

Master Thesis

Compressive sensing for IoT-driven

reliable video surveillance

June 2016

Student: Supervisor:

Laetitia REVERSEAU Daniel E. LUCANI

 1

Department of Electronic Systems

Fredrik Bajers Vej 7

DK-9220 Aalborg O

https://es.aau.dk

Title:

Compressive sensing for IoT-

driven reliable video

surveillance

School and Study Board:

School of Information and

Communication Technology

(SICT)

Programme:

Network and Distributed

Systems

Student name:

Laetitia Reverseau

Project group:

16gr1026

Project Supervisor:

Daniel E. Lucani Roetter

Project Period:

Spring Semester 2016

Date of Completion:

June 2016

Abstract:

In recent years, there has been a huge explosion in

the variety of sensors and in the dimensionality of the data

the sensors required, in all kinds of applications from

medical imaging to video surveillance. As a result, a

‘deluge of data’ is occuring in many of these applications.

In 2007 according to the International Data Corporation

[1], the total amount of information being created by the

world sensors began to exceed the amount of storage.

Furthermore, transmitting all data to the cloud for further

processing is, in many applications, costly and

unnecessary. For example, providing sensor data in a farm

or video surveillance would benefit from local storage and

pre-processing before upload to the cloud. ‘Compressive

sampling’ or ‘compressed sensing’ (CS) constitutes an

appealing pre-processing technique that samples sparse

signals in a much more efficient way than the established

Nyquist density sampling theory. Since many natural

signals are sparse, CS allows for simple sensors to sample

at low rate to later use advanced algorithms for

reconstruction at the receiver.

This thesis studies how to apply compressive sensing for

video surveillance applications considering spatial

correlation within a picture (frame) and across pictures

(frames) from multiple cameras. The thesis relies on

multiple images analysed with standard metrics (e.g.,

PSNR, SSIM) and pre-processing techniques to determine

good thresholds for the early measurements and storage

requirements per image. Given our results, taking 1000

samples from an image originally containing 2500 pixels

would be enough to have a good image reconstruction,

while 300 to 500 samples will be enough to detect the

edges and contours of the image, which provides key

information for video surveillance. Finally, we propose

several mechanisms to bring together images from

multiple cameras with potential overlap and study the

effect of asymmetric sampling across the cameras.

https://es.aau.dk/

Acknowledgments 2

Acknowledgments

I would first like to thank my thesis advisor Dr. Daniel E. Lucani of

the School of Information and Communication Technology at Aalborg

University. He found the time to help me when I ran into a trouble spot or

had a question about my work. He also made sure everything was going

well apart from the completion of my thesis.

I would also like to acknowledge the department secretary, director,

and members for welcoming and helping me, especially at the beginning of

my semester.

I also wish to thank the other people working in the lab for their

kindness and for making me feel comfortable joining them.

Finally, I must express my very profound gratitude to my family for

providing me with unfailing support and continuous encouragement

throughout my years of study and in every aspect of my life. This

accomplishment would not have been possible without them. Thank you.

Table of contents 3

Table of contents

Acknowledgments ... 2

Table of contents ... 3

List of figures .. 4

Acronyms .. 6

Introduction ... 7

1.1. The video surveillance market .. 7

1.2. Network Coding .. 8

1.3. Compressive Sensing .. 10

1.4. Our proposition ... 11

State of the art in Network coding and Cloud computing 12

2.1. Coding for storage ... 12

2.2. Video processing in the Cloud .. 20

State of the art in Compressive Sensing .. 25

3.1. Compressive Sensing .. 25

3.2. Coupling of Network Coding and Compressive Sensing 30

Problem Statement .. 32

4.1. Importance of video surveillance .. 32

4.2. Architecture of video surveillance systems... 33

4.3. Requirements and stakes in video analytics .. 35

Single image processing: Compressive Sensing implementation 36

5.1. Simple Compressed Sensing examples ... 36

5.2. PSNR calculation .. 38

5.3. The limitation of PSNR and an alternative: SSIM 41

5.4. Edge detection ... 45

5.5. Conclusion .. 50

Multiple image processing: Image stitching ... 51

6.1. Feature Based Image Stitching ... 51

6.2. Image stitching and Compressive Sensing .. 61

6.3. Conclusion .. 64

Conclusion and future work .. 65

Sources .. 67

List of figures 4

List of figures

Introduction

1.1. Average data generated by new surveillance cameras

shipped globally .. 7

1.2. A classical network coding example ... 9

State of the art in Network coding and video transmission

2.1. Multicast tree example .. 14

2.2. Example showing that 50% redundancy cannot guarantee

100% reliability if any node disconnects 15

2.3. Example showing that using coding 50% redundancy can

guarantee 100% reliability if any node disconnects 15

2.4. Example of the repair process when using a (6, 4) MDS

code ... 17

2.5. How cloud computing works ... 21

2.6. Split&Merge architecture deployed on a public Cloud

infrastructure (Amazon Web Services) 23

State of the art in Compressive Sensing

3.1. Several representations of a signal in different basis 29

Problem Statement

4.1. Standard digital data acquisition approach 35

Single image processing: Compressive Sensing implementation

5.1. Compressive measurement process and matrix product

Θ= ՓΨ .. 36

5.2. Display of the solutions to y=Θ.s. Basis pursuit solution in

red, least squares solution in blue .. 37

5.3. Loops for the least squares and basis pursuit

reconstructions .. 38

5.4. Compressive sensing example .. 38

5.5. Evolution of the PSNR in function of the number of random

measurements M from 100 to 2500 ... 39

5.6. Example showing that PSNR is a good measure for

comparing restoration results for the same image, but

meaningless between different images 41

List of figures 5

5.7. SSIM values for different images reconstructed with 100 to

2500 measurements ... 44

5.8. SSIM values for CS images with and without edge detection . 46

5.9. Comparison of different edge detection filters: Canny,

Prewitt, Sobel, Roberts, Laplacian of Gaussian 48

5.10. SSIM index and PSNR values for different edge detection

methods ... 49

Multiple image processing: Image stitching

6.1. Image stitching – horizontal shift ... 54

6.2. Image stitching – vertical shift .. 54

6.3. Image stitching – tilt ... 55

6.4. Image stitching – 3 input images .. 55

6.5. Street image stitching – 2 images ... 56

6.6. Street image stitching – 3 images ... 56

6.7. Street image stitching – Distortion because of too strong

horizontal shift .. 57

6.8. Region of bad pixels and corrected images 59

6.9. Result of the pixel-correction methods 60

6.10. CS image stitching for different sample rates 62

6.11. PSNR values between simple image stitching and CS image

stitching ... 63

6.12. “Inverse butterfly”scheme .. 64

Acronyms 6

Acronyms

CNC Compressive Network coding

CPU Central Processing Unit

CS Compressive Sensing / Compressed Sampling

FEC Forward Error Correction

IoT Internet of Things

IP Internet Protocol

IT Information Technology

LoG Laplacian of Gaussian

MDS Maximum Distance Separable

MSE Mean-Squared Error

NC Network coding

NVR Network Video Recorder

PSNR Peak to Signal Noise Ratio

RLNC Random Linear Network coding

SSIM Structural Similarity Index Measurement

WSN Wireless Sensor Network

Introduction 7

Chapter 1

Introduction

1.1. The video surveillance market

The security market is all the time adopting new technologies to

guarantee protection to people and their property. The world market for

video surveillance solutions is experimenting a wide digitalization to reach

the critical mass, and has experienced a strong growth in recent years, which

is forecast to continue at rate of 12.4% per year to $25.6 billion in 2018 [2].

The ‘deluge of data’ continues to increase with the proliferation of

always higher resolution cameras, reaching 566 petabytes of data produced

in one day by all the video surveillance cameras installed worldwide in 2015

– as announced in IHS new survey carried out in early 2016 [3].

Figure 1.1: Average data generated by new surveillance cameras shipped

globally. [3]

Video surveillance cameras produce a huge amount of high

resolution data, which becomes a challenge to compute and store. Thus,

enterprise storage systems dedicated to video surveillance need to have a

larger throughput capacity. Previously separated, IT and security have

finally joined forces to meet the increase of surveillance storage demands.

However, past approaches will no longer be sufficient and those demands

may force end-users to change their storage solutions.

Introduction 8

VSaaS – standing for Video Surveillance as a Service – has emerged

as a reliable alternative to store and manage surveillance videos in the cloud.

Many see this solution as a more effective software maintenance and

support for their surveillance systems. But not everyone is ready to store

their video in the cloud, though the technology has evolved and is now

proved as a viable substitute to other types of video surveillance solutions.

Therefore, storage of this data in a reliable fashion in the IoT devices is

more important than ever. Given that IoT devices may be accessible to

physical attacks (e.g., someone can steal the device and its stored data), the

system shall rely on a highly distributed and secure storage mechanism

based on state of the art erasure correcting technologies (network coding) to

split and encrypt the data prior to its storage in the various devices and even

with additional ‘coded copies’ for system robustness. This means that no

single IoT device will contain enough coded data to compromise the privacy

of the video streams.

1.2. Network Coding

Network coding (NC) consists in encoding and decoding transmitted

data in order to increase network throughput, to reduce delays and to make

the network more robust. The butterfly network shown in Figure 1.2 is an

example often used to demonstrate how network coding can achieved

throughput gain. It can increase the information content per transmission by

propagating random linear combination of packets into a single packet.

Besides reducing delays, network coding can also reduce the energy

consumption since fewer packets are transmitted within the cloud.

Introduction 9

Figure 1.2: A classical network coding example. The source node S would

like to multicast two bits (b1, b2) to nodes X and Y.

As explained in [4], packets are traditionally cached and forwarded

downstream. Therefore, if a routing node receives from two sources two

packets sent to the same destination, it forwards them one after another, thus

creating redundancy. This requires separate transmissions for each and

every message delivered, which decreases network efficiency. Another

problem in traditional packet-switched network – and particularly important

in video applications – is when the overall network traffic volume is high,

bottlenecks are common, resulting in long delays. Packets tend to go to

certain nodes, sometimes in excess of the nodes' ability to process them,

while other routes and nodes may remain under-utilized.

In network coding, the outgoing packets are mixed before being

transmitted to the destination along multiple paths simultaneously.

Algorithms are used to mix those two (or more) messages before forwarding

the result to the destination. The receiving node reassembles the transmitted

pieces into the original message with the same algorithm – note that the

destination node needs to be completely synchronized with the transmitting

nodes in order for this technique to work.

Network coding is perceived to be useful in networks where the

same data needs to be transmitted to several destination nodes (e.g. storage

networks, multicast streaming networks, wireless mesh networks, file-

sharing peer-to-peer networks etc.). But the regular topology in peer-to-peer

networks is changing and it poses a challenge to the network coding

Introduction 10

technique because it complicates network synchronization. Plus, the data

may take a lot of time to be decoded.

This distribution method can increase the effective capacity of a

network by minimizing the number and severity of bottlenecks. The

difference with traditional methods is even more significant when network

traffic volume is near the maximum capacity obtainable with traditional

routing. Overall, network coding can increase the efficiency in large

networks, but high overhead costs may make them less manageable for

smaller networks.

Regarding video streams, network codes should be selected in order

to maximize both the video quality and the network throughput. The video

streaming community studies in depth the unequal importance of video

packets. On the other hand, the network coding community has proved that

mixing different information flows can increase throughput in multicast

networks. In [5], video-aware opportunistic network coding schemes try to

consider both aspects – namely the decodability of network codes by several

receivers, and the distortion values and playout deadlines of video packets.

But transmitting all data to the cloud for further processing is, in

many applications, costly and unnecessary. For example, providing sensor

data in a farm or video surveillance would benefit from local storage and

pre-processing before upload to the cloud. That is why some techniques

have emerged to sample or compress data as most of the data is redundant.

