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Preface

The present report represents the final project of the Power Electronics and Drives mas-

ter program from Aalborg University. This master thesis project, entitled Performance

Modelling and Monitoring of Thin-film Photovoltaic Systems was realised to support the

research project Fully Automated Service Execution platform for Photovoltaic power

plants (FASE) financed by Innovation Fund Denmark and developed in collaboration

with Danica Pension, Econ GmbH, GreenGo Energy A/S and DTU Compute Technical

University of Denmark. The projects vision is to significantly improve the profitability of

PV Plants by integrating state-of-the-art PV fault diagnosis with an automatic service

execution platform. The main challenges addressed in this master thesis is developing

the necessary PV performance models for fault diagnosis in thin-film based PV plants.

The project is documented in a main report and appendices. The main report contains

theory background and analysis of PV panel field performance measurements, while

the appendices contain more information regarding the implementation of the perfor-

mance modelling. The chapters in this project are consecutive numbered whereas the

appendixes are labelled with letters. The figures, equations and tables are numbered in

succession within the chapters.
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Chapter 1

Introduction

1.1 Background

Renewable energy technologies have matured considerably in the last decades, and are

now becoming competitive with traditional fossil based energy generation in many coun-

tries. The photovoltaic (PV) energy industry has been steadily growing for the last

decades at a very fast rate, with around 30% annual increase in cumulative installed

capacity worldwide. At the end of 2015, the capacity reached a global total of about

227.1 GW as shown in Figure 1.1 [1].
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Figure 1.1: Solar PV Total Global Capacity, 2004–2015 [2]
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Denmark has reached 790 MW in late 2015 with the vast majority of this capacity

installed in just four years [2]. The rise in capacity during the past 11 years can be seen

in Figure 1.2. The goal for the Danish Photovoltaic energy sector is to have 1000 MW

by 2020 and 3400 MW by 20301.
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Figure 1.2: Cumulated PV capacity in megawatt (MW) in Denmark since 2004

With the growing industry, the initial cost of PV systems has been showing a fast decline,

with over 75% drop over the last 10 years [3]. In parallel and as a result, the operation

and maintenance costs have become a bigger part of the total lifetime cost of PV plants.

This motivates the development of technologies to reduce the operation and maintenance

costs for PV plants over their lifetime.

1.2 Problem Formulation

Nowadays, the most widespread PV technology is based on c-Si, representing around

90% of the annual solar cell production [4]. This is due to the stability of the technology,

its efficiency and the fact that it has proven over the years to be a reliable choice. As a

drawback, c-Si cells and modules have a relatively high manufacturing cost. The other

major solar cell technology in the market, the Thin-Film (TF) solar cells are typically

less expensive, however they have lower efficiency and stability as well. This technology

is less mature than the c-Si, however it has significantly improved over the last years [4]

1http://um.dk/en/news/newsdisplaypage/?newsID=25147B44-3DCE-4647-8788-AD9243C22DF2
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and it has the long term potential to become the main solar cell technology. A short

overview of the main PV cell types is given below:

� Crystalline silicon (c-Si)1,2: There are two types of crystalline silicon solar cells

used in PV: mono-crystalline silicon (x-Si) and multi-crystalline silicon(m-Si). x-Si

is very expensive due to the purity of the silicon from which is made, and has the

biggest efficiency, 27.6% while m-Si has an efficiency of 21.3%.

� Cadmium telluride (CdTe)1,2: CdTe is a PV technology that is based on the use

of cadmium and telluride. Due to the cadmium presence, it provides an environ-

mental issue when recycled or disposed. CdTe has a maximum efficiency in the

laboratory of 22.1%.

� Amorphous silicon (a-Si)1,2: Is the non-crystalline form of silicon used for solar

cells. a-Si cells featured low efficiency therefore was used for small scale applica-

tions, but due to the progress made over the last two decades in improving their

performance, they became more attractive for larger scale applications. a-si has a

maximum efficiency in the laboratory of 13.6%.

� Copper Indium Selenide (CIS)1,2: Like a-Si and CdTE, CIGS layers are thin

enough to be flexible, allowing them to be deposited on flexible substrates. Due

to the use of high-temperature deposition techniques, the best performance is

achieved when deposited on glass. CIS based solar cells are becoming one of

the leading technologies for solar energy generators, having the highest efficiency

among thin-film devices, around 22.3%.

A key element in having a good performance of the PV systems is implementing a perfor-

mance monitoring system that will predict the power output of a PV system. The inputs

for the model will vary with meteorological data and location, but the model will have

to take into account the characteristics of the applied solar cell technology. However,

some TF technologies are still in an early stage of deployment and ongoing development

therefore, there is not as much data on their field performance and reliability yet.

Several models have been developed and implemented during the years for c-Si technolo-

gies, but just a few for TF. The most known and used models are PVWatts[5] and Sandia

1http ∶ //www.nrel.gov/ncpv/images/efficiencychart.jpg
2http://energyinformative.org/best-solar-panel-monocrystalline-polycrystalline-thin-film/
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Array Performance Model (SAPM) [6] that provided good results for c-Si technologies

but also for TF. These models are used to evaluate system performance over time and

will determine if performance suddenly decreases and troubleshooting is necessary.

The focus of this master thesis is performance modelling and monitoring of PV plants

in order to detect power loss and represents a part of the Fully Automated Service

Execution (FASE) project. FASE aims to significantly improve the profitability of PV

power plants, through a platform, implemented as a cloud based IT solution. This

project is done by the PV Systems department of Aalborg University in collaboration

with Danica Pension, Econ GmbH, GreenGo Energy A/S and DTU Compute Techni-

cal University of Denmark. Taking as an example GreenGo, they sell products with

guaranteed performance, monitoring and service, therefore, an accurate, real time de-

tection and localization of the power loss in the plant is crucial. The PV plants are

based on CIS modules for which there is not a lot of experience in performance mod-

elling and monitoring. Also, the performance of CIS modules is not well evaluated in

Danish climate. Therefore, a study of the metastable behaviour of thin-film modules,

and modelling of performance with focus on CIS in comparison with c-Si technology is

carried out throughout the next chapters of this project.

There are several practical issues that have to be considered when developing an accurate

PV performance model for practical thin-film PV systems. Some of these issues are

specific to thin-film technology, whereas others need to be addressed in order to develop

an accurate and efficient PV monitoring system. The most important aspects that need

to be addressed are summarized in Figure 1.3 and described below.
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Figure 1.3: Diagram of a simplified PV system and its performance model structure
with practical challenges highlighted with red dotted line and identified with letters

The main practical challenges highlighted in Figure 1.3 above, that the performance

model needs to take into account, are described in the following:

(a) Ageing and Degradation: The natural degradation expected for thin-film is 1.5%

/year if the panels are installed prior to the year 2000, and 1% /year if they are

installed after the year 2000 [7]. However, degradation is influenced by climate,

such as very low temperatures, heavy wind, snow loads or exposure to high levels of

UV. If the performance model does not take this into account, it will increasingly

overestimate the available power as the system ages.

(b) Metastable behaviour: The widely varying spectral responses, temperature coeffi-

cients and metastable behaviours of different thin-film technologies lead to special

challenges in outdoor performance analysis and modelling. Modules must be sta-

bilised before performance measurement to avoid the influence of metastability on

the results. This is normally done by light exposure or “light soaking” [8]. Fur-

thermore, the model must account for this behaviour to avoid seasonal errors in

the performance estimation.

(c) Training Dataset size: The data used for the model training is the measured irra-

diance, the measured module temperature and the output DC power. In order to
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generate accurate models the training needs to be provided with sufficient mea-

surement data. In practice, it is not convenient to wait a long time on the data

collection. Therefore, we need to know the minimum amount of time needed in

order to achieve an accurate performance model of the PV system. On the other

hand, providing too much time/data will cause overfitting and may not lead to

significant model accuracy improvements.

(d) Training Dataset irradiance distribution: For similar reasons as the size of the

dataset, the irradiance distribution of the location where the PV panels will operate

is also important such that the resulting PV performance models are not biased

for certain irradiance values.

(e) Measurement procedure: The solar irradiance in PV plants is usually measured

with pyranometers and/or reference cells. The pyranometer is able to accurately

measure the all available solar radiation (global irradiation) under all conditions.

Reference cells measure only that part of solar radiation that can be used by cells

(effective irradiance) of identical material, and are available only for c-Si tech-

nologies [9]. Due to long wavelength response (above 1200 nm) the pyranometer

behaves different compared to PV technologies. Spectral effects are causing the

pyranometers to deviate from the irradiance perceived by the PV module, reach-

ing a monthly deviation of over 3%. C-Si reference devices also show significant

mismatch when used on thin-film module [9].

1.3 Objectives

The main goal of this project is to build an accurate PV performance model for thin-

film PV technologies, that is able to address the challenges outlined in section 1.2. The

models should be suitable for implementation in performance monitoring platforms of

thin film PV Plants. In order to do this, several key tasks where set for this project:

� Analyse the metastable behaviour of thin-film technologies.

� Find a solution to account for ageing and degradation of PV panels in the perfor-

mance model.

� Find a suitable PV performance model for thin-film applications.
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� Determine the optimum size for the training dataset.

� Determine the optimum distribution of irradiance for the training dataset.

� Quantify the improvement in accuracy when using effective irradiance(from Isc)

instead of global irradiance (from pyranometer).

