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Synopsis:

The objective of this paper is to imple-
ment the Critical state two-surface plasticity
model for sands presented by Manzari and
Prachathananukit [2000] into the Finite Ele-
ment Method.
Firstly, the fundamental concepts of plasticity
theory are presented along with the theory of
three different stress update schemes namely,
Modified Forward Euler, Forward Euler and
Radial Return Method. Initially the von Mises
criterion is applied and perfect plasticity and
hardening plasticity are compared in the case
of a patch test. In addition, a strip footing
is tested to verify the bearing capacity and
computational time of the different stress
update schemes.
At last, the paper aims to verify the im-
plementation of the model in drained and
undrained conditions under monotonic and
cyclic loading with different confining pres-
sures.





PREFACE

This paper depicts the 4th semester thesis of M.Sc. in Civil and Structural Engineering at Aalborg
University. For this final semester, an innovative and advanced topic has been chosen, which is
the implementation of a multiple surface constitutive model for sand and cyclic loading within the
Finite Element Method (FEM). One representative from Aalborg University guided us along the
semester, our main supervisor, Associate Professor Johan Clausen.

We would like to thank Johan Clausen for his guidance and contribution to our work.

All files including calculations, plots, numerical models etc. are available on the Annex-CD.

Reading guide

Source citation

Source references are developed by the Harvard method and refer to the full source list at the back
of the report. A passive source will be indicated as follows: [Surname, Year]. By an active source,
for example a website, it will be referred in the text with the specific date or year of the entry. An
example is Surname, [Year].

Figure, tables and equations

Figures, tables and equations in the report will be numbered under which chapter they belong and
which number in the sequence of tables, figures and equations they are in chapter. As an example,
“figure 2.2” can be found in chapter 2 and is the second figure within that same chapter. Tables
are referred to in the same manner as figures. Equation numbers appear as “(3.1)” and are shifted
to the right side of the document.

Appendix

The appendix is divided in accordance to alphabet letters and can be found in the back of the
report.
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INTRODUCTION 1
The most common constitutive models that engineers use today are not relevant for cyclic loads
as they do not account stress history. It becomes an important topic when dealing with project
demanding numerical analyses, e.g. the Offshore Wind Turbine industry and the DNV-GL new
standards.

Indeed, offshore structures are subjected to time varying loads from wind and waves which
means that their foundations will experience cyclic loads. Related observations to cyclic loading
are accumulation of pore pressure, cyclic mobility and soil liquefaction and may lead to disastrous
consequences.

For granular materials, only simple classical elasto-plastic models are supported by most
commercial engineering programs, e.g. Mohr-Coulomb. Regarding pure strength calculations
the Mohr-Coulomb criterion is often sufficient but insufficient for more complex phenomena as
mentioned earlier.

A recently developed constitutive model named Critical state two-surface plasticity model
for sands by Manzari and Prachathananukit [2000] is based on the framework of Critical State Soil
Mechanics (CSSM) and takes into consideration the complex behaviour of granular materials. The
soil model is capable of simulating the stress-strain behaviour of granular materials submitted to
monotonic or cyclic loading and drained/undrained conditions.

To use a more advanced model like the critical state soil model in engineering calculations it
requires a form of numerical implementation, i.e. the well-known Finite Element Method (FEM).

Soil behaviour is highly non-linear when deformed and by that no linear relation between
stresses and strains exist. This means that an iterative solution is necessary to obtain the unknown
stress increments from the constitutive relations in the non-linear analyse. Stress update or solution
schemes are normally classified whether as explicit or implicit methods and differs in the approach
to obtain the stress increment.

In an explicit integration scheme the constitutive matrix is initially evaluated by a known
stress point and for every step the constitutive matrix is re-evaluated to check if the new stress
point is elastic or plastic. On the other hand an implicit integration scheme defines a final stress
point from a state of an unknown stress. By a direct solution procedure involving no iterations the
final stress point accordingly fits the given yield criterion.
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G. Melin & J.V. Nielsen 1. Introduction

1.1 Presentation of thesis

Several research papers have presented new advanced models that simulate soil response
under cyclic loading such as the butterfly shape, the accumulation of pore pressure and cyclic
liquefaction. To be useful in engineering calculations and moreover commercial programs these
complex models requires an efficient numerical implementation.

The aim of this thesis is to implement the Critical state two-surface plasticity model for
sands by Manzari and Prachathananukit [2000] into Matlab with FEM. The explicit Forward Euler
scheme is chosen as the method to solve the constitutive relations of the plasticity model.

Initially the von Mise elasto-plastic behaviour is investigated and extended to consider linear
hardening. Three different stress update schemes, the Forward Euler, Modified Forward Euler and
Radial Return methods are implemented for that particular model. This elasto-plastic model serves
as a basis in the implementation of the more complex critical state model.

For each models used in this paper, two different tests are built in Matlab. Firstly a simple
patch test is generated to ensure the models are implemented correctly. Secondly a more realistic
example of a strip footing is tested to capture the soil behaviour under monotonic and cyclic
loading.

1.2 Syntax

Throughout the report a number of vectors, matrices, tensors and variables are used.
A scalar is presented in normal text writing, e.g. σ2. A vector or tensor is written in bold σσσ

and a matrix in bold capital letter, e.g. DDD. By default, 2D plane strain is assume on the xy plane,
hence, vectors are defined as 4×1 and matrices, 4×4. Thereby the strain tensor, εεε , and stress
tensor, σσσ , are defined as

εεε = {εx εy εz 2εxy 2εxz 2εyz}ᵀ (1.1)

σσσ = {σx σy σz σxy σxz σyz }ᵀ (1.2)

Symmetric properties makes it possible to express the stress and strain 2nd order tensors as
vectors and the constitutive relation, DDD, a 4th order tensor as a matrix. Further explanation of
the constitutive relation is elaborated in Chapter 3.

1.2.1 Time-independency

From dynamics a dot denotes the first time-derivative, i.e. σ̇σσ i j = dσσσ i j/dt. In elasto-plastic
constitutive theory, on the contrary of visco-plasticity, the dot is time independent but incremental
dependant, e.g. load increments. The material response is assumed independent of the time during
the loading process. The changes in the pseudo time reflects a change as an increment, i.e.
σ̇σσ i j = dσσσ i j.

1.2.2 Sign convention

In continuum mechanics compression is negative but in geotechnics it is reversed. In this paper,
the usual sign conventionn found in continuum mechanics is preferred. Therefore, if it is not

2



1.2. Syntax Aalborg University

stipulated otherwise then the usual sign convention from mechanics is applied so that tension and
compression are respectively positive and negative.

3





BASICS OF PLASTICITY 2
In this chapter fundamental concepts of the basic plasticity theory is implemented in the FEM.
The ingredients needed in the plasticity theory are a yield criterion, a plastic potential function, a
flow rule and a hardening law.

2.1 Stress invariants

Describing a given yield criterion in form of stress invariants makes it independent of which
coordinate system is initially selected. Since an isotropic material has no directional properties,
the principal stresses are given in terms of the three stress invariants I1, I2, I3. By adopting a given
order of the principal stresses as σ1 ≥ σ2 ≥ σ3 it is more convenient to express the yield criterion
in form of another set of invariants, given by (2.1). [Ottosen and Ristinmaa, 2005]

f (I1, J2, cos3θ) = 0 (2.1)

where

I1 = σx +σy +σz (2.2)

J2 =
1
2

sssi jsss ji =
1
6
[(σx−σy)

2 +(σy−σz)
2 +(σz−σx)

2]+ τ
2
xy + τ

2
yz + τ

2
zx (2.3)

J3 =
1
3

sssi jsss jkssski = det(sssi j) =

∣∣∣∣∣∣∣∣
σx−

1
3

I1 τxy τxz

τyx σy− 1
3 I1 τyz

τzx τzy σy− 1
3 I1

∣∣∣∣∣∣∣∣ (2.4)

cos(3θ) =
3 ·
√

3
2

J3

J3/2
2

(2.5)

I1 is the first invariant of the stress tensor σσσ ii and J2, J3 are the second and third stress
invariants of the deviatoric stress tensor sssi j. θ is defined as the Lode angle.

By introducing a Haigh-Westergaard coordinate system the latter stress invariants implies
a more physical interpretation and thereby a geometrical interpretation of the different stress
invariants. [Ottosen and Ristinmaa, 2005] A diagram of this coordinate system is illustrated in
figure 2.1 in principal stress orientation.
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Figure 2.1. a) Haigh-Westergaard coordinate system. b) deviatoric plane perpendicular to hydrostatic axis.

By figure 2.1 it is shown that the magnitude of the hydrostatic load is equal to the stress
invariant ξ .

ξ =
1√
3

I1 =
1√
3
(σ1 +σ2 +σ3) (2.6)

Consider the plane that is perpendicular to the hydrostatic axis, here the magnitude of this distance
is equal to the invariant ρ , which makes this stress invariant a measure of the deviatoric stresses.
[Ottosen and Ristinmaa, 2005]

ρ =
√

2J2 =

√
1
3

[
(σ1−σ2)2 +(σ2−σ3)2 +(σ3−σ1)2

]
(2.7)

The invariant θ in (2.5) is determined by the principal stress values. When σ1 ≥ σ2 = σ3 the
value for θ becomes 60◦. Furthermore if σ1 = σ2 ≥ σ3, the value for θ becomes 0◦. So the Lode
angle θ , is an indication of the intermediate principal stress in relation to σ1 and σ3. [Ottosen and
Ristinmaa, 2005]

According to (2.1) the contributions of the invariants defined above are all essential to
identify failure and the initial yield criterion.

2.2 The yield function

A yield function defines the limit of elasticity and the beginning of plastic deformation under any
possible combination of stresses.[Yu, 2006] Considering the uniaxial stress-strain curve in figure
2.2 the yielding is defined by a point.
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Figure 2.2. Elastic and plastic strains.

According to figure 2.2 if the stress is below σY 0, the material is assumed to behave linear
elastic with a stiffness given by Young’s Modulus E. If the material is loaded to σY , yielding
occurs and after unloading the plastic strain ε p remains. The unloading and reloading are assumed
to be elastic with the inclination of E until the point of σY and contain the elastic uniaxial strain
εe. [Ottosen and Ristinmaa, 2005]

As illustrated in figure 2.2 the total strain ε , contains the sum of elastic and in generalised
stress space, this scalar becomes a tensor and is written as follow as in (2.8).

εεε = εεε
e +εεε

p (2.8)

The development of the plastic strain is controlled by a yield function f = 0. An example could
be von Mises yield criterion, presented in (2.25). The yield function develops with the plastic
strains and is expressed in terms of the stresses and some hardening parametersHHH. [Ottosen and
Ristinmaa, 2005] The yield function f is given as

f (σσσ ,HHH) = 0 (2.9)

The hardening parameters are determined by some state variables κκκ , which characterize the
internal conditions of the material.

HHH=HHH(κκκ) (2.10)

Per definition the state variables κκκ is zero before any plasticity is initiated and evolve along with
the plastic loading history. So the choice of hardening parameters are equivalent to choosing
hardening rules. [Ottosen and Ristinmaa, 2005]

2.3 Plastic potential

As known the elastic strain increment is related to stresses by the generalised Hooke’s law. As
for the plastic strain increment there is no direct way to determine this. Plastic deformations can

7



G. Melin & J.V. Nielsen 2. Basics of plasticity

occur as long as the stress point is located on the yield surface and moves along the yield surface,
redistributing the stresses. [Krabbenhøft, 2002] Mathematically, the conditions for plastic loading
can be written as

f (σσσ + σ̇σσ) = f (σσσ)+∇ f σ̇σσ = 0 (2.11)

Here σ̇σσ is a stress increment and ∇ f is the partial derivative of the yield function with respect
to the stress vector σσσ , which gives the normal to the yield surface, see figure 2.3. The following
expression is obtained and is called the consistency condition and fulfils the yield criterion of
f = 0. [Krabbenhøft, 2002]

ḟ = ∇ f σ̇ = 0 (2.12)

In order to describe the plastic strains a potential field is introduced called the plastic potential and
noted g, it depends on a given stress state and hardening parameter.

g = g(σσσ ,HHH) (2.13)

A common choice for the plastic potential is to use the yield function. If this is the case, it is
referred to as associated plasticity. If another function is chosen, it is referred to as non-associated
plasticity. Thus the plastic strain increment is given by

ε̇ p = Λ̇
∂g
∂σ

(2.14)

Assuming that g = f , this relation is known as the associated flow rule. The length of the
incremental plastic strain is controlled by the plastic multiplier Λ̇, which is a non-negative scalar.
In figure 2.3 associated and non-associated plasticity is illustrated with given flow rule and plastic
potential. [Krabbenhøft, 2002]

σ
1

σ
2

σ
1

σ
2

g

a) b)

Figure 2.3. a) Associated plastcity. b) Non-associated plasticity.

