
Preface

The following parts of this thesis have been taken from our previous semester
project ”Skyline Queries Framework for Electric Vehicles” with authors myself
- Dimitar Shkodrov, Ion-Anastasiu Sanporean and Paulius Galinauskas:

Chapter 3.3 - Skylines - the whole paragraph
Chapter 3.4 - Previous work - here I summarize the main topics, discussed

in the previous paper. Improvements in text, examples given are the same.
Chapter 4.2 - some minor improvements were done in text and the pseu-

docode (see algorithms 2 and 3)
Chapter 4.3 - some minor improvements were done in text and the pseu-

docode (see algorithms 4, 5 and 6)

1

Creating a framework for analyzing historical travel data of
electric vehicles and identifying heavily used parts of a

road network using skyline queries

Dimitar Shkodrov
Aalborg University
Aalborg, Denmark

ABSTRACT
Electrical vehicles have a limited autonomy of movement

based on their battery capacity. This means that for travels,
larger than the said autonomy a charging route must be fol-
lowed. This paper proposes a framework to help us analyze
historical traveling data of electric vehicles. The charging
routes that are inconvenient (have large deviation in time
or distance) and important (are frequently present in the
data set, referred to as support in the paper) are found us-
ing Skyline queries. Since a real dataset of EV travel data
is unavailable, a synthetic one must be generated. This is
done by combining a number of classical routing algorithms
with a variety of approaches to recreate real-world phenom-
ena, which might affect the construction of an EV’s charg-
ing route. Furthermore, since identifying the routes with
high support does not give the full picture of what’s going
on in the road network, one final thing the paper proposes
is a way to identify parts of the road network which are
the most heavily used by the vehicles. Such parts of the
road network have higher support than all the routes that
are in the skyline queries but are not independent routes
by themselves, so it’s hard to identify them straight away.
The algorithms showcased in the paper use a variety of well
established methods to achieve their goals - dynamic pro-
gramming, usage of heuristics, derivatives of classical rout-
ing algorithms and so on. The end result is a framework
that not only creates synthetic data sets of electrical vehi-
cles’ charging routes but also gives us the right tools to help
us analyze them and this could be used as s cornerstone for
future work in the field.

1. INTRODUCTION
Humanity will have a lot of problems to deal with in

the coming years - climate change, the depletion of non-
renewable resources of oil and natural gas just to name a
few. Such issues put in serious jeopardy our current way of
living, so in recent years we’ve seen a huge advancement in
technologies that aim to make us more independent from the
usage of fossil fuels. One such technology is the electric vehi-
cle - a rapidly developing novelty which promises to replace
conventional cars in the near future. With the increasing de-
mand of various types of electric vehicles, covering the needs
of both regular citizens and businesses, there is also an ongo-
ing process to optimize their usage - new types of batteries
are being developed, more and more charging stations are
installed on road networks, various ways of conserving the
car’s energy are also being tested.

An electric vehicle’s range (refered to as autonomy in the
paper) is restricted by the battery capacity. Reaching desti-
nations way out of the car’s original autonomy may require
numerous recharging operations. The route a car follows
while recharging one of more time on the way is called a
charging route. Of course, an important factor here is the
coverage of charging stations across the road network (see
fig. 7). The denser the coverage, the more variations for cre-
ation of different types of charging routes there are - choos-
ing the shortest, fastest or the most economical route may
be of key importance to providing the best traveling experi-
ence. Since the era of electric vehicles is still at its beginning,
proper collections of real data about the journeys of EVs is
still not available. Developing a framework to help analyze
the data can be created in advance though, since EV travel
data can be simulated with a signifficantly high degree of
accuracy. Different real world conditions may be taken into
consideration and simulated and although there is not per-
fect substitute for genuine EV travel data, synthetic data
can give us enough valuable insight to at least identify and
try to tackle some problems while still in the lab and not in
the field.

What this paper proposes is a framework for generating
synthetic travel data for electric vehicles, collecting the data
and analyzing it - trying to identify the most frequently used
charging routes between a starting and an ending point (the
one that have high support value). Since cars often need to
make detours from the shortest possible route from source to
destination ,in order to get to a charging station, this devia-
tion in distance and time is also measured. The framework
also provides some tools to identify the most heavily used
parts of the road network that have higher support than any
independent charging route but are not part of the synthetic
data set.

The paper is organized as follows: first we introduce the
problem definition in the next chapter, then in chapter 3 we
will have a glance at some related work done in the field.
Chapter 4 is dedicated to introducing some novelties - a
new way for generating synthetic data using different route
discovery algorithms, finding the shortest routes from source
to destination regarding distance or time, some real world
factors that may influence the construction of a charging
route are also taken into consideration. In chapter 5, we
shall explore a method for identifying the most heavily used
parts of the road network - road segments that have higher
support than any route in the synthetic data set but are
not independent routes themselves. An implementation has
been done to show how the proposed framework handles

1

and the results of the experiments and tests done is also
showcased in chapter 6. The paper ends with conclusions
and possible future improvements.

Figure 1: Illustration of charging stations placement

2. PROBLEM DEFINITION
As previously implied, the model, proposed in this pa-

per can be conditionally divided into two parts. Since we
don’t have authentic historical travel data for electrical ve-
hicles a module for generating synthetic travel data has been
developed. Another module provides tools to analyze this
data - finding the most frequently used independent charging
routes and also identifying the most frequently used parts
of the road network that are not part of the independent
charging routes data set.

In order to present a detailed problem definition we need
to consider the following problem settings: the road network
is represented as a directed connected graph G = (V,E),
where V denotes the set of vertices and E denotes the set
of edges in G. There exists a charging stations set Cs and
every charging station c in Cs is included in V (c ∈ Cs ⊂ V).
Furthermore, every edge e ∈ E is associated with a positive
weight eL. Edges have different properties, so various as-
pects of weight are associated with the same edge. In other
words, the same edge has several different weights, depend-
ing on what we need to know about it - the distance between
the end nodes, defining the edge; the time it takes to travel
through that edge (we calculate that knowing the free-flow
speed limit for the edge and its length); the power the car
needs to use to travel through that edge (also calculated,
this value is dependent on edge length, allowed speed and
battery discharge rate, see fig 2.)

EV’s autonomy (aut) is a parameter which defines the
possible range of an electrical vehicle, i.e. the number of
kilometers a car can travel without charging its battery. In
the previous model (see Previous work), the autonomy was
a specifically set number of kilometers an EV could travel.
Since one of the goals of the model, proposed in this paper is
to generate highly realistic synthetic data, the autonomy pa-
rameter is no longer measured in kilometers but in Kilowatts
hour (KWh) instead. This, at a glance minor improvement,
actually makes a huge difference when it comes to generating
synthetic data on different types of maps comprised of road
networks of different types and density. Since an EV’s bat-

tery discharge rate is hugely influenced by the free flow speed
of the vehicle, this reflects on the car’s autonomy. Speeds
that are too high or too low can greatly decrease the bat-
tery’s charge and thus force the car to recharge more often
which may lead to different structures of charging routes.
Given that we know the length of the edges a car travels
through, the free flow speed of the car on this edge and
the discharge rate at this speed we can easily calculate how
much energy a car needs to travel through the edge. Further-
more, the model provides formulas for calculating the losses
in energy a car might experience due to its aerodynamics
and friction with air at different speeds (chapter 4). In the
following chapters we will further investigate the autonomy.

Every route, referred to as a charging route Rc(s, d) in the
historical data set is an ordered sequence of vertices:

Rc(s, d) = (s, v1, v2, . . . , d)

where s and d represent the source and destination of
the car’s journey. In order for a route to be classified as a
charging route it has to contain at least one charging station
c ∈ Cs. The length of a charging route is denoted as:

dr(Rc) =
∑

e∈E eL(e)

Each charging route Rc is then juxtaposed with the short-
est possible path Rs from source Vs to destination Vd. Since
the cars often have to make a detour in order to charge, we
end up with a positive weight difference between the charg-
ing route and the shortest possible route, which we are going
to note as deviation. More formally, we can represent is
as:

dev(Rc) = dr(Rc)− dr(Rs)

Another attribute of a charging route - support is also
computed.