1.4 Project limitations

The project was subjected to certain limitations that are listed here:

� While it is shown that all TF technologies exhibit metastable behaviour to various

extent, the performance models in this project focus only on the CIGS technology

(and its comparison to x-Si).

� While there are many models available in literature, only two mainstream models

have been considered for analysis and comparison.

� The assessment of performance model is based on outdoor test facility data and

not PV plant data. Consequently, the effects of inverters, MPPT etc are not

considered.

� The measurement data was from Florida and Colorado and was only for one year

period.



Chapter 2

Performance characterization of

Photovoltaic Technologies

2.1 Analysis of metastability for Thin-Film technologies

One important challenge of modelling the performance of TF is their metastable be-

haviour, which is not an issue for c-Si. Their metastability can cause changes in per-

formance which affect the accuracy of the model, therefore a prior analysis is requested

in order to predict and adjust to the outcome. The performance of PV modules are

influenced by several factors like: [8]

� spectrum of incoming light

� intensity of incoming light

� temperature of the module

The output power is rated at standard testing conditions (STC) that indicate an irradi-

ance of 1000 W /m2, a module temperature of 25○C and a solar spectrum corresponding

to an air mass (AM)1.5. Real outdoor conditions rarely correspond to this STC values.

Due to variations of the solar altitude from season to season or during a day, the AM

changes. The performance of c-Si is not significantly affected by the spectral variations.

It is not the same case for thin-film devices, especially a-Si where the effect of spectral

variations on their performance is far more pronounced [8]. In Figure 2.1 the spectral

8
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response for different thin-film solar cells in comparison with several types of c − Si so-

lar cells are shown. The most stable and well known technology is c-Si, therefore, the

behaviour of the thin-film technologies used in this project will be done in comparison

with c-Si.

Figure 2.1: Spectral response of pyranometer and different solar cells devices (CIGS,
CdTe, a-Si, c-Si) [10]

The spectral response of a-Si is more limited(350 - 800 nm) than for c-Si (300 - 1200 nm).

As a consequence, this technology is more sensitive to blue components of the spectrum

than to red ones. During the course of a day, the spectrum changes with a shift towards

red light in the morning and evening. Also, during the summer, the distance passed by

the light from the sun trough the atmosphere is shorter that in the winter, due to the

higher elevation of the sun. Therefore, the blue component becomes larger than AM1.5

and will cause a blue-shift. Opposite, in winter, the distance will be larger and will

cause a red-shift. This trend in shown in Figure 2.2 and leads to a higher module power

in the summer and a lower one in the winter for a-Si and a reverse change in module

power of c-Si [11].
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Figure 2.2: Modelling the short-circuit current dependence on AM-units for a-Si
(blue circles) and c-Si (red squares) PV modules. Dark solid lines are linear fits to the

modelled data [11]

CdTe spectral response is not as limited compared to a-Si but it is more narrow when

compared to c-Si. It is expected that this devices will vary from +4% to −6% around

the annual average when the seasons are changing [8]. For CIGS devices the spectral

response is even broader compared to c-Si devices. The outcome of this broad response

is less effect on device performance caused by spectral variations.

The variation of the intensity of incoming light from the STC towards lower values, will

cause a reduction in the efficiency of the cell. How much the efficiency is reduced is

dependent on the shunt resistance Rshunt of the cell which depends on the fabrication

process. Usually a-Si technologies have a lower value of Rshunt than c-Si and has a good

performance at low light intensities [12].

During the first months of operation the efficiency of an a-Si cell suffers a drop of about

10 - 30 %. This is known as the Staebler-Wronski effect (SWE) and represents a loss in

electrical output caused by changes in photo-conductivity and dark conductivity induced

by prolonged exposure to sunlight [8]. C-Si solar cells do not exhibit this effect, but this

degradation is reversible upon annealing the a-Si cells at or above 150○C [13].

Module temperature related losses in performance for a-Si devices are much smaller

compared to c-Si cells . The temperature coefficients of the maximum power are around

−0.2%/○C for a-Si and −0.36%/○C to −0.42%/○C for CIGS. The values for CIGS approach
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the values usually observed for c-Si,around −0.45/○C%. Increased temperature leads to

decreased performance, which means that the temperature effects are opposite compared

to the spectral effect. The temperature coefficients for CdTe are larger then the a-Sis

coefficient but the effect is still smaller than c-Si with coefficient values of −0.25%/○C.

2.1.1 Seasonal effects

The seasonal effects for a-Si devices are caused by temperature and spectrum variation.

The performance increases due to thermal annealing and decreases due to negative

temperature coefficient. As previously mentioned, the spectrum variation will lead to

maximum performance during summer and minimum during winter. This trend is shown

in Figure 2.3 for different types of a-Si junctions. [14]

Figure 2.3: Seasonal Variation of the Operating Efficiency of Devices [14]

The seasonal performance changes are less pronounced for CIGS and CdTe compared

to a-Si. CIGS devices are less affected by the spectral variations of the incoming light,

therefore will exhibit a behaviour similar to c-Si during the change of seasons [8]. The

high dependence of their performance on operating temperature, will cause a drop in

efficiency during the summer. CdTe behaves similar in respect with seasonal variations,

but the changes are less obvious due to the low temperature dependency [8].

In this chapter, four PV technologies were analysed and compared in order to establish

the presence of metastability in the technologies. The technologies are: x-Si, a-Si,
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CdTe, and two types of CIGS(CIGS Type1 and CIGS Type2). For CIGS Type 2,

there are 5 years of available data that are used to establish the loss in performance

due to ageing and degradation. The rest of the data is for 1 year period, from February

2011 to February 2012. The data was provided by the National Renewable Energy

Laboratory (NREL) and for CIGS Type 2, from the NREL’s PVDAQ public photovoltaic

performance database1. Figure 2.4 shows typical NREL measured data of irradiance,

module temperature and module current and voltage for the modules situated at Cocoa

beach in Florida. The values are down-sampled and normalized, and are displaying the

quality and the available data. This data is used further to asses the metastability of the

technologies just mentioned and to create and test the models implemented in chapter 3

for this location.
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Figure 2.4: Normalized performance measurements from modules in Florida for a
year. Blue - Irradiance, Orange - Module Temperature, Green - Current, Light Blue -

Voltage

In order to investigate the seasonal effects, the performance ratio (PR) of the modules

was calculated. The PR refers to the relationship between actual production and tar-

geted production. For the project’s purpose, the PR was calculated for three different

ranges of irradiance and temperature. For high (1000 ± 50 W /m2, 50 ± 2 ○C), medium,

case present in Denmark, (700 ± 50 W /m2, 42 ± 2 ○C) and low irradiances (200 ± 30

W /m2, 30 ± 2 ○C) conditions. The formulas used to calculate this PRs are presented

in Equation 2.1, Equation 2.2 and Equation 2.3 where Pmp is the maximum DC power,

G is the irradiance, δPmp is the temperature coefficient used for correction, whose value

can be found in Table 2.1, Tmod is the module temperature, and the reference values

1http://maps.nrel.gov/pvdaq
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for temperature and irradiance are: Tref1000 = 50○C, Tref700 = 42○C, Tref200 = 30○C,

Gref1000 = 1000W /m2, Gref700 = 700W /m2, Gref200 = 200W /m2. The PR values are

normalized, and displayed for a year along with their monthly average, except the PR

values for CIGS Type 2, which are averaged for each 3 months.

Table 2.1: Temperature coefficients used for temperature correction of the power

Module δPmp[%/○C]

x-Si −0.31

CIGS −0.51

CdTe −0.21

a-Si −0.22

PR1000 =
Pmp

1 + δPmp(Tmod − Tref1000)
Gref1000
G

[W ] (2.1)

PR700 =
Pmp

1 + δPmp(Tmod − Tref700)
Gref700
G

[W ] (2.2)

PR200 =
Pmp

1 + δPmp(Tmod − Tref200)
Gref200
G

[W ] (2.3)

In Figure 2.5 PR1000 for c-Si can be seen. This device varies with 2% around the anual

average of 98.30% when the seasons are changing for this conditions.

Fe
b
20
11

M
ar
20
11

A
pr
20
11

M
ay
20
11

Ju
n
20
11

Ju
l 2
01
1

A
ug
20
11

Se
p
20
11

O
ct
20
11

N
ov
20
11

D
ec
20
11

Ja
n
20
12

Fe
b
20
12

M
ar
20
12

96

96.5

97

97.5

98

98.5

99

99.5

100

100.5

101

P
er
fo
rm

an
ce

R
at
io

[%
]

Florida Cocoa PR1000 xSi12922

Figure 2.5: Performance Ratio of c-Si technologie at Cocoa beach for an year using
NREL measurements showing seasonal effect for G = [950 ∶ 1050]W /m2 and

Tmod = [48 ∶ 52]○C
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It can be seen that this technology behaves as expected, having performance maxima

during winter and minima in the summer due to the high operating temperature. In

Figure 2.6 the performance ratio for lower irradiances is displayed. PR700 exhibits the

same behaviour as PR1000 concluding that at medium irradiances, x-Si still has a good

performance and does not vary that much with the change in seasons. The same cannot

be said about PR200, where it can be seen a a difference in performance up to 40% when

the seasons are changing.
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(b) G = [150 ∶ 250]W /m2 and
Tmod = [30 ∶ 32]○C

Figure 2.6: Performance Ratio of c-Si technologies at Cocoa beach for an year us-
ing NREL measurements showing seasonal effect for different irradiance and module

temperature values

Figure 2.7 shown the PR1000 for a-Si, and can be seen exhibiting a variation of 6%

around the annual average of 99.35% when the seasons are changing. This technology, as

presented before, behaves opposite compared with c-Si, and has a maximum performance

in the summer and a minimum in the winter. From Figure 2.8 it can be seen that PR700

has a similar trend as for high irradiances. At low irradiances, alongside the PR drop,

the trend present in the other two cases is not visible here any more.
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Figure 2.7: Performance Ratio of a-Si technology at Cocoa beach for an year using
NREL measurements showing seasonal effect for G = [950 ∶ 1050]W /m2 and

Tmod = [48 ∶ 52]○C
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Figure 2.8: Performance Ratio of a-Si technology at Cocoa beach for an year us-
ing NREL measurements showing seasonal effect for different irradiance and module

temperature values

The performance of CdTe increases and decreases with spectrum wavelength. Similar to

a-Si, CdTe has a maximum performance in the summer and a minimum in the winter.

