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Abstract:

Objectives: UX and emotions are increasingly popular
field of study in HCI. A new trend in this field is the use
of physiological measurements to aid evaluating UX. In
this project, two studies investigate whether physiolog-
ical measurements can be used to predict SAM ratings,
and the nature of the relations of physiological measure-
ments taken during system interaction and then again
during a cued-recall session. Methods: Emotiv Epoc,
Mindplace Thoughtstream, Arduino Pulse Sensor and
Microsoft Kinect were used to collect EEG, EDA, HR
and Facial data. In the first paper, this data was used
along with SAM ratings in order to train a SVM to pre-
dict the SAM values. In the second paper, the data
was collected for a number of groups both during sys-
tem interaction, and during a recall session, with differ-
ing intermediate time delay and subjection to stimuli.
This data was then compared using Pearson product-
moment correlation and ANOVA. Results: The results
from the first paper confirmed that using physiological
data to predict SAM values was significantly better than
naively guessing. Furthermore, it was confirmed that
using sensor fusion can significantly increase the predic-
tion accuracy. The results from the second paper con-
firmed a significant relation between data collected dur-
ing system interaction and during cued-recall for EEG
and EDA. Furthermore a significant decrease in corre-
lation was found for EEG data, for larger intermedi-
ate time delays. Conclusion: We found high accuracy
results in predicting the SAM ratings, which indicates
further potential for computer-assisted UX evaluation.
The results from the second paper indicates that one
should be wary of intermediate time delay even when
using cued-recall methods.

The content of this report is freely available, but publication (with reference) may only be
pursued due to agreement with the authors.
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1
Introduction

User Experience (UX) is a large field of study within Human-Computer Inter-
action (HCI). A lot of the research done in UX is based on well established
evaluation methods such as questionnaires and interviews in various shapes and
forms. These methods provide a methodical approach for extracting subjective
information from test participants. There are some caveats however, such as
memory bias and subjectivity in language used to respond.

An alternative to the well established methods are physiological methods, us-
ing sensors to measure physiological responses. These responses can be changes
in skin conductance, changes in heart rate or even brain activity. When fur-
ther explored, if physiological methods turn out to be as reliable as the well
established methods, this could lead to automation in UX evaluation, an im-
plication that could save both time and money. In these papers we investigate
physiological approaches for evaluating UX.

1.1 Paper 1
A lot research has gone into evaluating UX, and some of that research has
involved the concept of emotions. Research has been done in both the well es-
tablished methods and physiological methods, but fewer in physiological meth-
ods. Even fewer is the amount of physiological methods that have used sensor
fusion[1]. We try to use sensor fusion with consumer grade hardware, in order
to investigate if:

• Physiological data gathered from consumer grade hardware can be used
to predict SAM ratings.

• Using sensor fusion will perform better than individual sensors when pre-
dicting SAM ratings.

1.2 Paper 2
When performing UX evaluation in the well established methods, one can run
into caveats such as the observer effect (i.e. influencing the experience if in-
teracting with the test subject during the test), and memory bias if delaying
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1.2. PAPER 2

the inquiries until after the test. Cued-Recall Debrief (CRD) is a retrospective
evaluation method designed minimize the observer effect while also alleviating
the memory bias in delayed inquiries. The idea is to use cues to assist the sub-
ject in recalling the experience, by showing first person video and audio after
the test. It is suggested that the debriefing is done as soon as possible after the
test. While CRD has been used successfully a number of times, it has not been
analysed with a physiological approach. In this paper we look at CRD from a
physiological point of view by investigating if:

• Physiological measurements collected during system interaction and dur-
ing cued-recall are significantly correlated.

• Time delay between system interaction and cued recall has an effect on the
correlation between the physiological signals recorded in the two instances.

• Subjection to high-arousal stimuli between system interaction and cued
recall has an effect on the correlation between the physiological signals
recorded in the two instances.
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2
Research methodologies

Two experiments were conducted to test the propositions posed in Chapter 1.

1. A user-based laboratory experiment concurrently using the Self Assess-
ment Manikin (SAM) and physiological sensors to collect ratings. The
support vector machine (SVM) machine learning algorithm was used, uti-
lizing the physiological data to learn to predict the SAM ratings. Fusion of
sensors was used to further enhance the predictions. The predictions were
compared with the actual SAM ratings in order to measure the accuracy
of the machines.

2. A user-based laboratory experiment, where physiological measurements
were collected concurrently during an initial interaction and retrospec-
tively when performing cued recall. A mock up email client was cre-
ated with tasks to be solved, and seeded usability problems in some of
these tasks. Data was collected for groups with differing intermediate
time delays and intermediate stimuli. The data was first transformed us-
ing Dynamic Time Warp (DTW) to minimize temporal misalignments,
then analysed using Pearson product-moment correlation and ANOVA to
compare means and discover significant differences.

It is important to note that both experiments were conducted in collaboration
with another group of computer science master students. Further details and
the procedures of each experiment can be found in the papers.

2.1 Participants
Participants were recruited both with the help of our supervisor with the reward
of reduced syllabus for an exam, and through friends and acquaintances with
no reward. Since some participants were acquainted with some test conductors,
the test of each participant was conducted by a conductor with no relation to
that specific participant, in order to minimize any acquaintance bias.

There was a large overlap between the participants in the first experiment
and the participants in the second experiment. For this reason we were careful
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2.2. LABORATORY SETTINGS

to not select the same images as stimuli in both experiments to ensure that each
picture was seen for the first time, when it was seen.

The participants took a Big 5 test to score personality traits. No significant
differences were found in the different groupings when performing ANOVA in
the second experiment.

As it was deemed out of scope of this study, we did not try to keep track
of the context of the participants before beginning test, such as how much they
slept, how they travelled and other variables which could have influenced the
sensor readings.

The experiments were conducted over several days, during which some par-
ticipants could have socialized. For this reason we instructed the participants to
not speak of the test as this would pollute the experiments, however we cannot
be certain of their compliance.

2.2 Laboratory settings
Since dealing with sensors is a delicate task, it was advantageous for us to use
the Usability Lab [6] in AAU. This allowed for a more isolated environment
and over all provided us with some important advantages, however, also some
disadvantages.

2.2.1 Advantages
Conducting the experiments in a laboratory allowed us to stage the experiments
with high variable control and replicability. The controlled environment made
it possible to ensure the functionality of everything through pilot testing and
that the tests were uniform, increasing the reliability of the experiments. We
used this control to restrict and manipulate certain variables. In both papers,
a controlled variable was stimuli in the form of IAPS pictures. Furthermore, in
the second paper the variable of intermediate time delay between testing and
cued-recall was controlled. The testing software was also controlled in both
experiments, and written entirely by us.

2.2.2 Disadvantages and handling
Just as the control is one of the strengths of using a laboratory setting, this
is also a weakness as it affects the naturalness of the experiments. This is
especially the case when dealing with UX, with various observer effects such
as the Hawthorne Effect[7] affecting the experience. Many of the participants
were inexperienced test participants, and thus were uncertain about what was
going to happen and their role in the tests. To alleviate this, the test conductor
was careful to explain all the details of the test, including the function of the
sensors, and asked the test participants if they had any questions before the test
began. The true purpose of the test was omitted from the explanation so as to
not introduce bias.

Furthermore, the mood radiated by the test conductor can have been re-
flected by the test participant, which can have had an impact on the test. In
our tests, we attempted to be welcoming, so as to reduce discomfort of the test
participants.

4



CHAPTER 2. RESEARCH METHODOLOGIES

Other disadvantages was due to the artificial situation. In Paper 1, the
participants had to use the Self Assessment Manikin (SAM) for rating their
emotional states. An unfamiliar and unnatural task which not only was non-
trivial to explain but also to understand. For this reason we ensured that the
participants were able to assess their emotional state using SAM, by describ-
ing SAM and giving an example before the test. It was observed that some
participants would attempt to normalize their SAM ratings.

In Paper 2 specifically, it was observed that many participants would discover
that the usability problems were seeded. The participants reported that this
made what would otherwise have been a frustrating task, seem more fun, and
some mentioned that they saw it as a challenge to overcome the seeded problems
after finding out about them.

2.2.3 An alternative setting
To obtain a natural setting, we could have conducted the experiments as field
studies, where the participants would interact with a system under natural
circumstances. This have made the environment more similar to that of an
actual use-case, both in the terms of predicting SAM values, and comparing
concurrent and retrospective physiological signals. The benefits of the control
in a laboratory setting were however deemed superior.

2.3 Data collection
The physiological data recorded was in the form of EEG, EDA, HR and facial
expressions. Environmental recordings included screen capture, video feed of
the room, and sounds.

The sensors were used to concurrently collect data in both experiments.
In Paper 2, the video recordings were used to re-immerse the participants.

During the re-immersion, an additional set of physiological data was recorded.

2.3.1 Sensors
The experiments were conducted using consumer grade hardware. Consumer
grade hardware is less accurate and reliable, but a more realistic setting in terms
of use cases.

In both experiments we used a short resting period of 3 minutes to allow the
participants to reach a relaxed state and the sensors to calibrate.

A disadvantage in our sensors is due to their intrusive nature as they, with
the exception of the Microsoft Kinect, had to be attached directly to the body
of the participants.

Another disadvantage using physiological sensors attached to the partici-
pants was the restriction of movement. During both experiments, the partic-
ipants were instructed to remain as motionless as possible to reduce noise in
the data. To accommodate this, the test conductors ensured that the partic-
ipants had a comfortable posture and no sensor was irritating before the test
began. Only few participants expressed discomfort after the test, citing nuisance
wearing the sensors.
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2.3. DATA COLLECTION

2.3.2 Pilot tests
To discover any problems with the setup pilot tests were conducted for each
experiment.

One discovery from a pilot test was that when touching the touchpad of
the laptop, the ElectroDermic Activity (EDA) sensor would be influenced by a
current and thus collect erroneous data. This was discovered in the pilot test
before the second test, but proved not to be a problem for the first test as the
data analysed in the first experiment was in time periods where the participants
did not touch the touchpad. In order to avoid the problem in the second test,
an external mouse and keyboard was used.

2.3.3 Stimuli
Stimuli for inducing emotional reactions comes in many forms, such as games,
video, audio, literature, ambience etc. In our studies we used the well cited
IAPS [2] pictures as stimuli to induce emotional reactions. It would be interest-
ing to see if other types of stimuli is better at inducing emotional reactions. One
could argue that video combined with audio would provide a stronger stimulus
than either one alone.

We covered the screen in a gray color with a black text saying “Resting
period”. Others have used pieces of music that are said to be particularly neutral
and relaxing.

IAPS

IAPS was used for both experiments, and the selected images were unique for
each test, i.e. no image was used in both tests, as this potentially could have
polluted the results if participants would have been attending both experiments.