2.4 Hardening laws

Materials have the capability to respond in different ways, see Figure 2.4. First picture from the
left shows hardening plasticity. In this case the initial yield stress σY 0, increases with the increase

8



2.4. Hardening laws Aalborg University

in plastic strain until an ultimate strength is reached. Second picture shows perfect plasticity,
which means the material maintain the same initial yield strength. The third picture is known
as softening. Firstly the material reach a peak strength, which for further loading makes the soil
weakens until a residual strength is reached. [Ottosen and Ristinmaa, 2005]

Hardening plasticity Perfect plasticity Softening plasticity

σ

ε

σ σ

ε ε

σ
Y0

σ
ult

σ
Y

σ
res

σ
peak

σ
Y0

Figure 2.4. Material behaviour under plastic loading.

Normally soils tend to loose strength when plastic straining occurs. On the other side metals
tend to show an increase in strength. Since the plastic strains has an effect on the yield criterion it
is evident that the yield surface changes due to plastic loading. From figure 2.2 the perfect plastic
yield surface is related to the initial yield stress, σY 0. [Ottosen and Ristinmaa, 2005] To highlight
the yield criterion with perfect plasticity, as in (2.15) a capital F is used.

F(σσσ ,HHH) = f (σσσ) = F(σσσ) = 0 (2.15)

On the other hand the current yield surface is related to σY which depends on the hardening
parameterH that characterize in which manner the yield surface changes size, shape, position and
how the hardening evolves. [Ottosen and Ristinmaa, 2005]

If hardening is considered in a given model, different rules are known, namely isotropic,
kinematic and mixed hardening.

For isotropic hardening, the position and shape of the yield surface remain fixed whereas the
size of the yield surface changes with plastic deformation. This can be expressed as

f (σσσ ,Hiso) = F(σσσ)−Hiso = 0 (2.16)

Moreover, kinematic hardening shifts the yield surface from one location in stress space to another.
The size and shape of the yield surface remain fixed.

f (σσσ ,HHHkin) = F(σσσ −HHHkin) = 0 (2.17)

The two different hardening models can be used simultaneously, in which case it is referred to as
mixed hardening. Mixed hardening alters the size and position of the yield surface and leaves the
shape unchanged. This can be written as

f (σσσ ,Hiso,HHHkin) = F(σσσ −HHHkin)−Hiso = 0 (2.18)

The three different hardening laws are illustrated in figure 2.5.

9
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Figure 2.5. The three hardening laws with von Mises yield criterion.

2.5 Elasto-plastic constitutive relation

To formulate an elasto-plastic constitutive relation it requires the following: a yield function, a
plastic potential function and a hardening rule. All of these have been touch upon in the previously
sections.

The relation between stress increment and total strain increment is obtained in the same way
as for elasticity (Hooke’s law), such as in (2.19)

σ̇σσ =DDD(ε̇εε− ε̇εε
p) =DDD(ε̇εε− Λ̇

∂g
∂σσσ

) (2.19)

DDD is the elastic constitutive matrix. By first substituting the flow rule (2.14) into the stress

10



2.6. Example of von Mises plasticity Aalborg University

increment (2.19) and secondly replacing this expression into the consistency relation (2.12), the
plastic multiplier Λ̇ may be found, see (2.20).

Λ̇ =
aaaᵀDDD ε̇εε

A+aaaᵀDDDbbb
(2.20)

where

aaa =
∂ f
∂σσσ

(2.21)

bbb =
∂g
∂σσσ

(2.22)

And A is the hardening parameter that is assumed constant in case of linear hardening. If (2.20)
is substituted back into stress increment (2.19) the solution give the elasto-plastic constitutive
relation

DDDep =DDD− DDDbbbaaaᵀDDD
A+aaaᵀDDDbbb

(2.23)

The difference between hardening plasticity and perfect plasticity when linear hardening is
assumed is to have a postitive hardening parameter A. The hardening modulus A is defined as

A =− ∂ f
∂H
Ḣ
Λ̇

(2.24)

whereH is the hardening parameter depending on the yield function and plastic multiplier.

2.6 Example of von Mises plasticity

As an example of implementing plasticity, the von Mises elasto-plastic model is described in the
following. Supportive plots and results from the implementation of the von Mises plasticity model
are described in appendix A.

2.6.1 Yield surface

Since von Mises criterion is a circle in the deviatoric plane, see figure 2.6, the yield strength is
the same considering tension or compression due to a constant radius. Moreover it is a cylinder
along the hydrostatic axis in generalised stress space, so that it is independent of the mean stress.
Thereby I1 and cos3θ can be neglected in the von Mises criterion (2.25) and only depends on the
second deviatoric stress invariant, J2. [Ottosen and Ristinmaa, 2005]

F =
√

3J2−σY 0 (2.25)

The radius of the yield surface depends on the initial yield stress Y0, which is defined as√
2/3σY 0.

2.6.2 Hardening laws

All three types of hardening have been implemented with the Von Mises yield criterion and are
illustrated in appendix A in deviatoric and meridian planes with the following hardening laws.
According to figure 2.5 similar yield surface response due to the different hardening laws are
obtained.

11
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σ
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√2/3σ
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Figure 2.6. Von Mises criterion in deviatoric plane.

Isotropic hardening

As illustrated in figure 2.6 the isotropic hardening develops with radius
√

2/3
(
σY 0 +H(ε p)

)
.

Then the isotropic hardening law for von Mises is shown in 2.26. It is noted that J2(εεε
p) refers to

the second deviatoric invariant of the εεε p tensor. If not stipulated by parenthesis, e.g. J2, it refers to
the stress invariant stated in (2.4).

f (σσσ ,HHH) =
√

3J2−σY 0−A J2(εεε
p) = 0 (2.26)

According to figure 2.4 the hardening parameter A may be pictured as the slope of the plastic
deformation with respect to stresses in a uniaxial plot. The radius of the current yield surface√

2
3 σY is controlled by a scalar A. The hardening modulus is set to 10× 103 Mpa which is

approximately 1/20 of Young’s Modulus.

Kinematic hardening

The kinematic hardening parameter is controlled by the stress ααα known as the back-stress or shift-
stress. Similar to (2.17) the von Mises kinematic hardening law can be described by the relative
deviatoric stress ηηη = sssi j−ααα i j.

f (σσσ ,HHH) =
√

3
2
(sssi j−ααα i j)(sssi j−ααα i j)−σY 0 = 0 (2.27)

where the deviatoric stress tensor sssi j is defined in (2.5) and the back-stress is given by

α̇αα = Λ̇

√
2
3

A
ηηη

|ηηη |
=

√
3J2(ηηη)−σY

A+3G

√
2
3

A
ηηη

|ηηη |
(2.28)
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2.6. Example of von Mises plasticity Aalborg University

Mixed hardening

As the hardening name refer to it is a mix of isotropic and kinematic hardening. According to
(2.18) the von Mises mixed hardening can be expressed as

f (σσσ ,HHH) = F(σi j−ααα i j)−A J2(εεε
p) = 0 (2.29)

As the elasto-plastic constitutive relations in (2.23) defines a non-linear relation between
stress and strain increment. In order to use it in the FEM, an iterative procedure must be applied.
Three different stress update schemes, two explicit and one implicit has been used. In the next
chapter a review of the numerical methods are described.

13





NUMERICAL METHODS 3
This chapter summarises techniques when dealing with non-linearity in the finite element method
where solutions to these particular systems are investigated and implemented with an arbitrary
elasto-plastic model for illustration purposes.

Here, the material non-linearity is accounted, thus focus is made upon the update of stresses
during analyses, two explicit methods have been used and they are described in the following
sections. These two are similar but one stands out as an improved version for higher results
accuracy. Another type of stress update method is called implicit, see section 3.5, one is used
for the von Mises criterion and it is taken as an example to illustrate implicit methods outcomes.

3.1 Non-linear analyses

Two kind of equations need to be solved, Ottosen and Ristinmaa [2005] refers to it as global and
local equations. The latter refers to stress updates in each gauss point of the model and is described
later in this chapter, whereas global equations involve the system equilibrium.

Here non-linearity is due to the material constitutive behaviour, therefore the stiffness matrix
changes along the analysis and is called the tangential stiffness matrix KKKt .

KKKt =
∫

V
BBBᵀDDD∗BBB dV (3.1)

where DDD∗ is either the elastic or elasto-plastic constitutive matrix, respectively DDD or DDDep from
(2.23), BBB is the strain interpolation matrix and V is the body volume.

Ottosen and Ristinmaa [2005] formulates a solution based on residual forces, see (3.2), so
that equilibrium is reached when these are zero. Residual forces rrr are the difference between
external forces ppp, e.g. body forces such as weight, and internal forces qqq, i.e. due to stresses.

rrr(σσσ) = qqq(σσσ)− ppp (3.2)

In order to reach an acceptable level of residual forces, i.e. a small value compared to the final
forces in the system, an iterative loop must be added preventing static equilibrium errors, this
iteration scheme is based on the Newton-Raphson method. The calculations are described in table
3.1.

The figure 3.1(a) illustrates the force in the system FFF with respect to the nodal displacement
UUU . Hence, the slope of the curve is the tangential stiffness KKKt . Thus, this figure represents a
standard Forward Euler method. The iteration scheme illustrated by figure 3.1(b) for the global
equilibrium is the one based on the Newton-Raphson method. It is noted that different procedure
may be used regarding the stiffness matrix KKKt .[Ottosen and Ristinmaa, 2005] One may calculate
the stiffness matrix before starting the global iterations and keep it constant. This is illustrated by
the slope (1) and (2) in figure 3.1. Another way is to update the stiffness matrix, leading to less
iterations as shown by the slopes (1) and (3). However the stiffness matrix must be built in each
equilibrium loop increasing the computing cost for a single iteration.
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Figure 3.1. Drift resulting from the Forward Euler method and residual correction from Ottosen and
Ristinmaa [2005].

Table 3.1. General algorithm with Equilibrium iterations and stress update.

��� for k = 1,2, ... Displacement increments
UUUk =UUUk−1 +∆UUUk Nodal displacements added from boundary conditions
pppk Initialisation of body force (self-weight)
σσσ k =σσσ k−1 Updated stress
��� for j = 1,2, ... Global equilibrium loop

rrr = pppk−qqq(σσσ k) Residual forces (rrr = 0 for j = 1)
KKKt(DDD∗) Form global stiffness matrix, equation (3.1)
δUUU = (KKKt)

−1 rrr Solving FEM equations
∆UUU j+1 = ∆UUU j +δUUU Update new nodal displacements
∆εεε =BBB∆UUU j+1 Calculate strains via strain interpolation matrix BBB
σσσ k (σσσ k−1,∆εεε) , DDD∗ =DDD∗(σσσ k) Stress update scheme and calculate DDD∗ (Table 3.2)
if ‖r‖< ETOL‖pppk‖

break Stop the global iteration loop
���

}}} end of global iterations
UUUk =UUUk−1 +∆UUU j+1 Store final nodal displacements
εεεk = εεεk−1 +∆εεε Store final strains

}}} end of displacement increments
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3.2 FEM formulation and application

3.2.1 Plane strain problem

When two-dimensional calculations are performed, a common assumption is the plane strain
problem. Soil is assumed to have zero strains out-of-plane which is very often appropriate, i.e.
when the out-of-plane dimension is long compared to the current working plane. In this paper, 2D
plane strain analyses are conducted.