When the seasons are changing, PR1000 varies with 4% around the annual average of
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100.04%. The spectral effect of this technology can be seen in Figure 2.9. Similar to a-Si,

at medium irradiance, CdTe still has a good performance but at low irradiances, the

trend visible with the changes in seasons cannot be seen any more and the performance

variation is very big. This can be seen in Figure 2.10.
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Figure 2.9: Performance Ratio of CdTe technology at Cocoa beach for an year using
NREL measurements showing seasonal effect for G = [950 ∶ 1050]W /m2 and

Tmod = [48 ∶ 52]○C
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Figure 2.10: Performance Ratio of CdTe technology at Cocoa beach for an year
using NREL measurements showing seasonal effect for different irradiance and module

temperature values
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PR1000 for CIGS can be seen in Figure 2.11. In this conditions, his device varies with

4.12% around the annual average of 96.99% when the seasons are changing. This tech-

nology behaves similar to c-Si. In February 2012, the PR has a 4% decrease in value

from the value seen in February 2011 . This can be associated with degradation of the

module.
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Figure 2.11: Performance Ratio for thin-film CIGS system over the period April
2011-March 2016 in Golden Colorado for G = [950 ∶ 1050]W /m2 and

Tmod = [48 ∶ 52]○C
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Figure 2.12: Performance Ratio for thin-film CIGS system over the period April
2011-March 2016 in Golden Colorado for different irradiance and module temperature

values
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For CIGS Type 2 a drop in PR1000 is noticeable , the module starts in 2011 with a average

PR of 89% and until 2015 the PR drops approximately 11% reaching an average PR of

78%. In the literature, the degradation for this device, as exposed in the introduction

is expected to be 1.5% /year if the panels are installed prior to the year 2000, and 1%

/year if they are installed after the year 2000.
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Figure 2.13: Performance ratio for thin-film CIGS system over the period April 2011
- March 2016 in Cocoa Florida for G = [950 ∶ 1050]W /m2 and

Tmod = [48 ∶ 52]○C
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Figure 2.14: Performance ratio for thin-film CIGS system over the period April 2011
- March 2016 in Cocoa Florida for different irradiance and module temperature values
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The average performance at medium irradiances PR700 decreased with 7%. The degra-

dation is visible also at low irradiances but in 2015, the average PR200 is just with

2% lower than in 2011. The response for medium and low irradiance can be seen in

Figure 2.14

2.1.2 Diurnal effects

The PR of a-Si technologies is decreasing with light exposure, meaning that we should

see a bigger PR in the morning than for the rest of the day. The PR formula used for

this study is given in Equation 2.4. Due to the effect of the module temperature, that

can be seen in Figure 2.15, the PR was temperature corrected and its formula can be

found in Equation 2.5, where the temperature reference, in this case is Tref = 25○C and

the irradiance reference is Gref = 1000W /m2.

PR = Pmp
G

Gref
(2.4)

PRcorrected =
Pmp

1 + δPmp(Tmod − Tref)
Gref

G
(2.5)
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Figure 2.15: Module temperature effect on the PR of the module in spring period for
a c-Si at Cocoa beach Florida
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In general the PR of thin-film technologies, corrected for temperature, decreases at

increasing wavelength of the solar spectrum. This effect is more evident in a-Si, where

it has to be pointed out that the Staebler-Wronski effect plays a certain role.

In Figure 2.16, a clear sky day from spring showing the PR of the PV technologies

studied in this chapters is displayed. To further check the presence of diurnal effect, the

PR as a function of irradiance, with and without temperature correction, was plotted

in Figure 2.17 for c-Si and a-Si technologies.
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Figure 2.17: PR vs. Irradiance for a day in spring season showing the difference when
there is no temperature correction and when the temperature is corrected at 25○C

A clear sky day from the summer is plotted in Figure 2.18 showing the PR of the

technologies. In Figure 2.19, the PR as a function of irradiance for a-Si and c-Si is

shown. No diurnal effect can be seen in this case.
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Figure 2.18: PR for a clear sky day in summer for Florida Cocoa beach comparing
the four technologies
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Figure 2.19: PR vs. Irradiance for a day in summer season showing the difference
when there is no temperature correction and when the temperature is corrected at 25○C

In autumn, the temperatures are lower, therefore a drop in PR can be seen in Figure 2.20

for a-Si. This technology still does not present any signs of diurnal effect. The PR as a

function of irradiance can be seen in Figure 2.21.
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Figure 2.20: PR for a clear sky day in autumn for Florida Cocoa beach comparing
the four technologies
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Figure 2.21: PR vs. Irradiance for a day in autumn season showing the difference
when there is no temperature correction and when the temperature is corrected at 25○C

2.2 Conclusions

During this analysis, several conclusions where drawn assessing the metastability of this

four PV modules. a-Si module displays the biggest seasonal effect but does not present

any diurnal effect.

At medium irradiances, the modules still have a good PR, therefore, working with thin-

film technologies in Denmark should not have any downside coming from the irradiance

values.

Due to the PR variation caused by the change of season and the degradation of the

module each year, it is recommended to retrain the model data twice per year. Once at

the beginning of the year and once in the summer period in order to keep the accuracy

of the model high as possible.



Chapter 3

Performance Modeling

3.1 Performance models

PV performance models are used to estimate how much power a PV system will produce

at a given location, with characteristic weather conditions, as a function of irradiance

and module temperature. Many computer models and algorithms for determining the

performance of the PV systems were developed in the last couple of years. The report

in [15] presents the most important PV performance models developed. The models

were developed for different applications such as PV plant planning, yield assessment or

performance monitoring, and thus take different modeling approaches, however they all

predict the energy as a function of irradiance and cell temperature. While some models

represent the full IV curve, others estimate only the maximum power point (MPP),the

short circuit current and open circuit voltage [16]. In this project we focus on point-

value models, that estimate the MPP from local irradiance and module temperature

measurements.

From all the technologies available, only a CIGS and a xSi were chosen for this part of

the study. The focus is on CIGS from the thin-film technologies due to the fact that, in

the FASE project the PV plants are based on CIGS modules.

Four modules are selected, two CIGS type 1 and two xSi. A pair of CIGS-xSi were

situated at Cocoa beach in Florida and the other pair was located in Golden, Colorado.

It is important to see how different geographical locations having different meteorological

characteristics affect the performance of the modules and the data set requirement for

24
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the model identification. Data from each module was collected over the course of a year

starting in Cocoa in January 2011 and in Golden in August 2012. In order to compare

the performance of the technologies and to deal with the challenges that appear, IV data

was used to estimate the parameters of the chosen model, using regression methods that

are explained later in this chapter. In the problem formulation all the challenges where

presented and in this chapter the following are analysed :

� Training dataset size

� Training dataset irradiance distribution

� Measurement procedure of irradiance

As explained in the problem formulation, in practice we need to know the minimum

amount of time/data needed in order not to cause underfitting/overfitting of the perfor-

mance model. This analysis is done using measured data from a CIGS type 1 module.

Two different test datasets where selected having the same size from two different sea-

sons, summer and winter. The size of the training dataset varies and data was used also

from different seasons. Statistical errors are calculated for each training-test dataset

combination. The results of this analysis are presented in section 4.3.

The resulting PV performance models should not be biased for certain irradiance values.

Therefore the training dataset becomes dependent on a good distribution of irradiance

data. Due to the fact that the accuracy of the model is influenced by the geographical

location and weather conditions, for this analysis, data from a CIGS type 1 and a xSi

module from Cocoa and another CIGS type 1 and xSi module from Golden, where used

to create training and test datasets. The datasets have different irradiance distribution.

Each training dataset is tested on different test datasets to establish what combination of

training-test dataset irradiance distribution is the best. Statistical errors are calculated

for every case. The results of this analysis are presented in section 4.4.

Another analysis done in this project is the measurement procedure and the difference

that appears in the accuracy of the model when using effective irradiance instead of

global irradiance as an input. The irradiance data for the modules used in this project are

measured using a pyranometer, therefore we used the global irradiance for all the analysis

done so far. Using effective irradiance Ee removes the losses caused by reflectance and the
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solar spectrum variation effects[5]. The influence of irradiance and module temperature

becomes more easily studied in the performance of the model. The formula for Ee is

given in Equation 3.1 as a function of Isc [6]. The same analysis as for the training

dataset distribution was done, with the difference that now, as an input to the model,

we use Ee instead of global irradiance. Statistical errors are calculated for every case.

