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Abstract:

Keeping an overview of surround-
ing vehicles is a nearly impossible task
using only human senses. This moti-
vates automatic tracking of surround-
ing vehicles using cameras with use in
both passive and active safety applica-
tions.

This study presents the develop-
ment of a novel framework for tracking
vehicles in full surround using com-
puter vision techniques. The frame-
work consist of a vehicle detector, a
modified tracker optimized for multi-
perspective tracking, and an associa-
tion of tracks in real world coordi-
nates to achieve consistent trajecotories
in full surround.

A vision-based dataset is collected
using four GoPro cameras with more
than 4000 annotated vehicles which
is used in the evaluation of the de-
tector, tracker, and multi-perspective
tracker. A trajectory dataset is collected
from 50 sequences using the developed
framework on which a trajectory anal-
ysis is made using machine learning
to demonstrate its uses in naturalistic
driving studies and advanced driver
assistance systems.
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Preface

This student report covers a 50 ECTS master’s thesis made by Jacob Vel-
ling Dueholm and Miklas Strøm Kristoffersen studying Vision, Graphics and
Interactive Systems at Aalborg University. The main work is done abroad
at University of California, San Diego (UCSD), from November 2015 to May
2016 in the Computer Vision and Robotics Research (CVRR) laboratory closely
coupled to Laboratory for Intelligent Vehicles and Safe Automobiles (LISA)
under supervision of professor Mohan M. Trivedi. This work has so far lead
to one accepted paper in the IEEE Computer Vision and Pattern Recognition
Workshops (CVPRW) on Automatic Traffic Surveillance (ATS), a journal ar-
ticle under review in IEEE Transactions on Intelligent Vehicles (T-IV), and a
planned submission to IEEE Intelligent Transportation Systems Conference
(ITSC).

The target group of this report are graduate students, supervisors, and
other parties with an interest in multi-perspective tracking of vehicles. The
central aspects of this project are multi-camera setup, detection and track-
ing of vehicles in single perspectives, track association between perspectives
along with trajectory analysis.

Reading Guide

This report is meant to be read independently of the papers in appendix. The
report allows a more detailed description and the thought process which is
less transparent in papers. The report is structured in five parts. The first
part introduces and defines the term multi-perspective tracking. The second
part describes a preliminary system functioning as a proof of concept, before
investing in the final setup used to gather a dataset and further develop the
framework as described in the third part. Part four completes the project,
and part five consists of papers in their current state.
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Introduction
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Chapter 1

Keeping an Eye on the Road

Vehicles are an integral part of the everyday transportation for a large part
of the population. In particular, USA has adopted a culture heavily based on
the use of vehicles. As of 2014, approximately four vehicles were registered
for every five persons that lived in USA [51]. As one can imagine, this means
a large number of vehicles are driving on the roads – 252 million in 2014
to be exact, and that number keeps increasing for every year that passes by
according to the trend shown in Figure 1.1. The excessive number of vehicles
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Fig. 1.1: The development in the number of registered vehicles, licensed drivers, and the popu-
lation in USA [51].

leads to congestion, especially in the larger cities, and an average American
spent approximately one hour in a vehicle each day in 2009 [50]. This adds
up to a lot of hours spent in vehicles in USA every day. Unfortunately, the
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Chapter 1. Keeping an Eye on the Road

intensive use of the roads led to 32,675 fatalities from 29,989 fatal crashes in
2014 [53]. That is approximately 90 people that are killed in vehicle accidents
every day in USA alone.

Several initiatives have been taken through the years to bring down the
number of fatalities caused by vehicle crashes. Classic examples include pas-
sive safety systems such as the airbag and the seat belt. It is estimated that
12,174 lives were saved by seat belts, and that approximately 3,000 lives could
have been saved in 2012 if all US vehicle occupants were restrained [52]. In
recent years, intelligent applications for vehicles have received increasing at-
tention. These are often referred to as advanced driver assistance systems
(ADASs), as they seek to make drives more convenient for the driver, and
not least to assist the driver in potentially dangerous situations.

An understanding of pre-crash circumstances is key to the development
of crash countermeasures. Naturalistic driving studies (NDSs) seek to ex-
pose the contributing factors to near crashes and crashes, concerning among
others driver behavior and driving context. Large NDSs have been con-
ducted [6, 9, 38, 54], and many hours have been spent manually labeling
events from the collected data. The sensor suites are designed to monitor
both the inside and the outside of the vehicles, and it has for example been
found that driver inattention to the road is a contributing factor in almost
80% of crashes [9]. It is thus not only interesting to see how vehicles drive
on the road, but also what the state of the drivers are while doing it. Multi-
ple studies have proposed automatic extraction of critical events inside and
outside a vehicle in NDS data [31, 43, 48], which allows for faster analysis
of e.g. driver behaviors. In terms of awareness of the driver, it is relevant to
study where the driver is looking in the time up to a crash, as this is most
likely the direction of attention of the driver (see Figure 1.2). Every second
spent in a vehicle is a fight of attention between driving and secondary tasks
such as using a smartphone, eating, and talking to passengers. Secondary
tasks are the most frequent contributing type of inattention in crashes [9].
The second most frequent contributing type of inattention might be a bit sur-
prising, as this is actually driving-related inattention, which is e.g. looking
in side and rear mirrors. In fact, driving-related inattention is a contributing
factor in approximately 30% of crashes [9]. Though the study actually finds
the driving-related inattention to be a protective behavior1, it does raise a
question of the limits to human sensing. For instance, the driver can only

1Drivers that check their surroundings are often more precautious [9].
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Fig. 1.2: Where the driver looks in the seconds up to a crash annotated manually in the SHRP2
NDS [54].

look in one direction at a time, and thus has to keep an internal map (that
is often based on assumptions of how vehicles are going to move) of what is
happening around the vehicle. This can be thought of as a similar approach
as prediction-correction based estimation of dynamics (e.g. the Kalman fil-
ter): The driver relies on a prior knowledge of typical dynamics of vehicles to
estimate the position of surrounding vehicles. These estimates are supported
by what the driver actually sees, and the knowledge is updated by e.g. ob-
served aggressiveness of surrounding drivers. However, when the driver is
not looking at a vehicle (e.g. a vehicle positioned behind the vehicle), the
estimated movement of the vehicle is only based on what the driver thinks it
is going to do. This is where the driver (and in particular Kalman filters) is
likely to fail if the assumptions do not hold true, and potentially dangerous
situations arise. The question is thus how a system can help the driver ob-
serve and understand what is happening around the vehicle, since the driver
can not observe the full surroundings at all times, and furthermore might be
inattentive due to secondary tasks.

Some research and development even revolve around the idea of com-
pletely removing the driver from the loop. The result is fully autonomous
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Chapter 1. Keeping an Eye on the Road

vehicles that currently receive notable coverage in media due to the potential
revolution of vehicle transportation. Just like human drivers, autonomous ve-
hicles need to sense the surroundings in order to navigate safely among other
vehicles. To this end, they rely on a wide range of sensors such as lidars,
radars, GPSs, and visual cameras [30]. In terms of sensing of surrounding
vehicles the autonomous vehicles mainly use lidar and radar, and multiple
autonomous vehicles have successfully driven public roads on pre-mapped
routes.

In the near future, the driver will most likely remain in the loop, and an
increase in ADASs will ensure a slow transition to fully autonomous vehi-
cles (e.g. adaptive cruise control, driver drowsiness detection, parking as-
sistance, and collision avoidance). An important branch of research within
ADASs deal with visual cameras, because of the large amount of information
contained in images compared to for example 3D point clouds from lidars
containing purely spatial information. This allows for e.g. classification of
traffic signs [34], traffic lights [24], turn and brake signals [44], and eye gaze
direction of the driver [49]. In terms of looking out applications the focus
has primarily been on front-facing cameras, thus the road ahead of the ve-
hicle, which is also where the main attention of the driver is directed (see
Figure 1.2). One of the most popular publicly available datasets, the KITTI
Vision Benchmark Suite [20], use a front-facing camera for observing vehicles
in front of the ego-vehicle2. In thread with the sensing problem of surround-
ing vehicles, the research within vision-based methodology is very limited.
Knowledge, as to what multiple cameras (that observe surrounding vehicles
all the way around the ego-vehicle) are potentially capable of achieving and
which challenges will be met, is thus unexplored.

This study takes the first steps towards observation and understanding of
vehicle movements all the way around an ego-vehicle using visual cameras.
It is investigated how vehicles are successfully located and followed in the
proximity of the ego-vehicle, and furthermore an analysis of trajectories col-
lected on highways in USA shows how trajectory modeling can be used to
learn trends in driver behavior. Potentially, the multi-perspective framework
is useful for both NDS and ADAS, and even autonomous vehicles might
eventually add a full surround looking visual camera setup to the sensor
suite.

2Generally in this thesis, the ego-vehicle is the vehicle that is equipped with cameras and thus
observing the surroundings.
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Chapter 2

Reader’s Guide

This thesis serves as an in-depth description of three papers produced during
the development. These papers are attached as appendices A, B, and C.

• Towards Semantic Understanding of Surrounding Vehicular Maneuvers: A
Panoramic Vision-Based Framework for Real-World Highway Studies, ac-
cepted for IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, 2016

• Trajectories and Behaviors of Surrounding Vehicles Using Panoramic Camera
Arrays, submitted for IEEE Transactions on Intelligent Vehicles

• Vision for Intelligent Vehicles & Applications (VIVA): Multi-Perspective Ve-
hicle and Trajectory Challenge, incomplete paper intended for submission
to IEEE Intelligent Transportation Systems Conference, 2016

Much of the work has therefore been aimed at paper submissions, which
means that the system is not a chronological process resulting in one final
prototype. In Part II (Proof of Concept) the first system is described. It is
based on the first paper, and uses six cameras. The conclusions from this
work is used to improve the system in Part III (Multi-Perspective Tracking
and Trajectory Analysis), which uses a different setup with four cameras.
This setup is the basis for the last two papers. As the two systems are de-
signed to solve the same problem, some methods will recur, but in general
methods will be explained in details in Part III. Both parts contain a local
summary of what is included, and the reader is suggested to resolve to these
in order to get a quick overview of the differences.
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Chapter 2. Reader’s Guide

Scope of Project

It is not the aim of this study to solve all aspects of the problem. Some
noteworthy limitations include:

• Only highways are considered, since these are subject to simple traffic
structure

• Weather conditions are sunny in all recordings, for which the climate
of San Diego is to blame

• No data have been captured at nighttime

• During capturing the ego-vehicle is kept at the same relative position
on the road, thus no lane changes are performed

8



Part II

Proof of Concept
Summary

This part describes a preliminary framework built to test if vision-based full
surround is an option at all, and if so, how to obtain a viable setup. The
framework is complete from mounting the cameras on the testbed to obtain-
ing an analysis of trajectories found surrounding the ego-vehicle.

The setup consists of six uncalibrated cameras to achieve a full surround
with a slight overlap between each perspective. Vehicle detection and track-
ing is applied in each separate perspective. Tracks are associated between
perspectives in the image plane by utilizing the overlapping regions, result-
ing in long trajectories all around the vehicles. Ten sequences are analyzed
and visualized, reducing the drives into an event list for easy interpretation.
Lastly, the setup is reflected upon for further improvements.

The work described in this part is published in IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, Automatic Traffic Surveil-
lance, 2016, titled Towards Semantic Understanding of Surrounding Vehicular Ma-
neuvers: A Panoramic Vision-Based Framework for Real-World Highway Studies.
The paper is found in Appendix A.
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Chapter 3

An Experimental Study

Using multiple cameras on a moving platform to gain a full surround view
is a novel area of research with only few publications and many unanswered
questions. The closest work [57] published in January 2016, utilize the Lady-
bug3 camera to record omni-images in full surround at 1 Hz as seen in Fig-
ure 3.1. The omni-image is divided into five pieces to detect vehicles at
different viewpoints. It should be noted the Ladybug3 is able to capture
1600 × 1200 omni-images at 6.5 FPS, and 16 FPS using JPEG compression
according to the datasheet1. The aim of this project is to not only detect vehi-
cles, but a full framework by also tracking and analyzing trajectories. A small
dataset is therefore gathered for the completeness of proving the possibilities
of a full surround vision-based framework.

Fig. 3.1: Omni-image captured by a Ladybug3 camera used by [57].

3.1 Camera Setup

The Ladybug3 seems to truncate vehicles driving close by, in its attempt to
capture the full surround from a single position. Instead six individual cam-
eras are used in this pilot study positioned on the rooftop rails as seen in

1https://www.ptgrey.com/support/downloads/10149
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Chapter 3. An Experimental Study

Figure 3.2 giving a full surround view with slightly overlapping regions.
The front and rear view cameras are of higher priority and is capturing at

an increased 1280× 960 resolution, compared to the side views 640× 480 us-
ing wide-angle lenses which introduces distortion. Using this configuration
the testbed is able to capture in full surround synchronously at 15 frames
per second (FPS). No calibration is used in this setup, neither extrinsic nor
intrinsic.

(a) PointGrey Ladybug3
Used by [57]

(b) Side view camera with wide-angle lense (c) Point-
Grey Camera
Configuration

(d) Sixcam setup. The front perspective is located inside the cabin.

Fig. 3.2

12



3.2. Data Collection

3.2 Data Collection

The data used in this system is gathered by the LISA lab, since no public
available datasets were to be found at the time. The instrumented vehicle
is driven on U.S. highways in southern California. The captured data are
comparable to European databases. The main differences are larger roads
with more lanes and a larger count of pickups and vans. U.S. highways are
ideal for capturing data with multiple lanes, and five lanes are not uncommon
on a single stretch. Sample pictures are shown in Figure 3.3. The weather is
mainly sunny with possibility of clouds. At least one perspective will thereby
be affected by sun glare with a full surround setup as seen in Figure 3.3c. No
post-processing is done to correct colors or distortion.

(a) Front Left (b) Front (c) Front Right

(d) Rear Left (e) Rear (f) Rear Right

Fig. 3.3: A sample frame from the six cameras that show some of the challenges (e.g. sun glare).

Ten sequences are extracted and used for further analysis, to avoid footage
with ego-vehicle lane changes which is unaccounted for in this work. The
sequences contain activity around the ego-vehicle e.g. overtakings and lane
changes. The length of the sequences varies from a few seconds up to a
minute.

13



Chapter 3. An Experimental Study

3.3 Multi-Perspective Trajectory Estimation

The challenge of tracking vehicles in full surround is divided into three mod-
ules as illustrated in Figure 3.4. The first module is the vehicle detection
applied to each of the six cameras. These detections are used for the tracking
module, associating detections in consecutive frames to track each vehicle
over time. These two modules are well-researched topics within computer
vision with off-the-shelf methods. The Multi-perspective Tracking module is
responsible for associating tracks across perspectives to obtain a longer track
history. This is a novel topic without much guidance. In this proof of con-
cept the multi-perspective association is done in the image plane given the
uncalibrated camera setup.

Multi-Perspective
TrackingDetection Tracking

Trajectory
Analysis

Multi-Perspective Trajectory Estimation

Fig. 3.4: Flow diagram of trajectory estimation and the afterwards analysis of trajectories. De-
tection and tracking is applied in each individual view, to be associated in the image plane.

Vehicle Detection

The deformable part models (DPM) vehicle detector is used, as DPM is
known as a common baseline with several variations. The specific imple-
mentation used is pre-trained on the KITTI dataset by Geiger et al. [18]. This
implementation uses the DPM in two stages. First stage is a regular DPM
on the entire image, and the second stage is applied to an upscaled image
around the horizon to detect vehicles at a distance as seen in Figure 3.5c.
The detections are overall found promising with high accuracy in the higher
resolution front and rear perspective. The second detection stage has shown
improvements in detecting vehicles in especially the side perspectives. Note
this is at the expense of computation time. No further gains were found
with higher upscaling. A more detailed explanation of the DPM detector is
found in Section 7.1. The detections in the side perspective is still challenging
despite the use of a second stage. The same detector is used in all six per-
spectives only changing the horizon parameter. Examples of DPM detections
are shown in Figure 3.5.

14



3.3. Multi-Perspective Trajectory Estimation

(a) Front Left (b) Front (c) Front Right

(d) Rear Left (e) Rear (f) Rear Right

Fig. 3.5: DPM detections in all six perspectives. Detections with a score higher than zero is
shown as bounding boxes. A red rectangle indicate detections from the first detection stage, and
a blue bounding box indicates a higher score is found in the upscaled detection stage. Note the
white pickup truck not being detected in (d) probably due to heavy distortion. The horizon is
marked in (c) together with the top and bottom margin used in the second detection stage.
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Chapter 3. An Experimental Study

Vehicle Tracking

Using the detections from the previous module, the tracker objective is to as-
sociate detections between frames by assigning identification numbers (ID).
Ideally every vehicle are assigned only one ID throughout the scene. To
carry out this task the Markov decision process (MDP) tracker [61] is used
(a detailed description of the tracker is available in Section 8.1), with freely
available source code. Minor corrections are made as the MDP tracker is orig-
inally made for tracking pedestrians. Since vehicles have another aspect ratio
than pedestrians the template size is re-defined using the KITTI dataset [20].
A histogram of annotations for the object challenge is seen in Figure 3.6,
from where a mean of 1.5 is used as the new aspect ratio.The MDP tracker is
applied to each individual view.

Fig. 3.6: Histogram of aspect ratio of annotated bounding boxes in the KITTI dataset [20].

Tracking and Association Between Perspectives

With vehicles being tracked in each individual perspective, the task of the
multi-perspective tracking module is to link ID for the same vehicle across dif-
ferent perspectives. The association is done purely based on positions in the
image plane, following a set of heuristic rules as described in Equation 3.1.

Each track consisting of an ID and detections is denoted ak
m = [ID, dn],

where ak
m is the mth tracked vehicle in camera k and the detection dn =

[t, x1, y1, x2, y2, s] are described with a time/frame index, t, and a bounding
box with the top-left corner (x1, y1), bottom-right corner (x2, y2) and a detec-
tion score, s. The camera under evaluation is denoted k ∈ [1, 2, · · · , K] with K
being the total number of cameras, in this case six. The cameras are known
to overlap, from where pre-defined overlap regions are determined for each

16



3.3. Multi-Perspective Trajectory Estimation

perspective denoted Ωk = [Ωk
L, Ωk

R] for overlap with respect to the left and
right adjacent camera. These boundaries are displayed in Figure 3.7, with the
overlap with the left adjacent camera marked by yellow and the right overlap
by red. For an association to take place, a track must be present in one of the
overlapping regions in the perspective in which it is currently tracked, and a
corresponding track must be present in the adjacent perspective. Each trajec-
tory is only evaluated once, being the first frame it appears. The bounding
box of the new trajectory is firstly examined to be positioned in either the
left or right overlapping region. A single pixel is sufficient to satisfy this first
criteria. Secondly, the corresponding adjacent perspective is examined for
possible candidates to be associated with. If a match is found in the adja-
cent perspective, this ID is carried over to new the trajectory as well, thereby
associating tracks between perspectives. In the case with multiple possible
matches in the adjacent perspective, a constraint is added, where an ID only
can exist once in each perspective, or else the closest match is chosen.

bl =




[ak

m, ak−1
m′ ] if Ωk−1

R < ak−1
m′ (x2) and ak

m(x1) < Ωk
L

[ak
m, ak+1

m′ ] if Ωk
R < ak

m(x2) and ak+1
m′ (x1) < Ωk+1

L

(3.1)

Associated trajectories between cameras are described as BBBT = {BBBT
k,k±1}

in the time interval T. Note that k wraps around, such that k1 and kK are
adjacent perspectives. Each set of associations between two cameras k and
k± 1 is BBBT

k,k±1 = {b1, b2, · · · , bL} where bl = [ak
m, ak±1

m′ ] is the lth association.
As an example, see Figure 3.7, where a silver vehicle cuts-in from the left

in the front perspective seen from two time instances. The silver vehicle is
correctly assigned the ID 4 from the left adjacent perspective. Note how a
vehicle can be present in three perspectives simultaneously, as seen with ID
4 in Figure 3.7b. The fact that a vehicle can be present in more than two
perspectives is a disadvantage of the setup. A mis-association is inevitable
and will in this case be hard to correct.

Setting up heuristic rules for all case scenarios is a tedious task, and a
less viable solution if this is to work in all generic scenarios found on-road.
In such case other cues must be used to assist the association such as depth
or appearance cues which probably requires color correction. However for
the use in free-flow low-density scenes this naive implementation is found
sufficient as a proof-of-concept.
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Chapter 3. An Experimental Study

(a)

(b)

Fig. 3.7: Track association of ID 4 from left-front to the front perspective seen over two time
instances. The yellow and red vertical lines mark the overlap with the left and right adjacent
camera respectively, which are used in the association in the image plane.

18



3.4. Trajectory Analysis

3.4 Trajectory Analysis

Given the persistent tracks across perspectives enables an NDS analysis to re-
duce sequences of driving into events for a fast interpretation. Ten sequences
of real-world data are used in the evaluation with various overtakings and
cut-ins. The ten sequences are described with 14 different events as illus-
trated in Figure 3.8. Events are registered from tracks depending on which
cameras they have been spotted in. Inverse perspective mapping (IPM) is
used in the front and rear perspectives to obtain the position of vehicles in
front and behind the ego-vehicle (A detailed description of IPM is available in
Section 9.1). The IPM is also used as a visualization tool to represent filtered
vehicle trajectories in a top-down view. The trajectories are filtered using an
average of the last n samples to give a more smooth trajectory.

pass left

ego-pass right

pass right

ego-pass left

stay R stay F

LC = lane change

left-ego RLC ego-left RLC

right-ego RLC ego-right RLC

F = frontR = rear

left-ego FLC ego-left FLC

right-ego FLC ego-right FLC

Fig. 3.8: The 14 events detected in the trajectory analysis.

The events contained in the trajectories are compared to manually found
ground truth for all ten sequences and summarized in Table 3.1 and Fig-
ure 3.9. The precision and recall is generally found to be high for both events
and sequences. The two false negatives seen in sequence three and seven are
most likely caused by the filtering, shortening the trajectories, resulting in a
missing a lane change.

3.5 Concluding Remarks

Given six cameras, a full framework demonstrating the concept of full sur-
round tracking has shown to be a possibility, with several experiences along
the way. Each association between perspectives is a risk of error of why
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Chapter 3. An Experimental Study

Table 3.1: Events detected by the system for all ten sequences compared to ground truth [Sys-
tem/GT].

Event Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 Seq10 Precision Recall

Stay front 2/1 0/1 1/1 1/0 0/1 1/1 1/1 1/1 1/1 1/1 0.78 0.78
Stay rear 0/0 0/0 0/0 0/0 1/1 0/0 0/0 1/1 1/1 0/0 1.00 1.00
Pass on left 3/4 3/4 1/2 1/1 0/0 1/1 3/3 1/1 0/0 3/5 1.00 0.76
Pass on right 0/0 1/1 1/1 0/0 1/1 0/0 0/0 0/0 0/0 1/1 1.00 1.00
Ego-pass on left 0/0 0/1 0/1 4/4 1/1 0/0 0/0 0/0 1/1 0/0 1.00 0.75
Ego-pass on right 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1.00 1.00
In front, left to ego-lane 1/0 2/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0.50 1.00
In front, right to ego-lane 0/0 0/0 1/1 0/1 1/1 0/0 1/1 0/0 0/0 0/0 1.00 0.75
In front, ego-lane to left 1/0 0/0 0/1 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0.00 0.00
In front, ego-lane to right 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1.00 1.00
In rear, left to ego-lane 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/0 0/1 0/0 1.00 0.50
In rear, right to ego-lane 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1.00 1.00
In rear, ego-lane to left 1/1 0/0 0/0 0/0 0/0 1/1 0/0 0/0 0/0 1/1 1.00 1.00
In rear, ego-lane to right 0/0 1/1 0/1 0/0 0/0 0/0 1/0 0/0 0/0 0/0 0.50 0.50

Precision 0.7 0.88 1.0 0.83 1.0 1.0 0.83 1.0 1.0 1.0
Recall 0.88 0.7 0.6 0.83 0.8 1.0 0.83 1.0 0.8 0.78

(a) Seq1 (b) Seq2 (c) Seq3

(d) Seq4 (e) Seq5 (f) Seq6

(g) Seq7 (h) Seq8 (i) Seq9

(j) Seq10 (k) Total

Fig. 3.9: Visualization of the ten sequences along with all the trajectories in total. Evaluated in
Table 3.1.
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3.5. Concluding Remarks

the number of cameras should be kept at a minimum. Detections of trun-
cated vehicles near the image border is found to be of increased importance
to ease the association between views. Likewise would a tracker prolong-
ing by predicting the tracks close to the border aid the association between
views. Association in the image plane is found sufficient for low-density
scenes without multiple vehicles in the overlapping areas. Further informa-
tion such as depth would be preferred to make a stronger association, or by
calibrating the cameras to associate in a common road-plane. The trajectory
analysis of 14 simple events were done using a number of heuristic rules. If
more or more advanced events are to be analyzed it might be worth consid-
ering a data-driven approach instead writing tedious rules for each case.

An alternative and untested framework is to stitch all the images as pre-
processing, which would circumvent the problem of truncation and associ-
ation between perspectives. The stitching is assumed to be unfeasible given
only a slight overlap used in this setup, but has not been further investigated.
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Part III

Multi-Perspective Tracking
and Trajectory Analysis

Summary

This part describes the final setup used with several improvements compared
to the previously presented system in proof of concept. The setup consists
of four GoPro cameras for a full surround coverage. Vehicles are detected in
each separate perspectvive by a DPM detector, and tracked by a MDP tracker.
The tracker is optimized for tracking in multiple perspectives. Tracks are
projected to a common road plane using IPM. The tracks are Kalman filtered
in the road plane followed by association to obtain trajectories going 360◦

around the ego-vehicle.
Detection, tracking and multi-perspective tracking are evaluated on 33

seconds of annotated data using various metrics. Trajectories from 50 se-
quences are analyzed classifying both supervised and unsupervised. Lastly
an online classification is shown, examining how early a lane change can be
recognized.