3.2.2 Linear Strain Triangles (LST)

The LST elements are used in this project to mesh the model. These elements each possess six
nodes, namely three corner nodes and three midside nodes, hence the shape functions are quadratic
[Cook et al., 2001]. Each node has two degrees of freedom along the in-plane axes and each
element is composed of three Gauss points. Figure 3.2.
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Figure 3.2. LST elements.

3.2.3 Model setup

The procedure followed in order to check the computations validity is to focus at first on a single
stress point with arbitrary strain increments. Secondly, when the results is coherent, a patch test
is used. Then, finally a bigger test with a strip footing is set to investigate the model response of
what could be a real geotechnical problem.

Patch test

A patch test is used in order to verify the algorithm stability in a small model. Besides, one single
gauss points is followed through the computations to ensure the resulting stress is consistent. The
patch test is made of 8 elements, with 50 degrees of freedom. The forced displacement is applied
at the upper nodes of the mesh, i.e. nodes with y = 0m such as in figure 3.3.
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Regarding the boundary conditions, the upper nodes have a prescribed displacement along
the y-axis, bottom nodes prevent displacement along the y-axis and the first bottom node on the
left side of the patch restrict movement along the x-axis to avoid rigid body motion.

y

x

2m

Forced

Displacement

2
m

Figure 3.3. von Mises model: patch test setup.

y

x

H = 10m

L = 12m

w = 1m

Figure 3.4. Von Mises model: footing setup.

Footing test

In this test, a footing is submitted to a forced displacement, the prescribed nodes are the ones
located below the footing on figure 3.4. The soil is initialised with body forces as a normal
consolidated soil with Jaky’s equation.

The model uses a principle of symmetry to reduce the computation cost. The final mesh is
composed of 135 elements, each having 6 nodes and 3 gauss points, with 608 degrees of freedom.
It is noted that the number of degree of freedom is low compared to the size of the model, a
convergence analysis is conducted to control the results reliability, see figure B.2 in appendix B.
The forced displacement is applied at the upper nodes of the mesh, where the footing is located.
The mesh is also illustrated in appendix B.

Boundary conditions are illustrated in figure 3.4 where rolling supports are located along the
boundaries of the model. The principle of symmetry is modelled by not allowing any displacement
through it, hence rolling support are present.

It is noted that no interface (e.g. available in commercial software such as Plaxis) is made
between the nodes representing the footing and the nodes representing the soil, therefore no
slipping is allowed in the soil-structure interaction. Moreover the degrees of freedom under the
footing are set to zero along the x-axis, simulating a rough footing.

The footing test enables a deeper analysis of the computations, with for instance stress or
plastic strains distribution or to display the failure line.
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Figure 3.5. Difference between stress update methods within one strain increment ∆εεε .

3.3 Stress update: Forward Euler method

3.3.1 Theory

The point here is to find a stress increment for which (3.3) is the solution, the constitutive matrix
is not constant if elasto-plasticity is reached and leads to non-linearity. This section is related to
the row highlighted in grey in table 3.1.

∆σσσ =
∫

DDD∆εεε (3.3)

The Forward Euler method is based on the assumption that the behaviour of a future state will
behave the same way as another known state close to the sought one. Figure 3.1 displays the
method, where the tangent slope of a known point is taken as the curve on a specified range, by
knowing the slope of each previous steps, a curve can be drawn, however a drift appears.

In terms of stress update, the method is better illustrated with Figure 3.5, showing the drift
from the yield surface. Here the tangent slope is the constitutive matrix corresponding to the
previous stress state. In order to perform accurately with the Forward Euler method, one may
divide the incremental strain into smaller increments that can be called sub-step.

δσσσ =DDD∗δεεε with δεεε =
∆εεε

nss
(3.4)

∆εεε Strain increment, step
δεεε Strain increment, sub-step
δσσσ Stress increment, sub-step
DDD∗ Constitutive matrix at previous stress point (DDD∗ =DDD or DDDep depending on stress state)
nss Number of sub-steps
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Considering a stress state near the boundary of the yield surface on the elastic side. The next
incremental step is fully considered as an elastic behaviour, and the drift magnitude from the yield
surface depends on this late increment size. It is obvious that a very small increment gives smaller
error. By dividing the strain increment by a high number, the drift error is then reduced.

Table 3.2. Forward Euler stress update scheme.

input (σσσ0,∆εεε,DDD,DDD∗,σY ,ααα0,nss)

steps σσσ trial =σσσ0 +DDD ∆εεε Compute trial stress
if f
(
σσσ trial,σy,ααα0

)
<−FTOL or L<−LTOL Check if elastic or unloading

DDD∗ =DDD,σσσ1 =σσσ trial Update + end of scheme
else else (elasto-plastic)

F ��� for i = 1,2, ..nss

O σσσ trial =σσσ0 +DDD δεεε

R if f
(
σσσ trial,σY ,ααα0

)
<−FTOL Check if (elastic)

W DDD∗ =DDD Elastic response
A else else (elasto-plastic)
R DDD∗ =DDDep (DDD,σσσ1,ααα1) Elasto-plastic response
D E ���

U δσσσ =DDD∗δεεε Substep increment
L δααα = Substep increment
E σσσ1 =σσσ1 +δσσσ , σY (σσσ1) Update
R ααα1 =ααα1 +δααα Update

}}}
σσσ0 =σσσ1,ααα0 =ααα1 Initialise for next iteration
���

output (σσσ1,εεε
p,DDD∗,σy,ααα1)

The grey rows highlight the standard Forward Euler iteration procedure, however in order
to save computation time when the strain increment generates a pure elastic stress point, an early
“if” test is conducted. Thus, if the trial stress σσσ trial is acceptable, a direct update is made.

3.3.2 Unloading

The scheme must react in a particular way if the material is unloaded. The unloading response of
materials is elastic, the explicit Forward Euler does not stay on the yield surface and this gives
inaccurate response to unloading since the stress increments will be considered elasto-plastic until
reaching the upper yield surface. Hence, a loading parameter L is introduced in (3.5) [Sloan et al.,
2001].

L= cosΘ =
aaaᵀ ∆σ∆σ∆σ

‖aaa‖ ‖∆σ∆σ∆σ‖
(3.5)

The parameter L gives the load increments direction, see figure 3.6. If its sign is negative, the
angle between the surface normal and the elastic strain increment is bigger than 90 degrees. Thus,
the incremental stress is directed towards the yield surface and unloading is detected even if f may
be over zero due to a drift in the Forward Euler method, see table 3.4.1.

20



3.4. Stress update: Modified Forward Euler Aalborg University

θ <
 9

0
o

θ > 90 o

Yield surface

Loading case

Unloading

case

Δσ

Δσ

Figure 3.6. Illustration on the use of parameter L.

3.3.3 Yield tolerance

In table 3.2 is represented the stress update scheme for an elasto-plastic material ruled by the von
Mises criterion. The stress state is considered elastic if the value of the yield function is lower than
−FTOL, i.e. the stress is inside the yield surface. Another line may be added to give an error if the
stress state is superior to FTOL, i.e. the stress state is on the unacceptable side of the yield surface
and too far from the surface tolerance, see section 3.4.3 with drift correctors and figure 3.7. If the
number of sub-step is big, the computation can be heavy, therefore improvements were made.

3.4 Stress update: Modified Forward Euler

3.4.1 Efficiency improvement

Modifications can be made to improve the computational efficiency of the algorithms. Sloan et al.
[2001] propose, in case the trial stress goes out of the yield surface, to calculate both the elastic
and plastic ranges of the increment and to consider them separately in the iteration process. If the
material is linear elastic, the contact stress at the yield surface can be calculated in one iteration and
the hard computations are reserved for the plastic range. To do so, a Newton-Raphson method is
described in Sloan et al. [2001] and Potts and Zdravkovic [1999], with both a linear and non-linear
elastic constitutive behaviour.

If the constitutive matrix is constant, this Newton intersection method yields a result in the
first iteration, a more complex function takes place for non-linear elastic behaviour in materials
such as soils, and more iterations are needed. The iterative process stops when a value χ provide a
yield function close to zero, a tolerance PTOL is established to do so, see table 3.4. This method
is very efficient to avoid a long iterative process in the elastic range, which is interesting when
many stress points of the model becomes plastic during the analysis, see appendix A and B.

A value of χ = 0 means that the behaviour is entirely plastic while a value of χ = 1 implies
the behaviour is elastic over the strain increment.
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Table 3.3. Stress update scheme with Newton intersection scheme for elasto-plastic models.

input (σσσ0,∆εεε,DDD,DDD∗,σY ,ααα0,nss)

steps σσσ trial =σσσ0 +DDD ∆εεε Compute trial stress
if f
(
σσσ trial,σY ,ααα0

)
<−FTOL or L<−LTOL Check if (elastic) or unloading

DDD∗ =DDD,σσσ1 =σσσ trial Update + end of scheme
else else (elasto-plastic)

(χ) =NewtonIntersectNewtonIntersectNewtonIntersect(σσσ0,ααα0,∆εεε,σy,DDD)
σσσ int =σσσ0 +DDD [χ ∆εεε]
∆εεε p = [1−χ]∆εεε strain increment out of surface
σσσ0 =σσσ int ,δεεε = ∆εεε p/nss Initialisation
��� for i = 1,2, ..nss

DDD∗ =DDDep (DDD,σσσ1,ααα1) Elasto-plastic response
δσσσ =DDD∗δεεε Substep increment
δααα Substep increment, from (2.28)
σσσ1 =σσσ0 +δσσσ , σY (σσσ1) Update
ααα1 =ααα0 +δααα Update
σσσ0 =σσσ1,ααα0 =ααα1 Initialise for next iteration

}}}
��� end of scheme

output (σσσ1,εεε
p,DDD∗,σY ,ααα1)

Table 3.4. Newton intersection scheme.

input NewtonIntersect(σσσ0,ααα0,∆εεε,σY ,DDD)

steps χ0 = 0, χ1 = 1 Initialise the bounds
f0 = f (σσσ0 +DDD χ0∆εεε, ααα0, σY )
��� for i = 1,2, .. Maximum iteration number may be specified

fi = f (σσσ0 +DDD χi∆εεε, ααα0, σY ) Yield function to iterate over

χi+1 = χi−
fi

fi− fi−1
[χi−χi−1] Iterative process

if | fi+1|< PTOL
χ = χi+1 Final value

break Iteration stopped
���

}}} End of iterations

output (χ)
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3.4.2 Quality improvement

As stipulated above, the drift error is dependent on the sub-increment “length”, an error control
addition to the algorithm is detailed by Potts and Zdravkovic [1999] and Sloan et al. [2001] where
a tolerance is set as the maximum stress difference between two future sub-increment iterations
compared to the initial stress state. If this tolerance is small, the stress state may be assumed
accurate enough.

Table 3.5. Scheme with Error control.

input (SSTOL,nss,σσσ0,∆εεε)

steps ��� for i = 1,2, .. Maximum iteration number may be specified

δεεε =
∆εεε

nss
, nssold = nss

δσσσ1 =DDDep(σσσ0) δεεε First estimate
δσσσ2 =DDDep(σσσ0 +δσσσ1) δεεε Second estimate
δσσσ = 1

2 [δσσσ1 +δσσσ2]

R =
‖1

2 [δσσσ1−δσσσ2]‖
‖σσσ0 +δσσσ‖

Relative error

if R > SSTOL SSTOL = 10−3 to 10−8

β = 0.8
√

SSTOL
R

nss = nssold/β New value of nss increases
else

break When R < SSTOL, function stops
���

}}}

output (nss)

It is possible to run these lines for each sub-increments since the relative stress difference
may change where the constitutive matrix is not constant but the algorithm becomes heavier to
compute.