The results of this analysis are presented in section 4.5.

Ee =
Isc

Isc0[αIsc(Tc − T0)]
(3.1)

Where αIsc[1/○C] is the normalized temperature coefficient for Isc, Isc0 is the short-

circuit current at STC, Tc is the module temperature and T0 is the reference module

temperature, T0 = 25○C.

The analysis is conducted based on periods of clear sky, cloudy sky days and a com-

bination between this two. A clear sky day, or a sunny day is considered, when the

irradiance does not present significant variations and has a smooth evolution/profile

throughout the day, like in Figure 3.1a. A cloudy day presents big variations between

the irradiance points caused by the presence of clouds. An example of cloudy day can

be seen in Figure 3.1b.
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(b) Cloudy sky day

Figure 3.1: Example of sunny and cloudy day

Looking at the irradiance distribution, a sunny day will always have the more samples

at high irradiance, whilst a cloudy day will have more at low irradiances. In Figure 3.2

the distribution of irradiance from the days shown above is displayed.
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(b) Cloudy sky day

Figure 3.2: Distribution of measurement samples vs. irradiance for a sunny and a
cloudy sky day

3.2 Irradiance profile for Denmark

In Figure 3.3 the monthly average irradiance distribution and average module tempera-

ture are shown, together with the number of sunny days available each month in three

different geographical locations. It can be seen that the highest average irradiance are

at Cocoa, followed by Golden. In these two locations, the seasonal change does not have

a big impact on the values of the irradiance and temperature. When looking at Aalborg,

besides the big differences between seasons, the average irradiance and temperature is

smaller in comparison with the other two locations.
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(b) Golden 2012-2013
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(c) Aalborg 2013

Figure 3.3: Monthly average of irradiance and module temperature together with the
number of sunny days/month for three different geographic locations, Cocoa-Florida,

Golden-Colorado and Aalborg-Denmark

Figure 3.4 shows only the number of sunny days/month provided at each location for

the available period. In the year 2013, Aalborg had only 36 days of clear sky. Less than

the other two locations. In can be said that in Aalborg, for year 2013, there was 10% of

clear sky days. This will help create one of the test cases that will be used to analyze

how the dataset irradiance distribution, the dataset size and the method of irradiance

measurements affects the accuracy of the model implemented.
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Figure 3.4: Number of sunny days/month for three different geographic locations,
Cocoa-Florida, Golden-Colorado and Aalborg-Denmark

3.3 Method for model identification

In this project, linear regression is used in order to parametrized the PV performance

model. The performance parameters of the PV panels change in time due to degradation

and ageing, and will differ from the initial datasheet values, thus we need to identify

them periodically. Each model has a different number of parameters that need to be

identified. The formula for the generic multiple linear regression model is shown in

Equation 3.2.[17]

P̂mp = β0 +
k

∑
i=1
βixi + ε = y (3.2)

Where, y is the response variable (in this case Pmp) that is related to k regressors

variables, βi are the regression coefficients that are to be calculated and ε is an error

variable that adds noise to the linear relationship between the regression coefficients and

the predictor values [17].

Figure 3.5 shows the parametrization and validation of the PV model parameters. This

process consists in two big phases, the training phase and the testing phase.
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Figure 3.5: Diagram of training and test phase showing how the PV model parameters
are obtained and validated

The training phase consists in gathering measurement data (power, irradiance and mod-

ule temperature) from the PV system functioning normal and without faults. In order

to improve the prediction result, low quality data is filtered out, by removing measure-

ments at low irradiances (below 50 W /m2). Once the training dataset has a sufficient

size, a PV performance model is specified. Having all this information available, the

training phase is parametrizing the model using regression modelling. The parameters

are estimated using the method of least squares, which is a typical method used to

estimate the regression coefficients in a multiple linear regression model. The method

optimizes the regression coefficients (β) such as the sum of the squares of the errors is

minimized. The normal equations are expressed in matrix notation for it to be easier to

solve. Therefore, Equation 3.2 may be written in matrix notation as Equation 3.3 [17].

y =Xβ + ε (3.3)
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Where: y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

⋮

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

⋮ ⋮ ⋮ ⋮

1 xn1 xn2 . . . xnk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1

β2

⋮

βn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

⋮

εn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
After calculations and simplifications that can be found explained more detailed in [17],

the least squares estimator of β is given in Equation 3.4, providing the final values for

the model parameters.

β̂ = (X ′ ⋅X)−1 ⋅X ′ ⋅ y (3.4)

Besides the power, irradiance, module temperature, and the model type, the test phase

receives as an input from the training phase the model parameters. This phase predicts

the power of the PV module. In order to determine the accuracy of the models, a

prediction error is calculated for each point using Equation 3.5.

Errorprediction =
Y − Ypredicted

Y
⋅ 100 (3.5)

Where, Y is the measured value and Ypredicted is the estimated value. Root-mean-square-

error and mean-absolute-error are calculated to have an overview of the accuracy on the

entire test period. Formulas and explanation of this statistical errors are given below.

3.4 PVWatts vs. SAPM

3.4.1 SAPM

SAPM is a photovoltaic array performance model developed at Sandia National Labora-

tories and is empirically based. Individual equations used in the model are derived from

individual solar cell characteristic therefore the model holds a good accuracy. Extensive

outdoor module testing and several comparison studies validated the approach of this

model [6]. On the official Sandia website1a database of module performance parame-

ters is maintained containing results from outdoor performance tests on the available

commercial modules .

1http://www.sandia.gov/pv
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Testing and modeling of PV module performance is challenging due to the influence

of the environment and the physics of the solar cell. An effective performance model

should be able to separate and establish the effect of all influencing factors.

The equations defining the model are expressed below and are describing the electrical

performance for individual photovoltaic modules, and can be adapted to any number of

series or parallel modules in an array.

The equations used in this project are given in Equation 3.6 through Equation 3.8

and they are used to calculate the expected power, having local ambient information

available, like irradiance and module temperature. The parameters highlighted in red

are found using the regression modeling method explained previously in section 3.3.

Imp = Imp0[C0E +C1E
2][1 + αImp(Tc − T0)] (3.6)

Vmp = Vmp0 +C2Nsδ(Tc)ln(E) +C3Nsδ(Tc)ln(E)2 + βVmp(E)(Tc − T0) (3.7)

Pmp = ImpVmp (3.8)

Parameter definition:

� E = Solar irradiance. [W /m2]

� Imp= Current at the maximum power point [A]

� Isc= Short-circuit current [A]

� Isc0= Short-circuit current at STC [A]

� Vmp=Voltage at maximum power point [V]

� Imp0= Maximum current at STC [A]

� Vmp0= Maximum voltage at STC [V]

� Pmp=Power at maximum power point [W]

� C0,C1 = Empirically determined coefficients relating Imp

� C2,C3 = Empirically determined coefficients relating Vmp (C3[1/V ])
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� n = Diode factor

� Tc = Module temperature [○C]

� T0 = Reference cell temperature, typically 25○C

� E0 = Reference solar irradiance, typically 1000W /m2

� αImp = Normalized temperature coefficient for Imp[1/○C]

� βVmp = Normalized temperature coefficient for Vmp[V /○C]

� δ(Tc) = n⋅k(Tc+273.15)
q - ‘Thermal voltage’ per cell at temperature Tc.

� k = 1.3806503 ⋅ 10−23 - Boltzmann constant [J/K]

� q = 1.6022 ⋅ 10−19 - Electron charge [coulomb]

� Ns = Number of cells in series in a module’s cell-string

A generic model is derived, P̂mpSAPM
where the non-linearities of this model are sepa-

rated in linear terms standing for predictor variables. The predictor variables are defined

below and the the linear regression model defined in Equation 3.2 is applied [17].

x1 = Ns⋅k⋅δ(Tc)⋅ln(E)
q ; x2 = Ns⋅k⋅δ(Tc)⋅ln(E)2

q ; x3 = Tc − T0; x4 = E;

x5 = E2; x6 = E(Tc − T0); x7 = E2(Tc − T0);

3.4.2 PVWatts

PVWatts is a simpler PV performance model, alternative for SAPM that can be found

in [5]. A comparison between measured and modeled maximum power Pmp for PV

modules that rely on different technologies was conducted. After the evaluation of the

three models presented in this paper, an improved power temperature coefficient model

with an irradiance non-linearity correction was developed, known as the PWVatts model.

