives
the energy density outside the atmosphere of the Earth and this spectrum is called AM0.
A part of the radiation is absorbed by the atmosphere, where ozone and oxygen absorb
radiation in the UV region and gasses like CO2, N2O and CH4 absorb radiation in the IR
region and the absorption depends on the thickness of the atmosphere and the incident
angle. The spectrum on the surface of the Earth for normal incidence is called AM1, and
for moderate climates where the incident angle is about 48◦ the spectrum is called AM1.5.
[32] The spectrum as a function of wavelength instead of energy is called F (λ) and is
shown in Fig. 3.2 from [8] where the irradiance is given in a wavelength interval from
280-4000 nm. At wavelengths above 2500 nm the irradiance is negligible, therefore only
wavelengths from 280-2500 nm will be considered in this thesis. The irradiance decreases

Figure 3.2: AM1.5 Solar spectrum. The irradiance decreases at some wavelengths
due to absorption in the atmosphere of the Earth. Figure from [8].
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at some wavelengths caused by absorption in the atmosphere. Integrating the irradiance
from 280-2500 nm gives an intensity of 992 W/m2, which is the incident intensity from the
sun onto the earth, but unfortunately not all this intensity can be utilized by solar cells.
As explained in the previous section, the band gap equals the usable energy, and if it is
too large only a small fraction of the solar spectrum can be utilized. On the other hand, if
the band gap is too small much of the solar spectrum can be utilized but the usable energy
for all the wavelengths is small. The efficiency as a function of the band gap energy for an
ideal solar cell is seen in Fig. 3.3 for both the Planck distribution and the measured AM1.5
solar spectrum. The maximal efficiency is found to be approximately 48% for a band gap
around 1.1 eV, which is almost the same as the value in silicon. The ideal efficiency as a
function of wavelength was given in Eq. (3.2), and the overall efficiency for an ideal solar
cell is found by integrating this efficiency weighted wit the solar spectrum in Fig. 3.2,
yielding

ηideal =
∫ λg

280 F (λ)λ/λg dλ∫ 2500
280 F (λ) dλ

. (3.4)

The utilized intensity is the numerator in Eq. (3.4) which for a band gap wavelength of
900 nm is found to be 464W/m2, and when the denumerator was 992W/m2 the efficiency
of the ideal solar cell becomes 46.76%. Same number can be found from Fig. 3.3 when it
is used that a band gap wavelength of 900 nm gives a band gap of 1.49 eV.

Figure 3.3: Efficiency for an ideal solar cell as a function of the band gap energy.
The black line is for the Planck distribution while the red line is for the measured
AM 1.5 solar spectrum. Figure from [28]

3.2 Efficiency of a Solar Cell with Limiting Factors

While the previous section considered the efficiency of an ideal solar cell, this section takes
into count several limiting factors that reduce the efficiency to a more realistic level.

3.2.1 Quantum Efficiencies

In this subsection the external quantum efficiency is introduced as a limiting factor.
To have a more realistic expression for the solar cell efficiency it is no longer assumed that
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all the photons with an energy larger than Eg are absorbed. Due to a limited thickness of
the solar cell, some photons travel through the entire cell without being absorbed. This
incomplete absorption can be described by an internal optical quantum efficiency IQEop,
describing the probability that an incident photon is absorbed somewhere in the solar cell,
and of course this probability is zero if the photon energy is less than the band gap energy.
When a photon is absorbed in the solar cell it generates an electron-hole pair, but in itself
this does not contribute to a current. For if the electron-hole pair is generated outside the
depletion layer where no electric field is present, they will recombine with no contribution
to the current. The internal electrical quantum efficiency IQEel is the probability that
an electron excited by a photon is collected and contributes to the current. The product
IQE=IQEop· IQEel is the internal quantum efficiency and describes the probability that a
photon is absorbed and the excited electron contributes to the current. [34]
As mentioned in Sec. 3.1 reflection from air into the solar cell occurs, and also from the
interfaces inside the solar cell and from its back side. Collecting all these reflections in
a total reflectance R and taking the coverage factor into account the external quantum
efficiency EQE= (1−R)(1−Ac/Atot)IQE gives the probability that a photon incident on
a solar cell is absorbed and the excited electron is collected, and is seen in Fig. 3.4 as
a function of wavelength. For an ideal solar cell all the incident photons with an energy
above the band gap are utilized, thus the EQE is unity for wavelengths below λg and zero
otherwise as illustrated by the brown curve in the figure. For a real solar cell of e.g silicon
the imaginary part of the refractive index is higher for the short wavelengths and zero
for wavelengths above approximately 1100 nm [1]. Hence the material absorbs much light
for the short wavelengths, but the absorption mostly takes place in the front layer of the
cell where the light first enters. In that region the electrons are not properly collected,
implying that the EQE is low for the short wavelengths. For the long wavelengths only
a small part of the photons are absorbed in the solar cell due to its limited thickness,
implying that the EQE is also low for the long wavelengths. [11]

Figure 3.4: The external quantum efficiency describes the probability that an
incident photon is absorbed and the excited electron collected. For the short wave-
lengths most of the photons are absorbed in the front layer where the excited elec-
trons are not collected, why EQE is low in that wavelength region. For the long
wavelengths the imaginary part of the refractive index is low, thus few photons are
absorbed implying that EQE is also low for the long wavelengths. Figure from [11]
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3.2.2 The Fill Factor

In this subsection the fill factor is explained.
As explained in Sec. 3.1 the solar cell contains a pn junction, where an electric field exists
in the depletion layer. When photons are absorbed in that layer a photocurrent density
JL is produced in the reverse-bias direction. The forward-bias voltage V in the external
loop creates a current density JF in the opposite direction of JL. The net current density
in the reverse-bias direction is then

J(V ) = JL − JF = JL − J0
(
eeV/kT − 1

)
, (3.5)

where it has been assumed that the pn junction satisfies the ideal diode equation and where
J0 is a constant related to the electric properties of the materials. The J-V characteristic
is seen as the red curve in Fig. 3.5, and two limiting cases are of special interest. The short
circuit current density Jsc is the maximal current density in the loop and occurs when no
voltage is applied corresponding to a circuit with no resistance. On the other hand, if the
resistance goes to infinity the circuit is open, there is no current and the voltage is the
open circuit voltage Voc found by setting J(V ) = 0 in Eq. (3.5) and solve for V [22]

Voc = kT

e
ln
(

1 + JL
J0

)
. (3.6)

For crystalline solar cells the maximal short circuit current density is 46mA/cm2 and the
open circuit voltage is up to 720mV, while it is about 17mA/cm2 and 850mV for amorphous
solar cells. [13] and [34]

Figure 3.5: J-V characteristic for a solar cell shown as the red curve and generated
power as the blue curve. The maximal generated power is the purple area which
equals the fill factor times the lighter purple area. Figure from [11].

In both these two limiting cases no power P is generated as it is the product of current
and voltage. The power is seen as the blue curve in Fig. 3.5 and has a maximum Pmax
when the voltage is Vmp, which cannot be expressed as a simple analytic expression. The
current density corresponding to that voltage is Jmp and the maximum power is the purple
area in the figure, which is expressed by the fill factor FF defined by

FF = JmpVmp
JscVoc

, (3.7)
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expressing the ratio between the purple area and the lighter purple area, and the value of
the fill factor is typical between 0.7 and 0.8, while it equals 1 in the ideal case. [22]

With all these limiting factors explained the solar cell efficiency as function of wavelength
can be found as the utilized intensity divided by the incident intensity

ηsolar(λ) = I(λ)
Iincident(λ) = ηideal(λ)EQE(λ)FF, (3.8)

where ηideal(λ) is the efficiency from Eq. (3.2) and EQE(λ) is the wavelength dependent
external quantum efficiency from Fig. 3.4. In Sec. 7.2 and 7.2 the efficiency as a function
of wavelength will be shown for an amorphous and microcrystalline solar cell.
Like in the ideal case in Sec. 3.1.1 the total utilized intensity is found by integrating the
efficiency in Eq. (3.8) multiplied by the solar spectrum, and the solar cell efficiency is
found by dividing that intensity with the incident intensity, yielding

ηsolar = FF
∫ λg

280 F (λ)EQE(λ)λ/λg dλ∫ 2500
280 F (λ) dλ

. (3.9)

The only difference between this efficiency and the ideal one in Eq. (3.4) are the factors
EQE(λ) and FF in the numerator of Eq. (3.9), where FF does not depend on wavelength
and therefore are outside the integral. As seen in Fig. 3.4 the EQE in the ideal case is 1
in the entire interval and FF also equals 1 in the ideal case. Hence the ideal efficiency in
Eq. (3.4) is just a special case of the solar cell efficiency in Eq. (3.9).
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4. Efficiency of Thermoelectric Elements

In this chapter primarily based on [10] the basic concepts of thermoelectricity will be
introduced and an expression for the efficiency of the thermoelectric element derived. First
two thermoelectric effects will be described and the relations between them explained.
These effects are the foundations of thermoelectric refrigerators and heat pumps, where
energy is put into the system to achieve a temperature difference. The reverse effect is
found in thermoelectric generators where energy is extracted from the system when a
temperature difference is present, and such a device is used as the thermoelectric element
in the hybrid system. Lastly an expression for the efficiency of the hybrid system is
presented as a combination of the thermoelectric efficiency derived in this chapter and the
solar cell efficiency derived in the previous chapter.

4.1 Thermoelectric effects

The first thermoelectric effect was discovered by Seebeck in 1821. To demonstrate the
effect two different electric conductors are used which are assumed to be isotropic. They
are put together to form a junction in one end, while the other ends of the conductors are
connected to a galvanometer as seen in Fig. 4.1, and they are said to form a thermocouple
with the conductors as its legs. Seebeck found that heating the junction results in an

Figure 4.1: Experimental setup to demonstrate the Seebeck and Peltier effects.
To demonstrate the Seebeck effect a heat source and a galvanometer is used, while
using a thermometer and an electric current source shows the Peltier effect. Figure
from [10].

electromotive force V which is proportional to the temperature difference ∆T between the
junction and the galvanometer. The proportionality constant is the Seebeck coefficient
defined by

αAB = V

∆T , (4.1)

with unit V/K. It is positive if the electromotive force causes a current to flow through
conductor A from the hot junction to the galvanometer, i.e in clockwise direction in the
circuit. In general the Seebeck coefficient can have a strong temperature dependence, and
it is furthermore noticed that the Seebeck coefficient is only defined for a pair of materials.
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The Seebeck effect can be explained quantum mechanically where an electric current con-
sists of moving electrons having different energies in different materials. When a junction
is heated and the electrons receive thermal energy they are allowed to pass from the mate-
rial having lowest energy into the high energy material, thus giving rise to an electromotive
force. If the two materials are the same, no electromotive force will arise and αAA = 0.

The second thermoelectric effect was discovered by Peltier in 1834 and is the reverse of
the Seebeck effect. He found that when a current passes through a thermocouple it results
in a heating or cooling of the junction, depending on the direction of the current. This is
explained by a current that runs through the junction increases or decreases the energy
of the electrons, depending on the direction of the current, and this energy change results
in heating or cooling. The setup is also seen in Fig. 4.1, where an electric current source
and a thermometer is applied. Peltier found that the power, P , of heating or cooling is
proportional to the applied current I, where the proportionality constant is the Peltier
coefficient defined by

πAB = P

I
, (4.2)

with unit V . It is positive if the junction where the current runs into conductor A is heated.
Like the Seebeck coefficient, the Peltier coefficient can also depend on the temperature.
In practice doped semiconductors are used nowadays in thermoelectric generators because
they have larger Peltier coefficients than metals.
Unfortunately it is difficult to measure the Peltier coefficient. This is due to the fact that
when a current passes through the thermocouple irreversible Joule heating occurs, where
P = I2R is the power delivered to the thermocouple having resistance R, and typically
this Joule heating overshadows the Peltier effect. A way to measure the Peltier coefficient
is to measure the change in temperature for both directions of the current. Then it is
possible to observe that heating or cooling actually occurs, though overshadowed by the
Joule heating.
These two effects describe the relation between heat and electricity. About the same time
as Seebeck and Peltier, Danish H.C Ørsted discovered that current passing through an
electric conductor generates a magnetic field. Later Faraday discovered the reverse effect,
namely that the change of a magnetic field in a coil results in a current which is now
known as magnetic induction. These two discoveries began the study of electromagnetism
which was later fully described by Maxwells equations. [16] Hence the Seebeck and Peltier
effects are the thermoelectric versions of the electromagnetic laws regarding the relations
between electric and magnetic fields. To fulfil the relations between heat, electricity and
magnetism, the thermomagnetic effects was discovered by Nernst and Ettinghausen, and
describe how the thermoelectric effects are affected by the presence of a magnetic field.
However, these thermomagnetic effects will not be considered in this thesis.
In 1855 Thomson realized that the Seebeck and Peltier effects are connected and he found
the following relation between the Seebeck- and Peltier cofficients

πAB = αABT. (4.3)

From this relation it is possible to find the Peltier coefficient, which itself is difficult to
measure, based on the Seebeck coefficient which is easier to measure.
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4.2. Thermoelectric refrigerators

4.2 Thermoelectric refrigerators

In this section it is shown how the thermoelectric effects introduced in the previous section
are applied in the theory of thermoelectric refrigerators. A simple model for a refrigerator
is presented and it is shown how to maximize its cooling power. Furthermore, the figure of
merit is introduced as a measurable quantity describing the performance of a refrigerator
and a thermoelectric generator, and it is shown that a specific geometric design of the
thermocouple results in the optimal figure of merit.
The simple model considered here is based on the thermocouple in Fig. 4.2 consisting of
n- and p-doped semiconductors as the two legs, which are connected electric in series and
thermal in parallel. It only consists of one thermocouple, but it is possible to generalize
the theory to a system consisting of multiple thermocouples. The model contains the
following assumptions: The only way heat can flow between the heat source and sink is
through the thermocouple, and heat can flow freely from the thermocouple into the source
and sink, meaning that the gray shaded areas in the figure have no thermal resistance.
Hence thermal radiation and losses from heat convection are neglected. Furthermore the
two legs have constant cross sectional area Ap and An.

Figure 4.2: Thermoelectric refrigerator consisting of a thermocouple where the
two legs are n- and p-doped semiconductors. When a current is applied from + to
− heat is extracted from the heat source, thus T2 > T1. Heat only flows between
the source and the sink through the thermocouple, and the gray shaded areas are
assumed to have no thermal resistance. Figure from [10].

A current is passing through the thermocouple from + to −, which results in Peltier cooling
at the heat source and a temperature difference ∆T = T2 − T1 > 0. The power of the
Peltier cooling at the heat source is (αp − αn)IT1, which is found by combining the Eqs.
(4.2) and (4.3) where the two thermocouple legs have the Seebeck coefficients αp > 0 and
αn < 0. However, the cooling effect is opposed by two heating effects. The first is Joule
heating in the thermocouple and occurs with the power I2(Rp +Rn)/2 where Rp and Rn
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are the electric resistances of the legs. The factor of one half is because the Joule heating
splits up equally into the heat source and heat sink. The second effect is heat conduction
from the heat sink to the colder heat source, which occurs with the power (Kp +Kn)∆T
where Kp and Kn are the thermal conductances of the legs. The total cooling power is
then given by

Pcooling = (αp − αn)IT1 − I2(Rp +Rn)/2− (Kp +Kn)∆T. (4.4)

The power of electric energy to the refrigerator consists of two terms. The first is
(αp − αn)I∆T , which comes from work to overcome the thermoelectric voltage, while the
second is pure loss in the resistances, hence the total power of electric energy is given by

Pelectric = (αp − αn)I∆T + I2(Rp +Rn). (4.5)

The coefficient of performance (COP) of the refrigerator is the ratio of these two powers

Φ = Pcooling
Pelectric

= (αp − αn)IT1 − I2(Rp +Rn)/2− (Kp +Kn)∆T
(αp − αn)I∆T + I2(Rp +Rn) . (4.6)

The current I that maximizes the cooling power in Eq. (4.4) is of special interest and is
studied in the next subsection.

4.2.1 Maximal Cooling Power

In this subsection the maximal cooling power is studied in details.
It is seen in Eq. (4.4) that the cooling power is a second order polynomial in I with
negative leading coefficient. Hence the cooling power has a maximum in
Imax = (αp − αn)T1/(Rp +Rn). At this current the COP is found to be

Φ′ = Φ|I=Imax =
1
2ZT

2
1 −∆T

ZT1T2
, (4.7)

where the figure of merit has been introduced as

Z = (αp − αn)2

(Kp +Kn)(Rp +Rn) . (4.8)

The figure of merit is a measure of the goodness of the refrigerator and is measured in K−1,
but often it is convenient to treat as the dimensionless number ZT at some temperature
T which often is chosen to be room temperature.
It can be shown that ∂Φ′

∂Z = ∆T
Z2T1

> 0, hence Φ′ is a strictly increasing function of Z. Thus
to have a high COP it is preferred to have Z as high as possible, showing why exactly this
quantity is a good measure of a refrigerator. The best Φ′ is thus found letting Z →∞ in
Eq. (4.7) giving Φ′max = T1

2T2
.