The work presented in this part has so far led to two papers. The journal
paper in Appendix B is currently under review for IEEE Transactions on In-
telligent Vehicles, titled Trajectories and Behaviors of Surrounding Vehicles Using
Panoramic Camera Arrays. The paper in Appendix C marks the publication
of the dataset used in this work to be submitted to IEEE Intelligent Trans-
portation Systems Conference, titled Vision for Intelligent Vehicles & Applica-
tions (VIVA): Multi-Perspective Vehicle and Trajectory Challenge. The dataset is
further to be presented at the IEEE Intelligent Vehicle Symposium in Gothen-
burg 2016 as part of the VIVA workshop.
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Chapter 4

System Overview

This chapter gives an overview of the setup and system used in the remaining
report. The setup is based on the gained experience from the previous setup.
One of the findings were to minimize the number of cameras used to reduce
the risk of error in transitions between perspectives. A total of four cameras
are therefore used contrary the six cameras. New GoPro cameras have been
acquired to increase the image resolution and overall image quality.

Tracking
Multi-Perspective

Tracking
Transformation

to RoadDetection

Multi-Perspective Trajectory Estimation

Trajectory and 
Behavior Analysis

Fig. 4.1: Flow diagram of the final system using four GoPro cameras. Vehicles are detected and
tracked in each individual perspective, and projected to a common road plane. This produces
trajectories in all the way around the ego-vehicle to explore on-road behaviors.

The system flow is illustrated in the diagram of Figure 4.1. The detection
module detects vehicles in all four individual perspectives. The tracker asso-
ciates detections over time in the image planes, and transforms the tracks
from all four perspectives to a common road plane using homographies
found during calibration. This allows tracks to be associated in the road
plane, being the key difference from the system used in the proof of con-
cept. Several modifications are made to optimize the MDP tracker towards
multi-perspective association. An extensive data collection process has been
initiated revealing trajectories of surrounding vehicles to be further studied.
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Chapter 5

Camera Setup

This chapter is devoted to all the practical considerations when working with
a multi-camera setup. This includes the choice of camera, mounting on an
actual testbed, and the post-processing involved, correcting for effects as mis-
synchronization and distortion.

5.1 Choice of Camera

The Point Grey cameras used in the proof of concept are replaced with new
GoPro HERO3+ cameras with a better image quality. Their field of view
(FOV) is found to be wide while only slightly distorting the image and
thereby seen as a considerable upgrade, despite the lack of synchronization
of multiple cameras.

The GoPro HERO3+ is able to capture video of up to 4K resolution (3840x2160)
at real-time frame rates. This is considerable better than current datasets, e.g.
KITTI that uses 1392× 512. However, the full resolution of the GoPro is not
utilized since the added resolution also requires more computation and stor-
age. Furthermore the battery consumption is higher at higher resolutions,
not being able to capture for as long time.

A resolution of 2.7K (2704x1440) is chosen to maximize the horizontal
field of view (125◦) according to the datasheet1. This enables raw capturing
2704× 1440 images at 24 FPS with a battery time of approximate two hours.
The raw video is later downsampled to 12 FPS for efficiency.

1https://gopro.com/support/articles/hero3-field-of-view-fov-information
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Chapter 5. Camera Setup

5.2 Camera Placement

Theoretically, only three GoPros are needed to cover 360◦ using a horizontal
FOV of 125◦. However, this assumes all cameras being located at the center
of the vehicle which would truncate vehicles close by. In practice the cameras
are mounted in outer positions of the roof rails as seen Figure 5.1, where four
GoPros are used to obtain a full surround with overlapping views. An even
number of cameras are preferred to have a designated front and rear view.

Fig. 5.1: Configuration of four GoPros mounted on the test vehicle to achieve a full surround
view.

A wide selection of GoPro housings and mounts are available. The two
side view cameras are mounted with a higher degree of freedom to be ori-
ented outwards. The front and rear are mounted directly on the clamp to
give the most stabilization which is found a necessity on U.S. highways. All
cameras are mounted in an open frame with direct USB accessibility for data
extraction without removing the cameras. This housing is thus susceptible to
rainy weather.

5.3 Synchronization

The main disadvantage of using GoPros is the lack of synchronization be-
tween multiple cameras. The synchronization is not needed to be perfect
down to a single frame in this application, but examined to get the best pos-
sible out of the setup. The frame rate is found constant for all GoPros without
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5.3. Synchronization

drift, thereby no need for time aligning frames between cameras. This makes
the synchronization a question of only determining an offset for each camera.

Each GoPro has an internal clock which is used to timestamp each frame.
These clocks can be set one at time through the GoPro app, to synchronize
each clock with a smartphone. This synchronization method has shown
unreliable results, with up to several frames offset between cameras. The
clocks are also shown to drift over time longer periods of time, requiring
re-synchronization before each use. Another approach is to use the GoPro
Wi-Fi remote. This allows to start and stop capturing of all connected Go-
Pros with the push of a single button. This method is found surprisingly
accurate down to only a few frames offset or even none. The synchronization
is evaluated and compensated for by manual visual inspection of actions in
the overlapping regions.

5.3.1 Synchronization of Velocity Data

The data gathered are not only images but also velocity of the ego-vehicle.
This is used to obtain absolute velocities instead of only relative. Absolute
velocities can be used in the analysis to determine if surrounding vehicles
overtaking the ego-vehicle are speeding, or if the ego-vehicle simply drives
slowly.

The ego-velocity is logged from the on-board diagnostics (OBD-II) port lo-
cated under the steering wheel using an OBD-II-dongle. This allows reading
of various vehicle kinematics as vehicle speed, engine speed, engine load etc.
through a Python API 2 to a PC. The ego-velocity is sampled at approximately
five Hz, and timestamped using the PC’s local time. These timestamps are
used to synchronize the velocity data to the image data. The image data
are likewise timestamped, but not necessarily using the same clock, of why
an offset is determined by manual inspection. Every image timestamp is
matched with the closest velocity timestamp searching both back and for-
ward in time. This procedure is done once for every drive since the GoPro
clocks are found to drift over long periods (between drives).

2http://openxcplatform.com
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Chapter 5. Camera Setup

5.4 Calibration

In the following is the intrinsic calibration and undistortion of the GoPro
cameras described using the checkerboard calibration software in OpenCV.

The GoPro cameras suffer from barrel distortion which warps the image
as seen in Figure 5.2a, where the crash barrier seems curved. The effect is
more severe far from the center as seen near the image boundary. This af-
fects the succeeding modules such as the detector, which is trained to recog-
nize appearances. Detections near the image boundary are of special interest
when dealing with association between perspectives, which makes undistor-
tion relevant for this project. Alternatively to undistortion, one could train a
detector on distorted images.

(a) Original Distorted (b) Undistorted

Fig. 5.2: Distortion sample of vehicles in the left perspective.

The effect can be reduced by calibrating the intrinsic parameters, which
can be used to “straighten” out the image. The intrinsics are determined us-
ing a checkerboard of known size as the one best seen in Figure 5.4, being
8 × 6 with quadratic squares of 107 mm. Intersections of each square are
found in the image plane and compared to the known 3D spatial distribution
of the checkerboard, to find the transformation to unwarp the image. A total
of 10+ frames is recommended with distributed checkerboards throughout
the entire image at varying depth for the best result. The found checker-
boards used for the calibration in this project are illustrated in Figure 5.3
using an excess of 72 sample images. Note our calibration is performed of-
fline using recorded videos since GoPro got limited streaming capabilities.
This complicates the procedure of gathering well distributed board positions
throughout all parts of the image, without the feedback of when a checker-
board is found.

The found checkerboards are used to determine the calibration matrix
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5.4. Calibration

Fig. 5.3: Checkerboard distribution used to calibrate the intrisic parameters of the GoPro.

and distortion coefficients, which are necessary to unwarp the image. This
process is performed for all four GoPros with almost identical results, which
verifies the manufacturing standard of the GoPros. The calibration matrix is
refined using the scaling parameter alpha to determine the level of unwarping
as seen in Figure 5.4. A value of zero gives no invalid black pixels, while
using a value of one will contain the entire original image. It is noted that the
object in the center of the image becomes smaller using a higher alpha value.
The checkerboard of the undistorted image is seen to have straight lines, as
for the lines of ceiling. There might even be tendency to overly stretch the
image at the boundary, which might be caused by the lack of checkerboards
in that particular area. A alpha value of 0.4 have been chosen as compromise
between loss of width and the size of objects.

The distorted image is often cropped in order to remove the redundant
black regions or in order to define a region of interest i.e. avoid processing of
sky pixels or the hood/trunk of the ego-vehicle. Approximately 10% of the
images in the side perspectives can be removed, and up to 40% for the front
and rear. No cropping is used in the processing of images in this project,
only for visualization, and is therefore seen as a potential speed up.
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Chapter 5. Camera Setup

(a) Original Distorted (b) Undistorted alpha 0

(c) Undistorted alpha 0.4 (d) Undistorted alpha 1

Fig. 5.4: Different levels of unwarping by varying alpha. A value of zero contains no black pixels,
where a value of one wraps the entire image to fit in the original size.
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Chapter 6

Dataset

An important part in the development and evaluation of a system is the
data, and it is crucial that the data fit the purpose of the study. Several
datasets are publicly available for vehicle detection and tracking, but none
of these focus on a full surround view. Parts of the system presented in this
work can potentially be evaluated using the common benchmarks such as
the KITTI Vision Benchmark Suite [20]. However, in order to fully expose the
performance of the system, full surround data are needed.

All data used in this work are collected with the intention of developing
and evaluating the system, and eventually parts of the data will be made
available to the research community as part of the Vision for Intelligent Ve-
hicles & Applications (VIVA) challenge. The data are gathered using the
testbed described in Chapter 5 with help from the LISA lab to drive the ve-
hicle. The database is collected on U.S. highways in southern California over
2.5 hours of driving. The drives are divided into 50 sequences consisting of
challenging behaviors found around the ego-vehicle including e.g. overtak-
ing, cut-ins, and cut-outs. The sequence duration vary around 30-60 seconds,
to be able to capture one or multiple such events. No lane changes of the
ego-vehicle are performed, and only flat sections are used. The dataset does
not include any training data, but methods evaluated on the KITTI bench-
mark prove to work on the data as well, for which reason it is suggested to
use the large amount of publicly available training data. In this work it is
further possible to use the data collected in the proof of concept system (see
Part II) for training.
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Chapter 6. Dataset

6.1 Ground Truth Annotations

Ground truth is annotated in order to evaluate methods on the dataset. The
ground truth is obtained for each of the four perspectives by manually an-
notating bounding boxes as shown in Figure 6.1 in the format as seen in
Equation 6.1, where (x1, y1) denotes the top-left corner, and (x2, y2) denotes
the lower-right corner.

[frame, id, occlusion, truncation, x1, y1, x2, y2] (6.1)

Each vehicle is assigned an identification number, id, to evaluate tracking.
Note the id is consistent between perspectives giving the option of multi-
perspective tracking.

Front Right Rear Left

Fig. 6.1: Sample images from one of the sequences in the dataset with overlaid ground truth
annotations at six different time instances. The bounding boxes are color coded by id and labled
with PO, HO, PT, and HT denoting partial occlusion, heavy occlusion, partial truncation and
heavy truncation, respectively.

The occlusion and truncation tags are both divided into three levels being
No, Partial, and Heavy. Here, No equals 0%, Partial includes vehicles up 50%,
while Heavy covers 50%+ for both occlusion and truncation. Three levels
are chosen to simplify the annotation workload, while maintaining a certain
division for analysis purposes. At the time of writing a single sequence of 33
seconds (400 frames) has been annotated. Note the annotations are done in
all four perspectives, resulting in 4000+ annotations for this single sequence,
worth two days of annotating using a customized Python annotator as seen
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6.1. Ground Truth Annotations

in Figure 6.2. This annotator is also used for annotating break and turn
signals in [44].

Fig. 6.2: wxPython based annotator developed specifically to annotate this dataset. The red
cursor is eases the drawing of bounding boxes, together with hotkeys for assigning IDs and
labeling occlusion and truncation levels and several other features.

The bounding box annotations allow for evaluation of both detection and
tracking. In order to evaluate 3D tracking, we use the estimated homogra-
phies to transform each ground truth trajectory to the road plane (further
details for this procedure is described in Section 9.1). The middle of the bot-
tom of the bounding box is used as vehicle position in the image plane. The
road plane annotations have four entries:

[frame, id, x, y] (6.2)

The transformed ground truth trajectories in the road plane are shown in
Fig. 6.3. The road plane trajectories seem noisy which might seem unnatu-
ral since it is considered ground truth, and one might feel the urge to filter
this result. The noise is caused by vibrations of cameras, which when trans-
formed to the road plane is especially evident in the driving direction (the
x-direction). As the same transformation is used for both the ground truth
and the test trajectory under evaluation this error will be reduced, hence no
filtering despite the noisy looking ground truth.
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Fig. 6.3: Ground truth trajectories in the ground plane. The trajectories are marked with a start
position X and an end position O to indicate relative velocity to the ego-vehicle.

6.1.1 Dataset Content

This section shortly describes the data obtained from the ground truth bound-
ing box annotations. As seen from Figure 6.4 the data in the four perspectives
vary notably in aspect ratio, average bounding box size, distribution of trun-
cation level, and the number of perspectives in which the vehicles are present.
Thus, vehicles in the side perspectives tend to have a larger aspect ratio, a
larger size in both width and height, and a larger percentage of truncation
compared to the front and rear perspectives. An important note is that all
vehicles that appear in the side perspectives are visible in at least one other
perspective during the sequence. A great motivation for tracking the vehicles
all the way around the ego-vehicle appear from the bottom right histogram,
which shows the number of perspectives in which vehicles are present. Note
that almost half of the vehicles are present in three perspectives, and only
about 40% stay in one perspective. Though, the data are chosen to challenge
the multi-perspective tracking, this result clearly shows why it is interesting
to follow vehicles all the way around the ego-vehicle.

6.2 Evaluation

The collected data with annotations allow for evaluation of multiple applica-
tions. In this section the methods used to evaluate vehicle detectors, single-
perspective multiple object trackers, and 3D trackers, are described.
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6.2. Evaluation
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Fig. 6.4: Histograms of bounding box annotation measures. Each column represents a perspec-
tive, and the rightmost column is the total. The rows are from top to bottom: Bounding box
aspect ratio, bounding box width and height in pixels, occlusion level of vehicles, truncation
level of vehicles, and the number of perspectives in which the visible vehicles are present during
the sequence.
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6.2.1 Detection Metrics

Well-established metrics exist for both detection and single-perspective track-
ing. In detection the average precision (AP) is commonly used, calculated as
the area under the precision-recall curve. Where:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(6.3)

With TP denoting the number of true positives, FP the number of false pos-
itives, and FN the number of false negatives. The precision-recall curve is
generated for a detector by varying the threshold for the score (from very
strict to very loose). For a ground truth bounding box to be matched with a
detected bounding box, an overlap defined as the intersection over union is
required to be at least 0.7 in this work.

Overlap =
h1 ∩ h2

h1 ∪ h2
(6.4)

Where h1 and h2 are the two bounding boxes. The highway is a simple set-
ting for testing of vehicle detectors, however vehicles driving in the opposite
direction on the other side of the crash barrier might potentially be detected,
though not of interest to this study. For this reason, ignore regions are de-
fined in the perspectives, where these vehicles are visible.

6.2.2 Single-Perspective Tracking Metrics

The single-perspective multiple-object tracking is evaluated using the CLEAR
MOT metrics (MOTA and MOTP) [2], together with metrics including frag-
mentations (Frag) and ID switches (IDS) [32], mostly tracked (MT), and mostly
lost (ML) [59]. Multiple object tracking accuracy (MOTA) is defined as:

MOTA = 1− FN + FP + IDS
TP + FN

(6.5)

Multiple object tracking precision (MOTP) is:

MOTP =
∑t,i Overlapt,i

∑t ct
(6.6)

Where ct denotes the number of matches in frame t, and Overlapt,i is the
overlap between target i in frame t and the corresponding ground truth tar-
get. MOTP is thus an average precision of bounding boxes that have been
matched with a ground truth box. A fragmentation is added every time a
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ground truth trajectory is split. An ID switch is added if a ground truth
trajectory is matched with another ID than the one that is currently associ-
ated. A ground truth trajectory is counted as mostly tracked if it is associated
more than 80% of the time by definition. Likewise is a ground truth trajectory
accounted as a ML if associated in less than 20% of the time.

6.2.3 3D Tracking Metrics

The field of multi-perspective 3D tracking is less explored without any com-
mon metrics. The problem, however, is not so different from tracking in
single perspectives. For this reason, similar metrics are used in the road
plane. Instead of association between ground truth bounding boxes and
tracked bounding boxes, this will require association between points in the
road plane. To this end, a weighted euclidean distance from ground truth
trajectory points is used. This does however mean that the cost of matching
a candidate to ground truth is not normalized (as the bounding box overlap
definition), and thus MOTP is not well-defined ([33] suggest to normalize the
distance with the matching threshold). The original definition of MOTP says
that it is the average dissimilarity between all true positives and their corre-
sponding ground truth targets. With bounding box overlap a score as close
to 1.0 is ideal. Using euclidean distance changes the ideal score to be as close
to zero as possible, as it is now defined as the average distance between true
positives and their corresponding ground truth targets. To reduce the confu-
sion, this score is referred to as multiple object tracking euclidean precision
(MOTEP):

MOTEP =
∑t,i dt,i

∑t ct
(6.7)

Where ct denotes the number of matches in frame t, and dt,i is the weighted
euclidean distance between target i in frame t and the corresponding ground
truth target. Another important aspect is the choice of matching threshold,
which is traditionally chosen as either 0.5 or 0.7 bounding box overlap. A
direct transfer to the road plane domain would be a static distance allowed
from each ground truth trajectory point. However, as a nature of inverse
perspective mapping small variations close to the ego-vehicle will not be as
severe as small variations further away. It is proposed to make the match-
ing criterion a function of the x-distance from the ego-vehicle. A target is
matched to a ground truth target if it fulfills:

dt,i < a|x|+ b (6.8)
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where |x| is the absolute x-coordinate of the ground truth target, a is the
gradual increase in allowed distance, and b is the allowed distance at |x| = 0.
Specifically, a = 0.04 and b = 2. It should however be noted that variations
in the y-direction is more likely to cause erroneous matches. For this reason,
the weighted euclidean distance is defined as:

dt,i =

√
(gtx − trx)

2 + 4
(

gty − try
)2 (6.9)

where gt = [gtx gty]T is the 2D ground truth position and tr = [trx try]T is
the position of the target. Thus, distances in the y-direction have a double
weight.

The metrics suggested above do however not encapsulate the importance
of ID switches that happen between perspectives. For this reason, it is in-
tended to include trajectory similarity measures in the future, which could
e.g. be longest common subsequence (LCS).

40



Chapter 7

Vehicle Detection

The art of object detection is a well researched area applied in a wide variety
of applications detecting faces, pedestrians, and lately vehicles, all sharing
many of the same methodologies and detection schemes. The common goal
is to find the object within the image, often marked by a bounding box as
seen in Figure 7.1. The subfield of vehicle detection is in this project limited to
highway scenarios which simplifies the problem compared to urban driving,
which also has to take oncoming and parked vehicles into account, just to
name a few.

(a) Rear (b) Front Left (c) Right

Fig. 7.1: Bounding boxes marking vehicle objects in an image.

This project focuses on passive visual sensors, but other possible solutions
include active sensors as radar and lidar, of a fusing hereof. Vehicle detec-
tion is especially challenged by a combination of varying viewpoint, a high
intra-class variation, and frequent occlusions and truncations. The viewpoint
depends on the application where highway applications simplify the situa-
tion to only a few orientations in each perspective (e.g. mainly rear-views for
a front-faced camera).
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The high intra-class variation is challenged by the vehicles found on roads
such as cars, vans, and pickups, but also within each class with variation in
shape, size, and color. The significance of occlusions and truncation is found
in Figure 7.2 from the KITTI dataset to be approximate 35% occluded and
10% truncated. Note the KITTI dataset is mainly captured in urban and
rural scenes thereby not directly comparable to this highway scenario. Since
only 10% of vehicles are truncated these are often down prioritized, also not
evaluated when being more than 50% occluded in the KITTI Hard difficulty.

(a) KITTI Dataset [19]. Ap-
proximate 35% occlusion and
10% truncation.
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(b) Our dataset occlusion lev-
els for all perspectives.
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(c) Our dataset truncation lev-
els for all perspectives.

Fig. 7.2: Comparison between the KITTI dataset with only front-faced perspective in mainly
urban driving and the multi-perspective highway data.

Vehicles are typically occluded by other vehicles, and often found in both
high and low density scenes. One might argue an occluded vehicle is of
little importance to the ego-vehicle since there is a third vehicle in between.
Another might say these are of special importance since these can appear
in short notice due to being hidden, thus an early detection is important.
Likewise is it of importance to detect truncated vehicles. Especially in a
multi-perspective setup where detections near the image boundary are used
to associate detections between perspectives. The truncation problem have in
previous dataset been of less importance. As first introduced in the PASCAL
Challenge [13] in 2007 as true/false flag, and later in KITTI [20] from 2012
as percentage by back projecting 3D annotated objects to the image plane.
KITTI furthormore had three difficulties with Hard difficulty with up to 50%
truncated objects.

Only static images are used in traditional detection evaluations, which
heavily favors the use of visual cues only, opposed the goal of this application
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of detecting and tracking vehicles in a continuous video feed. This allows
the use of motion cues as seen in Figure 7.3, using optical flow near the
image boundary for an early detection of overtaking truncated vehicles by
looking at the direction of the optical flow. This approach might however
be less suitable detecting receding vehicles but might be a good supplement
for earlier detections, especially in the side perspectives. Note the moving
platform excludes methods relying on background subtraction often found
in surveillance applications.

Fig. 7.3: Early detection of vehicles near the image boundary using optical flow [17].

Among the most popular detection schemes are Viola and Jones [55]
sliding-window search with cascaded classifiers, detecting objects in a very
efficient manner. A likewise popular framework is the use of histograms
of gradients (HOG) features with a linear support vector machines (SVM)
as classifier. State-of-the-art detectors within the field include Aggregated
Channel Features (ACF) [11], SubCat [41] and ConvNet. Their performance
are found on the KITTI object evaluation of cars as seen in Table 7.1. For the
full table see KITTI Homepage1. Some detectors also estimate the orientation
of detected objects, where a similar table is found on the KITTI website scor-
ing both detection and orientation estimation. The vehicle orientation is not
further used in this work and is therefore ignored for the remainder of this
work.

The choice of detector is in this work a compromise between implementa-

1http://www.cvlibs.net/datasets/kitti/eval_object.php

43

http://www.cvlibs.net/datasets/kitti/eval_object.php
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Table 7.1: Selected detection performances on the KITTI object evaluation dataset for cars. De-
tectors are ranked according to AP on the moderate difficulty.

Rank Method Moderate Easy Hard Runtime Environment

4 SubCNN 89.32 % 90.86 % 79.33 % 2.0 s GPU @ 3.5 Ghz
9 Faster R-CNN 81.84 % 86.71 % 71.12 % 2.0 s GPU @ 3.5 Ghz
11 Regionlets 76.45 % 84.75 % 59.70 % 1.0 s >8 cores @ 2.5 Ghz
15 SubCat+HSC 75.46 % 84.14 % 59.71 % 5.5 s 2 cores @ 2.5 Ghz
16 SubCat 75.46 % 84.14 % 59.71 % 0.7 s 6 cores @ 3.5 Ghz
18 FCNN 70.67 % 87.69 % 61.49 % 0.1 s 1 core @ 2.5 Ghz
21 SubCat 66.32 % 81.94 % 51.10 % 0.3 s 6 cores @ 2.5 Ghz
22 OC-DPM 65.95 % 74.94 % 53.86 % 10.0 s 8 cores @ 2.5 Ghz
23 DPM-VOC+VP 64.71 % 74.95 % 48.76 % 8.0 s 1 core @ 2.5 Ghz
24 On-road CNN 63.08 % 77.50 % 52.52 % 0.2 s GPU @ 1.0 Ghz
26 DPM-C8B1 60.99 % 74.33 % 47.16 % 15.0 s 4 cores @ 2.5 Ghz
27 ACF-SC 58.66 % 69.11 % 45.95 % 0.3 s 1 core @ >3.5 Ghz
28 LSVM-MDPM-sv 56.48 % 68.02 % 44.18 % 10.0 s 4 cores @ 3.0 Ghz
29 RCNN 55.97 % 68.20 % 46.70 % 10.0 s GPU @ >3.5 Ghz
31 LSVM-MDPM-us 55.42 % 66.53 % 41.04 % 10.0 s 4 cores @ 3.0 Ghz
32 ACF 54.74 % 55.89 % 42.98 % 0.2 s 1 core @ >3.5 Ghz

tion time and performance. Implementation time is highly affected by if the
framework is publicly available, or if training is necessary which requires an-
notated data preferably on our data or a similar database. The performance
is in this project primarily measured on precision and recall, with limited
consideration of real-time.

The DPM detector (LSVM-MDPM-sv from Table 7.1) is chosen as detector
in this project based on its freely available code [22], and pre-trained vehicle
models [18, 65], which has shown promising detection results, without the
need of further optimization. The idea of deformable parts is appealing to
combat both occlusions and truncations which is found to be of interest for
multi-perspective tracking. The remaining of this chapter will be a further
description of the DPM detector and its performance on our dataset.

7.1 Deformable Part Models

The DPM [15]2 is a popular choice of detector for detecting viewpoint variant
objects. Such as vehicles which change a lot along with viewpoint and intra-
class variability. The DPM combats the viewpoint variation by using a mix-
ture of models, training a model for each viewpoint. Furthermore parts are
introduced to handle intraclass variation by allowing the model to “stretch”,

2https://people.eecs.berkeley.edu/~rbg/latent/
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where detection of parts can help in occluded or truncated cases.
The DPM is based on the findings of Dalal and Triggs [8], showing the

effect of training a linear SVM using HOG features and detecting objects with
a sliding window method, which can be seen as a template matching of HOG
features. This approach outperformed all previous approaches by a large
margin on the Pascal VOC challenge. The DPM extends the system of Dalal
and Triggs by introducing local parts to the global root detection window. An
example is seen in Figure 7.4a where the root is depicted in red and parts in
blue. The parts are organized in a pictorial structure, connecting the parts in
a “spring-like” configuration as seen in Figure 7.4b. This allows the parts to
move with respect to the root within certain limits i.e. the distance between
parts are deforming. Note the model is not modeling interaction between
parts, but only between root and parts.

(a) A DPM detection with the root filter shown
in red and parts in blue.

(b) Pictorial structure connecting face parts to-
gether in a “spring-like” configuration.

Fig. 7.4: DPM detection and pictorial structure.