This model is necessary when at lower irradiances, the PV module efficiency starts to

show a strong nonlinearly with the irradiance, and thus a linear approximation is no

longer possible this causing the model to overestimate performance. PVWatts is taking

into account two irradiance regions and inserts an irradiance correction factor. The

irradiance regions are ≤ 200W /m2 and > 200W /m2. The equation for the irradiance
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correction factor can be found in Equation 3.9, while Equation 3.10 and Equation 3.11

are providing the formulas representing the model. Again, the parameters highlighted

in red are found using regression modelling methods.

k = Pm(EL, T ) − Pmeas(EL, T )
Pm0

(3.9)

Pm = Pm0

⎡⎢⎢⎢⎢⎣

E

E0
[1 + γ(T − T0)] − k

E0 −E
E0 − 200

⎤⎥⎥⎥⎥⎦
, for E > 200W /m2 (3.10)

Pm = Pm0

⎡⎢⎢⎢⎢⎣

E

E0
[1 + γ(T − T0)] − k[1 − (1 − E

200
)
4

]
⎤⎥⎥⎥⎥⎦
, for E ≤ 200W /m2 (3.11)

Parameter deffinition:

� E = Solar irradiance.[W /m2]

� k = Irradiance correction factor

� EL = Effective low irradiance, 200W /m2

� E0 = Reference solar irradiance, typically 1000W /m2

� T = Module temperature[○C]

� T0 = Reference cell temperature, typically 25○C

� Pm(EL, T ) = The value of Pm for EL and T without the irradiance correction

factor, k

� Pmeas(EL, T )= measured Pm for EL and T

� γ = maximum power correction factor for temperature [1/○C]

The generic model derived from PVWatts is P̂mpPV Watts
, where the non-linearities of

this model are separated in linear terms standing for predictor variables. The predictor

variables are defined below for the two different ranges of irradiance.

For E ≤ 200W /m2: x1 = E
1000 ; x2 = E

1000 ⋅ (Tc − T0); x3 = (1 − E
200

)4;

For E > 200W /m2: x1 = E
1000 ; x2 = E

1000 ⋅ (Tc − T0);
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The model’s estimated power and measured power were compared using root-mean-

square-error (RMSE) and mean-absolute-error (MAE) statistics. RMSE shows the dif-

ference between the estimated values and the measured values, while MAE provides the

average absolute deviation of the modeled values from the measured values [5]. Both

have positive values and their formulas are shown in Equation 3.12 and Equation 3.13.

The errors are calculated as a percentage of the measured value.

RMSE = 100%[ 1

n

n

∑
i=1

(yi − xi)2]
1
2

÷ [ 1

n

n

∑
i=1
xi] (3.12)

MAE = 100%[ 1

n

n

∑
i=1

∣yi − xi∣] ÷ [ 1

n

n

∑
i=1
xi] (3.13)

Where yi is the ith estimated value, xi is the ith measured value and n is the number of

measured and estimated values.
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Results

4.1 Definition of Test Cases

In order to analyse the influence of the dataset distribution on the PV model accuracy,

different sets of conditions are created, under which the accuracy of the model is tested

based on the irradiance distribution of the training and test dataset. Many cases where

found to be relevant, but it was not possible to implement and test them all. We

found it important to see how a dataset distribution having only sunny or cloudy days

would affect the accuracy of the performance models. Therefore, four sunny and four

cloudy days were used to create the first two datasets. A distribution created by equally

combining sunny and cloudy days was also considered. Two sunny and two cloudy

days formed the third dataset. Due to the irradiance profile in Denmark, a distribution

where 10% of the irradiance data came from sunny days was studied. One sunny day

and nine cloudy days formed the last dataset considered in this analysis. These four test

cases(TC) are proposed and tested as shown in Table 4.1.

36
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Table 4.1: Defined TC by training dataset and test dataset

Training dataset Test dataset Code

4 sunny days 4s-4s

4 cloudy days 4s-4c

2 sunny and 2 cloudy days 4s-2s2c
4 sunny days

1 sunny and 9 cloudy days 4s-1s9c

4 sunny days 4c-4s

4 cloudy days 4c-4c

2 sunny and 2 cloudy days 4c-2s2c
4 cloudy days

1 sunny and 9 cloudy days 4c-1s9c

4 sunny days 2s2c-4s

4 cloudy days 2s2c-4c

2 sunny and 2 cloudy days 2s2c-2s2c
2 sunny and 2 cloudy days

1 sunny and 9 cloudy days 2s2c-1s9c

4 sunny days 1s9c-4s

4 cloudy days 1s9c-4c

2 sunny and 2 cloudy days 1s9c-2s2c
1 sunny and 9 cloudy days

1 sunny and 9 cloudy days 1s9c-1s9c

Each train-test case was given a code to simplify further explanations and display of

results. The numbers in the code represent how many days where used to form the

dataset and the letter represents the type of days(sunny/cloudy) used in the dataset.

The purpose of testing these TC is to observe how the accuracy of the model changes

depending on the irradiance distribution.

All the errors statistics are expressed in tables for a specific applied model and different

train-test datasets. The errors are calculated for three irradiance regions to establish

which region is more problematic for the accuracy of the model:

� L - low irradiances, < 400W /m2

� M - medium irradiances, 400W /m2 − 800W /m2

� H - high irradiances, > 800W /m2
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4.2 Comparison of SAPM vs. PVWatts

Table 4.2 gives modeling error statistics for Pmp using SAPM and PVWatts models on

a CIGS module considering four different cases.

Table 4.2: RMSE and MAE statistics for Pmp by model and case

Code

PVWatts SAPM

RMSE [%] MAE[%] RMSE[%] MAE[%]

L M H L M H L M H L M H

4s-4s 7.34 0.94 0.35 3.80 0.80 0.29 7.77 0.98 0.35 5.44 0.84 0.29

4s-4c 17.20 2.14 0.93 13.04 1.84 0.74 18.58 2.23 0.97 15.24 1.87 0.79

4c-4s 11.84 1.48 0.94 8.53 1.22 0.89 12.59 1.44 0.94 9.59 1.12 0.86

4c-4c 12.24 1.12 0.54 8.85 1.01 0.41 12.85 1.26 0.56 9.26 1.12 0.45

In Table 4.2 the comparison between models illustrate that for all modules, both models

can predict maximum power point with similar level of accuracy, but at low irradiance,

the PVWatts model is slightly better. At medium and high irradiances, both mod-

els provide a good accuracy of approximately 1-2 %. Due to the good accuracy and

low complexity of the model, the PVWatts model was applied further in the analysis

conducted in the project. These results are visually represented in section A.2.

4.3 Analysis of dataset size

Two different test datasets where built having a 10 days of data measured each 5 minutes

from two different seasons, summer and winter. The size of the training varies(10 days,

20 days, 40 days) and are collected also once from summer and once from winter. In

Table 4.3 statistical errors are calculated for each train-test dataset combination. To be

specified that the days used to built the datasets are consecutive and the irradiance used

as an input to the model is the global irradiance. The model applied is the PVWatts

model. The statistical errors are calculated for three different irradiance ranges.

Taking each situation separately, we have:
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Table 4.3: RMSE and MAE statistics for Pm using PVWatts model for four cases in
order to establish the training dataset size

PVWatts
RMSE [%] MAE [%]Test Training

Nr.days
of

training L M H L M H

10 11.22 1.65 1.39 7.67 1.25 0.88
20 11.5 2.47 1.51 8.25 2.04 0.87Summer
40 12.40 1.65 1.3 8.38 1.25 0.79
10 13.15 2.1 0.85 9.88 1.17 0.68
20 10.48 3.33 1.17 7.66 2.75 1.04

10 days
of

Summer
Winter

40 10.46 2.07 0.71 7.65 1.14 0.56

10 16.84 2.38 1.75 12.08 1.94 1.44
20 16.21 2.06 1.65 11.63 1.61 1.3Summer
40 15.92 1.96 1.57 11.4 1.99 1.18
10 8.6 1.92 0.6 5.74 1.02 0.47
20 8.55 1.91 0.6 5.52 1.01 0.47

10 days
of

winter
Winter

40 9.26 1.91 0.57 5.54 1.05 0.45

� Case 1: If the training dataset is collected during the summer and tested in the

summer, the differences in accuracy provided by the size of the training dataset

are very small.

� Case 2: If the training dataset is collected during the winter and tested in the

summer, it seems to provide better accuracy a training dataset having a bigger

size.

� Case 3: If the training dataset is collected during the summer and tested in the

winter, the errors increased comparing them to Case 1, and increasing the size of

the training dataset does not have a big influence.

� Case 4: If the training dataset is collected during the winter and tested in the

winter the errors are smaller than compared with Case 2, due to the similar irra-

diance distribution of the training dataset and test dataset . Increasing the size of

the training dataset does not have a big influence.

In Figure 4.1 the measured power vs. the predicted power is plotted to highlight the

difference of the fitting when the training dataset varies and is formed in winter and

tested on a fixed test dataset in summer and winter.
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(f) Training: 40 days of win-
ter, Test:10 days of winter

Figure 4.1: Measured power vs. predicted power using a varying training dataset
from winter and tested on a fixed size test dataset number from summer and winter

4.4 Analysis of dataset distribution

All TC named by code discussed in section 4.1 are implemented and tested in order to

see how the distribution of irradiance affects the accuracy of the model. Considering the

different periods available from the two locations and the different weather conditions,

the days used for the TC do not correspond, but they are from the same periods. For

example, if for the 4s dataset in Cocoa, the 4 days are from 19 -22 September, in Golden,

those 4 days will not be the same, but they will still be 4 sunny days from September or

the beggining of October. Also, the number of samples from each location is different,

at Cocoa, the measurements are done each 5 minutes, while at Golden they are done

each 15 minutes. The TC are compared by using statistical errors and in Table 4.4 and

Table 4.5 the results of the analysis conducted for the data from Cocoa and Golden are

presented. To be noted that the irradiance used for this analysis is the global irradiance.

The best and worse scenario are highlighted using green and red colours.