From Z in Eq. (4.8) it is seen that higher absolute values of the Seebeck coefficients results
in higher Z, which is in agreement with the Seebeck and Peltier effects considered in Sec.
4.1. If αp = αn = 0, then Z = 0 and there would be no cooling power at all. Another
way of maximizing Z is to minimize the denominator (Kp +Kn)(Rp +Rn). The thermal
conductance and electric resistance are given by [12]

K = λ
A

L
, R = ρ

L

A
, (4.9)
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where A and L are the area and length of a thermocouple leg, while λ and ρ are the thermal
conductivity and electric resistivity, respectively, which are both material constants. The
product in the denominator of Z can then be written as

(Kp +Kn)(Rp +Rn) = λnρp
AnLp
ApLn

+ λpρn
ApLn
AnLp

+ λpρp + λnρn (4.10)

The last two terms in this expression are constants, but the first two terms contain A and
L which can be varied. It is seen that choosing

AnLp
ApLn

=
√
λpρn
λnρp

, (4.11)

leads to the minimal value (Kp + Kn)(Rp + Rn) =
(√

λpρp +
√
λnρn

)2, and the maximal
Z of

Z = (αp − αn)2(√
λpρp +

√
λnρn

)2 . (4.12)

This is normally the value of Z that is meant when discussing the figure of merit for a
thermoelectric refrigerator and now it only consists of different material constants. Hence
optimizing the figure of merit considers the challenge of finding or fabricating materials
with high Seebeck coeffients and small thermal conductivity and electrical resistance at
the same time. Today a thermoelectric device is considered as good if ZT = 1 at room
temperature, but the use of nano-scale micro structures such as high quality 2D quantum
superlattice with nano scale thin films based on p-Bi2Te3/Sb2Te3 having ZT = 2.4 at
room temperature has been achieved. Another option is a nanostructured material with
quantum dots based on PbSeTe where ZT = 2.0 has been found as reported in [26] from
2006. Further research in the topic will probably in near future lead to fabricated mate-
rials with even better figure of merit.
Hence in practice when building a thermocouple of two materials with known conductivi-
ties and resistivities, the dimensions of the thermocouple legs must be in agreement with
Eq. (4.11) in order to best exploit the thermocouple. A simple practical idea could be to
make the two legs of the same length, then the ratio of the areas is the only variable to
match with the optimal value.

4.3 Thermoelectric Generators

In the preceding section a refrigerator model was considered and it was shown how to gain
a cooling power when a current was applied. In this section a thermoelectric generator is
considered where the idea is to achieve an output power when a temperature difference is
present. A heat source and sink are kept at different temperatures and the Seebeck effect
generates an electromotive force, which makes it possible to gain electric energy from the
generator. The efficiency of the generator will be found which again depends on the figure
of merit.
The model of a thermoelectric generator is seen in Fig. 4.3. The upper part looks similar
to the refrigerator in Fig. 4.2, but now instead of applying a current to cool the heat
source, the thermocouple is connected to a variable load resistance RL. The heat source
is warmed by an external source like the sun or waste heat from machines, while the heat
sink is kept at a lower temperature. Notice that it is the opposite case compared to the
refrigerator.
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Figure 4.3: Thermoelectric generator consisting of a thermocouple connected to a
variable load resistance RL. The heat source is warmed, while the heat sink is kept
at a lower temperature, thus T1 > T2. Figure from [10].

Hence a temperature difference ∆T = T1−T2 > 0 is present, resulting in an electromotive
force V = (αp−αn)∆T from Eq. (4.1). The total resistance in the circuit is Rp+Rn+RL,
which results in the current and power delivered in the load given by

I = (αp − αn)∆T
Rp +Rn +RL

, (4.13)

Pload = I2RL =
(

(αp − αn)∆T
Rp +Rn +RL

)2

RL. (4.14)

It can be shown that this power is highest when RL = Rp + Rn, hence only half of the
total power is delivered to the load, the other half being delivered in the thermocouple
resistances.
To calculate the efficiency of the thermoelectric generator, it is also necessary to know the
value of the heat extracted from the heat source. As explained in Sec. 4.2 the current in
the circuit gives rise to Peltier cooling at the heat source with the power (αp − αn)IT1,
hence first heat needs to be extracted from the source in order to balance this cooling. In
addition there is thermal conduction from the hot heat source to the colder sink, which
occurs with the power (Kp +Kn)∆T . Hence the total extracted heat from the source is

Pextracted = (αp − αn)IT1 + (Kp +Kn)∆T. (4.15)

The efficiency of the thermoelectric generator is the ratio of these two powers

ηTE = Pload
Pextracted

=

(
(αp−αn)∆T
Rp+Rn+RL

)2
RL

(αp − αn)IT1 + (Kp +Kn)∆T (4.16)

The efficiency is a complicated function of the resistances, and it can be shown to be a
maximum when the ratio of the resistances is given by

M = RL
Rp +Rn

=
√

1 + ZTm, (4.17)
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where the figure of merit Z is the same as in Eq. (4.12) and Tm = (T1+T2)/2 is the average
temperature of the source and sink. When the ratio of the resistances is the optimal value
in Eq. (4.17), the efficiency of the thermoelectric element can be found to be

ηTE = ∆T
T1

M − 1
M + T2/T1

, (4.18)

where ∆T/T1 is the efficiency of a Carnot cycle, [12] and it is seen that the efficiency of
the thermoelectric generator is always less than that of a Carnot cycle. It is remarked
that if the Seebeck coefficients both were 0, then Z = 0, M = 1 and ηTE = 0, illustrating
that the Seebeck coefficients are essential in thermoelectric generators. If the value of Z
could be very high, the efficiency would reach that of the Carnot cycle which is high when
the temperature difference is large.
A great advantage of a thermoelectric generator compared to a Carnot cycle is the cm
size of the generator, and the fact that once installed correctly it can last for many years.
Thermoelectric generators have been used in many space missions where they successfully
operated for more than 20 years. [7] Different types of thermoelectric generators are found
and are typical divided into categories based on their maximal operating temperature,
which can span from below 500 K to above 900 K. [26] A Carnot cycle, on the other
hand, consists of an ideal gas in a cylinder undergoing many cycles of isothermal and
adiabatic compression and expansion. [12] The compressor to control these cycles are
typical bigger than thermoelectric generators and will break down at some time. Hence
even the Carnot cycle has better efficiency than thermoelectric generators the generators
have clear advantages.
The efficiency of a specific thermoelectric generator has been measured to 4%, and based
on recent progress in the research on thermoelectric materials, an efficiency of 8% is also
considered in [4]. Therefore these two values for the efficiency ηTE are applied in the
thesis when calculating the efficiency of the hybrid system. It is important to notice that
the thermoelectric efficiency is independent of the kind of heat that it is exposed to, as
the external heat source can be e.g the sun or waste heat from machines. In this thesis
the thermoelectric element serves as a component of the hybrid system that converts
sunlight into electricity, thus the sun is the external heat source for the thermoelectric
element. Being independent of the kind of heat, implies that its efficiency is independent
of the wavelengths of light, which is totally opposite of the solar cell efficiency studied
in the previous chapter, where its efficiency was strongly wavelength dependent. The
efficiency of the solar cell is zero for wavelengths above the band gap wavelength, but
these wavelengths can still be utilized by the thermoelectric element, which is the basic
idea behind the hybrid system.

4.4 Efficiency of the Hybrid System

With the derived efficiency of the thermoelectric element in this chapter and the solar cell
efficiency in the previous chapter, the efficiency of the hybrid system is found by combining
these and is as a function of wavelength given by

ηhybrid(λ) =


ηTE for 280 ≤ λ < λc,1

ηsolar(λ) for λc,1 ≤ λ ≤ λc,2
ηTE for λc,2 < λ ≤ 2500,

(4.19)

where ηTE is the thermoelectric efficiency chosen to 4% or 8%, ηsolar(λ) is the solar cell
efficiency from Eq. (3.8) and λc,1 and λc,2 are the lower and upper cut off wavelengths as
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illustrated in Fig. 1.3b. For an ideal solar cell the optimal transmittance is seen in Fig.
1.3a and has only one cut off wavelength at 900 nm, and the first case of the efficiency
in Eq. (4.19) disappears, and the efficiency of the hybrid system is the solar efficiency
for wavelengths below 900 nm and the thermoelectric efficiency for wavelengths above 900
nm. The overall efficiency of the hybrid system is found by integrating the efficiency in
Eq. (4.19) weighted with the solar spectrum and the transmittance or reflectance, yielding
[4]

ηhybrid =
∫ λc,1

280 ηTEF (λ)T (λ) dλ+
∫ λc,2
λc,1

ηsolar(λ)F (λ)R(λ) dλ+
∫ 2500
λc,2

ηTEF (λ)T (λ) dλ∫ 2500
280 F (λ) dλ

.

(4.20)

Here R(λ) is the reflectance and T (λ) is the transmittance for the beamsplitter, and in
calculating the efficiency in Eq. (4.20) it is utilized that the reflected light from the beam-
splitter is directed onto the solar cell and the transmitted light onto the thermoelectric
element, which is the case for a high-wavelength-pass beamsplitter. For an ideal solar cell
the first term in the numerator disappears as only one cut off wavelength exists. If a low-
wavelength-pass beamsplitter is used R and T has to be interchanged. This efficiency has
to be maximized and the next chapter introduces the optimization problem and presents
three optimization methods to maximize the efficiency.
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5. The Optimization Problem

This chapter considers the largest challenge in the thesis, namely that of optimizing the
beamsplitter resulting in the highest possible efficiency of the hybrid system. The effi-
ciency to be optimized is given in Eq. (4.20) and is for a specific thermoelectric element
and specific solar cell only a function of the transmittance T and reflectance R for the
beamsplitter. These two quantities are calculated for some thicknesses and refractive in-
dices for all the layers using one of the transfer matrix methods, and keeping the refractive
indices constant implying that the transmittance and reflectance only depend on all the
layer thicknesses. Putting these things together the efficiency is found as a function of all
the layer thicknesses, hence the function to be optimized is a real-valued function mapping
from N positive numbers into a positive number. Denoting V = R≥0 × · · · × R≥0 as the
N -dimensional domain, the function is given by f : V → R≥0. The function to be opti-
mized in this thesis maps from N thicknesses with units of nm into a positive real number,
but to avoid confusion about the units all thicknesses are chosen to be dimensionless dur-
ing the optimization. In general the function expression is extremely complicated, as the
product of several hundreds matrices has to be calculated in order to give the efficiency,
and thereby it is impossible to solve ~∇f = ~0 analytically. Instead the methods presented
in this chapter are iterative algorithms generating convergent sequences.
Any solution of an optimization problem begins with an initial guess, and in the next
section two different methods of choosing it are presented. Afterwards three different op-
timization methods are presented and in chapter 6 they are implemented in Matlab and
used to solve the optimization problem.

5.1 The Initial Guess

In this subsection two different methods of choosing the initial guess are briefly intro-
duced. The focus here is on the theory behind the guesses while Sec. 6.2.1 considers the
practical implementation of the guesses in Matlab. An ideal solar cell is considered when
constructing the initial guess, and the method is easily generalized to handle real solar
cells which will be the topic from Sec. 7.2 and forward.
As explained in Sec. 2.7 band gaps occur at wavelengths where the transmittance in zero.
Given some thicknesses, refractive indices and incident angle one or more band gaps occur
in some wavelength interval as seen in Fig. 2.12. Here a quarter wave structure is consid-
ered resulting in relative small band gaps compared to the ideal band gap from 280-900nm
as seen in Fig. 1.3a. The idea in constructing such a wide band gap is to use quarter
wave layers given different band gaps as building blocks, and successively put these blocks
together in a composite structure. [31] A block is understood as a number of identical
unit cells consisting of the materials 1 and 2 as seen in Fig. 2.6. A composite structure
of M blocks is illustrated in Fig. 5.1 where each block consists of 3 unit cells with light
incident from left. The thicknesses of the two front layers of material 2 and 3 are taken
to be quarter wave layers for the wavelength 280nm, while the thicknesses of the blocks
increase through the structure due to the increase in desired band gap wavelength. The
two methods of choosing the initial guess are closely related and are based on quarter wave
structures as explained in Sec. 2.3.1. To have a band gap at a certain design wavelength
λ0 the thicknesses must be ai = λ0/(4ni cos θi) from Eq. (2.30) with i = {1, 2}, where θi
is the angle of propagation in material i with refractive index ni.
In both methods the idea is to construct the blocks in such a way that they give rise to a
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Figure 5.1: Illustration of a block structure with M blocks and 3 unit cells in each
block, where light is incident from left. The thicknesses of the two front layers of
material 2 and 3 are taken to be quarter wave layers for the wavelength 280nm, and
the thicknesses of the blocks increase through the structure.

band gap in different wavelength intervals. The idea of the first method is to calculate the
thicknesses of the individual blocks creating some individual band gaps, and to compose
these blocks to form the structure in Fig. 5.1. For a given incident angle the band gap
sizes of the individuals blocks are investigated to find out how many blocks are needed,
and if there should be a small overlap between the blocks to avoid holes in the total band
gap. For the second method of choosing the initial guess the idea is to construct quarter
wave layers only for for first and last block, giving band gaps around 280nm and 900nm,
and to use these thicknesses to calculate the thicknesses of the intermediate blocks using
linear interpolation. In Sec. 6.2.1 it is shown how the two guesses are implemented and
that they give almost the same result.

5.2 The Optimization Methods

In this section three different optimization methods are presented and studied in detail,
where the focus is on minimizing a function, where it is utilized that a function f is
maximized if −f is minimized. [3] The function to be minimized if f = −ηhybrid from
Eq. (4.20) and the minimum of this function gives the maximal efficiency of the hybrid
system. All three optimization methods only find local minima as it is almost impossible
to guarantee that a found minimum of such a complicated function as considered here
should be the global minimum.
The first two methods are based on the gradient and uses different ways of choosing
the step length and the last method is a simplex derivative-free method. The methods
have different stopping criteria and in order to compare them a common criteria must be
applied. In chapter 6 the methods are compared based on their performance and time
consumption.

5.2.1 The Gradient Methods

In this subsection the gradient methods are presented.
In general the iteration formula for the optimization algorithms are given by

~xk+1 = ~xk + µk∆~xk, (5.1)

where ~xk and ~xk+1 are in the domain of f , ∆~xk is the descent direction, k is the iteration
number and µk is the step length. The general steepest descent method is given by
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Algorithm 5.1 Generel steepest descent method ([3])
Given an initial guess ~x ∈ V
Repeat
(i). Determine a descent direction ∆~x.
(ii). Line search. Choose a step length µ > 0.
(iii). Update. ~x := ~x+ µ∆~x.
Until a stopping criterion is satisfied.

In the algorithm there are two things to be determined in every iteration: A descent
direction and a step length. The descent direction is determined to be minus the gradient,
as the function decreases the most in that direction, hence ∆~xk = −~∇f(~xk). A minimum
is found when the function becomes appropriately flat, hence the stopping criteria
‖ ~∇f(~x) ‖2< ε̃ is applied, where ‖ · ‖2 is the Euclidean norm and ε̃ > 0 is some threshold
value. The line search can be done in two different ways, exact and inexact, which are
presented individually in the next two subsections. [3]

Exact Line Search

Once the descent direction is determined, the problem of determining the step length
reduces to a minimization with respect to µ of a one-dimensional function along the
descent direction. Hence the optimal step length is given by

µk = min
µ>0

f(~xk − µ~∇f(~xk)). (5.2)

In some cases this can be solved analytically. When this is not the case the solution of
Eq. (5.2) becomes an optimization problem in itself to be solved with numerical methods
which can be time consuming. Exact line search is therefore preferable in situations where
the calculation of the gradient is hard and a solution of Eq. (5.2) is easier. [3]
In this thesis the function to be optimized depends on the transmittance and reflectance
calculated by one of the transfer matrix methods. The quantities are in both cases found by
calculating the products of more than hundred 2x2 matrices. It is actually possible to write
down an explicit expression for the transmittance and reflectance but it gets extremely
complicated when many matrices are present. Instead the function to be optimized is
calculated numerically and the same applies for the gradient. The first partial derivative
is given by

∂f(~xk)
∂xk1

= lim
∆x→0

f(xk1 + ∆x, xk2, · · · , xkN )− f(xk1, xk2, · · · , xkN )
∆x , (5.3)

and similar for the remaining N − 1 parameters where xki is the i’th component of the
vector ~xk. Calculating partial derivatives in this way a term like f(xk1 +∆x, xk2, · · · , xkN )
has to be evaluated every time. Such an evaluation in itself calculates the product of all
the 2x2 matrices and is thus said to be a function call. Hence one partial derivative
uses one function call, and it therefore costs N function calls to calculate the gradient
in one point. When the gradient is calculated the step length is found using Eq. (5.2)
where a number of steps, Nstep, is chosen. Now, µ = {1, 2, · · · , Nstep} is chosen and
f(~xk −µ~∇f(~xk)) calculated, giving Nstep function values. The minimum of these is found
and the corresponding µ is chosen as the step length. If µ = Nstep is found it could
indicate that the function is still decreasing in the point ~xk−Nstep

~∇f(~xk) in the direction
of −~∇f(~xk), and it is continued to search for a smaller minimum in that direction. It
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is chosen to set µ = {Nstep + 1, Nstep + 2, · · · , 2Nstep} and repeat the procedure until a
minimum is found that is not the last point in the given iteration. Once such a minimum
is found the point ~xk+1 is calculated using Eq. (5.1), and the algorithm is repeated.
This way of choosing the step length does not find µ in Eq. (5.2) precisely, because a
minimum could occur between two integral values of µ. A way of making it more precise
is to apply a finer resolution on µ resulting in more function calls. But if the initial guess
is far from the minimum it takes a long time getting close to that, and a small step length
results in many function calls on the way towards the minimum. In such a case, it would
be convenient to choose a rougher resolution on µ in order to get larger step lengths. [24]
When implementing the algorithm it works fine with a resolution of 1 and Nstep = 10, and
other choices have therefore not been examined.
A theorem gives that the gradient method converges to a minimum if the function is
continuously differentiable on a bounded sublevel set S = {~x ∈ V : f(~x) ≤ f(~x0)}, where
~x0 ∈ V is the initial guess. The sequence is given by Eq. (5.1) where the step length µk is
determined by exact line search. A proof of the theorem can be found in [9]. Even without
an analytic expression for the function f it is assumed to be continuously differentiable,
and the theorem can be applied. In chapter 6 the performance of the method and its time
consumption will be investigated and compared with the other two methods.