Support, denoted sup(Rc) , is the frequency at which the
route Rc occurs in the historical data set as a route or a sub
route of any longer routes (with respect to number of vertices
traversed). More detailed information and an example of
estimating support can be found in the next chapter.

Skyline points. Calculating the support s and deviation
d for each route is an important prerequisite to identify a
set of skyline points S(s, d). A skyline point in a database
context is a point, which is not dominated by any other in
any dimension. A skyline point S1 dominates a point S2 if
it is as good or better in at least one dimension. Skyline
queries in the framework are constructed using a two crite-
rial approach - the deviation d of a charging route Rc and its
support s are used to create skyline points that expose the
charging routes that are not dominated in the dimensions of
maximum deviation and support.

Identifying the most frequently used parts of the
road network. Finding the routes with the highest values
of both distance and support may not tell us the whole pic-
ture of what’s going on in the road network. The framework
simulates charging routes and compares them using their
entirety in order to calculate support and create the skyline
points. That means that we can compare routes Rc1 and
Rc2 paths and check of one of them is part of the other,
but we are not able to compare partial extracts of a route’s
path with another partial extract of another route’s path.
For example, imagine a map with a river running through
the middle and only one bridge connecting the two parts.

2

It is evident that if a car wants to cross the river, it would
have to pass through the said bridge. That means that if
we have multitude of charging routes crossing the river we
would be able to compare them, calculate support and devi-
ation, but we will never be able to identify straight away that
the bridge is the most heavily used part of the road network
since its length is not an independent route itself. The goal
of the framework proposed below is to find a way to identify
such parts of the road network. The information that we
might get can be used for road traffic and routing analysis
for electric vehicles and can be an important prerequisite for
future work in the field.

3. RELATED WORK

3.1 Routing algorithms
The problem of finding suitable routing algorithms for cars

has been around for a number of years. Throughout the
years many people, especially those involved in the field of
graph theory have developed a number of algorithms and
research is still being done today. The earliest algorithms
from the mid-late 50’s like Bellman-Ford’s [1], Dijkstra’s and
its variations [2] laid the foundations of what was to come in
recent years [3]. However, the most classic algorithm of all,
that gave rise to a multitude of variations is Dijkstra’s al-
gorithm. Variations, using heuristics such as A*, D*, Beam
search algorithms have been used extensively in many fields
- from video games to modern routing devices for cars and
tracking systems. The framework, proposed in this paper
also uses A* extensively, as it is one of the corner stones of
the Charging Route Discovery Algorithm, explained in the
next section. The details about A* are also explained there.

3.2 Support
Support is one of the parameters the framework needs

to construct the skyline queries. The whole idea of search-
ing through a data set, finding items, in our case charging
routes, and discovering patterns in the set is a problem,
related to sequential pattern mining. Since we work with
recorded paths of charging routes, which are in a sense,
strings of characters one approach to solve our problem is
to turn to the field of bioinformatics and string mining. In
its essence, string mining deals with a limited alphabet for
items that appear in a sequence. Sequences may be very
long and the applications are many - in biology this is used
to discover sequences of proteins or examine genes. One tool
that uses string mining is BLAST (Basic Local Alignment
Search Tool) [4]. A BLAST search gives us the opportu-
nity to compare a query sequence with a library or database
of sequences, and identify library sequences that resemble
the query sequence above a certain threshold. BLAST com-
pares only one sequence with many others, however there are
some other tools like ClustalW[5], which can compare multi-
ple sequences between each other. However, for this frame-
work a rather different approach has been chosen, inspired
by the SPADE (Sequential PAttern Discovery using Equiv-
alence classes) algorithm[6]. The basic concepts of SPADE
are adopted - execute length-wise extensions while counting
frequency/support starting from the shortest routes possi-
ble.

3.3 Skylines

A problem of choosing a subset of a given set by several
criteria has been introduced by H. T. Kung in middle 80s’ [8].
The mathematical approach titled as ”Maxima vector prob-
lem” laid a foundation for a recently rather popular Skyline
calculation problem in database context. Pioneering work
was done by German scientist S. Borzsonyi in early 2000 [7].
Not only he introduced a Skyline operator concept as such,
but also provided a study on possible SQL extensions for
efficient Skyline calculation.
In recent years scientists’ efforts to optimize this problem
have boosted significantly, it can be observed in these arti-
cles [9] [10]. However, the work by H. P. Kriegel [11] stands
out as an inspiration for this paper.

3.4 Previous work
In order to make a stark contrast between what has been

done in the past and what is being proposed in this paper we
will first have a quick glance at the contents of our previous
work. In the previous paper, called ”Skyline queries frame-
work for electrical vehicles” a model was proposed which
tried to tackle similar problems, although in a different fash-
ion. The previous model could also be conditionally divided
into two parts - generating synthetic data of electrical vehi-
cles’ journeys which includes calculating charging routes and
corresponding deviation; the second part is calculating sup-
port for the charging routes and computing skyline queries
based on the support of the charging routes and the devi-
ation. The end result was a skyline query, which identified
the routes with the highest deviation at the different levels
of support.

One of the key novelty ideas of that model was the way
charging routes were generated. First of all, in the prepro-
cessing stage, as the map was being built, all the charging
stations on the map were identified. The map was repre-
sented as an undirected connected graph. Running a modi-
fied version of the A* algorithm the shortest paths from ev-
ery charging station to all others were calculated and stored
in memory. The sub-graph, containing only the charging
stations scattered all over the map and the paths connect-
ing them was labeled as a metagraph G′(Cs, E

′), where
Cs ⊂ V and E′ ⊂ E. The metagraph data structure was
of key importance when it came to calculating the vehicles’
charging routes. The construction of each route began firstly
by plugging in a car’s source and destination points into the
metagraph, after which all of the charging stations within
reach were found. One important prerequisite of that idea
was that from source and destination at least one charging
station (c ∈ Cs ⊂ V) had to be within the car’s autonomy,
thus making it reachable. One other prerequisite was that
once at a charging station the car needs to have at least
one other unvisited charging station to fall within the its
autonomy.

Thus, by making sure there was always a path from source
to destination and by jumping from station to station, the
shortest possible of all paths was constructed using the meta-
graph data. Although convenient, since most of the compu-
tation was done in the preprocessing stage, this model has
one serious limitation - as we said all of the paths in the
metagraph were stored in memory. On a small map, con-
taining only a few charging stations that’s not a problem,
but on large maps, containing possibly dozens of stations
certain issues may arise. First of all, having to calculate,
store and retrieve hundreds of paths from may significantly

3

increase the time for preprocessment and charging route con-
struction. Moreover, once the source Vs and destination Vd

points were plugged into the metagraph, the way the short-
est possible path was found, given all of the above mentioned
prerequisites were met, was by brute force calculation. Once
Vs and Vd are connected to all reachable charging stations,
the meta-graph is traversed in order to find all feasible path
combinations from source to destination. Of course, devia-
tion is also a factor, so generally a path with the lowest pos-
sible deviation from the shortest possible route from source
to destination is preferred. The following equation reflects
the nature of this operation:

dr(Rc(s, d)) = min
{

(dr(Rs(s, ci)) + dr(Rs(ci, cj))+

dr(Rs(cj , d)) | ci, cj ∈ Cs and ci 6= cj
}

If the case is such that Vs and Vd are within reach from
the same charging station, obliging the car to charge only
once, the following equation is applied:

dr(Rc(s, d)) = min
{

(dr(Rs(s, ci)) + dr(Rs(ci, d)) | ci ∈ Cs

}
Clearly, the previously proposed model, although having

certain strengths, was too dependent on memory and time
allowed for calculation. One of the improvements this paper
proposes in the following chapters is a substitute algorithm
for generating charging routes of electrical vehicles which
does not heavily rely on memory, nor does it have to make
brute force calculations in order to construct the routes, but
rather does that ”on the fly”.

