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Abstract: 

In recent years, there has been a huge explosion in 

the variety of sensors and in the dimensionality of the data 

the sensors required, in all kinds of applications from 

medical imaging to video surveillance. As a result, a 

‘deluge of data’ is occuring in many of these applications. 

In 2007 according to the International Data Corporation 

[1], the total amount of information being created by the 

world sensors began to exceed the amount of storage. 

Furthermore, transmitting all data to the cloud for further 

processing is, in many applications, costly and 

unnecessary. For example, providing sensor data in a farm 

or video surveillance would benefit from local storage and 

pre-processing before upload to the cloud. ‘Compressive 

sampling’ or ‘compressed sensing’ (CS) constitutes an 

appealing pre-processing technique that samples sparse 

signals in a much more efficient way than the established 

Nyquist density sampling theory. Since many natural 

signals are sparse, CS allows for simple sensors to sample 

at low rate to later use advanced algorithms for 

reconstruction at the receiver.  

This thesis studies how to apply compressive sensing for 

video surveillance applications considering spatial 

correlation within a picture (frame) and across pictures 

(frames) from multiple cameras. The thesis relies on 

multiple images analysed with standard metrics (e.g., 

PSNR, SSIM) and pre-processing techniques to determine 

good thresholds for the early measurements and storage 

requirements per image. Given our results, taking 1000 

samples from an image originally containing 2500 pixels 

would be enough to have a good image reconstruction, 

while 300 to 500 samples will be enough to detect the 

edges and contours of the image, which provides key 

information for video surveillance. Finally, we propose 

several mechanisms to bring together images from 

multiple cameras with potential overlap and study the 

effect of asymmetric sampling across the cameras. 

https://es.aau.dk/
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Chapter 1 

Introduction 
 

1.1. The video surveillance market 

The security market is all the time adopting new technologies to 

guarantee protection to people and their property. The world market for 

video surveillance solutions is experimenting a wide digitalization to reach 

the critical mass, and has experienced a strong growth in recent years, which 

is forecast to continue at rate of 12.4% per year to $25.6 billion in 2018 [2]. 

The ‘deluge of data’ continues to increase with the proliferation of 

always higher resolution cameras, reaching 566 petabytes of data produced 

in one day by all the video surveillance cameras installed worldwide in 2015 

– as announced in IHS new survey carried out in early 2016 [3]. 

 

Figure 1.1: Average data generated by new surveillance cameras shipped 

globally. [3] 

 

Video surveillance cameras produce a huge amount of high 

resolution data, which becomes a challenge to compute and store. Thus, 

enterprise storage systems dedicated to video surveillance need to have a 

larger throughput capacity. Previously separated, IT and security have 

finally joined forces to meet the increase of surveillance storage demands. 

However, past approaches will no longer be sufficient and those demands 

may force end-users to change their storage solutions. 
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VSaaS – standing for Video Surveillance as a Service – has emerged 

as a reliable alternative to store and manage surveillance videos in the cloud. 

Many see this solution as a more effective software maintenance and 

support for their surveillance systems. But not everyone is ready to store 

their video in the cloud, though the technology has evolved and is now 

proved as a viable substitute to other types of video surveillance solutions. 

Therefore, storage of this data in a reliable fashion in the IoT devices is 

more important than ever. Given that IoT devices may be accessible to 

physical attacks (e.g., someone can steal the device and its stored data), the 

system shall rely on a highly distributed and secure storage mechanism 

based on state of the art erasure correcting technologies (network coding) to 

split and encrypt the data prior to its storage in the various devices and even 

with additional ‘coded copies’ for system robustness. This means that no 

single IoT device will contain enough coded data to compromise the privacy 

of the video streams. 

 

1.2. Network Coding 

Network coding (NC) consists in encoding and decoding transmitted 

data in order to increase network throughput, to reduce delays and to make 

the network more robust. The butterfly network shown in Figure 1.2 is an 

example often used to demonstrate how network coding can achieved 

throughput gain. It can increase the information content per transmission by 

propagating random linear combination of packets into a single packet. 

Besides reducing delays, network coding can also reduce the energy 

consumption since fewer packets are transmitted within the cloud. 
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Figure 1.2: A classical network coding example. The source node S would 

like to multicast two bits (b1, b2) to nodes X and Y. 

 

As explained in [4], packets are traditionally cached and forwarded 

downstream. Therefore, if a routing node receives from two sources two 

packets sent to the same destination, it forwards them one after another, thus 

creating redundancy. This requires separate transmissions for each and 

every message delivered, which decreases network efficiency. Another 

problem in traditional packet-switched network – and particularly important 

in video applications – is when the overall network traffic volume is high, 

bottlenecks are common, resulting in long delays. Packets tend to go to 

certain nodes, sometimes in excess of the nodes' ability to process them, 

while other routes and nodes may remain under-utilized. 

In network coding, the outgoing packets are mixed before being 

transmitted to the destination along multiple paths simultaneously. 

Algorithms are used to mix those two (or more) messages before forwarding 

the result to the destination. The receiving node reassembles the transmitted 

pieces into the original message with the same algorithm – note that the 

destination node needs to be completely synchronized with the transmitting 

nodes in order for this technique to work. 

Network coding is perceived to be useful in networks where the 

same data needs to be transmitted to several destination nodes (e.g. storage 

networks, multicast streaming networks, wireless mesh networks, file-

sharing peer-to-peer networks etc.). But the regular topology in peer-to-peer 

networks is changing and it poses a challenge to the network coding 
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technique because it complicates network synchronization. Plus, the data 

may take a lot of time to be decoded. 

This distribution method can increase the effective capacity of a 

network by minimizing the number and severity of bottlenecks. The 

difference with traditional methods is even more significant when network 

traffic volume is near the maximum capacity obtainable with traditional 

routing. Overall, network coding can increase the efficiency in large 

networks, but high overhead costs may make them less manageable for 

smaller networks. 

Regarding video streams, network codes should be selected in order 

to maximize both the video quality and the network throughput. The video 

streaming community studies in depth the unequal importance of video 

packets. On the other hand, the network coding community has proved that 

mixing different information flows can increase throughput in multicast 

networks. In [5], video-aware opportunistic network coding schemes try to 

consider both aspects – namely the decodability of network codes by several 

receivers, and the distortion values and playout deadlines of video packets. 

But transmitting all data to the cloud for further processing is, in 

many applications, costly and unnecessary. For example, providing sensor 

data in a farm or video surveillance would benefit from local storage and 

pre-processing before upload to the cloud. That is why some techniques 

have emerged to sample or compress data as most of the data is redundant. 

 

1.3. Compressive Sensing 

Compressive sensing (CS) is also referred as compressed sensing, 

compressive sampling or sparse sampling. It is a signal processing method 

used to efficiently acquire and reconstruct a signal by finding the sparsest 

solution to underdetermined linear systems. 

The core of signal processing is based on the Shannon/Nyquist 

theorem: a continuous time-signal sampled at twice its highest frequency, 

can be recovered exactly. Very recently, an alternative theory has emerged, 

known as ‘compressive sensing’. By using nonlinear recovery algorithms 

(based on convex optimization of the l1-norm described more in depth in 

Chapter 2), super-resolved signals and images can be reconstructed from 

what appears to be highly incomplete data. For example, CCD digital 

cameras (charge coupled device) take pictures with around 10 million 

pixels. In the end, about 5% of the initial measurements will be stored 

because the other 95% give redundant information. So instead of acquiring 

and then throwing away most of the data, the idea of CS is to directly get 
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only the informative part of the signal. Thus, compressive sensing shows us 

how data compression can be implicitly incorporated into the data 

acquisition process, and gives a new perspective for many applications 

including analog-to-digital conversion. 

This is a pre-processing step in the process of IoT-video surveillance 

storage, which can be divided into capture of video surveillance, storage of 

this data in a reliable fashion in the IoT devices, and allowing access and 

playback by users. This project will focus specifically on compressive 

sensing for data compression as part of an efficient protocol that could 

automatically translate analog data into already compressed digital form to 

be later computed for reconstruction. 

Compressed sensing could have important implications, such as new 

data acquisition protocols that translate analog information into digital form 

with fewer sensors than what was considered necessary. Processes for 

simultaneous signal acquisition and compression could be improved with 

this new sampling theory. 

 

1.4. Our proposition 

As video surveillance cameras have higher and higher resolution, the 

challenge of reducing the amount of data to be stored is more important than 

ever. We considered two main cases: a scene recovered by a single camera, 

and a zone covered by multiple cameras. 

In the first case, we worked on applying compressive sensing within 

a picture while maintaining a good image quality. We evaluated the quality 

of the compressed images with two different techniques: the PSNR and the 

SSIM index. Finally, we investigated the utility of applying edge detection 

filters on CS images to get better results with fewer samples. 

In the second case, as there is most likely some overlap between the 

different devices to assure a full coverage of the area, we worked on how to 

combine several images. We also considered the application of image 

stitching besides compression. For this, we proposed three scenarios 

depending on the order in which the transformations (compression and 

stitching) were applied. 

Even though we ran the different image processing methods locally 

rather than dealing with cloud computing, we also included a state of the art 

of video processing in the cloud since this concept is becoming ubiquitous 

in the digital era we are living in and the resulting data deluge. 
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Chapter 2 

State of the art in Network coding and Cloud computing 
 

2.1. Coding for storage 

2.1.1. Erasure coding and Network coding for storage 

Distributed storage aims at storing data over a long period of time 

and in a reliable way. It uses a distributed collection of storage nodes which 

may be individually unreliable. Erasure coding offers a good option to store 

those data efficiently. It breaks the outgoing file of size M into k packets of 

size M / k, and instead of storing n replicas of the fragments, n coded pieces 

are produced using an encoder and a maximum distance separable (MDS) 

code (n, k). Then, any set of k pieces of size M / k is enough to recover the 

whole file, which makes the approach optimal in terms of 

reliability/redundancy tradeoff [18, 20]. This technique is much more 

reliable for the same amount of redundancy than simple replication [19]. 

Moreover, the system should no longer keep track of where the replicated 

pieces are stored. Instead it should only guarantee that enough different 

pieces are available at any time. 

One of the most frequently used digital error control codes are Reed-

Solomon codes, especially for the redundancy in data storage systems. 