The ordering of the pictures was randomized for each participant so as to
avoid polluting the data with potential priming effects.

While selecting pictures from IAPS, we noticed that the images seemed a
bit dated and culturally dependent which may have influenced the results. An
example of this could be a picture of two towers which can be associated with
the world trade center accident, being a particularly powerful stimuli instead
of neutral picture. Another example could be the modern exposure to more
extreme material, such as gore, in the general media, which could reduce the
sensitivity of test participants when shown pictures of a similar nature.

Fictitious scoring

In the second paper, a fake test was created to introduce stimuli consisting of
15 IAPS pictures and 15 questions about said pictures, with three versions,
positive, negative and neutral. The participants would be instructed that there
would first be 15 pictures and then 15 questions. This was done so that the
participants would have more focus on the pictures. The scoring given to a test
participant corresponded to the pictures shown, i.e. if negative pictures were
shown, a negative scoring was given. After finishing the test, the participants
taking the positive version would receive a score between 150 and 200, with the
maximum possible score also displayed. The participants taking the negative
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CHAPTER 2. RESEARCH METHODOLOGIES

version were awarded a score between 0 and 50, and the participants taking the
neutral version would instead simply be notified that the test was over.

The purpose of the scores was to apply further stimuli in addition to the
IAPS pictures.

2.4 Data analysis
The advantage of physiological measurements is that the data is measured ob-
jectively, however the amount of data can easily become overwhelming. In order
to combat this, we make use of statistics in both papers, and for the first paper,
machine learning.

In the case of machine learning, support vector machines were used predict
SAM ratings. Machines were trained for data from each sensor, as well as a
machine trained from the predictions of the other machines, a meta machine
resulting in sensor fusion.

For the second paper, Pearson’s Product-Moment Correlation was used to
compare physiological signals from a test and a corresponding cued-recall ses-
sion. The signals were first processed to match in length and went through
Dynamic Time Warping to align temporally. ANOVA was used to look for
significant differences in intermediate time delay, stimuli groups, and across
sensors.

2.5 Limitations
Despite our greatest effort some limitations prevailed.

2.5.1 Experimental tasks
In Paper 2, the participants had to complete a series of task, which were pre-
sented in random order, except from the first two tasks, and the period before
the first task. These task were unseeded and allowed the participants to famil-
iarize with the system. Since there were more than two unseeded tasks, these
should have been randomized to avoid priming.

2.5.2 Cooperative experiments
Both experiments were designed and conducted in collaboration with an other
master study group. For the first experiment a collaborative paper was written,
and for the second each group made their own paper. By collaborating with an
other group, we were able to conduct more thorough experiments as we had the
resources to do so, however it also meant that there were steps in the experiment
that were not necessary for us in the second experiment.

2.5.3 Features for SVM
For an SVM to be trained on data, this data must be presented as features. A
feature is a specific way to look at data. For the first paper we looked through
the literature and used popular off-the-shelf features. Doing a deeper analysis
would have been preferable, however that was out of scope for this study.
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2.5. LIMITATIONS
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3
Discussion & Conclusion

In both papers we used consumer grade hardware to detect physiological re-
sponses.

The first paper uses physiological measurements and machine learning to
predict SAM [3] ratings. We achieve 74.5% to 84.8% accuracy with a one split
grouping using physiological sensors, compared to the result of 58.8% to 66.1%
from naive guessing. Additionally, we achieved 57.8% to 67.1% accuracy with
a two split grouping using sensors, compared to the result of 49.3% to 49.8%
from naive guessing.

Given that in both splits, the accuracies for using consumer grade physi-
ological sensors were significantly higher, it is possible to detect physiological
responses caused by affect. The resolution we achieved can however be ques-
tioned. A split of two or three groups is very low compared to a common split
on SAM ratings of 81 (9 times 9). Even if we consolidate this into Ekman’s
basic emotions [5], which considers 6 categories of emotions, we still only have
half the resolution at best. As such, the practical use for these results are quite
limited until expanded upon by future research.

In the second paper we perform a usability test where we collect physiological
data during system interaction and re-immersion. We explore the effects of
intermediate time delay and exposure to stimuli.

We find a statistically significant correlation between physiological measure-
ments taken during system interaction and re-immersion. Additionally, we find
a statistically significant decrease in correlation over time for the Electroen-
cephalogram (EEG) sensor.

These results confirm the validity of CRD on a physiological level, as the
correlations show that the test participant were re-immersed in their past ex-
periences. Additionally, we find intermediate time delay to be a larger factor in
decreasing correlations when compared to exposure to stimuli.

Our findings suggest that one should prioritize conducting the CRD immedi-
ately after system interaction, to minimize the effects of intermediate time delay
on the test participants’ ability to become re-immersed in past experiences.

In general, using physiological sensors to quantify emotional responses in
one way or another is still in its infancy. Currently, we are not able to get a
detailed view of a test participant’s affective state using sensors, but that does
not mean sensors are without use. As an example of this, Bruun & Ahm [4] has
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successfully used an EDA sensor to select video cues during a CRD session. This
means that, while physiological sensors may not be able to achieve a detailed
view of emotions currently, they can still be useful for speeding up CRD session,
saving both time and money.
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Objectives: Emotions are an important part of UX, but tradi-
tional evaluation methods makes them prone to bias. Literature
shows an increase in attempts to evaluate emotions using sen-
sors. This work attempts to use sensor fusion techniques on
physiological data gathered from consumer-grade hardware
to predict subjective SAM ratings. Methods: IAPS pictures
were used to induce affective states, and subjective emotional
responses were evaluated using SAM. SAM ratings were sep-
arated into groupings with a single division and groupings
with two divides. Physiological data was collected using EEG,
GSR, ECG, and facial tracking. The test had 49 participants
(21 female and 28 males, aged 19-33 (mean 22.22; standard
deviation 2.75). Data from each individual sensor were used to
train a SVM for classifying arousal and valence. Furthermore,
two decision fusion techniques were used: weighted voting
and stacking. Results: Accuracies for a single divide group-
ing ranged from 74.5% to 84.8% and on groupings with two
divides, from 57.8% to 67.1%. These results were significantly
better than naive guessing, which ranged from 58.8% to 66.1%
on single divide groupings, and 49.3% to 49.8% on two divide
groupings. While the weighted voting technique performed
slightly worse than all the machines trained on individual sen-
sors, the stacking technique proved to be significantly better.
Conclusion: We found that it is possible to predict subjective
SAM ratings using physiological sensors. Furthermore, the
accuracy can be increased by using sensor fusion, if the right
fusion technique is chosen. It was found that using stacking
achieved significantly better results than voting.

ACM Classification Keywords
H.1.2 User/Machine Systems: Human information processing;
I.4.8 Scene Analysis: Sensor fusion; I.5.2 Design Method-
ology: Feature evaluation and selection; I.5.4 Applications:
Signal processing

The content of this article is freely available, but publication (with reference) may only
be pursued due to agreement with the authors.
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HCI; UX; ECG; EEG; HRV; EDA; FFT; SVM; Arousal /
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INTRODUCTION
Emotions are an important part of User Experience (UX), but
despite affect and emotion being key indicators for quality of
UX, Bargas-Avila and Hornbæk [6] found a predominant lack
of research towards measuring emotions. Further, despite UX
being an integral part of Human Computer Interaction (HCI),
literature [66, 47, 31, 4] shows discrepancy when defining
UX. In this work we refer to the International Standard Or-
ganization (ISO 9241-210:2010) [31] which defines UX as
“a person’s perception and responses resulting from the use
and/or anticipated use of a product, system or service”.

As with UX, the HCI body of literature contains many differ-
ent definitions of emotion[20, 61] where Scherer [62] provides
a palpable one. According to Scherer, an emotion is a response
to an event with interrelated, synchronized changes of five or-
ganismic subsystems. Scherer differentiates between emotions
and moods, where emotions are short-lived, massive responses
to specific actions, and moods are low impact diffuse affect
states that may emerge without relation to specific events and
may extend for longer periods, such as being cheerful or de-
pressed. In this work, we focus on emotions, in particular
physiologically manifested emotional reactions.

Among the commonly conducted methods for evaluating emo-
tions are questionnaires, interviews, think-aloud, and expert
ratings [6]. However, due to the short duration of emotions,
these methods are heavily affected by cognitive limitations
such as the peak-end effect [14], where the most impactful
moment and the end of an event are the most memorable, caus-
ing memory bias. Such limitations can be alleviated by using
techniques such as Cued-Recall Debrief [9].

An alternative approach is to measure physiological responses
caused by emotions, in real-time. Recently, the use of phys-
iological measurements to evaluate emotions has increased
in HCI [68]. Physiological measurements are objective in na-
ture, and using this as a basis for evaluating emotions should
decrease the effect of memory bias, since the measurements
can be recorded as physiological responses occur. Usually,
a single sensor is used to take physiological measurements,
but a single sensor can only capture limited physiological re-
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sponses, possibly leaving out information. Furthermore, if the
sensors used are consumer-grade (inexpensive and accessible
hardware), it will not be possible to take measurements at the
same level of detail as industrial-grade hardware.

Recent research [10, 50, 32] fuse multiple sensors using Ma-
chine Learning (ML) techniques with the intent of producing
better results than using a single sensor.

Having established the importance of emotions in HCI re-
search in general and more so within UX, our aim in this work
is to provide a reliable and accessible method for evaluating
emotional reactions through physiological measurements. In
particular, our method uses inexpensive consumer-grade hard-
ware, assuring accessibility. We aim to be able to reliably
group emotional reactions using well-known ML techniques,
ensuring an easily reproducible setup to be used in various
UX experiments. We do not aim to identify individual and
particular emotions, such as each basic emotions [20], we will
instead predict on the subjective feeling component found in
Scherer’s definition of an emotion. Using such an approach
enables UX researchers to mitigate subjectivity bias inher-
ent in expert evaluations and possibly the evaluator effect
during usability testing [28]. In particular, we imagine our
setup could contribute in usability testing scenarios where re-
searchers could objectively identify moments where subjects
experienced negative emotional affection which might indicate
usability problems.

While similar attempts have been made in recent research [10,
50, 32], we differentiate our work by using well-established
ML techniques in order to try and improve the result from
single accessible consumer-grade physiological sensors. As
mentioned, we hope our results can help researchers get closer
to a foundation for more specific use-cases, such as usability
testing or other techniques which can draw advantages from
the use of physiological measurements, such as Cued-Recall
Debrief [9].

EVALUATION OF EMOTIONS
In this section we elaborate on the previous mentioned five
organismic subsystems by Scherer [62]:

• Cognitive component: evaluation of the objects and events
triggering an emotion, and the subjective processing of that
context such as "what impact does the event have to the
person’s current objectives?"

• Neurophysiological component: regulation of the bodily
system such as changes in heart rate and sweat production.