In Figure 4.2 the irradiance distribution for the four training datasets is displayed.
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Table 4.4: RMSE and MAE statistics for Pm using PVWatts model for all test cases
studying the irradiance distribution impact at Cocoa Beach, Florida

Code

Location: Cocoa , Model: PVWatts
Module: CIGS Module: xSi

RMSE [%] MAE [%] RMSE [%] MAE [%]
L M H L M H L M H L M H

4s-4s 7.35 0.94 0.36 3.81 0.80 0.30 8.71 1.16 0.75 4.79 1.03 0.64

4s-4c 17.20 2.14 0.93 13.04 1.84 0.74 15.65 1.87 1.01 11.48 1.44 0.86

4s-2s2c 22.91 4.55 2.62 18.05 3.94 2.58 15.07 2.4 0.9 12.43 1.46 0.75

4s-1s9c 17.01 2.91 0.98 14.3 2.51 0.84 13.06 2.56 1.68 11.36 1.91 1.32

4c-4s 11.84 1.48 0.95 8.54 1.22 0.89 12.47 0.75 0.73 8.66 0.64 0.59

4c-4c 12.25 1.12 0.55 8.85 1.01 0.41 13.22 1.39 0.64 7.88 1.11 0.52

4c-2s2c 14.35 2.64 1.7 11.93 2.08 1.63 11.16 1.83 0.69 9.32 1.27 0.55

4c-1s9c 8.51 1.59 0.88 6.94 1.24 0.67 11.28 1.71 0.88 9.15 1.37 0.71

2s2c-4s 22.02 3.99 2.56 19.65 3.81 2.48 14.77 0.92 0.80 11.68 0.72 0.60

2s2c-4c 13.49 3.04 1.49 8.84 2.50 1.37 10.84 1.62 0.85 7.04 1.24 0.60

2s2c-2s2c 12.39 2.42 0.55 9.53 1.98 0.37 9.85 1.80 0.53 7.35 1.35 0.42

2s2c-1s9c 8.01 1.54 0.83 6.13 1.24 0.69 6.13 3.56 2.49 4.83 3.35 2.39

1s9c-4s 16.74 2.22 0.83 14.57 1.83 0.72 13.38 0.82 0.79 10.72 0.66 0.63

1s9c-4c 10.88 2.10 0.82 6.98 1.67 0.61 9.21 1.75 0.75 5.87 1.43 0.57

1s9c-2s2c 13.53 2.79 2.10 11.10 2.25 2.04 10.19 1.81 0.57 7.33 1.35 0.43

1s9c-1s9c 8.06 1.73 0.85 6.11 1.29 0.68 6.76 1.44 0.66 5.14 1.17 0.52

Table 4.5: RMSE and MAE statistics for Pm using PVWatts model for all test cases
studying the irradiance distribution impact at Golden, Colorado

Code

Location: Golden , Model: PVWatts
Module: CIGS Module: mSi

RMSE [%] MAE [%] RMSE [%] MAE [%]
L M H L M H L M H L M H

4s-4s 2.65 0.93 0.45 1.75 0.84 0.38 2.41 0.82 0.46 1.67 0.72 0.40

4s-4c 11.87 1.22 0.83 7.24 1.05 0.76 13.08 1.83 1.20 8.13 1.69 0.94

4s-2s2c 10.53 2.89 2.66 6.24 2.56 2.49 10.81 1.52 0.85 7.18 1.28 0.72

4s-1s9c 23 4.71 2.87 20.05 4.23 2.82 21.8 3.51 0.66 19.63 2.55 0.52

4c-4s 7.05 1.28 0.68 6.27 1.10 0.59 8.17 1.16 1 7.36 0.94 0.66

4c-4c 8.25 0.94 0.46 7.05 0.80 0.39 7.85 1.12 0.58 6.61 0.92 0.52

4c-2s2c 8.64 1.44 0.89 7.65 1.25 0.81 9.78 1.15 1.08 8.48 0.74 0.86

4c-1s9c 18.02 3.12 0.84 16.37 2.55 0.63 18.48 2.56 1.69 16.78 1.59 1.49

2s2c-4s 5.91 1.18 0.49 4.06 1.09 0.40 5.18 0.69 1.35 4.00 0.58 1.22

2s2c-4c 30.41 3.68 1.01 27.87 3.45 0.77 26.83 1.47 1.09 24.54 1.37 0.98

2s2c-2s2c 5.36 1.37 0.75 3.96 1.22 0.65 4.80 1.20 0.55 3.51 1.08 0.48

2s2c-1s9c 18.56 3.31 0.83 15.72 2.69 0.71 20.5 3.71 0.99 17.38 2.87 0.85

1s9c-4s 17.51 1.83 0.91 16.54 1.39 0.87 17.37 2.33 0.59 16.54 1.99 0.54

1s9c-4c 9.49 2.69 2.50 7.49 2.34 2.47 8.45 0.92 0.27 6.64 0.65 0.20

1s9c-2s2c 21.59 2.43 0.62 20.29 1.70 0.48 19.32 2.32 0.38 18.16 1.76 0.28

1s9c-1s9c 9.30 2.21 0.64 7.08 1.75 0.50 8.58 1.88 0.46 6.61 1.50 0.37
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(b) 4 cloudy days (4c)
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(c) 2 sunny and 2 cloudy days (2s2c)

[0
-1
00
)

[1
00
-2
00
)

[2
00
-3
00
)

[3
00
-4
00
)

[4
00
-5
00
)

[5
00
-6
00
)

[6
00
-7
00
)

[7
00
-8
00
)

[8
00
-9
00
)

[9
00
-1
00
0)

[1
00
0-
11
00
)

[1
10
0-
12
00
)

0

20

40

60

80

100

120

140

Irradiance [W/m2]

N
u
m
b
er

m
ea
su
re
m
en
t
sa
m
p
le
s

(d) 1 sunny and 9 cloudy days (1s9c)

Figure 4.2: Distribution of irradiance vs. number of samples for the four training
datasets

There are no big differences between the accuracy of the model applied on the two

modules even though they are different technologies. At low irradiances, the errors are

large for both modules. At medium irradiance, the errors for all the TC applied for

CIGS module are below 5%, while for xSi, are slightly smaller, below 4%. At high

irradiances, both modules have errors below 1% for the majority of the cases. The

values are different for the two locations which proves that the geographical location

and weather conditions will change the behaviour of the model. It can be seen that

having a similar distribution for the training dataset as for the test dataset will provide

better results. From Figure 4.3 to Figure 4.6 it is shown how different training dataset

distributions affects the accuracy of the model by presenting the measured and predicted

power and the prediction error for the entire test period, when the test dataset remains

the same.
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Figure 4.3: Training dataset made of 4 sunny days and test dataset of 2 sunny and 2
cloudy days (4s − 2s2c)

For the 4s − 2s2c case, the irradiance distribution of the training dataset is different

from the test dataset, having more sample points at high irradiances. It can be seen in

Figure 4.3 that during the sunny days, the model is accurate, and the prediction error is

quite small, except for the points at low irradiance. For the cloudy days, the difference

between the predicted and measured power becomes larger and therefore the prediction

error is increased, reaching in some points over 50%.
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Figure 4.4: Training dataset made of 4 cloudy days and test dataset of 2 sunny and
2 cloudy days (4c − 2s2c)

For the 4c − 2s2c case, the irradiance distribution of the training dataset is similar to

the test dataset. It can be seen in Figure 4.4 that the the estimated power fits better

the measured power for cloudy days and does not seem to have a decrease of accuracy

when applied on the sunny days. The prediction error is below 50% for all points and
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from a RMSE of 22.91% at low irradiances, reaches a RMSE of 14.35%. Also for the

other two irradiance ranges, the errors drop to half.
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Figure 4.5: Training dataset made of 2 sunny and 2 cloudy days and test dataset of
2 sunny and 2 cloudy days (2s2c − 2s2c)

The case where the distribution of the training dataset is the same as the test dataset

is the best scenario. Therefore, the 2s2c − 2s2c case can be seen in Figure 4.5. The

prediction error dropped below 25% for all points and the RMSE and MAE values are

the best so far, with a RMSE at high irradiances below 1%.
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Figure 4.6: Training dataset made of 1 sunny and 9 cloudy days and test dataset of
2 sunny and 2 cloudy days (1s9c − 2s2c)

The 1s9c − 2s2c case has a training dataset distribution similar with the test dataset

at medium and low irradiances, but has extra sample points at high irradiance. This

does not affect the accuracy of the model due to the fact that the test dataset does not

include many samples at high irradiance. Therefore, in Figure 4.6 the prediction error
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is still below 25%, but the RMSE values for the three different irradiance ranges are

bigger compared with the previous case.

4.5 Analysis of measurement procedure

Instead of global irradiance, in this study, the effective irradiance was used. The TC are

kept the same and also the model used. In Table 4.6 the statistical errors are presented.

It can be seen that at low irradiances, the model has a better accuracy when using

effective irradiance for both modules. But, for xSi, the error for all ranges of irradiance

is below 2%. The best and worse scenario is highlighted using green and red colours.