1.3. Compressive Sensing

Compressive sensing (CS) is also referred as compressed sensing,

compressive sampling or sparse sampling. It is a signal processing method

used to efficiently acquire and reconstruct a signal by finding the sparsest

solution to underdetermined linear systems.

The core of signal processing is based on the Shannon/Nyquist

theorem: a continuous time-signal sampled at twice its highest frequency,

can be recovered exactly. Very recently, an alternative theory has emerged,

known as ‘compressive sensing’. By using nonlinear recovery algorithms

(based on convex optimization of the l1-norm described more in depth in

Chapter 2), super-resolved signals and images can be reconstructed from

what appears to be highly incomplete data. For example, CCD digital

cameras (charge coupled device) take pictures with around 10 million

pixels. In the end, about 5% of the initial measurements will be stored

because the other 95% give redundant information. So instead of acquiring

and then throwing away most of the data, the idea of CS is to directly get

Introduction 11

only the informative part of the signal. Thus, compressive sensing shows us

how data compression can be implicitly incorporated into the data

acquisition process, and gives a new perspective for many applications

including analog-to-digital conversion.

This is a pre-processing step in the process of IoT-video surveillance

storage, which can be divided into capture of video surveillance, storage of

this data in a reliable fashion in the IoT devices, and allowing access and

playback by users. This project will focus specifically on compressive

sensing for data compression as part of an efficient protocol that could

automatically translate analog data into already compressed digital form to

be later computed for reconstruction.

Compressed sensing could have important implications, such as new

data acquisition protocols that translate analog information into digital form

with fewer sensors than what was considered necessary. Processes for

simultaneous signal acquisition and compression could be improved with

this new sampling theory.

1.4. Our proposition

As video surveillance cameras have higher and higher resolution, the

challenge of reducing the amount of data to be stored is more important than

ever. We considered two main cases: a scene recovered by a single camera,

and a zone covered by multiple cameras.

In the first case, we worked on applying compressive sensing within

a picture while maintaining a good image quality. We evaluated the quality

of the compressed images with two different techniques: the PSNR and the

SSIM index. Finally, we investigated the utility of applying edge detection

filters on CS images to get better results with fewer samples.

In the second case, as there is most likely some overlap between the

different devices to assure a full coverage of the area, we worked on how to

combine several images. We also considered the application of image

stitching besides compression. For this, we proposed three scenarios

depending on the order in which the transformations (compression and

stitching) were applied.

Even though we ran the different image processing methods locally

rather than dealing with cloud computing, we also included a state of the art

of video processing in the cloud since this concept is becoming ubiquitous

in the digital era we are living in and the resulting data deluge.

State of the art in Network coding and Cloud computing 12

Chapter 2

State of the art in Network coding and Cloud computing

2.1. Coding for storage

2.1.1. Erasure coding and Network coding for storage

Distributed storage aims at storing data over a long period of time

and in a reliable way. It uses a distributed collection of storage nodes which

may be individually unreliable. Erasure coding offers a good option to store

those data efficiently. It breaks the outgoing file of size M into k packets of

size M / k, and instead of storing n replicas of the fragments, n coded pieces

are produced using an encoder and a maximum distance separable (MDS)

code (n, k). Then, any set of k pieces of size M / k is enough to recover the

whole file, which makes the approach optimal in terms of

reliability/redundancy tradeoff [18, 20]. This technique is much more

reliable for the same amount of redundancy than simple replication [19].

Moreover, the system should no longer keep track of where the replicated

pieces are stored. Instead it should only guarantee that enough different

pieces are available at any time.

One of the most frequently used digital error control codes are Reed-

Solomon codes, especially for the redundancy in data storage systems.

The use of traditional MDS codes raises new difficulties. When a

node fails or disconnects from the network, the system must compensate the

redundancy lost with that node. With replication, the piece lost is simply

copied from another node in the network, without any repair overhead i.e. to

repair k bits, only k bits are transmitted over the network. On the other hand,

codes like Reed-Solomon first need to decode the whole file to be able to

generate new coded pieces. Thus, repairing a fragment of size M / k requires

a minimum bandwidth of M, i.e. at least the whole file must be transferred

over the network every time the system builds new redundancy.

Network coding appears as a solution to this difficulty. This recent

technique enables to generate erasure codes – also known as forward error

correction (FEC) codes – which allow repairing by transmitting the

information theoretic minimum over the network [18]. The most common

technique of network coding is Random Linear Network Coding (RLNC).

This technique, when used for file coding purpose, takes the original k

pieces of a file x1, x2,…, xk and creates n linear combination p1, p2,…, pn of

the same size called coded packets, where pj is:

http://searchmobilecomputing.techtarget.com/definition/forward-error-correction
http://searchmobilecomputing.techtarget.com/definition/forward-error-correction

State of the art in Network coding and Cloud computing 13

 𝑝𝑗 = ∑ 𝒄𝒊,𝒋. 𝒙𝒊

𝑘

𝑖=1

(2-1)

𝒄𝒊,𝒋 are the coefficients chosen randomly and independently by

each node over a finite field, commonly the Galois Field i.e. of the form

GF(2
m
) – in general GF(2

8
) is sufficient. These coefficients are then

appended to each coded packet, so receiver nodes will know how to recover

the source data. Similarly as in Reed-Solomon codes, any set of k linear

independent packets are enough to decode the file. Yet, an innovation of

network coding over Reed-Solomon codes is that it allows the recoding of

already-coded packets p1, p2,…pn , i.e. it is possible to generate new coded

packets p’ without decoding the whole file. p’ is:

𝑝′ = ∑ 𝑐𝑖 . 𝑝𝒊

𝑛

𝑖=1

(2-2)

As random combinations of the files are distributed among the peers

and cloud services instead of just raw data, network coding offers an

intrinsic level of security. The data remains private even when

“mischievous” peers are present in the network or when a cloud service gets

compromised by external agents. An eavesdropper would need to

compromise the whole system and gather enough coded packets in order to

be able to decode and “understand” the data.

At the same time, network coding has proven benefits in several

communication scenarios. In point-to-point communications, it allows to

repair packet losses in lossy channels. If there is an estimation of the packet

error probability, the transmitter can send extra coded packets. Since it is

not relevant to know which specific packets got lost, this does not require

extra feedback from the receiver. In multicast scenarios over lossy wireless

channels, when several nodes want to receive the same data, if the

transmitter broadcasts uncoded packets, then it will need to retransmit every

single lost packet. Due to the uncorrelated losses, many of these

retransmissions will be useful only for a few nodes. If coded packets are

sent instead, the information contained in the retransmitted packets might

benefit with high probability all the nodes that experienced losses.

By using network coding in a distributed storage system to manage

the storage and communications with a single code structure, this project

takes advantages of the benefits of that technology in the field of storage

State of the art in Network coding and Cloud computing 14

and wireless communications. This brings reliable multicast and higher data

transmission rates in lossy channels.

As underlined in [21], adapting network coding to robust video

transmission in wireless networks raises several challenges in terms of video

quality, bandwidth and delays. Indeed, wireless networks can suffer from

dynamic channel variations and interference in a shared medium. There are

different options to address these issues. One of them is to apply NC erasure

protection over the different channels, i.e. over uplink, downlink and

overhearing channels, especially in the context of video conferencing, live

surveillance or other live-video applications. Another solution is to assign

an unequal amount of forward error correction codes on different video

layers based on their importance. FEC gives the receiver the ability to

correct errors without needing a reverse channel to request retransmission of

data, but at the cost of a larger forward channel bandwidth. Another way to

achieve robust video transmission is to build multiple multicast trees, and

thus to provide path diversity.

Figure 2.1: Multicast tree example: node S sends a message to

multiple destinations in the set of destinations, through the tree.

2.1.2. Coding for distributed storage

When parts of the file are replicated in the network, the only way

to guarantee its recovery is to have at least a duplicate of the file in the

system. This means that p redundant pieces must be added to the system in

order to store a file of p pieces. In Figure 2.1 with p=4, it can be seen that if

only half of the file is stored as redundancy, the system cannot guarantee

100% reliability of the file if any node disconnects. It guarantees reliability

only if the failing node has this piece replicated somewhere else in the

network.

State of the art in Network coding and Cloud computing 15

Figure 2.2: Example showing that 50% redundancy cannot

guarantee 100% reliability if any node disconnects. In case a) the

file cannot be recovered, it can be in b).

As previously mentioned, there is nonetheless an alternative to the

storage of exact replicas of the pieces in the network. For instance, MDS

codes such as Reed-Solomon codes enable to encode the p pieces into coded

packets that can be distributed into the nodes. The advantage of this method

is that any set of p coded packets are enough to reconstruct the file.

Figure 2.3: Example showing that using coding 50% redundancy

can guarantee 100% reliability if any node disconnects. In both

cases the file can be recovered.

Figure 2.3 is based on the same example as in Figure 2.2. The same

file of four pieces P1, P2, P3, P4 is now encoded with a (6, 4) MDS code, into

six coded packets CP1, CP2,…, CP6 stored in the nodes. By doing this and

opposed to the Figure 2.2 example, a redundancy of 50% of the file is

enough to guarantee that the information is recoverable no matter which

node disconnects in the network.

The problem of storage in distributed networks goes beyond than

just encoding a file and distributing the coded packets among the nodes.

MDS codes are optimal in the reliability/redundancy tradeoff [20] because a

file split into k pieces and encoded with a (n, k) code contains the minimum

State of the art in Network coding and Cloud computing 16

information required to recover the original data. However, when a node

fails or disconnects, then the system must compensate to keep the same

level of reliability/redundancy, i.e. the other nodes must reconstruct in the

system the redundancy lost with the disconnected node. This maintenance –

called repair – requires bandwidth resources to be performed. Distributed

storage systems are built in shared networks where sometimes the

bandwidth costs are higher than the storage ones. In that sense, the optimal

reliability/redundancy tradeoff is not enough.

We might be willing to sacrifice some of the storage resources

to be able to repair using less bandwidth. Many researchers study the

reconstruction of the redundancy in newcomer nodes (i.e. when a node fails,

some redundancy is built into a new node) and they focus on the costs in

terms of bandwidth and storage associated with the repair. When MDS

codes are used and the system performs a repair, it needs to reconstruct the

whole file in a node, and subsequently generate new coded packets that will

be stored in a newcomer node. This means that to repair the redundancy lost

with a disconnected node, if each node stores a fraction M / k of a file, the

process would require the download of (k-1)*(M / k) bytes into a node to be

able to reconstruct the file. Then, this node would generate a M / k byte

packet that would be sent to the newcomer node. In conclusion, to repair

M / k bytes the system must transfer (k-1)*(M / k) + M / k = M bytes, i.e. the

whole file must be transferred over the network. An example is shown in

Figure 2.4 with a system which distributes a file into six nodes using a (6, 4)

MDS code.

Figure 2.4: Example of the repair process when using a (6, 4)

MDS code. The whole file is transferred over the network.

State of the art in Network coding and Cloud computing 17

This reliability/redundancy tradeoff in this kind of repairs has

been recently studied ([18, 20] among others), concluding that by using

network coding it is possible to generate codes capable of reducing the

bandwidth required for the repair. Dimakis et al. [18] found that it was

possible to find the optimal curve describing the tradeoff storage-bandwidth:

such curve can be achieved using network coding.

2.1.3. Random Linear Network Coding

Random Linear Network Coding (RLNC) is a technique used to

improve network performance in terms of throughput, scalability, efficiency

and also for resilience to attacks and eavesdropping. Contrary to the

deterministic Linear Network Coding, RLNC is a distributed scheme that

circumvents the constraint of knowing the global network topology to find

the coding coefficients. RLNC has a probabilistic success rate that increases

exponentially with field size.