• Motivational component: preparation and direction of ac-
tion, a subconsciously bodily reactions such as switching
attention, or physically moving away from the event.

• Motor expression component: communication of reaction
and behavioural interaction that in contrast to the motiva-
tional component are intentional and/or controllable.

• Subjective feeling component: internal state and
organism-environment interaction that a subject experience,
expressed as a combination of intensity, duration, valence,
arousal, and tension.

Common methods used to evaluate and quantify emotions
are questionnaire, interview, and think-aloud where subjects

try to describe their emotions. Another common method is
expert rating where experts attempt to interpret a subject’s
behaviour and emotions based on observable features such
as the motor expressions component and partly the motiva-
tional component. Such methods are well established within
HCI research [6], and referred to as traditional methods in this
work. An example that use these methods to evaluate a test
subject’s emotions is Ekman [20] who distinguishes between
six basic emotions: anger, disgust, fear, joy, sadness, and sur-
prise. Another example is the Positive And Negative Affect
Schedule (PANAS) [15] which consists of a labeled list of emo-
tions with corresponding Likert scale [51] values. Techniques
like PANAS or basic emotions are based on discrete values
and describe emotions separately. We refer to techniques that
evaluate emotions discretely as discrete techniques.

Other techniques are based on the subjective feeling com-
ponent, and often uses valence and arousal as quantifiers.
Self-Assessment Manikin (SAM) [8], which measures the
magnitude of feelings in valence, arousal, and sometimes dom-
inance, is such a technique. We refer to these techniques based
on dimensional feelings to be dimensional techniques.

The use of sensors to measure physiological responses is an
increasingly popular approach in the field of HCI. Examples
are; Mandryk and Atkins [45], who identified feelings in sub-
jects playing computer games; Lin et al. [41], who identified
joy, anger, sadness, and pleasure while subjects were listening
to music. Using this approach, researchers either use a single
sensor, or a combination of multiple sensors which we distin-
guish between as sensor and sensor fusion respectively. Using
sensors, researchers are able to objectively measure the neu-
rophysiological component, motivational component, and
the motor expression component of an emotion in real time.

This work focuses on using physiological sensors to detect
the neurophysiological-, motivational-, and motor expression
components. Additionally, the subjective feeling compo-
nent is measured using traditional methods, and mapped to
arousal/valence.

RELATED WORK
This research operates on three levels of the area of quantify-
ing emotions. (1) Traditional methods which contains well
established methods. (2) Methods that uses sensors to quantify
some part of an emotion. (3) Methods that uses sensor fusion
to quantify some part of an emotion. All of these levels, will
be constrained to an HCI context.

Traditional
Lot of research includes a traditional method to quantify emo-
tions. In 1995, Peter J. Lang [35] studied the effects of induc-
ing affective valence and arousal on test subjects. He used
the International Affective Picture System (IAPS) [7] picture
database, in which the pictures have undergone average SAM
value labelling over many test subjects. The pictures span over
a wide array of possible SAM value combinations. He found
a significant linear trend with the startle reflex (eye blinks),
which was most active during low-valence exposures, and least
active when exposed to positive stimuli [35].
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Silver et al. [1] looked at how humans perceive emotions
through text over an instant messenger. They had 80 partici-
pants in two evenly divided groups text each other for thirty
minutes. After the test session each test participant completed
three questionnaires with Likert scales. The questionnaires
included the participants own estimation of how well they
conveyed their emotions to the other test participant, which
strategies they used to convey their own emotions, and their
perception of the other person’s mood.

Sensor
In recent years, studies, involving more objective measures us-
ing physiological sensor data, have gained momentum. Liapis
et al. [38] conducted a study with a GSR to detect stress in sub-
jects. In their test, they incorporated 5 tasks with frustrating
elements based on responses from 15 average computer users.
These tasks were completed by 31 test participants while they
had their skin response recorded. They had promising classifi-
cation results of 90.8% average on individual tasks, and 98.8%
average over all tasks.

In a recent article from 2014, Gupta et al. [25] classified affec-
tive state using EEG data. They used the DEAP [34] affective
database, which consists of stimuli labelled using SAM, and
corresponding physiological data. The stimuli used in DEAP
was one-minute excerpts from music videos. Using SVM and
RVM to to classify the affective state, they achieved accuracy
just above 60% on two class (high/low) system in arousal,
valence and dominance.

Sensor Fusion
Koelstra et al. [34] created the DEAP affective database in
2012. Aside from creating the large database, they also at-
tempted affective classification on both arousal and valence.
This was done using EEG as an individual sensor, and also
fusing EEG with other types of data signals. The results were
compared, and they found that sensor fusion provided partly a
better F-score when classifying arousal and valence, ranging
from 0 to a 0.044 increase in F-score.

Jraidi et al. [32] focuses on classifying interaction experience
trends, stress, confusion, frustration, and boredom. The test
participants had to complete series of tasks, and fill out a self-
report on whether they flowed, were stuck or dropped out of
the task, and their stress, confusion, frustration, and boredom
levels. EEG, GSR and HR were captured during the test and
used for classification.

Sensor fusion has also been used to classify both inter and intra
subject, as seen in Calvo et al. [10] where results show a sub-
stantial lower classification accuracy inter subjects compared
to intra subjects. They used a EMG, GSR, and ECG to gath-
ered the sensor data, and followed the Clynes protocol [59]
to evoke an emotional response in the subjects. Classification
was made using different techniques including SVM, LLR,
Functional Tree, Bayes Net and MLP. The results from an
individual day on intra person showed above 90% accuracy
whereas the combined inter person only showed just above
40% accuracy.

Hypotheses and Contribution
The related work reveals that the quantification of emotions
has been done using many different methods and contexts. It
also showed that fusion has the ability to produce good results,
but so has a single sensor, which raises the question if fusion
is worth pursuing. Therefore in this article two hypotheses
will be examined:

H1: Physiological measurements from consumer-grade sen-
sors using a classification technique can achieve signifi-
cantly higher accuracy than naive guessing when predicting
subjective SAM ratings.
H2: Statistically, fusion of consumer-grade sensors has a
significantly higher prediction rate than each sensor individ-
ually.

H1 creates a benchmark for our classification results, while
also verifying the validity of using consumer-grade equipment
to objectively collect physiological data. H2 determining
whether or not sensor fusion can be used to increase accuracy
when prediction subjective SAM ratings, from physiological
sensor data.

METHOD
In order to reject or confirm our hypotheses, we established
an experiment where participants were subjected to various
imagery stimuli. During the test, we collected subjective va-
lence/arousal ratings using SAM for each image, and physio-
logical measurements using various sensors. The SAM ratings
for each image will be used as ground truth. This data was then
used to train Support Vector Machines (SVM) to be able to
classify subjective SAM ratings, both for individually sensors
and using fusion.

Stimuli
For the experiment, we used the IAPS [7] image database
consisting of approximately 1200 images. IAPS has been
extensively studied and labeled with arousal/valence control
values. Figure 1 shows the spread of the image-set plotted in a
graph. We use three groupings of the pictures: negative, posi-
tive, and neutral. They are based on extremes found in IAPS
due to its ´´boomerang-shape”[49]. The negative groups, red
circle in Figure 1, represents the pictures with low valence and
high arousal.The neutral group, grey circle in Figure 1, repre-
sent the picture with the median valence (5) and low arousal.
The positive group, green circle in Figure 1, represents the pic-
ture with high valence and high arousal.The 30 images were
selected (marked with blue) from the extremes were selected
to create easier grouping more suitable for classification. A
list of the selected images can be found in the Appendix.

Hardware
The hardware used for the experiment was an Emotiv
Epoc [21] for Electroencephalograph (EEG) for recording
brain activity, a Mindplace ThoughtStream [53] for Galvanic
Skin Response (GSR), an Arduino with a pulse-sensor [42]
to measure heart rate (HR) and a Kinect V2 [17] for track-
ing facial traits. Emotiv Epoc contains 16 electrodes, two of
which are only used for reference. It produces a raw EEG
signal and has a sampling rate of ∼128 Hz[22]. Mindplace
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Figure 1. Spread of the IAPS image-set. Negative, positive and neutral
extremes, are encircled in a red, green, and grey ring respectively. Blue
marks indicate the arousal/valence plot of 30 selected images used as
stimuli (10 in each cluster).

ThoughtStream measure skin conductivity and has a sampling
rate of ∼20 Hz. With modified software [2] the pulse-sensor
software was modified to send beats per minute (BPM), inter-
beat interval (IBI) and raw signal with a sampling rate of ∼50
Hz. The Kinect V2 measures many bodily features with a
sampling rate of ∼30 Hz[17]. All devices are consumer grade
hardware.

Participants
49 tests were conducted with 49 participants (21 female and
28 males, aged 19-33 (mean 22.22; standard deviation 2.75).
The participants were students recruited from Information
technology (27), Informatics (7), Sociology (3), Psychology
engineering (3), Economics (1), Organizational learning (1),
Digital Concept Development (2), and Computer science (2)
from Aalborg University as well as Pedagogy (1) and Occu-
pational therapist (2) from University College of Northern
Denmark. Participants had no prior knowledge of the test or
the system. The Informatics and Information technology stu-
dents received a reduction of their curriculum for participating
in the test.

TEST SETUP
The tests was conducted Monday-Friday in the Usability Lab
at Cassiopeia, Aalborg University [33]. All participants were
instructed in the general format of the experiment, and asked
to sign an informed consent form before participation. The
participants were then asked to fill out a questionnaire contain-
ing general questions such as name, age, and education. After
the questionnaire the participants were given a more detailed
elaboration of the experiment. This included how they should
report their emotional state using SAM for each stimulus, as
well as information on the hardware we would be using. All
hardware was attached, with the GSR and HR sensors being
attached to their non-dominant hand. The test participants

Figure 2. An example of the sensor setup used on the test participants.
As he uses his right hand to control the trackpad, the Thoughtstream
and Pulse Sensor are attached to his left palm and left index finger
respectively. Furthermore, the Kinect can be seen above the monitor
aimed at the test participants face.The test participant can also be seen
wearing the Epoc device on his head.

Initial
rest period Rest period Stimuli loop

Runs 30 times

Stimuli
picture is

shown

Arousal & valence
interface

3 minutes

20−30 seconds 7 seconds

Until test subject clicks next

Figure 3. Flow chart of the test.

were instructed to remain motionless throughout the experi-
ment, to limit the amount of data contamination from bodily
movements.