The performance of the DPM detector has made a remarkable impres-
sion on especially the Pascal VOC challenge dataset, detecting between 20
different objects in a wide variety including cars, persons, horses, chairs etc.
An evaluation of the Pascal VOC challenge 2006 cars dataset is shown in
Figure 7.5 by the original DPM authors Felzenszwalb et al.. This shows the
impact of using a mixture of two models compared to one, and also the use
of parts. Lastly is the slight performance in precision by using prediction of
the bounding box. The DPM is further explained by its two key components,
detection and training.
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Fig. 7.5: Performance of DPM on Pascal VOC challenge [15]. AP in parentheses.

7.1.1 DPM Detection

The DPM detection scheme describes the process of finding and scoring de-
tection candidates i.e. hypotheses, in an image. Objects at different sizes
and distances are detected using a feature pyramid. For each frame, a fea-
ture scale pyramid is built from HOG appearance features by smoothing and
subsampling to detect objects at different scales as shown in Figure 7.6.

Fig. 7.6: A HOG feature pyramid build for each frame by smoothing and subsampling. The
root filter is scanned through the entire image, while part filters are applied at twice the resolu-
tion [15].

The DPM detection framework is applied to each level in the feature pyra-
mid for each component in the pre-trained mixture model. A model contains
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a root filter, n part filters, and deformation costs for each part filter as seen
in Figure 7.7. The training of such a model is found in the next section, and
the model is assumed given for now.

Fig. 7.7: One component of a mixture model. From left to right: root filter, eigth part filters, and
deformation costs [63].

The DPM detection framework for a single level in the feature pyramid
is visualized for a person in Figure 7.8. The method is directly applicable to
other objects as vehicles using a different model. Each level is scanned by
the root filter, while the part filters are applied at twice the resolution. The
response of the part filters are smoothened to account for spatial uncertainty
by a distance transformation using the deformation costs.

Each hypotheses is scored using Equation 7.1. Here the sum of the root
filter (i = 0) and the part filters are summed and subtracted with the defor-
mation costs.

score(p0, · · · , pn) =
n

∑
i=0

F′i · φv(H, pi)−
n

∑
i=1

di · φd(dxi, dyi) + bias (7.1)

where
F is the filter parameters. F0 being the root filter, F1,··· ,n being part filters.
φv(H, pi) is a subwindow of the feature pyramid H at the pi position.
di is the part filters deformation costs.
φd(dxi, dyi) is the parts displacement feature vector from anchor position.
bias makes scores comparable across components in the mixture model.

The parts displacement is calculated based on the deviation from the an-
chor point (vi) defined relative to the root filter (x0, y0) as seen in Equa-
tion 7.2. Note the root filter is scaled by a factor of two to match the part filters
position found in twice the resolution of the feature pyramid. The displace-
ment is used in the quadratic function of Equation 7.3 to define deformation
costs when deviating from the anchor point. The quadratic function gives the
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Fig. 7.8: DPM detection scheme a single level in the feature pyramid using a person model.
Every position of the root filter is scored as a combination of the root filter and the part filters
found in twice the spatial resolution. [15].
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circular shape of the deformation cost seen in the model in Figure 7.7.

(dxi, dyi) = (xi, yi)− (2 (x0, y0) + vi) (7.2)

φd(dx, dy) = (dx, dy, dx2, dy2) (7.3)

Only the hypotheses with the highest confidence score is kept for each
placement of the root filter as seen in Equation 7.4. Again, the score is a com-
bination of both root and part filters. Since each part is modeled indepen-
dently of each other, the optimal placement can also be found independently,
which is solved in an efficient manner using dynamic programming.

score(p0) = max
p1,...,pn

score(p0, · · · , pn) (7.4)

After having traversed the entire HOG feature pyramid, scoring detection
hypotheses at different scales, we are often left with multiple detections for
each object. A non-maximum suppression (NMS) is therefore applied, by first
sorting all detections by score, removing detections which overlap a higher
detection by more than an overlapping threshold. The overlap is determined
by the intersection over union between the bounding box of two hypotheses
as described in Equation 6.4.

Specific for the voc-release4 code used in this work is the use of bound-
ing box prediction. The prediction refines the existing bounding box by train-
ing a linear least-square regression model for each component in the mixture
model. The parts found with greater spatial precision is thereby used to pre-
dict a more accurate bounding box as seen in Figure 7.9. This has shown
improvements for some classes in the Pascal VOC challenge, as for the car
class as previously shown in 7.5.

Fig. 7.9: DPM detection bounding box before and after prediction.
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7.1.2 Training DPM using Latent-SVM

The question of how to actually train a parts model still remains. The chal-
lenge consists of automatically learning parts location while only the root is
annotated. Each model in the mixture model can be trained individually.
The model parameters to be determined consist of a root filter, part filters,
deformation costs and a bias as seen in Equation 7.5 using the SVM object
function in Equation 7.6.

βk = ( fk0, · · · , fkP, dk1, · · · , dkP, bk) (7.5)

LD(β) =
1
2
‖β‖2 + C

n

∑
i=1

max(0, 1− yi fβ(xi)) (7.6)

The input are annotated images e.g. the weak-labeled Pascal VOC dataset
with annotated bounding boxes and class labels. Weak-labeled since no com-
ponent labels or part labels. A bounding box is marking not only the object
of interest, but also a considering amount of background. The training data is
divided among the components in the mixture model by aspect ratio. Train-
ing data containing vehicles facing left and right will thereby be grouped
together, if no further information is provided. This can be somewhat pre-
vented by examining mirrored versions to divide left and right orientations.

The target test set distribution to be evaluated is imbalanced, in the way
that the scanning windows will mainly consist of non-vehicles. The training
data should roughly replicate the same distribution, thereby an overweight
of negativ training samples. The SVM fits this problem by its sparse ap-
proach, only considering the support vectors which contributes the most.
Furthermore a Latent-SVM (LSVM) must be used given the parts locations
are unknown relative to the root.

The DPM uses a hardcoded number of parts, which is first initialized
based on the energy of the root filter. A part is either anchored along the
central vertical axis of the root filter, or it is placed off-center with a sym-
metric counter part as seen in Figure 7.10. Using symmetry the number of
parameters to be learned can be reduced by half. The initialization is im-
portant since the optimization are susceptible to local minima based on the
semi-convex nature of the LSVM. The initializing model is trained using the
training data and fixed parts placement using regular SVM. A random part
is placed on the highest energy spot, and a second random part are placed
on the second highest energy spot and so forth. This initialization is tried
for all possible combinations returning the configuration which covers the
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maximum amount of energy.
A two step iterative algorithm is used to train the complete latent model

containing the hidden part locations and deformation costs. The algorithm
alternates between using the current model to find high scoring hypotheses,
and using the found hypotheses to optimize the model parameters. The
algorithm is shown in Algorithm 1.

Algorithm 1 Training LSVM, [15].

1: Fn := ∅
2: for relabel := 1 to num-relabel do
3: Fp := ∅
4: for i := 1 to n do
5: Add detect-best(β, Ii, Bi) to Fp

6: end for
7: for datamine := 1 to num-datamine do
8: for j := 1 to m do
9: if |Fn| ≥ memory-limit then

10: break
11: end if
12: Add detect-all

(
β, Jj,− (1 + δ)

)
to Fn

13: end for
14: β := gradient-descent

(
Fp ∪ Fn

)

15: Remove (i, v) with β · v < −(1 + δ) from Fn

16: end for
17: end for

The outer loop determines the number of iterations. Followed is the first
step in line 3-6, which in the first iteration uses the initialized model β to
score hypotheses using the detection scheme described in Subsection 7.1.1.
The best scoring detections are stored, if they also overlap with the ground
truth bounding box B for the given image I. The positive examples are used
in step two, together with hard negatives to optimize β in the latent SVM
objective function. The next iteration will use the new β and the algorithm
continues to next iteration.

The training algorithm is used for each component in the mixture model
independently. The trained part models in Figure 7.10 is seen to be more de-
tailed with the wheels being more significant. Furthermore, the deformation
cost is found to be tighter. A better optimized solution could be found by
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searching over a number of different mixture components and parts.

Fig. 7.10: Top row, initialized models. Bottom row, trained models. [21].

7.2 Implementation and Evaluation

This section describes implementation details of the DPM detector and an
evaluation is made and compared to the SubCat detector.

The implemented version of DPM by Geiger et al. [18, 65] differs from
the original DPM implementation [14] in several ways. It is worth noticing
the Geiger et al. implementation is based on the KITTI dataset, “only” con-
taining cars, pedestrian, and bicycles, compared with the 20 classes of the
Pascal VOC dataset of which the original DPM implementation is aimed at.
Furthermore, the annotations of the KITTI data contain orientation which is
used to divide the training data, opposed to only aspect ratios of bounding
boxes. The vehicle model used in the Pascal VOC Challenge consisted of two
mixture models with each six parts, in comparison the KITTI trained eight
mixture models with each eight parts. The Geiger et al. implementation is
furthermore expanded to two detection stages for better recognizing vehicles
further away.

Table 7.2: DPM parameters used unless else is specified. All values are default values.

Description Value

Levels in the HOG feature pyramid 10
Components in the Mixture Models 8
Parts in each component 8
Non-Maxmimum Suppression Overlap 0.2
Minimum Score Threshold -1
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The first stage functions as a regular DPM on the entire image, while the
second stage operates on an up-scaled version in an area around the specified
horizon. This second stage is not used with high resolution GoPro data. The
DPM parameters used in this evaluation is summarized in Table 7.2.

Qualitative results are shown in Figure 7.11 for all four perspectives. The
detections are further thresholded, only using detections with a score above
zero to remove most false positives.

Front Right Rear Left

Fig. 7.11: DPM detections in the four perspectives.

The qualitative results are difficult to evaluate over entire sequences. A
quantitative evaluation is therefore performed on the annotated sequence
with ground truth using Dollárs MATLAB toolbox [10] to calculate precision-
recall curves. The precision-recall curves are calculated by varying the detec-
tion score threshold against ground truth bounding boxes. An overlap of 0.7
is commonly used for vehicles, and 0.5 for all other objects. The AP is com-
monly used as a detection metric found as the area under the precision-recall
curve. The quantitative results are found in Figure 7.12 and Table 7.3. The
DPM is also tested using a faster setting with only a single level in the fea-
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ture pyramid. The DPM is furthermore compared to state-of-the-art SubCat
detector.

All detectors are found to perform considerable better in the front and
rear perspectives compared to the side perspectives. A remarkable drop is
seen between using an overlap of 0.5 and 0.7, where DPM is found to be less
precise than SubCat, and even more so using only one level in the feature
pyramid. Note the SubCat graphs are not fully complete which indicates a
too high threshold cap. Remember, all detectors are trained on the KITTI
database consisting mainly of urban scenes in Germany, and tested on our
data from Californian highways.
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Fig. 7.12: Precision-recall curves for the detectors in the four perspectives and in total. Left
column overlap criterion of 0.5. Right column overlap of 0.7. AP is included in the legends.

The average precisions are summarized in Table 7.3 together with run-
times for each of the three evaluated detectors. The DPM is generally found
to be slow with a runtime up to 60 seconds per frame, or 10 seconds in what is
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Table 7.3: Performance of the detectors [DPM 1 Level/DPM 10 Levels/SubCat].

Perspective Runtime [s] AP 50% Overlap[%] AP 70% Overlap[%]

Front 10/61/1 77/91/92 27/66/90
Right 10/60/1 64/67/66 54/53/57
Rear 10/60/1 82/92/93 44/70/90
Left 10/59/1 72/77/73 50/65/60

Total 77/87/89 36/66/84

considered fast mode. Newer DPM implementations with focus on real-time
have reported run-times of 10 FPS on 640× 480 resolution images [62]. A
newer DPM framework is released voc-release5 using a cascaded detector
for early rejection of unpromising hypotheses with 10-20 times faster detec-
tions without noticeable loss in precision or recall. This requires training a
new model, preferably on own data, and also gives the option of training a
separate detector for each perspective to reduce the number of components
in each mixture model. Further improvement includes downsampling the
image to lower resolution which requires further analysis of its affect on suc-
ceeding modules.
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Chapter 8

Vehicle Tracking

Multi-object tracking is like object detection a major field within vision-based
research. The possibility of locating targets throughout a video opens up a
wide range of possible applications within among others robotics, surveil-
lance, and ADAS. In theory, everything can be tracked, and static objects
might as well be of interest (e.g. if the system is moving), but recently the
focus have been on tracking pedestrians and vehicles with publicly available
benchmarks. This allows novel methods to compare against each other us-
ing similar challenges and metrics. It is thus difficult for a method to claim
superiority to other methods if it is not tested under the same conditions.

Most notable, the KITTI Vision Benchmark Suite [20] evaluates on-road
tracking of vehicles in various environments. Selected state-of-the-art track-
ing performances are listed in Table 8.1 (see Subsection 6.2.2 for a detailed
description of the metrics). One major difference from evaluation of detec-
tors is that there is no clear way of ranking the methods. This is due to the
fact that several metrics are important and one metric encapsulating the total
performance has not yet been defined. Thus, the choice of tracker is highly
application specific. One has to be aware when comparing the trackers, as
they all depend on detections. Often, detections are computed for each frame,
making the simplest task to associate bounding boxes across frames. This is
called tracking-by-detection, and is a common choice in tracking applica-
tions, as opposed to tracking without detections. This is among others due
to the case when a target leaves the scene and re-enters (and thus needs re-
initialization), and that tracking methods without continuous support from
a detector tend to drift. The use of detectors does however impact the score
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of a tracker, and a tracker might score better than others simply because of
better detections. This is handled in the MOT2015 benchmark [28, 32] by
making detections publicly available, and indicating if a method uses the
public detections or not.

Table 8.1: Selected tracking performances on the KITTI object tracking evaluation dataset for
cars. Trackers are not ranked, but sorted according to MOTA score. The arrows indicate if a low
or high score is best.

Method Online MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ Frag↓

NOMT 7 69.73 % 79.46 % 56.25 % 12.96 % 36 225
MDP 3 69.35 % 82.10 % 51.37 % 13.11 % 135 401
NOMT-HM 3 67.92 % 80.02 % 49.24 % 13.11 % 109 371
SCEA* 3 67.11 % 79.39 % 52.13 % 10.98 % 106 466
TBD 7 49.52 % 78.35 % 20.27 % 32.16 % 31 535

One of the first decisions when choosing a tracking method is whether
the tracker needs to run offline or online. Offline (also referred to as batch)
trackers have the advantage that all frames are available at run-time, and
thus a tracker can use previous, current, and future information at a given
frame. In terms of intelligent vehicle applications this is often not possible,
since the tracking needs to run online while new images are captured. If a
tracker is to run real-time, no future frames are available, and thus an online
method is required. Generally, offline methods outperform online methods,
but in Table 8.1 it can be seen that for the KITTI benchmark the difference
in performance is not significant. This might be due to the focus on online
methods for vehicle applications.

Pedestrian and vehicle trackers have a lot in common, and trackers are of-
ten evaluated in both domains. Tracking of pedestrians is considered a more
difficult challenge because of e.g. larger variations in between-frame appear-
ance, frequent occlusions, and complex movement patterns. The best MOTA
score for pedestrian tracking in the KITTI benchmark is 39.34%, which is re-
markably lower than the corresponding MOTA score of 69.73% for vehicles.

In the following, the MDP tracker is investigated and modified to a multi-
perspective vehicle tracking focus. That is, the tracking in each perspective is
optimized to accommodate the multi-perspective aspect of the system. The
description is two-fold. The first section describes the theory and implemen-
tation of the tracker. In the second section, modifications are presented that
enhance the performance specific to the application of this study. Finally, the
tracker is evaluated on four different perspectives.
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8.1 The MDP tracker

The highest MOTA scoring online vehicle tracker on the KITTI object track-
ing benchmark is (as of May 2016) the MDP tracker [61] with publicly avail-
able code [60]. It is based on Markov decision processes (MDPs) and the
principle of learning to track. The tracker applies to various objects, but is
implemented for pedestrian tracking. Though, results are available for ve-
hicle tracking, there is no description of changes from pedestrian to vehicle
tracking.

The tracker is applied to all available perspectives separately, and does
not contain any vehicle association between perspectives, though the tracker
in each individual perspective is optimized for multi-perspective tracking.
The performance of the tracker is evaluated in multiple perspectives with
two different detectors on the data collected in this work.

8.1.1 Tracking Using Markov Decision Processes

This section takes a practical approach to the theory of MDPs and reinforce-
ment learning. Specifically, the topic will be described in terms of the MDP
tracker presented by Xiang et al. [61]. A detailed investigation is beyond the
scope of this study. The tracker is originally designed for tracking pedestri-
ans, but is described with vehicles as targets in the following. Theoretically,
a MDP can have an infinite number of states and actions. In this study finite
MDPs are inspected, since a known number of states and actions are defined.
The finite MDP is defined as a tuple (S, A, T(s, a, s′), R(s, a)), where:

• S = {s1, s2, · · · , sN} is a set of N states.

• A = {a1, a2, · · · , ak} is a set of k actions. A(s) are the specific actions
available to state s.

• T(s, a, s′) is the state transition model, also defined as P(s′|s, a) that is
the probability that action a in state s will lead to state s′.

• R(s, a) is the reward function, also referred to as the reinforcement func-
tion that defines the immediate reward received after executing action
a in state s.

Furthermore, the MDP has a start state, sstart, and possibly one or more termi-
nal states, sterminal. For the task of tracking, [61] defines four states and seven
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actions as shown in Figure 8.1. Thus, S = {Active, Tracked, Lost, Inactive}. And
as an example A(Active) = {a1, a2}. When a vehicle is detected it starts in
the Active state from which it can transition to Tracked, a1, or Inactive, a2, if
the detection is a false positive. A vehicle in the Tracked state can stay in that
state, a3, or transition to a Lost state, a4, if the vehicle disappears due to e.g.
occlusion. Likewise, a vehicle in the Lost state can stay in that state, a5, tran-
sition back to Tracked, a6, or transition to Inactive, a7. The start and terminal
states are defined as: sstart = Active and sterminal = Inactive. The latter is a
consequence of the fact that there are no possible actions in state Inactive,
A(Inactive) = ∅, making it the terminal state of the MDP. Note that the ac-
tions are deterministic. Thus, the transition model is P(s′|s, a) = 1 ∀a. This
means that whenever an action is executed the MDP enters the state associ-
ated with that action. In other applications the actions can be stochastic, and
thus might lead to different states depending on the probability P(s′|s, a).

Fig. 8.1: MDP states and actions defined in [61].

Using this MDP configuration, there is no clear way of defining the re-
ward function. Consider for example the reward for executing action a4 in
state Tracked, that is R(Tracked, a4). Intuitively, the MDP should be negatively
rewarded when transitioning a vehicle from a Tracked state to a Lost state, as
this is seen as a bad action for the track, especially if the vehicle is not lost
in the specific frame. However, if the vehicle is indeed lost (e.g. due to full
occlusion) then it is a good thing that the MDP transitions to a Lost state, and
does not keep the vehicle tracked. The reward for transitioning thus depends
on each specific situation and it is difficult to see how one could determine
the relative weights of the parameters involved in each of them.

A common way to optimize the MDP is to use the reward function to
compute a policy, π, which is a mapping from state space, S, to action space,
A. The policy determines which action to execute in each state. By utilizing
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the reward function, this policy can be trained using reinforcement learning.
With deterministic actions the optimal policy is the one that maximizes the
total rewards obtained. Note that the sequence of actions in theory can be
infinitely long, for which reason a discount, γ ∈ [0, 1), is often introduced to
decay rewards as they age in the sequence. However, since the reward func-
tion is not defined in this study it is not possible to use the common method
for solving the MDP. Instead, the policy is defined and inverse reinforcement
learning (IRL) is used to train the reward function [39]. IRL in MDPs focus
on the problem of extracting a reward function given observed optimal be-
havior. Specifically, the behavior of the MDP with policy, π, is compared to
the optimal behavior as observed from ground-truth trajectories of annotated
training data1.

MDP Policy and Reward Function

As previously mentioned, decision making in the MDP follows a policy. Thus
for each state the policy defines which action to choose. In the following the
policy in each state is described. Furthermore, the reward associated with
each action will be learned.
Active State Policy: Two actions are possible in this state, either transition to
Tracked or Inactive. This can be considered as a simple binary classification
problem, which needs decision as to whether the detection is a true positive
or a false positive. A simple solution is to threshold the detections according
to their score, and rely on the detector to output true positives with a higher
relative score than false positives. Instead, an offline supervised trained SVM
is used with a normalized feature vector, φφφA, consisting of five entries: x and
y coordinates of upper left corner, width, height, and score of the detection.
The reward function is defined as [61]:

R(Active, a) = y(a)(wwwT
AφφφA + bA) (8.1)

Where a = {a1, a2}, (wwwA, bA) defines the hyperplane of the SVM, and:

y(a) =





1 if a = a1

−1 if a = a2
(8.2)

The action with the highest reward is chosen, which in this case will always
be the result of the SVM classification (as y(a) is used to ensure this).

1The training data used are from the proof of concept data captured using six cameras.
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It should however be noted that the policy is redundant with the classifi-
cation performed by the vehicle detector. Thus, removement of false positives
by transitioning to Inactive may be limited, and one should be aware of the
risk of transitioning incorrectly to Tracked. In [61] they rely on the MDP to
quickly transition to Inactive through actions a4 and a7, but it does not change
the fact that a false positive has been tracked. For this reason, a re-routing
of the MDP is introduced in Subsection 8.1.2, which utilizes the sparsity of
incorrect detections to deny false trajectories.
Tracked State Policy: The main task of the Tracked state is to track vehicles
between frames. If this is possible the given vehicle should remain in the
Tracked state, otherwise it should transition to Lost. Thus, two actions are
available in this state, a3 and a4. By maintaining an online appearance model
of the vehicle it is possible to determine if the vehicle is present in a new
frame. Specifically, a grayscale template of the target is updated (in a “lazy”
manner) every time the vehicle transitions to Tracked. The “lazy” update re-
duces the risk of drifting, which could happen if the template was updated
every frame. Also, a history of the appearance is stored, which is simply the
latest 10 tracking results.

Fig. 8.2: An example of a stable (top) and an unstable (bottom) optical flow [61].

The appearance model is used in a method based on the Median-Flow
tracker [25] (part of the widely used Tracking-Learning-Detection method
presented in [26]). Firstly, a grid of uniformly distributed points is initialized
in the template. The points are used to compute motion flow between the
template and a new frame. The flow is calculated using pyramidal iterative
Lukas-Kanade tracking [5, 29]. As illustrated in Figure 8.2 the stability of the
motion flow is a good indicator of the presence of the vehicle (shown with
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pedestrians in the figure). In order to extract the stability of the motion flow
it is furthermore computed backwards. That is, the resulting points from the
forward flow computations are used to estimate the flow back to the template
image. Thus, a forward-backward (FB) error can be obtained as:

eFB = ||xxx− x̂xx|| (8.3)

Where xxx is the original position of the point in the template, and x̂xx is the
resulting point in the template from the forward-backward flow estimation.
An example is shown in Figure 8.3, where point 2 has a large FB error and

Fig. 8.3: Example of a FB error computation [25].

point 1 has a low error. A reasonable measure of the stability of the motion
flow is the median FB error, emedFB. If emedFB is lower than an experimentally
defined threshold, θmedFB, then the vehicle is most likely correctly tracked,
and all points with a FB error smaller than θmedFB are used to predict the
new location of the vehicle. The prediction is limited to a translation and a
scaling. The translation is achieved as the median motion flow of the remain-
ing points, and the scaling is the median change in ratio of distances between
points before and after the flow computations.

However, as previously described a tracker may be initialized by a false
positive detection. If this false positive is part of the background, the motion
flow will be stable between frames, and the tracker will thus keep tracking
the background as a false positive. The problem can be solved by using the
detections available in each frame. False positive detections tend to have
an impersistent occurrence pattern, and it is thus reasonable to require a
tracker to frequently receive matching detections. To this end, the history
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of the tracked vehicle is examined. Specifically, a mean bounding box over-
lap, omean, of the latest 10 tracking results and corresponding detections (the
detection with the largest overlap with the tracking result in each frame) is
computed. If omean is larger than a threshold, θmeanO, the tracking result is
accepted. In the situation with a young track that has less than 10 previ-
ous frames, the number of available frames is used. The predicted bounding
box is corrected to be the mean of the tracking result and the corresponding
detection in the current frame, if the overlap between these is larger than
θmeanO, otherwise the tracking result is kept as the bounding box. Finally, the
reward function is defined as:

R(Tracked, a3) =





1 if emedFB < θmedFB and omean > θmeanO

−1 otherwise
(8.4)

R(Tracked, a4) =




−1 if emedFB < θmedFB and omean > θmeanO

1 otherwise
(8.5)

Which in other words means that if a tracked vehicle has a stable motion flow
to a new frame, and it has been detected regularly within the last 10 frames,
it is positively rewarded to keep the vehicle tracked. Otherwise, the vehicle
is transitioned to a Lost state.
Lost State Policy: One of the powers of the MDP tracker is its ability to
resume tracking an otherwise lost vehicle. This is possible by transitioning
from Lost to Tracked. In total there are three possible actions for a vehicle
in a Lost state: stay as Lost, a5, transition back to Tracked, a6, or terminate
the tracker, a7. Given a lost vehicle and a new frame the task is to decide
whether the vehicle has reappeared. To achieve this, the tracker requires the
detector to provide a new detection of the vehicle. The purpose is thus to
correctly associate the lost vehicle to a new detection of the same vehicle. If
the vehicle is successfully associated it is transitioned to Tracked, otherwise it
is kept Lost. When the vehicle has been lost for θlost frames it is terminated
by transitioning it to Inactive.

Several features are used to determine if the lost vehicle is in a new detec-
tion. The feature vector, φφφ, has a total of 12 elements as shown in Table 8.2.
All features (except φ9, φ11, and φ12) are averaged over the appearance his-
tory of the vehicle. As previously described the history consists of the last 10
frames of the vehicle in a Tracked state. The first five features are based on
the median FB error previously explained in terms of the Tracked state policy.
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Table 8.2: Feature representation for association of a vehicle with a new detection [61].