In RLNC a coded packet pj is generated producing linear

combinations of the original k data pieces x1, x2,…xk such as:

 𝑝𝑗 = ∑ 𝒄𝒊,𝒋. 𝒙𝒊

𝑘

𝑖=1

(2-3)

Each coded packet can be considered as a k-variable linear

equation. Since addition and multiplication are performed over the finite

field, then the size of the coded packets will be the same size as the original

pieces. Also, it is possible to use all the known linear algebra tools

(matrices, Gauss-Jordan elimination…) to solve linear equations. Thus, a

decoder will need only k linear independent packets to be able to reconstruct

the whole data. The equation 2-4 is a different way from 2-3 to show the

link between the coded packets pi, the coding coefficients cij and the original

pieces xi.

[

𝑝1

⋮
𝑝𝑛

] = [

𝑐11 𝑐12 ⋯ 𝑐1𝑘

⋮ ⋱ ⋮
𝑐𝑛1 𝑐𝑛2 ⋯ 𝑐𝑛𝑘

]. [

𝑥1

⋮
𝑥𝑘

]

(2-4)

Metadata will need to be included with the encoded packets, so

receiver nodes will know how to recover the source data. The coefficients

used to generate each pi constitute a vector known as the coding vector

which is added as an overhead in packet transmission. The size of this

State of the art in Network coding and Cloud computing 18

coding vector in bytes depends on the size of the finite field and on the

number of original pieces used, known as generation size.

For example, to transfer an image of 2MB, it is split into 500

pieces of 4KB each. The generation size is then k=500. Each coded packet is

generated making linear combinations of vector. If the size of the finite field

is q=2, i.e. GF(2)={0,1}, the size of the overhead due to coding vectors will

be 𝑘. log2(𝑞), that is 500 bits added at the end of each coded packet. This

means that each pi contains 4KB of information and a 500-bit overhead. The

overhead corresponds to 1.25% of the transferred packet. When the symbol

size gets bigger, the overhead due to the coding vector becomes negligible.

There is another type of overhead in RLNC due to linear

dependency. Since the coefficients are chosen randomly, the probability of

generating linear dependent packets is a function of the generation size and

the field size q. Ho et al. [22] bounded the probability of this error

𝑃 ≤ (1-
𝑟

|𝑞|
)

η

for q > r, where r is the number of receivers, and η is the number

of links involved in the graph. It can be shown that the probability of

randomly selecting a non-admissible network code diminishes exponentially

with code length.

The overhead due to linear dependencies occurs because linear

dependent packets do not provide new information to the decoder, so it

becomes necessary to send extra packets. The bigger the size of the field is,

the smaller the probability of generating linear dependent packets, but the

higher the overhead due to the size of coding vectors. The computational

complexity associated with encoding and decoding increases when the

generation size becomes bigger. For that reason, if the system needs to

encode or decode a big file it first divides it into blocks and then performs

the encoding operations over these blocks of a more manageable size.

2.1.4. RLNC in video transmission

Applying RLNC to video streaming in erasure network presents

both advantages and drawbacks.

On one hand, rank deficiency problem has a negative impact on

video quality and erasure coding performance. Indeed, if the number of lost

packets is higher than the redundancy rank of the generator matrix, the

video decoder is lacking useful data blocks and cannot invert the source file

properly. Thus, the RLNC rank deficiency issue must be addressed to enable

State of the art in Network coding and Cloud computing 19

effective error concealment and obtain high quality videos. Wang et al [21]

listed some solutions to the rank deficiency problem such as an error-

resilient RLNC method, which guarantees the recovery of the source

packets if the number of lost packets does not exceed the minimum distance

provided by the rank-metric code. Another solution would be the

concatenation of two known coding methods – low-density parity-check

code (LDPC) with RLNC – which arrange the source packets by priority

and code them with a priority error transmission (PET) scheme. This

guarantees that the most important n packets can be decoded at the

destination as long as n RLNC packets are received. Finally, the third

solution mentioned is to combine video interleaving (VI) with network

coding.

On the other hand, by releasing new independent packets in the

intermediate nodes of the network, RLNC increases error-resilience. When

pure RLNC encoding is used at the source and intermediate nodes rather

than forward error correction (FEC) codes [21], both erasure protection and

coding delay are improved. Also note that erasure channel codes such as

Reed-Solomon previously mentioned used to recover data from erasures are

not as simple on video files since the decoding delays can be very

“expensive” for video quality.

Seferoglu et al. [5] proposed a scheme which takes into account

both the decodability of network codes by several receivers and the

importance and deadlines of video packets. At the intermediate nodes, new

packets are generated by applying the XOR operator on video packets

selected from different streams according to their contribution to the overall

quality. The NC codes are generated depending on the priority and

emergency of these packets. Receiving nodes listen to the neighboring

transmissions and store overhead packets for future decoding. This

introduces storage overhead on the receivers. Moreover, the neighbor nodes

need to exchange and update the stored content with each other, which

necessitates extra communication in the network. Their simulation results

showed that their schemes significantly improved both video quality and

throughput.

More generally, network coding methods can improve the

throughput of data multicast while generating rateless erasure codes, i.e.

codes that do not exhibit a fixed code rate. However, it disables video error

concealment and may cause error propagation, resulting in degraded video

quality but some solutions have been proposed to address these issues.

State of the art in Network coding and Cloud computing 20

2.2. Video Processing in the Cloud

2.2.1. The Internet of Things

It is estimated that by 2020 there will be 50 billion of jacks

connected to the Internet and estimated by the U.S. Census Bureau that the

world population will reach 7.6 billion at that time. That means that for

every person on Earth there would be 6.6 objects connected to the Internet,

with billions of sensors taking information from real physical objects and

uploading it on the Internet. This world constantly changing all around

because of these sensors and the Internet is called the Internet of Things

(IoT). The latest version of Internet Protocol – IPv6 – creates more potential

IP addresses than there are atoms on the surface of the Earth. We are going

to live in a world completely filled with sensors and data reacting to us,

changing every moment depended upon our needs. It is altering reality as

we know it, and it is all regulated by the Internet of Things. Gartner [30]

estimated that the IoT will include 26 billion devices by 2020. Its

deployment will generate large amounts of data to be computed and stored.

Cloud services appear to be one of the solutions to address the storage

management issue.

2.2.2. Cloud computing and storage

Cloud storage is one of the most common methods used nowadays to

store data from video surveillance cameras.

The term “cloud computing” comes from the fact that the data and

applications are on a cloud of Web servers. In a cloud computing system,

the computer network handles the running of applications instead of local

computers. It results in a significant workload shift and a decrease of hard-

and software demands from the users. Usually, each application has its own

dedicated server. But as a server is likely to break down, a cloud computing

system needs to store a copy of all its clients’ information in backup servers

or other devices. Considering the Internet widespread, the increasing

demand of bandwidth, broadband and mobility for end-users, cloud

computing has become ubiquitous in today’s digital era, from consumers to

businesses.

State of the art in Network coding and Cloud computing 21

Figure 2.5: How cloud computing works

Even though some people do not consider the cloud as reliable, it

presents many advantages, among them an ease of use and convenience.

Indeed, cloud applications are accessible as far as a computer is connected

to the Internet. Cloud storage provides a continuous availability thanks to

the file replication across multiple physical machines, and typically across

multiple sites. If a server fails, the application is simply re-routed to an

identical replica in a different location. However, multi-site availability has

a certain cost and complexity due to the redundant – at least twice the

capacity – hardware it requires. Also, latency can be an issue while

accessing a video stored on the cloud - even more if the clip is large –

depending on the network traffic and

The second main advantage is security and privacy. Even though

there are several security issues for cloud computing as it deals with

networks, databases, operating systems, considerable efforts are put into

security measures to ensure the protection of the data since it could be

accessible to anyone over the Internet. Each equipment and step in cloud

computing must be secured, which involves encrypting the data, detecting

malwares in the clouds, ensuring security policies are enforced for data

sharing, implementing strong authentication…

The third factor influencing the choice of cloud storage is the cost

reduction especially on the customers’ side. As only one application needs

State of the art in Network coding and Cloud computing 22

to be hosted and maintained, it reduces the customers’ expenses. Plus, data

protection costs can also be cut since security is often intrinsic to the cloud

storage architecture. However, regarding video storage application, cloud

service could is likely to be much more expensive than a Network Video

Recorder system, because of the internet connection and the cloud storage

charges.

Network video recorders (NVR) – and respectively digital video

recorder (DVR) for analog cameras – are local systems used to manage,

view, and store surveillance videos from IP cameras. NVRs use the local

network infrastructure to send and receive surveillance data that can be

computed from a remote device.

2.2.3. Cloud Distributed Mechanisms

First developed at Google and now genericized, Map-Reduce is a

framework that aims to run various tasks in parallel. Its classic

implementation provides a single ‘master’ node, responsible for distributing

the tasks between the ‘worker’ nodes doing the processing. Allowing

distributed processing between a large number of nodes, Map-Reduce is

widely used in dynamic cloud environments to enhance cloud-based

transmissions. It is especially useful for image processing procedures as it is

presented to process vast amounts of data and to return the result to users

within the minimum time. Sathish and Sangeetha [33] implemented Map-

Reduce on an integrated 2D to 3D multi-user scheme. Image processing

procedures with high complexity and high computation are treated by the

Map function while the Reduce function combines the intermediate data

(processed by the Map function) and generates the final output. They also

presented an algorithm – Dynamic Switch of Reduce Function – to switch to

different tasks dynamically according to the achieved percentage of tasks.

When the waiting time increases with the number of users, the Reduce

function can utilize this waiting time to compute other tasks. In this way,

Sathish and Sangeetha reduced both the waiting and computing times, but

they also enable the users to get the image results more quickly and the

Map-Reduce scheme to reach higher performance.

Pereira and Breitman [34, 35] presented an architecture to process

large volumes of video in the Cloud by taking advantage of the elasticity

provided by the cloud infrastructures, i.e. the dynamic adaptation of

capacity to meet a varying workload. They criticized the Map-Reduce

architecture since a single failure – of the master node – can make the entire

system collapse. They chose a Split&Merge architecture (Figure 2.6) as it

addresses several issues from the MapReduce implementation. Basically,

State of the art in Network coding and Cloud computing 23

the video input file is split into several fragments. All of them are

simultaneously processed in the Cloud worker nodes, and the fragments are

then merged into a single continuous compressed video.

First, in this implementation, the master node is coupled to a

service that checks the conditions of its workers and can detect any failure.

On the other hand, by sharing state control between two master nodes, it

addresses the single point of failure issue.

Figure 2.6: Split&Merge architecture deployed on a public Cloud

infrastructure (Amazon Web Services) [36]

They deployed [36] an application to encode different sequences of

high-definition videos with the Split&Merge implementation. Given the

results, the Split&Merge approach is really efficient to save CPU consuming

time, as it takes on average 10% of the total time spent with the traditional

sequential process, i.e. the method which encodes video without

fragmentation (all content is rendered on a single server).

2.2.4. Our choice

In this project, we chose to do local subsampling instead of storing

the image in a remote node, then downloading it to compute compressive

sensing and image stitching, and finally uploading the result on the cloud.

Local computing thus avoids network congestion and reduces bandwidth

State of the art in Network coding and Cloud computing 24

costs. Moreover, the performance of the cloud server would affect the

computation speed of the CS and stitching algorithms, so working locally

avoids the delivery time issue. However, we are aware that cloud computing

and cloud storage may become almost essential when video surveillance

systems reach a high number of cameras and thus a large amount of data to

be processed. In that case, securing data is very important for reasons of

privacy and confidentiality. We would need to implement network coding to

split and encrypt the video data prior to its storage in various devices and in

such a way that no single IoT device contains enough coded data to

compromise the privacy of the video streams if it is stolen.