3.4.3 Plastic correctors

For critical state models, a drift corrector can be added for each sub-increments because of the
cumulative tolerated error at the yield surface. According to Sloan et al. [2001], even though
the algorithm accuracy is increasing with the sub-increments number, a corrector gives more
reliability in complex models such as the ones accounting for critical state soil mechanics. If
the yield criterion is violated, correctors may be applied to the stress and hardening parameters. In
(3.6), a Taylor series expansion of an arbitrary current stress point that crossed the yield surface is
shown. The subscript index 0 is assigned to yet uncorrected values.

f = f0 +aaaᵀ0δσσσ cor +
∂ f
∂H

δHcor = f0 +

(
∂ f

∂σσσᵀ

)
0

δσσσ cor +
∂ f
∂H

δHcor (3.6)

In order to perform an appropriate drift correction, the total strain increment must remain
unchanged. The stress and hardening correctors are respectively calculated by (3.7) and (3.8)
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Yield surface

FTOL

Figure 3.7. Drift correction by plastic correctors.

following the theory of plasticity seen in Chapter 2.

δσσσ cor =−Λ̇ DDD bbb0 ⇒ δσσσ cor =
− f0 DDD bbb0

A0 +aaaᵀ0 DDD bbb0
(3.7)

δHcor = Λ̇B0 =−Λ̇
A0

d f/dH
⇒ δHcor =

f0 B0

A0 +aaaᵀ0 DDD bbb0
(3.8)

And the final corrected stress and hardening parameter is calculated by (3.9) and (3.10).

σσσ =σσσ0 +δσσσ cor (3.9)

H=H0 +δHcor (3.10)

These correctors can be used repeatedly until reaching an acceptable value for the yield criterion,
e.g. the upper tolerance of the yield surface f = FTOL. Nevertheless, this method does not
converge in some cases of non-associated plasticity by having a stress correction further than
the initial one. Sloan et al. [2001] gives the example of the Mohr-Coulomb tip region. In that
case, a correction normal to the yield surface is temporarily chosen. The change of stress is made
according to (3.11) and the hardening parameter remains unchanged.

δσσσ cor =−Λ̇ aaa0 ⇒ δσσσ cor =
− f0 aaa0

aaaᵀ0aaa0
(3.11)

3.5 Stress update: Implicit formulation

3.5.1 Principles

Implicit formulations are different from the explicit formulations. Indeed the trial stress may be
corrected, if needed, to find another stress state on the yield surface which gives a realistic material
behaviour. Return algorithms for many criteria exist, von Mises ([Krieg and Krieg, 1977]), Tresca
and Mohr-Coulomb ([Clausen and Damkilde, 2006]), etc.. Its principle is illustrated in figure 3.5.
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3.5.2 Radial return method

One of the characteristics of the von Mises criterion is that for the case of linear hardening,
a closed-form formulae can be derived. [de Souza Neto et al., 2008] The linear hardening
function (3.12) leads to the return mapping equation (3.14), where the plastic multiplier Λ̇ can
be analytically found.

σY (εεε
p) = σY 0 +A ε

p
eff (3.12)

where σy0 is the initial yield stress and A is the hardening modulus, corresponding to the
stress-strain slope in the elasto-plastic range, like the Young modulus E in the elastic range. The
effective stress and plastic strain, respectively noted σeff and ε

p
eff, are defined by the von Mises

criterion
√

3J2 such as σeff =
√

3J2(σσσ).

σ
trial
eff −3G Λ̇−

[
σY 0 +(ε

p(A)
eff + Λ̇) A

]
= 0 (3.13)

σ
trial
eff −3G Λ̇−

[
σ
(A)
Y + Λ̇ A

]
= 0 (3.14)

leading to,

Λ̇ =
σ trial

eff −σ
(A)
Y

3G+A
(3.15)

The incrementation is done through the deviatoric stress:

sss(B) =
(

1−3G
Λ̇

σ trial
eff

)
ssstrial (3.16)

This closed-form expression (3.16) does not produce any drift and no subincrements are
needed. The patch and footing tests are available in appendix A and B.

3.6 Summary

Analyses of non-linear system demand an iterative solution process that is characterised by two
sort of equations, i.e. global (the entire model) and local (one gauss point). It is seen in this
chapter that the global equations can be solved by a Newton-Raphson method with residual forces
presented in details by Ottosen and Ristinmaa [2005]. This method is used in this paper to check
the system equilibrium during after each load increment.

The stress update or local equation accounts for the stress calculations along analyses. In
plasticity, the constitutive matrix is not constant and therefore iterations are needed. This chapter
presents a few methods to improve the well-known Forward Euler method. Explicit methods are
easier to formulate but needs many iterations, nevertheless computers nowadays become faster
every year, increasing the method’s attractiveness. Besides, improvements regarding drifts from
the yield surface or the control of subincrements in each gauss points were formulated and tested
with the von Mises plasticity model. These improvements may be relevant in critical state models
where many parameters are dependant on the stress state.
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TWO-SURFACE CRITICAL

STATE PLASTICITY MODEL 4
In this chapter the background theory and implementation of the two-surface critical state
plasticity model is elaborated. In addition, the framework of the critical state soil mechanics
theory is described to link the parameters used in the plasticity model.

4.1 Critical State Soil Mechanics

Critical State Soil Mechanics (CSSM) is a concept to understand how soil behaves when it is
sheared. Studies have proved that the concepts of CSSM are suitable to describe the strength and
volumetric behaviour of granular materials. [LeBlanc et al., 2008] Factors controlling the shear
strength of granular soils are affected by

- Soil material - Defined by the grain skeleton.
- Initial state - Defined by initial void ratio and confining stress, which determines either the

soil is loose or dense and contractive or dilative.
- Loading type - Defined by the effective stress path and is depending on the condition of

drained and undrained as well the type of loading, i.e. monotonic or cyclic loading.

For granular materials, Casagrande (1940) was first to introduce the concept of critical state.
This state is reached when continuous shearing causes zero volumetric change and zero change in
shear stress, see figure 4.1. [LeBlanc et al., 2008]

q

-ε
a

-ε
a

ε
v

Critical state

Characteristic state

Dense sand

Loose sand

Figure 4.1. Behaviour of dense sand in triaxial compression test.

As illustrated in figure 4.1, the q-ε graph shows that only in the case of a dense sand, a
peak strength is reach before the critical state. Secondly, the characteristic state is the point where
the soil transits from contractive to dilative behaviour. In the graph εv-ε the dense sand contracts
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before it start to dilate, which mathematically can be expressed as the horizontal tangent, defined
as δεv

δε1
= 0. From a triaxial point of view it means that the characteristic state is measured where

δεv = 0 for the first time.

4.1.1 Critical State Line (CSL)

Several plots are useful to capture the soil state, those include the parameters (p′,q,e). The stress
components p′ and q, displayed in (4.3), and the void ratio e, defined by the ratio between
voids and the volume of solid, define the line called critical state line CSL. It forms an envelope
representing the failure state and separates dilative and contractive soils, see figure 4.2 and 4.3.
The failure envelope is a function of the stress state which is depending on the type of loading. The
deviatoric stress q may be changed to τ , i.e. shear stress or p′ changed to σ ′V , i.e. vertical effective
stress. Secondly, the p′-e graph shows the volumetric changes of the soil due to effective stresses,
see figure 4.2 and 4.3. The void ratio e is related to the relative density which characterises if the
soil is loose or dense.

e

σ’
v

σ’
v

σ’
v

e

τ

Dilative

Contractive
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v0
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vf

σ’
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CSL CSL

CSL

(logarithmic scale)

(logarithmic scale)

Figure 4.2. Undrained stress path of loose soil with the CSL.

Note that there is no change in void ratio in the above figure because it is undrained condition.
This means that the volume is constant and it affect a build up in positive excess pore pressure.
In drained conditions, the above initial stress state would be a straight line pointing downwards to
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the CSL if a shear test were to be performed, see figure 4.3. In this case the void ratio, e changes
due to consolidation and the volume change is contractive.
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Figure 4.3. Drained stress path of dense soil with the CSL.

4.2 Model parameters

Significant soil behaviours from the CSSM theory as shear peak strength, dilative/contractive
behaviour and the linear relation of p′ and q are all parameters that are implemented in The critical
state two-surface plasticity model. In the following CSSM is linked to the model parameters used
in the soil model.

4.2.1 State parameter

The state parameter Ψ is the vertical distance from initial void ratio e0 to critical state void ratio
ec, see figure 4.4. When the state of a sand is above the CSL, corresponding to a positive Ψ, the
sand has a tendency to contract upon shearing. On the other hand if the state point is located below
the CSL, corresponding to a negative Ψ, the sand tends to dilate. [Phan, 2015]
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Figure 4.4. Definition of the state parameter Ψ

The state parameter presented in figure 4.4 is determined as

Ψ = e0− ec (4.1)

The state parameter takes into account changes in mean effective stress p′ and void ratio in a
single variable. At the critical state of ec the volume shears without further change in the effective
stresses at the current p′. [Phan, 2015]

4.2.2 Critical state parameters

By combining the linear relation of the CSL in e-lnp′ and p′-q space, as shown in figure 4.2 and
figure 4.4, it is possible two assume two essential parameters given as

ec = Γ−λ ln
(

p′

patm

)
(4.2)

Mc = q/p′ with q =
√

J2(σσσ) and p′ =
−I1

3
(4.3)

Since the CSL is independent of both the relative density ID and the mean effective stress, p′,
in the p-q space the CSL inclination is determined by the critical stress ratio, Mc.

According to figure 4.4 the variation of the critical void ratio ec and the effective mean stress
p′ are defined as in (4.2). Γ is the void ratio corresponding to a unit pressure of 1 kPa on the CSL
and λ is the slope. [Phan, 2015]

4.2.3 Bounding line

The peak strength is associated with the maximum rate of dilation defined as dεv/dεa with εv

as the volumetric strain and, εa, is the axial strain. Correlation between the dilation void ratio e
defines the magnitude of peak shear strength as shown in figure 4.5. [LeBlanc et al., 2008]
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Figure 4.5. Variation of peak shear strength due to density of sand. [LeBlanc et al., 2008]

A dense sand exhibit a strong dilation because the packing density is high and thereby the
void space between the grains are small. This means that the internal friction angle is higher for
a dense sand compared with a loose sand and thus a larger shear strength is obtained for a dense
sand. The peak shear strength can be illustrated as a threshold in the q-p′ space and is referred as
the bounding line, see figure 4.5. [LeBlanc et al., 2008]

q

p’

M
c

M
b

M
d

Figure 4.6. Definition of bounding line and critical stress ratio line.

Since the bounding line is related to the dilative behaviour of the soil it is convenient to
implement the state parameter Ψ. Secondly the critical stress ratio given in equation 4.3 is a
convenient parameter to implement since it defines the stress ratio of q and p′. The bounding line
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is defined as

Mb(Ψ) = Mc− kb〈Ψ〉 (4.4)

where kb is a model parameter and together with Mc both parameters are assumed constant. The
Macauley brackets 〈〉 sets all negative values to zero and provides 〈x〉 = x otherwise. [LeBlanc
et al., 2008]

With the formulation of the bounding line given as in (4.4) it ensures that for loose sands the
bounding line will coincide with the critical state line. Furthermore it ensures the curvature of the
bounding line for dense sands due to the dependency of the state parameter, Ψ. It is due to the
fact that the state parameter is depending on the critical state void ratio, ec given in equation 4.2,
which shows the dependency of the mean effective stress, p′. [LeBlanc et al., 2008]

4.2.4 Characteristic line

The characteristic line is defined from the characteristic state defined in figure 4.1. It describes the
transition from compressive to dilative behaviour where the volumetric strain δεv = 0.

In undrained conditions the characteristic state cannot be measured but the pore water
behaviour can. The state where maximum excess pore pressure is developed is called the Phase
Transformation State. The phase transformation state plays a similar role for undrained tests as
the characteristic state for drained tests.

As the critical stress ratio Mc and peak shear stress ratio Mb, the characteristic stress ratio Md

is modelled as a straight line in the p′-q space, thus the characteristic line is defined by: [LeBlanc
et al., 2008]

Md(Ψ) = Mc + kd Ψ (4.5)

The definition of the characteristic line is similar to the bounding line. The only difference is the
model parameter kc and an opposite sign convention.