Next, we shall investigate the conditions under which a
an already generated and saved route gained support.

Support, denoted sup(Rc) , is the frequency of Rc occur-
rence in the historical data set as a route or a subroute of
longer routes (w.r.t. number of vertices traversed).

An example of support calculation is given below.

Example
Let’s assume that Figure 14 is the road network and the
data set of just 4 routes is given:

1. c1 → c4

2. c2 → c4

3. v6 → c4

4. v6 → v9

The source and destination pairs can be expanded to a full
path sequences - routes.

1. c1, c2, v6, v8, c3, v9, c4

2. c2, v6, v8, c3, v9, c4

3. v6, v8, c3, v9, c4

4. v6, v8, c3, v9

Finally, the result returned by SCA would look like this:

Route Support
c1 → c4 1
c2 → c4 2
v6 → c4 3
v6 → v9 4

The table illustrates route’s influence to subroutes. It can
be observed that route v6 → v9 is a subroute of all 3 longer
routes and v6 → t takes part in 2 other routes, therefore
support is 4 and 3 respectively.

Using the results obtained for deviation and support of
all charging routes, the framework proposes to identify the
set of skyline points S(s, d). A Skyline point in database
context is a point, which is not dominated by any other. In
other words, a point dominates another if it is as good or
better in all dimension and better at least at one dimension.
Skyline queries are performed using a bicriterial approach:
the detour distance of shortest route from source s to desti-
nation d (deviation) and its frequency of occurrence in the
historical data set (support). The goal of the skyline queries
is to find the charging routes that have maximum support
and deviation.

4. GENERATING THE SYNTHETIC DATA
As said before, since we do not have a genuine histori-

cal data set of EV travel data, one of the main focuses of
the model, proposed in this paper is to generate more real-
istic synthetic data for constructing EV’s charging routes.
Recreating aspects of the real world environment distances
the model proposed from the sphere of the purely theoretical
and also provides a valuable insight into possible issues and
limitations that may not be obvious at first.

In order to do that, several changes have been made. First
of all, the undirected graph, representing the map that had
been used before is now a directed graph. This, at a glance
insignificant change can actually have a great impact on the
results we might get, when we do test the new model. For
example, many towns have one way streets and the nature
of such entities would be preserved and represented in the
implementation of the proposed model. A car may choose
to opt out on a route, containing segments with one-way
roads, because the deviation might be too large, or vice-
versa. Where the electrical vehicles choose to pass through
is of another key importance, mostly because the main fo-
cus of the project is to identify the parts of the road network
that are most heavily used but do not fall into the data set
of the recorded charging routes and their corresponding de-
viation metrics. One other change to the theoretical model,
proposed in this paper, is the introduction of categorization
for the different road types that make up the road network.
Since vehicles travel with different free flow speeds according
to the road type, the following classification is proposed:

Type of road Free flow speed
(in km/h)

Free flow speed
(in m/s)

Motorway 120 33
Trunk 90 25
Primary 80 22
Secondary 80 22
Tertiary 60 17
Residential 50 14
Unclassified 40 11

Note: All road types are taken from Openstreetmap.org
via the overpass-turbo API [12]. Since speed limits vary
from country to country, all values chosen are averaged. Al-
though it is unusual to come across a road segment of ”un-
classified” type, a speed limit of 40 km/h has been chosen

4

since the vast majority of them are within heavily populated
residential districts and are usually short, narrow streets.

Having a categorization of road segments and free flow
speed limits is an important prerequisite for fulfilling one
of the other novelty ideas which the model in this paper
proposes. As said before, the autonomy of the electrical
vehicles is now measured in kilowatts hour, and since trav-
eling at different speeds yields to different levels of energy
consumption, hence differences in range are present.

The rate at which an electrical vehicle’s battery discharges
is not that simple to determine. Many are the factors which
influence it - the type of the battery (li-ion, lead-acid,nickel-
metal hydride, etc.) being the main one. Usually the only
sure way to determine the discharge rate of a battery is em-
pirical - just take the car to the field, do some tests, record
the data and analyze it. Since this framework proposes only
a simulation of journeys of electrical vehicles, but at the
same time strives for maximal replication of real-world con-
ditions, in order to re-create the process of battery discharge,
which in turn reflects on the range of the car, depending
on the speed, some already established discharge rates have
to be used. The solution was to use the information, pro-
vided by Tesla Motors on one of their blogs [13] about the
energy consumption of the Tesla Roadster. A graph, dis-
playing the total energy consumption in kWh at different
speeds per mile is displayed below. Since the information
provided uses miles to measure distance and miles per hour
to measure speed, for the implementation the energy levels
are adjusted to their corresponding values when measured
in Km/h per kilometer.

Figure 2: Energy consumption of a Tesla Roadster [13]

Another interesting detail, which is chosen to be presented
in the model and the implementation and is again provided
by Tesla Motors via their blog [13], is the losses in energy a
car might experience due to its aerodynamics in combination
with friction with the air. Although those losses can be
negligible most of the time, traveling at a high velocity for a
prolonged period of time might actually make a difference.
The force of air friction on an object is a vector pointing in

the opposite direction of movement and it has a magnitude
of FD:

FD = 1
2
ρV 2ACd

Let’s break down the equation above - ρ represents the
density of air and V is the velocity at which the car travels,
A is the frontal area of the and CD is the drag coefficient,
depending on the shape of the vehicle. The more streamlined
the car shape, the more easily the car can slice through
air without disrupting it. According to Tesla Motors the
Tesla Roadster is reported to have a drag coefficient CD =
0.35 [13]. If we multiply the equation above with V we will
find the power losses PL a car experiences because of its
aerodynamics:

PL = 1
2
ρV 3ACd

These formulas are used when generating a vehicle’s charg-
ing route. Wind resistance may greatly influence the way a
car moves around the road network - prolonged periods of
time, traveling at high speeds may significantly decrease the
car’s range due to fact that more battery power is needed to
maintain the velocity and overcome the negative effects of
air friction. This may lead to a variety of possible charging
routes for the electrical vehicles, depending on what type
of a charging route a car wants to have - seeming fastest
routes, passing through highways may turn out ot be time
inefficient because of more frequent charging for example.
To illustrate how exactly the formulas are used, we shall in-
troduce a simple example. Imagine you have a car with a
drag coefficient CD = 0.35, frontal surface area of 2m2, trav-
eling at 90 km/h for 1 hour. Knowing that the density of air
is roughly 1.2kg/m3 if we plug in those values in the second
equation PL we would get a value of 6562.5 W or roughly
6,5 kW. This is the extra power a car needs to overcome its
own air resistance at a speed of 90 km/h for the duration of
1 hour, thus making the value 6,5 kWh. If we divide 6562.5
Wh by 90, we get the extra power the car uses to overcome
air drag at this speed is roughly 72.91 Wh/km. This value
is added on top of the normal consumption of the car per
km. If a car uses up, let’s say 200 Wh/km at 90 km/h, the
new value is 272.91 Wh/km.