State of the art in Compressive Sensing 25

Chapter 3

State of the art in Compressive Sensing

3.1. Compressive Sensing

3.1.1. Background

Signal sampling is an essential step in the digital signal

processing. The Nyquist sampling theory asserts that a band-limited signal

can be perfectly recovered from those samples if the signal is sampled at a

rate that is at least twice its bandwidth. This is the basic principle for almost

all the acquisition protocols in digital systems (e.g. electronics,

communication, biomedical imaging). However, this process does not

concern signals that are not naturally limited in the frequency domain, for

example magnetic signals. But the Nyquist theorem plays an implicit role

when such signals are processed to limit their frequency bandwidth before

sampling.

The Compressive Sensing theory was born a decade ago with the

work respectively of Candès, Romberg, Tao [6] [8] and Donoho [7] which

renew the Nyquist’s sampling theory regarding non band-limited signals.

The authors [6, 7, 8] propose sampling techniques that can reduce the

number of necessary measurements by determining this number more with

the amount of information in the signal than its frequency bandwidth.

This new approach uses the fact that a signal is sparse (i.e. the

signal is a combination of a limited number of non-zero coefficients) in a

known fixed orthonormal basis Ψ and can be recovered from a small set of

projections onto another orthonormal basis Փ, incoherent with the first one.

Roughly speaking, Փ and Ψ are incoherent if no element of one basis has a

sparse representation in terms of the other basis. Interestingly, random

projections are incoherent with any other fixed basis.

3.1.2. The sensing paradigm

Important questions can be raised when we consider under sampling

situations where the number m of measurements is much

smalleundersamplingr than the dimension n of the signal f:

 Is it possible to recover accurately the signal from m<<n

measurements?

 Is it possible to design m<<n sensing waveforms to get

almost all the information from f?

State of the art in Compressive Sensing 26

 How can the signal f be approximated from this information?

Consider an m×n sensing matrix A with φ1
*
,…, φm

*
 as row-vectors (φ* being

the complex transpose of φ). The goal is to find f ϵ Rn
from y = A. f ϵ Rm

,

which is often ill-posed when m˂n. Indeed, there is infinity of solution

signals 𝑓 for which A. 𝑓 = y. But one could find an escape by relying on

realistic models of objects f which naturally exist [8]. The Nyquist theory

states that if f(t) has a very low bandwidth, a small set of uniform samples is

enough to recover the signal. Candès and Wakin [8] show that signal

recovery is actually possible for a much wider class of signals.

3.1.3. Sparsity

Sparsity is a very important notion in signal processing. For

examples, cameras take colored-pictures (coded in three fundamental colors

R, G, B) of tens of million pixels. Each pixel being coded on 1 byte, it

would represent 30 Mb per picture. But files – generally coded in the JPEG

format – are much lighter than that. The key to efficient coding is the

sparsity notion. Consider signal composed of a vector in RN
and an

orthonormal basis B={φ1,…, φN} in RN
. The signal x ϵ RN

is sparse in the

basis B if x can be characterized by a small set of n << N coefficients

<x, φn> from its decomposition on B. Then,

𝑥(𝑡) = ∑ 𝒙i. φi(t)

𝑁

𝑖=1

(3-1)

 The signal is sparse if one can discard the smallest coefficients

without losing too much information for a good recovery. The signal is

called S-parse when it has at most S non-zero coefficients. Actually, a huge

part of the data is redundant and a large fraction of the coefficients can be

thrown away. In [8], Candès and Wakin show that 97.5% of the coefficients

from a megapixel image can be discarded and the reconstructed image will

be very close to the original.

 Last but not least, sparsity has a lot of potential on the acquisition

process as it determines how efficiently a signal can be acquired non-

adaptively.

State of the art in Compressive Sensing 27

3.1.4. Incoherent sampling

Consider a pair of orthonormal bases (Փ, Ψ) in Rn
. The first base Փ

is used of the acquisition of the signal f and the second one Ψ to represent

f. The coherence between Փ where f is measured and Ψ where the signal is

sparse is [8]:

𝜇(Փ, Ψ) = √𝑛 . max
1≤𝑘,𝑗≤𝑛

|〈𝜑𝑘, 𝛹𝑗〉|

(3-2)

This formula means that the coherence measures the highest

correlation between any of two columns of Փ and Ψ. From we linear

algebra, it follows that (Փ, Ψ) ϵ [1, √𝑛]. The more Փ and Ψ contain

correlated elements, the larger the coherence is.

Compressive sensing is interesting in duet of bases with low

coherence. If we consider the canonical basis Փ, φk=δ(t-k), and the Fourier

basis Ψ, Ψj=n
-1/2

.𝑒𝑖2𝜋𝑗𝑡/𝑛. Since Փ is the sensing matrix, it corresponds to

the classical sampling scheme in time. The time-frequency pair gives

coherence 𝜇(Փ, Ψ) equals to 1 and so that is the maximal incoherence.

3.1.5. Sparse signals recovery

According to the Nyquist theorem, one would like to get n

coefficients from f, but according to the compressive sensing protocol, we

only acquire a part of them:

yk= 〈𝑓, φ𝑘〉, k ϵ M

where M ⊂ {1,…,n} is a subset of cardinality m<n

(3-3)

To recover the sparse representation of f, we have to solve an

optimization problem. Consider a vector x* for which y=Ψ.Փ.x*. To have

imperatively sparse signals after recovery, a natural approach is to impose

the l0 norm (defined as the non-zero coefficients) of the recovered signals to

be minimal:

min 𝑥 ϵ Rn‖�̂�‖l0 subject to yk=〈φ𝑘, 𝛹�̂�〉, ∀k ϵ M

(3-4)

‖�̂�‖ l0 (l0 norm of �̂�) represents the number of non-zero components

in the vector �̂�.

State of the art in Compressive Sensing 28

Davis, Mallat and Avallaneda [9] show that this constraint leads to

hard NP algorithms, and the exponential complexity makes them

unworkable for realistic values of n. However, the constraint on the l0 norm

can be lightened by imposing the l1 norm of recovered signals to be

minimal. Even though the l1 norm is a less optimal solution, it can at least be

computed by linear programming techniques.

Candès, Romberg, Tao [6] showed that a sparse signal can be

perfectly recovered from m measurements by solving the following

algorithm:

min 𝑥 ϵ Rn‖�̂�‖l1 subject to yk=〈φ𝑘, 𝛹�̂�〉, ∀k ϵ M

(3-5)

The only difference with the previous equation is that the support

size (number of non-zero components) is replaced by the sum of the

absolute values of those components. Then, the latest equation can be recast

as a linear program and solved by appropriate algorithms. Though the two

equations are fundamentally different, they give the same result in many

interesting situations, for some more measurements of yk in the second case.

3.1.6. The fundamental theorem in compressive sensing

Fix a signal f ϵ R
n
, which is S-sparse in the basis Ψ. Select m

measurements uniformly at random in the basis Փ. Then if

𝑚 ≥ 𝐶. 𝜇2(Փ, Ψ). S. log (𝑛)
(3-6)

for a certain positive constant C, the solution of (3-5) is exact with a very

high probability.

 As explained by Candès and Wakin [8], three observations can be

made:

 The role of the coherence is completely transparent; the smaller the

coherence, the fewer samples are needed, hence the importance to

choose two bases with low coherence.

 No information is lost by measuring about any set of m coefficients

(m<n). If 𝜇(Փ, Ψ) equals or is close to 1, then we can take around

S.log(n) samples instead of n.

 The signal f can be exactly recovered from a small set of data by

minimizing a convex problem, which does not require any

knowledge about the number of non-zero coefficients of x, nor about

their locations or their amplitudes, assumed all unknown a priori.

State of the art in Compressive Sensing 29

A good recovery algorithm can guarantee an exact reconstruction of

the signal if it is enough sparse. The theorem suggests a very useful sensing

protocol: sampling at random in an incoherent domain and use linear

programming for the recovery after the acquisition step. Thus, the signal

will be in a compressed form. To “decompress” it, we need a decoder,

which is guaranteed by the l1-minimization.

The figure below shows the different representations a signal can

have: a signal f, with a certain representation x with a sparsity S in the basis

Ψ, is sampled by a part of the basis Փ, incoherent with Ψ. From those

samples y – randomly chosen in Փ by following a uniform distribution – it

is possible to recover x by using convex optimization methods.

Figure 3.1: Several representations of a signal in different basis.

3.1.7. Interest of CS in surveillance video storage

Video surveillance cameras produce a huge amount of high

resolution data, which becomes a challenge to compute and store. But

transmitting all data to the cloud for further processing is, in many

applications, costly and unnecessary. For example, providing sensor data in

a farm or video surveillance would benefit from local storage and pre-

processing before upload to the cloud. CS exploits the fact that there is a

high redundancy in the image/video data.

The compressive sensing theory affirms that one can recover sparse

signals from a set of samples fewer than the number told by the

conventional methods. The CS techniques work as if it was possible to get

only the important part of the signal. By taking around S.log(n) random

samples (with S<<n) instead of n, we will still have enough information to

recover the signal.

In other words, CS measurement protocols mainly convert analog

data to digital only when the signal has already been compressed. Then,

after the acquisition and transmission steps, one only needs to decompress

the data.

State of the art in Compressive Sensing 30

3.2. Coupling of Network Coding and Compressive Sensing

As seen previously, a lot of research has been carried out in each of

those two fields over the past decades but the combination between network

coding and compressive sensing just started to be investigated a few years

ago, even though there are two powerful concepts for error control in

wireless sensor networks.

By combining and forwarding packets instead of simply sending

them to the destination, network coding has been proved very powerful to

improve network throughput and robustness, and thus performance and

reliability. However, this technique fails at decoding when the number of

received packets is less than the original one. On the other hand,

compressive sensing was found very efficient to process mutual correlation

of information and to drastically decrease the number of measurements, thus

highly reducing redundancy. Those two techniques are complementary and

their combination has been recently examined [21, 25-28]. Those works

tried to solve the limitation problem of NC.

On one hand, some works [25, 26] resulted in designing a

transformation matrix of NC which can adapt to the reconstruction

requirement of CS. In other words, the NC linear transformation process is

regarded as the acquisition process of CS measurement matrix. Among

them, Nguyen et al. [25] presented a practical scheme called Netcompress to

overcome the high link-failure rate in WSN. Their encoding framework uses

RLNC at adjacent source nodes and intermediate nodes, as well as the l1-

minimization CS reconstruction method. However, its designs of the packet

header and packet elimination mechanism are unclear. Nabaee et al. [26]

studied the combination of network coding and distributed source coding

from a CS perspective. In order to encode correlated sources without the

knowledge of the source correlation model, they proposed Quantized

Network coding, which incorporates real field NC and quantization to take

advantage of decoding using linear programming.

However, none of them reduced the number of redundant packets

transmitted, which does not solve the compression gain issue. It has been

nonetheless investigated in some other works. Luo et al. [27] presented a

joint source and network coding scheme, called Compressive Network

coding (CNC). They injected the concept of compressed sensing into

network coding to avoid the “all-or-nothing” problem of NC. It allows CNC

to achieve graceful degradation in data precisions to keep the energy

consumption at all nodes balanced. However they did not take into

consideration the noise in the sensor links. Yang et al. [28] elaborated a

compressed network coding based data storage scheme by exploiting the

correlation of sensor readings. This scheme achieves high energy efficiency

State of the art in Compressive Sensing 31

and guarantees good CS performance. It only focuses on network

performance without considering the errors or noise problem in transmission

process, which is known to have a huge impact on network performance.

Thus, a combination has been developed to overcome drawbacks of

NC theory by injecting CS concepts into it, called the ‘joint scheme’. It

exploits simultaneously the temporal and spatial correlations of the signal in

order to achieve the maximum gain. It has been confirmed by the reliability

analysis and numeric results that this joint scheme outperforms the

traditional network coding scheme both in robustness and in performance

terms.

Problem Statement 32

Chapter 4

Problem Statement

4.1. Importance of video surveillance

The security of humans, belongings and information has become a

major issue worldwide over the last decade. From fight against terrorism to

the strengthening of internal security through the rise of cybercrime, people

invest more and more to assure their protection. Information and

communication technologies bring new and sophisticated solutions for

physical and IT security. Among them, video surveillance is one of the

oldest and best-known security technologies.