The use of traditional MDS codes raises new difficulties. When a 

node fails or disconnects from the network, the system must compensate the 

redundancy lost with that node. With replication, the piece lost is simply 

copied from another node in the network, without any repair overhead i.e. to 

repair k bits, only k bits are transmitted over the network. On the other hand, 

codes like Reed-Solomon first need to decode the whole file to be able to 

generate new coded pieces. Thus, repairing a fragment of size M / k requires 

a minimum bandwidth of M, i.e. at least the whole file must be transferred 

over the network every time the system builds new redundancy. 

Network coding appears as a solution to this difficulty. This recent 

technique enables to generate erasure codes – also known as forward error 

correction (FEC) codes – which allow repairing by transmitting the 

information theoretic minimum over the network [18]. The most common 

technique of network coding is Random Linear Network Coding (RLNC). 

This technique, when used for file coding purpose, takes the original k 

pieces of a file x1, x2,…, xk and creates n linear combination p1, p2,…, pn of 

the same size called coded packets, where pj is: 

http://searchmobilecomputing.techtarget.com/definition/forward-error-correction
http://searchmobilecomputing.techtarget.com/definition/forward-error-correction
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 𝑝𝑗 = ∑ 𝒄𝒊,𝒋. 𝒙𝒊

𝑘

𝑖=1

 

(2-1) 

𝒄𝒊,𝒋 are the coefficients chosen randomly and independently by 

each node over a finite field, commonly the Galois Field i.e. of the form 

GF(2
m
) – in general GF(2

8
) is sufficient. These coefficients are then 

appended to each coded packet, so receiver nodes will know how to recover 

the source data. Similarly as in Reed-Solomon codes, any set of k linear 

independent packets are enough to decode the file. Yet, an innovation of 

network coding over Reed-Solomon codes is that it allows the recoding of 

already-coded packets p1, p2,…pn , i.e. it is possible to generate new coded 

packets p’ without decoding the whole file. p’ is: 

 

𝑝′ = ∑ 𝑐𝑖 . 𝑝𝒊

𝑛

𝑖=1

 

(2-2) 

As random combinations of the files are distributed among the peers 

and cloud services instead of just raw data, network coding offers an 

intrinsic level of security. The data remains private even when 

“mischievous” peers are present in the network or when a cloud service gets 

compromised by external agents. An eavesdropper would need to 

compromise the whole system and gather enough coded packets in order to 

be able to decode and “understand” the data. 

At the same time, network coding has proven benefits in several 

communication scenarios. In point-to-point communications, it allows to 

repair packet losses in lossy channels. If there is an estimation of the packet 

error probability, the transmitter can send extra coded packets. Since it is 

not relevant to know which specific packets got lost, this does not require 

extra feedback from the receiver. In multicast scenarios over lossy wireless 

channels, when several nodes want to receive the same data, if the 

transmitter broadcasts uncoded packets, then it will need to retransmit every 

single lost packet. Due to the uncorrelated losses, many of these 

retransmissions will be useful only for a few nodes. If coded packets are 

sent instead, the information contained in the retransmitted packets might 

benefit with high probability all the nodes that experienced losses. 

By using network coding in a distributed storage system to manage 

the storage and communications with a single code structure, this project 

takes advantages of the benefits of that technology in the field of storage 
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and wireless communications. This brings reliable multicast and higher data 

transmission rates in lossy channels. 

As underlined in [21], adapting network coding to robust video 

transmission in wireless networks raises several challenges in terms of video 

quality, bandwidth and delays. Indeed, wireless networks can suffer from 

dynamic channel variations and interference in a shared medium. There are 

different options to address these issues. One of them is to apply NC erasure 

protection over the different channels, i.e. over uplink, downlink and 

overhearing channels, especially in the context of video conferencing, live 

surveillance or other live-video applications. Another solution is to assign 

an unequal amount of forward error correction codes on different video 

layers based on their importance. FEC gives the receiver the ability to 

correct errors without needing a reverse channel to request retransmission of 

data, but at the cost of a larger forward channel bandwidth. Another way to 

achieve robust video transmission is to build multiple multicast trees, and 

thus to provide path diversity. 

 
Figure 2.1: Multicast tree example: node S sends a message to 

multiple destinations in the set of destinations, through the tree. 

 

2.1.2.  Coding for distributed storage 

When parts of the file are replicated in the network, the only way 

to guarantee its recovery is to have at least a duplicate of the file in the 

system. This means that p redundant pieces must be added to the system in 

order to store a file of p pieces. In Figure 2.1 with p=4, it can be seen that if 

only half of the file is stored as redundancy, the system cannot guarantee 

100% reliability of the file if any node disconnects. It guarantees reliability 

only if the failing node has this piece replicated somewhere else in the 

network. 
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Figure 2.2: Example showing that 50% redundancy cannot 

guarantee 100% reliability if any node disconnects. In case a) the 

file cannot be recovered, it can be in b). 

 

As previously mentioned, there is nonetheless an alternative to the 

storage of exact replicas of the pieces in the network. For instance, MDS 

codes such as Reed-Solomon codes enable to encode the p pieces into coded 

packets that can be distributed into the nodes. The advantage of this method 

is that any set of p coded packets are enough to reconstruct the file. 

 

Figure 2.3: Example showing that using coding 50% redundancy 

can guarantee 100% reliability if any node disconnects. In both 

cases the file can be recovered. 

 

Figure 2.3 is based on the same example as in Figure 2.2. The same 

file of four pieces P1, P2, P3, P4 is now encoded with a (6, 4) MDS code, into 

six coded packets CP1, CP2,…, CP6 stored in the nodes. By doing this and 

opposed to the Figure 2.2 example, a redundancy of 50% of the file is 

enough to guarantee that the information is recoverable no matter which 

node disconnects in the network. 

The problem of storage in distributed networks goes beyond than 

just encoding a file and distributing the coded packets among the nodes. 

MDS codes are optimal in the reliability/redundancy tradeoff [20] because a 

file split into k pieces and encoded with a (n, k) code contains the minimum 
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information required to recover the original data. However, when a node 

fails or disconnects, then the system must compensate to keep the same 

level of reliability/redundancy, i.e. the other nodes must reconstruct in the 

system the redundancy lost with the disconnected node. This maintenance – 

called repair – requires bandwidth resources to be performed. Distributed 

storage systems are built in shared networks where sometimes the 

bandwidth costs are higher than the storage ones. In that sense, the optimal 

reliability/redundancy tradeoff is not enough. 

We might be willing to sacrifice some of the storage resources 

to be able to repair using less bandwidth. Many researchers study the 

reconstruction of the redundancy in newcomer nodes (i.e. when a node fails, 

some redundancy is built into a new node) and they focus on the costs in 

terms of bandwidth and storage associated with the repair. When MDS 

codes are used and the system performs a repair, it needs to reconstruct the 

whole file in a node, and subsequently generate new coded packets that will 

be stored in a newcomer node. This means that to repair the redundancy lost 

with a disconnected node, if each node stores a fraction M / k of a file, the 

process would require the download of (k-1)*(M / k) bytes into a node to be 

able to reconstruct the file. Then, this node would generate a M / k byte 

packet that would be sent to the newcomer node. In conclusion, to repair 

M / k bytes the system must transfer (k-1)*(M / k) + M / k = M bytes, i.e. the 

whole file must be transferred over the network. An example is shown in 

Figure 2.4 with a system which distributes a file into six nodes using a (6, 4) 

MDS code. 

 
Figure 2.4: Example of the repair process when using a (6, 4) 

MDS code. The whole file is transferred over the network. 
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This reliability/redundancy tradeoff in this kind of repairs has 

been recently studied ([18, 20] among others), concluding that by using 

network coding it is possible to generate codes capable of reducing the 

bandwidth required for the repair. Dimakis et al. [18] found that it was 

possible to find the optimal curve describing the tradeoff storage-bandwidth: 

such curve can be achieved using network coding. 

 

2.1.3. Random Linear Network Coding 

Random Linear Network Coding (RLNC) is a technique used to 

improve network performance in terms of throughput, scalability, efficiency 

and also for resilience to attacks and eavesdropping. Contrary to the 

deterministic Linear Network Coding, RLNC is a distributed scheme that 

circumvents the constraint of knowing the global network topology to find 

the coding coefficients. RLNC has a probabilistic success rate that increases 

exponentially with field size. 

In RLNC a coded packet pj is generated producing linear 

combinations of the original k data pieces x1, x2,…xk such as: 

 𝑝𝑗 = ∑ 𝒄𝒊,𝒋. 𝒙𝒊

𝑘

𝑖=1

 

(2-3) 

Each coded packet can be considered as a k-variable linear 

equation. Since addition and multiplication are performed over the finite 

field, then the size of the coded packets will be the same size as the original 

pieces. Also, it is possible to use all the known linear algebra tools 

(matrices, Gauss-Jordan elimination…) to solve linear equations. Thus, a 

decoder will need only k linear independent packets to be able to reconstruct 

the whole data. The equation 2-4 is a different way from 2-3 to show the 

link between the coded packets pi, the coding coefficients cij and the original 

pieces xi. 

[

𝑝1

⋮
𝑝𝑛

] = [

𝑐11 𝑐12 ⋯ 𝑐1𝑘

⋮ ⋱ ⋮
𝑐𝑛1 𝑐𝑛2 ⋯ 𝑐𝑛𝑘

]. [

𝑥1

⋮
𝑥𝑘

] 

(2-4) 

Metadata will need to be included with the encoded packets, so 

receiver nodes will know how to recover the source data. The coefficients 

used to generate each pi constitute a vector known as the coding vector 

which is added as an overhead in packet transmission. The size of this 
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coding vector in bytes depends on the size of the finite field and on the 

number of original pieces used, known as generation size. 

For example, to transfer an image of 2MB, it is split into 500 

pieces of 4KB each. The generation size is then k=500. Each coded packet is 

generated making linear combinations of vector. If the size of the finite field 

is q=2, i.e. GF(2)={0,1}, the size of the overhead due to coding vectors will 

be 𝑘. log2(𝑞), that is 500 bits added at the end of each coded packet. This 

means that each pi contains 4KB of information and a 500-bit overhead. The 

overhead corresponds to 1.25% of the transferred packet. When the symbol 

size gets bigger, the overhead due to the coding vector becomes negligible. 