Test procedure
The test participants starts by entering his/her name in the ap-
plication. When the test participant is ready, the test is started
by pressing the next button. This signals for the collection of
physiological data to begin, alongside the test-application with
stimuli. The test starts with a relaxation period of 3 minutes
after which a stimuli loop initiates, see Figure 3. The stimuli
loop is a self-contained part of the test, and happens once for
each stimulus. The loop consist of a 20 seconds relaxation
period along with a random interval of 0-10 seconds. The
randomness is to prevent the test participants from getting
familiar with a fixed time interval between each stimuli expo-
sure. Then a stimulus/picture is shown, and a time period of 7
seconds elapse before the interface to select arousal/valence
values appears. The number 7 has been selected to allow for
the immediate physiological reaction to take place. The next
relaxation period is not initiated before the test participant has
submitted both arousal and valence. The stimuli loop starts
over with a new stimulus for each 30 individual stimuli. The
order of the stimuli was randomized for each individual.
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Class A2L / V2L A2H / V2H A3 / V3
0 1,2,3,4 1,2,3,4,5 1,2,3
1 5,6,7,8,9 6,7,8,9 4,5,6
2 - - 7,8,9

Table 1. The class label groups and their names. A is for arousal, V is
for valence.

CLASSIFICATION
In order to validate our hypotheses, classification is done for
data from each sensor separately and combined. We will in
this paper use SVM, since previous work [63, 65, 26] shows
that SVM is a commonly used classifier which has shown
good results.

Data Points and Class labeling
The data from each test participant will be extracted from the
participants physiological response to each image. From this
features will be created to the given image. This is defined as
a data point. The data point will be labelled with a class label
corresponding to the SAM values selected by the participant.
Given the small size of our data set (30 data points per test
subject), we opt to group the SAM responses in order to give
the classifier enough training data for each class label. The
groups will consist of either one or two divides. These divides
and their respective names can be seen in Table 1, with A and
V meaning Arousal or Valence, and L and H meaning low or
high value for the divider. Organizing the responses into these
divides increases the amount of data points representing each
class label while decreasing the total amount of class labels to
classify.

Classifier and parameters
We use one of the free libraries implementing SVMs, specifi-
cally LibSVMSharp [23] which is a wrapper for LibSVM [11].
The SVM produces a model that can predict class labels, and
has been trained on some training data representing the class
labels [13]. In order to separate non-linear data the SVM can
use a kernel function, and each kernel function has a set of
hyperparameters which can influence classification accuracy.
LibSVM offers four different kernel functions. In order to
get the best results, we search for each kernel, optimizing the
hyperparameters C and γ by using the grid-search mentioned
in [13], to prevent overfitting the model, which otherwise
might lower classification accuracy.

Checking the quality of a set of hyperparameters can be done
by looking at how good the model is at classifying. Since
the classification will focus on intra-subject and not inter-
subject, meaning data from one person may only be used
to train and classify on that specific person, a technique to
maximize the usage of the data is required. A method to do
so is cross-validation. Cross-validation divides the data into
n equal sized folds. The SVM then uses n-1 fold to train
from and uses the last fold to predict on. The cross-validation
implementation [12] in LibSVM includes random shuffling
of the data. For the sake of reproducibility, a deterministic
cross-validation has been implemented. This cross-validation
is a simple Leave-One-Out (LOO) cross-validation, meaning
one response (data point) is used for prediction, while the

remaining responses are used for training. This is done for
each data point in the whole set of data points and the accuracy
of the classifier is done by calculating the percentage of correct
predictions across the whole set.

Fusion techniques
Fusion is the inclusion of multiple sets of data to reach a
common result. Two areas of fusion are feature fusion and
decision fusion [46]. Feature fusion is when features from
multiple sets of data are combined into a single feature vector.
Decision fusion is when using the results computed from each
set of data, to compute a new common result. Due to our
limited data size, doing feature fusion could result in the curse
of dimensionality [64]. The curse of dimensionality is when
the ratio of features to training data is so high that the model
risk of getting overfitted, resulting in bad predictions. As such
we opt to only use decision fusion.

The two methods of decision fusion this paper will focus on
is [46]:

• Stacking: using the results of from each SVM for a single
sensor as a set of features of a new classifier which then is
trained to predict from the single machines answers.

• Weighted Voting: is used when the classifiers has uneven
performances. Meaning that a SVM from a single sensor
have votes equal to its performance. The class label with
the most votes is the final result.

These new decision fusion classifiers will be referenced as
meta classifiers.

Since the GSR is only capable of classifying on arousal, we
exclude this sensor from the fusions classifying valence. For
stacking an SVM is created, and trained on the results from the
machines for the sensors. Voting takes the answers from the
other machines, weighted by the cross-validation performance,
and select the class most voted for. Additional it is important
to mention that the training set and prediction set is separated
at all times. Meaning that when doing fusion, the SVMs for
the single sensors is trained on n-1 folds, and the results are
from these folds when used for the fusion techniques.

FEATURE SELECTION
The features selected are heavily influenced by others’ previ-
ous work, given the scope of this project. Tables 2-5 indicate
the features as well as the source of the features we use, how
the source used them, if it was for arousal and/or valence,
as well as the time-window (i.e. timespan) they used for the
feature.

EEG Features
EEG data is frequently used when measuring emotions, how-
ever other literature often uses electrodes[34, 24, 40] which
are not available in our Emotive EPOC. Further, differences in
activity in the left and right parts of the brain encodes informa-
tion about the affective state, and emotional and affective data
has been found in the mid- and pre-frontal part of the brain [58,
16]. From this we find the most interesting electrodes offered
to us by the EPOC to be F3, F4, AF3 and AF4 as per the
10-20 system [44]. A common method for extracting features
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from EEG data is by considering the band powers of a Power
Spectral Density (PSD) [43, 65, 25, 41]. The PSD of a signal
can be calculated by using a Fast-Fourier transform and is a
representation of sine waves that could make up the signal. In
brain computer interfaces, the power of individual frequency
bands are often used, and Lin et al. [41] achieved promising
results using the hemispheric asymmetry index. The asym-
metry index can be found by subtracting the powers of two
asymmetric electrodes (e.g. F3 and F4). Band frequencies
are defined differently by different sources, in this paper we
use the definitions used by Lin et al., where we only differ by
defining the γ upper limit as 45 Hz instead of 50 Hz, since the
EPOC signal is filtered to 0.2 Hz to 45 Hz [22]:

• Delta (δ ) = 1-3 Hz
• Theta (θ ) = 4-7 Hz
• Alpha (α) = 8-13 Hz
• Beta (β ) = 14-30 Hz
• Gamma (γ) = 31-45 Hz

The time interval to consider when extracting features also
varies from paper to paper. Due to the nature of our test setup,
we can use event related potentials (ERP) to specify the time
span we extract features from. There are several different time
spans in ERP, for both positive and negative waves in the sig-
nal. Positive waves are referred to as P# and negative waves
N#, with the number indicating the latency with regards to
stimuli induction. The time definitions of the different events
related to emotions also differ [67, 27, 60], however, they seem
to agree that some emotional reaction can be found around
P300 which is found between 350 ms and 700 ms after stim-
ulus, and late positive potential (LPP) between 350 ms and
1000 ms. Since the Shannon-Nyquist theorem [30] states that
the amount of samples needed is double the highest frequency,
we need at least 90 samples for each Fast-Fourier transfor-
mation. Since the capture frequency of the EPOC is 128 Hz,
the time between readings is 7.8125 ms, meaning to get 90
samples, a minimum of 703.125 ms is needed. A time span
of 350 ms to 1060 ms allow the calculation of PSD as well
as being within the emotion-relevant part of the signal, and
as such this is the timespan used for feature extraction. The
resulting features can be found in Table 2.

EEG Features
Source A V Data captured Timespan (ms)

[41, 27, 16, 58] x x AF3-AF4 (δ ) 350 - 1060
[41, 27, 16, 58] x x AF3-AF4 (θ ) 350 - 1060
[41, 27, 16, 58] x x AF3-AF4 (α) 350 - 1060
[41, 27, 16, 58] x x AF3-AF4 (β ) 350 - 1060
[41, 27, 16, 58] x x AF3-AF4 (γ) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (δ ) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (θ ) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (α) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (β ) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (γ) 350 - 1060

Table 2. Timespan is in milliseconds, after stimuli. A indicates the fea-
ture can be used to classify arousal and V indicates the same for valence.
Only features using electrodes accessible with the Emotiv EPOC were
used.

GSR Features
[37, 3] suggests that an emotional reaction becomes visible
in the signal approximately 2-4 seconds after onset of stimuli,
and usually the response itself has a 4-5 second half recovery
time[37]. Since our test setup reveals valence/arousal indica-
tors for the test participant to interact with after 7 seconds, we
limit the timespan to 2-7 seconds, in an attempt to eliminate
noise produced by test participants interacting with the setup.
This is due to the interaction with the computer interfering
with the ThoughtStream signal. [38] suggests using statisti-
cal features such as mean, min, max, standard deviation as
features from a GSR signal. In order to remove artifacts a
15-point median filter is applied. The resulting features can be
seen in Table 3.

GSR Features
Source A V Data captured Timespan (ms)
[37, 38] x SD of filtered signal 2000 - 7000
[37, 38] x Mean of filtered signal 2000 - 7000
[37, 38] x Max of filtered signal 2000 - 7000
[37, 38] x Min of filtered signal 2000 - 7000

Table 3. Timespan is in milliseconds, after stimuli. A indicates the fea-
ture can be used to classify arousal and V indicates the same for valence.

Heart Features
The data from the Pulse Sensor will be transformed into
three different measures; heart rate (HR), heart rate variability
(HRV) and inter-beat interval (IBI) [34, 56, 55]. HR and IBI
is calculated by the modified Arduino software for the pulse
sensor, and HRV is given by the difference of two adjacent
IBI’s. The pulse sensor measurements have shown the abil-
ity to both be used as a feature to classify valence, but also
arousal. Heart rate has been shown to have a correlation with
valence [36], where HRV features [57] has shown good pro-
duced results with both valence and arousal. The onset of an
emotional reaction can according to [29, 5] happen 4 seconds
after stimuli, and have a three second duration. The resulting
features can be seen in Table 4.

HR Features
Source A V Data captured Timespan (ms)
[57, 55] x x IBI mean 4000 - 7000

[57] x x IBI std 4000 - 7000
[57] x x HRV RMSSD 4000 - 7000
[36] x HR Max 4000 - 7000
[39] x HR Mean 4000 - 7000

Table 4. Timespan is in milliseconds, after stimuli. A indicates the fea-
ture can be used to classify arousal and V indicates the same for valence.

Facial Features
With the Kinect, data was captured in the form of Face Shape
Animations [52] (FSA). FSA data tracks a subset of the Action
Units (AU) in the Facial Action Coding System [19] (FACS)
for both the left and right side of the face. [18] showed that
an unconscious facial reaction happens from 500-1000 ms
after stimuli onset. Mehu and Scherer [48] investigated the
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correlations between facial behaviour in the form of AU, and
the emotional dimensions of valence and arousal. From their
features we select the ones that have statistical significant
correlations with valence and arousal, and overlap with the
set of AU measurable by the Kinect. Since Mehu and Scherer
used AU without differentiating between the left and right
sides of the face, we use the average of the feature values from
the left and right side of the face. The resulting features can
be seen in Table 5.