Type Notation Feature Description

FB error φ1, · · · , φ5

Mean of the median forward-backward errors
from the entire, left half, right half, upper half,
and lower half of the templates in optical flow

NCC
φ6

Mean of the median Normalized Correla-
tion Coefficients (NCC) between image patches
around the matched points in optical flow

φ7

Mean of the NCC between image patches of
the detection and the predicted bounding boxes
from optical flow

Height ratio
φ8

Mean of the ratios in bounding box height be-
tween the detection and the predicted bounding
boxes from optical flow

φ9
Ratio in bounding box height between the target
and the detection

Overlap φ10

Mean of the bounding box overlaps between
the detection and the predicted bounding boxes
from optical flow

Score φ11 Normalized detection score

Distance φ12

Euclidean distance between the centers of the
target and the detection after motion prediction
of the target with a linear velocity model
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The main differences here are that the FB error is also computed from the left,
right, upper, and lower halves of the template, and that the region in the new
image (in which the motion flow is computed) is limited around the bound-
ing box of the detection. Also note that the median FB error is averaged over
the 10 templates. The next two features (φ6 and φ7) describe similarity of
image patches using normalized correlation coefficients (NCC). The former
uses the neighborhood around points of the motion flow computations. The
latter uses the full bounding boxes of the predicted and detected bounding
boxes. Next, φ8 and φ9 encapsulate the change in height of the bounding box,
φ10 is similar to omean as previously described for the Tracked state policy, and
φ11 is the normalized detection score. Lastly, φ11 is a distance between the
centroid of the detection and the predicted centroid computed from the av-
erage change of centroid placement according to the history. The predicted
centroid is computed using (8.10) and (8.11).

The feature vector is used in a SVM to classify a detection as a match
or a mismatch. The SVM is trained offline using optimal behavior observed
from ground truth annotations. The weights are initialized randomly, and the
MDP tracker follows the policy described above to track vehicles in a train-
ing sequence with detections from the detector. The weights are updated
every time the tracker makes a mistake in the Lost state according to manu-
ally annotated ground truth bounding boxes with vehicle ID. Two errors can
happen: The tracker incorrectly associates a lost vehicle and a new detection
(ZZa6 → a5), or the tracker fails to associate a lost vehicle with a new detection
of the vehicle (ZZa5 → a6). The former is added as a negative sample to the
training set, while the latter is added as a positive sample. The procedure is
iterated until the tracker makes no mistakes in the Lost state, or the sequence
has been iterated more than θite times.

The trained weights of the SVM are static during run-time of the tracker,
since no feedback is available. The reward function is then defined as:

R(Lost, a) = y(a)
(

M
max
k=1

(
wwwTφφφ(k) + b

))
(8.6)

Where a = {a5, a6}, φφφ(k) is the kth feature vector of M detections in the
current frame, (www, b) defines the hyperplane of the SVM, and:

y(a) =





1 if a = a6

−1 if a = a5
(8.7)
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Finally, the reward for transitioning to Inactive is defined as:

R(Lost, a7) =





∞ if the vehicle has been lost for θlost frames

−∞ otherwise
(8.8)

Which concludes the policy and reward definition of the MDP. To summa-
rize, the status of a vehicle is described by a MDP. Multiple vehicles require
multiple MDPs. For each new frame the MDP of a vehicle follows the policy
of the current state, and executes the action with the highest reward.

8.1.2 Tracking Vehicles in a Multi-Perspective Application

The MDP tracker is originally designed for tracking pedestrians, for which
reason, it is optimized for tracking vehicles in this study. The first change is
the aspect ratio of the template used for associating vehicles between frames,
which is chosen based on typical vehicle aspect ratios in the annotations of
the KITTI dataset [20] and of one annotated sequence collected in this work
as shown in Fig. 8.4.
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Fig. 8.4: Histogram of annotated vehicle aspect ratios in the KITTI dataset [20] shown with the
red color and histogram of annotated vehicle aspect ratios in our data shown with the blue
color. The means are approximately equal and shown with the vertical line at approximately 1.5.
Above are some examples of aspect ratios increasing from left to right.

Note that the aspect ratio of vehicles varies with the orientation at which
they are observed. From this follows that vehicles observed in the side views
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will have a larger aspect ratio than vehicles observed in the rear or front
view in a highway scenario, where the driving direction is mainly straight
forward. Thus, optimally the aspect ratio should be optimized for each of the
four perspectives. An aspect ratio of 1.5 is, however, experimentally found to
be sufficient for all four views, which is the mean of the annotated bounding
boxes aspect ratios.

The variation in appearance is less prominent for vehicles compared to
pedestrians, and typical motion does not see abrupt changes as with pedestri-
ans. This allows us to further constrain the creation of new trajectories as seen
in Fig. 8.5. Thus, when a new vehicle is detected, it starts in an Active state,

Active

Lost

Inactive

Tracked

Vehicle
Detection

a1

a2

a5

a4

a6 a3a7

Fig. 8.5: The MDP states and actions designed for tracking vehicles. A new vehicle is not
allowed to transition directly from the Active state to the Tracked state as in the original imple-
mentation [61] shown in Figure 8.1.

from where it can transition to a Lost state via action a1 if it is determined to
be a correct detection, or to an Inactive state via action a2 if it determined to
be a false detection. This stands in contrast to the original implementation
where a new vehicle is able to transition directly to a Tracked state. The pur-
pose of this re-routing in the MDP is to reduce the number of false positive
trajectories caused by spurious detections that incorrectly transition from the
Active state to the Tracked state instead of the Inactive state. The trade-off is
that correctly tracked vehicles are slower at reaching the Tracked state, since
they are kept in the Lost state until they have been observed θminseen times.
The action a5 is thus not only the result of no association between a lost track
and new detections, but also of a track that is too young to transition to the
Tracked state. The reward for transitioning from Lost to Tracked is changed to:

R(Lost, a6) =




−∞ if tracker age < θminseen

M
max
k=1

(
wwwTφφφ(k) + b

)
otherwise

(8.9)
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Note that in the situation where a vehicle enters Lost from Active the vehicle
has not been tracked yet. Thus, only one template is available for computing
φφφ, which might reduce the robustness of associating the vehicle to a new
detection.

In this study the tracking in each perspective has to take into account
the purpose of linking trajectories between slightly overlapping perspectives.
Thus, trajectories need to prolong as close to the image borders as possible. A
situation that meets several challenges such as missing detections caused by
truncation and severe appearance variations as the observation angle changes
rapidly in the proximity of the ego-vehicle. An example of these challenges is
shown in Fig 8.6. Note from the figure that the truncated vehicles are located

(a) Rear (b) Left (c) Front

Fig. 8.6: Example of challenges of detection and tracking at the image borders.

in regions where they might not be detected in any of the views due to trun-
cation. One solution, that does not require a change of setup, is to design the
vehicle detector for detecting truncated vehicles. A topic that has previously
received attention, but remains an unsolved problem [47]. In this study the
focus is instead on extending the trajectories despite the missing detections.
This is achieved by predicting bounding boxes for lost trackers. Let α be the
set of templates in the history of a vehicle that are sorted with increasing age.
Thus, the newest template is at the first entry, α1, and the oldest template is
at the last, αL, where L is the number of available templates (maximum 10).
An average change of the bounding box parameters is computed using:

ω̇ =
1
L

L

∑
m=1

ω|αm −ω|αm+1

t|αm − t|αm+1

(8.10)

Where ω defines all four parameters of the bounding box, x, y, w, h, and t is
the time index of a template. The bounding box prediction is then:

ω̂t|α1+τ = ω|α1 + ω̇τ (8.11)

Where τ is the time from the last available template to the current time to
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which the bounding box parameters are predicted. The bounding box is
used as a guess of where the vehicle has moved, which is tested using the
pyramidal iterative Lucas-Kanade method to obtain the motion flow from
templates of the vehicle. The FB error of the flow is used as a measure
of the stability of the prediction. If the median of the FB errors is below
a threshold, θmedFB (also used in the Tracked state policy), the prediction is
accepted as a valid vehicle association. If that is not the case, the motion flow
for the left and right half of the bounding boxes are investigated, since parts
of the vehicle might have left the image. If the median FB error shows to be
below a more strict threshold, θmedFBLR, for either the left or the right half,
the prediction is assumed to be a true association. The procedure is shown
in Algorithm 2.

Algorithm 2 Algorithm for extension of trajectories.

1: Predict bounding box using (8.10) and (8.11) for x, y, w and h
2: eFB ← compute median of FB error
3: if eFB < θmedFB then
4: Prediction is accepted
5: else
6: eFBL ← median of FB error for left half
7: eFBR ← median of FB error for right half
8: if eFBL < θmedFBLR or eFBR < θmedFBLR then
9: Prediction is accepted

10: end if
11: end if

The extension of the track is performed until τ gets larger than a pre-
defined value or more than half of the bounding box is outside the image.
Drifting of the tracker is limited by not updating the template even if the
prediction is accepted. The extension of tracks changes the reward for tran-
sitioning from Lost to Tracked to its final form:

R(Lost, a6) =





−∞ if tracker age < θminseen

∞ else if eFB < θmedFB, eFBL or eFBR < θmedFBLR

β otherwise

(8.12)

Where β =
M

max
k=1

(
wwwTφφφ(k) + b

)
is the maximum SVM score for the new detec-

tions. Note that β is negative if no new detections match the vehicle.
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8.2 Evaluation

In this section the vehicle tracking is evaluated using the detections evalu-
ated in Section 7.2. Evaluation of multi-object tracking methods has received
a lot of attention in research, and multiple widely used benchmarks have
emerged. These mainly focus on pedestrians [16, 32] and vehicles [20, 58].
As with vehicle detection, the KITTI Vision Benchmark Suite [20] is currently
the go-to dataset for evaluation of vision-based on-road vehicle tracking. This
dataset delivers a large number of annotations from multiple modalities. The
bounding boxes are, however, annotated from 3D lidar points and projected
to the image plane causing some of the ground truth bounding boxes to be
slightly inaccurate. Furthermore, the cameras are front facing, and thus only
situations occurring in front of the vehicle are examined. In the following
evaluation, the tracker is tested in four perspectives (the setup described in
Chapter 5), and the results are listed in Table 8.3. A minimum bounding box
height of 35 pixels and a bounding box overlap of 0.7 are used. Vehicles that
are more than 50% truncated are ignored.

Table 8.3: Single perspective tracking results reported for two detectors and the modified MDP
tracker, Multi-Perspective MDP (MPMDP). The arrows indicate if a high or low score is best.

Track/Persp. MOTA↑ MOTP↑ IDS↓ Frag↓ MT↑ ML↓ Recall↑ Precision↑

Front
SubCat-MPMDP 0.82 0.83 1 1 0.80 0.00 0.83 1.00
DPM-MPMDP 0.71 0.78 0 0 0.80 0.10 0.81 0.89
Rear
SubCat-MPMDP 0.82 0.85 0 9 0.75 0.00 0.87 0.94
DPM-MPMDP 0.87 0.80 1 4 0.75 0.00 0.87 1.00
Left
SubCat-MPMDP 0.76 0.77 0 1 0.40 0.20 0.76 1.00
DPM-MPMDP 0.77 0.80 0 1 0.40 0.40 0.77 1.00
Right
SubCat-MPMDP 0.55 0.83 0 0 0.33 0.33 0.55 1.00
DPM-MPMDP 0.62 0.82 0 0 0.67 0.33 0.62 1.00

Total
SubCat-MPMDP 0.81 0.84 1 11 0.65 0.08 0.83 0.97
DPM-MPMDP 0.79 0.79 1 5 0.69 0.15 0.83 0.95

All recent benchmarks rely on the CLEAR MOT metrics [2], and it has be-
come common to report tracking results in multiple object tracking accuracy
(MOTA) and multiple object tracking precision (MOTP). Furthermore, com-
mon metrics include ID switches (IDS), fragmentations (Frag), mostly tracked
(MT), mostly lost (ML), precision, and recall. The details of the metrics are

71



Chapter 8. Vehicle Tracking

explained in Subsection 6.2.2.
As seen from Table 8.3 the tracker generally scores better with the SubCat

detector than with the DPM detector. However, the tracker using SubCat de-
tections does seem to perform a little worse in the side perspectives. Notice
the high scores in precision, which indicate the low number of false positive
trajectories. The relatively low MOTA and recall scores in the side perspec-
tives show that the system has difficulties tracking vehicles on the side of the
ego-vehicle. There are multiple possible causes: From Figure 8.4 it is notice-
able that the data collected from the side perspectives creates a peak around
an aspect ratio of 2.75, which is not that well represented in the KITTI dataset.
Thus, the detector is not tuned for these cases as also visible in the evaluation
in Figure 7.12. Furthermore, the vehicles suffer more from truncation in the
side perspectives (see Figure 6.4). Also, the vehicles tend to stay for a shorter
duration on the side of the ego-vehicle. This results in a larger impact of the
time in which a vehicle is kept Lost, θminseen, before transitioning to Tracked.
It should however be noted that the results are generally impressive com-
pared to the state-of-the-art performance achieved on the KITTI dataset (see
Table 8.1). One should be cautious when comparing the results to the KITTI
benchmark, which comprises more data in other types of environments than
highway driving (e.g. urban driving).

For future work it would be interesting to test the MPMDP tracker on the
KITTI dataset to see how it compares to other methods. However, since the
focus of MPMDP is on multi-perspective tracking the test would not fully
show the capabilities of the tracker, as the benchmark is not designed to do
so. Instead, two trackers evaluated on the KITTI dataset are tested on the
data collected in this work. Namely the TBD tracker implemented by Geiger
et al. [18], and the original MDP tracker proposed by Xiang et al. [61]. The
results for all four perspectives are listed in Table 8.4. Notice, the surprisingly

Table 8.4: Single perspective tracking results reported for three trackers. The arrows indicate if
a high or low score is best. O shows if a tracker is online.

Tracker O MOTA↑ MOTP↑ IDS↓ Frag↓ MT↑ ML↓ Recall↑ Precision↑

DPM-TBD 7 0.83 0.78 5 5 0.73 0.04 0.84 0.98
DPM-MPMDP 3 0.79 0.79 1 5 0.69 0.15 0.83 0.95
DPM-MDP 3 0.76 0.79 8 11 0.77 0.04 0.85 0.91

high MOTA score of the TBD tracker, which on the KITTI benchmark scored
much lower than the MDP tracker. As previously mentioned the lower score
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on the KITTI benchmark might be caused by the detector. In this test, the
three trackers use the same detections (Note that MOTP is almost similar for
the three trackers), and the offline TBD tracker scores best. This result is how-
ever not so important to this study, and due to the offline processing part of
the TBD tracker it is not considered further. The MPMDP tracker slightly out-
performs the MDP tracker in terms of MOTA score. There are some relevant
differences between the two that should be noted. The MPMDP introduces
a trade-off between higher precision score and lower recall score. This is be-
cause of the MDP re-routing that is seen to effectively improve the precision
by removing false positive trajectories, but also introduces a slight decrease in
recall caused by the missing frames in the start of the trajectories. Also note
that the extension of the trajectories in the MPMDP influences these scores,
as it brings down the number of false negatives and possibly introduces more
false positives. It is difficult from these scores to determine exactly how each
modification impacts the result. The MPMDP performs worse according to
the MT and ML scores. This is caused by the side perspectives, where the
combination of worse detections, tougher constraint on acceptance of trajec-
tories and shorter trajectories results in less mostly tracked and more mostly
lost vehicles.

The evaluation above proves the applicability of single-perspective track-
ers to different perspectives covering the full surroundings of the ego-vehicle.
In future studies more attention is needed to the side perspectives, where the
trackers perform worse than in the front and rear perspectives.
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Chapter 9

Tracking and Association
Between Perspectives

This chapter describes the last two modules of the multi-perspective trajec-
tory estimation, the transformation to road and the multi-perspective track-
ing. Unlike the proof of concept system described in Part II that associates
the vehicles between perspectives in the image planes, this system maps the
surrounding vehicles to a top-down view of the scene, and tracks them in
the road plane. A surround top-down view has previously been used in e.g.
parking assistance applications, but the tracking of vehicles in the road plane
all the way around the ego-vehicle has not been investigated before. This
chapter describes the modules designed to achieve the surrounding trajecto-
ries, and discusses advantages, disadvantages, and alternative methods for
solving the problem. As the first vision-based system, full surround trajec-
tories are obtained, and a possible use of the trajectories is shown in a 3D
visualization tool.

9.1 Transformation to Road Plane

The task of estimating world positions of surrounding vehicles is typically
solved with a sensor setup that is able to obtain depth information. Common
choices include LiDAR, radar, and stereo vision. However, with monocular
vision no direct access to depth information is available, as recovery of struc-
ture is inherently ambiguous. One solution is to use the width of the vehicles
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as shown in Figure 9.1. The variance in width is small and it is thus a simple

Fig. 9.1: Example of using the width of vehicles to estimate their distance from the ego-vehicle.
The method is not robust against variations in orientation as can be seen from the leftmost
vehicle.

measure for estimating how far away a vehicle is. However, this method is
vulnerable to variations in orientation and therefore requires a front or rear
view of the vehicle. This makes it a method that is not suitable for a full
surround view application, and even in a monocular forward looking appli-
cation the method might face problems with the angle at which vehicles are
observed.

Instead inverse perspective mapping (IPM) is introduced. The method is
widely used in intelligent vehicle applications for e.g. lane estimation [3],
parking assistance [64], and blind spot visualization for trucks [12] (see Fig-
ure 9.2 for examples). The purpose of IPM is to achieve a top-down (also
referred to as bird’s eye) view of the road. It does so by estimating a pro-
jective transformation between the image plane and the road plane. It thus
assumes that the road is flat, which is an assumption that requires awareness,
since road irregularities may introduce large errors.

In this study we are not interested in a full IPM of the surrounding road,
but rather just the location of surrounding vehicles. In the following sections
it will be described how to estimate a homography matrix, how multiple
homography matrices can be used in a global manner, and how a vehicle is
located.

9.1.1 Inverse Perspective Mapping

In this section a front looking camera will be used to explain the theory of
IPM. Points in the road plane undergo a perspective transform when viewed
from a camera mounted on a vehicle as shown in Figure 9.3a. In computer
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(a) Lane estimation [3].

(b) Parking assistance [64]. (c) Blind spot visualiztion [12].

Fig. 9.2: Examples of inverse perspective mapping applications.

vision, this planar homography is defined as an invertible projective transfor-
mation from one plane to another that maps lines as lines. The two coordinate
frames are shown in Figure 9.3b. Note that the origins of the frames are likely
to be chosen otherwise, and that Zr = 0 is used.

Camera
Center

Horizon

Image
Plane

Road
Plane

(a) Capturing a road with a camera. (b) Frames of image and road [42].

Fig. 9.3: The road undergoes a perspective transform when captured with a camera as shown in
the left image. The coordinate frames of the camera and the road are shown in the right image.

The process of capturing an image of the road can be described as a central
projection. Assuming only points in the road surface are used means that the
central projection is a mapping between two planes. It can then be computed
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using:
xxx′ = HHHxxx (9.1)

where xxx′ is the homogeneous image point, xxx is the homogeneous point in the
ground plane, and HHH is the 3x3 homography matrix. Since HHH is invertible it
follows that:

xxx = HHH−1xxx′ (9.2)

Which shows that points in the road can be reconstructed from the corre-
sponding image point and the inverse homography matrix. In practice, how-
ever, it is common to estimate the homography matrix the other way around,
such that:

xxx = HHHxxx′ (9.3)

With:

xxx =




x
y
1


 , xxx′ =




x′

y′

1


 , HHH =




h11 h12 h13

h21 h22 h23

h31 h32 h33


 (9.4)

In inhomogeneous coordinates (z = 1 so x = x/z = x) this gives two equa-
tions for a corresponding point pair:

x =
h11x′ + h12y′ + h13

h31x′ + h32y′ + h33
, y =

h21x′ + h22y′ + h23

h31x′ + h32y′ + h33
(9.5)

The equations are rearranged:

x
(
h31x′ + h32y′ + h33

)
− h11x′ − h12y′ − h13 = 0

y
(
h31x′ + h32y′ + h33

)
− h21x′ − h22y′ − h23 = 0

(9.6)

Which can be used with matrix notation, AAAhhh = 000:




−x′1 −y′1 1 0 0 0 x1x′1 x1y′1 1
0 0 0 −x′1 −y′1 1 y1x′1 y1y′1 1

...
−x′N −y′N 1 0 0 0 xN x′N xNy′N 1

0 0 0 −x′N −y′N 1 yN x′N yNy′N 1







h11

h12

h13

h21

h22

h23

h31

h32

h33




= 000 (9.7)

Multiple things need to be noted in (9.7). Firstly, multiple corresponding
point pairs (N) are included. Each of the point pairs results in two rows in
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AAA. Thus, the first two rows are associated with the first corresponding point

pair (xxx1 =
[

x1 y1

]T
and xxx′1 =

[
x′1 y′1

]T
). Furthermore, since HHH is known to

have eight degrees of freedom [23], a minimum of four point correspondences
(Nmin = 4) are needed to solve the set of equations.

The homography matrix is achieved by solving for hhh in AAAhhh = 000. Thus,
any vector hhh 6= 000 in the null space of AAA is a solution. This can be solved using
singular value decomposition (SVD). If N is chosen to be Nmin then the solu-
tion is exactly determined as the one dimensional null space of AAA, which is
the column of the right singular vectors with a corresponding singular value
equal to zero. If the system is overdetermined with more than Nmin point
correspondences then the column of the right singular vectors with the low-
est corresponding singular value is chosen as to minimize ||AAAhhh||. Often the
singular values are ordered in a decreasing order, in which case the rightmost
column of the right singular vectors is chosen.

OpenCV includes two functions that can be used to estimate the homogra-
phy matrix, findHomography() and getPerspectiveTransform(). The latter
is the simplest, and uses four point correspondences to find the exactly de-
termined homography matrix. The former is more flexible and can use more
corresponding point pairs in order to reduce errors caused by noise. It does
so by using random sample consensus (RANSAC) or least median of squares
(LMedS) in order to randomly estimate various homography matrices, while
choosing the homography matrix with the most support.

As previously mentioned the purpose of IPM is to use the estimated ho-
mography matrix to visualize the road in a top-down view. This procedure
requires a mapping of pixels from the image plane to the road plane using
(9.3). OpenCV includes the function warpPerspective() that applies the ho-
mography to an image. In fact, it actually does the mapping in a reverse
order, from destination to input, in order to avoid sampling artifacts. Thus,
for each pixel in the destination image it computes the corresponding input
pixel using the inverse homography.

Figure 9.5 shows an example of how IPM is used. The example uses a
front looking camera and the fact that lane markings are made in compli-
ance with the California Manual on Uniform Traffic Control Devices for Streets
and Highways [7] and A Policy on Design Standards Interstate System [1]. The
distance from a lane marking starts to the next lane marking starts is 14.6m
(48ft) as shown in Figure 9.4 and the minimum lane width is 3.2m. This
means that it is possible from a single image to estimate a homography from
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Fig. 9.4: Official guideline for lane marking on a highway [7].

image plane to road plane by choosing four or more corresponding point
pairs as shown in Figure 9.5. Note that the lines connecting the points are

Fig. 9.5: Example of an IPM performed in a front looking camera on the vehicle.

only used as a means to show how the points relate in the image plane and
the road plane, respectively. Also, it is important to note that points which
are not placed in the road plane are mapped erroneously. As an example, the
vehicle in front seems to be unrealistically long in the top-down view, which
in terms of IPM makes logical sense, since the points are assumed to be in
the road plane, and the vehicle in front vertically takes up space all the way
to the horizon. This gives food for thought; what happens if the road plane
changes relatively to the image plane due to a hill, road bump, or similar,
in which case the imposed road plane is incorrect? Figure 9.6 shows three
examples of typical erroneous IPMs. The first image shows a correct IPM,
where the road is flat. The second and the third images show a tendency of
the road becoming wider further away from the vehicle, and the last image
shows the opposite. The second and fourth would be the typical results of
the vehicle approaching an uphill or downhill slope, respectively. Thus, cau-
tion is needed when IPM is used to impose a ground plane using a camera
mounted on a moving vehicle.
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Fig. 9.6: The leftmost image shows a correct IPM, while the other three are examples of cases in
which the IPM are erroneous [40]. The cases are: the ego-vehicle is approaching an uphill, the
ego-vehicle is on a downhill and approaching a flat road, and the ego-vehicle is approaching a
downhill

9.1.2 Calibration of Multiple Local Homographies

In the previous section it was described how to use IPM to estimate a homog-
raphy for one camera and apply it to an image in order to achieve a top-down
view. However, in this study multiple cameras with different orientations are
used simultaneously. Using the method naively would create multiple local
homographies with no relation to each other. Instead a global solution is
wanted, in which the homographies map to the same coordinate frame. As
shown in Figure 9.2 previous studies have used this to visualize obstacles in
the near proximity of the ego-vehicle.

Two methods have been considered. The first is an extrinsic calibration of
the cameras. Thus, a task of finding the rotation and translation between each
pair of cameras. This can be achieved in several ways: by manual measuring,
which will be prone to measurement inaccuracies; by making a rig, which
will have to be created specifically for this study, and still subject to errors in
measurements; by using the overlapping regions of the camera views in order
to map corresponding point pairs [64], but often it is wanted to limit the over-
lapping region as to use as few cameras as possible; and finally by using e.g.
a mirror [27] or a laser pointer [66], which in itself sounds error-prone, but
is shown to be practically possible. All of these methods are time-consuming
and requires a lot of manual work, which makes the system more difficult
to re-produce. Therefore, instead of calibrating the cameras extrinsically, the
used method takes advantage of the fact that the local homographies map to
the same ground plane and it is thus only a matter of linking the local ho-

81



Chapter 9. Tracking and Association Between Perspectives

mographies in that plane. This is easily solved by knowing the relationship
between points in the ground plane used for estimating the homographies.
Such an approach could be applied to images captured for all cameras in a
similar scene as the one shown in Figure 9.5 using the road marking stan-
dards described previously. This would allow for an on-road calibration pro-
cess as shown in the left image of Figure 9.8a with four cameras. However,
there is no simple method to validate the consistency of the markings, and
the calibration could possibly end up using wrong distances. Instead, a static
and easily measurable scene is optimal. An ideal choice is thus a parking lot
as shown in Figure 9.7, where parking booths serve as consistent and easily
distinguishable patterns for calibration of a multi-camera setup.

Fig. 9.7: A parking lot is a good place to calibrate the cameras to the ground plane.