4.2.5 Summary

The irrecoverable deformation can be linked approximately with the change in stress ratio
M = q/p′. The change in stress ratio is related to the development of volumetric strains and this is
defined as the volumetric hardening relationship. With this relationship it is proved that this stress
ratio, such as peak stress, matches the one illustrated in figure 4.1. [Wood, 1994]

Besides, when volumetric strain develop, changes of the state parameter and volume affect
the bounding stress ratio Mb. This means if the initial state parameter Ψ < 0 then the initial
bounding stress ratio would be larger than the critical stress ratio Mb > Mc. It means the soil is
heading for a peak stress ratio higher than the critical state value Mc. When the stress ratio exceeds
Md the volumetric expansion occur, i.e. δεv < 0 and the peak strength decrease until critical state.
[Wood, 1994]

On the other hand if the initial state parameter Ψ > 0 then Mb = Mc and Mb < Md , the soil
contracts until it reaches critical state. For small positive values of the state parameter which means
at low pressures, a loose sand would act like a dense sand which leads to a peak in the stress-strain
relationship similar to the one in figure 4.1 just with a smaller peak. [Wood, 1994]
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In figure 4.7 the effects of different initial state parameters Ψ0 is displayed where the volume
change response δεv and the variation of Mb are illustrated and is based on triaxial tests from
Wood [1994].
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Figure 4.7. Influence of initial state parameter Ψ0. a) Stress ratio M, b) Volumetric strains εv, c) Bounding
stress ratio Mb.

4.3 Elasto-plastic framework

This following section deals with the model derivation and explains the steps followed in the
algorithms. All tensors are here considered as column vector such as the strain and stress tensors
(1.1) and (1.2) in chapter 2. The Euclidean norm of a tensor is represented by ‖xxx‖ and the inner
and outer tensor product are written as xxxᵀyyy and xxxyyyᵀ respectively.

4.3.1 Elastic formulation

The elastic behaviour is non-linear, with a dependency to the mean effective pressure within the
soil. This behaviour is seen when test are performed in granular materials. As it is shown in (4.6),
the constitutive matrix DDD can be derived using the bulk and shear moduli, respectively K and G.
Hence, these two must be defined with respect to the mean effective stress.

σxx

σyy

σzz

σxy

σxz

σyz


=



K + 4
3 G K− 2

3 G K− 2
3 G 0 0 0

K + 4
3 G K− 2

3 G 0 0 0
K + 4

3 G 0 0 0
sym. G 0 0

G 0
G





εxx

εyy

εzz

2εxy

2εxz

2εyz


(4.6)

Manzari and Prachathananukit [2000] give an hypo-elastic assumption in (4.7) to calculate
the current moduli from one model parameter b (from 0.435 at very small strains to 0.765 at very
large strains [LeBlanc et al., 2008]), the atmospheric pressure patm, and the reference bulk and
shear moduli, noted as K0 and G0. The bulk modulus is then dependent on the mean effective
pressure p′ as well as the shear modulus.

K = K0

(
p′

patm

)b

G = G0

(
p′

patm

)b

(4.7)
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The moduli will increase with the mean effective pressure, which is consistent for sandy
soils. [Manzari and Prachathananukit, 2000] These are integrated into DDD and form a so-called
hypoelastic constitutive matrix. During the analyses the mean effective stress is calculated from
the last known stress tensor.

4.3.2 Yield surface

The plastic range is defined by the yield function (4.8). Clearly, the pressure p′ gives the strength
to the soil, m is a pressure dependent yield stress related to the yield surface radius. The relative
stress rrr takes into account the pressure, which is different from the kinematic hardening in the von
Mises model, where the pressure has no impact.

f (σσσ ,ααα,m) = ‖rrr‖−
√

2
3

mp′ with rrr = sss− p′ααα (4.8)

ααα Back stress
m Yield surface radius
rrr Relative stress
sss Deviatoric stress

The stress tensor nnn is also defined according to (4.9) and represent the unit vector of rrr pointing
out of the yield surface on the deviatoric plane.

nnn =
rrr
‖rrr‖

(4.9)

It is noted that this formulation highlights deviatoric stress components, i.e. rrr = rrr(sss) and m
and these are related to mean pressure. The deviatoric part may be compared to the J2 invariant
from the von Mises criterion. For illustrations of the different components in generalized stress
space, see figure 4.8.

4.3.3 Flow rule

Following the yield function in (4.8), the derivative of yield and potential flow functions are given
in (4.10).

aaa =
∂ f
∂σσσ

= nnn− 1
3

NIII bbb =
∂g
∂σσσ

= nnn+
1
3

DIII (4.10)

where III is the identity tensor, D is the dilatancy parameter, and N =αααᵀnnn+ 2
3 m

This gives the flow rule for the model in (4.11). If the flow rule were to be associative, D could be
set to −N, however that is not relevant to represent soil plastic response.

ε̇εε
p = Λ̇

(
nnn+

1
3

DIII
)

(4.11)
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Figure 4.8. Yield surface in stress space.

4.3.4 Plastic modulus

The plastic modulus is calculated from the consistency relation in plasticity theory, see (2.24)
chapter in 2.

A =−
(

∂ f
∂ααα

α̇αα

Λ̇
+

∂ f
∂m

ṁ
Λ̇

)
=−

(
∂ f
∂ααα

α̃αα +
∂ f
∂m

m̃
)

(4.12)

The plastic modulus for this model is defined in (4.13). Parameters ṁ and α̇αα are defined later in
the chapter.

A = p

(
nnnᵀα̃αα +

√
2
3

m̃

)
(4.13)

4.3.5 Critical state surfaces

This soil model outlines two surfaces that permit the particularity of critical states to be captured.
The two surfaces are the dilatancy surface [Manzari and Prachathananukit, 2000], also called
the characteristic surface [LeBlanc et al., 2008] or phase transformation surface in undrained
conditions, and the bounding surface.

In order to represent surfaces that are dependent on the third deviatoric stress invariant, i.e.
the Lode angle, Krenk formula (4.14) is used. g(c,θ) is a normalized function for which g(1,θ)
is a circle such as in Von Mises. g(0.7,θ) is a triangular shape in which the Mohr-Coulomb yield
surface may be circumscribed. The value of c is different for the bounding and dilatancy surfaces,
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respectively cb and cd , and depends on the soil parameters as well as the state parameter Ψ, see
figure 4.9. The values of Mi are calculated with (4.4) and (4.5).

g(ci,θ) =
cos(γ)

cos
(

1
3

arccos(cos(3γ)cos(3θ))

) (4.14)

γ =
π

3
+ arctan

(
1−2ci√

3

)
and ci(Ψ) =

Mext
i

Mi
with i = b,c,d (4.15)

Implementing the dilatancy surface is built from the critical state surface. To derive the soil
behaviour, the stress state location with respect to the dilative surface must be known. On the other
hand, the bounding surface defines the possible stress for the soil and approaching the bounding
surface leads to reaching critical state, see section 4.2.3.

These two surfaces are not static, the state parameter Ψ, which can be think of a fourth
dimension in generalized stress space, transforms their shape. Figure 4.9 outlines these changes
by showing the surfaces dimensions in compression and extension in deviatoric plane with respect
to the state parameter.

M
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c

ext
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Extension

k
b
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d

-k
d

ext

Dilatancy surface

Bounding surface

ψ

-k
b

ext

Figure 4.9. Surfaces in deviatoric plane.

The use of image points allow the stress state to be localised and hence the soil behaviour
to be derived. LeBlanc et al. [2008] gives a formula that expresses the different back stress (or
image vectors). They are calculated in the same way as the back stress in the yield function, noted
ααα but they are directed toward the current stress deviatoric direction nnn. The intersection between
an image vector and its corresponding surface is called an image point, see figure 4.10.

ααα i =

√
2
3
(Mi(Ψ) g(ci,θnnn)−m)nnn with i = b,c,d (4.16)

In addition, a link is made between these image vectors ααα i and the current location of the yield
surface ααα which leads to the image points. The distances βββ i, calculated in (4.17), play an important
role in the soil response, e.g. dilation or kinematic hardening.

βββ i =ααα i−ααα (4.17)
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Figure 4.10. Image points in deviatoric plane.

4.3.6 Hardening laws

Chapter 2 highlights kinematic and isotropic hardening laws and this particular model may use
these two types. The rate of isotropic hardening, i.e. the yield stress, is a scalar which evolves with
respect to one particular parameter being D. Cm is a positive model parameter, and e0 is the initial
void ratio.

ṁ = m̃Λ̇ =
[
Cm (1+ e0)D

]
Λ̇ (4.18)

However, it is noted that isotropic hardening can be neglected for sandy soils [LeBlanc et al.,
2008], as it almost preserves a constant radius m. In order to simplify this model, the isotropic
hardening is neglected in this paper, i.e. Cm = 0.

The kinematic hardening may be compared to the one in chapter 2 for the Von Mises model.
The tensor α is calculated through the deviatoric component βββ b, which is illustrated in π-plane in
figure 4.10.

α̇αα = α̃ααΛ̇ =

[
Cα

(
|βββ ᵀb nnn|

br−|βββ ᵀb nnn|

)
βββ b

]
Λ̇ (4.19)

Cα is a positive model parameter and the inner tensor product norm |βββ ᵀb nnn| gives the magnitude
to the yield surface direction βββ b. It is noted that when the yield surface approaches the bounding
surface, the tensor βββ b tend to zero, hence the same for α̇αα .
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4.3.7 Volumetric behaviour

The dilatancy parameter D gives the volumetric reaction of the soil, A0 and Az are defined as
positive model parameters, therefore dilation is only governed by the sign of βββ

ᵀ
d nnn

D = (A0 +Az)(βββ
ᵀ
d nnn) with Az = zzzᵀnnn (4.20)

The model needs to account for cyclic loading response of sandy soils and therefore stress
history must be accounted while the analysis is running. This is reached by implementing a
“fabric-dilatancy tensor update” [Dafalias and Manzari, 2004] that considers the contractive
tendency of sand at load reversal. In this paper, the name fabric tensor is used and noted as zzz.

żzz = z̃zz Λ̇ =
[
−Cz

(
Amax

z nnn+zzz
)
〈−D〉

]
Λ̇ (4.21)

4.3.8 Recap of model parameters

Table 4.1. Recap of model formulations.

Label Multiaxial formulation Constants

Critical State Line (4.2) ec = Γ−λ ln
(

p′

patm

)
Γ,λ , patm

Bulk modulus (4.7) K = K0

(
p′

patm

)b

K0,b, patm

Shear modulus(4.7) G = G0

(
p′

patm

)b

G0,b, patm

Yield surface (4.8) f (σσσ ,ααα,m) = ‖rrr‖−
√

2
3

mp′ m

Back stress rate (4.19) α̇αα =

[
Cα

(
|βββ ᵀb nnn|

br−|βββ ᵀb nnn|

)
βββ b

]
Λ̇ Ca

Fabric tensor rate (4.21) żzz = z̃zz Λ̇ =
[
−Cz

(
Amax

z nnn+zzz
)
〈−D〉

]
Λ̇ Cα ,Amax

z

Plastic strain increment (4.11) ε̇εε
p = Λ̇

(
nnn+

1
3

DIII
)

Dilatancy parameter (4.20) D = (A0 +Az)(βββ
ᵀ
d nnn) A0, Az

Plastic modulus (4.13) A = p

(
nnnᵀα̃αα +

√
2
3

m̃

)
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Table 4.2. Recap of model parameters.

Parameter Variable Value

Reference bulk modulus K0 31.4 MPa

Reference shear modulus G0 31.4 MPa

Elastic mean stress dependency b 0.5

Critical void ratio at p = 1kPa Γ 0.9

Critical stress ratio (dependent on friction angle ϕ) Mcr
6sin(ϕ)

3− sin(ϕ)

Initial yield stress m0 0.05

Bounding surface slope parameter
kb 4

kext
b 2

Dilatancy surface slope parameter
kd 4.2
kext

d 0.07

Initial dilation multiplier A0 2.64

Fabric tensor volumetric constant Amax
z 100

Loading slope (e-ln(p′) plot) λ 0.025

Fabric tensor evolution constant Cz 1000

Isotropic hardening constant Cm 0

Kinematic hardening constant Cα 1200

4.4 Response of the soil plasticity model

Calculations in drained and undrained conditions are performed. The assumptions used in
undrained conditions are explained later in this chapter. In order to examine whether the model
gives good response, several tests are conducted. Monotonic loading and cyclic loading are
presented with the boundary values displayed in figure 4.11.