Facial Features
Source A V Data captured Timespan (ms)

[48] x Mean of 5 & 6 500 - 1000
[48] x Mean of 13 & 14 500 - 1000
[48] x Mean of 15 & 16 500 - 1000
[48] x SD of 5 & 6 500 - 1000
[48] x SD of 13 & 14 500 - 1000
[48] x SD of 15 & 16 500 - 1000
[48] x Mean of 11 & 12 500 - 1000
[48] x SD of 11 & 12 500 - 1000

Table 5. Facial features. Timespan is in milliseconds, after stimuli. A
indicates the feature can be used to classify arousal and V indicates the
same for valence. The numbers in the data captured column correspond
to Kinect FaceShapeAnimation [52].

RESULTS
An ANOVA was performed on the accuracies for each test sub-
ject for each machine type. 14 test participants were removed
from the set due to either lacking data because of temporary
sensor failure, or having a SAM reporting which did not con-
tain enough differences. Test subjects where not all machines
were able to compute results were filtered out (e.g. when there
was a hole in the data due to sensor failure). The accuracies
for naive guesses were computed as for a machine which al-
ways suggested the most frequent class. The resulting average
accuracy to be found in Tables 6 and 7 for arousal and valence
respectively.

Using a Tukey HSD post-hoc analysis, mean differences and
significance levels were calculated between the fusion methods
and non-fusion methods and also for naive guessing. Table 9
shows results for stacking, Table 10 shows results for voting
and Table 8 shows results for naive guessing.

From Table 8 we see that naive guessing performs significantly
worse than all other machines, except for Voting on V3.

Tables 9 and 10 show that, while voting only performs signifi-
cantly better than naive guessing, Stacking performs signifi-
cantly better than almost all other machines.

CONCLUSION
In this paper we explored the idea that it is possible to gather
physiological data through sensors and use this data to predict
subjective SAM ratings with individual sensors and using
fusion techniques. Participants were subjected to stimuli in
the form of IAPS pictures and reported subjective SAM values
after each stimulus. Physiological data was collected using
GSR, EEG and Pulse Sensors as well as Kinect, and an SVM
was selected as the classification technique.

Arousal Results
A2L A2H A3

EEG .751 (SD .070) .763 (SD .062) .578 (SD .085)
HR .745 (SD .057) .756 (SD .076) .598 (SD .081)

FACE .738 (SD .079) .760 (SD .082) .611 (SD .107)
GSR .754 (SD .074) .766 (SD .063) .595 (SD .094)

NAIVE .596 (SD .068) .636 (SD .091) .493 (SD .093)

Stacking .848 (SD .056) .838 (SD .054) .660 (SD .113)
Voting .739 (SD .100) .755 (SD .080) .606 (SD .106)

Table 6. Average accuracy for each classification method, test subject
and class label group for arousal.

Valence Results
V2L V2H V3

EEG .755 (SD .077) .763 (SD .084) .587 (SD .109)
HR .750 (SD .056) .765 (SD .071) .601 (SD .082)

FACE .751 (SD .093) .781 (SD .085) .595 (SD .105)
NAIVE .588 (SD .065) .661 (SD .098) .498 (SD .089)

Stacking .836 (SD .066) .827 (SD .075) .671 (SD .101)
Voting .724 (SD .106) .740 (SD .093) .561 (SD .127)

Table 7. Average accuracy for each classification method, test subject
and class label group for valence.

The results show accuracies for the machines on class group-
ings with one split range from 74.5% to 84.8% and on group-
ings with two splits, from 57.8% to 67.1%. Naive guessing
showed less accuracy than any of the other machines, with
accuracies from 58.8% to 66.1% in single split groupings, and
49.3% to 49.8% in two split groupings. Stacking showed the
highest accuracy consistently.

Comparing the results with our hypotheses we find that:

H1: Physiological measurements from consumer-grade sen-
sors using a classification technique can achieve significantly
higher accuracy than naive guessing when predicting subjec-
tive SAM ratings.

As seen in Table 8, naive guessing is significantly worse in
all cases except Voting in the V3 group. This result conforms
with the hypothesis.

H2: Statistically, fusion of consumer-grade sensors has a sig-
nificantly higher prediction rate than each sensor individually.

Tables 9 and 10 show that while voting is not a substantial
improvement to most of the other methods, stacking is signif-
icantly better than most methods. This result conforms with
the hypothesis.

Future work
While this work shows promising results classifying positive,
negative and neutral affective states, more work is required
to ensure similar results when using less tailored stimuli. We
choose to show the most extreme cases of the IAPS pictures,
but it is not an indicative set of stimuli in a real world sce-
nario. It is also important to note that all features selected
for classifying, are mainly based on a discrete stimuli expo-
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Naive Guessing vs others
A2L A2H A3 V2L V2H V3

Stacking -.252*** -.202*** -.167*** -.248*** -.165*** -.173***
Voting -.144*** -.119*** -.113*** -.136*** -.079** -.062
EEG -.155*** -.127*** -.085** -.168*** -.102*** -.088**
HR -.149*** -.120*** -.105*** -.162*** -.104*** -.103***

FACE -.143*** -.124*** -.118*** -.163*** -.119*** -.097**
GSR -.158*** -.130*** -.102*** - - -

Table 8. Differences in mean accuracy between naive guessing and machines as results of ANOVA with Tukey’s HSD.
* indicates p < 0.05
** indicates p < 0.01
*** indicates p < 0.001

Stacking vs others
A2L A2H A3 V2L V2H V3

Voting .108*** .083*** .055 .112*** .086*** .110***
EEG .097*** .075*** .082** .081*** .064** .084**
HR .103*** .082*** .062 .086*** .062** .070*

FACE .109*** .078*** .050 .085*** .046 .076*
GSR .094*** .072*** .066 - - -

NAIVE .252*** .202*** .167*** .248*** .165*** .173***

Table 9. Differences in mean accuracy between stacking and machines as results of ANOVA with Tukey’s HSD.
* indicates p < 0.05
** indicates p < 0.01
*** indicates p < 0.001

Voting vs others
A2L A2H A3 V2L V2H V3

Stacking -.108*** -.083*** -.055 -.112*** -.086*** -.110***
EEG -.011 -.009 .028 -.032 -.023 -.026
HR -.006 -.001 .008 -.026 -.025 -.040

FACE .001 -.005 -.005 -.027 -.040 -.035
GSR -.014 -.012 .011 - - -

NAIVE .144*** .119*** .113*** .136*** .079** .062

Table 10. Differences in mean accuracy between voting and machines as results of ANOVA with Tukey’s HSD.
* indicates p < 0.05
** indicates p < 0.01
*** indicates p < 0.001
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sure and the direct latency and physiological response time
expected for that type of stimuli. Real world scenarios would
more likely be in the form of software applications or product
evaluation, which could induce a less prominent reaction as
well as be reactions which span over time. It would be benefi-
cial to focus research on these types of scenarios, as usability
testing as a whole is the actual goal of objective physiological
emotional classification. In this paper it was also chosen to
not focus on the contextual implications from the test partici-
pants. Talya Miron-Shatz et al.[54] found that an entire days
worth of events were combined into a single memory with an
emotional experience, rather than remembering all events with
their respective emotional experience - much like the peak-end
effect. It would be interesting to explore this area in detail and
control this effect, such that it can be verified to which extent
this effect has an impact on otherwise controlled test settings.
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APPENDIX

Selected IAPS images
2039, 2440, 3000, 3010, 3060, 3080, 3170, 3500, 3530, 4220, 4290, 4659,
4660, 5130, 6230, 6350, 7010, 7020, 7031, 7060, 7110, 7175, 8030, 8080,
8185, 8190, 8492, 8501, 9360, 9410.

Emotiv Epoc
Available electrodes (10-20 System): AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4
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ABSTRACT
Objectives: Cued-recall debrief has been used to successfully
re-immerse test participants in past experiences, with the inten-
tion of removing memory biases such as the peak-end effect.
We explore the relationship of physiological responses during
system interaction and re-immersion, and the effects of inter-
mediate time delays and stimuli. Method: Test participants
usability tested an email client with seeded usability problems.
During system interaction and re-immersion, physiological
responses were recorded using EEG, EDA, and HR sensors.
Between system interaction and re-immersion, each partici-
pant was subjected to intermediate time delays and stimuli
in the form of imagery. Results: The data was synchronized
using recorded video material, and temporally re-aligned us-
ing dynamic time warping. Following, the data was analyzed
using Pearson product-moment correlation and ANOVA. We
found statistically significant correlations between system in-
teraction and re-immersion on the EEG and EDA sensors.
Furthermore, we found a statistically significant decrease in
correlations over time on the EEG sensor. No significant cor-
relations were found for exposure to stimuli. Conclusion: We
found that re-immersion during CRD is detectable on a physi-
ological level using EEG and EDA sensors. Furthermore, we
found a decrease in correlation over time for the EEG sensors,
while subjection to stimuli showed no significant changes cor-
relations, indicating that intermediate time delay has a larger
impact than intermediate stimuli.

ACM Classification Keywords
H.1.2 User/Machine Systems: Human information processing;
I.4.8 Scene Analysis: Sensor fusion; I.5.2 Design Method-
ology: Feature evaluation and selection; I.5.4 Applications:
Signal processing

Author Keywords
HCI; IAPS; Self-Assessment Manikin; EEG; HR; IBI; BPM;
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INTRODUCTION
An important step in the development of any product is the
usability evaluation. When performing a usability evaluation,

The content of this article is freely available, but publication (with reference) may only
be pursued due to agreement with the authors.

we can distinguish between summative and formative evalua-
tions. Summative evaluation is usually performed in the end
of the development where it is used to gain insight into the
overall usability of the product [40]. In contrast, the goal for
formative evaluation is improvement of the product [40]. It is
performed continuously throughout the development process,
typically following the think-aloud protocol to subjectively
evaluate a products usability with enough detail and insight to
locate the usability problems in the interface [35].

Recently the focus of HCI studies have shifted from usabil-
ity evaluation to User Experience (UX) evaluation. Usability
evaluation uses usability metrics such as the amount of time
it takes to solve a task, whereas UX evaluation also focuses
on emotions, and affective experiences. This has mostly been
done in a summative form [3], e.g. questionnaire ratings, to
evaluate the overall UX. However, most summative evalua-
tions are unable to capture affective experiences in details, i.e.
details of individual parts and problems. In order to increase
the level of details, formative evaluation can be used in the
form of interviews.