Table 4.6: RMSE and MAE statistics for Pm using PVWatts model for all test cases
studying the effective irradiance distribution impact at Cocoa Beach, Florida

Code

Location: Cocoa , Model: PVWatts

Module: CIGS Module: xSi

RMSE [%] MAE [%] RMSE [%] MAE [%]

L M H L M H L M H L M H

4s-4s 3.73 1.05 0.34 2.39 0.98 0.27 0.84 0.50 0.40 0.53 0.32 0.32

4s-4c 5.21 1.72 0.69 3.63 1.38 0.56 1.08 0.89 1.21 0.69 0.64 0.88

4s-2s2c 9.07 3.81 3.11 7.59 3.61 3.08 0.61 0.51 0.61 0.40 0.39 0.51

4s-1s9c 4.15 1.71 0.85 2.97 1.36 0.67 1.35 0.58 1.15 0.83 0.44 0.86

4c-4s 4.04 1.24 0.57 3.17 1.05 0.50 1.63 0.75 0.33 1.14 0.58 0.28

4c-4c 4.57 1.61 0.43 2.52 1.47 0.32 1.41 0.55 0.53 0.75 0.40 0.41

4c-2s2c 9.03 3.19 2.47 7 3.03 2.44 1.24 0.66 0.34 0.81 0.53 0.28

4c-1s9c 3.95 1.31 0.68 2.71 1.08 0.57 1.13 0.65 0.61 0.73 0.54 0.45

2s2c-4s 7.53 3.95 2.96 5.94 3.78 2.89 1.31 0.59 0.70 0.77 0.43 0.54

2s2c-4c 8.96 4.20 2.30 6.82 3.96 2.23 0.89 0.63 0.92 0.62 0.49 0.63

2s2c-2s2c 3.00 1.08 0.36 2.47 0.92 0.29 0.68 0.53 0.42 0.46 0.40 0.35

2s2c-1s9c 6.13 3.56 2.49 4.83 3.35 2.39 0.97 0.56 0.86 0.65 0.44 0.65

1s9c-4s 3.97 1.37 0.74 3.12 1.15 0.63 1.39 0.80 0.53 0.91 0.67 0.40

1s9c-4c 4.04 1.66 0.63 3.07 1.53 0.42 1.10 0.60 0.63 0.65 0.48 0.43

1s9c-2s2c 6.95 2.84 2.48 5.38 2.61 2.44 1.12 0.79 0.35 0.69 0.68 0.28

1s9c-1s9c 3.15 1.33 0.66 2.30 1.17 0.54 1.03 0.78 0.55 0.67 0.68 0.41
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It was expected that the accuracy of the model to be better when using effective irradi-

ance instead of global irradiance due to the fact that the reference cells behaves similar

to PV panels. Even though they are only available for the c-Si technologies, therefore the

better results provided by the xSi module, the reference cells removes the losses caused

by reflectance and the solar spectrum variation effects. From Figure 4.7 to Figure 4.10

it is shown how using effective irradiance improves the accuracy of the models at low

irradiances, by presenting the measured and predicted power and the prediction error

for the entire test period in comparison with the prediction error given by the model

when using global irradiance. The test dataset size and distribution does not change.
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Figure 4.7: Training dataset made of 4 sunny days and test dataset of 2 sunny and 2
cloudy days (4s − 2s2c) using effective irradiance

For the 4s−2s2c case, the fitting improved for low irradiances and cloudy days compared

to the same case but when global irradiance was used. The RMSE dropped with 13%

percent at low irradiance, but having a different distribution of datasets creates a bigger

mismatch between the predicted and measured power.
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Figure 4.8: Training dataset made of 4 cloudy days and test dataset of 2 sunny and
2 cloudy days (4c − 2s2c) using effective irradiance

In the 4c − 2s2c case, the RMSE dropped only with 5% percent at low irradiance. This

case responds slightly better at high irradiance than the 4s−2s2c case due to the similar

distribution of the training and test data.
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Figure 4.9: Training dataset made of 2 sunny and 2 cloudy days and test dataset of
2 sunny and 2 cloudy days (2s2c − 2s2c) using effective irradiance

Having a distribution of the training dataset identical with the test dataset and using

effective irradiance is decreasing the RMSE at low irradiance until 3%. Also at medium

and high irradiances, the RMSE is smaller than when using global irradiance.
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Figure 4.10: Training dataset made of 1 sunny and 9 cloudy days and test dataset of
2 sunny and 2 cloudy days (1s9c − 2s2c) using effective irradiance

The similar distribution in the datasets provided by the 1s9c − 2s2c and a better fit at

low irradiances gives for this case a RMSE of 7% at low irradiance while still keeping

the RMSE at medium and high irradiances below 3%.

4.6 Conclusions

Both proposed and tested models provided a good accuracy, but PVWatts was chosen

due to better response at low irradiances and lower complexity of the model.

The training dataset is not that important if the data used for training is gathered in

the summer. As proved in this chapter, training data from winter and testing it in the

summer will double the size of the errors compared with a test dataset from the same

season. It is recommended to have a training dataset for each season.

Having the same irradiance distribution in the training dataset as in the test dataset

provides the best result. It is recommended to have as many training datasets with

different distribution pattern so that can fit better the distribution required by the

tested period.

There is no significant difference between the accuracy of the model when implemented

on thin film compared with crystalline using global irradiance as the input.

Different locations and weather conditions affect the accuracy of the model.
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Using the effective irradiance as an input to the model provides better results at low

irradiances for both technologies, but is significantly better for the crystalline technology.



Chapter 5

Conclusions

A PV array performance modelling method for CIS models is proposed based on the

PVWatts model which is parametrized using regression methods that can detect power

loss.

From the analysis of the metastable behaviour we saw that from all the four thin-film

modules studied, a-Si module displays the biggest seasonal effect and presents no sign

of diurnal effect.

For a Danish climate (medium irradiances), the modules still provides a good PR, there-

fore working with this type of modules in Denmark should not be a problem.

Due to the variation of the PR caused by the change in season and/or degradation of

the module each year, retraining the model data twice/year will be a good solution in

keeping a high accuracy.

PVWatts and SAPM both provide a good accuracy but implementing the PVWatts

model proved to be less complicated.

As long as the data for the training is collected in the summer, the size of the training

dataset is not that important, but collecting it in another season significantly affects the

accuracy of the model. It is recommended to have a training dataset for each season to

keep a high performance.

50
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No significant difference was seen between the accuracy of the model when implemented

on CIGS compared to x-Si using global irradiance as an input. But when using effective

irradiance, the performance of x-Si is significantly better.

Different locations and weather conditions affect the accuracy of the model.

The worst accuracy of the model is present at low irradiance.

5.1 Future work

As future work, it is recommended to:

� Add more TC in the analysis: It is important to check the accuracy of the model in

the presence of more combinations between sunny days and cloudy days. Analysing

more TC might establish an optimum distribution of irradiance that will fit with

all types of test dataset.

� Implement other models and asses their accuracy: Many other performance models

where developed and proved to have a good accuracy when applied on c-Si. Testing

them on thin-film technologies should be considered.

� Analyse data from Denmark: Danish climate is very different than the climate at

Golden or Cocoa. Having access to measurements data from Denmark will add

more validity to this study.

� Evaluate prediction for periods longer than 1 year: It is important to evaluate the

accuracy of the model after several years to quantify how much the degradation

and ageing of the module affected the performance.

� Implement the performance modelling method in a performance monitoring sys-

tem: This method of performance modelling should be implemented in a perfor-

mance monitoring system and the performance should be automatically checked.

If power loss is detected, a warning should be send and the source of the loss will

be investigated and fixed as soon as possible.

� Develop fault type detection: In order to have an even more efficient performance

monitoring system, a fault type detection should be developed. As soon as the
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power loss is detected, an identification of the type of fault is automatically done

by the monitoring system. Having this feature, will avoid too much production

loss.

� Analyse in depth the behaviour of performance models at low irradiance: Low

irradiance seem to be problematic for the accuracy of performance models. A

more in depth investigation should be conducted in how to lower the effect of low

irradiances on the precision of the models.
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Appendix

A.1 Matlab Code

Implementation of PVWatts model:

%Pmpp PVWatts v3 Implementation of the (version 3) PV Watts model

% G: Irradiace [W/mˆ2]

% T: Module temperature [Celsius]

function [ y, X] = Pmpp PVWatts v3( G, TMod, theta )

[n, m] = size(G);

% input data arrays are row vectors

if m > 1

G = G';

TMod = TMod';

end

dT = TMod − 25;

if max(G(1)) < 200

x1 = G/1000;

x2 = x1.*dT;

x3 = (1−G/200).ˆ4;
X = [x1 x2 x3];

else

G = G/1000;

53



Appendix 1. Appendix 54

x1 = G;

x2 = G.*dT;

X = [x1 x2];

end

m = length(G);

X = [ones(m, 1) X];

if nargin == 2

y = [];

else

y = X * theta;

end

end

Implementation of SAPM model:

%PMPP SAPM FUNCTION V1 Summary of this function goes here

function [ y, X] = Pmpp SAPM v1( G, T, theta )

[n, m] = size(G);

% input data arrays are row vectors

if m > 1

G = G';

T = T';

end

k = 1.3806503e−23; %Boltzmann constant

q = 1.6022e−19; %Electron charge

ns = 60;

T = T+273.15;

dT = T − 297;

G = G/1000;

x1 = ns * k * T.* log(G) / q;

x2 = ns * k * (T.* log(G)).ˆ2 / q;

x3 = dT;

x4 = (1−G).*dT;
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x5 = G;

x6 = G.ˆ2;

x7 = G.*dT;

x8 = G.ˆ2 .* dT;

x9 = 1./G;

X = [x1 x3 x5 x7 x9];

m = length(G);

X = [ones(m, 1) X];

if nargin == 2

y = [];

else

y = X * theta;

end

end

Implementation of the training and test phase using PWVAtts model:

clear

close all

clc

addpath('...\models\PVWatts');

addpath('...\models');

addpath('...\utils');

%% Train model

load('...\TestCase1\testdata\Cocoa CIGS00408 12Sept 15Sept sunny.mat')

Vmp = VdcA;

Imp = IdcA;

n = length(Imp);

Imp = reshape(Imp, n,1);

Isc = reshape(Isc, n,1);

Vmp = reshape(Vmp, n,1);

Timestamp = reshape(Timestamp, n,1);

G = reshape(G, n,1);

TMod = reshape(TMod, n,1);
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ISC0 = 2.6;

ALFA = 0.01;

T0 = 25;

Pmp = PdcA;

%% using Effective Irradiance

%

Ee = Isc./(ISC0*(1+ALFA*(T0−TMod)))*1000;
G=Ee;

%% apply model

idx highG = G > 200;

model function = @Pmpp PVWatts v3;

model params highG = Train Performance Model(model function, G(idx highG), ...