4.1 Algorithms

4.1.1 A* Algorithm
The problem of finding the shortest possible path in a

graph has been around for many years. Over time, many
different algorithms have been developed in order to tackle
this issue, Dijkstra’s algorithm being the most popular of
all. Its simplistic and straightforward approach of travers-
ing vertices in ascending order and using a priority queue
to store partial paths laid the foundation for many other al-
gorithms and modifications to be developed in later years.
One such modification is the A* algorithm, which to a great
extend resembles Dijkstra’s algorithm but outperforms it,
mainly because of the heuristic function that A* uses to
guide its search [14]. A* is an informed search algorithm.
It can be described as a best-first search, meaning that it
solves problems by searching among all feasible paths to the
desired destination for the one that yields to the smallest
cost. Among these paths it first considers the ones that ap-
pear to lead most quickly to the solution. The algorithm

5

can be used to find many different types of shortest paths
in a graph - distance-based, time-based, most economical,
etc. The model, described in the Previous work section uses
A* to find distance-based shortest paths, whereas the frame-
work proposed in this paper combines the knowledge of road
segment lengths and free flow speed to deliver a swift solu-
tion for finding a time-based shortest path in a graph.

A* is a significant modification of Dijkstra’s algorithm
in the sense that it develops the original idea even more.
The main difference, as mentioned above is the presence
of a positive value heuristics function h(n). In the case of
Dijkstra, the value of this function is zero, meaning that
Dijkstra works only with the actual distance parameter g(n)
and calculates a possible path by traversing all nodes of the
graph. A* makes good use of the heuristic function h(n)
to guide the search. In the case of the model, proposed in
this paper the Eucledian distance between two points on
the earth’s surface is used, this is knows as the Haversine
formula [15].

hav(d
r
) = hav(φ2 − φ1) + cos(φ1)cos(φ2)hav(λ2 − λ1)

where hav is the Haversine function:

hav(Θ) = sin2(Θ
2

) = 1−cos(Θ)
2

d is the distance between the two points.
r is the radius of the Earth (assuming the earth’s shape

is a perfect sphere).
φ1, φ2: latitudes of points 1 and 2, measured in radians.
λ1, λ2: longitudes of points 1 and 2, measured in radians.
By moving along the graph, visiting nodes as we go, we

can check the current node’s and the destination node’s lat-
itudes and longitudes and find the exact distance between
them in a straight line, as if we are measuring on the earth’s
surface.

The whole cost function of the A* algorithm, given a node
n is:

f(n) = g(n) + h(n)

where g(n) is the distance of the traversed path from
source to node n and h(n) is the heuristic function.

Starting with the initial node, the algorithm maintains a
priority queue of nodes which are not yet traversed, called
an Open set. Intuitively, the lower f(n) for a given node n
the higher its priority. At each step of the algorithm, the
node with the lowest f(n) value is removed from the queue,
the f and g values of its neighbors are updated accordingly,
and these neighbors are added to the queue. The algorithm
continues until a goal node has a lower f value than any
node in the queue (or until the queue is empty). Goal nodes
may be passed over multiple times if other nodes with lower
f values remain there, as they may lead to a shorter path to
a goal. And finally, the f value of the goal is then the length
of the shortest path.

4.1.2 The Charging Route Discovery Algorithm

Algorithm 1 Charging route discovery algorithm

1: S - source
2: D - destination
3: Cur - current node
4: Z - range end node
5: Q - temporary variable
6: P - temporary variable
7: aut - autonomy of car
8: chargingStationsList - a list of the charging stations

across the road network
9: CandidateList - a list of candidate charging stations

10: Cur = S
11: fmin(n) = Double.max() - a variable to store the min-

imum value of f(n)
12: while Cur != D do

path = calculate A*(Cur,D)
. Find the shortest possible path between source

and destination using A*
13: for i=0; path.size(); i++ do

dist = path.element(i).distance();
14: if dist > aut then Z = path.element(i− 1)
15: end if
16: end for
17: for j=0; chargingStationsList.size(); j++ do
18: if A*(Cur, chargingStationsList(j)) < aut

then
put chargingStationsList(j) in CandidateList();

19: end if
20: end for
21: for p=0; CandidateList.size(); p++ do

Q = A*(Cur, CandidateList(p))
. A* distance between current node and candidate

station
P = A*(CandidateList(p), Z)

. A* distance between candidate station and Z
Dev = (Q + P) - Z.dist()
. Deviation from Source to charging station then

to Z
h(n) = Haversine(CandidateList(p), D)
. Calculates the heuristic Euclidian distance from

candidate station to Destination
f(n) = Dev + h(n)

22: if f(n) < fmin(n) then
fmin(n) = f(n)
Cur = CandidateList(p)

23: end if
24: end for
25: end while

As mentioned before, the framework, showcased in this pa-
per proposes a new idea for the creation of charging routes
for electrical vehicles, meant to substitute the creation and
usage of the already presented metagraph data structure.
The Charging Route Discovery Algorithm comes as a com-
pletely different approach to tackle the problem of charging
route creation. This algorithm does not rely on a prepro-
cessed metagraph with memorized paths between the charg-
ing stations on the road network. It calculates the path of
the charging routes on the fly as it traverses the graph in
search of the destination point.

First the algorithm uses A* to calculate the shortest possi-
ble path from source s and destination d as if the car doesn’t

6

have to recharge on its way. The red dots represent charg-
ing stations, dispersed along the map, the blue one are nodes
and the lines connecting the nodes is the shortest found path
from source to destination. (fig. 3).

Figure 3: Calculating the shortest possible path from source
to destination

Next, knowing that we have an electrical vehicle with a
battery and a corresponding autonomy value we calculate
where exactly on that shortest path, given the lengths and
free flow speeds of road segments the car passes through, the
autonomy of the car ends. It is represented as Z in fig. 4.

Now that we know which stations could be reached by
the car on its own, we must choose a candidate station at
which the car will charge. To do this we iterate through
the list of candidate stations and calculate the distance be-
tween the starting point, the candidate station and Z. Sub-
tract from that the length of the shortest possible path from
source to Z and we get the deviation in distance a car has
to make in order to visit any of the proposed charging sta-
tions. Now that we have the deviation we use the same
heuristic function from the A* algorithm to calculate the
distance between the candidate station and the destination
point. The station with the lowest combined score of de-
viation and heuristic distance, gets chosen to be the place
where the car will recharge its battery. Mathematically, the
formula can be expressed as follows:

Fcs = Devcs + h(cs)

where Devcs is the deviation value for the current candi-
date station;
h(cs) is the heuristic evaluation of the distance between

the candidate and the final destination point;
Fcs is the function that combines both deviation and heuris-

tic estimate.
Using this simple formula gives us the opportunity to com-

pare the pros and cons of going to different stations. A nat-
ural choice for a driver, without a computing device to tell
him where to go, is to head for the station which is closest
to Z. Most of the time this would be a right choice, as it
is highly likely this strategy would yield to a smaller overall
deviation of the journey. However in some edge cases, this
strategy may not be as successful as one might think.

Imagine a situation in which the station closest to Z yields
to some positive deviation and a few kilometres further back
there is a station located on the shortest possible path be-
tween source and destination. In this case, since we’re trying
to minimize our overall deviation, it would make more sense

to charge on the station, located on the shortest path and
choose to opt out on our seemingly more natural choice.
This is where the above showcased formula comes to guide
our search - evaluating deviation and heuristic distance may
help us find the balance between the amount of kilome-
ters we’re ready to go out of the shortest possible path to
recharge and the approximate distance left to our goal.

In the example showed in fig 4 the charging station, which
is the closest to Z is chosen as a designated place for recharge
of the car. The deviational path from the shortest route
to the chosen station is marked in orange.All distance are
calculated by using the A* algorithm. The car heads for the
station and the path from source is saved.

Figure 4: Finding the end of the car’s autonomy

Once the car is at the chosen charging station, the whole
algorithm is repeated again. A new shortest path from the
current source point to destination is found, a new end point
of the car’s autonomy is established along the shortest path
and again, a new suitable charging station is found fig 5.
Light green on the map marks the path traversed by the
car so far. The algorithm ends once the destination point is
reachable without further recharging.