During usability and UX evaluations, test conductors often
influence the test subject during a test, which influences the
test subject’s experience (called an observer effect e.g. the
Hawthorne Effect[33]).

For this reason retrospective analysis is a valuable tool, where
the test subject is questioned after the interaction with the
test system. Having the test subjects freely recall however, is
prone to memory-bias effects such as the peak-end effect [37,
13, 11, 15]. The peak-end effect states that, when asked to
remember a past event, people are only able to recall the
most intense experience referred to as the peak, and the last
experience. Cued-Recall Debrief (CRD) is a method that
tries to alleviate these memory-biases, by presenting cues for
the test subject such that the test situation is re-experienced.
Studies have used CRD to re-immerse test subjects into their
past experiences [11, 7]. Successful re-immersion enables the
retrospective extraction of detailed information suitable for
formative evaluation of UX.

In some situations however, it is not possible or convenient
to conduct the CRD immediately after the test. This could be
due to logistic difficulties like having to move to a different
room for the CRD session, or if the duration of a test spans
multiple days [38]. Intermediate delay and stimuli could cause
memory bias according to interference theory and decay theory
respectively [8]. Interference theory states that it becomes
harder to recall old memories as new ones are stored, while
decay theory states that memory simply fades over time.
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Experiences elicit physiological responses, as seen in [5] and
[7]. The use of physiological measurements in CRD has fur-
ther been documented by Bruun & Ahm who used physiologi-
cal measurements during CRD [11], where an ElectroDermic
Activity (EDA) sensor was equipped to a test subject during
interaction with a system. They were able to identify peaks
within the data collected by the EDA sensor. As experiences
elicit physiological responses [5], these peaks enabled them to
identify segments of video to show the test participant as cues.

If CRD is successfully able to re-immerse test subjects in
past experiences, we expect this effect will manifest itself in
physiological measurements. In this work we investigate the
relationship of memory-bias effects between physiological
measurements taken during interaction with a system and
afterwards during re-immersion.

RELATED WORK
Retrospective evaluation is a way to conduct UX evaluations
while avoiding disruptions while the test participant interacts
with the product being tested. This is done by postponing the
inquiries until after the interaction has ended. When perform-
ing retrospective evaluation, one has to beware of memory
biases that can effect the accuracy of recalling.

Interference theory states that when new information is
learned, it is more difficult to recall old information, and decay
theory states that memory simply fades over time[8].

The peak-end effect [13] is a memory bias that could be con-
sidered supporting the interference theory. Peak-end effect
relates to reliability of retrospective ratings, and has shown
that peaks and the end of an entire experience are the most
memorable moments [11, 13, 27].

Redelmeier and Kahneman discovered in [15] that subjects
preferred the memory of a long duration with declining pain
over a shorter duration of constant pain. In their study, the
participants were exposed to two aversive conditions where
they immersed one hand in cold water: a short trial with a
constant level of unpleasantness; a longer trial, where the
temperature was gradually raised towards the end to offer less
discomfort. Further, in a later study, Redelmeier et al. [36]
found that subjects base their retrospectively ratings on the
highest intensity of pain (the peak) and the pain experienced
towards the end, which has become known as the peak-end
rule.

It is not uncommon for studies to take steps in avoiding the
effects of decay theory. Many researchers, using alarm-based
sample collection in the form of situational or mood-related
questionnaires, have discarded data samples due to memory
distortion, if they were not able to be collected within 20-30
minutes of the alarm sounding [12, 14, 16].

In [39], collect alarm-based samples in the form of different
coping methods used for coping with stress. These were col-
lected in a 48 hour period with an average frequency of one
sample per 40 minutes. After collecting period, a retrospective
debriefing was performed, with the participants who again
used stress coping methods for sampling. Discrepancies were

found in the debriefing samples, documenting imperfect recall
from retrospective debriefing.

An evaluation method that attempts to alleviate the memory
biases is CRD. CRD is a situated recall method based on the
work of Omodei and McLennan [34]. They confront the intru-
sive and disruptive nature of previous known techniques for
studying individuals’ decision making such as think-aloud and
task interruption. By using Cued-Recall (CR) to re-immerse
the test subject in previous experiences after an interaction,
CRD has enabled more accurate retrospective evaluation when
debriefing. Omodei and McLennan make use of head mounted
cameras to achieve this in a field study [34], using the record-
ings as cues during CRD, which was performed within 60
minutes of test. Another interesting thing to notice in Omodei
and McLennan’s research is the importance of context. Audio
recordings of footfall, breathing, and spontaneous vocalization
helped the re-immersion [34]. In practice CRD is conducted
by showing the recordings to the subject while they commu-
nicate with a facilitator - think-aloud and answer questions.
After the debrief session an evaluation of the data is made by
the facilitator.

CRD has also been used with screen-recording and eye-
tracking as cues in [41], where it was compared to think-aloud
and free recall. A set of circuit board problems were pre-
sented in a software, which the participants then had to solve.
Samples were taken in the form of the participants’ speaking,
using a code system capturing different aspects of the prob-
lem solving. They found that free recall captured less actions
and considerations than CRD, which captured less than think-
aloud. Information about the delay between the task and CRD
was not specified in detail.

An example of CRD used with a long intermediate delay is
Russell and Oren [38], who logged 8 participants’ browser
search sessions for a duration of more than 6 days in the form
of screenshots. After the logging, they would select three
search sessions from both day 2, 4 and 6. The participant
would then be shown a cue in the form of a screenshot and
asked about what happened next and were to answer if they
were “reasonably confident”. If they were unable to recall, the
next screenshot from the same search would be shown until
the test participants recalled correctly. The participants were
able to accurately recall searches from two days prior, however
the amount of cues needed to recall accurately increased as the
number of days between the searches and the recall session
increased. This indicates that while the CRD was successful,
it may still be subject to the effects of memory biases.

The validity of CRD has been tested in [7], where Bentley
et al. tested whether or not CRD could successfully elicit
‘true’ affective information. Both [7] and [5] has found that
experiences elicit physiological responses, and Bentley et al.
used this with CRD. They had ten participants play through
two game sessions, both immediately followed by CRD after
each session. Heart Rate (HR) , skin perfusion, and breath-
ing rate were recorded during game play and used to confirm
the trueness of the comments elicited through CRD, giving
more representative results. During the debrief session, they
identified positive and negative affect experiences, which they
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found to be visible in the physiological patterns as significant
increases in HR and skin perfusion variability, while neutral af-
fect experiences did not show any changes. They also mention
that using physiological measurements to identify affective
experiences over CRD, has the benefit of being able to identify
uncommented affective responses, which might be used to
greatly improve the debrief data collection by prompting the
participant to elicit information about that time.

Physiological measurements were used in a more recent work
by Bruun and Ahm [11], who raised concern about the relia-
bility of assessing UX retrospective, considering the peak-end
effect. For their experiment two versions of a system were
created, one with and one without seeded problems. While
interacting with the system, EDA measurements were taken,
which were used to find points of interest in the recordings,
which would be used as cues for CRD. Immediately after in-
teraction the test participants were asked to rate their overall
emotion state using the Self-Assessment Manikin (SAM) [10].
Following this, a CRD session was performed, gathering SAM
ratings for correctly remembered events. Comparing the rat-
ings from the overall emotional state with the averaged ratings
from the CRD, they found significant differences in ratings in
the seeded version, but not in the unseeded version. This con-
forms with the peak-end rule, in that the negative experience
created a larger difference in ratings than the positive.

A study conducted by Baumeister et al. [4] also found indica-
tions of a larger memory-experience gap when experiencing
negative stimuli compared to positive stimuli.

HYPOTHESES
From the related work we gather that retrospective evaluation
is subject to memory bias. CRD has been designed to alleviate
these memory biases [34], and has been found to increase
accuracy of the evaluation results compared to other retrospec-
tive methods [41, 11, 7]. Recent work [11, 7] has also used
physiological sensors in combination with CRD, in order to
filter cues or validate data.

Since CRD works by utilizing CR to re-immerse the test sub-
ject into the past experience, and experiences elicit physiologi-
cal responses [5], we expect the re-immersion to be apparent
in physiological measurements leading us to hypothesis 1:

Hypothesis 1 Physiological measurements collected during
system interaction and immediately after during the corre-
sponding cued-recall are statistical significantly correlated.

In [38] CRD was used with a intermediate time delay. They
found that the amount of cues needed to successfully recall
searches increased with intermediate time delay, indicating
that CRD may still be subject to memory bias, conforming
with decay theory [8]. This leads us to hypothesis 2:

Hypothesis 2 Time delay between system interaction and the
corresponding cued-recall statistical significantly decreases
the correlation between their physiological measurements.

It is possible to have new experiences and being subjected to
stimuli during the intermediate time delay. In this case another
memory bias may occur, conforming to interference theory [8].

The peak-end effect and its implications on retrospective eval-
uation have been well documented [7, 11, 13, 27], which leads
us to hypothesis 3:

Hypothesis 3 Subjection to high-arousal stimuli between sys-
tem interaction and cued-recall statistical significantly de-
creases the correlation between their physiological measure-
ments.

Hypothesis 1 lays a foundation for the remaining two hypothe-
ses. That is, before we can see an impact of time and stimuli
pollution, we must first validate that we can find a correlation
of the physiological measurements where no stimuli or time
pollution has taken place.
Hypothesis 2 examines the effect of time pollution on the cor-
relations of physiological measurements.
Hypothesis 3 examines the effect of stimuli pollution on the
correlations of physiological measurements.

METHOD
In this section, we describe the implementation and the proce-
dure of the test conducted to answer our hypotheses. Before
the test was conducted, all components were validated through
pilot testing and iterations. All tests were conducted in the us-
ability laboratory at Cassiopeia [26] between 08:45 and 16:30
on weekdays and lasted 1, 1.5 or 2 hours, see Experimental
Conditions below.

System
For this study, we needed a system capable of provoking
responses in the user through negative stimuli which has been
found to elicit greater responses than positive stimuli [11, 5]
As such, we developed an email client with seeded usability
problems.

Email client
The system was designed with a set of functionalities expected
from an email client such as group of contacts, file attachment,
drafts, and mailing. Using the email client, the test partici-
pant had to complete 11 tasks, 7 of which were seeded with
usability problems such as:

• When adding an attachment to an email, the program froze
for a duration of 2 seconds the first three attempts.

• Upon pressing the Add Contact button, it failed to respond
the first three times.

• Attempting to open a draft in order to send it would throw
an exception, effectively blocking access.

• When attempting to write a text containing Danish special
characters (æ – ø – å), the keyboard layout changed to
American, making the characters unavailable.

• While typing an email, the caret randomly altered its loca-
tion, making it difficult to write sentences without typing
errors.

• When attempting to remove a contact from the contact list,
the contact was not removed and the list turned black.