There is another type of overhead in RLNC due to linear 

dependency. Since the coefficients are chosen randomly, the probability of 

generating linear dependent packets is a function of the generation size and 

the field size q. Ho et al. [22] bounded the probability of this error 

𝑃 ≤ (1- 
𝑟

|𝑞|
 )

η
 

for q > r, where r is the number of receivers, and η is the number 

of links involved in the graph. It can be shown that the probability of 

randomly selecting a non-admissible network code diminishes exponentially 

with code length. 

The overhead due to linear dependencies occurs because linear 

dependent packets do not provide new information to the decoder, so it 

becomes necessary to send extra packets. The bigger the size of the field is, 

the smaller the probability of generating linear dependent packets, but the 

higher the overhead due to the size of coding vectors. The computational 

complexity associated with encoding and decoding increases when the 

generation size becomes bigger. For that reason, if the system needs to 

encode or decode a big file it first divides it into blocks and then performs 

the encoding operations over these blocks of a more manageable size. 

 

2.1.4. RLNC in video transmission 

Applying RLNC to video streaming in erasure network presents 

both advantages and drawbacks. 

On one hand, rank deficiency problem has a negative impact on 

video quality and erasure coding performance. Indeed, if the number of lost 

packets is higher than the redundancy rank of the generator matrix, the 

video decoder is lacking useful data blocks and cannot invert the source file 

properly. Thus, the RLNC rank deficiency issue must be addressed to enable 
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effective error concealment and obtain high quality videos. Wang et al [21] 

listed some solutions to the rank deficiency problem such as an error-

resilient RLNC method, which guarantees the recovery of the source 

packets if the number of lost packets does not exceed the minimum distance 

provided by the rank-metric code. Another solution would be the 

concatenation of two known coding methods – low-density parity-check 

code (LDPC) with RLNC – which arrange the source packets by priority 

and code them with a priority error transmission (PET) scheme. This 

guarantees that the most important n packets can be decoded at the 

destination as long as n RLNC packets are received. Finally, the third 

solution mentioned is to combine video interleaving (VI) with network 

coding. 

On the other hand, by releasing new independent packets in the 

intermediate nodes of the network, RLNC increases error-resilience. When 

pure RLNC encoding is used at the source and intermediate nodes rather 

than forward error correction (FEC) codes [21], both erasure protection and 

coding delay are improved. Also note that erasure channel codes such as 

Reed-Solomon previously mentioned used to recover data from erasures are 

not as simple on video files since the decoding delays can be very 

“expensive” for video quality. 

Seferoglu et al. [5] proposed a scheme which takes into account 

both the decodability of network codes by several receivers and the 

importance and deadlines of video packets. At the intermediate nodes, new 

packets are generated by applying the XOR operator on video packets 

selected from different streams according to their contribution to the overall 

quality. The NC codes are generated depending on the priority and 

emergency of these packets. Receiving nodes listen to the neighboring 

transmissions and store overhead packets for future decoding. This 

introduces storage overhead on the receivers. Moreover, the neighbor nodes 

need to exchange and update the stored content with each other, which 

necessitates extra communication in the network. Their simulation results 

showed that their schemes significantly improved both video quality and 

throughput. 

More generally, network coding methods can improve the 

throughput of data multicast while generating rateless erasure codes, i.e. 

codes that do not exhibit a fixed code rate. However, it disables video error 

concealment and may cause error propagation, resulting in degraded video 

quality but some solutions have been proposed to address these issues. 
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2.2. Video Processing in the Cloud 

2.2.1. The Internet of Things 

It is estimated that by 2020 there will be 50 billion of jacks 

connected to the Internet and estimated by the U.S. Census Bureau that the 

world population will reach 7.6 billion at that time. That means that for 

every person on Earth there would be 6.6 objects connected to the Internet, 

with billions of sensors taking information from real physical objects and 

uploading it on the Internet. This world constantly changing all around 

because of these sensors and the Internet is called the Internet of Things 

(IoT). The latest version of Internet Protocol – IPv6 – creates more potential 

IP addresses than there are atoms on the surface of the Earth. We are going 

to live in a world completely filled with sensors and data reacting to us, 

changing every moment depended upon our needs. It is altering reality as 

we know it, and it is all regulated by the Internet of Things. Gartner [30] 

estimated that the IoT will include 26 billion devices by 2020. Its 

deployment will generate large amounts of data to be computed and stored. 

Cloud services appear to be one of the solutions to address the storage 

management issue. 

 

2.2.2. Cloud computing and storage 

Cloud storage is one of the most common methods used nowadays to 

store data from video surveillance cameras. 

The term “cloud computing” comes from the fact that the data and 

applications are on a cloud of Web servers. In a cloud computing system, 

the computer network handles the running of applications instead of local 

computers. It results in a significant workload shift and a decrease of hard- 

and software demands from the users. Usually, each application has its own 

dedicated server. But as a server is likely to break down, a cloud computing 

system needs to store a copy of all its clients’ information in backup servers 

or other devices. Considering the Internet widespread, the increasing 

demand of bandwidth, broadband and mobility for end-users, cloud 

computing has become ubiquitous in today’s digital era, from consumers to 

businesses. 
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Figure 2.5: How cloud computing works 

 

Even though some people do not consider the cloud as reliable, it 

presents many advantages, among them an ease of use and convenience. 

Indeed, cloud applications are accessible as far as a computer is connected 

to the Internet. Cloud storage provides a continuous availability thanks to 

the file replication across multiple physical machines, and typically across 

multiple sites. If a server fails, the application is simply re-routed to an 

identical replica in a different location. However, multi-site availability has 

a certain cost and complexity due to the redundant – at least twice the 

capacity – hardware it requires. Also, latency can be an issue while 

accessing a video stored on the cloud - even more if the clip is large – 

depending on the network traffic and  

The second main advantage is security and privacy. Even though 

there are several security issues for cloud computing as it deals with 

networks, databases, operating systems, considerable efforts are put into 

security measures to ensure the protection of the data since it could be 

accessible to anyone over the Internet. Each equipment and step in cloud 

computing must be secured, which involves encrypting the data, detecting 

malwares in the clouds, ensuring security policies are enforced for data 

sharing, implementing strong authentication… 

The third factor influencing the choice of cloud storage is the cost 

reduction especially on the customers’ side. As only one application needs 
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to be hosted and maintained, it reduces the customers’ expenses. Plus, data 

protection costs can also be cut since security is often intrinsic to the cloud 

storage architecture. However, regarding video storage application, cloud 

service could is likely to be much more expensive than a Network Video 

Recorder system, because of the internet connection and the cloud storage 

charges. 

Network video recorders (NVR) – and respectively digital video 

recorder (DVR) for analog cameras – are local systems used to manage, 

view, and store surveillance videos from IP cameras. NVRs use the local 

network infrastructure to send and receive surveillance data that can be 

computed from a remote device. 

 

2.2.3. Cloud Distributed Mechanisms 

First developed at Google and now genericized, Map-Reduce is a 

framework that aims to run various tasks in parallel. Its classic 

implementation provides a single ‘master’ node, responsible for distributing 

the tasks between the ‘worker’ nodes doing the processing. Allowing 

distributed processing between a large number of nodes, Map-Reduce is 

widely used in dynamic cloud environments to enhance cloud-based 

transmissions. It is especially useful for image processing procedures as it is 

presented to process vast amounts of data and to return the result to users 

within the minimum time. Sathish and Sangeetha [33] implemented Map-

Reduce on an integrated 2D to 3D multi-user scheme. Image processing 

procedures with high complexity and high computation are treated by the 

Map function while the Reduce function combines the intermediate data 

(processed by the Map function) and generates the final output. They also 

presented an algorithm – Dynamic Switch of Reduce Function – to switch to 

different tasks dynamically according to the achieved percentage of tasks. 

When the waiting time increases with the number of users, the Reduce 

function can utilize this waiting time to compute other tasks. In this way, 

Sathish and Sangeetha reduced both the waiting and computing times, but 

they also enable the users to get the image results more quickly and the 

Map-Reduce scheme to reach higher performance. 

Pereira and Breitman [34, 35] presented an architecture to process 

large volumes of video in the Cloud by taking advantage of the elasticity 

provided by the cloud infrastructures, i.e. the dynamic adaptation of 

capacity to meet a varying workload. They criticized the Map-Reduce 

architecture since a single failure – of the master node – can make the entire 

system collapse. They chose a Split&Merge architecture (Figure 2.6) as it 

addresses several issues from the MapReduce implementation. Basically, 
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the video input file is split into several fragments. All of them are 

simultaneously processed in the Cloud worker nodes, and the fragments are 

then merged into a single continuous compressed video. 

First, in this implementation, the master node is coupled to a 

service that checks the conditions of its workers and can detect any failure. 

On the other hand, by sharing state control between two master nodes, it 

addresses the single point of failure issue. 

 

Figure 2.6: Split&Merge architecture deployed on a public Cloud 

infrastructure (Amazon Web Services) [36] 

They deployed [36] an application to encode different sequences of 

high-definition videos with the Split&Merge implementation. Given the 

results, the Split&Merge approach is really efficient to save CPU consuming 

time, as it takes on average 10% of the total time spent with the traditional 

sequential process, i.e. the method which encodes video without 

fragmentation (all content is rendered on a single server). 

 

2.2.4. Our choice 

In this project, we chose to do local subsampling instead of storing 

the image in a remote node, then downloading it to compute compressive 

sensing and image stitching, and finally uploading the result on the cloud. 

Local computing thus avoids network congestion and reduces bandwidth 
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costs. Moreover, the performance of the cloud server would affect the 

computation speed of the CS and stitching algorithms, so working locally 

avoids the delivery time issue. However, we are aware that cloud computing 

and cloud storage may become almost essential when video surveillance 

systems reach a high number of cameras and thus a large amount of data to 

be processed. In that case, securing data is very important for reasons of 

privacy and confidentiality. We would need to implement network coding to 

split and encrypt the video data prior to its storage in various devices and in 

such a way that no single IoT device contains enough coded data to 

compromise the privacy of the video streams if it is stolen. 
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Chapter 3 

State of the art in Compressive Sensing 
 

3.1. Compressive Sensing 

3.1.1. Background 

Signal sampling is an essential step in the digital signal 

processing. The Nyquist sampling theory asserts that a band-limited signal 

can be perfectly recovered from those samples if the signal is sampled at a 

rate that is at least twice its bandwidth. This is the basic principle for almost 

all the acquisition protocols in digital systems (e.g. electronics, 

communication, biomedical imaging). However, this process does not 

concern signals that are not naturally limited in the frequency domain, for 

example magnetic signals. But the Nyquist theorem plays an implicit role 

when such signals are processed to limit their frequency bandwidth before 

sampling. 