Figure 5: The algorithm is repeated until the destination is
reached

Once the algorithm is terminated and the destination has
been reached, what’s left is the path of the charging route of
the car. The path of the charging route is then constructed
in a backwards manner - every node has a ”parent” feature.
Once a node has been chosen to be on a shortest path of
some sort , the previously chosen node is set as its Parent.
In that way, starting at the final destination point of a car’s
journey, by back tracing each node to its parent node we
will eventually reach the original starting point of the car’s
journey. What we end up with is the complete route the car
covered on its way , charging stations included. Compare

7

this to the previously calculated shortest possible route and
one can also measure the deviation from it.

4.2 Deviation and Support
As described in the Introduction chapter, one of the goals

of this paper is to create a framework, which helps in the
analysis of historical EVs’ travel data. The charging routes
that are both: inconvenient (large deviation) and important
(support) should be found. In this section the Support and
Support calculation algorithm (SCA) are described in de-
tailed manner.

Support calculation algorithm (SCA)
The support of a route has been introduced in Previous

work (chapter 3). It can be observed that it is related with
the number of cars taking a particular charging route - the
more frequent the route, the bigger the support.

SCA takes charging routes (historical data) as an input
and returns the support (a positive integer representing fre-
quency) for every unique route in a data set as an output.

Another important aspect of Support is that long routes,
with respect to the number of vertices traversed, may have
a lot of different subroutes within. This particularity should
also be considered by SCA.

As mentioned before, the idea is to work in ascending
manner, starting from the shortest routes with respect to
the sequence length n and checking whether these are sub-
routes of longer routes. Then incrementation is done and
the algorithm works with routes with the length of n+1.

Algorithm 2 Support calculation algorithm (SCA)

Input: Charging routes Rc

Output: Support for every unique route

1: Sort charging routes ascendingly w.r.t sequence length
2: for (k=0; k < db.size; k++) do

. db.size - number of routes in a data base
3: for (j=k+1; j < db.size + 1; j++) do
4: check(Rk, Rj);

. Rk - route which support is calculated
. Rj - longer route in which Rk is checked

5: end for
6: end for

Pseudo code of Algorithm 2 shows how the Support is
calculated. In Line 1 all routes are sorted in ascended order.
Line 2-3 iterates through the database and finally in Line
4 the call to procedure check() is performed.

The Algorithm 3 describes Procedure check(), which gets
2 routes as an input, where Rk is the route for which the
support is being calculated and Rj is the routes in which Rk

will be searched.
Line 1 defines the size of for cycle, it can not be longer

than subtraction of given routes. In Line 3-5 comparison of
vertices in a routes is performed together with counter p++
in Line 4, which indicates how many corresponded vertices
have been discovered. In Line 6 the actual length of route
Dk() and counter p is done. If the sizes are equal, this means
that Dk() is contained in Dj() and Support of Dk() should
be increased.

Line 8, 11-13 are not fundamental to support calculation,
but are vital in Skyline algorithm, which will be described
in the next chapter.

Algorithm 3 Check procedure in SCA

Input: Rk and Rj - routes
. R.length - route length

1: for (i=0; i ≤ Rj .length−Rk.length; i++) do
2: p=0;
3: while p<Rk and Rj(i+ p) == Rk(p) do
4: p++;
5: end while
6: if p==Rk.length then
7: sup(Rk) ++;
8: Rk.association.list(i) = Rj

. Rj is added to Rk association list
9: end if

10: end for
11: for each i in Rk.association.list(i) do
12: est(sup(Rk.association.list(i)) = sup(Rk)− 1

. every route in association list of Rk is assigned with
support estimate from Rk

. If a route has been already assigned with a
support from previous calculations, the smaller support
from 2 is chosen

13: if sup(Rx) not null then overwrite sup(Rx) with
lower value.

14: end if
15: end for

4.3 Skyline
In this section, the Skyline query algorithm is described

in a detailed manner.
As introduced in Problem definition (Chapter 2), a skyline

point is a point, that is not dominated by any other point
in a data set. In other words - a point dominates another if
it is as good or better in all dimension and better at least at
one dimension. The algorithm focuses on max max problem
- maximum deviation and maximum support. This leads to
finding skyline points that have large deviation and large
support.

One of the biggest challenges in developing an efficient
Skyline query algorithm is reducing the number of opera-
tions executed (performance time). The core idea behind
this is adopting proper pruning techniques. Yet trade-offs
must be made.

Skyline queries algorithm
In this problem setting the chosen trade-off is that devia-

tion of all charging routes is precomputed beforehand.
The main idea behind developing this algorithm is that

support is not calculated for every charging route. Points
are pruned from candidates set on estimated values rather
than precise and costly (computation wise) calculations.

In general, the proposed algorithm exploits the step wise
movement. While calculating support for a route Rk, longer
routes that have Rk as a subroute are memorized in an as-
sociation list. After having a precise support value sup(Rk),
the algorithm assigns sup(Rk)-1 as an estimate support
value, denoted as est(sup(Rk)) to all members of Rk as-
sociation list. This assignment operation holds on the as-
sumption that support for Rk can serve as an upper bound
for members of association list. The intuition here is very
simple. Imagine we have a data set of only three routes Rk,

8

Rj , Rp. Rk is the shortest route and is also a subroute in Rj .
Rj is a subroute of Rp which is the longest route of them
all. So, if we calculate the support for the shortest route Rk

we would get a value of 3. Since the other two routes are
in Rk’s association list, they will be assigned an estimated
support value of 2, which is the upper bound of the support
they might get. And if we were to calculate the real support
values of all the routes we would see that neither Rj , nor Rp

would get a support higher than 2. If there existed a route,
that contained Rp for example as a subroute, that would
automatically increase the support of all shorter routes that
are contained within. There is no way for a route to get a
higher support than the routes it contains. This estimated
support value is later used to perform pruning based on it.

Let’s illustrate the usage of estimated support. Suppose
there are 2 routes:

• Rk(n) with a length of n and calculated support

• Rj(n+1) with a length of n+1 and estimated support

And Rk is not necessarily a subroute of Rj .
Based on deviation, 3 cases might occur:

Algorithm 4 Pruning on estimated support value

Input:
Rk - route with a length of n with precise support value
Rj route with a length of n+1 and estimated support.

1: if dev(Rk) = dev(Rj) then
2: if sup(Rk) > est(sup(Rj)) then
3: Discard Rj

4: else
5: Calculate sup(Rj)
6: end if
7: else if dev(Rk) > dev(Rj) then
8: if sup(Rk) ≥ est(sup(Rj)) then
9: Discard Rj

10: else
11: Keep Rj . Points are not comparable
12: end if
13: else if dev(Rk) < dev(Rj) then
14: if sup(Rk) > est(sup(Rj)) then
15: Keep Rj . Points are not comparable
16: else
17: Calculate sup(Rj)

. The estimation is not enough and precise support
must be calculated

18: end if
19: end if

In the first case, given that the deviation of the two routes
is the same we compare the calculated support value of the
one with estimated support value of the other. If the route
Rk with the calculated support has a value, higher than
the estimated support value of the other route Rj , then the
latter route is discarded, since there is no way an estimated
support value can exceed the calculated support value of the
other route. On the other hand, if the estimated support
value of a Rj is higher than Rk’s calculated support value
we should calculate the real support for Rj and based on
that we can choose which point to discard.

In the second case, when the deviation of the route with
the precisely calculated support value (Rk in the pseudocode)

is higher than the support of the other route (Rj), we check
the support values and discard Rj if its estimated support is
smaller or equal to the support value of Rk. We can safely
do so, since estimated support is used as an upper bound for
the value of calculated support a route might get. In other
words, there is no way Rj would end up with a calculated
support higher than Rk, since its upper bound for that sup-
port is already worse or equal to Rk’s real support value. In
the other case, we just keep both points since they are not
comparable.

The final case is when the route with estimated support
has higher deviation than the route with the calculated sup-
port. The points will not be comparable if Rk’s precisely
calculated support value is higher than Rj ’s estimated sup-
port value. In the other case, we would need to calculate
the exact support of Rj to see which point to discard. An-
other pruning case is observed when support is already cal-
culated for both routes. This situation is almost identical
to Algorithm 4, the only difference is in Line 17, instead of
calculating support, the route Rj is discarded.