Inexact Line Search

An inexact line search method finds a step length that is sufficient under certain conditions.
The Armijo condition states that the function must decrease sufficiently when taking a
step in the direction of −~∇f(~xk), and is formulated as

f(~xk − µk ~∇f(~xk)) ≤ f(~xk)− c1µk ‖ ~∇f(~xk)) ‖2, (5.4)

where c1 ∈ (0, 1) is a constant to choose. The one-dimensional function to minimize along
the search direction is defined as ϕ(µk) = f(~xk −µk ~∇f(~xk)), and the Armijo condition in
Eq. (5.4) can be written

ϕ(µk) ≤ ϕ(0) + c1µkϕ
′(0). (5.5)

Denoting the right hand side of Eq. (5.5) by l(µk) the Armijo condition is illustrated
in Fig. 5.2. For the function ϕ(µk) to decrease sufficiently the step length µk must be
chosen such that ϕ(µk) is under the straight line l(µk), which in the figure happens in the
two acceptable regions. The slope of the line is negative, given by c1ϕ

′(0) , thus scaling
linearly with the chosen value c1. In practice, often a small value of c1 is chosen in order
to obtain a flat negative slope of l(µk). The Armijo condition is always satisfied for very
small values of µk, thus another condition is imposed to guarantee that the found step
length is not too short. The curvature condition states that

~∇f(~xk − µk ~∇f(~xk))T ~∇f(~xk) ≤ c2 ‖ ~∇f(~xk)) ‖2, (5.6)

where c2 ∈ (c1, 1) is another constant to choose. Applying ϕ(µk) the condition in Eq.
(5.6) can be written as

ϕ′(µk) ≥ c2ϕ
′(0). (5.7)

The conditions in Eq. (5.5) and (5.7) are collectively known as the Wolfe conditions. The
condition in Eq. (5.7) states that the slope of ϕ(µk) is a constant times larger than the
slope of ϕ(0), and is illustrated in Fig. 5.3. For a step length to be accepted both Wolfe
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Figure 5.2: The Armijo condition is satisfied when a sufficient decrease in ϕ(µk)
is achieved which happens in the acceptable regions. Figure from [24].

Figure 5.3: The curvature condition is satisfied when the slope of ϕ(µk) is a
constant times larger than the slope of ϕ(0) which happens in the two acceptable
regions. Figure from [24].

conditions must be satisfied, hence it must be in a region that is acceptable in Fig. 5.2
and 5.3 at the same time.
Another way of ensuring that the step length is not too small is by backtracking line
search. A step length µstart > 0 and α, β ∈ (0, 1) are chosen, and it is checked whether
the Armijo condition in Eq. (5.5) is satisfied with c1 = α. If it is satisfied µstart is an
acceptable step length. If not, the step length is reduced by multiplying by β and it is
checked if the condition is satisfied with the new shorter step length, and the procedure
is repeated until an acceptable step length is found. With this method the step length is
not too short, as the acceptable step length is µk/β where µk was violating the Armijo
condition. In practice it is an idea to choose µstart relatively long to avoid a too short step
length, and if µstart was chosen wrong it is reduced by backtracking. The backtracking
line search is described in Algorithm 5.2. [24]
A theorem states that backtracking line search converges when the function f : V → R is
bounded below and continuously differentiable, and where the step length is found using
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Algorithm 5.2 Backtracking line search ([24])
Choose µstart > 0, α ∈ (0, 1) og β ∈ (0, 1), and let µ := µstart.
while f(~xk − µ~∇f(~xk))) > f(~xk)− αµ ‖ ~∇f(~xk)) ‖2 do

µ := βµ
end while
µk := µ

backtracking line search. The proof of the theorem can be found in [29].
Both these methods to choose the step length uses the gradient as an important part of
the iterations, and it costs N function calls to calculate the gradient in every point. The
line search can also cost several function calls, thus many function calls are needed when
using a gradient method to solve an optimization problem. Another type of optimization
methods that does not use the gradient is the simplex algorithms and such an algorithm
is studied in the next subsection.

5.2.2 The Nelder-Mead Method

In this subsection based on [20] the Nelder-Mead optimization method is presented where
the focus is to explain the method in words while the original source code for the algorithm
can be found in [21] and a modified version in the file fminsearch2 from [30]. First the
method is explained without any boundaries for the variables, and afterwards it is showed
how to transform a bounded problem into an unbounded problem. Lastly the convergence
of the method is analysed.
The basic idea in the Nelder-Mead method is very different from the gradient methods
studied in the previous subsection. It is a derivative-free simplex method using direct
search that it effective in optimizing a function of several variables. To keep it as simple
as possible, a function of two variables will be considered and the method explained based
on this while the concept is generalizable to several variables.
A simplex in two dimensions is a triangle and the idea behind the Nelder-Mead simplex
algorithm is to compute the function values in every vertex of the triangle. The vertex
with the highest value is rejected and replaced by another point, thus constructing a new
triangle. The algorithm generates a sequence of triangles where the function values in the
vertices gets smaller and smaller. The size of the triangle is possibly reduced until the
coordinates of the minimum is found when some stopping criterion is satisfied.
Like the other optimization methods the algorithm needs an initial guess ~x0, and it begins
by constructing an initial triangle by adding 5% of both components x0(i) to ~x0, thus
constructing two new points. If a component of ~x0 is zero, the component of the new
point is by default set to 0.00025. These two points together with ~x0 forms the initial
triangle, and similar is done when several variables are present, constructing a simplex
with N + 1 vertices in N−dimensional space. The function values are evaluated in each
vertex of the initial triangle and the vertices are sorted according to their function values.
To keep the notation simple the vertices are called B, G and W to denote the best, good
and worst vertex. To find the minimum several processes are needed, which now will be
examined.
The processes apply the midpoint of the good side, i.e. the line segment joining B and G
and the midpoint is called M and given by M = (B + G)/2 as the average of B and G,
and the distance from M to W is called d as illustrated in Fig. 5.4A). As the function
decreases on the line from W to B and from W to G, it is investigated whether the
function takes on smaller values on the other side of the line BG. A reflection point R is
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constructed by reflecting the triangle BGW in the line BG, thus R is a distance d from
BG, see Fig. 5.4A). In vector notation the coordinates of R are given by

R = M + (M − W ) = 2M − W . (5.8)

The function value in R is calculated and compared to those in B, G and W . If R is a

Figure 5.4: Illustration of the four processes in the Nelder-Mead method where
D) is a shrinkage shown for an inside contraction. In all cases the initial triangle is
the most gray, while the new triangle is lighter gray. Figure from [20].

better point than B, i.e f(R) < f(B), it could indicate that the function decreases further
in the direction of M − R, and an expansion point E is constructed by extending the
line segment RW with the distance d, see Fig. 5.4B). In vector notation the coordinates
of E are given by

E = R + (R − M) = 2R − M . (5.9)

The function value is calculated in E and if f(E) < f(R) the point E is accepted and
replaces R in the triangle, which now becomes BGE. If f(E) ≥ f(R) the point E is
rejected and R accepted and the triangle becomes BGR.
If R was not better than B it could still be better than G, and this case is considered
now. If R is better than G, the point R is accepted and the triangle becomes BGR. If
R is not better than G the triangle is reduced by performing a contraction or a shrinkage.
If f(R) ≥ f(W ) the contraction is made in the direction of W , which is called an inside
contraction constructing the point

C1 = M + W −M

2 (5.10)

see Fig. 5.4C). If C1 is better than W the point C1 is accepted and the triangle becomes
BGC1. If C1 is not better than W the triangle is shrunk towards B by replacing G by
M and W by S, which is the midpoint of the line BW , see in Fig. 5.4D) On the other
hand, if f(R) < f(W ), the contraction is made in the direction of R, which is called an
outside contraction giving the point

C2 = M + R − M

2 . (5.11)

59



Chapter 5. The Optimization Problem

Like for the inside contraction the point C2 is accepted if and only if it is better than R.
If this is not the case the triangle is again shrunk towards B replacing G by M and R
by S, which now is the midpoint of the line BR. A common term for the two contraction
points is called C.
A great advantage of the Nelder-Mead method is the fact that it does not use any derivative
of the function. As explained in Sec. 5.2.1 the calculation of the gradient costs N function
calls, thus very expensive. The Nelder-Mead uses fewer function calls as it only calls
the function when necessary, for example a reflection only costs one function call, an
expansion costs two, a contraction costs two but a shrink costs N −1 function calls, but is
also very rare to occur. [14] In Sec. 6.4.3 it will be shown that the Nelder-Mead method
is much faster than the gradient methods. In each of the cases in Fig. 5.4 a new triangle
is constructed and the procedure is repeated until a stopping criteria is met which is
considered in the following subsection. [20] and [21].

To exemplify the algorithm, consider the function f(x, y) = x2− 4x+ y2− y− xy and the
three starting vertices: V1 = (0, 0), V2 = (1.2, 0) and V3 = (0, 0.8). It is found that V2 is
best, V3 is good and V1 is worst. The triangle is first expanded, and the 10 first iterations
are seen in Fig. 5.5 where the method converges to the minimum in (3,2). [20]

Figure 5.5: Example of optimizing the function f(x, y) = x2−4x+y2−y−xy using
the Nelder-Mead method where the initial triangle consists of the points V1 = (0, 0),
V2 = (1.2, 0) and V3 = (0, 0.8). After 10 iterations the minimum is found in (3,2).
Figure from [20].

The Nelder-Mead Method with Bounds

Until now it has been assumed that there are no boundaries for any of the variables in
the function, implying that negative layer thicknesses are allowed. Of course this has no
physical meaning and this subsection based on [5] introduces a method to transform a
bounded problem into an unbounded problem, which can be solved by the Nelder-Mead
method.
Four different types of constraints exist for a bounded problem: The variables can have a
lower bound, upper bound, dual bounds or some variables can be fixed. In this thesis the
optimization problem finds the optimal thicknesses of all the layers in the beamsplitter, and
all these thicknesses must be non-negative with no upper bounds. Hence all the variables
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are bounded below by the N -dimensional zero vector, denoted LB. The transformation
is quadratic for a single bound and a sine transformation for dual bounds, and only the
quadratic transformation will be examined in this thesis.
First the initial values x0(i) are transformed into their unconstrained substitutes, denoted
by tilded coordinates, by the transformation

x̃0(i) =
{

0 , x0(i) ≤ LB(i)√
x0(i)− LB(i) , x0(i) > LB(i)

, for i = 1, · · · , N . (5.12)

When LB(i) = 0 for all i = 1 · · · , N and all the initial values x0(i) are positive the
transformation in Eq. (5.12) simplifies to x̃0(i) =

√
x0(i).

The Nelder-Mead method is now applied with ~̃x0 as the initial guess. The function values
for every iteration are calculated using the original coordinates, and the corresponding
tilded coordinates of the final point, ~̃xfinal is transformed into the original coordinates by
the inverse transformation, thus xfinal(i) = x̃final(i)2. Notice that some components of
~̃xfinal can be negative, but the inverse transformation secures that all components of ~xfinal
are non-negative.
From now on the Nelder-Mead method always refers to the bounded Nelder-Mead method,
where the optimization problem is solved by transforming it into an unbounded problem,
that is solved and transformed back again. The original Matlab code for the transformation
is found in [5], and the code applied in this thesis is found in the file fminsearchbnd2
from [30].

Convergence of the Nelder-Mead Algorithm

In the Nelder-Mead source code from Matlab, the algorithm continues until two conditions
are satisfied at the same time. The first condition is that

max (‖ V2 − V1 ‖∞, ‖ V3 − V1 ‖∞, · · · ‖ VN+1 − V1 ‖∞) ≤ TolX, (5.13)

where TolX is a specified threshold value and ‖ · ‖∞ is the infinity norm which for a vector
~x = (x1, x2, · · · , xN ) is defined as [3]

‖ ~x ‖∞= max (|x1|, |x2|, · · · , |xN |) . (5.14)

In Eq. (5.13) V1 is the current best point, V2 is the next best point and so on. Hence
the criterion demands that the distance between the points must be smaller than some
tolerance value, which by default in Matlab is TolX=10−4. The second criteria is that the
belonging function values at the vertices must also be smaller than some threshold value,
which also by default in Matlab is TolFun=10−4, and the criteria is formulated as

max (|f(V1)− f(V2)|, |f(V1)− f(V3)|, · · · , |f(V1)− f(VN+1)|) ≤ TolFun. (5.15)

The points are already sorted before testing for convergence, hence it should be sufficient
to test if |f(V1) − f(VN+1)| ≤ TolFun instead of testing Eq. (5.15) as f(VN+1) is the
worst point.
In [14] the convergence properties of the Nelder-Mead method is discussed. The method is
widely used in many areas of science, but no general theoretical results about its conver-
gence have actually been proved except for a strictly convex function in 1 and 2 dimensions.
But if f : V → R is bounded below, then the sequence of function values belonging to the
best vertex in every iteration is convergent even for non-convex functions. Furthermore
at every non-shrink step in the algorithm, the function values belonging to any vertex
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decreases for every iteration, see Lemma 3.3 in [14]. The function to be optimized in this
thesis is of hundreds of variables and it is very unlikely to be convex. Hence to ensure
convergence of the Nelder-Mead method the conditions in Eq. (5.13) and Eq. (5.15) are
rejected, as the algorithm is found to be non-convergent when applying these stopping
criteria. Denoting the function value in the best point in the k’th iteration by f(V1

k), the
applied stopping criteria is

|f(V1
k+1)− f(V1

k)| < ε, (5.16)

where ε is a threshold value similar to ε̃ used in the gradient methods. The iteration
number k is only updated when a new best point is found which can take hundreds of
processes to achieve, especially in the iteration from the best point in the initial simplex
to a new best point. Hence the k in the Nelder-Mead method is not comparable to the k
in the gradient methods, and in Sec. 6.4.3 a way to compare the methods are found.
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With the necessary theory regarding the hybrid system derived in chapter 2 to 4 and
the optimization problem described in the previous chapter this chapter deals with the
implementation of the theory.
Before implementing the optimization methods it is important to verify the two transfer
matrix methods derived in chapter 2, and in Sec. 6.1 it is shown that the two methods
are equivalent. As mentioned in chapter 5 an initial guess is needed in order to solve the
optimization problem and Sec. 6.2.1 serves as the implementation of the initial guess.
Then the three optimization methods are implemented and it is shown how to compare
them based on their performance and time consumption.
All the calculations in this chapter are performed for a high-wavelength-pass beamsplitter
and an ideal solar while the results for a microcrystalline and amorphous solar cell are
found in Sec. 7.2 and 7.3, and the results for a low-wavelength-pass beamsplitter are found
in Sec. 7.5.

6.1 Applied Data and Verification of the Transfer Matrix Methods

In this section the applied data for the refractive indices is presented and it is verified that
the two transfer matrix methods are equivalent.
The applied materials for constructing the beamsplitter is silicon nitride, Si3N4, silicon
dioxide SiO2 and magnesium fluoride, MgF2, deposited on BK7 glass. Hence the refractive
indices of these materials must be specified. All the data is from [18] except the real part
of glass which is from [1]. The refractive indices are found for different wavelengths and
some of them are below 280nm which is the lowest wavelength in the solar spectrum in
Fig. 3.2. The data is therefore interpolated to the same wavelengths in the interval 280-
2500nm using linear interpolation. The real parts of the refractive indices all decreases
with the wavelength as shown in Fig. 6.1a and the imaginary parts are shown in Fig. 6.1b.
Both SiO2 and glass have no imaginary part and Si3N4 only has an imaginary part for

(a) Real part of the refractive indices. (b) Imaginary part of the refractive indices.

Figure 6.1: Refractive indices for the materials applied in the beamsplitter. The
red points in the figure at right are constructed using the slope from 1000-2000 nm.

wavelengths below 300nm which is chosen not to include in Fig. 6.1b. The imaginary part
of MgF2 increases almost linear from 500nm, but the data from [18] only goes to 2000nm
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where it is still increasing. If it is assumed that it increases with the same slope in the
interval 2000-2500nm the red points in Fig. 6.1b give the imaginary refractive index in
that interval. If the beamsplitter optimized in this thesis is to be fabricated, an idea is to
measure the refractive indices of all the applied materials in the range 280-2500nm and
apply these values as the data.
With the relevant data for the refractive indices applied to construct the beamsplitter given
in Fig. 6.1, the two transfer matrix methods can be used to calculate the transmittance,
reflectance, and absorbance for any structure. The two methods have been implemented
independently of each other and their results are found to be the same. This applies for
both polarizations of the light, for arbitrarily incident angles and for complex refractive
indices.
As explained in Sec. 2.4.1 reciprocity causes that the transmittance through the beam-
splitter is independent of its orientation while the reflectance and absorbance are not. By
reversing the structure and calculating the transmittance, reflectance, and absorbance it
is found that the reciprocity principle is satisfied for a simple structure consisting of five
unit cells. In Sec. 7.4 it is verified that the reciprocity principle is also satisfied for the
optimized beamsplitter consisting of more than 100 layers and the optimal orientation of
the beamsplitter is found.

6.2 Implementation of the Transfer Matrix Method

With the transfer matrix methods verified in the previous section this section shows how
the functions are implemented in Matlab.
Many different input parameters are needed in the program, like the wavelength in-
terval and the refractive indices of all the materials, and in addition some parameters
determine which part of the program to run. transfer_method determines which of
the transfer methods to use and accepts the inputs ’Admittance’ or ’E field’ while
optimize_method determines which optimization method to use and accept the inputs
’Exact’, ’Backtracking’ or ’Nelder-Mead’. The parameter solar_cell specifies which
solar cell type to use and accepts the inputs ’Ideal’, ’Microcrystalline’ or ’Amorphous’,
and at last the parameter Beamsplitter determines which kind of beamsplitter to use and
accepts the inputs ’High-pass’ or ’Low-pass’. All these parameters are used when run-
ning the program, and the idea in the implementation is to make the code as general as
possible, and to do that it is convenient to store all these parameters in a data cell

data=cell(1,27), (6.1)

with 27 different parameters in total which can be numbers, vectors or strings.
The transmittance, reflectance, and absorbance are calculated using one of the two transfer
matrix methods, and depend on the thicknesses of all the layers, their refractive indices
and the incident angle. All these parameters are stored in data, thus it is convenient to
give the whole data as input instead of just a sub cell containing the relevant data. The
following function is written in Matlab in order to calculate the transmittance, reflectance,
and absorbance and can be found in [30].

function [Trans,Ref,Abs] = trans_ref_function(A,data), (6.2)

where A is a vector containing the thicknesses of all the materials in the structure, and
the function starts by extracting only the relevant parameters from data. The function
calculates the transmittance Trans and reflectance Ref from Eq. (2.43) if the electric
field transfer matrix method is applied and from Eq. (2.68) and (2.75) if the admittance
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method is applied and in both cases the absorbance Abs is calculated as Abs=1-Trans-Ref
as it is faster than using Eq. (2.76). The transmittance, reflectance, and absorbance all
depend on the polarization, hence the trans_ref_function could also take polarization
as an input. The radiance from the sun consists of many different polarizations but can
as a good approximation be described as the average of s- and p polarization. [32] The
trans_ref_function therefore calculates the transmittance, reflectance, and absorbance
for both polarizations and returns their averages.
The two transfer matrix methods are equivalent, thus the result is independent of
transfer_method. To examine whether one of the methods is computationally faster
than the other, the two methods are tested on the same code and their time consumption
compared. It is found that the admittance method is approximately 1.5 times faster than
the electric field method, which must be due to the fact that only half as many matrices
have to be multiplied in this method, and this method is therefore applied from now on.