The Compressive Sensing theory was born a decade ago with the 

work respectively of Candès, Romberg, Tao [6] [8] and Donoho [7] which 

renew the Nyquist’s sampling theory regarding non band-limited signals. 

The authors [6, 7, 8] propose sampling techniques that can reduce the 

number of necessary measurements by determining this number more with 

the amount of information in the signal than its frequency bandwidth. 

This new approach uses the fact that a signal is sparse (i.e. the 

signal is a combination of a limited number of non-zero coefficients) in a 

known fixed orthonormal basis Ψ and can be recovered from a small set of 

projections onto another orthonormal basis Փ, incoherent with the first one. 

Roughly speaking, Փ and Ψ are incoherent if no element of one basis has a 

sparse representation in terms of the other basis. Interestingly, random 

projections are incoherent with any other fixed basis. 

3.1.2.  The sensing paradigm 

Important questions can be raised when we consider under sampling 

situations where the number m of measurements is much 

smalleundersamplingr than the dimension n of the signal f: 

 Is it possible to recover accurately the signal from m<<n 

measurements? 

 Is it possible to design m<<n sensing waveforms to get 

almost all the information from f? 
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 How can the signal f be approximated from this information? 

Consider an m×n sensing matrix A with φ1
*
,…, φm

*
 as row-vectors (φ* being 

the complex transpose of φ). The goal is to find f ϵ Rn 
from y = A. f  ϵ Rm

, 

which is often ill-posed when m˂n. Indeed, there is infinity of solution 

signals 𝑓 for which A. 𝑓 = y. But one could find an escape by relying on 

realistic models of objects f which naturally exist [8]. The Nyquist theory 

states that if f(t) has a very low bandwidth, a small set of uniform samples is 

enough to recover the signal. Candès and Wakin [8] show that signal 

recovery is actually possible for a much wider class of signals. 

 

3.1.3. Sparsity 

Sparsity is a very important notion in signal processing. For 

examples, cameras take colored-pictures (coded in three fundamental colors 

R, G, B) of tens of million pixels. Each pixel being coded on 1 byte, it 

would represent 30 Mb per picture. But files – generally coded in the JPEG 

format – are much lighter than that. The key to efficient coding is the 

sparsity notion. Consider signal composed of a vector in RN 
and an 

orthonormal basis B={φ1,…, φN} in RN
. The signal x ϵ RN 

is sparse in the 

basis B if x can be characterized by a small set of n << N coefficients 

<x, φn> from its decomposition on B. Then, 

𝑥(𝑡) = ∑ 𝒙i. φi(t)

𝑁

𝑖=1

 

(3-1) 

 The signal is sparse if one can discard the smallest coefficients 

without losing too much information for a good recovery. The signal is 

called S-parse when it has at most S non-zero coefficients. Actually, a huge 

part of the data is redundant and a large fraction of the coefficients can be 

thrown away. In [8], Candès and Wakin show that 97.5% of the coefficients 

from a megapixel image can be discarded and the reconstructed image will 

be very close to the original. 

 Last but not least, sparsity has a lot of potential on the acquisition 

process as it determines how efficiently a signal can be acquired non-

adaptively. 
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3.1.4.  Incoherent sampling 

Consider a pair of orthonormal bases (Փ, Ψ) in Rn
. The first base Փ 

is used of the acquisition of the signal f and the second one Ψ to represent 

f. The coherence between Փ where f is measured and Ψ where the signal is 

sparse is [8]: 

𝜇(Փ, Ψ) = √𝑛 . max
1≤𝑘,𝑗≤𝑛

|〈𝜑𝑘, 𝛹𝑗〉| 

(3-2) 

This formula means that the coherence measures the highest 

correlation between any of two columns of Փ and Ψ. From we linear 

algebra, it follows that (Փ, Ψ) ϵ [1, √𝑛 ]. The more Փ and Ψ contain 

correlated elements, the larger the coherence is. 

Compressive sensing is interesting in duet of bases with low 

coherence. If we consider the canonical basis Փ, φk=δ(t-k), and the Fourier 

basis Ψ, Ψj=n
-1/2

.𝑒𝑖2𝜋𝑗𝑡/𝑛. Since Փ is the sensing matrix, it corresponds to 

the classical sampling scheme in time. The time-frequency pair gives 

coherence 𝜇(Փ, Ψ) equals to 1 and so that is the maximal incoherence. 

 

3.1.5.  Sparse signals recovery 

According to the Nyquist theorem, one would like to get n 

coefficients from f, but according to the compressive sensing protocol, we 

only acquire a part of them: 

yk= 〈𝑓, φ𝑘〉,  k ϵ M  

where M ⊂ {1,…,n} is a subset of cardinality m<n 

(3-3) 

To recover the sparse representation of f, we have to solve an 

optimization problem. Consider a vector x* for which y=Ψ.Փ.x*. To have 

imperatively sparse signals after recovery, a natural approach is to impose 

the l0 norm (defined as the non-zero coefficients) of the recovered signals to 

be minimal: 

min 𝑥 ϵ Rn‖�̂�‖l0 subject to   yk=〈φ𝑘, 𝛹�̂�〉,  ∀k ϵ M  

(3-4) 

‖�̂�‖ l0  (l0 norm of �̂�) represents the number of non-zero components 

in the vector �̂�. 
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Davis, Mallat and Avallaneda [9] show that this constraint leads to 

hard NP algorithms, and the exponential complexity makes them 

unworkable for realistic values of n. However, the constraint on the l0 norm 

can be lightened by imposing the l1 norm of recovered signals to be 

minimal. Even though the l1 norm is a less optimal solution, it can at least be 

computed by linear programming techniques. 

Candès, Romberg, Tao [6] showed that a sparse signal can be 

perfectly recovered from m measurements by solving the following 

algorithm: 

min 𝑥 ϵ Rn‖�̂�‖l1 subject to  yk=〈φ𝑘, 𝛹�̂�〉,  ∀k ϵ M 

(3-5) 

The only difference with the previous equation is that the support 

size (number of non-zero components) is replaced by the sum of the 

absolute values of those components. Then, the latest equation can be recast 

as a linear program and solved by appropriate algorithms. Though the two 

equations are fundamentally different, they give the same result in many 

interesting situations, for some more measurements of yk in the second case. 

 

3.1.6.  The fundamental theorem in compressive sensing 

Fix a signal f ϵ R
n
, which is S-sparse in the basis Ψ. Select m 

measurements uniformly at random in the basis Փ. Then if  

𝑚 ≥ 𝐶. 𝜇2(Փ, Ψ). S. log (𝑛) 
(3-6) 

for a certain positive constant C, the solution of (3-5) is exact with a very 

high probability. 

 As explained by Candès and Wakin [8], three observations can be 

made: 

 The role of the coherence is completely transparent; the smaller the 

coherence, the fewer samples are needed, hence the importance to 

choose two bases with low coherence. 

 No information is lost by measuring about any set of m coefficients 

(m<n). If 𝜇(Փ, Ψ) equals or is close to 1, then we can take around 

S.log(n) samples instead of n. 

 The signal f can be exactly recovered from a small set of data by 

minimizing a convex problem, which does not require any 

knowledge about the number of non-zero coefficients of x, nor about 

their locations or their amplitudes, assumed all unknown a priori. 
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A good recovery algorithm can guarantee an exact reconstruction of 

the signal if it is enough sparse. The theorem suggests a very useful sensing 

protocol: sampling at random in an incoherent domain and use linear 

programming for the recovery after the acquisition step. Thus, the signal 

will be in a compressed form. To “decompress” it, we need a decoder, 

which is guaranteed by the l1-minimization. 

The figure below shows the different representations a signal can 

have: a signal f, with a certain representation x with a sparsity S in the basis 

Ψ, is sampled by a part of the basis Փ, incoherent with Ψ. From those 

samples y – randomly chosen in Փ by following a uniform distribution – it 

is possible to recover x by using convex optimization methods. 

 
Figure 3.1: Several representations of a signal in different basis. 

 

3.1.7. Interest of CS in surveillance video storage  

Video surveillance cameras produce a huge amount of high 

resolution data, which becomes a challenge to compute and store. But 

transmitting all data to the cloud for further processing is, in many 

applications, costly and unnecessary. For example, providing sensor data in 

a farm or video surveillance would benefit from local storage and pre-

processing before upload to the cloud. CS exploits the fact that there is a 

high redundancy in the image/video data. 

The compressive sensing theory affirms that one can recover sparse 

signals from a set of samples fewer than the number told by the 

conventional methods. The CS techniques work as if it was possible to get 

only the important part of the signal. By taking around S.log(n) random 

samples (with S<<n) instead of n, we will still have enough information to 

recover the signal. 

In other words, CS measurement protocols mainly convert analog 

data to digital only when the signal has already been compressed. Then, 

after the acquisition and transmission steps, one only needs to decompress 

the data. 
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3.2. Coupling of Network Coding and Compressive Sensing 

As seen previously, a lot of research has been carried out in each of 

those two fields over the past decades but the combination between network 

coding and compressive sensing just started to be investigated a few years 

ago, even though there are two powerful concepts for error control in 

wireless sensor networks.  

By combining and forwarding packets instead of simply sending 

them to the destination, network coding has been proved very powerful to 

improve network throughput and robustness, and thus performance and 

reliability. However, this technique fails at decoding when the number of 

received packets is less than the original one. On the other hand, 

compressive sensing was found very efficient to process mutual correlation 

of information and to drastically decrease the number of measurements, thus 

highly reducing redundancy. Those two techniques are complementary and 

their combination has been recently examined [21, 25-28]. Those works 

tried to solve the limitation problem of NC. 

On one hand, some works [25, 26] resulted in designing a 

transformation matrix of NC which can adapt to the reconstruction 

requirement of CS. In other words, the NC linear transformation process is 

regarded as the acquisition process of CS measurement matrix. Among 

them, Nguyen et al. [25] presented a practical scheme called Netcompress to 

overcome the high link-failure rate in WSN. Their encoding framework uses 

RLNC at adjacent source nodes and intermediate nodes, as well as the l1-

minimization CS reconstruction method. However, its designs of the packet 

header and packet elimination mechanism are unclear. Nabaee et al. [26] 

studied the combination of network coding and distributed source coding 

from a CS perspective. In order to encode correlated sources without the 

knowledge of the source correlation model, they proposed Quantized 

Network coding, which incorporates real field NC and quantization to take 

advantage of decoding using linear programming. 