Algorithm 5 Pruning on calculated support

Input: Rk and Rj - routes with a length of n and precise
support value.

Line 1-13 are the same as in Algorithm 4, except
sup(Rj) is used instead of est(sup(Rj)

14: if dev(Rk) < dev(Rj) then
15: if sup(Rk) > sup(Rj) then
16: Keep Rj . Points are not comparable
17: else
18: Discard Rj

19: end if
20: end if

Below, a rough skeleton of the skyline calculation algo-
rithm is presented:

9

Algorithm 6 Abstract skyline calculation algorithm

1: S() = ∅ . S() - set of Skyline points
2: for each Rc do
3: dev(Rc) = dr(Rc)− dr(Rs)

. for every Rc deviation is calculated
4: add Rc to Cs

. array of candidate set is filled with charging routes
from data set

5: end for
6: sort(Cs)
7: . Candidate set is sorted ascendingly w.r.t. number of

vertices
8: n = 2
9: while (Cs 6= ∅) do

10: sup(Rc(n)) = support.calculate()
. calls SCA - Algorithm 2. Support calculation for Rc

with the length of n
11: Prune(Cs)

. Prune(Cs) calls Algorithm 5
. Prune(Cs) calls Algorithm 4

12: if R ∈ Cs not discarded then
13: Compare R with elements ∈ S()
14: if R not dominated then
15: add R to S()
16: end if
17: end if
18: n+ +;
19: end while

5. IDENTIFYING HEAVILY USED PARTS
OF THE ROAD NETWORK

Finding the support values for different charging routes
and calculating the skyline queries is a prerequisite for the
main focus of the model, proposed in this paper - identifying
the most heavily used parts of the road network, which have
a support higher than any other value of support a charging
route might have. In other words, the primary goal here is to
identify sub-routes which are ”above” the skyline query and
try to include them. Of course, for those parts of the road
network to be included they also need to have some positive
deviation value. To illustrate, let’s assume we have routes
Rc1 and Rc2 with a corresponding support value of respec-
tively 2 and 1. That means that Rc1 has been traversed
by two different vehicles, while Rc2 has been traversed once
by a third vehicle. But what if all three routes share a
common stretch of road? Then this subroute, shared by all
three routes would have a support value of 3 but since it’s
not an independent route itself, it cannot be identified as
such and consequently it won’t be represented in the skyline
query. The goal of the framework proposed in this paper is
to make that possible.

Since all the information about the paths of the generated
charging routes is saved as a string sequence of traversed
nodes of the graph, representing the map, a naive approach
would be to compare every single path of a charging route
with every other and look for the longest common substring
in the routes that we are comparing. Such longest common
substrings elements can then be then extracted and depend-
ing on the number of times they occur in the data set, they
gain support. We’re mostly interested in the ones who would
gain support higher than the support of any charging route

in the skyline query. However, as simple as this idea is, it’s
still a very naive approach, we might end up wasting time
and memory comparing charging routes that are nowhere
near each other. One step towards eliminating unnecessary
calculations is to find suitable criteria according to which we
can prune parts of the data set.

The model, showcased in this paper proposes this to be
done on the basis of using the geographical attributes of the
recorded charging routes’ paths. Since we’re representing
real world road networks as a graph, the information about
the latitude and longitude of each node of the graph is also
available. This is used to create an algorithm which clusters
charging routes with similar geographic data together and
compares them, the rest of the data set is pruned. The
foundation of this algorithm lies in the idea that a map may
be divided into quadrants using a latitude and longitude
boundary. An example is shown on fig. 6 . On it we can
see a map of Aalborg and the surrounding area which has
been divided into four quadrants by two boundaries running
through 57.0 North latitude parallel and 9.91 East longitude
meridian. The boundaries are chosen to divide the map into
four equal quadrants but theoretically it doesn’t matter how
many parallel and meridian boundaries we can have and how
big the quadrants are.

Figure 6: Dividing the map into four quadrants

Dividing the map into quadrants and using the coordi-
nates of the nodes, constituting the path of a charging route
gives us the opportunity to correctly identify in which parts
of the map a charging route is located. For example, a route
which is located in Q1 and Q2 would be compared only with
routes which share either or both of the same quadrants.
Further divisions of such nature could be made, which will
increase the accuracy of the algorithm. Theoretically speak-
ing, if the geographical boundaries which divide the map
form a grid dense enough, then we would know exactly which
routes to compare and no unnecessary comparisons would be
done. The density of the grid though would be dependent
on the size of the map and it may vary widely.

The Algorithm
Now that we have introduced the basic idea of dividing

the map into quadrants in order not to do unnecessary com-
parisons of routes, it’s time to introduce the algorithm for
identifying the most heavily used parts of the road network.
The first thing the algorithm does is to iterate once through
the data set containing the charging routes in order to see
the quadrants each route falls into (see algorithm 7). Each
quadrant is presented as a list, containing routes.

10

Algorithm 7 Preprocessment

1: . Rc denotes the recorded paths of charging routes in
the data set.

2: QLat - a latitude value at which the map is divided
3: QLon - a longitude value at which the map is divided
4: for each Rc do
5: for each Rc.element() do
6: if Rc.element()latitude ≥ QLat then
7: if Rc.element() longitude < QLon then

Rc ∈ Q1

8: else
Rc ∈ Q2

9: end if
10: else
11: if Rc.element() longitude < QLon then

Rc ∈ Q3

12: else
Rc ∈ Q4

13: end if
14: end if
15: end for
16: end for
17: sort(Rc ∈ Qi)

In the next step, we identify the most commonly used
parts of the road network. This is done by comparing the
paths of all the routes that fall into a certain quadrant, the
longest common substring is found. The routes are com-
pared in the following manner - the first one is compared
with all the rest, then the second with all the rest, then
the third and so on. This ensures that we won’t check the
same pair of routes twice. The complexity of this type of
iterating is O((n− 1) ∗ n

2
). Although this complexity looks

low it is important to note that it resides in O(n2). During
the iteration all routes in a quadrant are compared two at
a time, using a dynamic programming algorithm for finding
the longest common substring in the recorded paths of the
routes (see algorithm 8). The algorithm has a time complex-
ity of O(p ∗m), where p and m are respectively the lengths
of routes being compared. All in all the overall time com-
plexity of the algorithm is O(n2 ∗ p ∗ m). One additional
feature which provides further pruning of charging routes to
compare is a validating function which keeps track of which
routes have been compared and which not. This function
stores pairs of routes that were checked in a hash map data
structure. Let’s illustrate with an example where this comes
in handy - assume that routes Rc1 and Rc2 both run through
quadrants Q1 and Q2. In that case they would be present
in both lists, containing the routes that run through each
quadrant. Once we start, we would see that Rc1 and Rc2
are in Q1 so we would compare them in their entirety. The
pair (Rc1, Rc2) would be stored in a separate hash map data
structure, so we would know that they have been compared.
When we come across the same two routes when comparing
the contents of Q2 we would skip checking. This very sim-
ple validation provides additional pruning and significantly
reduces the number of operations that need to be done in
the cases when we have a low-granularity segmentation of
the map and long routes that may run through most if not
all the quadrants.