• Attempting to write a new mail, resulted in a simulation of
the Microsoft Windows Not Responding window.

The seeded problems were only present when the test partici-
pant were solving an associated task, i.e. the seeded problems
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Figure 1. The email client that we developed. It also shows the window
instruction participants of their current task.

would remain dormant (not affecting the system) until the
test participant were to complete the task associated with the
seeded problems. To prevent the sequence of the tasks and
seeded problems from directing the test, all but the first two
tasks encountered were randomized. The two initial tasks
allowed the test participant to familiarize with the system with-
out any seeded problems. Figure 1 shows a screenshot of the
developed email client, in addition to the window instruction
the participant in their current task.

Hardware
A common practice when measuring physiological responses
is to look at EDA and HR (see e.g. [29, 7, 32, 5, 11]). To do
so we used a Mindplace ThoughtStream [1], which measures
the electrical resistance in the skin (i.e. EDA), and an Arduino
Mega 2560 [2] with a Pulse-Sensor [31] was used to measure
HR. Further we wanted to measure brain activity which is
becoming more frequently used in HCI contexts (see e.g. [30,
42, 19]). For this we use a Emotiv Epoc [18] which is a non-
invasive Electroencephalogram (EEG) headset that measures
brain activity from the scalp.

The test was performed on a laptop running Windows 10, using
an external mouse and keyboard to avoid static electricity
and heat from the laptop which were discovered to effect the
sensors during our pilot testing.

Experimental Conditions
In order to test Hypothesis 2 & 3, we introduced time delays
of 0 (no delay), 30 and 60 minutes, and induced stimuli based
on low- and high-arousal, resulting in five conditions, which
can be seen in Table 1.

Time delay
To establish a control group, we made a condition with no
delay (or stimuli) between the interaction and the cued-recall,
which will be referred to as Time 0. Since the related work
often describe 20-30 minutes as the tipping point after which
memory distortion becomes too severe for free recall, a group
with the time condition of 30 minutes delay is established
and will be referred to as Time 1. Finally a group with the
condition of 60 minutes is established and will be referred

Delay (min) Stimuli
None

0 6f / 6m

Low-Arousal High-Arousal
30 3f / 3m 3f / 3m
60 3f / 3m 2f / 4m

Table 1. Test participant distribution across time and stimuli groups. f
denotes female, and m denotes male. Total participants: 36 (17 female /
19 male).
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Figure 2. A plot of the IAPS images, showing the split of stimuli groups
(low- and high-arousal) separated by the magenta horizontal line, and
the selected images used as stimuli.

to as Time 2, to see the effects of going beyond the tipping
point.

Stimuli
For stimuli we use International Affective Picture System
(IAPS) [9] which consist of approximately 1200 images of
different nature, with associated values such as the valence
and arousal scores. This type of stimuli was chosen as it is
well documented and extensively studied [5, 10, 28]. Amongst
the possible groupings, we chose to distinguish between low-
and high-arousal based on our sensors and previous studies [7,
11, 20, 21]. These groups will be referred to as Low and High
respectively. As can be seen in Figure 2, the IAPS pictures
spread into two clusters of high-arousal, which we balance by
dividing the high-arousal participants equally between each
cluster.

Participants
39 people participated in this study, but due to sensor failure 3
test subjects were discarded, resulting in 36 participants (17
female / 19 male) aged 19-32 (mean=22.85, SD=2.68). The
participants took a Big5 test [24, 23, 6] which revealed no
significant differences in any of the five categories between
the different groups mentioned in Table 1. No participant
had prior knowledge about the purpose of the test or the test
system.
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Figure 3. The flow of the test, showing each of the 3 phases. Hexagons
indicate start in each phase.

Test Procedure
The test structure consists of three phases:

1. The test participants interacting with an email client seeded
with usability problems.

2. A waiting period where the test participant was introduced
to stimuli of either low- or high-arousal character in the end
of a waiting period.

3. A cued recall, where the test participant watched a video of
themselves during phase 1.

Where the test participants were equipped with physiological
sensors during Phase 1 and 3. A flowchart of the phases can
be seen in Figure 3.

Phase 1 - Initial interaction with the email client
As the participants arrived at the usability lab, they were in-
formed about the agenda of the test, but remained blind to
the purpose of the test. After approving the agenda, the par-
ticipants signed a consent form and then completed a ques-
tionnaire with general information such as name, age and cur-
rent occupation. Before the test began, the participants were
equipped with sensors and informed of their functions. The
participants were informed that they would be giving a number

of tasks in an email client. To proceed through the tasks, the
participants had to press a green or red button, confirming
that the task had been completed or that they were unable to
complete the task. To lower the risk of faulty readings the
participants were instructed to limit movement during the test,
and if possible, to use only one hand when interacting with the
keyboard and mouse - the (dominant) hand without sensors
attached. The test started with a 3 minute resting period to
establish a baseline for the sensors.

During the test, the screen was recording with both audio and
video, as well as the face of the test participant via webcam.

After the end of the last task, all recordings were stopped. The
participants in Time 0 moved directly to Phase 3, while the
other participants were freed from the sensors and relocated
to a waiting room to continue with Phase 2.

Phase 2 - Stimuli induced waiting period
After entering the waiting room, test participants were told that
they had to wait for a set amount of minutes and had to take a
test in the end. Test participants in Time 1 had to wait for 30
minutes and participants in Time 2 had to wait 60 minutes.

Exposure to stimuli happened in the last 10 minutes of the pe-
riod in order to take advantage of the peak-end effect. Stimuli
was introduced in the form of a series of 15 pictures from IAPS
(see Appendix Selected IAPS pictures) where each picture was
shown for 20 seconds, followed by 15 questions about the
pictures with 20 seconds to answer each question.

After the questions, a score was presented if the participant
belonged to the High arousal group. If they belonged to the
Low arousal group they were simply informed that the test was
over. Scores given were on a scale from 1 to 200 where half
the participants, with respect to each cluster in Figure 2, were
given a low score between 1 and 50, and the other a high score
between 150 and 200, representing respectively a bad (e.g.
13/200) or good score (e.g. 178/200).

Phase 3 - Cued-Recall
In Phase 3, the participants had to watch an audio/video screen-
capture of their initial interaction with the email client from
Phase 1, while remaining as motionless as possible in order to
limit the noise on the physiological readings. This was without
the video of the face of the test participant, so as to not draw
attention away from the interaction feed. Participants that had
been through Phase 2 were re-equipped with sensors before
the video was started.

DATA PROCESSING
Due to the sensor being consumer grade, sample distribution
in our data was non-uniform, and data from the test and CR
did not always align. To account for this when analysing the
data from the test, the data from each sensor was processed in
5 steps:

1. Synchronizing data from CR and test based on screen cap-
ture footage of CR.

2. Artifact removal.
3. Splitting data into tasks.
4. Account for missing data through hole filtering.
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5. Subjecting data to Dynamic Time Warping (DTW) to ac-
count for lag of physiological responses in CR compared to
the test.

Synchronization
The data from each sensor was synchronized using the screen
capture footage of CR. It was synchronized by discounting
data from the CR data set, if the data point was collected
before the start of the initial resting period. This was done to
compensate for delays in showing the video during CR.

Artefact removal
The removal of artefacts was treated differently for each sensor.
For the EDA sensor, a moving median filter with a window
size of 25 samples was applied. Artefacts were removed from
the HR data by only considering samples where a heartbeat
took place. No direct artefact removal were applied to the data
collected from the EEG sensor.

Task splitting
The data for each test subject was split into data sets as illus-
trated in Figure 4. This was done due to the memory com-
plexity of Dynamic Time Warping (DTW) , and the amount of
data collected from the EEG sensor.

Figure 4. An example of a data set consisting of all data within the red
square. A data set is the data found within a specific task, measured by
a specific sensor, on a specific test participant. The blue and green lines
represent two lines of data measured by the same sensor.

Missing data filtering
A sensor failing to record data manifests itself as missing
data in either the test part or the recall part of a data set. To
account for this, when a period of missing data was present
after synchronization, data from the same period in the other
part of the data set was removed. This is illustrated in Figure 5.

Figure 5. The blue and green lines are test and recall data respectively,
from some data set. Firstly the holes are identified, then all data within
the holes are removed and finally the result is kept as the filtered data
set.

Dynamic Time Warping
After having synchronized, we still had to consider lag on the
physiological responses themselves. As a test subject is being
re-immersed during CR, their physiological responses might
not be temporally aligned with their corresponding physio-
logical responses during the test. The test subject might be
anticipating what happens next, causing a premature physio-
logical response. Simultaneously, they might not be able to
anticipate what happens next, which can instead cause some
initial confusion, causing a delay in physiological response.

To account for this time delay, we used DTW [17, 25]. DTW
aligns data based on a distance measure between data points,
and thus effectively creates a new pairing of data points, an
example of which can be seen in Figure 6. In this paper, we
used euclidean distance. To limit the domain of the time-
warping function, we used an Itakura Parallelogram [22, 25].
This protects data set against having the beginning of the test
part being paired with the end of the recall part and vice versa.
DTW was run on all data sets.

Figure 6. An illustration of the pairing before and after DTW.

RESULTS
All results presented in this section is based on Table 2 and Ta-
ble 3. Additionally, we performed an ANOVA (F(14,9269) =
11.167, p = 0.000).

(Q1) Is there a statistically significant difference in correlation

for the EEG sensor over the time groups?
We found a statistically significant difference in correlation
for the EEG sensor for Time 0 v. Time 1, and for Time 0 v.
Time 2. This shows a decrease in correlation over time for
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Time
Sensor 0 1 2

EEG .220 (SD=.263, p=.034) .170 (SD=.238, p=.053) .150 (SD=.193, p=.031)
EDA .211 (SD=.433, p=.041) .281 (SD=.438, p=.035) .178 (SD=.448, p=.034)
HR .273 (SD=.351, p=.126) .231 (SD=.351, p=.164) .222 (SD=.369, p=.131)

Table 2. Average correlations for time groups. Bolded numbers have p < 0.05.

Stimuli
Sensor Low High

EEG .172 (SD=.214, p=.039) .148 (SD=.219, p=.045)
EDA .227 (SD=.497, p=.025) .232 (SD=.388, p=.044)
HR .233 (SD=.337, p=.151) .220 (SD=.381, p=.145)

Table 3. Average correlations for stimuli groups. Bolded numbers have
p < 0.05.

the EEG sensor, despite not finding any statistically significant
difference in correlation for Time 1 v. Time 2.

(Q2) Is there a statistically significant difference in correlation

for the EDA sensor over the time groups?
For the EDA sensor, we found an increase in correlation for
Time 0 v. Time 1, and a decrease for Time 1 v. Time 2,
however, none of these differences where statistically sig-
nificant. Additionally, it can be noted that the EDA sensor
achieves a decrease in correlation for Time 0 v. Time 2,
though it was not statistically significant.