However, none of them reduced the number of redundant packets 

transmitted, which does not solve the compression gain issue. It has been 

nonetheless investigated in some other works. Luo et al. [27] presented a 

joint source and network coding scheme, called Compressive Network 

coding (CNC). They injected the concept of compressed sensing into 

network coding to avoid the “all-or-nothing” problem of NC. It allows CNC 

to achieve graceful degradation in data precisions to keep the energy 

consumption at all nodes balanced. However they did not take into 

consideration the noise in the sensor links. Yang et al. [28] elaborated a 

compressed network coding based data storage scheme by exploiting the 

correlation of sensor readings. This scheme achieves high energy efficiency 
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and guarantees good CS performance. It only focuses on network 

performance without considering the errors or noise problem in transmission 

process, which is known to have a huge impact on network performance. 

Thus, a combination has been developed to overcome drawbacks of 

NC theory by injecting CS concepts into it, called the ‘joint scheme’. It 

exploits simultaneously the temporal and spatial correlations of the signal in 

order to achieve the maximum gain. It has been confirmed by the reliability 

analysis and numeric results that this joint scheme outperforms the 

traditional network coding scheme both in robustness and in performance 

terms. 
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Chapter 4 

Problem Statement 
 

4.1. Importance of video surveillance 

The security of humans, belongings and information has become a 

major issue worldwide over the last decade. From fight against terrorism to 

the strengthening of internal security through the rise of cybercrime, people 

invest more and more to assure their protection. Information and 

communication technologies bring new and sophisticated solutions for 

physical and IT security. Among them, video surveillance is one of the 

oldest and best-known security technologies. 

Originally used by public services, it has been adopted by companies 

to protect strategic assets and now in public or private places. Video 

surveillance is mainly used for investigation purpose. Sometimes it requires 

deploying tens or even hundreds of cameras in a large security area. And in 

a world constantly becoming more digital, video surveillance is being 

integrated with other security components into one single system. 

Improvement of the software, the evolution from analog to digital video, the 

increase in digital transmission speed and data encryption leads to a fully 

integrated security system including video surveillance, alarm, access 

control etc. 

If analog video recording has gradually evolved to a digital 

technology, the digital video recorder is evolving into a ‘virtual’ video 

storage database located in a remote device. Video recording and storage is 

then limited only by the size of the network computer memory capacity. 

Video surveillance cameras produce a huge amount of high resolution data, 

which becomes a challenge to compute and store. Thus, enterprise storage 

systems dedicated to video surveillance need to have a larger throughput 

capacity.  

Due to their important size, surveillance data are usually not kept for 

a long period of time – generally no longer than one month – which implies 

that the captured activities cannot be browsed later, especially for forensic 

purposes as evidence. In archival mode, video data storage and 

manageability is the problem that toughens post-incident investigation. Due 

to the temporary nature of video data, it is very difficult for a human to 

analyse video data within a limited amount of time. Moreover, video images 

need to have a good enough quality if we think in particular of face 

recognition for example. 
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4.2. Architecture of video surveillance systems 

The first step in the video surveillance process is the acquisition. 

There are diverse types of cameras to meet the surveillance needs. It goes 

from analog to digital cameras, through fix, megapixel, panoramic or even 

motorized cameras. 

The video captured by the surveillance cameras must be transferred 

to the recording, computing and viewing systems. It can be transmitted 

through cables (e.g. coaxial cables, fibre, twisted pair copper wires) or 

through the air (infrared signals, radio transmission). Wired video is the 

most predominant in video surveillance systems. It offers a wider bandwidth 

and a better reliability than wireless connections, for a lower price. 

However, wireless video is inevitable for the surveillance of a wide area 

where cables would be expensive to deploy or when the areas to be 

monitored cannot be wired connected. Whether it is a wired or a wireless 

transmission, the signal can be analog or digital even though it has 

considerably evolved into digital videos. The IP protocol has played an 

important role in the increasing use of LAN, WAN or Internet networks to 

carry video data. IP cameras can directly connect to these networks, whereas 

video streams from analog cameras need to be first digitized by an encoder 

(also called video server) to transit over IP networks. 

Digitized videos represent a huge amount of data to be computed and 

stored. A bandwidth up to 165 MB/s can be required to send a video clip 

and the data from a single camera over one day may fill 7 GB of disk space. 

That is the reason why video surveillance data need to be compressed by 

using codecs, i.e. algorithms that enable to reduce the quantity of data by 

removing redundancy in each image or between the different footage 

frames, as well as details undetectable by human eyesight. Depending on the 

type of compression, more or less resources are used in the processor to 

compute the codec. A compromise need to be found between the 

compression rate and the processor resources. Currently, MJPEG and H.264 

are the most widespread compression standards in video surveillance.  

Video management systems process the video surveillance images, 

such as managing the different video streams, viewing, recording, or doing 

some analysis and research in the recorded footages. There are four broad 

categories of video management systems: 

 Digital Video Recorder: It only takes flows from analog 

cameras and digitizes them. The video can be viewed from a 

remote computer. It has been mostly replaced by systems that 

support IP video from end-to-end. 

 Hybrid Digital Video Recorder: It is similar to the DVR but it 

can take flows from analog and IP cameras. 
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 Network Video Recorder: Designed for IP video surveillance 

network architectures, it can only take video signals from IP 

cameras or encoders. 

 IP video surveillance software: It is a purely software 

solution to process video data in an IP network. In the case of 

surveillance systems with few cameras, a Web browser can 

be enough to manage the video. For bigger video surveillance 

networks, softwares dedicated to video processing must be 

used. 

The archiving period varies according to the surveillance needs, 

going from a couple of days to several years. The deployment of wide 

camera networks and the high definition of the videos lead to a demand of 

storage capacity more and more important, besides an increasing amount of 

data to be stored. There are two categories of storage solutions: 

 Internal: Hard drives are incorporated in the digital video 

recorders or in the servers. It is the most widespread solution, 

offering up to four terabytes of space storage. Some IP 

cameras have memory cards or USB disks that can store 

several days of video recording. Internal archival solutions 

are adapted for video surveillance systems of up to fifty 

cameras. 

 Attached: Videos are archived on external devices such as 

Network Attached Storage (NAS) or Storage Area Network 

(SAN) that offer a storage space shared between several 

customers in the network. On NAS devices, files are stored 

on a single hard disk contrary to SAN storage that allows 

storing fragments on different devices. Attached archival 

solutions offer more advantage for large surveillance zones 

with numerous cameras. Even though they are more 

expensive than internal archival systems, these solutions are 

much more accurate in terms of flexibility, expandability and 

redundancy. 

 

Research is still conducted to incorporate always more artificial 

intelligence in the new video surveillance systems, in order to make them 

more robust and efficient for security applications in a wide variety of 

domains. 
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4.3. Requirements and stakes in video analytics 

Considering the ‘deluge of data’ including in the video surveillance 

area, scientific works have been conducted and solutions offered to do for 

example real-time face detection, object tracking, face recognition or 

intelligent detection. That would enable to extract the useful part of the 

image and thus reduce redundancy and the quantity of data to be stored. 

Many algorithms work for fixed cameras, with a high resolution and good 

light conditions. But most of the time they do not take into consideration 

alterations that could occur in real-life conditions (for example dust, light 

changes or camera moves). 

 

Figure 4.1: Standard digital data acquisition approach 

Whether there are one or several cameras in the video surveillance 

zone, the challenge remains reducing the amount of data to be stored. In the 

case of a single camera, we investigated the compression of the image, 

especially with compressive sensing while maintaining a good image 

quality. Compressive sensing does simultaneously the sampling and the 

compression steps of Figure 4.1. We evaluated the quality of the 

compressed images with two different techniques: the PSNR and the SSIM 

index. 

In the case of a surveillance zone covered by multiple cameras, we 

worked on the combination of several images as there is most likely some 

overlap between the different devices to assure a full coverage of the area. 

We also considered the application of image stitching besides compression. 

For this, we proposed three scenarios depending on the order in which the 

transformations (compression and stitching) were applied. The different 

methods and results are explained in the following chapters. 

For some of the reasons mentioned in Chapter 2, section Video 

processing in the Cloud, we chose to experiment the different steps locally 

rather than dealing with cloud computing. It avoids network congestion and 

allows reducing bandwidth costs and computation time. 

  



Single image processing: Compressive Sensing implementation 36 

 

Chapter 5 

Single image processing: Compressive Sensing 

implementation 

5.1. Simple Compressed Sensing examples 

Implementation examples of compressed sensing applied to image 

data are available on MathWorks website [10]. The Matlab code example 

used follows the explanations given by Baraniuk [11]. 

 

Figure 5.1: (a) Compressive measurement process with random Gaussian 

measurement matrix Փ and discrete cosine transform (DCT) matrix Ψ. On 

this figure, the coefficient vector s is sparse with K=4. 

(b) Measurement process in terms of the matrix product Θ= ՓΨ. The 

four highlighted columns correspond to non-zero si. The measurement 

vector y is a linear combination of these four columns. [11] 

First, a random Gaussian measurement matrix Փ is non-adaptively 

generated. That means that the M×N matrix generated does not depend on 

the input x ϵ R
N
. The original image x is then compressed by being 

multiplied by Փ. The compressed signal is: y= Փ.x  ϵR
M

. 

The matrix product Θ=ՓΨ is then designed, where Ψ is a discrete 

cosine transform matrix (N×N). The vector y is a linear combination of the 

K columns of the non-zeros in the sparse coefficient vector s. 

The l2 norm is then applied to have the least squares solution to 

y=Θ.s:  

s2 = Θ
-1

.y 

And the matrix equation is solved using the Matlab toolbox l1-magic 

to get the basis pursuit solution. 
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(a)

 

(b)

 

Figure 5.2: (a) Display of the solutions to y=Θ.s. Basis pursuit solution in 

red, least squares solution in blue. (b) Zoom-in. 

The image is then reconstructed by linear programming. 
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(a)  (b)  

Figure 5.3: (a) Loop for the least squares reconstruction.  

(b) Loop for the basis pursuit reconstruction. 