In order to achieve a mapping as the one shown in the left image of Fig-
ure 9.8a with the origin in the middle of the ego-vehicle, various distances of
the parking booths and the ego-vehicle have to be measured. The rightmost
image of Figure 9.8a shows the static measures: booth length and width, and
vehicle length and width. Thus, every time the camera setup needs to be cal-
ibrated only two measurements (yL and yR) are needed, being the distance
from ego-vehicle to each parking booth row. Note that more measurements
might be needed to ensure that the ego-vehicle is facing a direction parallel
to the booths and that it is centered in the x-direction at a booth separating
line.

The method is not noiseless. In fact a measurement error of 5cm of the
booth width would result in an error of 50cm just 25m in front of the ego-
vehicle. Furthermore, noise is introduced when capturing the scene with a
camera and selecting the points in the images, which might make the error
worse. This is of course a worst-case example, since multiple measurements
of randomly selected parking booths should ensure that the measurement
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left

right

frontrear x

y
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(a) Left: Areas covered by the cameras in the ground plane. Right: Measurements for calibration.

(b) The four perspectives each with four selected points. View by line color: Front, right, rear, left.

(c) Top-down view showing the surroundings of the ego-vehicle with the corresponding points.

Fig. 9.8: Process of calibrating four cameras to road plane using the markings in a parking lot.
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error is reduced as much as possible. Nevertheless, IPM probably should not
be the only choice for locating vehicles in applications where accuracy is of
high importance, but could possibly be used in a multi-modal system. The
accuracy is sufficient for this study, which is not a life-or-death ADAS.

Figure 9.8 shows the full process of achieving a full surround top-down
view using four cameras. In Figure 9.8b the four views are shown with points
selected to estimate the homography matrices. Note from the previously
described theory that more than four points can be used to achieve a result,
which is more robust to noise. Figure 9.8c shows the resulting IPMs, where
the bright regions are overlapping regions of the cameras. The colored lines
are used to show how the different points map to the top-down view, and
are not part of the actual IPM calculations.

The resulting top-down view of a highway scene is shown in Figure 9.9.
One vehicle is visible in the right view and partly in the rear view. Note
how it is mapped in the top-down view in the overlapping region. This is
a promising result that motivates the choice of associating vehicles between
perspectives in the ground plane.

Fig. 9.9: Example of four images captured on a highway and the resulting full surround IPMs.

Figure 9.10 shows an example where the flat road assumption is violated.
The resulting top-down view is an example of the situations shown in Fig-
ure 9.6, where the road in front of the vehicle is clearly not correctly mapped.
This particular example is caused by a dip in the road. The rear end of the
ego-vehicle is located in the dip, while the front has exited the dip. This
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Fig. 9.10: Example of a flat road violation that causes large errors in the IPM of the front view.

causes the vehicle to have a slight angle towards the sky. Furthermore, the
road in front of the vehicle has a slight down slope. Note the relatively small
difference between the front looking views of the correctly mapped example
(Figure 9.9) and this example (Figure 9.10). The change in angle is however
enough to change the relative positions between camera and ground plane so
much that it causes large errors in the IPM. This proves that caution is needed
when IPM is used to compute distances. Since the data used in this work is
specifically captured on flat sections of highways the errors are assumed to
be limited to an acceptable level. Other than road irregularities, small move-
ments of the cameras might happen during a drive, since the cameras are
mounted with clamps (see Figure 5.1). Cameras drifting cause lasting errors
until the cameras are re-calibrated to the ground plane, and is thus a severe
source of inaccuracies.

9.1.3 Mapping a Vehicle

In the previous sections IPM has been used to establish a top-down surround
view of the road. As previously mentioned the visualization in itself is not
important to this application. This section explains how vehicles are located
in the road plane and mapped to a top-down view in order to compute the
distance to the ego-vehicle.

Firstly, examine how vehicles are mapped in Figures 9.5, 9.8c, 9.9, and
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9.10. It is noteworthy that even though the vehicles are heavily distorted in
the top-down view, the places they touch the road seem to be correct. This is a
consequence of the nature of IPM, since the tires of the vehicles are touching
the ground they are also mapped correctly. Thus, the location of vehicles
may be inferred from where they touch the ground. For this purpose it is
noted that the bounding boxes of the vehicles (see e.g. Figure 7.11) has a
simple measure being the bottom line of the box. Specifically, the middle
of the bottom of the bounding box can be used as shown in Figure 9.11.
The advantage is that this point is easily computed from the bounding box.

Fig. 9.11: Example of using the middle of the bottom of the bounding boxes for mapping vehi-
cles.

However, at different viewing angles the point will not represent the same
point on the vehicles in world space as illustrated in Figure 9.11. Since the
vehicles are tracked in video sequences there will be no abrupt changes, and
the point will gradually change for each vehicle. Also note that inaccurate
bounding boxes can cause errors in the mapping. In particular, vehicles that
are far away from the ego-vehicle, where small errors in bounding box can
cause large errors in the road plane.

Since the cameras are overlapping, a vehicle might be tracked in two per-
spectives simultaneously resulting in two points in the road surface. These
points can be merged to one point using the spatial property that two points
belonging to the same vehicle are placed close to each other in the road sur-
face. This is essentially a form of vehicle association between perspectives,
but the purpose is to make sure that each vehicle is only represented by one
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point in the road surface.
Though, the highway sections are flat, vibrations might still cause inaccu-

racies in the IPMs. To reduce the noise, each trajectory from the MPMDP is
mapped to the road plane and filtered using an average of the last θpts points.

9.2 Road Plane Tracking Using Kalman Filtering

In the previous section the surrounding vehicles were mapped to a road plane
common to all perspectives of the ego-vehicle. This section handles the asso-
ciation of vehicles that are mapped from multiple perspectives during their
movement around the ego-vehicle, and the noise involved with inverse per-
spective mapping. To do so, an online Kalman filter is used for each trajec-
tory.

9.2.1 The Kalman Filter

The choice of a Kalman filter introduces an important assumption that the
dynamics of vehicles are linear, which will be showed to be sufficient to this
application. However, be aware that vehicles do follow nonlinear paths, and
optimally the filter would have to include this in the model (e.g. by using the
extended Kalman filter).

The state of a vehicle in the road plane is modeled as the xxxpos = [x, y]T

position and the xxxvel = [ẋ, ẏ]T velocity. Thus, the state vector, xxxk, is of the
form:

xxxk =
[
xxxpos

T xxxvel
T
]T

=
[

x y ẋ ẏ
]T

(9.8)

This means that a vehicle for each frame is modeled with a 2D position and
velocity. Following the prediction-correction scheme shown in Figure 9.12,
the model is used to predict where a vehicle has moved between two frames:

xxxk = AAAxxxk−1 (9.9)

Where AAA is the model transition matrix, and the control input is left out
(since not used in this application). The linear motion of the vehicle can be
computed as:

xxxk
pos = xxxk−1

pos + xxxk−1
vel , xxxk

vel = xxxk−1
vel (9.10)
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This means that AAA is:

AAA =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


 (9.11)

Note that ∆t in this application is equal to one, since xxxk and xxxk−1 are one
frame apart. The prediction in (9.9) is based on what was known in the last
frame, and the result is referred to as the a priori state estimate of the current
frame (some times noted as xxx−k ). The model for performing this estimate is
rarely assumed to be perfect, for which reason an uncertainty is added. This
is done in form of the process noise covariance matrix, QQQ, which is a measure
of how much the model might be corrupted by noise, and thus how trusted
the a priori state estimate is. The process noise is used to estimate the a priori
error covariance:

PPP−k = AAAPPPk−1AAAT +QQQ (9.12)

Thus, the Kalman filter has two a priori estimates that describes how the
model believes a vehicle has moved from the previous frame, and how certain
it is of this estimate, xxx−k and PPP−k . These calculations form the predictive part
of the Kalman filter. Note that these are based on the model only.

Time Update
(Prediction) 

Measurement Update
(Correction) 

1k kx Ax−
−=

1
T

k kP AP A Q−
−= +

1( )T T
k k kK P H HP H R− − −= +

( )k k k k kx x K z Hx− −= + −

( )k k kP I K H P−= −

1)Project the state ahead

2)Project the error covariance ahead

1)Compute the Kalman Gain

2)Update the estimate via kz

3)Update the error covariance

Initial state of

1kx − 1kP −and

Fig. 9.12: Prediction-correction scheme of the Kalman filter with equations.

The correction part of the filter combines the a priori estimates that are
based on what was known from the previous frames with what is known
from the current frame. Specifically, the filter receives a new measurement,
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zzzk, that is information about the vehicle from the current frame (note that
sometimes the filter might not receive a new measurement, and thus has to
rely purely on the a priori estimates). In this application the measurement is
a new 2D position of the vehicle from the previously described modules:

zzzk =
[

xroad yroad

]T
(9.13)

A measurement transition matrix, HHH, is used to relate a measurement with
the state vector:

zzz = HHHxxx, HHH =

[
1 0 0 0
0 1 0 0

]
(9.14)

This allows the combination of the a priori state estimate and the new mea-
surement to an a posteriori state estimation:

xxxk = xxx−k +KKKk
(
zzzk −HHHxxx−k

)
(9.15)

Where KKKk is the Kalman gain that weights the a priori state estimate and the
new measurement. Thus, the Kalman gain has to take into account the model
uncertainty, QQQ, and the noise corrupting measurements that is described by
the measurement noise covariant matrix, RRR. Note that a higher Kalman gain
results in more weight on the measurement, and a lower Kalman gain gives
more weight to the estimate of the model. Specifically, the Kalman gain is
computed using:

KKKk = PPP−k HHHT
(

HHHPPP−k HHHT + RRR
)−1

(9.16)

Thus, larger values of the measurement noise covariance, RRR, will decrease the
Kalman gain, and thereby reduce the weight of the measurement. Likewise,
larger values of the a priori error covariance, PPP−k , will increase the Kalman
gain, and thus reduce the weight of the a priori state estimate (remember that
the process noise covariance, QQQ, is included in the a priori error covariance).
Lastly, the error covariance is corrected:

PPPk = (III −KKKkHHH)PPP−k (9.17)

This is the a posteriori error covariance, which is used in the calculations of
the future a priori error covariance. This concludes the correction step of the
Kalman filter, and the a posteriori state estimate is the output for the current
frame. The iterative process is shown in Figure 9.12.
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9.2.2 Parameters of the Kalman Filter

The theory above introduced the internals of the Kalman filter. In this section
the choice of noise covariance matrices is described. Two matrices are used to
model the uncertainty of the model, QQQ, and the measurement, RRR, respectively.
Both of these are in theory allowed to vary over time, but are in practice kept
static.

The process noise covariance matrix, QQQ, is a 4x4 matrix that as previously
mentioned describes the uncertainty of the model. The matrix has to take
into account the random noise that can corrupt the model. In practice, the
values of QQQ are experimentally determined, but note that the fact that the
dynamics of vehicles are not completely linear, suggests that the values of QQQ
are increased.

The measurement noise covariance matrix, RRR, is a 2x2 matrix that as pre-
viously mentioned describes the uncertainty of the measurement. This ma-
trix describes noise introduced in the process of estimating the position of
a vehicle. Thus, the values can be set according to a comparison between
ground truth points and estimated points (the variance in distance). How-
ever, ground truth points have to undergo the same homography, which is
most likely the main contributor of noise in the estimation. This means that
the measurement noise covariance will be too low. Instead, the values are
experimentally determined. Note that the IPM is more likely to introduce
larger errors in the x-direction (since the per pixel distance change increases
further away from the ego-vehicle), and thus RRR needs to make sure that the
2D measurement is not weighted equally. Alternatively, RRR could change ac-
cording to how far away from the ego-vehicle the measurement is.

9.2.3 Tracking Vehicles from Multiple Perspectives

With the Kalman filter in hand it is possible to track a vehicle. However,
with multiple vehicles on the road, more Kalman filters are needed. Vehicle
points are assigned to filters by minimizing the cost in distance between the
a priori state estimations (the predicted positions) and the new points in the
road plane. A distance threshold, θdis, rejects assignments that are not close
enough to the tracker, ||zzzk −HHHxxx−k || > θdis. Optimally, this threshold is based
on the error covariance, as to adjust the threshold according to the uncertainty
of the tracker. Alternatively, it is based on the distance from the ego-vehicle
in a similar way as RRR. Each time a vehicle is unassigned it initializes a new
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filter. Furthermore, vehicle trackers are allowed to survive for a number of
frames without any assignments, where they rely on the model to predict
positions. This is to ensure that the trackers survive in the regions where
vehicles transition from one view to another, and that they survive during full
occlusions if they should reappear. An example of tracking in a sequence is
shown in Figure 9.13. Note the two vehicles that moves between perspectives
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(a) Trajectory points in the road plane colored by perspective in which they are tracked by the
MPMDP tracker: Rear, Right, Left, Front.
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(b) Kalman filtered trajectories colored by ID. Note for example the green trajectory spanning
three different perspectives of the ego-vehicle.

Fig. 9.13: An example of tracking in the road plane in a sequence after 150 frames. The current
frame is shown for the four perspectives in the top.

in the adjacent lanes of the ego-vehicle. Both are correctly associated between
the perspectives from the available spatiotemporal information.

Another way to implement the tracking in the road plane using Kalman
filters, would be to directly assign a MPMDP trajectory to a filter, and handle
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the association of Kalman filters in the regions, where vehicles might tran-
sition to another perspective. It would also be interesting to study how the
system would perform if the single perspective tracker was removed, and
detections thereby used directly by the Kalman filters in the road plane. This
would have two main challenges compared to the current system: It would
not be possible to rely as much on the road points since the single perspective
tracker ensures persistence of the trajectories, and the Kalman filters would
have to deal with more false positives and negatives; In the current system,
the points are filtered in the road plane (to remove noise from IPM) using the
trajectory they belong to in order to accommodate the Kalman filtering, thus
the Kalman filter would have to deal with more noise making the association
more difficult.

The resulting trajectories are based on relative movement to the ego-
vehicle, and velocities of surrounding vehicles are thus relative to the ego-
vehicle. Absolute velocities can easily be obtained by adding the ego-velocity
obtained from the CAN bus, which are useful for several purposes such as
analyzing the average speed of surrounding vehicles.

9.3 Evaluation

In this section the road plane tracking (also referred to as 3D tracking) is
evaluated using the detectors and single perspective trackers evaluated in
Section 7.2 and 8.2, respectively. 3D tracking is the least explored area within
evaluation compared to detection and image plane tracking. Leal-Taixé et al.
[28] evaluate tracking of pedestrians in 3D in the Multiple Object Tracking
Benchmark (MOTChallenge). To do so, they among others use the CLEAR
MOT [2] metrics defined with euclidean distance instead of bounding box
overlap. Further details of the metrics used for this evaluation are described
in Subsection 6.2.3.

The ability to track vehicles in the road plane is evaluated on a manu-
ally annotated sequence and ground truth positions in the road plane are
obtained using the same homographies as the system. The results are listed
in Table 9.1. The most notable result here is that the choice of detector clearly
influences the scores, and SubCat achieves a much higher MOTA score than
DPM. The large difference seems to origin from the number of false positives
according to the precision scores. This is probably due to the lower bounding
box precision of the DPM, which causes misplacements in the road plane and
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Table 9.1: Multi-perspective tracking results using two different detectors. The arrows indicate
if a low or high score is best.

Methods MOTA↑ MOTEP↓ IDS↓ Frag↓ MT↑ ML↓ Recall↑ Precision↑

SubCat-MPMDP-3D 0.64 1.23 5 93 0.46 0.15 0.79 0.85
DPM-MPMDP-3D 0.42 1.23 3 83 0.38 0.15 0.74 0.70

can lead to vehicles not being matched with their corresponding ground truth
point. It should however be noted that the ground truth trajectories are sub-
ject to noise caused by the mapping to the road plane (see Figure 6.3), which
toughens the task of correctly associating ground truth with corresponding
tracks. But since both the system and the ground truth are subject to the
same IPM noise, the evaluation reduces the influence of IPM in the scores.

To highlight the performance of association between perspectives an ad-
ditional test is used. In the test, the number of correct associations of vehicles
between perspectives in the road plane is compared to the number of ground
truth transitions. The results are listed in Table 9.2 and a full table is available
in Paper B. Note that the performance of the three trackers are very similar,

Table 9.2: Associations between perspectives using three different single perspective trackers in
11 sequences compared to ground-truth. See the full table in Paper B.

Methods System/GT Recall

DPM-MPMDP-3D 75/82 0.92
DPM-MDP-3D 74/82 0.91
DPM-TBD-3D 73/82 0.90

and it might be minor details that cause the differences. Nevertheless, the
MPMDP tracker shows to get a higher score than its competitors, which is
due to the focus on extending the trajectories at the image borders. It is im-
portant that trajectories do not change ID between perspectives, as this will
split the trajectories and hinder a full surround trajectory analysis. It is thus
an important result that the MPMDP tracker helps improve the association
between perspectives.

3D Visualization of Trajectories

This section is not part of the actual system, and is only used to show a pos-
sible use of the trajectories estimated by the system. The vehicle trajectories
in the road plane open up a wide range of possible usages. One of these is
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to visualize the scene in a virtual 3D environment. A 3D visualization allows
reconstruction of scenarios, and enables the user to move freely around in
the scene. A highway scene is created using Unity3D, and used to set up a
TCP/IP server that receives road plane positions that are visualized in real-
time. This means that the visualization tool can run on a separate machine,
and it is possible to use it on-road for real-time rendering of the surround-
ing vehicles. Note that the latter requires the trajectory estimation to run in
real-time as well, which is not currently the case. The ego-vehicle is assumed
static, though it is possible to use the ego-velocity obtained from the CAN
bus. Thus, movements of vehicles around the ego-vehicle are relative to the
ego-vehicle. A powerful aspect of the visualization is that it is possible to
see how certain scenarios unfold in time, and instead of having to keep an
eye on four perspectives it is possible to become a part of the world. An
example of a time instance from one of the highway sequences is shown in
Figure 9.14a and 9.14b. Likewise, it is possible to visualize urban scenes as
the ones present in the KITTI dataset, where pedestrians can be tracked as
well (see Figure 9.14c).
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(a) An example from a highway sequence with tracking of surrounding vehicles.

(b) The user is in control of the camera.

(c) An example of an urban scene.

Fig. 9.14: 3D visualization of on-road scenarios using Unity3D.
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Chapter 10

Trajectory Analysis

Trajectories are now found in the road plane from the previous modules.
The next task is to analyze the trajectories in a meaningful manner. Setting
up well defined heuristic rules for all cases is a cumbersome approach, es-
pecially with changing environments. This includes changes from highway
to urban driving, or minor changes as simply the number of lanes available
which changes the dynamics of the scene and new rules need to be applied.
Instead a data-driven approach is examined, learning automatically with no
or little human intervention of how to group and model trajectories. This
enables classification of new trajectories to be used in both offline and online
applications. Offline applications include automatically classification of im-
mense amounts of NDS data, where online applications include abnormality
detection and ultimately near-future prediction of surrounding vehicles.

(a) (b) (c)

Fig. 10.1: Example use of spectral clustering on a simulated interscetion (a), clustering trajectories
into an excess number of clusters. An agglomerative merge is used to merge similar clusters into
the correct number of clusters (b). In (c) the approach is tested on real data captured at a U.S.
highway [35].
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So far the research have primarily been focused on traffic surveillance
applications, learning routes of intersection as shown in Figure 10.1 for a
simulated intersection and data from a real highway.

Less research is found on-road using moving platforms. In [45] a front-
faced stereo-camera is used and fused with radar data to predict lane changes
in front of the ego-vehicle up to 2.2 seconds ahead. Fully vision-based exam-
ples include [37] and [46], learning behaviors in an unsupervised manner in
a rear and front perspective, respectively. In this work we expand the frame-
work of Morris and Trivedi [35] from looking at single perspectives to a full
surround, resulting in longer and more comprehensive trajectories. Both an
unsupervised clustering, and a supervised classification are evaluated, to-
gether with an online classification example.

(a) Dense Traffic (b) Free-flow Traffic

Fig. 10.2: Typical maneuvers found on-road in a front perspective at both dense and free-flow
traffic. With dense traffic only the adjacent lanes are visible due to occlusion, and a short distance
to the vehicle in front. With free-flow traffic more lanes are visible, and the dynamics are shown
using O to mark the beginning, and X to mark end position, showing overtaking vehciles on the
left and receeding vehicles on the right of the ego-vehicle. [46].

10.1 Unsupervised Learning

Clustering trajectories includes several challenges. The main challenge is
the variation in both length and start/stop positions. Normalization is an
option for the offline classification task, but less suitable in active applica-
tion, and might lose the temporal information contained in the trajectory.
Common clustering algorithms e.g. K-means, is used to cluster points and
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feature vectors, where the trajectories contain a temporal aspect as well.
This is why spectral clustering is found suitable since this method relies on
eigen-decomposition of a similarity matrix. The similarity matrix can be con-
structed as it would using points or features, by using a similarity measure
suitable for trajectories. The spectral clustering is first tested on simulated
data and then applied on real data.

10.1.1 Spectral Clustering

The similarity measure used to construct the similarity matrix is reported to
be of high importance for a successful clustering [4, 36]. In general the longest
common subsequence (LCS) is found useful for trajectory comparison using
only positions.

The LCS can be seen as an extended version of the dynamic time warp-
ing (DTW). In DTW all elements are matched, even outliers, which is not a
requirement using the LCS. LCS is best explained using strings, even though
the principle directly applies to the trajectory domain as well. The main dif-
ference between comparing strings and trajectories is the matching criteria
of the LCS algorithm in Equation 10.1. The first case is a sanity check, and
returns zero if either of the strings length is zero. A matrix is instantiated of
size Ti + 1× Tj + 1, as seen in Table 10.1, where Ti and Tj are the lengths of
the two strings. An extra row and column is inserted to ensure the generality
of the algorithm. The matrix is traversed in a double loop starting row-wise.
First, the ’t’ in trajectory is compared to the ’t’ in tractor. This is a match, and
one is added to the entry plus the value of the top-left cell. Next, the ’t’ in
trajectory is compared with the ’r’ in tractor. This is no match, and the maxi-
mum of the left and top cell is stored. This is repeated throughout the entire
matrix, resulting in an O(n× m) computational complexity. The end results
is seen in Table 10.2 where the LCS of ’trajectory’ and ’tractor’ is found to be
seven.

LCS(Fi, Fj) =





0 i f Ti = 0|Tj = 0

1 + LCS(FTi−1
i , F

Tj−1
j ) i f dE( fi,Ti , f j,Tj ) < ε & |Ti − Tj| < δ

max(LCS(FTi−1
i , F

Tj

j ), LCS(FTi
i , F

Tj−1
j )) otherwise

(10.1)

The LCS definition for trajectories allow the matching to stretch in time.
An acceptable time window of δ is allowed. A match between two points in

99



Chapter 10. Trajectory Analysis

Table 10.1: LCS initialisation between the
two strings ’trajectory’ and ’tractor’.

t r a c t o r
0 0 0 0 0 0 0 0

t 0 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0
y 0 0 0 0 0 0 0 0

Table 10.2: At the end of the algorithm the
longest common subsequence between the
two strings ’trajectory’ and ’tractor’ is found
to be seven.

t r a c t o r
0 0 0 0 0 0 0 0

t 0 1 1 1 1 1 1 1
r 0 1 2 2 2 2 2 2
a 0 1 2 3 3 3 3 3
j 0 1 2 3 3 3 3 3
e 0 1 2 3 3 3 3 3
c 0 1 2 3 4 4 4 4
t 0 1 2 3 4 5 5 5
o 0 1 2 3 4 5 6 6
r 0 1 2 3 4 5 6 7
y 0 1 2 3 4 5 6 7

two trajectories is further constrained based on the Euclidean distance being
less than ε. Both the ε and δ threshold is pre-defined and application depen-
dent. For matching trajectories in the road plane an ε of half a lane width is
used, and a δ of 150 samples. An illustration of LCS is found in Figure 10.3
with two trajectories.

The LCS is used in a distance function Equation 10.2, which normalizes
using the length of the shortest of the two trajectories. The distance function
is wanted low, where the LCS is wanted high and is therefore inverted. The
distance function is thereby comparable with other similarity measures.

DLCS(Fi, Fj) = 1− LCS(Fi, Fj)

min(Ti, Tj)
(10.2)

The distance is used in a Gaussian kernel function, Equation 10.3, to make
the similarity easily adjustable. The trajectory neighborhood σ is used to
control how rapidly the similarity falls off. A higher σ gives higher similarity
scores.

sij = e−D2
LCS(Fi ,Fj)/2σ2

ε[0, 1] (10.3)

The previous described steps are performed for each trajectory against
all other trajectories and stored in similarity matrix S with entries of Equa-
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Fig. 10.3: Illustration of LCS between two trajectories [56].

tion 10.3. Given the trajectories easily contain a few hundreds of points, this
is a considerable time consuming process. The Laplacian matrix is formed
as Equation 10.4, where D is the diagonal degree matrix with entries being
row sum of S.

L = I − D−1/2SD−1/2 where Dii = ∑
j

Sij (10.4)

The K largest eigenvalues of L are used as column feature vectors in a new
matrix, Q, serving as input to the clustering algorithm. The fuzzy C-means 1

(FCM) clustering algorithm is used, instead of the traditional K-means, to
utilize soft cluster membership to minimize the effects of outliers. Both of
these clustering algorithms takes the number of clusters as input. As the
actual number of clusters is unknown, the number of clusters used is scanned
in a range. The FCM toolbox furthermore outputs a metric telling how clean
the clustering is, called the fuzzy partition coefficient (FPC), defined in the
range from 0 to 1, with 1 being best.

10.1.2 Clustering Simulated Data

The spectral clustering is first tested on simulated data. The simulated data
is generated by drawing the trajectories by hand using a simple customized

1https://pypi.python.org/pypi/scikit-fuzzy

101

https://pypi.python.org/pypi/scikit-fuzzy
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GUI. The trajectories have unequal length, and the start and stop locations
can be variated as wanted. The trajectories are drawn as if they belong to a
pre-defined cluster and the correct number clusters is thereby known. Some
example cases are shown in Figure 10.4.

(a) Input (b) Clustered

(c) Input (d) Clustered

(e) Input (f) Clustered

Fig. 10.4: Clustering simulated trajectories using spectral clustering and fuzzy C-means. The
trajectories are numbered by id and the start is marked with a dot to indicate direction.

The clustering is in general well separated using the simulated data, espe-
cially with the two first cases. Some errors are found in the last case. This is
seen for ID number 7, belonging to a wrong cluster, as with a green trajectory
in front doing a cut-in maneuver.