TMod(idx highG), Pmp(idx highG), 'Pmp');

model params lowG = Train Performance Model(model function, G(˜idx highG), ...

TMod(˜idx highG), Pmp(˜idx highG), 'Pmp');

%% test model

clearvars −except model params highG model params lowG model function

load('...\TestCase1\testdata\Cocoa CIGS00408 12Sept 15Sept sunny.mat');

Vmp = VdcA;

Imp = IdcA;

n = length(Imp);

Imp = reshape(Imp, n,1);

Isc = reshape(Isc, n,1);

Vmp = reshape(Vmp, n,1);

Timestamp = reshape(Timestamp, n,1);

G = reshape(G, n,1);

TMod = reshape(TMod, n,1);

ISC0 = 2.6;

ALFA = 0.01;

T0 = 25;

Pmp = PdcA;

%% using Effective Irradiance

Ee = Isc./(ISC0*(1+ALFA*(T0−TMod)))*1000;
G=Ee;
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%% apply parameters and test

idx highG = G > 200;

Pmp predicted highG = Test Performance Model(model function, ...

model params highG, G(idx highG), TMod(idx highG));

Pmp predicted lowG = Test Performance Model(model function, ...

model params lowG, G(˜idx highG ), TMod(˜idx highG));

Pmp predicted = nan(size(Pmp));

Pmp predicted(idx highG) = Pmp predicted highG;

Pmp predicted(˜idx highG) = Pmp predicted lowG;

%% calculate errors for 3 different irradiance intervals

idx small = G<400;

idx medium = G>=400 & G<=800;

idx high = G>800;

RMSE 0 400 = sqrt(mean((Pmp predicted(idx small)−Pmp(idx small)).ˆ2))...

./mean(Pmp(idx small))*100

RMSE 400 800 = sqrt(mean((Pmp predicted(idx medium)−Pmp(idx medium)).ˆ2))...

./mean(Pmp(idx medium))*100

RMSE 800 max = sqrt(mean((Pmp predicted(idx high)−Pmp(idx high)).ˆ2))...

./mean(Pmp(idx high))*100

MAE 0 400 = mean(abs(Pmp predicted(idx small)−Pmp(idx small)))...

./mean(Pmp(idx small))*100

MAE 400 800 = mean(abs(Pmp predicted(idx medium)−Pmp(idx medium)))...

./mean(Pmp(idx medium))*100

MAE 800 max = mean(abs(Pmp predicted(idx high)−Pmp(idx high)))...

./mean(Pmp(idx high))*100

%% plot estimated power versus measured day

evaluatePrediction(datetime(2011, 9, 12, 0, 0, 0), ...

datetime(2011, 9, 15,20, 0, 0), Timestamp, G, Pmp, Pmp predicted, 'Pmp [W]')

% matlab2tikz

TrainPerformanceModel function:

%TRAIN LINEAR MODEL Summary of this function goes here

function [ model params ] = Train Performance Model(model function, G, TMod, ...

y measured, y name)

[n, m] = size(G);
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% input data arrays are row vectors

if m > 1

G = G';d

TMod = TMod';

y measured = y measured';

end

[˜, X] = model function(G, TMod);

X lm = X(:, 2:end);

initial model params = LinearModel.fit(X lm, y measured);

disp('++++++++Initial model parameters++++++++++++')

disp(initial model params)

[y pred ˜] = predict(initial model params, X lm, 'Prediction', 'observation');

%% compare measured vs predicted values

scatterPlot(G, y measured, TMod, 'G', y name, 'TMod');

hold on;

plot(G, y pred, 'rx');

xlabel('G [W/mˆ2]');

ylabel('y name')

scatterPlot(y measured, y pred, TMod, ['Measured ' y name], ...

['Predicted ' y name], 'TMod');

title('Initial regression model');

%% plot residuals

figure

plotResiduals(initial model params, 'histogram');

figure

plotResiduals(initial model params, 'fitted');

figure

plotResiduals(initial model params, 'caseorder');

figure

plotResiduals(initial model params, 'probability');

model params = initial model params;
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end

TestPerformanceModel function:

%TEST PERFORMANCE MODEL Summary of this function goes here

function [ y pred ] = Test Performance Model(model function, model params, G, TMod)

% Detailed explanation goes here

[n, m] = size(G);

% input data arrays are row vectors

if m > 1

G = G';

TMod = TMod';

end

[˜, X] = model function(G, TMod);

X lm = X(:, 2:end);

[y pred, ˜] = predict(model params, X lm, 'Prediction', 'observation');

end

evaluatePrediction function:

%PLOT PMP PREDICTION DAY Summary of this function goes here

function [ output args ] = evaluatePrediction(startDate, stopDate,...

Timestamp,G, y, y predicted, y name)

idx = Timestamp > startDate & Timestamp < stopDate;

y = y(idx);

y predicted = y predicted(idx);

G = G(idx);

Timestamp = Timestamp(idx);

y error = ((y−y predicted)./y*100);

figureFullScreen
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subplot(2, 2, 1)

plot(Timestamp, y, 'r.−', 'Displayname', 'Measured')

hold on

plot(Timestamp, y predicted, 'b.−−', 'Displayname', 'Predicted')

grid on;

xlabel('Time')

ylabel(y name)

legend('show', 'location', 'best')

title(['Comparison of measured vs. predicted ' y name]);

%

subplot(2, 2,3)

[hAx,hLine1,hLine2] = plotyy( Timestamp,y error,Timestamp, G);

set([hLine1,hLine2],'Marker', '.');

grid on;

title('Relative prediction error')

xlabel('Time')

ylabel(hAx(1),'Prediction error [%]') % left y−axis
ylabel(hAx(2),'Irradiance [W/mˆ2]') % right y−axis

GLevels = 0:100:1200;

n = length(GLevels)−1;
m = 0;

for i=1:n

nn(i) = i;

x labels(i) = {sprintf('[%d−%d)', GLevels(i), GLevels(i+1))};

idxG = G >= GLevels(i) & G < GLevels(i+1);

y error G(i) = {y error(idxG)};

y error G count(i) = sum(idxG);

if sum(idxG) > m

m = sum(idxG);

end

end

ydata = nan(m, n);

for i=1:n

m = length(y error G{i});

if m > 0

ydata(1:m, i) = y error G{i};

end
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end

subplot(2, 2, 2)

bar(nn, [y error G count])

xlabel('Irradiance [W/mˆ2]');

ylabel('Number measurement samples');

grid on

set(gca, 'xticklabel', x labels);

xlim([1 11])

title('Distribution of measurement samples vs. irradiance')

subplot(2, 2, 4)

boxplot(ydata)

xlabel('Irradiance [W/mˆ2]');

ylabel('Prediction error [%]');

grid on

xlim([1 11])

set(gca, 'xticklabel', x labels);

title('Distribution of error vs. irradiance')

end
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A.2 PVWatts vs SAPM
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(a) PVWatts 4S-4S
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(b) SAPM 4S-4S
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(c) PVWatts 4S-4C

6:00 7:30 9:00 10:30 12:00 13:30 15:00 16:30 18:00
0

20

40

60

80

Time
P
m
p
[W

]

Comparison of measured vs. predicted Pmp [W]

Measured
Predicted

6:00 7:30 9:00 10:30 12:00 13:30 15:00 16:30 18:00
−600

−400

−200

0

TimeP
re
d
ic
ti
on

er
ro
r
[%

]

Relative prediction error

(d) SAPM 4S-4C
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(e) PVWatts 4C-4S
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(f) SAPM 4C-4S

6:00 7:30 9:00 10:30 12:00 13:30 15:00 16:30 18:00
0

20

40

60

Time

P
m
p
[W

]

Comparison of measured vs. predicted Pmp [W]

Measured
Predicted

6:00 7:30 9:00 10:30 12:00 13:30 15:00 16:30 18:00
−40

−20

0

20

TimeP
re
d
ic
ti
on

er
ro
r
[%

]

Relative prediction error

(g) PVWatts 4C-4C
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(h) SAPM 4C-4C

Figure A.1: Modeling error statistics for Pm using SAPM and PVWatts models on a
CIGS module considering the four different cases
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