Originally used by public services, it has been adopted by companies

to protect strategic assets and now in public or private places. Video

surveillance is mainly used for investigation purpose. Sometimes it requires

deploying tens or even hundreds of cameras in a large security area. And in

a world constantly becoming more digital, video surveillance is being

integrated with other security components into one single system.

Improvement of the software, the evolution from analog to digital video, the

increase in digital transmission speed and data encryption leads to a fully

integrated security system including video surveillance, alarm, access

control etc.

If analog video recording has gradually evolved to a digital

technology, the digital video recorder is evolving into a ‘virtual’ video

storage database located in a remote device. Video recording and storage is

then limited only by the size of the network computer memory capacity.

Video surveillance cameras produce a huge amount of high resolution data,

which becomes a challenge to compute and store. Thus, enterprise storage

systems dedicated to video surveillance need to have a larger throughput

capacity.

Due to their important size, surveillance data are usually not kept for

a long period of time – generally no longer than one month – which implies

that the captured activities cannot be browsed later, especially for forensic

purposes as evidence. In archival mode, video data storage and

manageability is the problem that toughens post-incident investigation. Due

to the temporary nature of video data, it is very difficult for a human to

analyse video data within a limited amount of time. Moreover, video images

need to have a good enough quality if we think in particular of face

recognition for example.

Problem Statement 33

4.2. Architecture of video surveillance systems

The first step in the video surveillance process is the acquisition.

There are diverse types of cameras to meet the surveillance needs. It goes

from analog to digital cameras, through fix, megapixel, panoramic or even

motorized cameras.

The video captured by the surveillance cameras must be transferred

to the recording, computing and viewing systems. It can be transmitted

through cables (e.g. coaxial cables, fibre, twisted pair copper wires) or

through the air (infrared signals, radio transmission). Wired video is the

most predominant in video surveillance systems. It offers a wider bandwidth

and a better reliability than wireless connections, for a lower price.

However, wireless video is inevitable for the surveillance of a wide area

where cables would be expensive to deploy or when the areas to be

monitored cannot be wired connected. Whether it is a wired or a wireless

transmission, the signal can be analog or digital even though it has

considerably evolved into digital videos. The IP protocol has played an

important role in the increasing use of LAN, WAN or Internet networks to

carry video data. IP cameras can directly connect to these networks, whereas

video streams from analog cameras need to be first digitized by an encoder

(also called video server) to transit over IP networks.

Digitized videos represent a huge amount of data to be computed and

stored. A bandwidth up to 165 MB/s can be required to send a video clip

and the data from a single camera over one day may fill 7 GB of disk space.

That is the reason why video surveillance data need to be compressed by

using codecs, i.e. algorithms that enable to reduce the quantity of data by

removing redundancy in each image or between the different footage

frames, as well as details undetectable by human eyesight. Depending on the

type of compression, more or less resources are used in the processor to

compute the codec. A compromise need to be found between the

compression rate and the processor resources. Currently, MJPEG and H.264

are the most widespread compression standards in video surveillance.

Video management systems process the video surveillance images,

such as managing the different video streams, viewing, recording, or doing

some analysis and research in the recorded footages. There are four broad

categories of video management systems:

 Digital Video Recorder: It only takes flows from analog

cameras and digitizes them. The video can be viewed from a

remote computer. It has been mostly replaced by systems that

support IP video from end-to-end.

 Hybrid Digital Video Recorder: It is similar to the DVR but it

can take flows from analog and IP cameras.

Problem Statement 34

 Network Video Recorder: Designed for IP video surveillance

network architectures, it can only take video signals from IP

cameras or encoders.

 IP video surveillance software: It is a purely software

solution to process video data in an IP network. In the case of

surveillance systems with few cameras, a Web browser can

be enough to manage the video. For bigger video surveillance

networks, softwares dedicated to video processing must be

used.

The archiving period varies according to the surveillance needs,

going from a couple of days to several years. The deployment of wide

camera networks and the high definition of the videos lead to a demand of

storage capacity more and more important, besides an increasing amount of

data to be stored. There are two categories of storage solutions:

 Internal: Hard drives are incorporated in the digital video

recorders or in the servers. It is the most widespread solution,

offering up to four terabytes of space storage. Some IP

cameras have memory cards or USB disks that can store

several days of video recording. Internal archival solutions

are adapted for video surveillance systems of up to fifty

cameras.

 Attached: Videos are archived on external devices such as

Network Attached Storage (NAS) or Storage Area Network

(SAN) that offer a storage space shared between several

customers in the network. On NAS devices, files are stored

on a single hard disk contrary to SAN storage that allows

storing fragments on different devices. Attached archival

solutions offer more advantage for large surveillance zones

with numerous cameras. Even though they are more

expensive than internal archival systems, these solutions are

much more accurate in terms of flexibility, expandability and

redundancy.

Research is still conducted to incorporate always more artificial

intelligence in the new video surveillance systems, in order to make them

more robust and efficient for security applications in a wide variety of

domains.

Problem Statement 35

4.3. Requirements and stakes in video analytics

Considering the ‘deluge of data’ including in the video surveillance

area, scientific works have been conducted and solutions offered to do for

example real-time face detection, object tracking, face recognition or

intelligent detection. That would enable to extract the useful part of the

image and thus reduce redundancy and the quantity of data to be stored.

Many algorithms work for fixed cameras, with a high resolution and good

light conditions. But most of the time they do not take into consideration

alterations that could occur in real-life conditions (for example dust, light

changes or camera moves).

Figure 4.1: Standard digital data acquisition approach

Whether there are one or several cameras in the video surveillance

zone, the challenge remains reducing the amount of data to be stored. In the

case of a single camera, we investigated the compression of the image,

especially with compressive sensing while maintaining a good image

quality. Compressive sensing does simultaneously the sampling and the

compression steps of Figure 4.1. We evaluated the quality of the

compressed images with two different techniques: the PSNR and the SSIM

index.

In the case of a surveillance zone covered by multiple cameras, we

worked on the combination of several images as there is most likely some

overlap between the different devices to assure a full coverage of the area.

We also considered the application of image stitching besides compression.

For this, we proposed three scenarios depending on the order in which the

transformations (compression and stitching) were applied. The different

methods and results are explained in the following chapters.

For some of the reasons mentioned in Chapter 2, section Video

processing in the Cloud, we chose to experiment the different steps locally

rather than dealing with cloud computing. It avoids network congestion and

allows reducing bandwidth costs and computation time.

Single image processing: Compressive Sensing implementation 36

Chapter 5

Single image processing: Compressive Sensing

implementation

5.1. Simple Compressed Sensing examples

Implementation examples of compressed sensing applied to image

data are available on MathWorks website [10]. The Matlab code example

used follows the explanations given by Baraniuk [11].

Figure 5.1: (a) Compressive measurement process with random Gaussian

measurement matrix Փ and discrete cosine transform (DCT) matrix Ψ. On

this figure, the coefficient vector s is sparse with K=4.

(b) Measurement process in terms of the matrix product Θ= ՓΨ. The

four highlighted columns correspond to non-zero si. The measurement

vector y is a linear combination of these four columns. [11]

First, a random Gaussian measurement matrix Փ is non-adaptively

generated. That means that the M×N matrix generated does not depend on

the input x ϵ R
N
. The original image x is then compressed by being

multiplied by Փ. The compressed signal is: y= Փ.x ϵR
M

.

The matrix product Θ=ՓΨ is then designed, where Ψ is a discrete

cosine transform matrix (N×N). The vector y is a linear combination of the

K columns of the non-zeros in the sparse coefficient vector s.

The l2 norm is then applied to have the least squares solution to

y=Θ.s:

s2 = Θ
-1

.y

And the matrix equation is solved using the Matlab toolbox l1-magic

to get the basis pursuit solution.

Single image processing: Compressive Sensing implementation 37

(a)

(b)

Figure 5.2: (a) Display of the solutions to y=Θ.s. Basis pursuit solution in

red, least squares solution in blue. (b) Zoom-in.

The image is then reconstructed by linear programming.

Single image processing: Compressive Sensing implementation 38

(a) (b)

Figure 5.3: (a) Loop for the least squares reconstruction.

(b) Loop for the basis pursuit reconstruction.

Figure 5.4: On the left, original image of Pikachu. On the

right, 50×50 black-and-white image �̂� of the same Pikachu

(N = 2500 pixels) recovered from M = 1600 random measurements

taken in the original image.

5.2. PSNR calculation

The Peak-to-signal-ratio (PSNR) was calculated for each

reconstructed image with M increasing from 100 to 2500. Figure 5.5

displays the results for the Pikachu image.

Single image processing: Compressive Sensing implementation 39

Figure 5.5: Evolution of the PSNR in function of the number of random

measurements M from 100 to 2500.

Single image processing: Compressive Sensing implementation 40

The PSNR is the ratio between the maximum possible power of a

signal and the power of corrupting noise that affects the fidelity of its

representation. Thus, it can be used to measure the quality of reconstruction

for image compression. In this case, the signal is the original data and the

noise is the error introduced by compression. It is generally expressed in the

logarithmic decibel scale, with this formula:

PSNR = 20.log10 (
𝑀𝐴𝑋𝑖

√𝑀𝑆𝐸
)

or PSNR= 20.log10(𝑀𝐴𝑋𝑖) – 10.log10(𝑀𝑆𝐸)

(5-1)

MAXi is the maximum possible pixel value of the image, i.e. 255

(= 2^8 -1) when the pixels are represented with 8 bits per sample. MSE –

standing for Mean-Squared Error – measures the difference between two

images, the original image 𝑥(𝑎, 𝑏) and the “degraded” image �̂�(𝑎, 𝑏). The

MSE represents the average of the squares of the "errors" between the

original image and the compressed one. The error is the amount by which

the values of the original image differ from the degraded image. The MSE

is:

MSE =
1

𝑀.𝑁
∑ ∑ [𝑁

𝑗=1
𝑀
𝑖=1 �̂�(𝑖, 𝑗) − 𝑥(𝑖, 𝑗)]²

(5-2)

M is the number of rows of pixels in the images and i is the index of

that row; N is the number of columns of pixels in the images and j is the

index of that column.

From (5-1), the higher the PSNR, the better the image has been

reconstructed to match the original image and the better the reconstructive

algorithm. We can notice a sharp increase of the PSNR when it comes to

compare the original image and the reconstructed image with the same

number of pixels. However, if the recovered image is acceptable for lower

values of M (from M=1200), the PSNR remains quite low because of the

color differences.

But none of the PSNR or MSE measures is particularly good at

predicting human visual response to image quality. PSNRs can wildly vary

between two almost indistinguishable images; similarly two images with the

same PSNR can have a very obvious difference in quality, as displayed on

Figure 5.6. PSNR is a good measure for comparing restoration results for

the same image, but between-image comparisons of PSNR are meaningless.

Single image processing: Compressive Sensing implementation 41

Figure 5.6: Two reconstructed images with PSNR= -20 dB. PSNR is

a good measure for comparing restoration results for the same image, but

between-image comparisons of PSNR are meaningless.

5.3. The limitation of PSNR and an alternative: SSIM
The main drawback of the MSE/PSNR metric is that it relies strictly

on numeric comparison and does not actually consider any level of

biological factors of the human visual system (HVS). However, the local

Structural Similarity Index Measurement (SSIM) does.

As explained in [12], the only “correct” method to quantify visual

image quality for applications in which images are ultimately to be viewed

by human beings was through subjective evaluation. But being a time-

consuming and expensive process, research has been conducted to find an

objective image quality assessment and to develop quantitative measures

that can automatically predict perceived image quality.