10.1.3 Clustering Real-Data

The spectral clustering with FCM seems to overall perform well and the
method is therefore applied to real data as seen in Figure 10.5. A range
of different cluster numbers, c, is shown since the number of clusters are
unknown. A tendency to cluster trajectories in the diagonal directions seen
from the ego-vehicle, which might be caused by these areas have a higher
amount of fragmented trajectories. Trajectories in these areas will have a
high similarity measure. To prioritize long trajectories it could be considered
to normalize using the maximum length of the two compared trajectories in-
stead of the original minimum length. One could fear the clustering to be
divided as the cameras coverage areas as this would be a sign of error prone
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between perspective association. This is though not the case as seen from
Figure 10.5d, which somewhat verifies the robustness of multi-perspective
association.

A remarkable drop is seen in FPC score from five to six clusters, which
can also be seen by the clustering changing pattern. It is noted how some
clusters do not have any members and therefore not included in the figure
legend. This indicates the data is not easily separable or a bad initialization
of clusters.

(a) Input Trajectories (b) c=2, FPC=0.86 (c) c=3, FPC=0.66

(d) c=4, FPC=0.59 (e) c=5, FPC=0.47 (f) c=6, FPC=0.16

(g) c=7, FPC=0.14 (h) c=8, FPC=0.12 (i) c=9, FPC=0.11

(j) c=10, FPC=0.10 (k) c=11, FPC=0.09 (l) c=12, FPC=0.08

(m) c=13, FPC=0.07 (n) c=14, FPC=0.07 (o) c=15, FPC=0.06

Fig. 10.5: Spectral clustering using fuzzy C-means on real-data. The number of clusters, c, is
specified along with a clustering score FPC where higher is better.
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Several improvements can be made to the unsupervised clustering which
might give better results, but they are not tested in this study. A more careful
parameter tuning might give better trajectory similarities. Note it takes ap-
proximate three hours to calculate the LCS similarity matrix for each iteration
using a couple of hundreds trajectories, without utilizing dynamic program-
ming. As seen Morris and Trivedi [35] the simulated data is clustered into an
excess number of clusters, followed by an agglomerative merging of similar
clusters. This does however not seem too promising.

The unsupervised clustering does not give the wanted result since the
clusters are not directly comparable with the maneuvers a human observer
would specify. Any further analysis of the trajectories using the clustering
of the current state is questionable and a supervised method is examined
instead.

10.2 Supervised Learning

Even though an unsupervised learning approach may seem appealing due
to the ability to adjust to different scenarios, a supervised learning approach
might be sufficient if the road structure is known beforehand, as often found
on highways being highly structured. For the purpose of trajectory analysis,
we are often interested in human defined maneuvers, where an unsupervised
method might define different clusters as seen in the previous section. A
supervised approach is therefore examined in the remainder of this section.

Trajectories are found in a wide variety surrounding the ego-vehicle as
seen from Figure 10.6. It is nearly impossible to define well defined classes
to everyone of them.

A case scenario is therefore defined, only evaluating vehicles approach-
ing from the rear with respect to the ego-vehicle. This is seen as a potential
dangerous situation because of multiple blindspots, and since a drivers pri-
mary focus is in front of the ego-vehicle. In this case scenario five classes
are defined as illustrated in Figure 10.9. The trajectory dataset is manually
traversed and classified functioning as ground truth. These selected trajecto-
ries are later divided into training and test data, with the aim of training a
method to classify test trajectories correctly.
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Fig. 10.6: All trajectories found in the dataset.
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Fig. 10.7: Few selected trajectories of which considered simple consiting of either staying in lane
or single lane changes.
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Fig. 10.8: Few selected trajectores advanced trajectories with multiple lane changes.
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C1

C2

C3

C4

C5

(a) Trajectory classes

Fig. 10.9: Classes used for the classification of vehicles approaching from behind. C1) Overtaking
on the left. C2) Left lane change followed by an overtaking on the left. C3) Staying in ego-lane
behind ego-vehicle, also known as tailgating. C4) Right lane change followed by an overtaking
on the right. C5) Overtaking on the right.

10.2.1 Hidden Markov Models

In this work the Hidden Markov Model (HMM) is chosen for its applications
in both active and passive safety. The passive safety applications include
statistical counts of events based on a classification task. The HMM is further
suitable for online classification with real-time capabilities for active safety
systems. This also gives a framework predicting vehicle locations ahead of
time for early collision warnings.

The annotated trajectories are divided into training and test data. The
training set is further expanded by using mirrored trajectories. As for the
class of C2, some cut-in trajectories found in front of the ego-vehicle are used
by flipping the x-axis, and reversing the ordering of points in the trajectory.
This trick is only used for training the models and not as test trajectories. The
training trajectories can be seen in Figure 10.10.

A HMM is trained for each class using the corresponding training trajec-
tories. Each point in a trajectory consists of a feature vector with position
in the road surface (xroad,yroad) and velocity (ẋroad,ẏroad). Note these are the
Kalman filtered points from the previous module.

xxxk =
[

xroad yroad ẋroad ẏroad

]T
(10.5)

The native MATLAB implementation is using discrete observations, where
we have feature vectors with a temporal aspect. Typically, one can either de-
code the feature vector, or model the feature vector as Gaussian mixtures. The
latter approach is implemented in this work using the Probabilistic Modeling
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(a)

Fig. 10.10: Training trajectories.

Toolkit (PMTK3)2. A HMM is trained by estimating the state transition prob-
ability matrix, AAA, emission probability matrix, BBB, and its initial state proba-
bility vector, π, as seen in Equation 10.6. The matrices are of size Q×Q, with
Q being the number of hidden states used to model each trajectory.

λC = (AAAC, BBBC, πC) with C = {C1, C2, C3, C4, C5} (10.6)

The positional distribution of a HMM model using three hidden layers is
seen in Figure 10.11. This gives a visual impression of how trajectories can
be modeled as transitions between hidden states. A left-right HMM is often
applied in surveillance applications, limiting the HMM to only transition
from one way to another, not allowing transitioning back to a state once it
have left. This could as well be applied in this specific scenario, but is left
out to allow vehicles going back and forward in their lane, a case that is
not seen in traditional surveillance perspectives i.e. monitoring vehicles on a
highway from a static bird point of view will not change direction throughout
its trajectory.

A new test trajectory is classified by comparing it to each of the pre-
trained models, choosing the one with the highest likelihood as seen from
Equation 10.7 and 10.8. The likelihood is calculated using forward algorithm,
multiplying the likelihood of an observation to originate from each state.
This chain of multiplications gives a very small number, given the likelihood
is between zero and one. Longer observation sequences result in smaller
numbers. The logarithmic likelihood is therefore used to avoid underflow in

2https://github.com/probml/pmtk3
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Fig. 10.11: Lillipad plot of the spatial gaussian mixture of C2 with three hidden layers.

the machine precision.
LLC = log P(O|λC) (10.7)

Ĉ = arg max
C

LLC (10.8)

The HMM classified test trajectories are shown in Figure 10.12 and evalu-
ated in Table 10.3. Both precision and recall is generally high in all five classes
in this simplified scenario with limited number of trajectories. The most no-
ticeable error is the number of false positives for C2, which is expected to be
improved with more training data.
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Fig. 10.12: HMM classified test trajectotries.

One downside of the HMM classification approach is found in the overlap
between classes. This is seen especially evident for C3 overlapping with both
C2 and C4. This gives a higher risk of misclassification since a trajectory of C3

is easily associated with one of the leftmost hidden states of either C2 or C4.
One way to combat this in a offline application is to include the requirement
to visit all states for a trajectory to be classified. A similar solution could be to
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Table 10.3: Classification score for the HMMs on a 2.5 hour drive with selected sequences.

Class TP/GT Recall FP Precision

C1 17/21 81% 0 100%
C2 16/16 100% 5 76%
C3 18/19 95% 0 100%
C4 6/6 100% 1 86%
C5 4/5 80% 0 100%

Total 61/67 91% 6 91%

apply a second classifier on the hidden states visited, or to rely on additional
features in spatial overlapping regions.

Given the high classification scores, we can continue with the analysis of
the HMM classified trajectories. In the application of NDS analysis one might
be interested in reducing the drive into events. These events are almost given
when the classes are defined in a supervised manner. The class of C2 is in this
study reduced to two events being a lane change to the left followed by a pass
on the left. The event reduced drive is summarized in Table 10.4. It is clear
it is more common to overtake on the left than on the right. Overtaking on
the right is generally found to be bad driving behavior, but still considerable
number is found during 2.5 hour drive, which testifies the need to check for
overtaking on the right as well.

Table 10.4: Trajectory analysis results.

Description Value

Passes - left/right 33/10
Lane changes - left/right 16/6
Tailgating 18
Average velocity of ego-vehicle 102kph
Average velocity of C1/ego 115kph / 104kph
Average velocity of C2/ego 113kph / 99kph
Average velocity of C3/ego 105kph / 104kph
Average velocity of C4/ego 109kph / 106kph
Average velocity of C5/ego 109kph / 97kph

Having access to the velocity of each class further enriches the analysis.
The ego-vehicle is overall found to be driving within the speed limits of 105
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kph (65 mph), where vehicles approaching from behind is found to be driving
faster than the ego-vehicle, except tailgating vehicles. Vehicles on the left is
found to drive faster than those on the right, which might be caused by the
higher awareness of overtaking vehicles on the common left side.

Further work includes more data for training and testing, testing the num-
ber of states together with other features.

10.3 Online Classification

Analyzing trajectories are not only interesting classifying complete trajecto-
ries for passive safety in NDSs, but certainly also in real-time applications
for active safety as in ADAS. In this work the same HMMs from previously
are used. The input can either be the last sample only, the last n samples, or
the samples available up to the current time. This functions as a compromise
between an early classification and certainty.

A scenario is shown with an approaching vehicle from the rear as seen
in Figure 10.13e and Figure 10.13f as it is about to change lane following
C2. The challenge is to determine a transition from one model to another
as soon as possible i.e. when are the vehicle changing lane. The likelihood
for each increasingly available sample is shown in Figure 10.13a using only
the last available sample, and Figure 10.13b using all the available samples
up to the current time. It is noticed how using only the last sample gives
a more sporadic likelihood curve with several transitions, where using all
available samples gives a more smooth curve. The trajectory of the vehicle
seen in the road plane is shown in Figure 10.13c and Figure 10.13d marked
with red at the transition to C2, and corresponding frame at Figure 10.13e
and Figure 10.13f. It is not obvious from these images that a lane change is
about to take place. The decision making can be assumed to be based heavily
on the velocity, which will be higher in both the x and y-direction during an
overtake.

One thing is to be able to recognize behaviors, but likewise importantly
is the detection of abnormal behaviors, which is considered a higher risk to
the ego-vehicle. Using the HMMs, abnormal maneuvers would be detected
if the maximum likelihood among all classes is below a certain threshold.
This threshold is not easily determined with trajectories of different lengths,
and either a window function could be used, or a threshold as a function of
trajectory length.
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(a) Log likelhihood to originate from each of
the five classes using only the last available
sample. Transition to C2 at sample 47.
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(b) Log likelyhood to originate from each of the
five classes using all available samples up the
current time. Transition to C2 at sample 60.
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(c) Trajetory in road plane with marked tran-
sition to C2 shown in red using only the last
sample.
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(d) Trajectory in road plane with marked tran-
sition to C2 shown in red using all available
samples.

(e) Corresponding frame of the transition to C2

using the last sample.
(f) Corresponding frame of the transition to C2

using all available samples.

Fig. 10.13: Online classification comparison between using only the last available sample and
alle currently available samples.
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Chapter 11

Concluding Remarks

It is in this part proved that a vision-based framework is able to track ve-
hicles all the way around the ego-vehicle. Full surround is achieved and
overlap is achieved using four GoPro cameras mounted on the rooftop rails
of the testbed. The data is post-processed correcting for synchronization and
distortion. A larger data collection process have been initiated with a novel
multi-perspective dataset captured at 2.7K resolution being higher than any
previous traffic datasets. Over 4000 vehicles are annotated including occlu-
sion and truncation tags.

A DPM detector trained on the KITTI dataset is evaluated and compared
to the state-of-the-art SubCat detector. Overall the detectors score acceptable
with SubCat detecting with the highest precision. With computational times
taken into consideration the SubCat dominates the DPM. Both side perspec-
tives score considerably lower showing there is still room for improvements.
The detection of truncated vehicles is found of increased importance with
the aim of detecting vehicles in multiple adjacent perspectives. Truncated
vehicles have previously been of less importance since these are often only
evaluated with little to no truncation.

The MDP tracker is used as it is found to be one of the highest scoring
on the KITTI tracking evaluation. The freely available MDP code is origi-
nally aimed at pedestrian detection, where several modifications are made
to track vehicles and optimized for multi-perspective tracking. These mod-
ification include re-routing the MDP states to avoid directly tracking all de-
tections thereby reducing the number of false positives. The consequence is
the tracking starting a few samples later, which can be problematic for the
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side perspectives where vehicles might only be present for a limited number
of frames. Another challenging case is vehicles staying in the overlapping
regions. These vehicles are truncated in both views and often lack detections
and thereby difficult to track. Tracks are prolonged near the image border by
prediction using the last couple of tracked samples to assist the association.

IPM is used to project the middle of bottom bounding box to a common
road plane. IPM is used under the assumption of a level surface which is
suitable for the data used. Points in the road plane are assigned to Kalman
filters thereby associating. No common metrics are used in the evaluation of
tracking in 3D coordinates. It is proposed to re-define the MOTP to use an
euclidean distance threshold instead of bounding box overlap. The tracker
using SubCat detections were found to have an significantly higher MOTA
and precision compared to DPM. The association were tested scoring 92%
correct, showing the robustness of the association.

The estimated trajectories are analyzed using both a supervised and un-
supervised approach. The unsupervised method using spectral clustering
performed well on simulated data, but unable to find satisfying clusters in
real data. The real data is shown to be complex with various types of maneu-
vers. A simplified scenario is defined consisting of five classes of trajectories
found for vehicles approaching from the rear. An HMM was used to clas-
sify full length trajectories with 91% precision and recall. Lastly an online
classification task is examined, recognizing a lane change as early as possible
using only the last sample or all available samples. A compromise is found
between an early recognition and certain decision.
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Chapter 12

Conclusion

This master’s thesis is the product of a seven months visit to the Computer
Vision and Robotics Research Laboratory located at University of California,
San Diego. The research is furthermore documented in an accepted confer-
ence paper, a journal paper submitted for review, and a conference paper
intended for submission. The focus of the study is to observe vehicles from
a camera-equipped test vehicle. Overall topics of the research include data
collection and evaluation, computer vision, and machine learning.

Several large-scale naturalistic driving studies have through the years
sought to answer why fatal vehicle crashes happen. Most of these focus
on the awareness of drivers, which suggests that the state of the drivers is
an important factor in crashes and near crashes. Because of limits to human
sensing and the fight for attention, drivers are not always able to maintain an
adequate overview of surrounding vehicles.

This thesis describes how multiple visual cameras can be used to achieve
a full surround view of a vehicle, potentially enabling intelligent warning
or assistance of drivers in dangerous situations. Throughout the study, data
that have been collected on highways in the San Diego area, are used to
develop and evaluate methods on realistic and challenging scenarios. Two
different setups, using four and six cameras respectively, are designed and
used for collection of data. Additional to data collection, the thesis consists
of two essential topics – multi-perspective vehicle trajectory estimation and
automatic analysis of trajectories.

The estimation of vehicle trajectories from multiple visual cameras is of
main concern in this work, as a central goal is to prove the competitiveness
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of visual cameras in the field of full surround sensing, where lidar and radar
are currently the leading technologies. Indeed, this work confirms that it is
possible to estimate trajectories, not only in a front perspective, but all the
way around a vehicle. To this end, the system takes advantage of two major
fields within computer vision – detection and tracking. By imposing certain
constraints and assumptions it is shown possible from the four monocular
perspectives to estimate trajectories in 3D, thus taking the trajectories from
images to real world coordinates.

The trajectories have a wide range of potential uses, and contain valuable
information to both naturalistic driving studies and advanced driver assis-
tance systems. In this work, it is shown how supervised learning of different
types of trajectories from vehicles approaching from behind, can be used to
classify new trajectories, and potentially for predicting which paths vehicles
will follow. The latter is in particular of interest for future applications, since
long-term predictions can be a great tool for safer driving.
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Directions of Future Work

This study has proved promising results of using a multi-perspective camera
setup to observe surrounding vehicles. In order to bring the concept closer
to a real world application, several ideas can be investigated.

The execution time of the methods have not been prioritized in this work,
and thus the system does not run in real-time. However, development within
faster detection and tracking methods, and the fast evolution of hardware
specifications, suggest that it will be possible to run the system in real-time
in the near future. Real-time execution is a unavoidable requirement for
ADASs. NDSs on the other hand, can benefit from the findings of this study
directly.

By expanding the dataset with more data possibly from other locations
with different weather settings at different times of the day (e.g. nighttime
driving), a more profound evaluation would be possible. Note that this study
deals with data specifically selected to expose strengths and weaknesses of
methods for multi-perspective tracking. Thus, the data might not be repre-
sentable for general driving. An expansion to more scenarios will strengthen
the contribution, and addition of for example urban environments would
greatly broaden the usability. Urban environments would further require an
automatic understanding of the surrounding road structure.

A very appealing next step of the concept is a comparison with established
technologies such as lidar and radar. By combining the strengths of each
modality in a multi-modal fusion framework, a potentially superior system
would be in possession of great tools for surround trajectory understanding.
One of the disadvantages of the active sensors (lidar and radar) is that the
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data are not intuitive to human interpretation. Visual cameras on the other
hand, allow for a simple human-computer-interface. Thus, it also needs to be
considered how the driver is included in the loop.
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Abstract

This paper proposes the use of multiple low-cost visual
sensors to obtain a surround view of the ego-vehicle for
semantic understanding. A multi-perspective view will as-
sist the analysis of naturalistic driving studies (NDS), by
automating the task of data reduction of the observed se-
quences into events. A user-centric vision-based framework
is presented using a vehicle detector and tracker in each
separate perspective. Multi-perspective trajectories are es-
timated and analyzed to extract 14 different events, includ-
ing potential dangerous behaviors such as overtakes and
cut-ins. The system is tested on ten sequences of real-world
data collected on U.S. highways. The results show the po-
tential use of multiple low-cost visual sensors for semantic
understanding around the ego-vehicle.

1. Introduction

Trajectories of surrounding vehicles are essential to
the extraction of higher-level semantics. Recent scientific
progress in visual vehicle detection and tracking allows for
robust trajectories [19] that enables us to automate explo-
ration of vehicle behaviors, which has previously been a
time-consuming manual hand-labeling process. However,
until now, visual cameras have not been used to cover full
surroundings of a vehicle with the purpose of estimating tra-
jectories of surrounding vehicles and analyzing maneuvers.
In this study we show how existing methods for monocular
vehicle detection and tracking adapts to a multi-perspective
framework with the purpose of reaching a higher level un-
derstanding of surrounding vehicle maneuvers and behav-
iors as shown in Fig. 1. If successful, these trajectories con-
tain information, which is valuable to naturalistic driving
studies (NDS) that seek to answer how drivers behave and
why, in order to understand circumstances of crashes and
near-crashes. By learning how surrounding trajectories de-
velop over time, it is possible to predict which route the

Vehicle Tracking

Vehicle Detection

Vehicle Behavior

Figure 1. The ascending levels of vehicle interpretation in a vision-
based application. At the lowest level is vehicle detection, which
locates visible vehicles on a single-camera and single-frame basis.
One level up, detections are associated between frames and views,
in order to track vehicles on a multiple-camera and multiple-frame
basis. At the highest level, the spatio-temporal trajectories are used
to classify behaviors of vehicles.

vehicles will probably follow in the near future. The pre-
diction of trajectories is an integral part of path-planning in
advanced driver assistance systems (ADAS).

The leading technologies in terms of sensing vehicu-
lar surroundings are LiDAR and radar. A lot of research
has been conducted in the field using three-dimensional
point clouds, consequently enabling autonomous vehicles
to successfully drive public roads without causing acci-
dents. However, by introducing low-cost passive visual
cameras it is possible to add a level on top of the already
existing solutions that rely purely on spatiotemporal posi-
tions and shapes. The visual modality contains appearance
cues that can help improve the performance, e.g. by de-
tecting brake lights, estimating orientation of vehicles, and
recognizing traffic signs and signals. Thus, by using multi-
perspective visual cameras together with existing ADAS, it
is possible to achieve rich information of surroundings.

The main contributions of this paper can be summarized



Multi-Perspective
TrackingDetection Tracking

Trajectory
Analysis

Multi-Perspective Trajectory Estimation

Figure 2. The top image displays the placement of the six synchro-
nised cameras. The bottom image shows the flow of the system
from the input of six video sequences to the output of a trajectory
analysis.

as follows: (1) Using six cameras, we develop a framework
for estimating vision-based multi-perspective trajectories
on a moving platform. The method has three steps: Vehicle
detection in six different perspectives, vehicle tracking be-
tween frames in the six perspectives, and multi-perspective
tracking that connects the trajectories across perspectives;
(2) The multi-perspective trajectories are analyzed for se-
mantics of surrounding vehicular events. We show how the
combination of six perspectives, a top-down visualization
of trajectories, and a list of events that have occurred, can
be used as a powerful tool to interpret higher-level seman-
tics of the surrounding vehicular maneuvers; (3) A vehicle
equipped with six cameras is used to capture several hours
of free-flow highway driving. We show a real-world study
of 10 sequences chosen to prove the potential of the system.

2. Related Work

High-level semantics have previously been analyzed,
identifying maneuvers as overtakes, lane-changes, cut-ins,
cut-outs, or simply staying in lane. Early examples [9]
use simulated data, while recently, real data are used in a
front view of a moving platform [17, 12, 21], classifying
up to 27 maneuvers regarding lane-changes. In [18], both
a mono and a stereo camera are used to obtain trajecto-
ries in front of the ego-vehicle. The behaviors of the ob-
tained trajectories are then learned using an unsupervised
learning approach. A similar approach is seen in [16] with
vehicles behind the ego-vehicle. Trajectories are further-
more used to infer traffic patterns in intersections using
stereo vision [24, 7]. Estimating trajectories from vision-
based sensors can be divided into classic computer vision
disciplines as detection and tracking of vehicles. These
are well researched fields with public available databases
with common benchmarks. Multi-target vehicle tracking is
mainly found in KITTI [8] and DETRAC [22], where multi-
perspective tracking is mainly found for pedestrian tracking,
as seen in Pets2009 [5] with overlapping views, MOT Chal-
lenge [14], and MCT Challenge [1] with non-overlapping
views. In comparison to trajectories observed from pedes-

(a) Front left (b) Front (c) Front right

(d) Rear left (e) Rear (f) Rear right

Figure 3. Sample images captured from the synchronized multi-
perspetive setup. Note the challenges of e.g. glare, shadows, and
distortion.

trians with static cameras [13], vehicle trajectories discov-
ered with a multi-camera setup on a moving platform are
subject to additional difficulties [18], such as effects of rel-
ative motion. Non-overlapping perspectives require the use
of re-identification, which is traditionally used in surveil-
lance applications [10]. In the application of tracking sur-
round vehicles, the re-identification problem between per-
spectives is considerably simplified, since only a limited
number of candidates exist, depending on the traffic den-
sity.

Previous studies have detected and tracked vehicles us-
ing multi-camera setups. An early example is seen in [6],
where an omnidirectional camera together with a pan-tilt-
zoom camera are used to detect and classify vehicles.
In [3] surrounding vehicles and pedestrians are detected
and tracked in a simple low-velocity parking environment.
In [20] vehicles are detected around the ego-vehicle in a
highway scenario using a method based on the deformable
parts model (DPM) [4]. These studies focus on the low-
level aspects of detecting and tracking in surround view ap-
plications, whereas we in this work furthermore show the
potential use of the resulting trajectories as a tool for ana-
lyzing the behaviors of surrounding vehicles.

The challenge of associating trajectories between per-
spectives is studied in [15], where four cameras are used
with partial overlap. Trajectories are extracted from each
individual camera and projected to a common plane, where
trajectories are associated. A similar approach is seen in [2],
finding local trajectories and projecting to a common plane
and linked if both the spatio-temporal features match.

3. System Overview

The synchronized data used in this work are collected
on U.S. highways in California. The vehicle used for data
collection is equipped with six Point Grey cameras and a



GPS tracker. Furthermore, data are logged from the con-
troller area network (CAN) bus. The six cameras are placed
strategically around the vehicle, as shown in Fig. 2, in or-
der to achieve a full surround view as seen in Fig. 3. The
front and rear cameras are considered the most important
in the process of estimating the multi-perspective trajecto-
ries, for which reason they are capturing with a resolution
of 1280 × 960. The two cameras use low-distortion lenses
with horizontal field of view of 70◦ and 80◦, respectively.
The four side view cameras are captured at a lower reso-
lution of 640 × 480, to achieve a frame rate of 15 frames
per second (FPS) for the synchronized data collection. The
side view cameras are mounted with wide angle lenses with
a horizontal field of view of 135◦, to ensure a full surround
coverage with overlapping views, at the cost of a higher de-
gree of distortion.

A flow diagram of the system is shown in Fig. 2. Vehi-
cle detection is performed for each of the six inputs of the
cameras. The detections in each perspective are used by
the vehicle tracker, which associates the detections between
frames for each of the six perspectives. The trajectories are
connected between perspectives, and finally an analysis of
the multi-perspective trajectories is performed.

4. Multi-Perspective Trajectory Estimation
In the following section we present the methods designed

for estimating trajectories of vehicles present in surround-
ings of the ego-vehicle using six different visual perspec-
tives.

4.1. Vehicle Detection

Visual vehicle detection is a well researched topic that
has seen recent scientific progress, but is not yet considered
a solved problem. In this work we use six different perspec-
tives from the same location on a moving platform, and are
thus subject to variances in capturing such as the viewpoint
of vehicles, lighting, shadows, and glare. An example of
these challenges is shown in Fig. 3. The side views are espe-
cially challenging with lower resolutions and severe distor-
tion caused by the wide angle lenses. The multi-perspective
challenges require the vehicle detection to be either one ver-
satile detector, or to use a separate detector optimized for
each perspective.

In this work we use the model-based Deformable Parts
Model (DPM) detector [4] in a two-stage implementation
presented in [24, 7]. The implementation includes a pre-
trained vehicle model trained on the KITTI dataset [8],
which is used for all six perspectives. The first stage is a
regular DPM detector, while the second stage detects vehi-
cles in an upscaled version of the image in an area around
the horizon. The horizon is specified for each of the per-
spectives. Detections for both stages are combined in a non-
maxima suppression.