6.2.1 Implementation of the Initial Guess

Applying the trans_ref_function to calculate the transmittance, the purpose is to find
the thicknesses that give a transmittance as close as possible to the ideal transmittance in
Fig. 1.3a. The initial guess is found by applying the ideas explained in Sec. 5.1 and this
subsection serves as the implementation of these ideas.
The following thicknesses are all calculated for an incident angle of 45◦. From the refractive
indices of the materials in Fig. 6.1a the angle of propagation θi in material i is calculated
using Snell’s law and are found to be θ1 = 19◦, θ2 = 28◦ and θ2 = 31◦ when the wavelength
is 280 nm. It has been chosen to let Si3N4 be material 1, SiO2 be material 2 and MgF2
be material 3 which is the case throughout the thesis. In the first method of choosing the
initial guess from Sec. 5.1, the first block must have a band gap around 280nm and from
the refractive indices and propagation angles the thicknesses a1 = 33nm and a2 = 53nm
are found using Eq. (2.30). Here the real parts of the refractive indices have been applied
in order to get real thicknesses. With these thicknesses the band gap size is found to
be approximately 65nm, hence the next block is constructed to have a band gap around
345nm, giving the thicknesses a1 = 44nm and a2 = 66nm, where the propagation angles
have been calculated for the new wavelength. This process is repeated until a band gap
around 900nm is found giving 10 blocks in total, where the thicknesses of the last block
are a1 = 116nm and a2 = 169nm. The front layer of MgF2 is constructed to be a quarter
wave layer for the wavelength 280nm, giving the thickness 58nm, and the next outer layer
of SiO2 is taken to be of same thickness as a2 in the first block, e.i 53nm.
The next issue is to determine the number of unit cells in the individual blocks. To make
the initial guess as simple as possible, it is chosen that every block consists of the same
number of unit cells. If there are too few unit cells in the blocks, the band gap is not
complete as non-negligible transmittance occurs below 900nm, and the cut off between
transmittance and reflectance becomes too smooth. On the other hand, a large number
of unit cells in the blocks does not improve the initial guess but adds unnecessary extra
parameters and it is chosen here to let 8 unit cells in the blocks be optimal. In Sec.
7.1.1 the total efficiency is studied as a function of number of layers, and considers other
numbers of unit cells in each block. Hence the structure considered here consists of 10
blocks with 8 unit cells in each, and with the extra front layers of SiO2 and MgF2 it gives
162 layers in total. The thicknesses of all the blocks are seen in Table 6.1.

The transmittance, reflectance, and absorbance are calculated for this structure and are
seen in Fig. 6.2, where it is remembered that the quantities are the average of s- and
p polarization. The band gap is almost complete as the transmittance is very small
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Block number Thickness of Si3N4 in nm Thickness of SiO2 in nm
1 33 53
2 44 66
3 53 79
4 62 92
5 71 105
6 80 118
7 89 131
8 98 143
9 107 156
10 116 169

Table 6.1: Thicknesses of the materials for the first method of choosing the initial
guess. All the blocks consist of 8 unit cells.

Figure 6.2: transmittance, reflectance, and absorbance for the initial guess con-
sisting of 162 layers.

below 900nm. The cut off is very close to 900nm but above this value large oscillations
in transmittance and reflectance occur, which is caused by multiple reflections in the
1mm glass layer used as the substrate. In the figure the transmittance, reflectance, and
absorbance are calculated at every integer wavelength in the interval 280-2500nm, but this
resolution seems not good enough above 900nm, as all the oscillations are not caught. A
way to deal with this problem is to apply a smaller sampling wavelength of e.g 0.1nm, but
this would lead to 10 times more calculations, thus slowing the program a lot. Another
way to deal with the problem is to apply a thinner layer of glass in the calculations.
It is found that a glass thickness of 2.5µm, the same as the largest wavelength, gives
rise to sinusoidal oscillations caught by the sampling wavelength of 1nm. This thickness
is therefore applied in the following figures, where the only difference is the amount of
oscillations above 900nm. When fabricating the beamsplitter the structure really has to
be deposited on 1mm glass, so the oscillations in Fig. 6.2 describe the physics of the
oscillations correctly, and it is important to remember that the thinner glass layer is only
applied to lower the number of computations in the program. But when measuring the
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transmittance in a spectrometer, maybe it is not possible to catch all the oscillations
anyway as some spectrometers give the transmittance as an average in some interval, and
the measured transmittance becomes more smooth without the large oscillations.
Furthermore, it is noticed that absorbance is present in the entire wavelength interval from
280-2500nm due to the non-zero imaginary part of the refractive index of MgF2 as seen
in Fig. 6.1b, but its values are small compared to the transmittance and reflectance.

To see the difference between s- and p polarization, the transmittance, reflectance, and
absorbance are calculated for both polarizations and are seen in Fig. 6.3. The two figures
have in common that band gaps exist for wavelengths below 900 nm, but the band gap
is complete for s polarization while non-negligible transmittance occurs below 600 nm
for p polarization. However, at wavelengths above 900 nm huge oscillations occur for
s polarization while the oscillations are much smaller for p polarization. The Brewster
angle from Eq. (2.18) for the interface between Si3N4 and SiO2 is 36◦ and in Si3N4
the propagating angle for wavelengths above 900 nm is 20◦, thus relatively close to the
Brewster angle giving rise to the small reflectance and small oscillations.
Even it is possible to split the transmittance, reflectance, and absorbance into s- and
p polarizations, all further figures will consider the average of the two polarizations as
sunlight consists of a mixture of these two.

(a) transmittance, reflectance, and absorbance
for s polarization.

(b) transmittance, reflectance, and absorbance
for p polarization.

Figure 6.3: transmittance, reflectance, and absorbance for s- and p polarization
for the initial guess consisting of 162 layers.

For the second method of choosing the initial guess from Sec. 5.1 it is found that the
optimal structure again results in 10 blocks with 8 unit cells in each. The thicknesses of
the blocks are seen in Table 6.2, and are almost the same as for the first initial guess in
Table 6.1. By comparing the tables it is found that the maximal difference in thickness
is about 2nm occurring in block 2 for Si3N4. When the transmittance, reflectance, and
absorbance are calculated with this initial guess, they are almost the same as in Fig. 6.2.
In Sec. 6.4.2 it will be investigated whether the optimization converges to the same point
given the two initial guesses, and in Sec. 6.4.3 if one of the methods is faster than the
other.

The method of choosing the initial guess is written as a function in Matlab and depends
on the types of beamsplitter, solar cell, thermoelectric efficiency and number of unit cells
in each block. All these parameters are incorporated in data and the function is written
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Block number Thickness of Si3N4 in nm Thickness of SiO2 in nm
1 33 53
2 42 66
3 52 79
4 61 92
5 70 105
6 79 118
7 88 131
8 98 144
9 107 157
10 116 170

Table 6.2: Thicknesses of the materials for the second method of choosing the
initial guess. All the blocks consist of 8 unit cells.

as

function [Astart,N,lambda_step,lambda_cut,eff] = initial_guess_function(data),
(6.3)

where Astart is the initial guess stored in a vector, N=length(Astart) is the number of
layers, lambda_step is the band gap size for the individual blocks, lambda_cut is the cut
off wavelengths of the beamsplitter and eff is the solar cell efficiency ηsolar from Eq. (3.8).
The Matlab code for initial_guess_function is found in [30].

6.3 Implementation and overview of the Main Program in Matlab

The trans_ref_function explained in the previous section calculates the transmittance,
reflectance, and absorbance given some thicknesses A and data. In this short section a
function calculating the efficiency is implemented and an overview of the Matlab program
is presented.
From Eq. 4.20 the efficiency of the hybrid system depends on the transmittance and
reflectance and is written as the following function in Matlab.

function [eta] = eta_function(A,data), (6.4)

where the eta_function calculates eta from Eq. 4.20 by calling the trans_ref_function
and can be found in [30]. The efficiency is to be optimized and is called by one of the three
optimization functions: Exact line search, backtracking line search or bounded Nelder-
Mead, where all the thicknesses are bounded to be non-negative. By a coordinate trans-
formation the bounded problem is turned into an unbounded optimization problem solved
by the unbounded Nelder-Mead method as explained in Sec. 5.2.2. The implementation of
the optimization methods from chapter 5 is basically just to write the methods as Matlab
functions, and will not be further explained here. A main program is written in Matlab to
perform the optimization and an overview of the program is illustrated in Fig. 6.4. The
program is found as MAIN_FILE in [30]. When running the program it has to be specified
which transfer matrix method and which optimization method to apply.
The general flow of the main program is first to specify data which contains all the relevant
input parameters. From data an initial guess is constructed, which is used to calculate
the transmittance and reflectance, which is again used to calculate the efficiency belong-
ing to the initial guess. The optimization methods optimize the efficiency and return the
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optimal thicknesses and optimal efficiency as indicated by the red arrows in Fig. 6.4,
and the optimal thicknesses are used to calculate the optimal transmittance, reflectance,
and absorbance as indicated by the blue arrow. The result is independent of the transfer
matrix method but whether it depends on the optimization method will be examined in
Sec. 6.4.3.

Figure 6.4: Overview of the Matlab code. data is given as input and an ini-
tial guess is constructed and used to calculate the transmittance, reflectance and
efficiency, which is optimized using one of the three optimization methods. The
optimization returns optimized thicknesses and efficiency as indicated by the red
arrows, while the optimized transmittance, reflectance, and absorbance are calcu-
lated from these thicknesses as indicated by the blue arrow. Code available from
[30].

6.4 Solution of the Optimization Problem

With the three optimization methods explained in Sec. 5.2 this section considers the
implementation and results of the methods. First the optimized structure is compared
to the initial one to assess the quality of the optimization process. As seen in the tables
6.1 and 6.2 the two initial guesses are close to each other, and it is therefore examined
whether the methods converge to the same point for the two initial guesses. Then the three
optimizations methods are compared based on their performance and time consumption.
As mentioned in chapter 4 the efficiency of the thermoelectric element is chosen to be
4% or 8%. The principles of solving the optimization problem does not depend on this
efficiency, and in this section it has been chosen to apply ηTE =4%. In chapter 7 it is
studied how ηTE influences the total efficiency of the hybrid system.
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6.4.1 Comparison of Initial and Optimized Structure

In this subsection the transmittance, reflectance, and absorbance belonging to the op-
timized structure are compared to the same quantities for the initial structure and the
improvement during the optimization process is assessed.
First the Nelder-Mead method is applied and as mentioned in Sec. 5.2.2 the convergence of
the method is not proved in general, and using the original built-in Nelder-Mead function
no convergence is found. The algorithm is called fminsearch in Matlab and is found by
typing fminsearch in a Matlab document, right click and open fminsearch. By changing
the stopping criteria to the one in Eq. (5.16) the algorithm is found to converge, and the
modified algorithm is found as fminsearch2 in [30]. Setting ε = 10−4 as the stopping
criteria and applying the first initial guess where 162 layers are present gives the trans-
mittance, reflectance, and absorbance in Fig. 6.5a where the incident angle is 45◦ which
will be the case for all figures in this section.
To assess whether the quantities for the optimized structure is improved compared to those
for the initial structure in Fig. 6.2, the transmittance for the two structures are plotted
in the same figure in Fig. 6.5b. From this figure it is clear that the transmittance for
the optimized structure is improved compared to the initial one as the cut off is sharper
and the optimized transmittance is more close to the ideal transmittance in Fig. 1.3a.
Below the band gap wavelength at 900 nm the transmittance is almost identically zero as
in the ideal transmittance, but above 900 nm oscillations due to the glass layer cause that
the transmittance is not totally ideal. A way to avoid this problem could be to deposit
some layers serving as antireflection coating at the backside of the glass layer, where the
thicknesses and refractive indices of the layers are optimized to reduce the reflectance.
As explained in Sec. 6.2.1 the transmittance is now calculated where the glass thickness

(a) transmittance, reflectance, and absorbance
for the optimized structure using the Nelder-
Mead method with the first initial guess.

(b) Transmittance for the initial and final
structure.

Figure 6.5: Comparison of transmittance for the initial and optimized structure
when 162 layers are present.

is only 2.5µm. This is done in Fig. 6.5 where the oscillations above 900nm are smaller
compared to Fig. 6.2 and are sinusoidal. To calculate the efficiency of the thermoelectric
element it is necessary to integrate the transmittance from 900-2500 nm, thus in the range
where the oscillations are found. It is assumed that the large oscillations in Fig. 6.2 with
1 mm glass have the same average as the smaller oscillations in Fig. 6.5a with 2.5 µm
glass. The values of their integrals are thus assumed to be equal, and all the calculations
are therefore performed when the glass thickness is 2.5 µm.
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After the optimization process the block structure from the initial guess is dissolved as it
is no longer assumed that any thicknesses are the same. Hence the function to optimize is
mapping from a subset of R162 into the real positive numbers. The layer thicknesses for the
optimized structure is changed compared to the initial structure as seen in Fig. 6.6, where
the block structure for the initial guess is illustrated by the two staircases in blue and
black. The optimized thicknesses in green and red are distributed around the staircases,
as some thicknesses increase while others decrease. The lower staircase is the thicknesses
of Si3N4 as material 1, while the upper staircase is for SiO2 as material 2. The slopes of
the staircases are different as they are quarter wave layers whose thicknesses are given by
ai = λ0/(4ni cos θi) for i = {1, 2}. Higher layer number corresponds to larger wavelength,
hence the slope of the staircase is proportional to 1/(ni cos θi), and with the refractive
indices from Fig. 6.1a it is found that n1 cos θ1 ≈ 1.5n2 cos θ2, thus the slope of the upper
staircase is approximately 1.5 times the slope of the lower staircase as seen in Fig. 6.6. It

Figure 6.6: Thicknesses of all the layers for the initial and optimized structure. The
initial structure consists of 10 blocks as seen by the staircases, while the optimized
thicknesses are distributed around them. Material 1 is Si3N4 and material 2 is SiO2,
but the first layer of material 1 is MgF2

is found that the front layer of MgF2 almost disappears during the optimization process,
as seen by the first green point in the figure which corresponds to a thickness of 0.03nm,
and the average change in thickness between the initial and optimized structure is found
to be 6.3 nm. The reason for adding the front layer of MgF2 was to reduce reflection from
the front of the beamsplitter, because the real part of the refractive index for MgF2 is
smaller than that of SiO2 as seen in Fig. 6.1a. But the refractive index of MgF2 has an
increasing imaginary part whereas SiO2 has no imaginary part, as seen in Fig. 6.1b, and
it turns out that the effect of smaller real part is cancelled out by the higher imaginary
part and the optimized layer thickness of MgF2 is found to be 0.03nm, thus extremely
close to the lower bound at 0.
Applying the same optimization method with the second initial guess results in trans-
mittance, reflectance, and absorbance very similar to Fig. 6.5a and the next subsection
examines whether the optimized thicknesses for the two initial guesses are the same.
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6.4.2 Test of Convergence of the two Initial Guesses

In this subsection it is examined whether the two initial guesses converge to the same
point.
The transmittance, reflectance, and absorbance of the optimized structure for the first
initial guess was seen in Fig. 6.5a and the optimized thicknesses seen as the red and green
points in Fig. 6.6. The thicknesses are also calculated for the second initial guess, and
is found to be different from the first initial guess, showing that the two initial guesses
converge to different points. The optimized layer thicknesses for the two methods are seen
in Fig. 6.7, where the green and blue points are the optimized thicknesses for Si3N4 as
material 1, and the red and black points are for SiO2 as material 2. The deviation for
the two guesses is small for material 1, as all the green and blue points are close to each
other, while the red and black points are more spaced. For the very last layer of material
SiO2 the difference is remarkable, as it is found to be 208 nm for the first initial guess
and only 119 nm for the second guess. Besides the last layer, the difference in optimized
layer difference is found to be small, as the difference exceeds ±10nm in only 20 of 162
cases and the mean in -0.92nm. The difference in the two initial guesses is small and it is
found that the difference in optimized thicknesses are greater than for the initial guesses
but inside an acceptable difference, as the transmittance, reflectance, and absorbance
corresponding to the two optimized structures are very similar. Hence two different local
minima of the function f is found given the two different initial guesses, but the minima
are relatively close to each other and have approximately the same function values which
will be elaborated in the next subsection.

Figure 6.7: Layer thicknesses for the optimized structures using the two initial
guesses. Material 1 is Si3N4 and material 2 is SiO2.

The same is done for the two gradient methods, and it is found that the two initial guesses
converge to points closer to each other compared to the Nelder-Mead method. For the
exact line search, the maximal difference between the two optimized points is 1.4nm, and
the mean is 0.08nm, and for backtracking the numbers are 1.4nm and 0.06nm. The fact
that the optimization processes given the two initial guesses converge to points close to
each other and with approximately same function values indicates a robustness of the
optimization processes. It is thus concluded that the two initial guesses converge to points
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acceptable close to each other.