The initial void ratio is taken as e0 = 0.8 which is consistent with previous tests realised with
this model, e.g. Dafalias and Manzari [2004] or LeBlanc et al. [2008]. However this particular
void ratio does not model contractive soil except at very high confining pressure, thus, another
void ratio is chosen that models contractive soil. This is taken as e0 = 0.88 and corresponds to a
maximum void ratio for very fine sands according to the Swiss Standard [1999].

Regarding the numerical implementation, drift correctors are used to ensure the stress state
does not leave far from the yield surface, and therefore giving more stability during the iterative
process, see section 3.4.3. The Newton-Raphson intersection scheme table 3.4 is not used due to
the small yield surface in this model and the absence of isotropic hardening that leads to a low
number of elastic iterations. Furthermore the error control scheme was not used in this model since
it is implemented with the Newton-Raphson intersection scheme.
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4.4.1 Stress update overview.

Table 4.3. Forward Euler stress update.

input (σσσ0,ααα,εv,∆εεε,zzz,DDD)

steps σσσ0 =−σσσ0 ; ∆εεε =−∆εεε ; ∆εv = tr(∆εεεv) Mech.→ Geotech. sign convention
σσσ =σσσ0 Initialisation
��� for i = 1,2, ..nss

Ψ = e− ec with e = e0− εv (1+ e0) State parameter
p = tr(σσσ)/3 Initial pressure
DDD =DDD

(
K(p′),G(p′)

)
Hypoelastic constitutive matrix

σσσ trial =σσσ +DDD δεεε

(α̃αα, m̃, z̃zz,D) = TraceSur f acesTraceSur f acesTraceSur f aces(σσσ ,ααα,zzz,Ψ) assumed that m̃ = 0
aaa ; bbb Derivatives of f and g
if f
(
σσσ trial,ααα

)
<−FTOL or <−LTOL Check if elastic or unloading

DDD∗ =DDD Elastic constitutive matrix
Λ̇ = 0 no plastic multiplier

else
(σσσ ,ααα, f ) =Dri f tCorrectDri f tCorrectDri f tCorrect(σσσ ,ααα,α̃αα,D,FTOL,Ψ)
A = A(σσσ ,ααα,α̇αα) Plastic modulus
DDD∗ =DDDep(DDD,aaa,bbb,A) Elasto-plastic constitutive matrix
Λ̇ = Λ̇( f ,aaa,bbb,DDD,A) Plastic multiplier

���
σσσ =σσσ +DDD∗δε Update stress
εv = εv + i ∆εv

nss
Update volumetric strain

p′ = tr(σσσ1)/3 Update pressure
zzz = zzz+ z̃zzΛ̇ Update fabric tensor
ααα =ααα +α̃ααΛ̇ Update current back stress
}}}
σσσ0 =−σσσ0 Geotech.→Mech. sign convention

output (σσσ0,ααα,zzz,DDD)

Table 4.4. Image points relative location with TraceSurfaces scheme.

input TraceSurfaces(σσσ ,ααα,m,zzz,Ψ) Locate image points

steps Mb = Mc + kc
b 〈−Ψ〉 and Mb = Mc + kc

d Ψ Max. surface radius in π-plane
nnn = nnn(σσσ ,ααα, p′) with p′ = tr(σσσ)/3 (4.8) - (4.9)
g(cb,θnnn), g(cd ,θnnn) Krenk formula from (4.14)
αααb, αααd Image vectors from (4.16)
βββ b, βββ d from (4.17)
D = (A0 +Az)(βββ

ᵀ
d nnn) with Az = zzzᵀ nnn

α̃αα(Cα , βββ b,αααb, nnn) z̃zz(Cz, nnn, zzz, D) m̃(Cm = 0, D) Get hardening rate parameter

output (α̃αα, m̃, z̃zz)
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4.4.2 Patch test: Boundary conditions

The difference with the von Mises model setup in figure 3.3 is that the model requires an initial
pressure, and that is explicitly stated by the yield function (4.8) dependency on p′. In figure 4.11,
F0 is the force representing the confining pressure p0. It is noted that prescribed displacement
prevents the nodal force to be in the finite element equation, and gives instead a reaction force for
that particular degree of freedom.

y

x

2m

Forced vertical

displacement

2
m F

0

y

x

2m

Forced horizontal

displacement

Figure 4.11. Boundary conditions of Patch tests for soil model (Axial and shear load cases).

The shear analysis provides kinematic boundary conditions for every single degree of
freedom of the model. Although not visible on the figure 4.11, zero displacement are set along
the y-axis and in each node. The forced displacement represented in blue arrows are different
whether monotonic or cyclic loads are generated.

Table 4.5. Recap of model setting

Forced displacement Void ratio

Monotonic
shear: ux ≈ 0.4m 0.8 (Dilative soil)
axial: uy ≈−0.2m 0.88 (Contractive soil)

Cyclic drained (mean±50%)
shear: ūx ≈ 0.2m 0.8 (Dilative soil)
axial: ūy ≈−0.05m 0.88 (Contractive soil)

Cyclic undrained (mean±75%) axial: ūy ≈−0.005m
0.8 (Dilative soil)
0.88 (Contractive soil)
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4.4.3 Patch test: Drained conditions

This section relates the observed behaviour of the model with respect to the theory of critical state
soil mechanics. For an larger overview of results and plots, the appendix C shows a more complete
set of plots. The black squares define the starting point of each tests.
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Figure 4.12. εV -εy diagram - axial test - contractive
soil - monotonic loading.
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Figure 4.13. εV -εy diagram - axial test - dilative
soil - monotonic loading.

Figures 4.12 and 4.13 shows the volumetric response under monotonic loading of the soil.
Here it is obvious that the dilative and contractive characteristics satisfy critical state theory.
Moreover, these soils have the same void ratio and hence, the consequences of a different confining
pressure may be noticed.

A link can be made with figures 4.14 and 4.15, where the distance to reach critical void ratio
differs so that contractive soil at p0 = 2000kPa contracts more than the others since ec is low.
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Figure 4.14. e-p′ diagram - axial test - contractive
soil - monotonic loading.
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Figure 4.15. e-p′ diagram - axial test - dilative soil
- monotonic loading.
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soil - monotonic loading.
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Figure 4.17. Ψ-εy diagram - axial test - dilative soil
- monotonic loading.
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4.4. Response of the soil plasticity model Aalborg University

On figures 4.16 and 4.17, different behaviour occur regarding the convergence to critical
state. The dilative soil reaches the critical line but the contractive soil does not, although the state
parameter Ψ converges to zero. Hence, more shearing is needed for contractive soil to reach critical
state. A few observations during calculations showed that low confining pressure does increase the
computation needs. For instance, the dilative soil at p0 = 250kPa and p0 = 500kPa on figure 4.17
shows slight instabilities. These were overtaken by having more subincrements in each load steps.
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Figure 4.18. τxy-p′ diagram - shear test - dilative
soil - monotonic loading.
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Figure 4.19. τxy-p′ diagram - shear test - dilative
soil - cyclic loading.
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Figure 4.20. q-εy diagram - axial test - dilative soil
- cyclic loading.
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Figure 4.21. q-εy diagram - shear test - dilative soil
- cyclic loading.

Figure 4.20 and figure 4.21 shows the contractive behaviour of sand under reversal loading
which is numerically caused by the fabric tensor zzz. Besides, cyclic loads increases this effect which
is of importance when undrained conditions and pore pressure are accounted.

4.4.4 Patch test: Undrained conditions

In undrained behaviour most of the load is carried by the water, i.e. increase in pore pressure.
In a total undrained analysis the constitutive behaviour of the soil is expressed with respect to
total stresses. This does not provide any information about the pore water pressure. [Potts and
Zdravkovic, 1999]

To estimate the undrained behaviour an assumption is to neglect consolidation of the soil and
thereby treat the soil as totally undrained without any seepage. By considering the principle of
effective stress it is possible to separate the total stress increment into effective stress increments
and pore pressure increments, see (4.22).

∆σσσ = ∆σσσ
′+∆uuu (4.22)
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Since the soil and water deform together and the relative movement is negligible, the strain
increment of the two phases are the same. This means that the stress increments in each phase
can be found by,

∆σσσ
′ =DDD′∆εεε (4.23)

∆uuu =DDD f ∆εεε (4.24)

and hence we may add the two contributions together,

∆σσσ = ∆σσσ
′+∆uuu =DDD′∆εεε +DDD f δεεε = (DDD′+DDD f )∆εεε =DDD∆εεε (4.25)

where DDD is the total constitutive matrix DDD′ is the elasto-plastic constitutive matrix for the soil
skeleton and is given by (4.6). At last, DDD f is the elastic constitutive matrix for the pore water such
as

DDD f = Ke


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

 (4.26)

where Ke is an equivalent bulk modulus for the total soil response.

Ke =
1

1
K f

+ (1−n)
Ks

(4.27)

where Ks is the bulk modulus of the solid soil particles and K f is the bulk modulus of the fluid.
For saturated soils the magnitude of K f and Ks is unimportant since it is much larger than the soil
skeleton stiffness K. In that case Ke equals K f and the fluid skeleton is defined as

K f = βK (4.28)

Where β is a value to obtain the bulk modulus relation K f »K. Normally it is set to 100-1000. Too
high value of β can cause numerical problems when Poisson ratio gets very close to 0.5. [Potts
and Zdravkovic, 1999]

Plots

Different plots of the undrained behaviour are illustrated in the following.
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Figure 4.22. q-p′ diagram - contractive soil - cyclic
loading.

-500 0 500 1000 1500 2000 2500
 p' [kPa]

0

100

200

300

400

500

600

700

800

 q
 [k

P
a]

p
0
 = 250 kPa

p
0
 = 500 kPa

p
0
 = 1000 kPa

p
0
 = 2000 kPa

Figure 4.23. q-p′ diagram - dilative soil - cyclic
loading.
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From figure 4.22 and 4.23 both the dilative and contractive soil decreases in mean effective
stress p′. Actually, the effective mean pressure p′ for contractive soil with the lower confining
pressures are negative which mean that the soil may reach cavitation.
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Figure 4.24. q-εy diagram - contractive soil -
monotonic loading.
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Figure 4.25. q-εy diagram - dilative soil - mono-
tonic loading.

According to figure 4.24 the contractive soil for monotonic loading shows both dilative and
contractive behaviour. The dilative behaviour is clear within the peak stress that it reaches before
going to contractive soil. In Appendix C figure C.2.4 this is illustrated by considering the stress
paths and see that it crosses the CSL and returns afterwards.
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Figure 4.26. q-εy diagram - contractive soil - cyclic
loading.
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Figure 4.27. q-εy diagram - dilative soil - cyclic
loading.
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Figure 4.28. q-e diagram - dilative soil - monotonic
loading.
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Figure 4.29. q-e diagram - dilative soil - monotonic
loading.

Figure 4.28 and 4.29 shows the void ratio changes are insignificantly small which verify that
for undrained conditions the change of volume strains are neglectable.
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Figure 4.30. u-ninc - contractive soil - monotonic
loading.

0 50 100 150 200 250
 Number of load increments [-]

-400

-200

0

200

400

600

800

1000

1200

1400

1600

 u
 [k

P
a]

p
0
 = 250 kPa

p
0
 = 500 kPa

p
0
 = 1000 kPa

p
0
 = 2000 kPa

Figure 4.31. u-ninc diagram - dilative soil - mono-
tonic loading.
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Figure 4.32. u-ninc diagram - contractive soil -
cyclic loading.
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Figure 4.33. u-ninc diagram - dilative soil - cyclic
loading.