 

 

Figure 5.4: On the left, original image of Pikachu. On the 

right, 50×50 black-and-white image �̂� of the same Pikachu 

(N = 2500 pixels) recovered from M = 1600 random measurements 

taken in the original image. 

 

5.2. PSNR calculation 

The Peak-to-signal-ratio (PSNR) was calculated for each 

reconstructed image with M increasing from 100 to 2500. Figure 5.5 

displays the results for the Pikachu image. 
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Figure 5.5: Evolution of the PSNR in function of the number of random 

measurements M from 100 to 2500. 
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The PSNR is the ratio between the maximum possible power of a 

signal and the power of corrupting noise that affects the fidelity of its 

representation. Thus, it can be used to measure the quality of reconstruction 

for image compression. In this case, the signal is the original data and the 

noise is the error introduced by compression. It is generally expressed in the 

logarithmic decibel scale, with this formula: 

PSNR = 20.log10 ( 
𝑀𝐴𝑋𝑖

√𝑀𝑆𝐸
) 

 

or PSNR= 20.log10(𝑀𝐴𝑋𝑖) – 10.log10(𝑀𝑆𝐸) 

(5-1) 

MAXi is the maximum possible pixel value of the image, i.e. 255 

(= 2^8 -1) when the pixels are represented with 8 bits per sample. MSE – 

standing for Mean-Squared Error – measures the difference between two 

images, the original image 𝑥(𝑎, 𝑏) and the “degraded” image �̂�(𝑎, 𝑏). The 

MSE represents the average of the squares of the "errors" between the 

original image and the compressed one. The error is the amount by which 

the values of the original image differ from the degraded image. The MSE 

is: 

MSE = 
1

𝑀.𝑁
∑ ∑ [𝑁

𝑗=1
𝑀
𝑖=1 �̂�(𝑖, 𝑗) −  𝑥(𝑖, 𝑗)]² 

(5-2) 

M is the number of rows of pixels in the images and i is the index of 

that row; N is the number of columns of pixels in the images and j is the 

index of that column. 

From (5-1), the higher the PSNR, the better the image has been 

reconstructed to match the original image and the better the reconstructive 

algorithm. We can notice a sharp increase of the PSNR when it comes to 

compare the original image and the reconstructed image with the same 

number of pixels. However, if the recovered image is acceptable for lower 

values of M (from M=1200), the PSNR remains quite low because of the 

color differences. 

But none of the PSNR or MSE measures is particularly good at 

predicting human visual response to image quality. PSNRs can wildly vary 

between two almost indistinguishable images; similarly two images with the 

same PSNR can have a very obvious difference in quality, as displayed on 

Figure 5.6. PSNR is a good measure for comparing restoration results for 

the same image, but between-image comparisons of PSNR are meaningless. 
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Figure 5.6: Two reconstructed images with PSNR= -20 dB. PSNR is 

a good measure for comparing restoration results for the same image, but 

between-image comparisons of PSNR are meaningless. 

 

5.3. The limitation of PSNR and an alternative: SSIM 
The main drawback of the MSE/PSNR metric is that it relies strictly 

on numeric comparison and does not actually consider any level of 

biological factors of the human visual system (HVS). However, the local 

Structural Similarity Index Measurement (SSIM) does. 

As explained in [12], the only “correct” method to quantify visual 

image quality for applications in which images are ultimately to be viewed 

by human beings was through subjective evaluation. But being a time-

consuming and expensive process, research has been conducted to find an 

objective image quality assessment and to develop quantitative measures 

that can automatically predict perceived image quality. 

SSIM is an index used for measuring the structure similarity between 

two digital images or videos. Contrary to the MSE or PSNR techniques, the 

SSIM does not estimate absolute errors but assesses the visual impact of the 

luminance (multiplication of the illumination and the reflectance), the 
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contrast and the structure of the image. It is a modification of the MSE so 

that errors are quantified according to their visibility. This error-sensitivity 

approach is based on several assumptions and generalizations, summarized 

by Wang et al [12]: 

 The Quality Definition Problem: The error visibility does not 

necessarily lead to quality loss, as some distortions may be 

noticeable but not so damaging. 

 The Suprathreshold Problem: Threshold values at which a 

stimulus is just barely visible are measured and then used to 

define visual errors sensitivity measures. Yet, it is indicated 

by only a few psychophysical studies that these threshold 

values can be generalized to characterize perceptual 

distortions significantly larger than the threshold levels. 

 The Natural Image Complexity Problem: The patterns used 

during most psychophysical experiments are simpler than 

real world images so the model may not predict the visual 

quality of complex-structured natural images. 

 The Decorrelation Problem: There is a strong dependency 

between intra- and inter-channel wavelet coefficients of 

natural images. But it has been shown that optimal design of 

transformation and masking models can reduce both 

statistical and perceptual dependencies. 

 The Cognitive Interaction Problem: Cognitive understanding 

and eye movements influence the perception of image 

quality. Most image quality metrics do not consider those 

effects, as they are very difficult to quantify and not well 

understood. 

The structural information is those attributes that represent the 

structure of the objects in a visual scene, independently of the average 

luminance and contrast. To explore the structural information, it has to be 

separated from the influence of the illumination. As structural information is 

the idea that pixels are highly interdependent especially when they are 

spatially close, it is useful for image quality assessment to apply the SSIM 

index locally rather than globally. 
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The SSIM quality assessment index is based on the computation of 

three terms: 

 The luminance term l(x,y) = 
2𝜇𝑥 .  𝜇𝑦+𝐶1

𝜇𝑥²+𝜇𝑦²+𝐶1
 

 The contrast term c(x,y) = 
2𝜎𝑥 .  𝜎𝑦+𝐶2

𝜎𝑥²+𝜎𝑦²+𝐶2
 

 The structural term s(x,y) = 
𝜎𝑥𝑦 +𝐶3

𝜎𝑥.𝜎𝑦²+𝐶3
 

where μx, μy, σx,σy, and σxy are respectively the local means, standard 

deviations, and cross-covariance for images x, y.  

The overall index is a multiplicative combination of these terms: 

SSIM(x,y)=[l(x,y)]
α
 .[c(x,y)]

β⋅[s(x,y)]
γ 

(5-3) 

where α > 0, β > 0, γ > 0 are parameters used to adjust the relative 

importance of the three components. 

If α = β = γ = 1 (the default for Exponents), and C3 = C2/2 (default 

selection of C3) the Structural Similarity index (5-3) simplifies to: 

SSIM(x,y)= 
(2𝜇𝑥 .𝜇𝑦+𝐶1)

(𝜇𝑥²+𝜇𝑦²+𝐶1)
 

(2𝜎𝑥𝑦 +𝐶2)

(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 

(5-4) 

The SSIM has been computed for several images recovered with the 

Matlab CS algorithm example and we can notice (Figure 5.7) that the SSIM 

values are all evolving quite similarly, following a progression that can be 

linearized with an average slope of 0.0135 i.e. y=0,0135x+C. 

m 

value 

Pikachu Child Circle 

design 

Oel Biscuit Chain Tulip 

100 0,5844 0,6481 0,5388 0,6038 0,6313 0,6262 0,5119 

200 0,6462 0,6851 0,5668 0,6355 0,6722 0,651 0,5423 

300 0,649 0,7133 0,5651 0,6329 0,7264 0,7372 0,5724 

400 0,6518 0,7518 0,5816 0,6544 0,75 0,7869 0,5709 

500 0,6539 0,779 0,6105 0,7026 0,7423 0,7886 0,5785 

600 0,7046 0,7718 0,6064 0,7268 0,7849 0,8258 0,5938 

700 0,6947 0,8032 0,623 0,7303 0,7836 0,8542 0,6012 

800 0,7039 0,8009 0,6342 0,7604 0,8085 0,8503 0,6065 

900 0,7307 0,8143 0,6379 0,7709 0,8237 0,8818 0,6163 

1000 0,7617 0,833 0,6565 0,8198 0,8301 0,8826 0,6257 

1100 0,7519 0,8457 0,6664 0,8207 0,8446 0,9008 0,6304 

1200 0,7683 0,8659 0,6762 0,8283 0,8442 0,9138 0,639 
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1300 0,8002 0,8666 0,6892 0,838 0,869 0,9147 0,6443 

1400 0,817 0,8755 0,7007 0,8712 0,881 0,9281 0,6484 

1500 0,8341 0,8946 0,7112 0,8838 0,8794 0,9325 0,6504 

1600 0,8447 0,9078 0,7156 0,8991 0,9026 0,9484 0,6633 

1700 0,8521 0,9165 0,7267 0,9223 0,8872 0,95 0,665 

1800 0,8778 0,9335 0,7467 0,9266 0,9143 0,9598 0,6698 

1900 0,8806 0,9362 0,7484 0,9347 0,9311 0,9605 0,6808 

2000 0,8958 0,9408 0,7727 0,9448 0,9377 0,9668 0,6777 

2100 0,9102 0,955 0,7814 0,9567 0,9408 0,9743 0,7121 

2200 0,925 0,9634 0,8055 0,9621 0,9468 0,9796 0,7044 

2300 0,9471 0,9695 0,8341 0,9716 0,9576 0,9832 0,7599 

2400 0,9619 0,9834 0,8623 0,9813 0,9733 0,987 0,7581 

2500 1 0,9999 1 1 0,9995 0,9967 1 

 

 
Figure 5.7: SSIM values for different images reconstructed with 100 

to 2500 measurements 

 

Even though there is most of the time a visual difference with the 

reference image, the quality of the distorted image is guaranteed as far as 

the structural information of the reference image is preserved. Indeed, the 

original information can be nearly fully recovered by applying an inverse 

linear luminance transform, pointwise. 
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5.4.  Edge detection 
In an image, an edge can be defined as a set of contiguous pixels 

where a sudden change of intensity – gray or colour – occurs. As 

compressive sensing takes random samples, we thought that edge detection 

could be applied after the CS step to evaluate the reconstruction. It would 

determine if CS recovers edges accurately and a sampling threshold could 

then be set up regarding the edge detection results. 

Edge detection aims at identifying points in an image where there 

are brightness discontinuities. The points where brightness changes sharply 

generally form a set of curved line segments named edges. Edges are often 

associated with the boundaries of objects. Edge detection is used to identify 

the edges in a digital image. In Matlab, the edges can be found with the edge 

function which attempts to detect places in the image where the intensity 

changes rapidly. Several edge detection methods exist, but most of them can 

be classified into two categories: 

 First-order derivative methods: These methods search 

extrema in first-order derivative expressions, usually the local maxima of 

the gradient of the image. 