6.4.3 Comparison of the Optimization Methods

In this subsection a comparison of the three optimization methods based on their per-
formance and time consumption is found. Firstly the performance is analysed for the
Nelder-Mead method, and the gradient methods are compared to this performance.
As explained in Sec. 5.2.2 a new best point is found in every iteration of the Nelder-Mead
method, see e.g Lemma 3.3 in [14], thus the function f = −ηhybrid is a decreasing sequence
implying that the total efficiency of the hybrid system is an increasing sequence. By some
additions to the built-in Matlab function fminsearch it is possible to get the efficiency af-
ter each iteration which is seen in Fig. 6.8 plotted against the number of function calls for
the first initial guess. The efficiency is 46.76% for the initial guess and increases to 47.57%
for the optimized structure, hence an improvement of 0.81 percentage pointss is achieved
during the optimization process. The first point in the figure is the initial guess calculated
after just 1 function call. Setting up the initial simplex takes additional N function calls,
thus the next point occurs after 163 function calls. Then the initial simplex is reflected
many times without a further increase in the best point until an expansion is found after
654 function calls implying a desired increase in the efficiency. From 1000-3000 function
calls the efficiency is almost linearly increasing and flattens out after approximately 3000
function calls until the stopping criterion is finally met after 5055 function calls and the
algorithm stops. The same is done for the second initial guess and the efficiency is nearly
the same as in Fig. 6.8, but terminates after 5031 function calls with an efficiency for the
optimized structure of 47.54%. Hence it is found that the two initial guesses give almost
the same result where the first initial guess is slightly better and is therefore applied from
now on.

Figure 6.8: Total efficiency of the hybrid system plotted against the number of
function calls in the Nelder-Mead method for the first initial guess.

The optimization methods have different stopping criteria, the gradient methods stop when
‖ ~∇f(~xk) ‖2< ε̃ and the Nelder-Mead method stops when |f(V1

k+1) − f(V1
k)| < ε from

Eq. (5.16) where f(V1) is the function value for the best point in a given iteration. As
the Nelder-Mead method is derivative-free the gradient is not calculated, and can thus not
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be used to compare the methods. The fact that the norm of the gradient becomes small
implies that the difference in function values decreases too, thus an idea is to reformulate
the stopping criteria for the gradient methods as |f(~xk+1) − f(~xk)| < ε, where ε is the
same threshold as for the Nelder-Mead method, thus the methods should be comparable.
But as mentioned in Sec. 5.2.2 the iteration number k can not be compared for the two
methods. For the gradient methods, k is updated after every step as seen in point (iii) in
Algorithm 5.1, thus after calculation of the gradient and determination of the step length.
For the Nelder-Mead method k is updated when a new best point V1 is found, and this
can take many reflections to achieve, especially when many parameters are present.
Another way to compare the methods is to force them to use the same number of function
calls and compare the output. The reason of using function calls instead of computational
time to compare the methods is that the latter strongly depends on which computer is
used while the number of function calls is the same for all computers. It was found that
the Nelder-Mead method for the first initial guess used 5055 function calls before termi-
nation. The gradient methods are therefore run without other criteria than to stop when
the number of function calls exceeds 5055. For the backtracking line search method with
µstart = 20, α = 0.01 and β = 0.6 the efficiency is seen in Fig. 6.9a and increases from
46.76% to 46.87%, thus only 0.11 percentage points. Notice that the efficiency is still
increasing after 5000 function calls, and the difference in function value between the last
and second last point is found to 3.2 · 10−3 = 32 · ε, hence if it was to terminate after its
original condition many more function calls would probably be needed.

(a) Efficiency for backtracking line search. (b) Norm of the gradient for backtracking line
search.

Figure 6.9: Performance of backtracking line search.

The optimization process has not gotten the time to finish, which also explains the small
difference in optimized thicknesses for the two initial guesses. It was found that the step
length µstart satisfied the Wolfe conditions in every iteration, thus a constant step length
of 20 is taken in every iteration. Using the Nelder-Mead method the efficiency increases
by 0.81 percentage points thus approximately 7.4 times more than the increase achieved
by the backtracking method.
As mentioned, the original stopping criteria in the backtracking method is that the norm
of the gradient should be smaller than some threshold value ε̃. The norm of the gradient
is calculated in every iteration and is seen in Fig. 6.9b plotted on the same axis as in
Fig. 6.9a and is strictly decreasing in every iteration. The sequence seems to converge to
zero as it should according to Sec. 5.2.1 and [29] thus the original stopping criteria makes
sense.
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The norm of the gradient converges to zero very slowly, as it only decreases approximately
15% compared to its initial value using 5000 function calls, thus supporting the fact that
backtracking line search is slow compared to the Nelder-Mead method.

The same is done for the exact line search method and its efficiency and gradient norm are
seen in Fig. 6.10 and are almost identical to Fig. 6.9. The norm of the gradient is again a
strictly decreasing sequence, hence the theorem about its convergence from Sec. 5.2.1 and
[9] is satisfied. In addition it is denoted that the norm of the gradient in the final iteration
is almost the same as for the final iteration using backtracking line search. The efficiency
increases from 46.76% to 46.87%, thus exactly the same as for backtracking line search
and much less than the Nelder-Mead method, and like for backtracking the efficiency is
still increasing after 5000 function calls and the difference in function values between the
last and second last point is again found to be 32·ε. For the exact line search the gradient
is calculated in every iteration and it is searched for a minimum in that direction using
Nstep = 10 steps at a time, and it is found that it is not necessary to extend the search
direction in any of the iterations. Thus a minimum of f(~xk − µ~∇f(~xk)) occurs for µ < 10
in every iteration.

(a) Efficiency for exact line search. (b) Norm of the gradient for exact line search.

Figure 6.10: Performance of exact line search.

Hence for the considered optimization it is found that the performance of the Nelder-Mead
method is approximately 7.4 times better than for the two gradient methods, and that
the performance of backtracking line search and exact line search is about the same.

In [6] ten different optimization methods, including the Nelder-Mead method and the
gradient method, are tested on their ability to produce three different transmittance
curves. In one of them the goal is to reduce the reflectance to zero in the spectral region
7.7µm< λ <12.2µm for light incident perpendicular on a structure of 21 layers consisting
of two alternating materials with real refractive indices. The ten optimization methods
are allowed to run equal time on the same computer, and their values of a merit function
are compared, and it is found that the Nelder-Mead method is better than the gradient
method. The merit function corresponds to the total efficiency optimized in this thesis,
but in [6] it is desired to achieve a low merit function value. The overall problem is very
similar to the one studied in this thesis and confirms the result that the Nelder-Mead
method is better than the gradient method. In [6] the merit function value of the initial
guess is 10.58 and decreases to 1.28 for the Nelder-Mead method and to 2.81 for the gra-
dient method. Due to the difference in the problems, and especially in the initial guesses,
the improvements of the merit function values are not comparable to those found here.
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With all the relevant theory derived in chapter 2 to 5 and the optimization program
explained and tested in chapter 6, this chapter considers the important results in the
thesis. In the previous chapter it was found that the two initial guesses converge to points
acceptable close to each other, and that the Nelder-Mead method is better than the two
gradient methods. Hence the Nelder-Mead method with the first initial guess is applied
in this chapter to study the efficiency as a function of number of layers with fixed angle,
and the efficiency as a function of angle with fixed number of layers. In addition the effect
of the imaginary part of the refractive index for MgF2 is studied. In Sec. 7.1 all this is
done for an ideal solar cell as in the previous chapter, while Sec. 7.2 and 7.3 examines the
efficiencies for a microcrystalline and amorphous solar cell. This chapter contains results
presented in figures, while the thicknesses of the optimized beamsplitter are found in tables
in Appendix A, and these thicknesses are to be used when fabricating the beamsplitter.

7.1 Results for an Ideal Solar Cell

This section considers the results for the ideal solar cell studied so far where the efficiency of
a single solar cell with no beamsplitter is 46.76%. The section examines how the efficiency
depends on number of layers, incident angle and the refractive index of MgF2.

7.1.1 Efficiency as a Function of Number of Layers

In this subsection the connection between the total efficiency and the number of layers is
studied, where the incident angle is kept constant at 45◦, and it is first chosen to apply
ηTE =4%.
Until now a structure of 162 layers has been considered, as it was stated to be the optimal
number of layers. As mentioned in Sec. 6.2.1 the structure consists of 10 blocks with 8
unit cells in each block, and varying the number of unit cells in each block implies a change
in the number of layers. It is chosen to consider 2, 4, 6 and 10 unit cells in each block,
which corresponds to a structure of 42, 82, 122 and 202 layers. The same optimization
procedure is performed for each of them, and their optimized transmittance, reflectance,
and absorbance are seen in Fig. 7.1, while the structure of 162 layers was seen in Fig. 6.5a.
From the figures it is clear that the transmittance gets more ideal when the beamsplitter
consists of more layers, as the cut off is more sharp and the band gap becomes more
complete.

The total efficiency is calculated when the number of unit cells in each block ranges from
1 to 10, corresponding to a layer range of 22 to 202, and is seen in Fig. 7.2. If the beam-
splitter only consists of 22 layers the efficiency is only 32% but increases to 40% when 20
extra layers are added. This tendency only applies when few layers are present, as the
efficiency flattens out around 142 layers, and only a small improvement can be achieved
by adding extra layers. The black horizontal line is the efficiency of a single solar cell
when all the light from 280-2500nm is directed onto it, and was found to be 46.76% as
mentioned in Sec. 3.1.1. The red horizontal line at 48.01% is the theoretical efficiency if
a perfect beamsplitter is applied, which gives an ideal transmittance where all the light
below 900 nm is directed to the solar cell and all light above 900 nm to the beamsplitter.
The difference in efficiency between a perfect beamsplitter a single solar cell is thus 1.25
percentage point.
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(a) 42 layers. (b) 82 layers.

(c) 122 layers. (d) 202 layers.

Figure 7.1: transmittance, reflectance, and absorbance for optimized structures
consisting of 42, 82, 122 and 202 layers for an ideal solar cell. The transmittance
gets more ideal when more layers are applied.

A necessary condition for constructing the beamsplitter must be that the efficiency of
the hybrid system exceeds that of a single solar cell, which is seen to be satisfied if the
beamsplitter consists of at least 122 layers giving an efficiency of 47.06%. Adding 80 ex-
tra layers the efficiency increases to 47.71%, thus 0.95 percentage points higher than for
a single solar cell and a relative improvement of 2.0% compared to a single solar cell is
achieved. It is not possible to have a perfect beamsplitter but it is found that if 202 layers
are used the efficiency is only 0.3 percentage point below that of a perfect beamsplitter.
As seen in Fig. 7.1d the transmittance is almost identically zero for wavelengths below
900 nm and the cut off is very sharp, but the oscillations above 900 nm imply that the
transmittance is not totally ideal.
When manufacturing the beamsplitter, such a graph is extremely important as it shows
how many layers are necessary to achieve a certain total efficiency, and how close it is
possible to reach the theoretical limit. If, for example, it only is possible to construct a
beamsplitter consisting of 50 layers, the efficiency of the hybrid system gets lower than
that of a single solar cell, and it is not worth constructing it. It is remembered that these
efficiencies are for an ideal solar cell and this graph is therefore useless in practice, but
corresponding graphs are found for real solar cells in the next two sections and they can
be used in practice.
If the efficiency of the thermoelectric element increases, it implies an increase in the total

78



7.1. Results for an Ideal Solar Cell

Figure 7.2: Total efficiency as a function of number of layers in the beamsplitter
for an ideal solar cell with ηT E =4% . The black horizontal line at 46.76% is the
efficiency of a single cell, and for the beamsplitter to have an eligibility it must
consist of at least 122 layers. The relative improvement compared to a single solar
cell is 2.0%, and the red horizontal line at 48.01% is the efficiency if a perfect
beamsplitter is applied.

efficiency as well. Setting ηTE =8% and performing the optimization leads to transmit-
tances very similar to those in Fig. 7.1, and the efficiency as a function of the number
of layers is seen in Fig. 7.3a. The shape of the graph is the same as in Fig. 7.2, the
black line is unchanged, the red line is increased to 49.25% and the efficiency is generally
shifted upwards due to the increased ηTE . Here the necessary condition is satisfied when
the beamsplitter consists of 82 layers, instead of 122 layers, and if 202 layers are present
the efficiency becomes 48.76%, thus 2 percentage points higher than for a single solar cell
and the relative improvement becomes 4.3%.

(a) Efficiency as a function of number of layers
for ηT E =8%. 82 layers are required to satisfy
the necessary condition and the largest relative
improvement compared to a single solar cell is
4.3%.

(b) Efficiency as a function of number of layers
for ηT E =2%. 142 layers are required to satisfy
the necessary condition and the largest relative
improvement compared to a single solar cell is
0.8%.

Figure 7.3: Efficiency as a function of number of layers for ηT E =8% and 2%.
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The same is done for ηTE =2%, and its efficiency as function of number of layers is seen
in Fig. 7.3b. The beamsplitter here has to consist of 142 layers before the necessary
condition in satisfied, and when 202 layers are present the efficiency is 47.18%, thus less
than 0.5 percentage points higher than for a single solar cell and the relative improvement
is only 0.8%.
From these figures it is seen that the number of layers has a great influence on the total
efficiency, and if the beamsplitter consists of too few layers, it is not worth constructing
it. But adding many extra layers does not imply an increase in the efficiency, as it flattens
out when many layers are present. If a beamsplitter consists of 200 layers, it is better to
increase the efficiency of the thermoelectric element than to add more layers.

7.1.2 Efficiency as a Function of Incident Angle

In this subsection the connection between total efficiency and incident angle is studied,
where the number of layers is kept constant at 202 as it resulted in the highest efficiency
as seen in Fig. 7.2 and 7.3.
Until now an incident angle of 45◦ has been applied in the optimization problem and all
the figures, and for 202 layers the optimized transmittance, reflectance, and absorbance
was seen in Fig. 7.1d. As explained in the introduction all the incident angles are not 45◦,
but varies in an interval centered at 45◦. The beamsplitter is optimized to an incident
angle of 45◦, and to study its angle sensitivity it is chosen to apply the optimized structure
and calculate the efficiency when the angle varies from 35-55◦. This is seen in Fig. 7.4a for
ηTE =4% and in Fig. 7.4b for ηTE =8%, and the black line in both figures is the efficiency
of a single solar cell at 46.76%.

(a) Efficiency as a function of angle for an ideal
solar cell with ηT E =4%. The critical angle is
52◦

(b) Efficiency as a function of angle for an ideal
solar cell with ηT E =8%. The critical angle is
57◦

Figure 7.4: Efficiency as a function of angle for an ideal solar cell.

The efficiency is almost the same when the angles ranges from 35-45◦ and decreases rapidly
for larger angles. It is found that the maximal efficiency actually occurs when the angle
is 42-44◦ even the structure is optimized for 45◦ giving a cut off wavelength close to 900
nm. For a quarter wave structure the design wavelength is λ0 = 4an cos θ from Eq. (2.30),
and when cos θ is a decreasing function for 0◦ < θ < 180◦ it is found that a smaller angle
results in a higher design wavelength implying a higher cut off wavelength. The fact that
the positions of the band gaps depend on the incident angle was also observed in Fig.
2.3 and 2.12. Hence when the angle is smaller than 45◦ the cut off wavelength is higher
than 900 nm and in principle, too much light is directed onto the solar cell, as it cannot
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utilize any wavelengths above 900 nm. However, even for the optimized structure the
cut off is not perfectly sharp and it is possible that some wavelengths below 900 nm are
directed onto the thermoelectric element instead of the solar cell, but increasing the cut
off wavelength decreases that possibility and actually slightly increases the total efficiency.
On the other hand, when the angle exceeds 45◦ the cut off wavelength becomes smaller than
900 nm, and too little light is directed onto the solar cell. This is more critical because the
efficiency of the solar cell is linearly increasing up to 900 nm, and a too low cut off implies
that the wavelengths that are best for the solar cell are directed onto the thermoelectric
element. Hence it is better for the cut off wavelength to be too high than too low, which
is supported by Fig. 7.4. In the figures the efficiency of the thermoelectric element is 4%
and 8%, respectively, and the figures show similar behaviour, but the efficiency is shifted
upwards when ηTE =8%. As in the previous subsection the black line is the efficiency of a
single solar cell, and to satisfy the necessary condition for the eligibility of the beamsplitter
the efficiency of the hybrid system must exceed that of a single solar cell. When ηTE =4%
this is seen to be satisfied for angles smaller than or equal to 52◦, as seen in Fig. 7.4a,
but when ηTE =8% the critical angle increases to 57◦ as seen in Fig. 7.4b. Notice that
the x axis in the figures are different, for ηTE =4% the angles varies from 35-55◦ and the
critical angle is found in that interval. Increasing ηTE to 8% and applying the same angle
interval, no critical angle is found as the efficiency exceeds 46.76% for all the angles, and
it has been necessary to extend the angle interval to 35-60◦ in order to find the critical
angle.

7.1.3 Effect of Imaginary Refractive Index of MgF2

In this subsection the effect of the imaginary part of the refractive index for MgF2 is
studied.
Until now MgF2 as material 3 has had a refractive index whose real and imaginary part
are seen in Fig. 6.1. For the initial structure the thickness of MgF2 was 58 nm, but as
explained in Sec. 6.4.1 the optimization process almost removes the layer and its optimized
thickness is found to be 0.03 nm as seen in Fig. 6.6. Hence the effect of smaller real part
of the refractive index is overshadowed by its higher imaginary part. To study the effect of
the imaginary part, it has been chosen to let the refractive index of the material be purely
real, and solve the optimization problem in the same way as earlier. It is found that the
optimized thickness of MgF2 in this case becomes 113 nm as seen by the first green point
in Fig. 7.5, hence the thickness is almost doubled instead of removed. The transmittance,
reflectance, and absorbance for the optimized structure is almost identical to Fig. 6.5a
where MgF2 had an imaginary part. In that case the efficiency of the optimized structure
was 47.57% which was found after 5055 function calls as seen in Fig. 6.8. Without the
imaginary part the efficiency is found to be 47.59% after 3806 function calls.
The material with a real part like MgF2 and no imaginary part does not exist naturally
and must be fabricated artificially. It is found that the improvement of the efficiency of
using such material is only 0.02 percentage points, hence it is not worthwhile trying to
fabricate such a material.
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Figure 7.5: Thicknesses of all the layers for the initial and optimal structure for
the ideal solar cell where the refractive index of MgF2 is purely real. The optimized
thickness for material 3 is 113 nm, where it was 0.03 nm in Fig. 6.6. Material 1 is
Si3N4 and material 2 is SiO2, but the first layer of material 1 is MgF2.