We have a set of captured video sequences in the time
interval T , which is VVV T =

{
VVV T

1 ,VVV
T
2 , · · · ,VVV T

K

}
for K

cameras. A video sequence for one camera is a sub-
set, VVV T

k ⊂ VVV T . Each video sequence has F images, thus
VVV T

k = {I1, I2, · · · , IF }. We use the two-stage DPM detec-
tor to find a set of detections DDDT = {DDDT

1 ,DDD
T
2 , · · · ,DDDT

K}
for K cameras in the time interval T . Furthermore, the
set of detections in camera k over time T has a length
of N and is DDDT

k = {d1, d2, · · · , dN}. Each detection is
dn = [t, x1, y1, x2, y2, s] where t is the time index/frame
number, x1 is the horizontal coordinate of the top left corner
of the bounding box with respect to the top left corner of the
input image, y1 is the vertical coordinate of the top left cor-
ner, x2 and y2 are the bottom right corner of the bounding
box, and s is a score.

4.2. Vehicle Tracking

Just like visual vehicle detection, the topic of visual ve-
hicle tracking has received a lot of attention in scientific
research. The challenge of tracking vehicles in six differ-
ent perspectives over longer time periods is mainly difficult
due to three things; sudden changes in capturing conditions,
similar appearance of vehicles, and inter-vehicle occlusions.
Despite these challenges, the visual vehicle tracking meth-
ods have reached an accuracy that allows for higher-level
understanding of trajectories in a scene.

We use the online tracking method presented in [23] in
a tracking-by-detection manner for each perspective in or-
der to track vehicles between frames. It uses Markov deci-
sion processes (MDP) in combination with the widely used
Tracking-Learning-Detection (TLD) tracker [11].

The tracker is originally designed for tracking pedestri-
ans, for which reason, it is optimized for tracking vehicles
in this study. The first change is the aspect ratio of the tem-
plate, which is chosen based on typical vehicle aspect ra-
tios in the annotations of the KITTI dataset [8] as shown
in Fig. 4. Note that the aspect ratio of vehicles varies with
the orientation at which they are observed. From this fol-
lows that vehicles observed in the side views will have a
larger aspect ratio than vehicles observed in the rear and
front views. We use an aspect ratio of 1.5, which is the
mean of the annotated bounding box aspect ratios of the
KITTI dataset. The second change is the state transition pa-
rameters of the MDP, which has been trained for vehicles.
The MDP is trained on a sequence from the KITTI dataset
[8] using available ground-truth annotations and detections
computed by the DPM detector.

We find a set of associations of detections between
frames AAAT =

{
AAAT

1 ,AAA
T
2 , · · · ,AAAT

K

}
for K cameras in the

time interval T . The kth set of associations has a length
of M and is AAAT

k =
{
ak1 , a

k
2 , · · · , akM

}
. Each association is

akm = [ID, dn] where ID is a unique vehicle identification
number.



Figure 4. Histogram of annotated vehicle aspect ratios in the
KITTI dataset [8]. The mean is shown with the vertical line at
approximately 1.5.

4.3. Multi-Perspective Tracking

The final step of the multi-perspective trajectory gen-
eration is the connection of trajectories between cameras.
Stationary setups have shown reliable performance, but in
this study we have six perspectives on a moving platform,
which makes the challenge of correctly associating trajec-
tories non-trivial.

The trajectories are associated between perspectives, by
assigning the same identification number to trajectories be-
longing to the same vehicle across perspectives. The associ-
ation is done directly in the image planes, where stationary
multi-perspective setups often perform the trajectory asso-
ciation in a common ground-plane. Since the camera views
are known to overlap, predefined overlap regions are de-
termined for each view denoted Ωk = [Ωk

L,Ω
k
R]. Each

trajectory is only evaluated once, in the first frame it ap-
pears. The bounding box of the new trajectory is firstly
examined to be positioned in either the left or right over-
lapping region. Secondly, the corresponding adjacent view
is examined for possible candidates to be associated with.
Associated trajectories between cameras are described as
BBBT = {BBBT

k,k±1} for k ∈ [1, 2, · · · ,K] in the time inter-
val T , with K being the number of cameras. Note that k
wraps around, such that k1 and kK are adjacent perspec-
tives. Each set of associations between two cameras k and
k ± 1 is BBBT

k,k±1 = {b1, b2, · · · , bL} where bl = [akm, ak±1
m′ ]

is the lth association.

bl =

{
[akm, ak−1

m′ ] if Ωk−1
R < ak−1

m′ (x2) and akm(x1) < Ωk
L

[akm, ak+1
m′ ] if Ωk

R < akm(x2) and ak+1
m′ (x1) < Ωk+1

L

As an example, see Fig. 7(b), where the leftmost car just
appeared, and is being associated with the rightmost car in
Fig. 7(a). A similar association is made between Fig. 7(f)
and Fig. 7(e). In the case with multiple possible matches in
the adjacent view, a constraint is added, where an ID only
can exists once in each view, or else the closest match is
chosen.

This association scheme is seen to fail at high density
scenes, or at late detections, when the vehicle has already
passed the overlapping part of the image, resulting in two

pass left

ego-pass right

pass right

ego-pass left

stay R stay F

LC = lane change

left-ego RLC ego-left RLC

right-ego RLC ego-right RLC

F = frontR = rear

left-ego FLC ego-left FLC

right-ego FLC ego-right FLC

Figure 5. The 14 events detected in the trajectory analysis.

trajectories not being associated. The simple association
method is found sufficient in free-flow highway scenarios.

One advantage of using multiple views, is the ability to
remove short-lived faulty trajectories, since the trajectories
of interest are considered as long tracks in order to describe
an event. All trajectories with a length less than a certain
threshold measured in frames are removed. The threshold
has been determined experimentally to 75 frames, corre-
sponding to 5 seconds with 15 FPS, for the results presented
in this work.

5. Trajectory Analysis
A map or a list of the dynamics and behaviors of

surrounding vehicles is an integral part of understanding
what is happening around the ego-vehicle, and why some-
thing is happening. In this section we present how the
multi-perspective trajectories are transformed to a common
framework and analyzed for events and certain behaviors.
The system output is thus two-fold; a visualization of tra-
jectories in the road surface enabling an in-depth analysis
and a list with events that allows for fast interpretation.

5.1. Visualization of Trajectories

The visualization enables NDS to describe why events at
certain time instances are happening. Combined with the
actual video feeds, this is a powerful tool for studying on-
road vehicle behaviors in a way that has not been presented
previously.

The multi-perspective trajectories are mapped to a com-
mon framework being the road surface. This is achieved by
inverse perspective mapping (IPM) the front and rear per-
spectives, and using the middle of the bottom of the bound-
ing box as a position of tracked vehicles. The trajectories
are filtered using the average of the last n positions in order
to achieve smooth tracks. The side views are used as dis-
crete positions for rear left, rear right, front left, and front
right. Furthermore, a simple lane estimator is used to show
in which lane vehicles are positioned when they are on the
side of the ego-vehicle. As the road might have a curve or
slope, the IPM can not be expected to be accurate at larger
distances. Vehicles are therefore tracked up to a distance
of approximately 70 meters behind and in front of the ego-
vehicle.



5.2. Data Reduction

Visualizations are valuable for analyzing vehicle dynam-
ics, but they contain a lot of data that are not easily in-
terpretable. This problem can be solved by reducing the
amount of information presented to the end-user. Further-
more, It allows for NDS to be automated.

The top-view trajectories are used to compute which
events are occurring. We detect 14 different events as shown
in Fig. 5. The method is currently limited to detecting lane
changes in the front and rear perspectives, and only for ad-
jacent lanes. Passing vehicles are found for all available
lanes. For example, if a vehicle moves from a rear left to
a front left position it is passing the ego-vehicle on the left.
Likewise, if a vehicle moves from a front left to a rear left
position the ego-vehicle is passing it on the right.

A combination of events can be grouped into semantics
allowing for a higher-level understanding of vehicular ma-
neuvers. For example, if a vehicle stays in front of the ego-
vehicle within a certain distance over a time period, it can
be concluded that the ego-vehicle is tailgating the vehicle in
front. Another example is a vehicle that changes from ego-
lane to left lane to pass the ego-vehicle on the left. This is
defined as an overtake. If a passing vehicle changes lane to
the ego-lane close to the front of the ego-vehicle, it is called
a cut-in. A behavior that is potentially dangerous.

6. Experimental Evaluation

In this section we evaluate the performance of the system
based on ten highway sequences ranging from 10 seconds to
40 seconds. The sequences are chosen from several hours of
captured data in free-flow traffic, where interesting events
are observed, to prove the potential of the system. These
events include overtaking, tailgating, cut-ins, and cut-outs.
In order to gain further insight in the performance, we show
a detailed evaluation of one of the sequences.

It would be time consuming for NDS to analyze the
events from six different perspectives. Our visualization al-
lows for a top-down view of the scene, helping to get an
overview of the different events. Fig. 6 shows the visualized
trajectories at three time instances of a 40 seconds sequence
(Seq2). In this way it is possible to see what is happening in
the sequence over time. At the first time instance Fig. 6(a),
the ego-vehicle has two receding vehicles in the rear right
lane, one approaching vehicle in the rear ego-lane, one ap-
proaching vehicle in the rear left lane, one vehicle on the
left side, and three vehicles in the lanes in front. At the sec-
ond time instance Fig. 6(b), one of the vehicles has chosen
to overtake on the right side of the ego-vehicle, which is
probably caused by the vehicle overtaking on the left that
has a lower velocity. Also, a new vehicle is approaching in
the rear left lane. Note that this vehicle has a higher veloc-
ity than the vehicle currently overtaking on the left. This
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Figure 6. Top-view trajectories of Seq2 at three time instances. As
seen over time, the ego vehicle is being overtaken multiple times,
where one vehicle furthermore makes a potential dangerous cut-in.

might be the reason why the very same vehicle at the third
time instance Fig. 6(c), cuts into the ego-lane after over-
taking the ego-vehicle on the left and starts to overtake the
slower moving vehicle on the right. Fig. 7 displays the six
perspectives at the time instance where the vehicle cuts into
the ego-lane.

The list of events for Seq2 shown in Table 1 reduces the
information further. With three detected left side passes and
one right side pass, it can be concluded that the ego-vehicle
drives slower than the surrounding traffic. However, as a
vehicle stays in front of the ego-vehicle, it is likely that the
ego-vehicle drives with a velocity similar to that vehicle.
The combination of the visualization and the list of events
is a powerful tool that allows for fast interpretation of be-
haviors occurring in a scene.

Table 1 summarizes the number of occurrences of each
event for all ten sequences compared to the ground-truth ob-
tained by manual inspection of each sequence. An overview
of the ten sequences is shown in Fig. 8 along with all the
trajectories from all ten sequences plotted in Fig. 8(k). This
demonstrates the variety in the sequences of vehicles over-
taking on both left and right, lane changes, and a few po-
tential dangerous cut-ins. The system shows approximately
the same tendencies as the ground-truth throughout all the
ten sequences. This is also confirmed by the precision
TP/(TP + FP ) and recall TP/(TP + FN), where TP



(a) Front left (b) Front (c) Front right

(d) Rear left (e) Rear (f) Rear right

Figure 7. The six perspectives of Seq2 at frame 506. The multi-perspective tracked vehicles are shown by their latest detection in colored
bounding boxes with corresponding identification number. Note some vehicles can be seen in multiple perspectives due to overlap, thus
assigned the same identification number.

is true positives, FP is false positives, and FN is false
negatives. The most frequent event is found to be vehicles
passing the ego-vehicle on the left, while there was no one
going from the ego-lane to the right-lane in front of the ego-
vehicle. This indicates a passive driver, not forcing any of
the cars in front to make a lane change. Also noteworthy
is the event of a vehicle changing from ego-lane to left lane
in front of the ego-vehicle, having a precision and recall of
zero. This is partly explained by the false positives caused
by the inaccuracy at far distances as seen in Fig.8(a). The
inaccuracy is mainly caused by a road surface that is not
completely flat or curved, which will make the IPM inac-
curate, or the fact that only a small number of pixels are
available the further away the vehicle is. The two false neg-
atives seen in sequence three and seven respectively, may be
caused by the filtering of trajectories, resulting in the trajec-
tories coming up short, as the trajectories direction indicate
a lane change, according to Fig.8(c) and Fig. 8(g).

As seen in Fig. 8(k), the system is primarily tracking ve-
hicles in the ego-lane and adjacent lanes. This is primarily
due to frequent occlusions of vehicles in other lanes, but
also the fact that they need a bigger distance to the ego-
vehicle before appearing in the front and rear perspectives.
The result is that vehicles in outer lanes have a higher prob-
ability of causing false negatives, which also reflects in the

result for left passes in Table 1. Also, the association be-
tween views has difficulties if two vehicles pass on the same
side simultaneously. Including more features than position
may solve this problem, e.g. by using appearance cues. Fur-
thermore, instead of using the overlap restriction, vehicles
can be associated between views by allowing them to appear
in other views within a certain time frame. This is how-
ever more a task of vehicle re-identification than overlap-
association.

7. Concluding Remarks
This work developed a multi-perspective framework for

analyzing on-road vehicle behavior in real-world highway
data. The usage of multiple overlapping cameras proves
useful for estimating persistent trajectories in full surround-
ing of the ego-vehicle. The multi-perspective framework
successfully enables in-depth analysis despite the chal-
lenges introduced in the visible domain such as variances
in point of view, glare from the sun, shadows of differ-
ent sizes and shapes, and distortion (see Fig. 7 and Fig. 9
for examples), and is efficiently removing short-lived false
trajectories. Furthermore, by using low-cost passive sen-
sors in the visible spectrum the system allows for an inter-
face that is easily understandable by humans, which is an
important property in terms of human-computer-interaction



Table 1. Events detected by the system for all ten sequences compared to ground-truth (GT) [System/GT].

Event Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 Seq10 Precision Recall

Stay front 2/1 0/1 1/1 1/0 0/1 1/1 1/1 1/1 1/1 1/1 0.78 0.78
Stay rear 0/0 0/0 0/0 0/0 1/1 0/0 0/0 1/1 1/1 0/0 1.00 1.00
Pass on left 3/4 3/4 1/2 1/1 0/0 1/1 3/3 1/1 0/0 3/5 1.00 0.76
Pass on right 0/0 1/1 1/1 0/0 1/1 0/0 0/0 0/0 0/0 1/1 1.00 1.00
Ego-pass on left 0/0 0/1 0/1 4/4 1/1 0/0 0/0 0/0 1/1 0/0 1.00 0.75
Ego-pass on right 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1.00 1.00
In front, left to ego-lane 1/0 2/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0.50 1.00
In front, right to ego-lane 0/0 0/0 1/1 0/1 1/1 0/0 1/1 0/0 0/0 0/0 1.00 0.75
In front, ego-lane to left 1/0 0/0 0/1 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0.00 0.00
In front, ego-lane to right 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1.00 1.00
In rear, left to ego-lane 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/0 0/1 0/0 1.00 0.50
In rear, right to ego-lane 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1.00 1.00
In rear, ego-lane to left 1/1 0/0 0/0 0/0 0/0 1/1 0/0 0/0 0/0 1/1 1.00 1.00
In rear, ego-lane to right 0/0 1/1 0/1 0/0 0/0 0/0 1/0 0/0 0/0 0/0 0.50 0.50

Precision 0.7 0.88 1.0 0.83 1.0 1.0 0.83 1.0 1.0 1.0
Recall 0.88 0.7 0.6 0.83 0.8 1.0 0.83 1.0 0.8 0.78

(a) Seq1 (b) Seq2 (c) Seq3

(d) Seq4 (e) Seq5 (f) Seq6

(g) Seq7 (h) Seq8 (i) Seq9

(j) Seq10 (k) Total

Figure 8. Visualization of the ten sequences along with all the trajectories in total. Evaluated in Table 1.

(HCI). This makes the system an attractive addition to the
sensor suite of intelligent vehicles.

The potential of the system is not limited to highway
driving. More complex scenarios are a logical next step for
example in urban areas as shown in Fig 9. In this specific
scenario, the vehicle is stopped at an intersection with vehi-
cles coming from the front right, and going through multiple
perspectives, before disappearing in the rear left perspec-
tive. This is only one scenario among many. Applications
able to model scenes by utilizing the surround view allow
for sophisticated understanding of events and behavior. The
obtained information can be used for both NDS and ADAS,

ultimately answering questions such as: Why did this vehi-
cle make a cut-in? Is it safe to make a left turn now?

A more comprehensive study of semantics from the de-
tected events would include classification of e.g. safe and
aggressive lane changes. Thus, a movement towards under-
standing high-risk semantics that need the attention of the
driver or the ADAS. Also, by using a data-driven learning
approach instead of the heuristic rule-based event classifi-
cation, it will be possible to model typical trajectories al-
lowing for future predictions of dynamics and behaviors in
the scene.



(a) Front left (b) Front (c) Front right
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Figure 9. Six perspectives at an intersection in an urban scenario.
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Trajectories and Behaviors of Surrounding Vehicles
Using Panoramic Camera Arrays

Jacob V. Dueholm, Miklas S. Kristoffersen, Ravi K. Satzoda, Thomas B. Moeslund, and Mohan M. Trivedi

Abstract—Vision-based research for intelligent vehicles have
traditionally focused on specific regions around a vehicle, such
as a front looking camera for e.g. lane estimation. Traffic scenes
are complex and vital information could be lost in unobserved
regions. This paper proposes a framework that uses four visual
sensors for a full surround view of a vehicle in order to achieve an
understanding of surrounding vehicle behaviors. The framework
will assist the analysis of naturalistic driving studies (NDSs) by
automating the task of data reduction of the observed trajectories.
To this end, trajectories are estimated using a vehicle detector
together with a multi-perspective optimized tracker in each view.
The trajectories are transformed to a common ground plane,
where they are associated between perspectives and analyzed to
reveal tendencies around the ego-vehicle. The system is tested
on sequences from 2.5 hours of drive on U.S. highways. The
multi-perspective tracker is tested in each view as well as for
the ability to associate vehicles between views with a 92% recall
score. A case study of vehicles approaching from the rear shows
certain patterns in behavior that could potentially influence the
ego-vehicle.

Index Terms—behavior analysis, naturalistic driving studies,
automatic data reduction, computer vision, multi-perspective,
surround view, tracking.

I. INTRODUCTION

AUTOMATIC identification and understanding of vehicle
maneuvers is a useful tool for both advanced driver

assistance systems (ADASs) and naturalistic driving studies
(NDSs). NDSs aid in developing technologies that improve the
safety of road users. Unlike controlled experimental studies,
NDSs involve uncontrolled, yet naturalistic driving data that
are analyzed for understanding driving styles and behaviors
[1]. Most typical naturalistic driving data such as SHRP2 [1]
include large volumes of data from multiple sensors such as
visual data from multiple perspectives, in-vehicle sensor data,
GPS and IMU (inertial motion unit) data, and active sensor
data such as radars and lidars. Analysis of such data into
specific events that could possibly lead to crashes or near-
crashes is termed as data reduction. Such a process is usually
conducted by human reductionists but there have been efforts
to automate this process in more recent works such as [2],
[3], [4]. There are a number of events and variables that are
used as a reference to extract possible conflicting events during
the trips from NDS data. While existing works on NDS have
focused on detecting specific events such as lane changes, lane
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drifts etc., most existing works do not capture the spatiotem-
poral dynamics of the surrounding vehicles during the data
reduction process, which are captured in the trajectories of
the surrounding vehicles.

Trajectory analysis in the context of active safety and
prediction using active sensors is well studied in the intelligent
vehicles research community [5]. Surround sensing using
multiple radars and lidars is commonly used to estimate
trajectories of vehicles around the ego-vehicle [6]. However,
cameras have become the cheapest sensing modality in recent
times [5], and are being deployed in vehicles extensively
to sense the surroundings. While front facing cameras are
most extensively used in vehicles, surrounding visual in-
spection is less studied, albeit the increasing pervasiveness
of cameras in vehicles. More specifically, trajectory analysis
of the surrounding vehicles using multi-perspective visual
data is not addressed as extensively as active sensor based
trajectory analysis. Furthermore, data reduction in NDSs using
the spatiotemporal dynamics of the surrounding vehicles by
investigating their trajectories is also less addressed in existing
literature.

Although active sensors are more effective in detecting
physical parameters such as relative distances and velocities
of surrounding vehicles, which are vital for trajectory analysis
and estimation, visual sensor data provide a complementary
modality while also providing a visual ground truth. This is
especially critical in NDSs, which insist on visual inspection
of the data to ascertain specific events leading to crashes
and near-crashes. However, a manual inspection by human
reductionists of the dynamics and trajectories of surrounding
vehicles can be challenging especially when there are multiple
perspectives. This is illustrated in a sample drive segment
shown in Fig. 1, where two vehicles are making maneuvers
around the ego-vehicle. Understanding such maneuvers is crit-
ical for developing automated techniques for driver behavior
analysis using NDS data. Furthermore, this surround scene
analysis can also be directly deployed for real-time driver
assistance systems and inference engines and controllers in
automated vehicles.

In this paper, we introduce surround vehicle trajectory
analysis tools for NDS data analysis and reduction using multi-
perspective visual data. This is particularly significant because
cameras are being increasingly used in recent times to capture
the 360◦ surroundings of the ego-vehicle. However, to the best
of our knowledge, there are no works reported in literature that
analyze surrounding visual data for trajectories.

We summarize the main contributions of the paper as
follows: 1) We present a complete framework for estimating
trajectories in full surround from four cameras mounted on a
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Fig. 1. Automatic driver behavior analysis using a multi-perspective camera setup include the objectives of vehicle detection, tracking, association between
perspectives, and reduction of data.

TABLE I
RELATED WORK TOWARDS VISION-BASED FULL SURROUND VEHICLE BEHAVIOR ANALYSIS. ALL ON REAL-DATA USING A MOVING PLATFORM.

Reference Sensors Used Full
Surround

Vehicle
Detection

Vehicle
Tracking

Trajectory
Estimation

Behavior
Analysis

Esparza et al. [7] Eight fisheye cameras X
Wang et al. [8] Ladybug3 – 360◦ system X X
Bertozzi et al. [9] Four fisheye cameras X X X
Proposed Four GoPro HERO3+ X X X X X

moving platform. 2) We modify the MDP tracker to be opti-
mized for multi-perspective tracking by prolonging trajectories
near the image boundary for better association between per-
spectives, and by reducing the number of false positives by re-
arranging the MDP state structure. 3) We present the estimated
trajectories found around the ego-vehicle and analyze a simple
scenario of vehicles approaching from behind by reducing a
drive into events. Finally, we also discuss how the proposed
techniques and their variants could be extended to analyze, in
real-time, the dynamics of the surrounding vehicles for driver
assistance using on-board computing systems.

The remaining paper is organized as follows: Section II
describes related work. An overview of the framework used in
this work is found in Section III, and in more detail in Section
IV. The estimated trajectories found surrounding the vehicle
are exposed in Section V. Section VI evaluates the proposed
framework. Lastly, the concluding remarks are to be found in
Section VII.

II. RELATED WORK

In this section we review recent studies that have contributed
within the fields of obtaining surround view, trajectory estima-
tion, and behavior analysis.

Comprehensive NDS have been conducted [10], [11], [1],
but relies on manual labeling in order to reduce the raw sensor

data to higher level inferences of behavior. Various studies
have proposed automatic exploration of certain events within
NDS [2], [12], [13]. High-level semantics of vehicle dynamics
surrounding the ego-vehicle have previously been studied [5]
with the purpose of identifying maneuvers such as overtakes
and lane changes. Early examples [14] used simulated data,
while recently, real data have been used in a front view of
a moving platform [15], [16] on highways, classifying up to
27 maneuvers regarding lane changes. A fully unsupervised
learning approach is seen applied to simulated trajectories in
an intersection [17], in a frontal view [18], and in rear view
in [19]. Each behavior is modelled by a HMM to be able
to isolate abnormal trajectories. Trajectories have furthermore
been used to infer traffic patterns in intersections using stereo
vision [20], [21].

Vehicle trajectories are typically estimated by active sensors
such as radars and lidars, passive camera sensors, or a fusion
hereof. A full surround using four radars is achieved by [22],
detecting parked vehicles at a parking lot. A full surround
using four lidars is found in [23], [24]. The 3D point clouds
give a natural framework to combine several active sensors by
adding more points in the overlapping areas. Trajectories are
estimated in a highway setting in both an online and offline
manner. Both radars and lidars are used in [25] to recommend
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Fig. 2. The flow of the system from the input of four video sequences to the output of a multi-perspective trajectory and behavior analysis. The four
synchronized cameras are placed as shown on the vehicle in the left side.

Fig. 3. Sample images captured from the synchronized multi-perspetive setup.

safe lane changes or lane merges based on surrounding vehi-
cles. High-level fusion is seen in [26], fusing radar, lidar, and
camera data based on existence probabilities in both partial
and full overlapping regions. A similar system [27] was tested
to recommend safe behaviors of the ego-vehicle for ADAS
and autonomous driving applications in highway settings.
Trajectory estimation from vision-based sensors can be divided
into the two classic computer vision disciplines being detection
and tracking of vehicles. These are well researched fields with
public available databases with common benchmarks [5], [28],
[29].

While most previous vision-based works use only one
camera, it has been studied how to cover the full surroundings
of a vehicle using multiple cameras. A summary of the studies
working towards vision-based full surround vehicle behavior
analysis is listed in Table I. Most surround view research
consider the task of assisting a driver in avoiding obstacles e.g.
when parking the vehicle. They do so by visualizing the close
surroundings in a top-down view [30], [31], [32], [33] or by
fully automating the process of parking [34], [35]. Also, mul-
tiple commercial systems have emerged with surround view
parking assistance. These works are however focusing on the
very near surroundings and are thus not included in Table I. In
[7] eight cameras are used to reconstruct the surrounding scene
in 3D. Two omni-directional cameras placed at the side mirrors

are used in [36] to detect and track vehicles at the side and in
front of the ego-vehicle. In [8] a full surround view is used to
detect vehicles in a highway scenario with the omni-vision
Ladybug3 system. Geometric models are learned for four
dominant viewpoints to describe the configuration of vehicle
parts and their spatial relations in probabilistic representations.
A full surround detection and tracking method is proposed
in [9]. Both vehicles and pedestrians are detected and tracked
in a low velocity parking scenario using four fisheye cameras.
The challenge of associating trajectories between perspectives
is also studied in [37] for non-vehicle applications, where
four cameras are used with partial overlap. Trajectories are
extracted from each individual camera and projected to a
common plane, where trajectories are associated. A similar
approach is seen in [38], finding local trajectories, projecting
to a common plane, and linking if the spatiotemporal features
match.