According to figure 4.32 and 4.33 both dilative and contractive soil are increasing the pore
pressure with respect to number of load increments ninc. An observation regarding the pore
pressure build-up is that the dilative soil displays an high amplitude compared to the contractive
one. Furthermore, the pore pressure increases faster for the contractive soil with a low amplitude.

4.5 Summary

It is seen in this chapter that the elastic formulation in this model is non-linear. Therefore, an
hypo-elastic constitutive matrix is set with a dependency on the mean effective pressure. Hence,
for soil plasticity an iterative process is needed for both elastic and plastic response.

The Newton intersection scheme in chapter 3 may be derived to account for such non linear-
ity and could be a further development in the numerical implementation of this model.

Regarding the plastic behaviour, the volumetric reaction of the soil is of a great importance
so that image points are used to determine it. In this chapter, a patch test is used to implement the
model in a small finite element mesh and results obtained supports the concepts of critical state
soil mechanics theory.

In undrained conditions, the volumetric strain is zero but excess pore water pressure appears
when submitted to loads. A method from Potts and Zdravkovic [1999] enables an undrained
analysis where effective stresses and pore pressure may be investigated. Nevertheless, a better
insight of this undrained behaviour could be approached by considering hydraulic conductivity of
the soil, where local drained conditions could arise during cyclic loading or consolidation.
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CONCLUSION 5
5.1 Soil plasticity

Plasticity theory responds with a framework seen in chapter 2 to the non-linear behaviour in
materials. However granular materials are complicated to model as it is not a continuum but
a material arranged with grains. The purpose of this paper is to implement an advanced soil
plasticity model in order to model some particularity of cohesionless soil. The Critical state two-
surface plasticity model for sands developed by Manzari and Prachathananukit [2000] is based on
a multiple surface model.

An hypoelastic assumption is made regarding the elastic behaviour in the soil, dependent
on the mean effective pressure. On the other hand, critical state soil mechanics is used to derive
the different formulation in plasticity. A matter of importance is the dilation behaviour of the soil
which has several consequences on the soil especially with undrained conditions and the critical
state which defines failure. These are respectively characterized by a dilatancy and bounding
surface in generalised space, thus covering any loading conditions. Moreover,

5.2 Results of the patch test

The patch test is used to verify the model implementation within a small mesh in plane strain. It
is noted that the model could be made with an axi-symmetry assumption, enabling a triaxial test
to be investigate. The transition from triaxial stress space, in which CSSM theory is built upon, is
formulated to generalised stress space seems to provide fair results.

In drained conditions, the soil reaches critical state by increasing or decreasing its volume
towards failure. Results obtained satisfy Casagrande formulation of critical state by reaching its
critical void ratio, i.e. constant volumetric strain.

Undrained conditions is set up by assuming no water can escape the model, hence the solid
and liquid phases have the same strain increment in the calculations. This assumption enables
undrained tests to be performed and a satisfying accumulation of pore pressure under cyclic
loading.

5.3 Further developments

The footing test, made with the von Mises model, may be implemented with the Critical state two-
surface plasticity model for sands. Together with an better establishment of the fluid phase in the
soil and an appropriate interpolation of each model parameter, this constitutive model has proven
several important properties of soil could be modelled and thereby be useful for real geotechnical
problems.

Finally, regarding the stress update, a simple Forward Euler method is implemented together
with the model. The running time to perform the footing analysis could be greatly improved with
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the Newton intersection and error control schemes both presented in chapter 3.
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PATCH TEST WITH VON

MISES MODEL A
The von Mises theory is often called J2-plasticity because it is only described in terms of the
second deviatoric stress invariant, J2. To ensure that the J2-plasticity is implemented correct, a
patch test in MATLAB is done. The background of implementing the von Mises plasticity in the
patch are based on Chapter 2 and Chapter 3.

The patch consists of a square divided into eight triangular LST-elements with a forced
vertical displacement. The patch and its topology is illustrated in Figure A.1.
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Figure A.1. Undeformed mesh with element numbers.

A.1 Assumptions

• Linear hardening is considered which makes the hardening modulus, H, a constant.
• Associated plasticity
• Plane strain
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A.2 Case 1 - Perfect Plasticity

In the case of perfect plasticity, no hardening parameters are considered and the yield criterion is
given as Eq. A.1.

f =
√

3J2−σy0 (A.1)

where J2 in principal stresses is expressed as, see Eq. A.2

J2 =
1
2

sssi jsssi j (A.2)

where

sssi j =σσσ − 1
3
(trσσσ)III (A.3)

Here, sss is the deviatoric part of the stress vector σσσ and is used to obtain the second deviatoric stress
invariant, J2. The latter stress invariant and the derivative is used in the elasto-plastic constitutive
relation, see (2.23) in chapter 2.

50



A.2. Case 1 - Perfect Plasticity Aalborg University

A.2.1 Forward Euler Scheme
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Figure A.2. Stress path in deviatoric plane with Forward Euler Scheme.
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Figure A.3. Stress path in meridian plane with Forward Euler.

Convergence analysis

With the simple Forward Euler scheme a convergence analysis of the drift between the magnitude
of von Mises criterion, defined as

√
2/3σY 0 and the magnitude of the last stress point versus

number of load increments. A percentage of the drift is obtained and is illustrated in figure A.4.
Secondly the computational time due to number of load increments is shown in figure A.5.
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Figure A.4. Percentage of drift from initial yield surface due to load increments.

52



A.2. Case 1 - Perfect Plasticity Aalborg University

0 50 100 150 200 250 300 350 400 450 500

Number of increments [-]

0

100

200

300

400

500

600

T
im

e
 [

s]

Figure A.5. Computational time due to number of load increments.
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A.2.2 Modified Forward Euler Scheme
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Figure A.6. Stress path in deviatoric plane with Modified Euler Scheme.
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Figure A.7. Stress path in Meridian plane with Modified Euler.
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A.2.3 Radial Return Method
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Figure A.8. Stress path in deviatoric plane with Radial Return Method.
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Figure A.9. Stress path in Meridian plane with Radial Return Method.

As expected the results illustrated in the above figures shows that there is a slight drift in the
Forward Euler scheme compared with the implicit and Modified Euler Scheme.

A.3 Case 2 - Hardening Plasticity

Three types of hardening plasticity is considered. Furthermore the only hardening parameter is the
hardening modulus, A, which is stated to 10 MPa. The elasto-plastic constitutive relation (2.23) is
stated in chapter 2. The following plots of the three hardening laws are only considered with the
modified Euler scheme of 100 increments.

57



G. Melin & J.V. Nielsen A. Patch test with von Mises model

A.3.1 Isotropic hardening
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Figure A.10. Isotropic hardening in deviatoric plane.
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A.3.2 Kinematic hardening
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Figure A.11. Kinematic hardening in deviatoric plane.

59



G. Melin & J.V. Nielsen A. Patch test with von Mises model

A.3.3 Mixed hardening
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Figure A.12. Mixed hardening in deviatoric plane.
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STRIP FOOTING B
To test the J2 hardening plasticity, in a more realistic example, a strip footing is carried out in
plane strain. Two types of loading are considered, monotonic and cyclic loading.

B.1 The model

The strip footing is placed on top of a von Mises material. Due to the assumption of plane strain,
some symmetry properties of the domain and footing size can be assumed. An illustration of the
footing example with symmetry properties is shown in Figure B.1.

y

x

H = 10m

L = 12m

w = 1m

Figure B.1. Drawing of the footing model.

The strip footing is considered rough and rigid with a total width of 2 m and a half width
of 1 m. The domain size i given by L and H, which has been set to 10 m and 12 m. The domain
is meshed with 6-noded LST triangle with a gaussorder of 3. In total, the entire model consist of
135 LST elements, 304 nodes which gives 608 d.o.f and 405 Gauss points. This is considered as a
very rough mesh and is illustrated in figure B.2
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Figure B.2. Mesh used in footing model.

Furthermore at the footing a forced displacement of 0.1 m in the negative y-direction is
applied.

B.2 Material parameters

The footing is originally made to work with a Mohr-Coulomb material. Since von Mises is
not developed for soil material, some of the essential parameters as Young’s Modulus, E, and
cohesion, c have been modified. In table B.1 the assumed material parameters are listed.

Table B.1. Parameters used for the von Mises material.

E Young’s Modulus 210 MPa
ν Poisson ratio 0.3
G Shear modulus 46.2 MPa
φ Friction angle 20◦

ψ Dilation angle 20◦

c Cohesion 80 kPa

k0 Lateral earth pressure coefficient 0.658
γtot Total saturated soil weight 20 kN/m3

γw Water weight 9.82 kN/m3

B.3 Footing load

Normally for a footing case it is convenient to find the maximum displacement at a given load
level. This is called a force-controlled solution. It is known that an one-to-one relation exists
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B.3. Footing load Aalborg University

between the force and displacement. In the case of the footing used for the von Mises it is a
displacement-controlled solution. By gradually increase the displacement the reaction forces is
obtained by considering the static FE-equation

rrr =KKKuuu− fresfresfres

With KKK as the global stiffness matrix and fresfresfres as the global load vector defined as residual force
(difference in external - internal forces) and uuu as the displacement vector.

Two load cases are evaluated with the Modified Euler Scheme and kinematic hardening.

B.3.1 Convergence analysis

A convergence analysis of the footing load is illustrated in figure B.3.
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Figure B.3. Convergence analysis of footing test.

From the strip footing test, the coarseness and thereby number of d.o.f are controlled by the
parameter kmesh. In the figure above the kmesh has been tested from 2 to 10 where 2 is a very coarse
mesh. The black point equals the kmesh factor of 3 which is used in the following calculations and
has the mesh illustrated in figure B.2.

B.3.2 Monotonic loading

As illustrated in figure B.4 the reaction curve of the footing load with a forced displacement of 0.1
m and 100 load increments is shown.
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Figure B.4. Footing load with no hardening.

No hardening is considered and the reaction curve have similar design as the stress-strain
curve for perfect-plasticity.

To verify this result, it is compared with the analytical solution by Terzaghi’s bearing capacity
formula

R/w =
1
2

γwNγ +qNq + cNc (B.1)

where R is the bearing capacity, w is the footing width, q is the overburden pressure and Nγ , Nq

and Nc are the bearing capacity factors determined by et. al [2007].
The first term in (B.1) is related to the width of the footing and the area of the rupture line.

The second term is related to the depth of the footing and overburden pressure. The third term is
related to the cohesion of the soil.

Since von Mises does not consider friction angle but only cohesion the limit state is given by
the case of frictionless soil and the bearing capacity factors are given as

Nγ = 0

Nq = 1

Nc = π +2≈ 5.14

The factors are predetermined in et. al [2007]. The bearing capacity from the von Mises is 477.52
kPa and from Terzaghi it is 411.32 kPa. It is known that the analytical solution gives a conservative
estimate of the bearing capacity. With this in mind the two bearing capacities mark the upper and
lower bound of what to expect as the "real" bearing capacity of the von Mises material. It is known
that the bearing capacity from the numerical analysis could even be closer to analytical solution
by decrease the mesh size.

With hardening

In the other case hardening is considered and a constant value of the hardening parameter, A, is
set to 10 kPa, see figure B.5.
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Figure B.5. Footing load with a hardening modulus of 10 kPa.

Since the hardening modulus, A is considered strain hardening takes place and makes the
reaction curve of the footing load evolve with an inclination of A in the elasto-plastic part. It
is clear that the hardening modulus, A is lower than the Young’s modulus, E due to a steeper
inclination of the elastic part.

B.3.3 Cyclic loading

The cyclic loading is obtained by considering an harmonic function consisting of a sine wave
given as

v = B · sin(ω · t−ψ)+ v f orced (B.2)

and is illustrated in figure B.6
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Figure B.6. Illustration of the cyclic load applied by a sine wave.
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With an amplitude, B of 0.05 m. ω as the angular frequency defined as 2π/T where the wave
period, T is defined to be 5 seconds. ψ is the phase angle and is set to π/2. To never exceed a
displacement larger than zero, v from equation B.2 is added with the forced displacement, v f orced

of 0.05 m. In total it gives a maximum displacement of 0.1 m as in the monotonic case. In figure
B.7 the Modified Euler Scheme with kinematic hardening.
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Figure B.7. Cyclic loading with no hardening.