 Second-order derivative methods: The second methods 

search for zero crossings in second-order derivative expressions, usually the 

zero-crossings of the Laplacian or of a non-linear differential expression. 

“Edge provides a number of derivative estimators, each of which 

implements one of the definitions above. For some of these estimators, you 

can specify whether the operation should be sensitive to horizontal edges, 

vertical edges, or both. Edge returns a binary image containing 1's where 

edges are found and 0's elsewhere.” [14] 

Edge detection algorithms usually give a set of connected curves 

that correspond to the boundaries of objects as well as curves that reveal 

discontinuities in surface orientation. Applying edge detection to an image 

enables to reduce significantly the amount of data to be processed. It filters 

out information that may be regarded as less relevant and only keeps the 

important structural properties of an image. It is perfectly illustrated on 

Figure 5.8: the SSIM values are higher from the very first samples with an 

edge detection filter than the SSIM values displayed on Figure 5.7 without 

doing any edge detection. 
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Figure 5.8: SSIM values for different images reconstructed with 100 

to 2500 measurements with (full lines) and without edge detection (dotted 

lines). 

Regarding Figure 5.8, we can notice that applying an edge detection 

filter allows to reduce considerably the sampling rate to get a decent 

reconstruction. All the example images reach a SSIM equals to 0.8 for a 

sampling rate m=500 in the worst case. Without edge detection, we would 

need m=700 in the best case or 2400 pixels in the worst case to get an SSIM 

value of 0.8. 

There are several edge detection algorithms in both categories 

mentioned above. Sobel, Prewitt, Canny, LoG are ones of the best known 

filters, compared in Figure 5.9. 

The first-order derivatives methods detect the strongest edges. Among them: 

 The Roberts filter: The Roberts Cross operator 

measures a 2-D spatial gradient on an image. At each point in the output, the 

pixel value represents the estimated absolute magnitude of the spatial 

gradient of the input image at that point. If edges are not very sharp the filter 

will tend not to detect the edge. 

 The Sobel filter: It consists of two convolution kernels 

of dimension 3×3. One kernel is just the other rotated by 90° and each of 

them is for one of the two perpendicular orientations. They are run vertically 

and horizontally on the pixel grid to detect edges where the gradient 
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magnitude is high. The kernels can then be combined together to find the 

absolute magnitude of the gradient at each point and the orientation of that 

gradient. This makes the Sobel edge detector more sensitive to diagonal 

edge than horizontal and vertical edges. It is the default edge detection filter 

in Matlab (used in Figure 5.8). 

 The Prewitt filter: It is a discrete differentiation 

operator which is similar to the Sobel operator, by computing the gradient 

for the image intensity function. Compared to Sobel, the Prewitt masks are 

simpler to implement but are very sensitive to noise. 

 The Canny filter: It is often referred as the optimal 

edge detector, as it uses a multi-stage algorithm to detect edges in an image. 

The Canny algorithm finds edges by looking for local maxima of the 

gradient of an image, using the derivative of a Gaussian filter. This method 

uses two thresholds to detect strong and weak edges, including weak edges 

in the output if they are connected to strong edges. By using two thresholds, 

the Canny method is less likely than the other methods to be fooled by 

noise, and more likely to detect true weak edges. An edge detection operator 

that uses a multi-stage algorithm to detect a wide range of edges in images.  

Sobel and Prewitt methods provide good edge maps very 

effectively and are cheap to compute. By default, Matlab edge detection 

algorithms use Sobel filter. 

The zero-crossings of the second-order derivatives are good to 

localize the edges. Those methods are more sophisticated towards 

automatized edge detection, but still very noise-sensitive. As differentiation 

amplifies noise, smoothing is suggested prior to applying the Laplacians. 

Typical examples of second-order derivative edge detection methods are: 

 The Difference of Gaussian (DoG): It is a feature 

enhancement algorithm involving the subtraction of one blurred version of 

an original image from another, less blurred version of the original. 

 The Laplacian of Gaussian (LoG): The Laplacian is a 

2-D isotropic measure of the second spatial derivative of an image. The LoG 

operator is called so as the Laplacian is generally applied to an image that 

has first been smoothed with a Gaussian smoothing filter to reduce its 

sensitivity to noise. It takes a single grayscale image as input and produces 

another grayscale image as output. 

Image derivatives are commonly used in motion estimation and 

object tracking in video. However, the optimal edge detection method 

depends on the type of edges to be detected in an image (step edges, ramp 

edges, lines or roof edges) and also on the application domain. 
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Figure 5.9: Comparison of different edge detection filters: 

(a) Canny, (b) Prewitt, (c) Sobel, (d) Roberts, (e) Laplacian of Gaussian. 
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The structural similarity index and the PSNR were computed 

(Figure 5.10) for different edge detection methods from the Figure 5.9 

examples. Canny filter which could seem to the naked eye to detect edges 

the most accurately presents quite surprisingly the lowest SSIM value. 

However, the PSNR values are closest to the prediction we could make 

considering the Figure 5.9 results with a naked eye. 

Edge detection method SSIM index PSNR 

Canny (a) -0.0007 3.884646 

Sobel (c) 0.0053 3.815636 

Roberts (d) 0.0079 3.829333 

Laplacian of Gaussian (e) 0.0176 3.923520 

 

 

 
Figure 5.10: SSIM index and PSNR values for different edge 

detection methods. 
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5.5. Conclusion 
In this chapter, we saw that signal sparsity can be exploited. 

Taking random samples from an image by applying compressive sensing 

gives good result for a number of pixels far smaller than the original image 

resolution. That confirms that CS must be useful to deal with the ‘deluge of 

data’ occurring in particular in the video surveillance world with the spread 

of high resolution cameras. 

Furthermore, as compressive sensing takes random samples, we 

evaluated the accuracy of edge reconstruction in the CS algorithm. For that, 

we applied edge detection filters on the recovered images. The results 

clearly showed that edge detection would enable to considerably lower the 

sample rate – compared to CS without edge detection – to reach a given 

SSIM threshold. 
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Chapter 6 

Multiple image processing: Image stitching 

6.1. Feature Based Image Stitching 

6.1.1. Presentation of the algorithm 

In video surveillance, a scene can be recorded by several cameras 

providing different viewpoints. If there is some overlap between the regions 

covered by each of them, it is then possible to stitch together their set of 

images using feature detection and matching. Instead of registering a single 

pair of images, multiple image pairs can be successively registered relative 

to each other to form a panorama. 

Based on the Matlab example [17], the first step to stitch the images 

is to register successive image pairs by: 

- Detecting and matching features between I(n) and I(n-1) 

- Estimating the geometric transformation T(n), that maps I(n) to 

I(n-1) 

- Computing the transformation that maps I(n) into the panorama 

as T(1)*…*T(n-1)*T(n). 

- tforms(n) = estimateGeometricTransform(matchedPoints, 
matchedPointsPrev,... 

-         'projective', 'Confidence', 99.9, 
'MaxNumTrials', 2000); 

-  

-     % Compute T(1) * ... * T(n-1) * T(n) 

-     tforms(n).T = tforms(n-1).T * tforms(n).T; 

 

At this point, all the transformations in tforms are relative to the first 

image because this way of coding allowed sequential processing of the input 

images. However, using the first image as the start of the panorama tends to 

distort most of the images that form the panorama. A nicer way would be 

modifying the transformations such that the center of the scene is the least 

distorted. This is accomplished by inverting the transform for the center 

image and applying that transform to all the others. 

The projective2d outputLimits method to find the output limits for 

each transform. The output limits are then used to automatically find the 

image that is roughly in the center of the scene. 
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% Compute the output limits for each transform 

for i = 1:numel(tforms) 

    [xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1 

imageSize(2)], [1 imageSize(1)]); 

end 

 

The average X limits is then computed for each transforms and the 

center image is found. 

avgXLim = mean(xlim, 2); 

[~, idx] = sort(avgXLim); 

centerIdx = floor((numel(tforms)+1)/2); 

centerImageIdx = idx(centerIdx); 

Finally, the center image's inverse transform is applied to all the 

others. 

Tinv = invert(tforms(centerImageIdx)); 

 

for i = 1:numel(tforms) 

    tforms(i).T = Tinv.T * tforms(i).T; 

end 

 

Last, the panorama is initialized by creating an initial, empty, 

panorama into which all the images are going to be mapped. The 

outputLimits method is used to compute the minimum and maximum output 

limits over all transformations. These values are used to automatically 

compute the size of the panorama. 

for i = 1:numel(tforms) 

    [xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1 

imageSize(2)], [1 imageSize(1)]); 

end 

 

% Find the minimum and maximum output limits 

xMin = min([1; xlim(:)]); 

xMax = max([imageSize(2); xlim(:)]); 

 

yMin = min([1; ylim(:)]); 

yMax = max([imageSize(1); ylim(:)]); 

 

% Width and height of panorama. 

width  = round(xMax - xMin); 

height = round(yMax - yMin); 

 

% Initialize the "empty" panorama. 

panorama = zeros([height width 3], 'like', I); 
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All the images are mapped into the panorama with the imwarp 

function and overlaid together with vision.AlphaBlender. 

blender = vision.AlphaBlender('Operation', 'Binary mask', ... 

    'MaskSource', 'Input port'); 

 

% Create a 2-D spatial reference object defining the size of 

the panorama. 

xLimits = [xMin xMax]; 

yLimits = [yMin yMax]; 

panoramaView = imref2d([height width], xLimits, yLimits); 

 

% Create the panorama. 

for i = 1:buildingScene.Count 

 

    I = read(buildingScene, i); 

 

    % Transform I into the panorama. 

    warpedImage = imwarp(I, tforms(i), 'OutputView', 

panoramaView); 

 

    % Overlay the warpedImage onto the panorama. 

    panorama = step(blender, panorama, warpedImage, 

warpedImage(:,:,1)); 

end 

 

figure 

imshow(panorama) 

 

6.1.2. Test on different use cases  

To simulate a scene where there would be an overlap between two 

cameras or more, the algorithm has been tested on different configurations 

described below. Also, note that in all the cases described, the algorithm is 

able to stitch the images regardless of the order they are read in input. 
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a) “Simplest” case 

The simplest case consists in reconstructing the image as a 

“panorama” picture. We simulated the horizontal shift by cropping an image 

to keep the left and the right part of it, with an overlap between those two 

parts. 