Algorithm 8 Finding the longest common substring

1: LCSrep - a list, containing all found LCSvalue objects.
2: . In each quadrant group QX
3: for each Rc, Rc+1 ∈ QX do

. We now compare Rc and Rc+1

LCS.compare(Rc, Rc+1)
dynamicArray = array(1..m , 1..n)
LCSLength = 0;
LCSvalue = {}

4: for i := 1..m do
5: for j := 1..n do
6: if Rc [i] == Rc+1[j] then
7: if i == 1 or j == 1 then

dynamicArray[i, j] := 1
8: else

dynamicArray[i, j] := dynamicArray[i−1, j−1]+1
9: end if

10: if dynamicArray[i, j] > LCSLength
then

LCSLength := dynamicArray[i, j]
LCSvalue := Rc[i− LCSLength+ 1..i]

11: else
12: end if
13: if dynamicArray[i, j] == LCSLength

then
LCSvalue := LCSvalue + Rc[i-LCSLength+1..i]

14: end if
15: else

dynamicArray[i,j] := 0
16: end if
17: end for
18: end for

return LCSvalue
LCSrep.add(LCSvalue)

. We add the LCSvalue to the list
of other LCSvalues found. This list would be used later
to extract the LCSvalues and find deviation for each of
them if such exists

19: end for

Algorithm 9 Finding the longest common substring-cont.

1: LCSskylineCandidatesList - a list to keep the candi-
dates from LCSrep that have a positive deviation value
as they might appear in the skyline

2: LCSHash - a hash map data structure to check whether
an LCSValue element has been

3: for b=0; b<LCSrep.size(); b++ do
4: dev = A ∗ (LCSrep[b].firstNode,LCSrep[b].lastNode)
5: if dev > 0 then
6: if LCSrep[b] not in LCSHash then

LCSHash.add(LCSrep[b])
LCSrep[b].sup() = 1

7: else
LCSrep[b].sup() += 1 . Increase support by one

8: end if
LCSskylineCandidatesList.add(LCSrep[b])

9: end if
10: end for

Let’s do a short explanation of algorithms 8 and 9. Algo-
rithm 8 is a dynamic programming algorithm for finding the

11

longest common substring between the paths of two routes,
i.e. which parts of the road network those two routes share.
Once this substring, referred to as LCSvalue is found we
store it in a list with all other LCSvalue elements found.
Not every element in the list is of interest to us, we’re trying
to find the longest common subpaths that have a positive
deviation value and support, which is higher than the sup-
port of the charging routes in the skyline query, so we can
add them to the query. We know turn our attention to algo-
rithm 9 which is a continuation of algorithm 8. To identify
which subpaths are of value to us and can be in the skyline,
we go through the list of LCSvalues that have been found
and first of all find the A∗ distance between the first node
of the subpath and the last one. Since we know the exact
path and length of each LCSvalue element, by finding this
A* distance we would know if this LCSvalue element has a
deviation or not. If it has a positive deviation value we then
add it to a hash map data structure which keeps track of ev-
ery element’s support value. If an element is not present in
the hash map it is added and a support value of 1 is assigned
to it, if it already exists, then the support value is increased
by one. The elements with a positive deviation value and
a support higher than any of the routes in the skyline are
added to a candidate list to be put in the skyline.

6. TESTS AND RESULTS
For the current test a map covering a big part of the region

east of Munich has been chosen. The map covers an area
roughly the size of 3100 km2 and has a total network length
of 4368 km , excluding the residential roads in the villages
and cities. Only the main road network entities has been
considered a part of the road network - main roads, passing
through towns, major boulevards and streets, motorways
and all first class and second class roads. This particular
map has been chosen mostly because of its dense road net-
work coverage and the fact that across it around 40 different
charging stations are placed (fig 7). The information about
the placement of the charging station is taken from Open-
ChargeMap via their web app API [17].

Figure 7: The charging stations coverage of the map tests
were run on

Tests have been performed using different configurations
of the model. The shortest possible charging routes in re-
spect to distance and time are found. Deviation is also mea-
sured in the same way for both types of charging routes.

The starting and ending points are chosen randomly among
others from two lists of points from both peripheries of the
map (west and east). Since we’re using the discharge rate
of the battery of a Tesla Roadster ,the autonomy value for
the electrical vehicles is set to be 9 kWh, which guarantees
the car will travel for approximately 45 km with a constant
speed of around 90 km/h. This is not the original range of
the Tesla Roadster. Since the map is relatively small, lim-
iting the capacity of the car’s battery is done so that tests
could be performed on this small scale map. The shortest
and longest routes measured are respectively 86.6 km and
122.7 km long. The time for calculating the charging routes
of the electric vehicles was also measured. The tests are
performed on a machine with an IntelR© CoreTM i5-5200U
CPU @ 2.20GHz processor and 8 GB of RAM.

The programming language, chosen for the implementa-
tion is Java. Additional libraries such as JUNG [16] are
used. JUNG is a software library which provides a common
extendable language for the modeling and analysis of data
that can be represented as a graph or network. Maps are
created by parsing JSON files containing geographical data
which is then handled by JUNG to create the basic graph
representation of the map. JUNG is rather basic and it can-
not entirely suit the needs of this implementation, so its ba-
sic functionalities and graph representing capabilities were
used as a basis. All the algorithms and additional modules
for data analysis were designed and implemented in a way to
further enhance the capabilities of JUNG. The modules re-
sponsible for support calculation, skyline query calculation
and identifying the most frequently used parts of the road
network are also developed in Java. Transfer of data be-
tween the modules is done by creating, reading and parsing
text files. The starting and ending points for the cars are
chosen at random from both ends of the map. This is done
in the following way - there are two latitudinal separation
lines near both ends of the map. They divide the map in
three parts - the two small peripheral parts are where the
starting and ending points are chosen from. The nodes from
those peripheries are kept in two separate lists. When a we
want to create a charging route, one point from one list is
chosen at random as a starting point and another point from
the other list is chosen at random as a destination point. No
starting and ending points are chosen from the middle part
of the map. The two latitudinal separator lines have nothing
in common with the proposed method of splitting the map
in quadrants, described in the previous chapter. They are
merely used to ensure that the source and destination points
of each charging route are located at both ends of the map
and are chosen randomly.

The results of the test, run on the implementation are pre-
sented in the tables below. The first one shows the time it
took to calculate up to 8000 charging routes, which are sup-
posed to be the shortest possible in distance and the second
one presents the same calculations done for charging routes
supposed to be the shortest in time.

12

Table 1: Total calculation time for finding distance-based
shortest charging routes

Routes Time (in seconds)
1000 147.257
2000 298.331
5000 751.002
7000 1129.754
8000 1292.907

Table 2: Total calculation time for finding time-based short-
est charging routes

Routes Time (in seconds)
1000 150.021
2000 305.816
5000 768.109
7000 1157.179
8000 1320.345

As it is shown on figure 12, the difference in time needed
to calculate the charging routes using the two different con-
figurations is almost linear. However, the model gives a
slightly worse performance when calculating the time-based
shortest charging routes. One possible explanation for this
is that actually looking for the fastest route is closely linked
to distance and free-flow speed, so the weight of the edges of
the graph may change completely when travel time becomes
a primary factor. That may lead to more additional calcula-
tions, bigger detours from the shortest possible routes and so
on. Performance tests on a single map may give inconclusive
results. To entirely understand how the model handles when
calculating distance-based and time-based shortest charging
routes may require extensive testing on a number of different
maps with a variety of road network types. The goal of the
tests done and presented in this paper is only to show that
the model is functional and achieves the tasks it’s supposed
to do.

Tests were performed, using two different configurations
of the model. In the first case the shortest charging routes
in terms of distance are found , deviation in distance and
time are also measured (fig. 8 and fig. 9) In the second case
the shortest charging routes in term of time are found (fig.
10 and fig. 11). Again, deviation in distance and time are
measured.