(Q3) Is there a statistically significant difference in correlation

for the HR sensor over the time groups?
The difference in correlations found for the HR sensor, for
Time 0 v. Time 1, Time 1 v. Time 2 as well as Time 0 v.
Time 2 indicate a decrease over time, however, not statisti-
cally significant.

(Q4) Is there a statistically significant difference in correlation

for the EEG sensor when exposed to stimulus from the stimuli

groups?
We found a difference in correlation in low arousal v. high
arousal stimuli from the EEG sensor. This shows a decrease
in correlation when exposed to high-arousal stimuli compared
to when exposed to low-arousal stimuli, however, this is not
statistically significant.

(Q5) Is there a statistically significant difference in correlation

for the EDA sensor when exposed to stimulus from the stimuli

groups?
The difference found in correlations for low-arousal v. high-
arousal stimuli for the EDA sensor show an increase in corre-
lation when exposed to high arousal stimulus, however, not
statistically significant.

(Q6) Is there a statistically significant difference in correlation

for the HR sensor when exposed to stimulus from the stimuli

groups?
For the HR sensor, we found a difference correlation for low
arousal v. high arousal stimulus. This shows a decrease in

correlation when exposed to high arousal stimuli compared
to when exposed to low arousal stimuli, however, this is not
statistically significant.

(Q7) Is there a statistically significant difference in correlation

between sensors, given a time group?
Looking across the time groups in Table 2, in two out of the
three time groups the EEG sensor received lower correlations
than the EDA sensor, and for Time 1, it was statistically signif-
icant. In all three time groups the EEG sensor achieved lower
correlations than the HR sensor, though none were statistically
significant. The HR sensor achieved higher correlations than
the EDA sensor in two of the three time groups.

This means that for Time 0 and Time 2, the HR sensor
achieved the highest correlations, though the difference was
not statistically significant. Furthermore, the EDA sensor
achieved higher correlations in Time 1, with the difference to
the EEG sensor being statistically significant.

(Q8) Is there a statistically significant difference in correlation

between sensors, given a stimuli group?
Looking across the stimuli groups in Table 3, in both of the
stimuli groups the EEG sensor received lower correlations
than the EDA sensor, where the difference in the stimuli High
group was statistically significant. Furthermore, the EEG
sensor achieved lower correlations in both stimuli groups com-
pared to the HR sensor, though no difference between the
sensors were statistically significant. The HR sensor achieved
a higher correlation than the EDA sensor for stimuli Low, and
a lower correlation for stimuli high, where both differences
are not statistically significant.

To summarize, the EDA sensor achieved the highest correla-
tions of all the sensors in the stimuli High group, of which the
difference to the EEG sensor was statistically significant. For
the stimuli Low group, the HR sensor achieved the highest cor-
relations, but no statistically significant difference was found
between any of the sensors.

DISCUSSION
Hypothesis 1 states that there is a statistically significant corre-
lation between the physiological measurements taken during
interaction and immediately after, during CR. The results in
Table 2 confirm that this is the case for EEG and EDA data,
but not for HR data.

The results for the EEG and EDA data indicate that the test
subjects were indeed re-immersed when CR was performed,
and recalling their past experience. The HR data did not
provide any statistically significant result, and as such could
indicate that the test participants were not re-immersed. It is
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also possible that heart rate does not lend itself to re-immersion
to the same degree as the EEG or EDA.

For hypothesis 2, we look at questions (Q1) through (Q3).
While the answers to (Q1) is yes between Time 0 and Time
1, the answer to both (Q2) and (Q3) is no, meaning we only
found significant changes in correlation for the EEG data. Fur-
thermore, the EDA data had an increase in correlation between
Time 0 and Time 1. From this we gather that hypothesis 2 is
only confirmed for EEG data.

What this means, is that we have indication of the behaviour
of the EEG, when used in CRD with intermediate time delay.
While this behaviour follows hypothesis 2 and is a decrease in
correlation over time, being aware of the extent of this effect
makes it preferable, compared to using EDA or HR whose
behaviours remain unconfirmed.

However, looking at Table 2, the EDA sensor has produced sta-
tistically significant results in each time group, and following
(Q7) in the case of Time 1, statistical significantly more than
the EEG. Furthermore, from Time 0 to Time 2, the EDA data
also experiences an overall decrease in correlations, similar to
what can be seen in the EEG data, see (Q1) and (Q2). This
suggests that the EDA sensor could potentially be a good sup-
plement to the EEG, though additional studies are needed to
confirm the tendencies of its correlations.

In addition, the HR data also experiences a decrease in corre-
lation over time, see (Q3), similar to that of the EEG. While
we have rejected Hypothesis 1 & 2 for the HR sensor due to
the results not being significant, the correlations and trends
seen across the time groups indicate that it may be possible to
extract useful information from this sensor in future studies.

Since the only sensor for which we found significant changes
in correlation over time saw a statistically significant decrease
in correlation from 0.220 (SD=0.263) to 0.150 (SD=0.193), it is
recommended to try to minimize intermediate time delay when
using physiological measurements with CRD. The remaining
sensors arguably follow this decreasing trend (though not sta-
tistically significant), which supports the notion of minimizing
the intermediate time delay. This indicates that even the maxi-
mum time delay of 30 minutes used in works such as [12] is
subject to a decline in ability of test participants to recall past
experiences.

For Hypothesis 3, we look at questions (Q4) through (Q6). The
answer to all these questions are no. There were no significant
differences found between stimuli groups for any sensors. As
such, Hypothesis 3 is rejected. This could indicate that stimuli
does not have a large impact on the test participant’s ability to
become re-immersed.

Looking at (Q8), the EDA data did achieve statistical signif-
icantly higher correlations than the EEG data. Looking at
Table 3, the EDA data achieved slightly larger correlations in
both Low and High arousal stimuli groups, though not statisti-
cally significant. This could be due to the sensitivity of EEG
data or the scale of EEG data, and indicates that EDA may be
more robust in general UX comparison use.

Limitations
From the groups with intermediate time delay and stimuli,
the sensors were detached between interaction and CR. When
re-attaching one has to be careful about placing the sensors
in the exact same positions, in order to get valid results. This
is especially difficult for the EEG sensors due to its high
sensitivity.

Some of the tasks in the test had implications for the data
collection. Having the EDA and HR sensors attached to one
of the hands of the test participants proved difficulty when
encountering tasks that required writing on the keyboard, and
caused artefacts. Furthermore, many test participants switched
between looking at the screen and looking at the keyboard
during the tasks, polluting the EEG data.

The reason for using retrospective evaluation is to minimize
interference with the test subject, such that UX of the test sub-
ject is based solely on interaction with the test product. Using
sensors attached directly to the test subject, is a interference
which might have polluted the product UX.

CONCLUSION
In this paper we explored the correlations between physio-
logical measurements taken during interaction with a system,
and performing a CRD afterwards. Furthermore, we explore
the effects of intermediate time delays and stimuli between
interaction and CRD.

Participants performed a usability test on an email client with
seeded problems, whilst physiological measurements were
taken by an EDA, EEG, and HR sensor. After an intermedi-
ate time delay and being exposed to stimuli, test participants
performed a CR, whilst physiological measurements were
collected.

Data was filtered and aligned using DTW, and a Pearson cor-
relation and an ANOVA was performed. Correlations for
the EEG data ranged from 0.148 (SD=0.219, p=0.045) to 0.220
(SD=0.263, p=0.034), with a statistically significant decrease in
correlation over the time groups. The EDA data resulted in
correlations ranging from 0.178 (SD=0.448, p=0.034) to 0.281
(SD=0.438, p=0.035), with statistically significant higher corre-
lations compared to the EEG in Time 1 and Stimuli High.
Correlations for the HR data ranged from 0.220 (SD=0.381,
p=0.145) to 0.273 (SD=0.351, p=0.126), but achieved no statistical
significance.

Comparing with our hypotheses, we find that:

Hypothesis 1: Physiological measurements collected during
system interaction and immediately after during the corre-
sponding cued-recall are statistical significantly correlated.

As can be seen in Table 2, we find statistically significant
correlations between system interaction and immediatly after
during CR for the EEG and EDA sensors, as such, we can
confirm this hypothesis for those two sensors. The HR data
resulted in no statistically significant correlations, and we
therefore reject the hypothesis for HR.
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Hypothesis 2: Time delay between system interaction and the
corresponding cued-recall statistical significantly decreases
the correlation between their physiological measurements.

From (Q1) through (Q3), we only found a statistically signif-
icant decrease in correlations over time for the EEG sensor,
and are thus only able to confirm the hypothesis for the EEG,
and reject it for the remaining two.

Hypothesis 3: Subjection to high-arousal stimuli between
system interaction and cued-recall statistical significantly de-
creases the correlation between their physiological measure-
ments.

From (Q4) through (Q6), we found no statistically significant
correlations for any of the sensors, and we therefore reject this
hypothesis.

According to the results gathered in this paper, we find that
intermediate time delay has a larger impact on the correlations
of physiological measurements than intermediate exposure to
stimuli as confirmed by the EEG sensor, which by extension
means a larger impact on the ability for participants to become
re-immersed.

FUTURE WORK
Since both EEG and EDA data was still significantly correlated
at Time 2 it may be interesting to further explore intermediate
time delays, in order to discover the threshold where they stop
having significant correlations. It should also be noted that
while the HR data did not on average achieve p < 0.05 in any
group, more than half of the HR data sets achieved p < 0.01,
so it may still be interesting to investigate if this is because the
HR data is even more sensitive to intermediate time delay.

One way to avoid the intrusiveness of equipping the test partic-
ipant with various sensors would be to use a sensor that does
not require equipping. Such a sensor could be the Microsoft
Kinect V2 which has the capability of capturing facial expres-
sions. The potential benefit of this would be to create a more
authentic environment for the test subject, by polluting the UX
less.

An alternative approach, given the confirmation of Hypothesis
1, is using physiological measurements to perform UX evalua-
tions with the assistance of physiological data collected during
a CR. This could postpone the need for intrusive sensors, re-
sulting in a purer system interaction experience which can
provide a better recall, and therefore more accurate results.
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APPENDIX

Selected IAPS pictures
Below is a list of the images used for respectively low- and
high-arousal stimuli, only the index number is indicated.

Low-Arousal
2190, 2480, 2840, 7000, 7004, 7006, 7025, 7040, 7150, 7187,
7217, 7224, 7491, 7705, 7950.

High-Arousal
3001, 3015, 3053, 3063, 3064, 3069, 3100, 3102, 3120, 3130,
3131, 3266, 4668, 4670, 5621, 5833, 6563, 7405, 8163, 8170,
8180, 8186, 8200, 8370, 8400, 8470, 8490, 8499, 9183, 9940.
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