Input images Output 

   

Figure 6.1: Image stitching – horizontal shift 

The image is perfectly overlapped but some pixels were sometimes 

lost during the stitching. The correction of the black pixels is described in 

the next section Bad pixels removal. 

 

b) Vertical shift 

The vertical shift was simulated by cropping the bottom of the left-

side image and the top of the right-side one, still with an overlap between 

those two images. 

 

Input images Output 

   

Figure 6.2: Image stitching – vertical shift 

The images are perfectly overlapped but some pixels were lost 

during the stitching. 
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c) Tilt 

The left part of the image was slightly tilted. 

Input images Output 

  
 

Figure 6.3: Image stitching – tilt 

 

The images are perfectly stitched but some pixels were lost during 

the stitching. 

 

d) More than two input images 

The algorithm was tested with a number of inputs superior to two. 

The figure displays the stitching result of three different parts of the 

Pokemon picture – overlapping two by two – and including one rotated 90 

degrees. The images are perfectly gathered but some pixels were still lost 

during the stitching. 

Input images Output 

    

Figure 6.4: Image stitching – 3 input images 

e) “Real-life” case 

A more “videosurveillance-oriented” case was simulated with street 

view pictures taken from a same point and scanning a landscape. 
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Input images Output 

  
 

  

 

 

Figure 6.5: Street image stitching – 2 images 

 

Input images 

   

Ouput 

 

Figure 6.6: Street image stitching – 3 images 
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In this example, there are no “bad pixels”. The more horizontally-

aligned the pictures are, the better the stitching is. If the shift is too high, the 

warped image will be distorted as displayed below. 

Input images Output 

  

 

Figure 6.7: Street image stitching – Distortion because of too strong 

horizontal shift 

 

6.1.3. Bad pixel removal 

As seen in the previous section, some pixels were sometimes lost during 

the stitching of the images. The black pixels were corrected with two 

different methods working on grayscale images: 

 The first one removes the holes in an image by calculating the 

average values of surrounding pixels. It does the following steps: 

o Find the bad pixels where the image is zero, then dilate to be 

sure we get everything. 

o Apply a big blur to get started faster. 

o Repeatedly average the image then set the good pixels back 

to their original value with newImage(~badPixels) = 

myData(~badPixels);. 

The averaging could be repeated until the image stops changing, and a 

smaller averaging kernel can be chosen for a higher precision. 

 The second method uses the Roifill tool from Matlab image 

processing toolbox, applied on the badPixels as defined in the 

first method. 
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numIterations = 30; 
avgPrecisionSize = 16; % smaller is better, but takes longer 

  
% Read in the image grayscale: 
originalImage = double(rgb2gray(panorama)); 

  
% get the bad pixels where  = 0 and dilate to make sure they 

get everything: 
badPixels = (originalImage == 0); 
badPixels = imdilate(badPixels, ones(12)); 

  
%# Create a big gaussian and an averaging kernel to use: 
G = fspecial('gaussian',[1 1]*100,50); 
H = fspecial('average', [1,1]*avgPrecisionSize); 

  
%# Use a big filter to get started: 
newImage = imfilter(originalImage,G,'same'); 
newImage(~badPixels) = originalImage(~badPixels); 

  
% Now average to 
for count = 1:numIterations 
   newImage = imfilter(newImage, H, 'same'); 
   newImage(~badPixels) = originalImage(~badPixels); 
end 

 
%%% Same task, with roifill tool %%% 
newImage2 = roifill(originalImage, badPixels); 
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(a)  

(b)  

(c)  

Figure 6.8: Region of bad pixels (a) and corrected images (b, c) 
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The result of the two pixel-correction methods is displayed in 

Figure 6.8. The Roifill tool seems to the naked eye to better remove the bad 

pixels and recover more accurately the original image. This intuition can be 

confirmed with a higher PSNR value for this method: image (b) on Figure 

6.8 has a PSNR equal to -26.2135 against -25.1502 for image (c) corrected 

with the Roifill tool. 

Moreover, when the algorithm does not detect bad pixels inside the 

original images that are being stitched (black rectangles in Figure 6.9), the 

two methods enable to reconstruct the outside part of the image and thus 

smooth the stitching contours. 

 

 

 
Figure 6.9: No bad pixel detected in the original images (black 

“rectangles”) but the pixel-correction methods reconstruct the outside part 

of the stich image. 
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On the example in Figure 6.9, the Roifill method fills in a wider part of the 

“outside” image. 

 

6.2. Image stitching and Compressive Sensing 

Three scenarios can be considered if we think of computing several 

camera flows, i.e. compressing and stitching the different flows. 

 

 

The first case would be to calibrate the cameras so that the system 

knows the overlap region and does not need to do the calibration for every 

single flow but we can consider doing a re-calibration on a regular basis, 

every hundred samples for example. The Compressive Sensing algorithm 

can then be applied on the stitched image. This solution would be interesting 

in terms of storage capacity and computing times since CS would be only 

applied on the stitched image. However, all the video data would need to 

pass over the network, which does not meet the issue of mass data 

transmission and redundancy, neither the secure transit mechanism to 

guarantee the privacy of the video streams. 

The second scenario would be to compress each file before sending 

them over the network and then stitch the CS images. This solution would 
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enable to send less data – since sampled – over the network and to do 

independent compressions on each image, i.e. to compress the images with 

different amounts of samples. Indeed, as shown in Figure 6.10, the image 

stitching algorithm still works for compressed images if there are enough 

common points to be able to find the overlap region between the different 

inputs. The algorithm perfectly concatenates two images respectively 

sampled at m=1800 and m=2000 (a) or m=1500 and m=2500 (b); a small 

error occurs while stitching with m=1200 and m=1800 (c). However the 

concatenation fails for m=1200 and m=2200 (d) probably because there is a 

too high quality difference between the points in the image compressed at 

1200 points to find the common pixels with the other image. 

(a) 

 

(b) 

 

(c) 

 

(d)

 

Figure 6.10: CS image stitching: (a) m=1800 and m=2000, (b) 

m=1500 and m=2500, (c) m=1200 and m=1800, (d) m=1200 and m=2200. 

The PSNR and SSIM values were calculated for each of the four 

previous cases in comparison to the images stitched without undersampling. 

The results are shown in Figure 6.11. We can notice that the PSNR value is 

slightly higher in case (a) where the two images were sampled at close rates 

m=1800 and m=2000, than in case (b) where sample rates were more 

different from each other (m=1500 and m=2500) even though one of them 

was higher than in case (a). However, the SSIM index is higher in case (b) 
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where one of the images has been sampled at a higher rate than in case (a). 

SSIM and PSNR values are non-surprisingly lower in cases (c) and (d) 

where errors occur in the image stitching. 

  (a) 

 

(b) 

 

(c) 

 

(d)

 

Stitched image without 

CS application
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R

 

19.2897 18.2798 11.8657 7.3678 

S
S

IM
 

0.5098 0.6557 0.4790 0.4071 

Figure 6.11: PSNR and SSIM values between simple image stitching 

and CS image stitching: (a) m=1800 and m=2000, (b) m=1500 and 

m=2500, (c) m=1200 and m=1800, (d) m=1200 and m=2200. 

 

The third suggestion is to compress the data before sending them 

over the network – which would limit the transmission of redundant 

information as in the second case – and to find the overlap region and stitch 

the image before finally decoding. This implies that the images should be 

sampled with the same compression rate since the decoding algorithm 

would be run on the stitched image. This would save computation time since 

only one CS decoding would be required instead of two in the other cases. 

However, the ability to find the common part between the compressed 

images remains uncertain. 
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6.3. Conclusion 

In this chapter we studied how compressive sensing could be applied 

across multiple images, as well as combining CS with image stitching. In 

our work, all the image processing is occurring either at the source (in single 

image case) or at the destination (which receives the different images) and 

we did not implement any network coding. In case of multiple sources, we 

would know from where each samples come so NC could be applied as 

explained in Chapter 2, but with an “inverse butterfly” process. 

 

Figure 6.11: “Inverse butterfly” in a multiple-source case. 
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Chapter 7 

Conclusion and future work 
 

The goal of this report was to evaluate the plausibility of applying 

compressive sensing on video surveillance data, as part of an efficient 

protocol that could automatically translate analog data into already 

compressed digital form to be later computed for reconstruction. Through 

this report we also considered the use of network coding as a way to manage 

the distributed storage of video information. 

In this project we studied an algorithm of image compressive 

sensing, as video is a sequence of images. We evaluated the quality of the 

results with two different mathematical tools. The first one, the PSNR 

measured the quality of the reconstructed image by measuring the noise 

introduced by compression. For video surveillance purpose, we thought we 

could focus on the reconstruction accuracy of the image structure. Therefore 

we measured the structural similarity with the SSIM index, which takes into 

account the visual impact of the luminance, the contrast and the structure of 

the image. We also found interesting to compare the results by applying 

edge detection filters on the reconstructed images. It proved that edge 

detection on CS images would enable to considerably reduce the number of 

samples if we want to reach a given threshold. 

On the other hand, we thought about a multi-camera video 

surveillance scene and found an algorithm able to find the overlap region 

between images and to stitch them together. We also considered the 

different scenarios possible to combine image stitching and compressive 

sensing, where the images could have been under sampled at different rates. 

Several problems need to be addressed in a practical 

implementation. For example, if cameras record a scene from different 

angles, the perspective should be considered and adjusted during the 

stitching. The possibility of implementing the combination between image 

stitching and compressive sensing should be evaluated in the case where we 

would like to find the overlap region between compressed images and stitch 

them together before finally decoding. Moreover, we applied edge detection 

filters after compressing the image in order to set up a threshold. We could 

consider to adopt the opposite approach, which would apply edge detection 

before the CS algorithm to filter out the ‘non relevant’ information and 

compress even less data by working on the structure of the images. 
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The security in these distributed storage systems is another topic 

that must be deepened. Network coding must be implemented to split and 

encrypt the data prior to its storage in various devices and in such a way that 

no single IoT device contains enough coded data to compromise the privacy 

of the video streams if it is stolen. Moreover, cloud computing and cloud 

storage are developing massively to face the huge amount of information 

IoT generates. Protection of this data is even more important as it is 

processed and stored in third-party data centers. Cloud security is an issue 

that should not be taken for granted and must be further investigated. 
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