Figure 8: Skyline for distance-based charging routes and
their deviation in distance

Figure 9: Skyline for distance-based charging routes and
their deviation in time

Figure 10: Skyline for time-based charging routes and their
deviation in time

What is interesting to note here is that there is a sig-
nificant difference in the results of both test cases. In the
case when we’re calculating distance-based shortest charg-
ing routes, as expected, the deviation values for distance and
time are much lower than the ones of the time-based shortest
charging routes. Time-based shortest charging routes also
gained higher support values. Of course, there is a reason-
able explanation for this. Using different criteria to calcu-
late and construct a charging route leads to different results
- distance-based shortest charging routes make better use of
the road network available. It doesn’t matter if the car uses
primary, secondary or tertiary roads as long as it gets to
its final destination with the lowest possible deviation. On
the other hand, if we’re looking for the fastest routes, then
the weights of the graph edges, representing the map would
change significantly - cars would tend to use motorways and
primary roads, if possible as they give them the opportunity
to travel at higher speeds. That is also the reason why more
routes in this case got a higher support value - cars just pre-
fer the fastest road arteries available. It’s visible even in the
skyline queries for the time-based fastest charging routes.
The charging route, present in the skyline that has a sup-
port value of 1 has approx. 8 km in deviation. However,
since the car’s average speed would be higher if it chooses
to use only primary roads and motorways, the deviation in
time can still be acceptable.

Once the most frequently used parts of the road network
are identified, their deviation and support are calculated and

13

Figure 11: Skyline for time-based charging routes and their
deviation in distance

they are added to the skyline (fig. 13 and fig 14). What is
interesting to note is that in the updated skyline queries in
both cases when we calculate distance-based and time-based
charging routes, new points with much higher support have
been reported. Deviation is also slowly decreasing as sup-
port goes up. For some points we have the same value of
deviation but different values of support. One explanation
for this phenomenon is that, since deviation is accumulated
around charging stations, as cars make a detour to get to the
station different subpaths merge their paths to make the
same deviation. In other words, around charging stations
there is a point of convergence of vehicles’ routes and all of
them have to make this deviation in order to charge. Longer
subpaths that make a deviation get one support value and
the shorter subpaths that are closer to the charging station
get the same deviation but also have a higher support since
they are shared by even more vehicles. There are many other
subpaths across the road network that have even higher sup-
port, as they are shared by tens, maybe even hundreds of
cars, but since they either don’t have a deviation or have
very little deviation for their support value, they are not
present in the skyline query.

Figure 12: Performance of the model

Of course, as we said before, running tests on a single
map may not give conclusive results. The behaviour of the
model is largely dependent on the map tests are run on. In
our case we have a relatively small map with a very dense
road network and a multitude of charging stations, more or
less evenly distributed across the network. Most stations
are actually located either on or very close by to major road
arteries so it’s also normal for cars to have relatively low
deviation values. However, on a different map with a sparse
road network or unevenly distributed charging stations the
picture might be quite different. To understand how the
model handles numerous tests on various types of maps have
to be done in future.

Figure 13: Skyline for time-based charging routes and their
deviation in distance

Figure 14: Skyline for time-based charging routes and their
deviation in distance

7. CONCLUSIONS
The tests performed show that the theoretical model pro-

posed in the paper can produce some interesting results.
However, as we already mentioned, extensive testing on var-
ious kinds of maps with diverse types of road network might
be needed to fully understand how the model behaves and
if there are some potential bottle necks in its performance.
It would be interesting for a graphical module to be devel-
oped as part of some future work in order to highlight and
visualize charging routes, support values of different edges
and heavily used parts of the road network.

Of course a number of improvements can be introduced
to the theoretical model as well. For example, the simple

14

charging route discovery algorithm is entirely based and de-
pendent on A* and one future improvement would be to sub-
stitute A* with some other algorithm which is even faster
or uses less memory. The Simplified Memory Bounded A*
(SMA*) is one such algorithm. Its main advantage, as the
name suggests is that it uses bounded memory while the
A*’s memory usage might be exponential.

Another possible improvement would be for a better algo-
rithm for calculating support on routes to be developed. The
current one, uses a pretty straight-forward naive approach
which can be very computationally heavy and ineffective in
very large data sets.

The dynamic programming algorithm for identifying heav-
ily used parts of the road network may also be substituted by
something better performing - the whole algorithm can run
using suffix trees, for example. A linear-time algorithm for
building suffix trees was developed by Ukkonen in the mid
90’s [18], so using it to create the trees and by performing
searches for longest common subpaths on the tree will sig-
nificantly improve the speed at which calculations are done
and also give us better memory efficiency.

Also, different types of experiments and tests can be car-
ried out. An improved physics model can be introduced, for
example, which takes into consideration not only air drag
but also acceleration, deceleration, traffic light cycles and so
on. Right now we assume that the cars move under perfect
conditions, on empty roads, traveling with their maximum
free flow speed. So one huge future step forward would be
to develop a framework that not only tries to recreate the
physical limitations of the real world but also take in con-
sideration other traffic participants who are also traveling
across the road network in real time.

The possibilities are truly endless and there are many di-
rections in which we might go - from simply improving calcu-
lation algorithms, to trying to create more realistic synthetic
data, to finding even more ways to analyze the charging
routes of electrical vehicles in order to understand how they
utilize the road network or figuring out how to place charg-
ing stations across a road network. Precisely by exploring
the possibilities of future development in this area of human
knowledge we can prepare for a future world, where elec-
tric vehicles would not be something new and strange, but
a mere commodity.

8. REFERENCES
[1] Bellman, Richard (1958). ”On a routing problem”.

Quarterly of Applied Mathematics 16: 87-90. MR
0102435.

[2] Thomas H. Cormen; Charles E. Leiserson; Ronald L.
Rivest; Clifford Stein. (2001)
Introduction to Algorithms (Second ed.). ”Section 24.3:
Dijkstra’s algorithm. p. 595-601.

[3] Thorup, Mikkel (2004). ”Integer priority queues with
decrease key in constant time and the single source
shortest paths problem”. Journal of Computer and
System Sciences 69 (3): 330-353.

[4] Altschul, Stephen; Gish, Warren; Miller, Webb; Myers,
Eugene; Lipman, David (1990). ”Basic local alignment
search tool”. Journal of Molecular Biology 215 (3):
403-410.

[5] Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ,
Higgins DG, Thompson JD (2003). ”Multiple sequence

alignment with the Clustal series of programs”. Nucleic
Acids Res 31 (13): 3497-3500.

[6] Zaki, M. J., (2001).
”Spade: An efficient algorithm for mining frequent

sequences”. In: Machine Learning. Vol. 42. p. 31-60.

[7] Stephan Borzsonyi, Donald Kossmann, Konrad Stocker.
(2001)
The Skyline Operator. 17th International Conference

on Data Engineering p. 421-430

[8] H. T. Kung et. al, (1975)
Finding the Maxima of a Set of Vectors

[9] Mullesgaard, Kasper; Pedersen, Jens Laurits; Lu, Hua;
Zhou, Yongluan (2014).
”Efficient Skyline Computation in MapReduce”. 17th
International Conference on Extending Database
Technology (EDBT). p. 37-48.

[10] F. Afrati, P. Koutris, D. Suciu, and J.D. Ullman.
(2012)
Parallel Skyline Queries. International Conference on
Database Theory (ICDT), p. 274-284.

[11] Hans-Peter Kriegel, Matthias Renz, Matthias
Schubert. (2010)
Route Skyline Queries: A Multi-Preference Path
Planning Approach. ICDE 2010

[12] http://openchargemap.org/app/?view=map-page

[13]
http://www.solarjourneyusa.com/EVdistanceAnalysis5.php

[14] Zeng, W.; Church, R. L. (2009).
”Finding shortest paths on real road networks: the case
for A*”. International Journal of Geographical
Information Science 23. p. 531-543.

[15] van Brummelen, Glen Robert (2013). Heavenly
Mathematics: The Forgotten Art of Spherical
Trigonometry. Princeton University Press. ISBN
9780691148922. 0691148929. Retrieved 2015-11-10.

[16] http://jung.sourceforge.net

[17] http://openchargemap.org/app/?view=map-page

[18] Ukkonen, E. (1995). ”On-line construction of suffix
trees”. Algorithmica 14 (3): 249-260.

15