7.2 Results for a Microcrystalline Solar Cell

Until now only an ideal solar cell has been considered with an efficiency around 47%.
No real solar cells have so high efficiency, in fact the best fabricated solar cells have effi-
ciencies around 25%. [11] As explained in Sec. 3.2 limiting factors exist which strongly
reduce the efficiency and one of these factors is the external quantum efficiency as shown
in Fig. 3.4, which depends on the internal quantum efficiency IQE, the coverage factor
1−Ac/Atot and the total reflectance R. In general the efficiency depends on several more
variables such as the concentration of donors and acceptors in the doped semiconductor,
the diffusion lengths in the emitter and base layer and the mobility of electrons and holes.
[34] The efficiency of real solar cells considered in the thesis is therefore simplified as it
only takes the parameters mentioned in chapter 3 into account. The optimization process
calculates the maximal efficiency of the hybrid system with the considered solar cell, and
the principles in the optimization is independent of the solar cell type. If a specific solar
cell with an efficiency different from those considered here is wanted in the hybrid system,
it is possible to run the same optimization program, just with another input parameter
for the solar cell efficiency.
For some chosen values of donor concentrations, diffusion lengths and mobilities the in-
ternal quantum efficiency is found from [11] and is seen in Fig. 7.6a, where the band gap
wavelength is 1170 nm which is about the value for microcrystalline solar cells. [4] It is
therefore chosen to apply the data in Fig. 7.6a for a microcrystalline solar cell. To find
the external quantum efficiency EQE= (1−R)(1−Ac/Atot)IQE, values for the reflectance
and coverage factor are needed, and have been chosen to be R = 0.1 and Ac = 0, hence the
shadow effect of the contacts is neglected, and the external quantum efficiency becomes
90% of the internal quantum efficiency. Notice that R is chosen to be constant in the
entire wavelength interval which indeed is a rough approximation.
The total efficiency of the solar cell as function of the wavelength also depends on the fill
factor and is given in Eq. (3.8), where the fill factor has been set to 0.8. The efficiency
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(a) Internal quantum efficiency for the consid-
ered microcrystalline solar cell with a band gap
wavelength of 1170 nm. Data from [11].

(b) Efficiency as function of wavelength for the
considered microcrystalline solar cell. The ideal
band gap for the beamsplitter is 464-1079 nm
for ηT E =4% and 489-1054 nm for ηT E =8%.

Figure 7.6: Data for the considered microcrystalline solar cell.

is seen in Fig. 7.6b and is found to have a maximum of 41% at 850 nm. The overall effi-
ciency of the microcrystalline solar cell is found by integrating the efficiency in Fig. 7.6b
multiplied by the solar spectrum and divided by the incident intensity, giving an efficiency
of 17.47%. This efficiency corresponds to the 46.76% as the efficiency for the ideal solar
cell, and the necessary condition for the hybrid system with the microcrystalline solar cell
is that the total efficiency exceeds 17.47%.
The two red horizontal lines at 4% and 8% in Fig. 7.6b are the efficiencies of the thermo-
electric element, and divide the wavelength interval from 300-1200 nm into three parts.
For the short wavelengths the efficiency of the solar cell is smaller than that of the ther-
moelectric element, and in that region it is best to direct the light onto the thermoelectric
element. This wavelength region was not present for the ideal solar cell as its efficiency
as function of wavelength was given in Eq. (3.2) and is higher than ηTE for the small
wavelengths. When the wavelength increases the solar cell efficiency increases as well and
exceeds that of the thermoelectric element, why in that region it is best to direct the
light onto the solar cell. For high wavelengths the solar cell efficiency decreases again and
becomes smaller than the thermoelectric efficiency, and again it is best to direct the light
onto the thermoelectric element. The ideal transmittance is illustrated in Fig. 1.3b in
the introduction, and the ideal band gap is found to be 464-1079 nm for ηTE =4% and
489-1054 nm for ηTE =8%.
With the efficiency given in Fig. 7.6b the next subject is to construct an appropriate
initial guess where the transmittance is as close as possible to the ideal transmittance in
Fig. 1.3b. Now the initial guess also depends on ηTE as it decides the ideal band gap,
and in the following figures it has been chosen to apply ηTE =8%. The same method as
in Sec. 6.2.1 is used to construct the initial guess which is found to consist of 9 blocks
with 8 unit cells in each block implying 146 layers in total, where the front layer of MgF2
has the thickness 102 nm. The transmittance, reflectance, and absorbance are calculated
for the initial guess and are seen in Fig. 7.7a, where an almost complete band gap exists
in the desired wavelength interval. It is noticed that absorbance is present in the entire
wavelength interval due to the layer of MgF2 with an imaginary part of the refractive
index. It is desired to have a high transmittance for the wavelengths below 489 nm, but
because of higher order band gaps this is difficult to achieve, and only the wavelengths
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(a) transmittance, reflectance, and absorbance
for the initial guess consisting of 146 layers for
the microcrystalline solar cell.

(b) Transmittance for the initial and optimized
structure consisting of 146 layers for the micro-
crystalline solar cell.

Figure 7.7: Comparison of transmittance for initial and optimized structure for
the microcrystalline solar cell.

from approximately 360-420 nm are thus directed to the thermoelectric element where
they contribute to the total efficiency. The higher order band gaps will be explained in
details in Sec. 7.5.1. Most of the wavelengths from 280-350 nm are directed to the solar
cell where they do not contribute at all to the efficiency, as it is zero in that interval as
seen in Fig. 7.6b, and the energy is therefore converted to heat in the solar cell. The
upper band gap edge is around 1054 nm and most of the wavelengths above that value are
directed onto the thermoelectric element as desired, and the efficiency of the hybrid system
for the initial guess is found to be 18.46%, thus almost 1 percentage point higher than a
single solar cell. An optimized structure is found and the transmittance, reflectance, and
absorbance calculated, and a comparison of transmittance for the initial and optimized
structure is seen in Fig. 7.7b. The transmittance of the optimized structure is seen to
be closer to the ideal one as both cut offs around 489 and 1054 nm are sharper. The
efficiency for the optimized structure is found to be 19.17%, thus 0.71 percentage points
higher than the initial guess and 1.7 percentage points higher than for a single solar cell,
and the relative improvement compared to a single solar cell is 9.7%.
As in Sec. 6.4.1 the thicknesses for the optimized structure are compared to those for
the initial guess as seen in Fig. 7.8. The thicknesses of the initial guess are seen by the
staircases while the optimized thicknesses are distributed around them, and the average
change in thickness between the initial and optimized structure is found to be 5.3 nm.
The front layer of MgF2 for the optimized structure is found to be 77 nm while it was 102
nm for the initial guess. This is remarkable as the front layer was totally removed for the
ideal solar cell as seen in Fig. 6.6, but remains for the microcrystalline solar cell giving
rise to a non-negligible absorbance for the optimized structure. Hence when the efficiency
is around 17% instead of 47% it seems that the effect of smaller real part of the refractive
index is not overshadowed by the imaginary part as was the case for the ideal solar cell.

The results in this section so far were calculated for a structure of 146 layers and an
incident angle of 45◦. As for the ideal solar cell, the efficiency is examined as a function
of number of layers and incident angle, which is the subject for the next two subsections.
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Figure 7.8: Thicknesses of all the layers for the initial and optimized structure
consisting of 146 layers for a microcrystalline solar cell. The initial structure consists
of 9 blocks as seen by the staircases, while the optimized thicknesses are distributed
around them. The average change in thickness between the initial and optimized
structure is 5.3 nm. Material 1 is Si3N4 and material 2 is SiO2, but the first layer
of material 1 is MgF2.

7.2.1 Efficiency as a Function of Number of Layers

This section is an analogy to Sec. 7.1.1 and examines how the efficiency depends on the
number of layers when the incident angle is kept constant at 45◦, and it is first chosen to
apply ηTE =8% as in the previous section.
As seen in Fig. 7.1 where an ideal solar cell was considered the transmittance, reflectance,
and absorbance are strongly dependent on the number of layers. This is also the case for a
microcrystalline solar cell, and it is chosen to consider structures consisting of 20, 56, 128
and 164 layers whose transmittance, reflectance, and absorbance are seen in Fig. 7.9. The
transmittance gets closer to the ideal one as more layers are present, but the improvement
from 128 to 164 layers is not so significant.
The total efficiency of the hybrid system is calculated when the number of layers varies
from 20 to 182 and is seen in Fig. 7.10a. As mentioned, the efficiency of a single solar cell
is 17.47% and if a perfect beamsplitter is applied which gives the ideal transmittance, the
efficiency of the hybrid system is found to be 20.23% and as earlier these two efficiencies
are shown by the black and red horizontal line, respectively. The necessary condition for
constructing the beamsplitter is that the efficiency of the hybrid system exceeds that of
a single solar cell, which is seen to be satisfied using just 56 layers, where 82 layers were
required for the ideal solar cell as seen in Fig. 7.3a. The sequence flattens out and is
actually decreasing by 0.04% when the number of layers increases from 164 to 182. It is
found that the transmittance, reflectance, and absorbance for structures consisting of 164
and 182 are almost identical, which indicates that the efficiency as a function of number
of layers has converged. It is not reasonable that the efficiency decreases when more layers
are available, and if the optimal structure really was found with 164 layers, the optimiza-
tion should in principle find that the extra layers should have a thickness of 0. For all the
different optimization processes the same value of ε = 10−4 has been applied, and a way to
finer optimize the structure is to let ε in some way depend on the number of parameters.
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(a) 20 layers. (b) 56 layers.

(c) 128 layers. (d) 164 layers.

Figure 7.9: transmittance, reflectance, and absorbance for optimized structures
consisting of 20, 56, 128 and 164 layers for the microcrystalline solar cell. The
transmittance gets more ideal when more layers are applied.

(a) Maximal total efficiency as a function of
number of layers for ηT E =8% for the micro-
crystalline solar cell.

(b) Maximal total efficiency as a function of
number of layers for ηT E =4% for the micro-
crystalline solar cell.

Figure 7.10: Maximal total efficiency as a function of number of layers for fixed
ηT E for the microcrystalline solar cell.

Another way to a finer optimization is to modify the four processes in Fig. 5.4 during the
optimization, such that e.g the reflected point R is closer than W to the line BG, and
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similar modifications can be made for the other processes.
The maximal total efficiency is found to be 19.25% for 164 layers, thus a relative improve-
ment of 10.2% compared to a single solar cell is achieved. The thicknesses of the optimized
structure are found in table A.4 in Appendix A, and these thicknesses are to be used when
fabricating the beamsplitter.
The same is done for ηTE =4% and when calculating the transmittance, reflectance, and
absorbance for the optimized structures, they are found to be very similar to those in Fig.
7.9. The desired band gap is broader compared to that for ηTE =8%, as it was found to
be 464-1079 nm for ηTE =4% and 489-1054 nm for ηTE =8% as mentioned in the previous
section. Hence a little more light is directed onto the solar cell when ηTE =4%, and the
efficiency of the hybrid system as a function of number of layers is seen in Fig. 7.10b,
where a perfect beamsplitter is found to give an efficiency of 18.79%. The graph shows
same behaviour as Fig. 7.10a but now 82 layers are required to satisfy the necessary con-
dition, where 122 were required for the ideal solar cell as seen in Fig. 7.2. The sequence
flattens out for a smaller number of layers and is actually decreasing from 122-142 layers
and from 162-202 layers, indicating that the sequence has converged. The maximum is
found to be 18.44% for 162 layers, thus a relative improvement of 5.5% compared to a
single solar cell is achieved. The thicknesses of the optimized structure are found in table
A.3 in Appendix A.
Notice that the distance between the black and red line in Fig. 7.10a is approximately
twice as big as in Fig. 7.10b, and this also applies for the distance between the best point
and the red line. For ηTE =8% the relative improvement compared to a single solar cell
was found to be 10.2%, while the number was 5.5% for ηTE =4%. The improvement is
almost twice as big when the thermoelectric efficiency is doubled, indicating that for small
thermoelectric efficiencies the relative improvement scales approximately linear with it.
Same result is obtained in [4] where the relative improvement is plotted against ηTE in
Fig. 3 and is seen to be approximately linear. Hence one way to improve the efficiency
of the hybrid system is to increase the efficiency of the thermoelectric element, and this
can be done totally independent of the solar cell and the beamsplitter design. This shows
the fact that cooperation with researchers in e.g thermoelectricity has the potential to
increase the efficiency of the hybrid system, as they probably have some ideas to increase
the thermoelectric efficiency.

7.2.2 Efficiency as a Function of Incident Angle

This subsection is analogue to Sec. 7.1.2 and examines the efficiency as a function of
incident angle for a microcrystalline solar cell where the applied structure is optimized for
45◦.
For ηTE =8% the optimal number of layers was found to be 164 as seen in Fig. 7.10a, and
therefore the angle is varied when the optimized structure consisting of 164 layers is kept
constant. As in Sec. 7.1.2 the angle is varied from 35-55◦ and the efficiencies are seen in
Fig. 7.11, where the highest efficiency is found to be 19.27% for an angle of 44◦ even the
structure is optimized for 45◦ giving an efficiency of 19.25%. The black horizontal line is
the efficiency of a single microcrystalline solar cell at 17.47%. The efficiency as function of
angle is approximately parabolic in contrast to the efficiency for the ideal solar cell in Fig.
7.4b where it was almost constant for angles smaller than 45◦ but decreased rapidly for
larger angles. As explained in Sec. 7.1.2 a larger incident angle implies a smaller cut off
wavelength, which must apply to both cut off wavelengths when the wavelength interval
now consists of three parts instead of two for the ideal solar cell.
Hence a larger angle implies that both cut off wavelengths get smaller and the entire
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(a) Total efficiency as a function of angle for
ηT E =8% where the structure consists of 164
layers. The critical angle is 71◦.

(b) Total efficiency as a function of angle for
ηT E =4% where the structure consists of 162
layers. The critical angle is 66◦.

Figure 7.11: Total efficiency as a function of angle for fixed ηT E and number of
layers. The black horizontal lines are the efficiency of a single microcrystalline solar
cell at 17.47%.

band gap shifts towards smaller wavelengths. The efficiency as a function of wavelengths
for the microcrystalline solar cell was seen in Fig. 7.6b where the optimal band gap is
between the two intersections of the blue curve and one of the red curves. Shifting the
band gap towards smaller wavelengths imply that the efficiency just below the upper cut off
wavelength is replaced by the efficiency just below the lower cut off wavelength, which leads
to a reduction of the total efficiency. Hence the band gap shift implies that the wavelength
dependent efficiency decreases from 15-20% to 4 or 8%, hence not much compared to the
ideal solar cell, where the decrease is from almost 100% down to 4 or 8%. Thus for the
microcrystalline solar cell the change in efficiency caused by the downward band gap shift
is relatively small, implying that the total efficiency decreases less as function of the angle
than for the ideal solar cell.
Similar a smaller incident angle implies that the band gap gets shifted towards higher
wavelengths, and the efficiency just above the lower cut off wavelength is replaced by the
efficiency just above the upper cut off wavelength, which implies a reduction in the total
efficiency. As the efficiency in Fig. 7.6b is not bell shaped but high efficiency is found
for larger angles, the reduction in total efficiency is highest when the band gap is shifted
towards lower wavelengths. Hence the efficiency is faster decreasing for larger angles than
for smaller angles, which is also indicated in Fig. 7.11a. Increasing the angle above 55◦
it is found that the critical angle is 71◦, where it was only 57◦ for the ideal solar cell, but
decreasing the angle below 35◦ no lower critical angle is found. Even for an incident angle
of 0◦ the efficiency is found to be 18.45% thus almost one percentage point above the black
line.
The same is done for ηTE =4% and from Fig. 7.10b it was found that 162 layers were
optimal, and the angle is therefore changed from 35-55◦ when the number of layers is kept
constant at 162. The efficiency as function of angle is seen in Fig. 7.11b and follow same
tendency as in Fig. 7.11a. The maximal efficiency is found to be 18.44% for both 44 and
45◦ and is approximately parabolic in the small angle interval. The two figures have same
axes and when ηTE =4% the efficiency is shifted downwards compared to ηTE =8%. The
critical angle is found to be 66◦, and for an incident angle of 0◦ the efficiency is found to
be 17.81%, thus still above the black line.
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The effect of the imaginary part of the refractive index for MgF2 is briefly studied as in
Sec. 7.1.3. When the imaginary part is the one in Fig. 6.1b the thickness of the front
layer is found to be 65 nm as seen as the first number in Table A.4 and the efficiency of
the hybrid system becomes 19.25%. Setting the imaginary part to zero the thickness of
the front layer is found to be 118 nm and the efficiency increases to 19.60%, thus 0.35
percentage points higher, where this increase was only 0.02 percentage points for the ideal
solar cell. The new efficiency is 12.2% higher than that of a single solar cell, where it was
10.2% higher when MgF2 has an imaginary part. Hence in the case of a microcrystalline
solar cell, it is noticeable better to apply a material without an imaginary part on the
refractive index. But as explained earlier such a material does not exist naturally and it
is possible that the expenses in trying to fabricate such a materials exceed the benefit of
the improved efficiency.
The last couple of pages were the results for a microcrystalline solar cell and same kind of
results are found for an amorphous solar cell in the following section.

7.3 Results for an Amorphous Solar Cell

In this section an amorphous solar cell is studied and its efficiency found as function of
number of layers and incident angle.
Like for the microcrystalline solar cell, to calculate the solar cell efficiency it is necessary
to know the internal quantum efficiency, the reflectance, coverage factor and fill factor.
It has not been possible to find some data points for the internal quantum efficiency, as
was the case for the microcrystalline solar cell where data was found from [11], but a plot
of IQE against wavelength is found in article [13] where the band gap wavelength of the
amorphous solar cell is 800 nm. The data points are therefore manually read from the
article and interpolated in the wavelength interval, and are seen in Fig. 7.12a. The upper
band gap edge is 800 nm where it was 1170 for the microcrystalline solar cell in Fig. 7.6a,
and the maximal internal quantum efficiency is found to be 94% for a wavelength of 520
nm. According to [13] the fill factor is 0.6296, the coverage factor is not mentioned and
the reflectance is strongly dependent on wavelength, and it is a rough approximation to

(a) Internal quantum efficiency for the con-
sidered amorphous solar cell with a band gap
wavelength of 800 nm. Data manually read
from [13].