SSIM is an index used for measuring the structure similarity between

two digital images or videos. Contrary to the MSE or PSNR techniques, the

SSIM does not estimate absolute errors but assesses the visual impact of the

luminance (multiplication of the illumination and the reflectance), the

Single image processing: Compressive Sensing implementation 42

contrast and the structure of the image. It is a modification of the MSE so

that errors are quantified according to their visibility. This error-sensitivity

approach is based on several assumptions and generalizations, summarized

by Wang et al [12]:

 The Quality Definition Problem: The error visibility does not

necessarily lead to quality loss, as some distortions may be

noticeable but not so damaging.

 The Suprathreshold Problem: Threshold values at which a

stimulus is just barely visible are measured and then used to

define visual errors sensitivity measures. Yet, it is indicated

by only a few psychophysical studies that these threshold

values can be generalized to characterize perceptual

distortions significantly larger than the threshold levels.

 The Natural Image Complexity Problem: The patterns used

during most psychophysical experiments are simpler than

real world images so the model may not predict the visual

quality of complex-structured natural images.

 The Decorrelation Problem: There is a strong dependency

between intra- and inter-channel wavelet coefficients of

natural images. But it has been shown that optimal design of

transformation and masking models can reduce both

statistical and perceptual dependencies.

 The Cognitive Interaction Problem: Cognitive understanding

and eye movements influence the perception of image

quality. Most image quality metrics do not consider those

effects, as they are very difficult to quantify and not well

understood.

The structural information is those attributes that represent the

structure of the objects in a visual scene, independently of the average

luminance and contrast. To explore the structural information, it has to be

separated from the influence of the illumination. As structural information is

the idea that pixels are highly interdependent especially when they are

spatially close, it is useful for image quality assessment to apply the SSIM

index locally rather than globally.

Single image processing: Compressive Sensing implementation 43

The SSIM quality assessment index is based on the computation of

three terms:

 The luminance term l(x,y) =
2𝜇𝑥 . 𝜇𝑦+𝐶1

𝜇𝑥²+𝜇𝑦²+𝐶1

 The contrast term c(x,y) =
2𝜎𝑥 . 𝜎𝑦+𝐶2

𝜎𝑥²+𝜎𝑦²+𝐶2

 The structural term s(x,y) =
𝜎𝑥𝑦 +𝐶3

𝜎𝑥.𝜎𝑦²+𝐶3

where μx, μy, σx,σy, and σxy are respectively the local means, standard

deviations, and cross-covariance for images x, y.

The overall index is a multiplicative combination of these terms:

SSIM(x,y)=[l(x,y)]
α
 .[c(x,y)]

β⋅[s(x,y)]
γ

(5-3)

where α > 0, β > 0, γ > 0 are parameters used to adjust the relative

importance of the three components.

If α = β = γ = 1 (the default for Exponents), and C3 = C2/2 (default

selection of C3) the Structural Similarity index (5-3) simplifies to:

SSIM(x,y)=
(2𝜇𝑥 .𝜇𝑦+𝐶1)

(𝜇𝑥²+𝜇𝑦²+𝐶1)

(2𝜎𝑥𝑦 +𝐶2)

(𝜎𝑥
2+𝜎𝑦

2+𝐶2)

(5-4)

The SSIM has been computed for several images recovered with the

Matlab CS algorithm example and we can notice (Figure 5.7) that the SSIM

values are all evolving quite similarly, following a progression that can be

linearized with an average slope of 0.0135 i.e. y=0,0135x+C.

m

value

Pikachu Child Circle

design

Oel Biscuit Chain Tulip

100 0,5844 0,6481 0,5388 0,6038 0,6313 0,6262 0,5119

200 0,6462 0,6851 0,5668 0,6355 0,6722 0,651 0,5423

300 0,649 0,7133 0,5651 0,6329 0,7264 0,7372 0,5724

400 0,6518 0,7518 0,5816 0,6544 0,75 0,7869 0,5709

500 0,6539 0,779 0,6105 0,7026 0,7423 0,7886 0,5785

600 0,7046 0,7718 0,6064 0,7268 0,7849 0,8258 0,5938

700 0,6947 0,8032 0,623 0,7303 0,7836 0,8542 0,6012

800 0,7039 0,8009 0,6342 0,7604 0,8085 0,8503 0,6065

900 0,7307 0,8143 0,6379 0,7709 0,8237 0,8818 0,6163

1000 0,7617 0,833 0,6565 0,8198 0,8301 0,8826 0,6257

1100 0,7519 0,8457 0,6664 0,8207 0,8446 0,9008 0,6304

1200 0,7683 0,8659 0,6762 0,8283 0,8442 0,9138 0,639

Single image processing: Compressive Sensing implementation 44

1300 0,8002 0,8666 0,6892 0,838 0,869 0,9147 0,6443

1400 0,817 0,8755 0,7007 0,8712 0,881 0,9281 0,6484

1500 0,8341 0,8946 0,7112 0,8838 0,8794 0,9325 0,6504

1600 0,8447 0,9078 0,7156 0,8991 0,9026 0,9484 0,6633

1700 0,8521 0,9165 0,7267 0,9223 0,8872 0,95 0,665

1800 0,8778 0,9335 0,7467 0,9266 0,9143 0,9598 0,6698

1900 0,8806 0,9362 0,7484 0,9347 0,9311 0,9605 0,6808

2000 0,8958 0,9408 0,7727 0,9448 0,9377 0,9668 0,6777

2100 0,9102 0,955 0,7814 0,9567 0,9408 0,9743 0,7121

2200 0,925 0,9634 0,8055 0,9621 0,9468 0,9796 0,7044

2300 0,9471 0,9695 0,8341 0,9716 0,9576 0,9832 0,7599

2400 0,9619 0,9834 0,8623 0,9813 0,9733 0,987 0,7581

2500 1 0,9999 1 1 0,9995 0,9967 1

Figure 5.7: SSIM values for different images reconstructed with 100

to 2500 measurements

Even though there is most of the time a visual difference with the

reference image, the quality of the distorted image is guaranteed as far as

the structural information of the reference image is preserved. Indeed, the

original information can be nearly fully recovered by applying an inverse

linear luminance transform, pointwise.

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

SSIM=f(m)

Pikachu

Child

Circle design

Oel

Biscuit

Chain

Tulip

Single image processing: Compressive Sensing implementation 45

5.4. Edge detection
In an image, an edge can be defined as a set of contiguous pixels

where a sudden change of intensity – gray or colour – occurs. As

compressive sensing takes random samples, we thought that edge detection

could be applied after the CS step to evaluate the reconstruction. It would

determine if CS recovers edges accurately and a sampling threshold could

then be set up regarding the edge detection results.

Edge detection aims at identifying points in an image where there

are brightness discontinuities. The points where brightness changes sharply

generally form a set of curved line segments named edges. Edges are often

associated with the boundaries of objects. Edge detection is used to identify

the edges in a digital image. In Matlab, the edges can be found with the edge

function which attempts to detect places in the image where the intensity

changes rapidly. Several edge detection methods exist, but most of them can

be classified into two categories:

 First-order derivative methods: These methods search

extrema in first-order derivative expressions, usually the local maxima of

the gradient of the image.

 Second-order derivative methods: The second methods

search for zero crossings in second-order derivative expressions, usually the

zero-crossings of the Laplacian or of a non-linear differential expression.

“Edge provides a number of derivative estimators, each of which

implements one of the definitions above. For some of these estimators, you

can specify whether the operation should be sensitive to horizontal edges,

vertical edges, or both. Edge returns a binary image containing 1's where

edges are found and 0's elsewhere.” [14]

Edge detection algorithms usually give a set of connected curves

that correspond to the boundaries of objects as well as curves that reveal

discontinuities in surface orientation. Applying edge detection to an image

enables to reduce significantly the amount of data to be processed. It filters

out information that may be regarded as less relevant and only keeps the

important structural properties of an image. It is perfectly illustrated on

Figure 5.8: the SSIM values are higher from the very first samples with an

edge detection filter than the SSIM values displayed on Figure 5.7 without

doing any edge detection.

Single image processing: Compressive Sensing implementation 46

Figure 5.8: SSIM values for different images reconstructed with 100

to 2500 measurements with (full lines) and without edge detection (dotted

lines).

Regarding Figure 5.8, we can notice that applying an edge detection

filter allows to reduce considerably the sampling rate to get a decent

reconstruction. All the example images reach a SSIM equals to 0.8 for a

sampling rate m=500 in the worst case. Without edge detection, we would

need m=700 in the best case or 2400 pixels in the worst case to get an SSIM

value of 0.8.

There are several edge detection algorithms in both categories

mentioned above. Sobel, Prewitt, Canny, LoG are ones of the best known

filters, compared in Figure 5.9.

The first-order derivatives methods detect the strongest edges. Among them:

 The Roberts filter: The Roberts Cross operator

measures a 2-D spatial gradient on an image. At each point in the output, the

pixel value represents the estimated absolute magnitude of the spatial

gradient of the input image at that point. If edges are not very sharp the filter

will tend not to detect the edge.

 The Sobel filter: It consists of two convolution kernels

of dimension 3×3. One kernel is just the other rotated by 90° and each of

them is for one of the two perpendicular orientations. They are run vertically

and horizontally on the pixel grid to detect edges where the gradient

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

SSIM=f(m)
Pikachu_Sobel

Child_Sobel

Circle design_Sobel

Oel_Sobel

Biscuit_Sobel

Chain_Sobel

Tulip_Sobel

Pikachu

Child

Circle design

Oel

Biscuit

Chain

Tulip

Single image processing: Compressive Sensing implementation 47

magnitude is high. The kernels can then be combined together to find the

absolute magnitude of the gradient at each point and the orientation of that

gradient. This makes the Sobel edge detector more sensitive to diagonal

edge than horizontal and vertical edges. It is the default edge detection filter

in Matlab (used in Figure 5.8).

 The Prewitt filter: It is a discrete differentiation

operator which is similar to the Sobel operator, by computing the gradient

for the image intensity function. Compared to Sobel, the Prewitt masks are

simpler to implement but are very sensitive to noise.

 The Canny filter: It is often referred as the optimal

edge detector, as it uses a multi-stage algorithm to detect edges in an image.

The Canny algorithm finds edges by looking for local maxima of the

gradient of an image, using the derivative of a Gaussian filter. This method

uses two thresholds to detect strong and weak edges, including weak edges

in the output if they are connected to strong edges. By using two thresholds,

the Canny method is less likely than the other methods to be fooled by

noise, and more likely to detect true weak edges. An edge detection operator

that uses a multi-stage algorithm to detect a wide range of edges in images.

Sobel and Prewitt methods provide good edge maps very

effectively and are cheap to compute. By default, Matlab edge detection

algorithms use Sobel filter.

The zero-crossings of the second-order derivatives are good to

localize the edges. Those methods are more sophisticated towards

automatized edge detection, but still very noise-sensitive. As differentiation

amplifies noise, smoothing is suggested prior to applying the Laplacians.

Typical examples of second-order derivative edge detection methods are:

 The Difference of Gaussian (DoG): It is a feature

enhancement algorithm involving the subtraction of one blurred version of

an original image from another, less blurred version of the original.

 The Laplacian of Gaussian (LoG): The Laplacian is a

2-D isotropic measure of the second spatial derivative of an image. The LoG

operator is called so as the Laplacian is generally applied to an image that

has first been smoothed with a Gaussian smoothing filter to reduce its

sensitivity to noise. It takes a single grayscale image as input and produces

another grayscale image as output.

Image derivatives are commonly used in motion estimation and

object tracking in video. However, the optimal edge detection method

depends on the type of edges to be detected in an image (step edges, ramp

edges, lines or roof edges) and also on the application domain.

Single image processing: Compressive Sensing implementation 48

Figure 5.9: Comparison of different edge detection filters:

(a) Canny, (b) Prewitt, (c) Sobel, (d) Roberts, (e) Laplacian of Gaussian.