B.4 Computational time

The three schemes described in Chapter 3 have been tested with the case of monotonic loading
and kinematic hardening. Without the material parameters listed in table B.1, some initial model
parameters have been stated in table B.2.

Table B.2. Initial stated model parameters.

Model parameter Abbreviation Value

Number of load increments nink 1000
Tolerance factor of the residual force tolfac 10−5

Maximum number of global Eqm iterations nmaxglobal 30
Initial substep value Nstart 50

The computational time of the three schemes are listed in table B.3 with the stated model
parameters above.

Table B.3. Time of the three schemes.

Scheme Time
[-] [h:min:sec]

Forward Euler 08:12:36
Modified Euler 00:10:52

Implicit 00:02:39
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As expected the implicit formulation is faster than the two explicit methods since the implicit
formulation is a closed form solution. In the stress update there is no iteration going on but the
implicit formulation contain a direct solution to take the stress point back to the yield surface. The
implicit method is also called the radial return method for von Mises since the yield surface is a
circle in the deviatoric plane.

The computational time of the Forward Euler scheme and the Modified Euler Scheme have
a significant time difference. The reason is explained in the following.

For the Forward Euler scheme it has to go through the entire stress update scheme for each
strain increment, δε to see if the stress increment, δσ is in the elastic or plastic range. This scheme
does not differ from elastic or plastic range.

Since the von Mises is linear elastic the Modified Euler Scheme skip all the iterations in
the elastic range and calculates directly the stress point at the yield surface by implementing
the Newton-Raphson method. When plasticity is reach the Modified Euler Scheme uses same
approach as the Forward Euler Scheme. The modification in the elastic range makes the scheme a
lot faster.

B.4.1 Modified Euler scheme

Considering the Modified Euler Scheme the incorporated error control that calculates the number
of sub increments have been investigated. Number of load increments and initial number of sub
increments have been set. By considering different substep tolerance factors,Tolsub an average
substep has been calculated and is listed in table B.4 with the computational time.

Table B.4. Average values of the substep with computational time.

Tolsub Average substep Time
[-] [-] [min:sec]

nink = 200 Nstart = 10

10−3 10 09:42
10−5 10.7 10:13
10−7 25.6 64:15

nink = 500 Nstart = 10

10−3 10 08:08
10−5 10 08:35
10−7 11.6 16:32

nink = 1000 Nstart = 5

10−3 5 08:36
10−5 5 09:36
10−7 5.9 19:22

The initial number of subincrements is the minimum value of substep the Modified Euler
Scheme can use for a given test. If the initial value of the subincrements is too low the global
equilibrium iteration does not converge. Furthermore by increase the number of load increments
the number of iterations needed to obtain equilibrium is decreased, which can be seen by the
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computational time.
Secondly, a correlation between load increments and tolerance factor are observed. Higher

number of load increments decrease the minimum value of substeps even for very low tolerance
factor.

B.5 Surface plots
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Figure B.8. Effective stresses.
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Figure B.9. Ruptureline with total deformation of 0.1 m.
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Figure B.10. Accumulated effective plastic strains.
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PLOTS OF THE SOIL

PLASTICITY MODEL C
C.1 Patch test: Drained conditions

C.1.1 Deviatoric stress q and Shear stress τxy - Axial strains

-0.25 -0.2 -0.15 -0.1 -0.05 0
 ǫ

y
 [-]

0

500

1000

1500

2000

2500

3000

 q
 [k

P
a]

p
0
 = 250 kPa

p
0
 = 500 kPa

p
0
 = 1000 kPa

p
0
 = 2000 kPa

Figure C.1. q-εy diagram - axial test - contractive
soil - monotonic loading.
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Figure C.2. q-εy diagram - axial test - dilative soil -
monotonic loading.
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Figure C.3. τxy-εy diagram - shear test - contractive
soil - monotonic loading.
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Figure C.4. τxy-εy diagram - shear test - dilative soil
- monotonic loading.
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Figure C.5. q-εy diagram - axial test - contractive
soil - monotonic loading.
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Figure C.6. q-εy diagram - axial test - dilative soil -
cyclic loading.
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Figure C.7. τxy-εy diagram - shear test - contractive
soil - cyclic loading.
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Figure C.8. τxy-εy diagram - shear test - dilative soil
- cyclic loading.

C.1.2 Deviatoric stress q - Mean effective stress p′
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Figure C.9. q-p′ diagram - axial test - contractive
soil - monotonic loading.
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Figure C.10. q-p′ diagram - axial test - dilative soil
- monotonic loading.
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Figure C.11. τxy-p′ diagram - shear test - contrac-
tive soil - monotonic loading.
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Figure C.12. τxy-p′ diagram - shear test - dilative
soil - monotonic loading.
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Figure C.13. q-p′ diagram - axial test - contractive
soil - cyclic loading.
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Figure C.14. q-p′ diagram - axial test - dilative soil
- cyclic loading.
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Figure C.15. τxy-p′ diagram - shear test - contrac-
tive soil - cyclic loading.
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Figure C.16. τxy-p′ diagram - shear test - dilative
soil - cyclic loading.
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Figure C.17. e-p′ diagram - axial test - contractive
soil - monotonic loading.
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Figure C.18. e-p′ diagram - axial test - dilative soil
- monotonic loading.
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Figure C.19. e-p′ diagram - axial test - contractive
soil - cyclic loading.
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Figure C.20. e-p′ diagram - axial test - dilative soil
- cyclic loading.
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Figure C.21. e-p′ diagram - shear test - contractive
soil - cyclic loading.
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Figure C.22. e-p′ diagram - shear test - dilative soil
- cyclic loading.
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C.1.4 Deviatoric stress q - Void ratio e
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Figure C.23. q-e diagram - axial test - contractive
soil - monotonic loading.
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Figure C.24. q-e diagram - axial test - contractive
soil - dilative loading.
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Figure C.25. q-e diagram - axial test - contractive
soil - cyclic loading.
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Figure C.26. q-e diagram - axial test - dilative soil
- cyclic loading.

C.1.5 Volumetric strain εV - Axial strains
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Figure C.27. εV -εy diagram - axial test - contractive
soil - monotonic loading.

-0.1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
 ǫ

y
 [-]

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 ǫ
V
 [-

]

p
0
 = 250 kPa

p
0
 = 500 kPa

p
0
 = 1000 kPa

p
0
 = 2000 kPa

Figure C.28. εV -εy diagram - axial test - dilative
soil - monotonic loading.
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Figure C.29. εV -εx diagram - shear test - contrac-
tive soil - monotonic loading.
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Figure C.30. εV -εx diagram - shear test - dilative
soil - monotonic loading.
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Figure C.31. εV -εy diagram - axial test - contractive
soil - cyclic loading.
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Figure C.32. εV -εy diagram - axial test - dilative
soil - cyclic loading.

C.1.6 State parameter Ψ - Axial strains
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Figure C.33. Ψ-εy diagram - axial test - contractive
soil - monotonic loading.
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Figure C.34. Ψ-εy diagram - axial test - dilative soil
- monotonic loading.
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Figure C.35. Ψ-εy diagram - shear test - contractive
soil - monotonic loading.

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
 ǫ

x
 [-] ×10-17

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

 Ψ
 [-

]

p
0
 = 250 kPa

p
0
 = 500 kPa

p
0
 = 1000 kPa

p
0
 = 2000 kPa

Figure C.36. Ψ-εy diagram - shear test - dilative
soil - monotonic loading.
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Figure C.37. Ψ-εy diagram - axial test - contractive
soil - cyclic loading.
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Figure C.38. Ψ-εy diagram - axial test - dilative soil
- cyclic loading.
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Figure C.39. Ψ-εy diagram - shear test - contractive
soil - cyclic loading.
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Figure C.40. Ψ-εy diagram - shear test - dilative
soil - cyclic loading.
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C.2 Patch test: Undrained Conditions

C.2.1 Deviatoric stress q - Axial strains
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Figure C.41. q-εy - axial test - contractive soil -
monotonic loading.
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Figure C.42. q-εy - axial test - dilative soil -
monotonic loading.
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Figure C.43. q-εy - axial test - contractive soil -
cyclic loading.
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Figure C.44. q-εy - axial test - dilative soil - cyclic
loading.

C.2.2 Deviatoric stress q - Mean effective stress p′
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Figure C.45. q-p′ diagram - axial test - contractive
soil - monotonic loading.
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Figure C.46. q-p′ diagram - axial test - dilative soil
- monotonic loading.
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Figure C.47. q-p′ diagram - axial test - contractive
soil - cyclic loading.
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Figure C.48. q-p′ diagram - axial test - dilative soil
- cyclic loading.
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Figure C.49. e-p′ diagram - axial test - contractive
soil - monotonic loading.
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Figure C.50. e-p′ diagram - axial test - dilative soil
- monotonic loading.
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Figure C.51. q-e diagram - axial test - contractive
soil - monotonic loading.
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Figure C.52. q-e diagram - axial test - dilative soil
- monotonic loading.

78



C.2. Patch test: Undrained Conditions Aalborg University

0.8799984 0.8799986 0.8799988 0.879999 0.8799992 0.8799994 0.8799996 0.8799998 0.88
 e [-]

0

100

200

300

400

500

600

 q
 [k

P
a]

p
0
 = 250 kPa

p
0
 = 500 kPa

p
0
 = 1000 kPa

p
0
 = 2000 kPa

Figure C.53. q-e diagram - axial test - contractive
soil - cyclic loading.
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Figure C.54. q-e diagram - axial test - dilative soil
- cyclic loading.

C.2.5 Volumetric strain εV - Axial strains

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
 ǫ

y
 [-]

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

 ǫ
V
 [-

]

×10-6

p
0
 = 250 kPa

p
0
 = 500 kPa

p
0
 = 1000 kPa

p
0
 = 2000 kPa

Figure C.55. εV -εy - axial test - contractive soil -
monotonic loading.
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Figure C.56. εV -εy - axial test - dilative soil -
monotonic loading.
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Figure C.57. εV -εy - axial test - contractive soil -
cyclic loading.
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Figure C.58. εV -εy - axial test - dilative soil - cyclic
loading.
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C.2.6 State parameter Ψ - Number of load increments ninc
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Figure C.59. Ψ-ninc diagram - axial test - contrac-
tive soil - monotonic loading.
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Figure C.60. Ψ-ninc diagram - axial test - dilative
soil - monotonic loading.
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Figure C.61. Ψ-ninc diagram - axial test - contrac-
tive soil - cyclic loading.
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Figure C.62. Ψ-ninc diagram - axial test - dilative
soil - cyclic loading.

C.2.7 Vertical stresses σV - Number of load increments ninc
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Figure C.63. σV -ninc diagram - axial test - con-
tractive soil - monotonic loading - p0
1000.
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Figure C.64. σV -ninc diagram - axial test - dilative
soil - monotonic loading - p0 1000.
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Figure C.65. σV -ninc diagram - axial test - contrac-
tive soil - cyclic loading - p0 1000.
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Figure C.66. σV -ninc diagram - axial test - dilative
soil - cyclic loading - p0 1000.

C.2.8 Pore pressure u - Axial strains
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Figure C.67. u-εy - axial test - contractive soil -
monotonic loading.
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Figure C.68. u-εy - axial test - dilative soil -
monotonic loading.
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Figure C.69. u-εy - axial test - contractive soil -
cyclic loading.
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Figure C.70. u-εy - axial test - dilative soil - cyclic
loading.
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C.2.9 Pore pressure u - Number of load increments ninc
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Figure C.71. u-ninc diagram - axial test - contrac-
tive soil - monotonic loading.
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Figure C.72. u-ninc diagram - axial test - dilative
soil - monotonic loading.
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Figure C.73. u-ninc diagram - axial test - contrac-
tive soil - cyclic loading.
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Figure C.74. u-ninc diagram - axial test - dilative
soil - cyclic loading.
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