(b) Efficiency as function of wavelength for
the considered amorphous solar cell. The ideal
band gap for the beamsplitter is 325-762 nm for
ηT E =4% and 337-740 nm for ηT E =8%.

Figure 7.12: Data for the considered amorphous solar cell.
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consider it as a constant of 0.1 as done in this thesis. With these numbers the efficiency
as a function of wavelength is found from Eq. (3.8) and is seen in Fig. 7.12b, where
the two red horizontal lines are the thermoelectric efficiencies of 4 and 8% and the ideal
band gap is found to be 325-762 nm for ηTE =4% and 337-740 nm for ηTE =8%. The
overall efficiency is given in Eq. (3.9) and is found to be 15.77%, while it is reported in
[13] to be only 9.47%, which is found from the fill factor, a measured short circuit density
of 17.519mA/cm2 and a measured open circuit voltage of 858mV. The large deviation
between the calculated efficiency and the one from the article must partly be due to the
rough approximation in the reflectance, and the possibility that the article uses some of the
parameters for the semiconductor that are not considered in this thesis. Another reason
for the large deviation is the fact that the efficiency of 9.47% is measured for a specific
solar cell, where electric resistance in the contacts reduces the efficiency. This phenomena
is not included at all in the calculation, as the contact area has been set to zero and no
electric resistance is assumed, and it is therefore expected that the calculated efficiency
becomes higher than the measured. Despite the deviance in efficiency compared to the
article the efficiency in Fig. 7.12b is still applied for an amorphous solar cell. The idea
in using such an efficiency is that the band gap is quite different from the one for the
microcrystalline solar cell, and it is investigated which type of solar cell it will be most
beneficial for when implemented in the hybrid system.
The initial guess for ηTE =8% is found to consist of 7 blocks with 9 unit cells in each,
resulting in 128 layers in total. As the band gap wavelength of the amorphous solar
cell is smaller than for the microcrystalline fewer blocks are needed to give the desired
band gap. The transmittance, reflectance, and absorbance for the initial guess are seen in
Fig. 7.13a where it is hard to see that the wavelength interval is divided into three parts
because the lower band gap edge at 337 nm is relatively close to the lower limit of 280
nm, but it is desired to have a high transmittance for wavelengths below 337 nm. The

(a) transmittance, reflectance, and absorbance
for the initial guess consisting of 128 layers for
the amorphous solar cell.

(b) Transmittance for the initial and optimized
structure consisting of 128 layers for the amor-
phous solar cell.

Figure 7.13: Comparison of transmittance for initial and optimized sructure for
the amorphous solar cell.

transmittance, reflectance, and absorbance are comparable to those found for the ideal
solar cell in Fig. 6.2 where a band gap of 900 nm was applied without a desired cut off
for the small wavelengths. The total efficiency for the initial guess is found to be 17.98%
thus more than 2 percentage points higher than for a single amorphous solar cell. The
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transmittances for the optimized and initial structures are seen in Fig. 7.13b where the cut
off around 740 nm is sharper for the optimized structure. The efficiency for the optimized
structure is found to be 18.72% thus almost 3 percentage points higher than for a single
amorphous solar cell, and the relative improvement is 18.7%, where it only was 10.2% for
the microcrystalline solar cell. The reason for this must be the fact than the amorphous
solar cell with the band gap wavelength of 800 nm only uses a small part of the solar
spectrum, and the hybrid system ensures that wavelengths above 800 nm not are totally
wasted. The improvement of approximately 3 percentage points will probably not depend
so much of the solar cell efficiency as long as the band gap is unchanged, and if a solar cell
with efficiency of only 9.47% is considered as in [13], it is plausible that the efficiency of
the hybrid system in this case will be approximately 12.5%, and a relative improvement of
approximately 30% will be achieved. Hence a solar cell with a small band gap wavelength
has the potential to be most beneficial to implement in the hybrid system, and if its solar
cell efficiency is low the relative improvement will be large.
The thicknesses for the optimized structure are compared to those for the initial guess as
seen in Fig. 7.14, and the average change in thickness between the initial and optimized
structure is found to be 6.2 nm. The front layer of MgF2 for the optimized structure is
found to be 28 nm while it was 70 nm for the initial guess. Here the front layer is to give
rise to a band gap wavelength around 337 nm, where it was 489 nm for the microcrystalline
case explaining why the layers of MgF2 are thinner for the amorphous solar cell.

Figure 7.14: Thicknesses of all the layers for the initial and optimized structure
consisting of 128 layers for the amorphous solar cell. The initial structure consists
of 7 blocks as seen by the staircases, while the optimized thicknesses are distributed
around them. The average change in thickness between the initial and optimized
structure is 6.2 nm. Material 1 is Si3N4 and material 2 is SiO2, but the first layer
of material 1 is MgF2.

Until now for the amorphous solar cell the number of layers has been 128 and the incident
angle has been 45◦, and they are varied in the two next subsections in order to find the
efficiency as a function of number of layers and of incident angle.
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7.3.1 Efficiency as a Function of Number of Layers

This subsection is analogue to Sec. 7.1.1 and 7.2.1 and examines the efficiency as a function
of number of layers for an amorphous solar cell when the incident angle is kept constant
at 45◦.
The transmittance, reflectance, and absorbance calculated for different number of layers
are very similar to those in Fig. 7.1 and 7.9, and are therefore not included. The maximal
efficiency is found when the number of layers is varied from 16 to 128 and are seen in
Fig. 7.15a, where the efficiency of a perfect beamsplitter is found to be 19.43%. The
necessary condition is satisfied using just 30 layers where 56 layers were required for the
microcrystalline solar cell as seen in Fig. 7.10a. The sequence is decreasing by 0.08% when
the number of layers increases from 72 to 86, but is otherwise increasing to its maximum of
18.72% when 128 layers are present, which was also the considered number in the previous
section. The thicknesses of the optimized structure are found in table A.2 in Appendix A.
The same is done for ηTE =4% and its efficiency as function of number of layers in seen
in Fig. 7.15b, where the efficiency of a perfect beamsplitter is found to be 17.56%. The
maximum is found to be 17.18% for 114 layers thus a relative improvement of 8.9% is
achieved, where 18.7% was achieved when ηTE =8% supporting the fact that the relative
improvement scales approximately linear with ηTE as also found in [4]. The thicknesses
of the optimized structure are found in table A.1 in Appendix A.

(a) Maximal total efficiency as a function of
number of layers for ηT E =8% for the amor-
phous solar cell.

(b) Maximal total efficiency as a function of
number of layers for ηT E =4% for the amor-
phous solar cell.

Figure 7.15: Maximal total efficiency as a function of number of layers for fixed
ηT E for the amorphous solar cell.

7.3.2 Efficiency as a Function of Incident Angle

This subsection is analogue to Sec. 7.1.2 and 7.2.2 and examines the efficiency as a function
of incident angle for an amorphous solar cell where the applied structure is optimized for
an incident angle of 45◦.
The same is done as earlier where the number of layers is kept constant at the value giving
the highest efficiency in Fig. 7.15, which was found to be 128 for ηTE =8% and 114 for
ηTE =4%. Varying the incident angle from 35-55◦ gives the efficiencies in Fig. 7.16, where
the maximum is 18.73% for 44◦ when ηTE =8% and 17.19% for 44◦ when ηTE =4%. The
efficiencies show same parabolic behaviour as the microcrystalline solar cell in Fig. 7.11,
and the critical angles for ηTE =8% and 4% are found to be 74◦ and 69◦, respectively, and

92



7.4. Orientation of the Beamsplitter

for an incident angle of 0◦ the efficiencies are 18.17% and 16.89%, thus significantly higher
than for a singe solar cell, supporting the fact that there is no lower critical angle.

(a) Total efficiency as a function of angle for
ηT E =8% where the structure consists of 128
layers.

(b) Total efficiency as a function of angle for
ηT E =4% where the structure consists of 114
layers.

Figure 7.16: Total efficiency as a function of angle for fixed ηT E and number of
layers. The black horizontal lines are the efficiency of a single amorphous solar cell
at 15.77%.

For the amorphous solar cell with removed imaginary part of the refractive index for
MgF2 the thickness of the front layer is found to be 73 nm, where it was 28 nm before
as seen as the first number in Table A.2. The efficiency is found to be 18.73%, thus only
0.01 percentage points higher than before. Hence for the amorphous solar cell it is not
worthwhile trying to fabricate such an artificial material.

7.4 Orientation of the Beamsplitter

Until now the orientation of the beamsplitter has been as in Fig. 2.11 with MgF2 as
the first layer and glass as the last layer. As mentioned in Sec. 2.4.1 reciprocity causes
that the transmittance through the beamsplitter is the same as if light is incident from
the other direction, but the reflectance and absorbance depend on the orientation of the
beamsplitter as seen in Fig. 2.9. One of the purposes of the beamsplitter is to reflect
the light in the band gap where the transmittance is small, but it is also possible that
this light is absorbed instead of reflected which will decrease the efficiency of the hybrid
system. The optimal orientation of the beamsplitter is the one with the highest reflectance
in the band gap. The reflectance is calculated for light incident from both sides on the
same beamsplitter and is seen in Fig. 7.17a for a microcrystalline solar cell and in Fig.
7.17b for an amorphous solar cell.
In both figures the difference between the two directions is largest in the band gap and the
reflectance is highest for light incident from right as it is almost equal to one in the entire
band gap while oscillations exist when light is incident from left, which is most clearly seen
in Fig. 7.17a. For light incident from left absorbance occur mostly in the band gap as seen
in Fig. 7.9, and it is noticed that the reflectance in Fig. 7.9d is the same as the reflectance
for light incident from left in Fig. 7.17a. In the band gap no light is transmitted through
the beamsplitter and must either be reflected or absorbed in MgF2 layer. At the first
interface between air and MgF2 some light is reflected and another part transmitted into
the beamsplitter, but when it cannot be transmitted it is reflected at other interfaces and
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(a) Reflectance for light incident from left and
right on the optimized beamsplitter consisting
of 164 layers when a microcrystalline solar cell
is applied and ηT E =8%.

(b) Reflectance for light incident from left and
right on the optimized beamsplitter consisting
of 128 layers when an amorphous solar cell is
applied and ηT E =8%.

Figure 7.17: Reflectance for light incident from left and right on an optimized
beamsplitter. In the band gaps the reflectance is highest for light incident from
right and the optimal orientation is opposite as considered earlier.

transmitted through the MgF2 layer again on the way out of the beamsplitter. Hence the
light has possibly to pass through the absorbing layer more than once, implying that the
absorbance increases in the band gap. Outside the band gap the light can be transmitted
through the entire beamsplitter, thus it is only necessary to pass through the absorbing
layer once and the absorbance gets smaller.
On the other hand when light is incident from the opposite direction, MgF2 is the final layer
and much of the light is reflected before entering the absorbing layer, and the absorbance
is therefore smallest for this orientation and the reflectance is highest. This direction is
opposite of what has been done so far, thus it is better to change the orientation of the
beamsplitter such that the light enters the structure from the glass side and leaves it from
the MgF2 layer, as illustrated in Fig. 7.18 where the orientation is opposite of Fig. 2.11.
Notice that this is opposite of the example with a metal film deposited on glass from [19]
as illustrated in Fig. 2.9. The reason for this deviation must be that [19] only considers a
metal layer and a glass layer, while the beamsplitter studied here contains more than 100
layers and many more reflections can therefore occur.
The efficiency is calculated for the reversed orientation and is found to be 19.52% for the
microcrystalline and 18.81% for the amorphous for ηTE =8% where the numbers were
19.25% and 18.72% for the original orientation. For ηTE =4% the efficiencies are found to
be 18.45% and 17.22%, where they were 18.44% and 17.18% for the original orientation.
The critical angles are found in the same way as earlier and yield 66◦ and 75◦ for the
microcrystalline solar cell and 70◦ and 75◦ for the amorphous.
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Figure 7.18: Optimal orientation of the beamsplitter where light enters from the
glass side and leaves from the MgF2 side. This orientation is opposite of Fig. 2.11
and of what has been done so far.

7.5 Results for a Low-wavelength-pass Beamsplitter

Until now the thesis has considered a high-wavelength-wavelength-pass beamsplitter whose
purpose is to reflect the short wavelengths onto the solar cell as seen in Fig. 1.1b where
the thermoelectric element is below the beamsplitter. A low-wavelength-pass beamsplitter
as suggested in [33] is seen in Fig. 1.1a and is studied in detail in this section. Because of
the switch in position between the solar cell and thermoelectric element the ideal trans-
mittance is completely opposite to that in Fig. 1.3b and is instead seen in Fig. 7.19
where the three important parts of the wavelength interval are clearly seen. As for the
high-wavelength-pass beamsplitter the ideal reflectance equals one in the region where the
ideal transmittance is zero, thus absorption is not present in the ideal case as expected.

Figure 7.19: Ideal transmittance for a low-wavelength-pass beamsplitter. The
very short wavelengths are reflected onto the thermoelectric element, the medium
long wavelengths transmitted onto the solar cell while the longest wavelengths are
reflected onto the thermoelectric element.
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7.5.1 Origin of Higher Order Band Gaps

In this subsection the origin of higher order band gaps is explained.
An initial guess is needed in order to run the optimization program, but it turns out
that it is impossible to have a good initial guess whose transmittance is close to the
ideal one in Fig. 7.19. The layers are constructed from Eq. (2.30) with a thickness of
a = λ0/(4n cos θ) where λ0 is the design wavelength for the band gap in the beamsplitter
and θ is the propagation angle in the material. As explained in Sec. 2.3.1 these thicknesses
imply a phase change of π/2 after propagating through the layer, thus propagating forth
and back implies a phase change of π. The interface from low to high refractive index also
gives a phase change of π, leading to constructive interference between the waves reflected
at the first and second interfaces, and similar occur for the other interfaces. [17] If a
wavelength of λ = λ0/3 is incident on the structure, the phase changes after propagation
through each layer becomes 3π/2 instead of π/2, but the reflected waves are still in phase
and constructive interference occurs, thus a band gap of a third of the design wavelength
also exists. This is the first higher order band gap and similar band gaps are found for
λ = λ0/5, λ = λ0/7 and so on. The three times shorter wavelengths have a three times
higher energy, and these higher order band gaps are seen in the dispersion relations in Fig.
2.3. Another way to show the existence of the higher order band gaps is from Eq. 2.28,
which contains factors like cos(a1kz1) on its right hand side. For real refractive indices it
is found that

cos(a1kz1) = cos
(

λ0
4n1 cos θ

2π
λ
n1 cos θ

)
= cos

(
π

2
λ0
λ

)
, (7.1)

where it is utilized that a1 has the optimal thickness of λ0/(4n1 cos θ). When λ = λ0 the
factor in Eq. (7.1) equals zero, similar is found when λ = λ0/3, and the same argument
applies for the other factors in Eq. (2.28), showing that its right side is unchanged when
the wavelength is a third of the design wavelength, and higher order band gaps therefore
exist at these energies.
If the structure is still periodic but does not consist of quarter wave layers, a phase shift
after propagating through a periodic of an integer times π still gives rise to constructive
interference. This implies that higher order band gaps occur for λ = λ0/m, wherem is any
integer and not just odd. This is also seen in the dispersion relations in Fig. 2.3 where the
structure slightly deviates from being quarter wave layers, which leads to the small band
gaps that would not be present if a perfect quarter wave structure was applied. These
small band gaps are found for an energy twice as big as for the first band gap coming from
the first higher order band gap at λ = λ0/2.

7.5.2 Low-wavelength-pass Beamsplitter for a Microcrystalline Solar Cell

In this subsection the effect of higher order band gaps is examined for the microcrystalline
solar cell and it is investigated whether it is possible to construct a low-wavelength-pass
beamsplitter.
For the microcrystalline solar cell with ηTE =8% the desired band gap now becomes from
1054-2500 nm as illustrated in Fig. 7.19, and the first higher order band gap at a third of
the wavelength becomes from approximately 350-870 nm, and next band gap at a fifth of
the wavelength from approximately 210-500 nm. The structure consists of quarter wave
layers, thus the other higher order band gaps are not seen here. These two higher order
band gaps together exits for the wavelengths from approximately 210-870, thus covering a
large part of the interval where no band gap is desired. Following the same method as in
Sec. 6.2.1 to construct the initial guess, it is found to consist of 13 blocks with 7 unit cells
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in each, resulting in 184 layers in total. The transmittance, reflectance, and absorbance for
the initial guess is seen in Fig. 7.20a, where a complete band gap is seen for wavelengths
above approximately 1080 nm. It was desired to have a high transmittance from 489-1054
nm, but the higher order band gaps cover the most of this interval and the transmittance
is only high from approximately 860-980 nm as seen in the figure, and the transmittance
is not at all close to the ideal one in Fig. 7.19. If a narrower band gap is desired it is

(a) transmittance, reflectance, and absorbance
for the initial guess for a low-wavelength-pass
beamsplitter consisting of 184 layers.

(b) transmittance, reflectance, and absorbance
for a structure with a desired band gap from
900-1500 nm for a beamsplitter consisting of 98
layers.