Single image processing: Compressive Sensing implementation 49

The structural similarity index and the PSNR were computed

(Figure 5.10) for different edge detection methods from the Figure 5.9

examples. Canny filter which could seem to the naked eye to detect edges

the most accurately presents quite surprisingly the lowest SSIM value.

However, the PSNR values are closest to the prediction we could make

considering the Figure 5.9 results with a naked eye.

Edge detection method SSIM index PSNR

Canny (a) -0.0007 3.884646

Sobel (c) 0.0053 3.815636

Roberts (d) 0.0079 3.829333

Laplacian of Gaussian (e) 0.0176 3.923520

Figure 5.10: SSIM index and PSNR values for different edge

detection methods.

-0,01

-0,005

0

0,005

0,01

0,015

0,02

SSIM index values

Canny

Sobel

Roberts

LoG

3,76

3,78

3,8

3,82

3,84

3,86

3,88

3,9

3,92

3,94

PSNR values

Canny

Sobel

Roberts

LoG

Single image processing: Compressive Sensing implementation 50

5.5. Conclusion
In this chapter, we saw that signal sparsity can be exploited.

Taking random samples from an image by applying compressive sensing

gives good result for a number of pixels far smaller than the original image

resolution. That confirms that CS must be useful to deal with the ‘deluge of

data’ occurring in particular in the video surveillance world with the spread

of high resolution cameras.

Furthermore, as compressive sensing takes random samples, we

evaluated the accuracy of edge reconstruction in the CS algorithm. For that,

we applied edge detection filters on the recovered images. The results

clearly showed that edge detection would enable to considerably lower the

sample rate – compared to CS without edge detection – to reach a given

SSIM threshold.

Multiple image processing: Image stitching 51

Chapter 6

Multiple image processing: Image stitching

6.1. Feature Based Image Stitching

6.1.1. Presentation of the algorithm

In video surveillance, a scene can be recorded by several cameras

providing different viewpoints. If there is some overlap between the regions

covered by each of them, it is then possible to stitch together their set of

images using feature detection and matching. Instead of registering a single

pair of images, multiple image pairs can be successively registered relative

to each other to form a panorama.

Based on the Matlab example [17], the first step to stitch the images

is to register successive image pairs by:

- Detecting and matching features between I(n) and I(n-1)

- Estimating the geometric transformation T(n), that maps I(n) to

I(n-1)

- Computing the transformation that maps I(n) into the panorama

as T(1)*…*T(n-1)*T(n).

- tforms(n) = estimateGeometricTransform(matchedPoints,
matchedPointsPrev,...

- 'projective', 'Confidence', 99.9,
'MaxNumTrials', 2000);

-

- % Compute T(1) * ... * T(n-1) * T(n)

- tforms(n).T = tforms(n-1).T * tforms(n).T;

At this point, all the transformations in tforms are relative to the first

image because this way of coding allowed sequential processing of the input

images. However, using the first image as the start of the panorama tends to

distort most of the images that form the panorama. A nicer way would be

modifying the transformations such that the center of the scene is the least

distorted. This is accomplished by inverting the transform for the center

image and applying that transform to all the others.

The projective2d outputLimits method to find the output limits for

each transform. The output limits are then used to automatically find the

image that is roughly in the center of the scene.

Multiple image processing: Image stitching 52

% Compute the output limits for each transform

for i = 1:numel(tforms)

 [xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1

imageSize(2)], [1 imageSize(1)]);

end

The average X limits is then computed for each transforms and the

center image is found.

avgXLim = mean(xlim, 2);

[~, idx] = sort(avgXLim);

centerIdx = floor((numel(tforms)+1)/2);

centerImageIdx = idx(centerIdx);

Finally, the center image's inverse transform is applied to all the

others.

Tinv = invert(tforms(centerImageIdx));

for i = 1:numel(tforms)

 tforms(i).T = Tinv.T * tforms(i).T;

end

Last, the panorama is initialized by creating an initial, empty,

panorama into which all the images are going to be mapped. The

outputLimits method is used to compute the minimum and maximum output

limits over all transformations. These values are used to automatically

compute the size of the panorama.

for i = 1:numel(tforms)

 [xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1

imageSize(2)], [1 imageSize(1)]);

end

% Find the minimum and maximum output limits

xMin = min([1; xlim(:)]);

xMax = max([imageSize(2); xlim(:)]);

yMin = min([1; ylim(:)]);

yMax = max([imageSize(1); ylim(:)]);

% Width and height of panorama.

width = round(xMax - xMin);

height = round(yMax - yMin);

% Initialize the "empty" panorama.

panorama = zeros([height width 3], 'like', I);

Multiple image processing: Image stitching 53

All the images are mapped into the panorama with the imwarp

function and overlaid together with vision.AlphaBlender.

blender = vision.AlphaBlender('Operation', 'Binary mask', ...

 'MaskSource', 'Input port');

% Create a 2-D spatial reference object defining the size of

the panorama.

xLimits = [xMin xMax];

yLimits = [yMin yMax];

panoramaView = imref2d([height width], xLimits, yLimits);

% Create the panorama.

for i = 1:buildingScene.Count

 I = read(buildingScene, i);

 % Transform I into the panorama.

 warpedImage = imwarp(I, tforms(i), 'OutputView',

panoramaView);

 % Overlay the warpedImage onto the panorama.

 panorama = step(blender, panorama, warpedImage,

warpedImage(:,:,1));

end

figure

imshow(panorama)

6.1.2. Test on different use cases

To simulate a scene where there would be an overlap between two

cameras or more, the algorithm has been tested on different configurations

described below. Also, note that in all the cases described, the algorithm is

able to stitch the images regardless of the order they are read in input.

Multiple image processing: Image stitching 54

a) “Simplest” case

The simplest case consists in reconstructing the image as a

“panorama” picture. We simulated the horizontal shift by cropping an image

to keep the left and the right part of it, with an overlap between those two

parts.

Input images Output

Figure 6.1: Image stitching – horizontal shift

The image is perfectly overlapped but some pixels were sometimes

lost during the stitching. The correction of the black pixels is described in

the next section Bad pixels removal.

b) Vertical shift

The vertical shift was simulated by cropping the bottom of the left-

side image and the top of the right-side one, still with an overlap between

those two images.

Input images Output

Figure 6.2: Image stitching – vertical shift

The images are perfectly overlapped but some pixels were lost

during the stitching.

Multiple image processing: Image stitching 55

c) Tilt

The left part of the image was slightly tilted.

Input images Output

Figure 6.3: Image stitching – tilt

The images are perfectly stitched but some pixels were lost during

the stitching.

d) More than two input images

The algorithm was tested with a number of inputs superior to two.

The figure displays the stitching result of three different parts of the

Pokemon picture – overlapping two by two – and including one rotated 90

degrees. The images are perfectly gathered but some pixels were still lost

during the stitching.

Input images Output

Figure 6.4: Image stitching – 3 input images

e) “Real-life” case

A more “videosurveillance-oriented” case was simulated with street

view pictures taken from a same point and scanning a landscape.

Multiple image processing: Image stitching 56

Input images Output

Figure 6.5: Street image stitching – 2 images

Input images

Ouput

Figure 6.6: Street image stitching – 3 images

Multiple image processing: Image stitching 57

In this example, there are no “bad pixels”. The more horizontally-

aligned the pictures are, the better the stitching is. If the shift is too high, the

warped image will be distorted as displayed below.

Input images Output

Figure 6.7: Street image stitching – Distortion because of too strong

horizontal shift

6.1.3. Bad pixel removal

As seen in the previous section, some pixels were sometimes lost during

the stitching of the images. The black pixels were corrected with two

different methods working on grayscale images:

 The first one removes the holes in an image by calculating the

average values of surrounding pixels. It does the following steps:

o Find the bad pixels where the image is zero, then dilate to be

sure we get everything.

o Apply a big blur to get started faster.

o Repeatedly average the image then set the good pixels back

to their original value with newImage(~badPixels) =

myData(~badPixels);.

The averaging could be repeated until the image stops changing, and a

smaller averaging kernel can be chosen for a higher precision.

 The second method uses the Roifill tool from Matlab image

processing toolbox, applied on the badPixels as defined in the

first method.

Multiple image processing: Image stitching 58

numIterations = 30;
avgPrecisionSize = 16; % smaller is better, but takes longer

% Read in the image grayscale:
originalImage = double(rgb2gray(panorama));

% get the bad pixels where = 0 and dilate to make sure they

get everything:
badPixels = (originalImage == 0);
badPixels = imdilate(badPixels, ones(12));

%# Create a big gaussian and an averaging kernel to use:
G = fspecial('gaussian',[1 1]*100,50);
H = fspecial('average', [1,1]*avgPrecisionSize);

%# Use a big filter to get started:
newImage = imfilter(originalImage,G,'same');
newImage(~badPixels) = originalImage(~badPixels);

% Now average to
for count = 1:numIterations
 newImage = imfilter(newImage, H, 'same');
 newImage(~badPixels) = originalImage(~badPixels);
end

%%% Same task, with roifill tool %%%
newImage2 = roifill(originalImage, badPixels);

Multiple image processing: Image stitching 59

(a)

(b)

(c)

Figure 6.8: Region of bad pixels (a) and corrected images (b, c)

Multiple image processing: Image stitching 60

The result of the two pixel-correction methods is displayed in

Figure 6.8. The Roifill tool seems to the naked eye to better remove the bad

pixels and recover more accurately the original image. This intuition can be

confirmed with a higher PSNR value for this method: image (b) on Figure

6.8 has a PSNR equal to -26.2135 against -25.1502 for image (c) corrected

with the Roifill tool.

Moreover, when the algorithm does not detect bad pixels inside the

original images that are being stitched (black rectangles in Figure 6.9), the

two methods enable to reconstruct the outside part of the image and thus

smooth the stitching contours.

Figure 6.9: No bad pixel detected in the original images (black

“rectangles”) but the pixel-correction methods reconstruct the outside part

of the stich image.

Multiple image processing: Image stitching 61

On the example in Figure 6.9, the Roifill method fills in a wider part of the

“outside” image.

6.2. Image stitching and Compressive Sensing

Three scenarios can be considered if we think of computing several

camera flows, i.e. compressing and stitching the different flows.

The first case would be to calibrate the cameras so that the system

knows the overlap region and does not need to do the calibration for every

single flow but we can consider doing a re-calibration on a regular basis,

every hundred samples for example. The Compressive Sensing algorithm

can then be applied on the stitched image. This solution would be interesting

in terms of storage capacity and computing times since CS would be only

applied on the stitched image. However, all the video data would need to

pass over the network, which does not meet the issue of mass data

transmission and redundancy, neither the secure transit mechanism to

guarantee the privacy of the video streams.

The second scenario would be to compress each file before sending

them over the network and then stitch the CS images. This solution would

Multiple image processing: Image stitching 62

enable to send less data – since sampled – over the network and to do

independent compressions on each image, i.e. to compress the images with

different amounts of samples. Indeed, as shown in Figure 6.10, the image

stitching algorithm still works for compressed images if there are enough

common points to be able to find the overlap region between the different

inputs. The algorithm perfectly concatenates two images respectively

sampled at m=1800 and m=2000 (a) or m=1500 and m=2500 (b); a small

error occurs while stitching with m=1200 and m=1800 (c). However the

concatenation fails for m=1200 and m=2200 (d) probably because there is a

too high quality difference between the points in the image compressed at

1200 points to find the common pixels with the other image.

(a)

(b)

(c)

(d)

Figure 6.10: CS image stitching: (a) m=1800 and m=2000, (b)

m=1500 and m=2500, (c) m=1200 and m=1800, (d) m=1200 and m=2200.

The PSNR and SSIM values were calculated for each of the four

previous cases in comparison to the images stitched without undersampling.

The results are shown in Figure 6.11. We can notice that the PSNR value is

slightly higher in case (a) where the two images were sampled at close rates

m=1800 and m=2000, than in case (b) where sample rates were more

different from each other (m=1500 and m=2500) even though one of them

was higher than in case (a). However, the SSIM index is higher in case (b)

Multiple image processing: Image stitching 63

where one of the images has been sampled at a higher rate than in case (a).

SSIM and PSNR values are non-surprisingly lower in cases (c) and (d)

where errors occur in the image stitching.

 (a)

(b)

(c)

(d)

Stitched image without

CS application

P
S

N
R

19.2897 18.2798 11.8657 7.3678

S
S

IM

0.5098 0.6557 0.4790 0.4071

Figure 6.11: PSNR and SSIM values between simple image stitching

and CS image stitching: (a) m=1800 and m=2000, (b) m=1500 and

m=2500, (c) m=1200 and m=1800, (d) m=1200 and m=2200.

The third suggestion is to compress the data before sending them

over the network – which would limit the transmission of redundant

information as in the second case – and to find the overlap region and stitch

the image before finally decoding. This implies that the images should be

sampled with the same compression rate since the decoding algorithm

would be run on the stitched image. This would save computation time since

only one CS decoding would be required instead of two in the other cases.

However, the ability to find the common part between the compressed

images remains uncertain.

Multiple image processing: Image stitching 64

6.3. Conclusion

In this chapter we studied how compressive sensing could be applied

across multiple images, as well as combining CS with image stitching. In

our work, all the image processing is occurring either at the source (in single

image case) or at the destination (which receives the different images) and

we did not implement any network coding. In case of multiple sources, we

would know from where each samples come so NC could be applied as

explained in Chapter 2, but with an “inverse butterfly” process.

Figure 6.11: “Inverse butterfly” in a multiple-source case.

Conclusion and future work 65

Chapter 7

Conclusion and future work

The goal of this report was to evaluate the plausibility of applying

compressive sensing on video surveillance data, as part of an efficient

protocol that could automatically translate analog data into already

compressed digital form to be later computed for reconstruction. Through

this report we also considered the use of network coding as a way to manage

the distributed storage of video information.

In this project we studied an algorithm of image compressive

sensing, as video is a sequence of images. We evaluated the quality of the

results with two different mathematical tools. The first one, the PSNR

measured the quality of the reconstructed image by measuring the noise

introduced by compression. For video surveillance purpose, we thought we

could focus on the reconstruction accuracy of the image structure. Therefore

we measured the structural similarity with the SSIM index, which takes into

account the visual impact of the luminance, the contrast and the structure of

the image. We also found interesting to compare the results by applying

edge detection filters on the reconstructed images. It proved that edge

detection on CS images would enable to considerably reduce the number of

samples if we want to reach a given threshold.

On the other hand, we thought about a multi-camera video

surveillance scene and found an algorithm able to find the overlap region

between images and to stitch them together. We also considered the

different scenarios possible to combine image stitching and compressive

sensing, where the images could have been under sampled at different rates.

Several problems need to be addressed in a practical

implementation. For example, if cameras record a scene from different

angles, the perspective should be considered and adjusted during the

stitching. The possibility of implementing the combination between image

stitching and compressive sensing should be evaluated in the case where we

would like to find the overlap region between compressed images and stitch

them together before finally decoding. Moreover, we applied edge detection

filters after compressing the image in order to set up a threshold. We could

consider to adopt the opposite approach, which would apply edge detection

before the CS algorithm to filter out the ‘non relevant’ information and

compress even less data by working on the structure of the images.

Conclusion and future work 66

The security in these distributed storage systems is another topic

that must be deepened. Network coding must be implemented to split and

encrypt the data prior to its storage in various devices and in such a way that

no single IoT device contains enough coded data to compromise the privacy

of the video streams if it is stolen. Moreover, cloud computing and cloud

storage are developing massively to face the huge amount of information

IoT generates. Protection of this data is even more important as it is

processed and stored in third-party data centers. Cloud security is an issue

that should not be taken for granted and must be further investigated.

Sources 67

Sources

[1] John Gantz, David Reinsel. The Digital Universe in 2020. In Big Data,

Bigger Digital Shadows, and Biggest Growth in the Far East,

December 2012.

[2] IHS Technology. Video Surveillance & Storage: Opportunities at the

Intersection of IT and Physical Security, September 2014.

[3] Josh Woodhouse. Big, big, big data: higher and higher resolution video

surveillance, January 2016. URL:

https://technology.ihs.com/571026/big-big-big-data-higher-and-higher-

resolution-video-surveillance.

[4] Network coding definition. Techopedia. URL:

https://www.techopedia.com/definition/14833/network-coding.

[5] Hulya Seferoglu, Athina Markopoulou. Opportunistic Network coding

for Video Streaming over Wireless. In Packet Video 2007, pages 191-

200. IEEE, 2007. doi: 10.1109/PACKET.2007.4397041.

[6] Emmanuel Candès, Justin Romberg, Terence Tao. Stable Signal

Recovery from Incomplete and Inaccurate Measurements. In Comm.

Pure Appl. Math., Volume 59, pages 1207–1223, 2006.

doi:10.1002/cpa.20124.

[7] David L. Donoho. Compressed Sensing, Manuscript, September 2004.

[8] Emmanuel Candès and Michael Wakin. An Introduction to Compressive

Sampling. In IEEE Signal Processing Magazine, Volume 25, Issue 2,

pages 21–30, March 2008.

[9] G. Davis, S. Mallat, M. Avellaneda. Adaptive greedy approximations. In

Constructive Approximation, Volume 13, Issue 1, pages 57-98, March

1997.

 [10] Stuart Gibson. Simple compressed sensing example, May 2013. URL:

http://www.mathworks.com/matlabcentral/fileexchange/41792-simple-

compressed-sensing-example .

[11] R. Baraniuk, Compressive Sensing, Lecture Notes in IEEE Signal

Processing Magazine, Volume 24, July 2007.

[12] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli.

Image Quality Assessment: From Error Visibility to Structural

Similarity. In IEEE Transactions on Image Processing, Volume 13,

Issue 4, pages 600–612, April 2004.

https://www.techopedia.com/definition/14833/network-coding
http://www.mathworks.com/matlabcentral/fileexchange/41792-simple-compressed-sensing-example
http://www.mathworks.com/matlabcentral/fileexchange/41792-simple-compressed-sensing-example

Sources 68

[13] Juan Cabrera. Content Delivery and Storage in Wireless Networks

Using Network coding. Aalborg University Master Thesis, June 2015.

[14] MathWorks Documentation, Image Processing Toolbox (SSIM, Edge

Detection). URL: http://fr.mathworks.com/help/images/.

[15] Yunhe Li, Qinyu Zhang, Shaohua Wu and Ruofei Zhou. Efficient Data

Gathering with Network coding Coupled Compressed Sensing for

Wireless Sensor Networks. In Information Technology Journal,

Volume 12, Issue 9, pages 1737-1745.

Doi: 10.3923/itj.2013.1737.1745, 2013.

[16] Marco F. Duarte, Mark A. Davenport, Michael B. Wakin, and Richard

G. Baraniuk. Sparse signal detection from incoherent projections. In

IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),

III, 2006.

[17] MathWorks Documentation on Feature Based Panoramic Image

Stitching. URL: http://www.mathworks.com/examples/matlab-

computer-vision/mw/vision_product-

FeatureBasedPanoramicImageStitchingExample-feature-based-

panoramic-image-stitching .

[18] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan Wu, Martin J.

Wainwright and Kannan Ramchandran. Network coding for distributed

storage systems. In Information Theory, IEEE Transactions on, Volume

56, Issue 9, pages 4539-4551, 2010.

[19] Hakim Weatherspoon and John D. Kubiatowicz. Erasure Coding vs.

Replication: A Quantitative Comparison. In Proceedings of the First

International Workshop on Peer-to-Peer Systems (IPTPS 2002), 2002.

[20] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu, and

Changho Suh. A survey on network codes for distributed storage. In

Proceedings of the IEEE, Volume 99, Issue 3, pages 476-489, 2011.

[21] Hui Wang, Joyce Liang and C.-C. Jay Kuo. Overview of Robust Video

Streaming with Network coding. In Journal of Information Hiding and

Multimedia Signal Processing, Volume 1, Issue 1, pages 36-50, January

2010.

[22] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B.

Leong. A Random Linear Network coding Approach to Multicast. In

IEEE Transactions on Information Theory, Volume 52, Issue 10, pages

4413-4430, October 2006.

[24] Duarte, Marco F.; Davenport, Mark A.; Wakin, Michael B.; Baraniuk,

Richard G. Sparse signal detection from incoherent projections. In

ICASSP, IEEE International Conference on Acoustics, Speech and

Signal Processing - Proceedings. Vol. 3 2006. 1660651, 2006.

http://fr.mathworks.com/help/images/
http://www.mathworks.com/examples/matlab-computer-vision/mw/vision_product-FeatureBasedPanoramicImageStitchingExample-feature-based-panoramic-image-stitching
http://www.mathworks.com/examples/matlab-computer-vision/mw/vision_product-FeatureBasedPanoramicImageStitchingExample-feature-based-panoramic-image-stitching
http://www.mathworks.com/examples/matlab-computer-vision/mw/vision_product-FeatureBasedPanoramicImageStitchingExample-feature-based-panoramic-image-stitching
http://www.mathworks.com/examples/matlab-computer-vision/mw/vision_product-FeatureBasedPanoramicImageStitchingExample-feature-based-panoramic-image-stitching

Sources 69

[25] Nguyen, N., D.L. Jones and S. Krishnamurthy. Netcompress: Coupling

network coding and compressed sensing for efficient data

communication in wireless sensor networks. In Proceedings of the

IEEE Workshop on Signal Processing Systems, pages 356-361, San

Francisco, CA., USA, October 6-8, 2010.

[26] Mahdy Nabaee, Fabrice Labeau. Quantized Network for correlated

sources. In EURASIP Journal on Wireless Communications and

Networking, 2014. Doi: 10.1186/1687-1499-2014-40.

[27] Chong Luo, Jun Sun, Feng Wu. Compressive network coding for

approximate sensor data gathering. In Global Telecommunications

Conference (GLOBECOM 2011), 2011 IEEE, pages 1-6. Doi:

10.1109/GLOCOM.2011.6134085. 2011.

[28] Yang, X., Tao, X., Dutkiewicz, E., et al. Energy-efficient distributed

data storage for wireless sensor networks based on compressed sensing

and network coding. In IEEE Transactions on Wireless

Communications, Volume 12, Issue 10, pages 5087-5099. October

2013.

[29] Valérie Gouaillier. La vidéosurveillance intelligente : promesses et

défis – Rapport de veille technologique et commerciale. CRIM et

Technopôle Défense et Sécurité. Mars 2009.

[30] Gartner Press Release. Gartner Says the Internet of Things Will

Transform the Data Center, March 19, 2014. URL:

http://www.gartner.com/newsroom/id/2684616 .

[31] Jaydip Sen. Security and Privacy Issues in Cloud Computing. In Cloud

Computing Jaydip Sen Innovation Labs, Tata Consultancy Services

Ltd., Kolkata, INDIA. 2013.

[32] What are NVRs and DVRs? URL:

https://www.videosurveillance.com/tech/nvr-and-dvr.asp.

[33] V. Sathish, T. A. Sangeetha. Cloud-Based Image Processing With Data

Priority Distribution Mechanism. In Journal of Computer Applications

(JCA) ISSN: 0974-1925, Volume 6, Issue 1, 2013.

[34] Rafael S. Pereira, Karin K. Breitman. Chapter 4: Split&Merge

Architecture. In Video Processing in the Cloud, Springer Briefs in

Computer Science. August 2011.

[35] Rafael S. Pereira, Karin K. Breitman. A Split&Merge Architecture for

Distributed Video Processing in the Cloud. 2011.

http://www.gartner.com/newsroom/id/2684616
https://www.videosurveillance.com/tech/nvr-and-dvr.asp