Figure 7.20: transmittance, reflectance, and absorbance for two different struc-
tures for a low-wavelength-pass beamsplitter.

possible to have a high transmittance for wavelengths below the band gap, and an example
of this is seen in Fig. 7.20b which shows the transmittance, reflectance, and absorbance
for a structure consisting of 98 quarter wave layers where the desired band gap is from
900-1500 nm. A band gap is found in the desired region and the first higher order band
gap from approximately 300-500 nm, but a high transmittance is found from 500-900 nm
because it is not covered by any band gap. The next band gap at a fifth of the wavelength
becomes from approximately 180-300 nm and is therefore not seen in the figure. Hence
it seems problematic to have a low-wavelength-pass beamsplitter, as it cannot reflect the
long wavelengths without also reflecting the short ones. To examine whether it is possible
to somehow construct such a low-wavelength-pass beamsplitter anyway, the optimization
program is run with a modified eta_function with R and T interchanged in Eq. (4.20)
to calculate the efficiency for the hybrid system with a low-wavelength-pass beamsplitter.
The transmittance for the optimized low-wavelength-pass beamsplitter is seen in Fig.
7.21a together with that for the initial guess, and the optimized structure is seen to be
significantly better than the initial guess. The transmittance becomes high in some parts
of the desired region, but it still far from the ideal transmittance for the low-wavelength-
pass beamsplitter, and furthermore the desired band gap is not complete as non-negligible
transmittance occur for some wavelengths above 1054 nm. The efficiency for the initial
guess is found to be 9.39% thus far from the limit of 17.47% for a single microcrystalline
solar cell, and for the optimized structure it is found to be 14.77%, thus still far below the
limit.
It is therefore concluded that it is not possible to have a beamsplitter that transmits the
short wavelengths and reflects the long. The efficiency for the optimization process is seen
in Fig. 7.21b, where the increase is remarkably higher than for the high-wavelength-pass

97



Chapter 7. Results

(a) Transmittance for the initial and optimized
structure for a low-wavelength-pass beamsplit-
ter for the microcrystalline solar cell

.

(b) Efficiency for the low-wavelength-pass
beamsplitter for a microcrystalline solar cell.
The optimization process uses almost 14000
function calls and achieves an increase of more
than 5 percentage point, which is much more
than for the high-wavelength-pass beamsplitter
as seen in Fig. 6.8.

Figure 7.21: Transmittance and efficiency of a low-wavelength-pass beamsplitter
for a microcrystalline solar cell.

beamsplitter considered so far. For comparison, see the efficiency for the ideal solar cell for
a high-wavelength-pass beamsplitter in Fig. 6.8, where the increase is approximately 0.8
percentage point using 5000 function calls. For the microcrystalline and amorphous solar
cells the increase during the optimization process is typical also less than 1 percentage
point and uses less than 5000 function calls. Optimizing the low-wavelength-pass beam-
splitter demands almost 14000 function calls, and results in an increase of more than 5
percentage point. This is due to the fact that the initial guess is far from the optimal and
great improvement opportunities exist for the optimization process, which therefore uses
many function calls. The initial guesses for the high-wavelength-pass beamsplitter usually
were relatively close to the ideal and fewer function calls are therefore needed during the
optimization. But as seen in the figure even the optimized efficiency is still far below
the limit of a single solar cell illustrated as the black line, and it is thus impossible to
construct such a low-wavelength-wavelength-pass beamsplitter to be implemented in the
hybrid system to increase the efficiency.

7.5.3 Low-wavelength-pass Beamsplitter for an Amorphous Solar Cell

In this subsection the same is done for the amorphous solar cell.
In the same way it is tried to construct a low-wavelength-pass beamsplitter for the amor-
phous solar cell with ηTE =8%, where the desired band gap is from 740-2500 nm. The
band gap is broader than for the microcrystalline solar cell, thus the initial guess is found
to consist of 15 blocks with 8 unit cells in each, resulting in 242 layers in total. The trans-
mittance, reflectance, and absorbance for the initial guess are seen in Fig. 7.22a, where
the band gap is almost complete in the desired region. But as in the microcrystalline
case, the transmittance is also very small in the region where it was desired to have a high
transmittance, and again the initial guess is far from optimal. Because of the broader
band gap, the first higher order band gap is from approximately 250-870 nm and covers
the entire region where no band gap was desired, and the transmittance is therefore small
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(a) transmittance, reflectance, and absorbance
for the initial guess for a low-wavelength-pass
beamsplitter for the amorphous solar cell.

(b) Transmittance for the initial and optimized
structures for a low-wavelength-pass beamsplit-
ter for the amorphous solar cell.

Figure 7.22: Comparison of transmittance for initial and optimized structure for
a low-wavelength-pass beamsplitter for the amorphous solar cell.

in that region. Hence the initial guess for the low-wavelength-pass beamsplitter with an
amorphous solar cell is even worse than for the microcrystalline case, because no region
with a high transmittance is found as it was the case for the microcrystalline in Fig. 7.20a.
The transmittances for the optimized and initial structure are seen in Fig. 7.22b, where
the optimized transmittance is only slightly better than for the initial guess and still far
from the ideal one.
The efficiency for the initial guess is found to be 8.42%, thus far below the limit of 15.77%
which is the efficiency of a single amorphous solar cell. The efficiency of the optimized
structure is found to be 8.44%, thus only 0.2 percentage points higher than the initial
guess and still far below the limit.
For both solar cell types it is thus concluded that it is not possible to construct a low-
wavelength-pass beamsplitter using the ideas presented in this thesis. If such a beamsplit-
ter is to be constructed in some way, it is probably to consist of materials whose refractive
indices significantly change as a function of wavelength, and such materials are not known
today, and a lot of research is to be done in order to fabricate such artificial materials.

7.6 Conclusion on the Results

This section contains a conclusion on the obtained results for the microcrystalline and
amorphous solar cell.
The important results obtained in this chapter are summarized in Table 7.1. For both
solar cell types the optimized efficiencies are higher when ηTE =8% than when it is 4%,
as expected, and the relative improvement of the total efficiency compared with a single
solar cell is found to be approximately linearly increasing with ηTE which is also found in
[4]. The efficiency of an amorphous solar cell is smaller than for a microcrystalline, and
the maximal total efficiencies are therefore also smaller. But the improvement is found to
be larger for the amorphous solar cell which is due to the fact that it has a lower band
gap wavelength, and thereby in itself utilizes a smaller fraction of the solar spectrum than
the microcrystalline solar cell. The relative improvement of the hybrid system using the
amorphous solar cell is almost almost twice as big than for the microcrystalline solar cell
as seen in the 6th row in the table, and approximately the same result is obtained in [4]
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Solar cell type Microcrystalline Microcrystalline Amorphous Amorphous
Thermoelectric efficiency 4% 8% 4% 8%
Single solar cell 17.47% 17.47% 15.77% 15.77%
Perfect beamsplitter 18.79% 20.23% 17.56% 19.43%
Optimized beamsplitter 18.44% 19.25% 17.18% 18.72%
Number of layers 162 164 114 128
Relative improvement 5.5% 10.2% 8.9% 18.7%
Critical angle 66◦ 71◦ 69◦ 74◦
Low-pass beamsplitter No No No No
Reverse orientation
Optimized beamsplitter 18.45% 19.52% 17.22% 18.81%
Relative improvement 5.6% 11.7 % 9.1 % 19.2%
Critical angle 70◦ 75◦ 69◦ 75◦

Table 7.1: Overview of the results for the microcrystalline and amorphous solar
cell where the last three rows are for the reverse orientation of the beamsplitter.
The thicknesses of the optimized beamsplitters are seen in Appendix A.

where other data for the solar cell efficiency has been applied and a perfect beamsplitter
assumed. The hybrid system ensures that wavelengths for the entire solar spectrum is
partly utilized, and this is therefore most beneficial for the amorphous solar cell. When it
also has a lower efficiency the relative improvement gets larger too and is 18.7%. Another
advantage in using the amorphous solar cell is that the optimized beamsplitter consists of
significantly fewer layers.
The efficiencies for both solar cell types are found to be approximately parabolic as a
function of incident angle, where the maximum occurs for angles close to 45◦. The cur-
vature of the parabola is relative small and the efficiency only changes slightly when the
angle is varied from 35-55◦, hence the beamsplitter is not so sensitive to incident angle.
This is a nice property as it therefore becomes unnecessary to use different beamsplitters
optimized for different incident angles but the optimized beamsplitter in this thesis should
be enough.
It is found that higher order band gaps make it impossible to construct a low-wavelength-
pass beamsplitter, and the optimization process for both solar cell types yield that the
efficiency of the hybrid system when a low-wavelength-pass beamsplitter is applied is
smaller than the efficiency of a single solar cell. The configuration of the hybrid system
must therefore be that of a high-wavelength-pass beamsplitter as seen in Fig. 1.1b.
At last it is found that the efficiency of the hybrid system increases if the orientation of
the beamsplitter is reversed, such that light enters the beamsplitter from the glass side
and leaves it from the MgF2 side as illustrated in Fig. 7.18. The last three rows in the
table are the results when the beamsplitter is reversed.
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8. Conclusion

In the thesis a design of a beamsplitter for a hybrid system consisting of a solar cell and a
thermoelectric element has been studied, where the beamsplitter directs the relevant part
of the solar spectrum onto the solar cell and the remaining part onto the thermoelectric
element. The beamsplitter consists of more than 100 alternating layers of Si3N4 and SiO2
deposited on glass with an outer layer of MgF2, and these thicknesses are optimized in
order to maximize the efficiency of the hybrid system which exceeds the efficiency of a
single solar cell. Thus the thesis considers the optimization of a complicated function of
more than 100 variables.

Starting with Maxwell’s equations an analytic solution of the wave equation for the elec-
tric field in an infinite beamsplitter has been found and band gaps are seen to occur. Two
equivalent transfer matrix methods dealing with a finite beamsplitter have been derived in
order to calculate the transmittance, reflectance, and absorbance through the beamsplit-
ter. There exist regions where the transmittance is zero which correspond to the band
gaps.
Solar cells have been studied and expressions for their efficiency derived. Starting with
ideal solar cells without any losses an upper limit for the efficiency is found and limiting
factors are taken into account in order to describe real solar cells, where a microcrystalline
and an amorphous solar cell are considered in the calculations. Thermoelectric elements
have been studied and expressions for their efficiency derived, where efficiencies of 4% and
8% are applied in the calculations and an expression for the total efficiency of the hybrid
system is found.
Three different optimization methods have been studied in detail and implemented in
Matlab in order to optimize the thicknesses of the beamsplitter. As an initial guess to the
optimization process a quarter wave structure has been applied. The optimization meth-
ods are compared based on their performance and time consumption, and the Nelder-Mead
method is found to be approximately 7.4 times better than the two gradient methods.
A design of the hybrid system is suggested in [33] where a low-wavelength-pass beam-
splitter is assumed as illustrated in Fig. 1.1a, but due to higher order band gaps such
a beamsplitter has been found impossible to construct. It is found that a design with a
high-wavelength-pass beamsplitter as illustrated in Fig. 1.1b is better. For this beam-
splitter type the efficiency of the hybrid system is found to be noticeable higher than for
single solar cells, and that the relative improvement scales approximately linear with the
thermoelectric efficiency. The microcrystalline solar cell has a higher efficiency than the
amorphous, but the improvement of the efficiency is larger for the amorphous, which is
due to its smaller band gap wavelength. The relative improvement for the amorphous
solar cell is found to be almost twice as big as for the microcrystalline. The efficiencies
are found as function of number of layers and incident angle when it varies from 35-55◦,
and is found to be approximately parabolic with a small curvature, thus it is sufficient to
consider a beamsplitter consisting of just one optimized structure. It is found optimal to
orient the beamsplitter in such a way that light enters it from the glass side and leaves
from the MgF2 side as illustrated in Fig. 7.18. Optimal thicknesses for constructing the
beamsplitter are found in Appendix A.
The results for the high-wavelength-pass beamsplitter are summarized in Table 7.1.
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A. Thicknesses of the Optimized Beamsplitters

This appendix contains the thicknesses for the optimized beamsplitters for an amorphous
and microcrystalline solar solar cell with ηTE =4% and 8%. These thicknesses are to be
used when fabricating the beamsplitter, but notice that unit cell number 1 contains the
front layers and the last unit cell contains the layers directly on the glass substrate, thus
when fabricating the beamsplitter the tables have to be read from behind.

Unit cell number Si3N4 SiO2 Unit cell number Si3N4 SiO2
1 12∗ 88 30 67 109
2 24 65 31 67 101
3 47 22 32 75 100
4 67 58 33 70 110
5 50 72 34 72 114
6 46 83 35 78 124
7 35 61 36 78 121
8 47 80 37 81 103
9 51 66 38 72 105
10 45 71 39 75 124
11 50 81 40 83 123
12 50 74 41 83 120
13 57 84 42 81 113
14 54 68 43 73 100
15 65 100 44 80 124
16 41 98 45 86 121
17 46 82 46 81 156
18 68 90 47 86 130
19 52 87 48 94 131
20 50 90 49 96 141
21 58 78 50 89 132
22 60 107 51 93 137
23 66 101 52 89 144
24 62 90 53 89 134
25 65 99 54 95 119
26 70 98 55 98 136
27 64 95 56 86 123
28 61 102 57 70 134
29 77 94

Table A.1: Thicknesses in nm of the optimized beamsplitter for the amorphous
solar cell with ηT E =4% which consists of 114 layers. The number with a ∗ is the
thickness of the front layer of MgF2 and all the thicknesses are rounded to an integer.
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Appendix A. Thicknesses of the Optimized Beamsplitters

Unit cell number Si3N4 SiO2 Unit cell number Si3N4 SiO2
1 28∗ 64 33 65 101
2 24 70 34 73 109
3 51 57 35 71 101
4 48 68 36 75 110
5 39 68 37 78 110
6 54 68 38 81 115
7 41 70 39 77 117
8 44 91 40 76 126
9 48 56 41 80 115
10 42 63 42 77 117
11 49 79 43 81 94
12 54 74 44 75 113
13 55 85 45 77 116
14 63 70 46 81 124
15 55 89 47 89 130
16 56 85 48 84 131
17 63 62 49 91 138
18 53 79 50 86 130
19 58 88 51 87 124
20 60 91 52 102 128
21 60 101 53 94 127
22 59 98 54 91 135
23 70 110 55 85 131
24 66 97 56 96 134
25 61 75 57 92 128
26 66 95 58 87 134
27 65 94 59 93 129
28 60 95 60 86 131
29 72 100 61 89 127
30 74 115 62 92 135
31 69 90 63 83 125
32 64 101 64 57 144

Table A.2: Thicknesses in nm of the optimized beamsplitter for the amorphous
solar cell with ηT E =8% which consists of 128 layers. The number with a ∗ is the
thickness of the front layer of MgF2 and all the thicknesses are rounded to an integer.
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Unit cell number Si3N4 SiO2 Unit cell number Si3N4 SiO2
1 4∗ 148 42 101 151
2 3 98 43 103 145
3 70 105 44 104 164
4 71 101 45 103 161
5 65 105 46 119 161
6 66 101 47 96 166
7 66 101 48 113 159
8 67 101 49 105 157
9 64 98 50 98 169
10 72 98 51 116 160
11 68 103 52 110 169
12 68 101 53 132 165
13 76 109 54 121 169
14 84 107 55 114 164
15 83 119 56 108 168
16 70 122 57 93 163
17 70 105 58 123 176
18 89 111 59 125 175
19 83 117 60 125 182
20 79 113 61 127 174
21 88 133 62 133 162
22 85 116 63 115 177
23 78 118 64 117 182
24 83 128 65 128 184
25 87 119 66 131 187
26 84 124 67 126 194
27 91 141 68 136 191
28 88 120 69 131 191
29 82 133 70 137 189
30 91 133 71 133 195
31 90 131 72 128 202
32 92 147 73 135 183
33 93 123 74 139 196
34 96 141 75 127 197
35 92 152 76 129 204
36 92 163 77 133 196
37 95 137 78 133 193
38 96 144 79 129 193
39 99 143 80 124 168
40 94 148 81 116 276
41 104 141

Table A.3: Thicknesses in nm of the optimized beamsplitter for the microcrys-
talline solar cell with ηT E =4% which consists of 162 layers. The number with a ∗
is the thickness of the front layer of MgF2 and all the thicknesses are rounded to an
integer.
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Appendix A. Thicknesses of the Optimized Beamsplitters

Unit cell number Si3N4 SiO2 Unit cell number Si3N4 SiO2
1 65∗ 102 42 96 148
2 67 118 43 101 146
3 75 103 44 94 134
4 68 102 45 97 140
5 68 102 46 100 158
6 68 102 47 106 160
7 68 100 48 113 166
8 67 102 49 106 163
9 67 103 50 109 152
10 70 100 51 103 160
11 72 93 52 106 163
12 77 89 53 109 162
13 74 112 54 110 161
14 68 112 55 107 167
15 77 109 56 109 169
16 75 110 57 115 176
17 73 105 58 116 173
18 72 110 59 119 177
19 75 110 60 115 174
20 80 120 61 113 167
21 86 120 62 113 174
22 79 119 63 118 176
23 77 131 64 115 178
24 89 124 65 120 180
25 84 118 66 121 181
26 83 115 67 123 179
27 81 116 68 127 186
28 84 115 69 129 188
29 86 136 70 131 190
30 90 132 71 131 191
31 81 135 72 133 189
32 89 140 73 131 189
33 92 122 74 133 190
34 91 120 75 132 193
35 88 120 76 132 192
36 88 137 77 130 190
37 96 135 78 130 196
38 100 160 79 132 193
39 101 145 80 126 189
40 100 142 81 126 176
41 97 140 82 101 286

Table A.4: Thicknesses in nm of the optimized beamsplitter for the microcrys-
talline solar cell with ηT E =8% which consists of 164 layers. The number with a ∗
is the thickness of the front layer of MgF2 and all the thicknesses are rounded to an
integer.
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B. Link to Matlab Code

A big and important part of the thesis consists of the developed Matlab code, which can
be found in the following link from the author’s Dropbox:
https://www.dropbox.com/sh/i9rm4o4fthu6hsa/AACdq3RaUUDPM-UqDwMjt060a?dl=0

The folder contains 7 txt files and 9 Matlab files. The txt files contain data of refractive
indices from [1] and [18], the solar spectrum from [8] and the internal quantum efficiency
for the microcrystalline solar cell from [11], and to run the code it is necessary to save all
these files. The MAIN FILE is the code to run as it calls all the other functions in the
folder. To obtain the results presented in the thesis takes several hours depending on the
computer, but the present default settings in the MAIN FILE from the link is set such that
the code can be executed in few minutes. To change these settings to those in the thesis,
change lambda_diff in line 12 from 20 to 1 and nu in line 23 from 1 to 8. Other results
can be obtained by changing the solar cell type and beamsplitter type. It is found that
the admittance method is approximately 1.5 times faster than the electric field method
and that the Nelder-Mead is approximately 7.4 times faster than the gradient methods,
thus it is recommended to use these methods when running the code.
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