III. SYSTEM

The synchronized data used in this work are collected
on U.S. highways in California. The vehicle used for data
collection is equipped with four GoPro HERO3+ cameras.
Furthermore, kinematics of the ego-vehicle are logged from
the controller area network (CAN) bus. The four cameras are
placed strategically around the vehicle, as shown in Fig. 2,
in order to achieve a full surround view with slight overlaps
between perspectives as seen in Fig. 3. The number of cameras
is a trade-off between the amount of overlap, cost, and the
computations needed for processing. With four cameras it is
possible to achieve a 360◦ field of view, while keeping the
amount of data for processing at an acceptable level. The
cameras are capturing with a resolution of 2704x1440 at 12
frames per second (FPS). The cameras are calibrated to obtain
intrinsic parameters in order to undistort the input images.

A flow diagram of the system is shown in Fig. 2. Vehicle
detection is performed for each of the four inputs of the
cameras. The detections in each perspective are used by the
vehicle tracker to associate detections between frames for each
of the four perspectives. The positions of the tracked vehicles
are transformed to the road surface, where the trajectories are
connected between perspectives. Finally, the data are reduced
to analyze the surrounding vehicle behaviors.

IV. MULTI-PERSPECTIVE TRAJECTORY ESTIMATION

In the following section we present the methods designed
for estimating trajectories of present vehicles surrounding the
ego-vehicle using four different visual perspectives.
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A. Vehicle Detection

Visual vehicle detection is a well researched topic that has
seen recent scientific progress in both accuracy and computa-
tional speed, but is not yet considered a solved problem. Using
multiple perspectives sets high demands for detecting vehicles
at changing viewpoints, while the different perspectives will
vary in lighting, shadows, and sun glare. An example of these
challenges is shown in Fig. 3. As the ego-vehicle is a moving
platform, detection methods utilizing background subtraction
is less effective and a model based detector is preferred.
Detections for each perspective can either be found using the
same general trained model, or by training a model specifically
for each view [8]. In this study, the trained KITTI model is
experimentally found to be sufficient in all four perspectives.
In this study the discriminatively trained deformable part
models (DPM) is used [39] with a pre-trained vehicle model
on the KITTI dataset [20], [21]. The DPM detects objects
at different scales using a feature pyramid with the features
being a variation of HOG features. Each detected object is
assigned a confidence score based on the level and position
of the pyramid. Overlapping detections are eliminated by non-
maximum suppression.

Each detection in camera, k, is described using
dkn = [t, x1, y1, x2, y2, s] where t is the time index/frame
number, x1 is the horizontal coordinate of the top left corner
of the bounding box with respect to the top left corner of
the input image, y1 is the vertical coordinate of the top left
corner, x2 and y2 are the bottom right corner of the bounding
box, and s is a confidence score.

B. Vehicle Tracking

Tracking vehicles in different perspectives over time is
mainly challenging due to three things; sudden changes in
capturing conditions, similar appearance of vehicles, and inter-
vehicle occlusions. Despite these challenges, the visual vehicle
tracking methods have reached an accuracy that motivates the
estimation of multi-perspective trajectories. In this study we
design a vehicle tracker with the purpose of associating the
trajectories between multiple perspectives.

We seek to find a set of associations of detections between
frames. Each association is akm = [ID, dn] where ID is a
unique vehicle identification number. To achieve this we use
the online tracking-by-detection method presented in [40] for
each perspective in order to track vehicles between frames. It
uses Markov decision processes (MDP) in combination with
the widely used Tracking-Learning-Detection (TLD) tracker
[41].

The tracker is originally designed for tracking pedestrians,
for which reason, it is optimized for tracking vehicles in this
study. The first change is the aspect ratio of the template
used for associating vehicles between frames, which is chosen
based on typical vehicle aspect ratios in the annotations of the
KITTI dataset [28] and of one annotated sequence collected
in this work as shown in Fig. 4. Note that the aspect ratio of
vehicles varies with the orientation at which they are observed.
From this follows that vehicles observed in the side views
will have a larger aspect ratio than vehicles observed in the
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Fig. 4. Histogram of annotated vehicle aspect ratios in the KITTI dataset
[28] shown with the dark color and histogram of annotated vehicle aspect
ratios in our data shown with the light color. The means are almost equal and
shown with the vertical line at approximately 1.5. Above are some examples
of aspect ratios increasing from left to right.

rear or front view in a highway scenario, where the driving
direction is mainly straight forward. Thus, optimally the aspect
ratio should be optimized for each of the four perspectives.
We have, however, experimentally found an aspect ratio of
1.5 to be sufficient for all four views, which is the mean
of the annotated bounding boxes aspect ratios. The second
change is the state transition parameters of the MDP shown in
Fig. 5, which have been trained for vehicles. We have trained
the MDP on a sequence captured on a U.S. highway with
free-flow traffic, using ground-truth annotations and detections
computed by the DPM detector.

The variation in appearance is less prominent for vehicles
compared to pedestrians, and typical motion does not see
abrupt changes as with pedestrians. This allows us to further
constrain the creation of new trajectories as seen in Fig. 5.
Thus, when a new vehicle is detected, it starts in an Active
state, from where it can transition to a Lost state via action a1
if it is determined to be a correct detection, or to an Inactive
state via action a2 if it determined to be a false detection. This
stands in contrast to the original implementation where a new
vehicle is able to transition directly to a Tracked state. The
purpose of this re-routing in the MDP is to reduce the number
of false positive trajectories caused by spurious detections that
incorrectly transition from the Active state to the Tracked state
instead of the Inactive state. The trade-off is that correctly
tracked vehicles are slower at reaching the Tracked state, since
they are kept in the Lost state until they have been observed
β times. The action a3 is thus not only the result of no
association between a lost track and new detections, but also
of a track that is too young to transition to the Tracked state.

In this study the tracking in each perspective has to take into
account the purpose of linking trajectories between slightly
overlapping perspectives. Thus, trajectories need to prolong
as close to the image borders as possible. A situation that
meets several challenges such as missing detections caused by
truncation and severe appearance variations as the observation
angle changes rapidly in the proximity of the ego-vehicle. An
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Fig. 5. The MDP states and actions designed for tracking vehicles. A new
vehicle is not allowed to transition directly from the Active state to the Tracked
state as in the original implementation [40].

example of these challenges is shown in Fig 3. Note from the
figure that the truncated vehicles are located in regions where
they might not be detected in any of the views due to trunca-
tion. One solution, that does not require a change of setup, is
to design the vehicle detector for detecting truncated vehicles.
A topic that has previously received attention, but remains
an unsolved problem [5]. In this study we instead focus on
extending the trajectories despite the missing detections. This
is achieved by predicting bounding boxes for lost trackers. Let
α be a set of associations that have the same ID and are sorted
with increasing age of detections. Thus, the newest detection
is at the first entry, α1, and the first detection is at the last,
αM . An average change of the bounding box parameters is
computed using:

ω̇ =
1

L

L∑

m=1

ω|αm − ω|αm+1

t|αm − t|αm+1

(1)

Where ω defines all four parameters of the bounding box,
x, y, w, h, and L is the number of bounding boxes used in
the estimation of the average change, ω̇. The bounding box
prediction is then:

ω̂t|α1+τ
= ω|α1 + ω̇τ (2)

Where τ is the time from the last available detection to
the current time at which we want to predict the bounding
box. The bounding box is used as a guess of where the
vehicle has moved, which is tested using the iterative Lucas-
Kanade method with pyramids to obtain the optical flow from
previous detections of the vehicle (see [40] for a more detailed
description). The Forward-Backward (FB) error of the optical
flow is used as a measure of the stability of the prediction. If
the median of the FB errors is below a certain threshold, T1,
the prediction is accepted as a valid vehicle detection. If that
is not the case, an optical flow for the left and right half of
the bounding boxes are investigated, since parts of the vehicle
might have left the image. If the median FB error shows to
be below a more strict threshold, T2, for either the left or the
right half, the prediction is assumed to be a true detection.
The procedure is shown in Fig. 6.

The extension of the track is performed until τ gets larger
than a predefined value or more than half of the bounding box
is outside the image.

1: Predict bounding box using (1) and (2) for x, y, w and h
2: FBE ← compute median of FB error
3: if FBE < T1 then
4: Prediction is accepted
5: else
6: FBE left ← median of FB error for left half
7: FBE right ← median of FB error for right half
8: if FBE left < T2 or FBE right < T2 then
9: Prediction is accepted

10: end if
11: end if

Fig. 6. Algorithm for extension of trajectories.

Lastly, each track is modified to include normalized color
histograms that are used for association between perspectives
in Section IV-D. This allows us to base the association on both
spatial, temporal and appearance information.

C. Transformation to Road Surface

It is difficult to analyze and associate trajectories in the
image planes as they are not easily transfered to a common
understanding of the surrounding road structure [42]. Fur-
thermore, the four cameras have limited overlapping regions
and are thus not simple to robustly calibrate extrinsically. A
common solution is to use a top-down view, also known as
a bird’s eye view of the scene in order to achieve distances
between surrounding vehicles and the ego-vehicle. The top-
down view is achieved using Inverse Perspective Mapping
(IPM), which is a transformation from image plane to road
surface. The IPM estimates a homography matrix, HHH , that
maps a point in the image plane, pppimage, to a point in the
road surface, ppproad, such that:

ppproad = HHH · pppimage (3)

Note that the points are in homogeneous coordinates. A ho-
mography matrix for each perspective is estimated. However,
the homography matrices are estimated such that they map to a
global road surface and not four locally defined road surfaces.
The ego-vehicle is placed in the origin, and the x-axis is the
direction of the road such that the y-axis is orthogonal to the
driving direction as seen in Fig. 7.

Since the mapping is for points in the road surface, it is
needed to determine the location of surrounding vehicles on
the road from their bounding boxes. This is solved by using
the middle of the bottom of the bounding box:

pppimage =
[
x+ w

2 y + h 1
]T

(4)

Where (x, y) is the top-left corner and (w, h) is the width
and height of the bounding box. Note that the mapped po-
sition thus relies heavily on the performance of the vehicle
detector to select bounding box parameters. Also, with varying
observation angle the selected point will change position on
the vehicle. As an example see Fig. 4, where the leftmost
vehicle will be mapped at the rear whereas the rightmost
vehicle will be mapped at the side. Furthermore, as a nature of
IPM, the transformation is only accurate in level environments.
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Fig. 7. Areas covered by the four cameras in the road surface. The bright
areas in the bottom image are the regions in which two cameras overlap each
other.

From this follows that any bumps or similar road irregularities
will result in inaccurate and possibly erroneous mappings.
In order to handle these inaccuracies, the mapped points are
filtered using an average of the last α points in the trajectory.
An alternative would be to use stereo or an active sensor
such as lidar or radar to obtain the information needed for
reconstructing the scene.

Since the cameras are overlapping, a vehicle might be
tracked in two views simultaneously resulting in two points
in the road surface. These points can be merged to one point
using the spatial property that two points belonging to the same
vehicle are placed close to each other in the road surface.
This is essentially a form of vehicle association between
perspectives, but the purpose is to make sure that each vehicle
is only represented by one point in the road surface.

D. Multi-Perspective Vehicle Tracking

With the points in the road surface, the last task is to
stitch the trajectories between perspectives. For this purpose,
a Kalman filter is used for each trajectory. The filter simply
models the (x, y) position and the (ẋ, ẏ) velocity of a vehicle
in the road surface. Thus, the state vector, XXXk, is of the form:

XXXk =
[
xroad yroad ẋroad ẏroad

]T
(5)

The state transition matrix, AAA, and the measurement transition
matrix, CCC, are defined as:

AAA =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 , CCC =

[
1 0 0 0
0 1 0 0

]
(6)

The filters associate points in the road surface using spatiotem-
poral information. This allows us to track vehicles regardless
of which perspectives they are tracked in. An example is
shown in Fig. 8.

To further improve the robustness of the association of
trajectories between perspectives, each time a new tracker is
initialized the surrounding is investigated. If a lost tracker is
present near to the new tracker, a similarity of the normalized
color histograms for each tracker is used to determine if the
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(b) Road surface points colored by perspective.
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(c) Kalman filtered trajectories colored by ID.

Fig. 8. Example of a sequence after 150 frames with the transformed
points (b) and the Kalman filtered points (c).

two trackers belong to the same vehicle. Specifically, a χ2

(chi-squared) distance, D, is computed [43], [44]:

D =
1

2

B∑

b=1

(hi(b)− hj(b))2
hi(b) + hj(b)

(7)

Where hi and hj denote the B-bin normalized histograms. If
the χ2 distance is below a threshold, T3, the newly initialized
tracker is deleted, and the old tracker is associated with the
point.

V. TRAJECTORY ANALYSIS

The following section investigates the estimated trajectories
found around the ego-vehicle in a real-world highway setting
using the proposed four camera framework. A total of 2.5
hours of driving on U.S. highways are gathered spread out on
four days. The data are divided into 50 sequences to ignore
scenarios with lane changes of the ego-vehicle and severe
road curvatures which are unaccounted for. The sequences
contain more than 15,000 frames with vehicles performing
maneuvers around the ego-vehicle. The spatial properties of
all the trajectories can be seen in Fig. 9a. This reveals the
usage of the road and its lanes and a larger safety distance in
the driving direction compared to the adjacent lanes.
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(a) Surrounding trajectories estimated using the proposed framework.
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(b) Simple trajectories consiting of staying in lane, or single lane changes.
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(c) Abnormal trajectories.

Fig. 9. Estimated trajectories from real-world data. The trajectories are
marked with a start position X and an end position O to indicate relative
velocity to the ego-vehicle.

A vast variety of trajectories are found surrounding the
ego-vehicle. A number of selected trajectories are shown in
Fig. 9b. These contain what is considered simple maneuvers
consisting of single lane changes or staying in lane. Variety is
also seen within each type of maneuver e.g., lane changes at
different distances to the ego-vehicle, different relative velocity
of maneuvers, and trajectories of different length and different
starting and end positions. These variations make analysis
of the data challenging, since they complicate tasks such as
grouping trajectories into general trajectory types.

Trajectories surrounding the ego-vehicle are not limited to
simple maneuvers. More complex trajectories are shown in
Fig. 9c, and include e.g. multiple lane changes and substantial
changes in relative velocity. For example, one vehicle is
observed to move all the way around the ego-vehicle (the
same vehicle is also shown in Fig. 1). These trajectories occur
less frequently in the collected data, and can be considered
abnormal behaviors.

C1

C2

C3

C4

C5

Fig. 10. Classes used for the classification of vehicles approaching from
behind. C1) Overtaking on the left. C2) Left lane change followed by an
overtaking on the left. C3) Staying in ego-lane behind ego-vehicle. C4) Right
lane change followed by an overtaking on the right. C5) Overtaking on the
right.

A. Trajectory Analysis for NDS

The trajectories around the ego-vehicle can be used for
multiple purposes in both active and passive applications. As
an example, we here describe it in the case of NDS, classifying
trajectories approaching from the rear. This is an interesting
scenario since it is difficult for the ego-driver to be fully
aware of the situation behind the ego-vehicle at all times.
This analysis of typical behaviors of vehicles approaching
the vehicle from behind is a necessary step before on-road
prediction of how these vehicles will behave in the future,
which might affect the ego-vehicle. However, as explained
in the previous section, the set of trajectories include many
different types of trajectories that are not easily separable. For
this reason we study a simplified scenario with five classes of
trajectories as previously seen in Fig. 10. All other types of
trajectories are ignored in the analysis performed in this work.

The trajectories are classified using a data-driven learning
approach, namely the Hidden Markov Model (HMM) [45].
The Markov model describes the spatiotemporal aspect of
trajectories transitioning from state to state based on previous
observations. The observations are vectors of features with
four entries, being the Kalman filtered x and y positions
and velocities in the road plane as seen in (5). The states
themselves are not observable i.e. hidden, and not directly of
interest for the classification task.

A HMM is fully described by its state transition probability
matrix AAA, emission probability matrix BBB, and its initial state
probability vector π as seen in (8). The matrices are of size
Q × Q, with Q being the number of hidden states used to
model each trajectory.

λC = (AAAC ,BBBC , πC) with C = {C1, C2, C3, C4, C5} (8)

The HMM parameters are trained for each of the five
classes in a supervised manner with the manually annotated
trajectories shown in Fig. 11. In this study all HMMs are
trained with the same number of hidden states and initial states
more likely to initialize in the hindmost states.

The likelihood of a new observed sequence O to originate
from each class is calculated, and classified according to max-
imizing the likelihood as seen from (9) and (10) using the full
length of the trajectories. The likelihood of the exact sequence
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Fig. 11. Trajectories used to train the five classes.

to be observed is small, for which reason the logarithmic
likelihood is used to avoid computational underflow.

LLC = log P (O|λC) (9)

Ĉ = arg max
C

LLC (10)

Note how the classes each consist of a sequence of events,
such as lane changes and passings. These are useful measures
for the trajectory analysis, and can be used to get a quantitative
overview of the behavior of vehicles behind the ego-vehicle.
We extract five events: Passes on the left side of the ego-
vehicle (C1 and C2), passes on the right side (C4 and C5), lane
changes from ego-lane to left lane (C2), lane changes to right
lane (C4), and tailgating (C3). This list is not exhaustive and
could be extended to include more types of events. However,
by combining the classes and events with information of the
velocity of the ego-vehicle from the CAN bus, the analysis
enables automatic extraction of valuable information.

VI. EXPERIMENTAL EVALUATION

In this section we present results showing the capability of
multi-perspective trajectory estimation and analysis using sev-
eral sequences from real highway data. The system is evaluated
in three tests. The first test is a single-perspective tracking
evaluation in four different perspectives compared with the
performance of two additional trackers. This evaluation uses
common metrics for multiple-object tracking. The second test
evaluates the ability of the trackers to associate trajectories
between perspectives in the road surface in 11 sequences.
Finally, a NDS study analyzes the resulting trajectories of five
types of maneuvers behind the ego-vehicle.

The two trackers used for comparison are the original
online MDP tracker [40] and the offline Tracking-By-Detetion
(TBD) [21] method, both publicly available. The only changes
made to the original MDP are the template sizes, since it is
originally made for pedestrian tracking, and the training is
performed on the same single annotated training sequence
as the modified MDP. The TBD method is based on the
Hungarian algorithm, first associating detections into tracklets
in an online approach, while Kalman filtering the bounding
boxes. This is followed by a second Hungarian algorithm, to
associate tracklets into trajectories. This second step is done
in an offline batch manner, and the performance is thus not
directly comparable to those of the two online trackers, but
serves as a simple baseline. The method proposed in this paper
uses the parameter values listed in Table II.

TABLE II
PARAMETER LIST.

Description Parameter Value

Number of observations needed to β 3
transition from Lost to Tracked.
Number of bounding boxes used L 10
in prediction of bounding box.
FB error threshold for whole, and T1,T2 3,2
left and right halfs of bounding box.
Number of points used for filtering. α 5

(a) Before (b) During (c) After

Fig. 12. Example of an occlusion case, where the TBD makes a fragmentation
and the two MDP methods track correctly. There is a one second offset
between each of the samples.

A. Single-Perspective Tracking

The three different trackers are compared on a single
sequence consisting of 400 frames (33 seconds). The sequence
contains several inter-vehicle occlusions and vehicles moving
between multiple perspectives. Each tracker is using the same
detections with positive scores from the DPM detector, and
is evaluated on all four individual perspectives. The trackers
are evaluated using the CLEAR MOT metrics [46] and the
definition of fragmentations (Frag.) and ID switches (IDS)
from [47]. A fragmentation thereby occurs when a ground-
truth (GT) trajectory is presented as two separate trajectories
by the tracker. An ID switch occurs when a tracker ID switches
from one ground-truth trajectory to another.

The ground-truth bounding boxes for the evaluation are
obtained by manually annotating every tenth frame. Vehicles
in the far distance are ignored by setting a constraint on the
width of the detected vehicle to be at least 35 pixels, which
corresponds to a distance of roughly 50 meters from the ego-
vehicle. Furthermore, vehicles driving in the opposite direction
on the other side of the crash barriers are also ignored.

The results of the single-perspective tracking comparison
are shown in Table III. The MDP-Modified is shown to
outperform the MDP for vehicle tracking, despite it being
designed for multi-perspective association. Note, the difference
in precision scores of the two, which proves the re-routing of
the MDP states to effectively remove false positives at the cost
of slightly lower recall scores. The gap in recall scores would
be larger if the MDP-Modified did not prolong the tracks as
close to the image border as possible.

The overall tendency shows the offline TBD to have better
accuracies but more fragmentations. However, in the context of
generating trajectories of surrounding vehicles, fragmentations
cause the loss of all previous history data of that trajectory,
and are thus severe mistakes. The MDP trackers both show
superior in the number of fragmentations, since they are able to
re-assign a trajectory, when being occluded in a short amount
of time. There are multiple occlusion cases in the proximity of
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TABLE III
SINGLE PERSPECTIVE TRACKING RESULTS. A COMPARISON BETWEEN THE THREE TRACKERS (TBD, MDP, AND MDP-MODIFIED), EVALUATED ON
FOUR DIFFERENT PERSPECTIVES. TT IS THE NUMBER OF TRACKER TRAJECTORIES AND GTT IS THE NUMBER OF GROUND-TRUTH TRAJECTORIES.

Perspective Tracker TT/GTT MOTA MOTP IDS Frag Recall Precision

Front
TBD (offline) 12/10 0.55 0.75 0 2 0.70 0.82
MDP 11/10 0.33 0.74 0 0 0.74 0.65
MDP-Modified 11/10 0.38 0.75 0 0 0.72 0.68

Rear
TBD (offline) 13/8 0.79 0.76 0 4 0.79 0.99
MDP 10/8 0.70 0.76 1 1 0.83 0.87
MDP-Modified 9/8 0.79 0.76 0 1 0.83 0.95

Left
TBD (offline) 8/4 0.67 0.81 0 1 0.67 0.96
MDP 5/4 0.64 0.81 0 0 0.76 0.86
MDP-Modified 3/4 0.67 0.79 0 0 0.73 0.92

Right
TBD (offline) 4/3 0.73 0.79 0 1 0.82 1.00
MDP 2/3 0.45 0.80 0 0 0.45 1.00
MDP-Modified 2/3 0.55 0.83 0 0 0.55 1.00

Total
TBD (offline) 37/25 0.69 0.78 0 8 0.74 0.94
MDP 28/25 0.53 0.78 1 1 0.70 0.84
MDP-Modified 25/25 0.60 0.78 0 1 0.71 0.89

TABLE IV
ASSOCIATIONS BETWEEN PERSPECTIVES BY THE SYSTEM FOR 11 SEQUENCES COMPARED TO GROUND-TRUTH (GT) [SYSTEM/GT].

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 Seq10 Seq11 Total Recall

TBD (offline) 11/13 4/4 5/6 3/4 4/5 8/8 8/10 15/16 4/4 5/6 6/6 73/82 0.90
MDP 12/13 3/4 6/6 4/4 5/5 7/8 8/10 14/16 4/4 6/6 5/6 74/82 0.91
MDP-Modified 13/13 4/4 5/6 4/4 4/5 7/8 9/10 14/16 4/4 6/6 5/6 75/82 0.92

the ego-vehicle in the sequence evaluated. One occurs in the
left perspective as shown in Fig. 12, where the TBD makes
a fragmentation, while both MDP methods correctly track the
vehicle.

B. Multi-Perspective Association

In this section we evaluate the ability of our multi-
perspective tracker to associate trajectories between perspec-
tives. The test is based on manually annotated associations
between perspectives in 11 sequences, which are used to
inspect the performance of each of the three tracking methods.
The three trackers use the same transformation to road surface
and Kalman filter parameters. The evaluation is limited to five
lanes. Thus, only vehicles within two adjacent lanes are taken
into account. Note that the associations often come in pairs,
i.e. a situation where the ego-vehicle is being overtaken, where
the overtaking car is first seen in the rear perspective, followed
by the left perspective, and finally the front perspective, which
summarizes to two associations between perspectives.

The results are listed in Table IV and three examples are
shown in Fig. 13. Note that precision scores are not included
as no false positives occurred. The modified MDP achieves
the most associations with a success rate of 92%. Generally,
the three trackers score approximately equally, which might
be a result of the Kalman filter having a high impact in the
task of associating between views.

The trackers are observed to fail if a vehicle is truncated in
two perspectives and moves with a low relative velocity caus-
ing the tracker to deactivate because of missing assignments
of points. Also, if a vehicle moves with a very high relative
velocity it is only present for a limited number of frames in
the side view, and might not be tracked at all in that view. This
situation relies on the Kalman filter to predict the movement
from rear to front, which can be troublesome.

Due to the novelty of multi-perspective tracking around
a vehicle, no direct comparison can be made. A somewhat
similar approach is applied in tracking basketball players
with the use of four overlapping cameras [37]. Here an
average recall of 85% over a 40 seconds sequence is achieved,
showing generally high success rates in association for both
applications.

C. NDS Analysis of a Sample Drive

The estimated trajectories are analyzed to reveal overall
tendencies of surrounding road users in a highway setting.
Selected trajectory types are classified and further divided into
events to describe the drive in a data reduced manner. Note
the drive is divided into sequences with manually selected
trajectories of the types shown in Fig. 10 and thereby do not
give a complete picture of the distribution of events.

An evaluation is made using recall and precision to validate
the correctness of each classified trajectory. The results are
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Fig. 13. Visualization of the resulting trajectories in three sequences.
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Fig. 14. Resulting trajectories used to test the five classes: C1 in green, C2

in red, C3 in orange, C4 in purple, and C5 in brown.

shown in Table V for three hidden states in each HMM.
The experiment was evaluated with varying number of hidden
states with similar results. The classification percentages is in
general found to be high with occasional misclassifications.
Especially C2 is found to be dominant with a high amount
of false positives, which is caused by the overlap between
the adjacent classes as seen from Fig. 11. Some trajectories
are found to be more common than others as expected, but a
decent number of overtakings on the right is found, which is
considered as bad driving behavior.

The classified trajectories are used for the automatic data
reduction, reducing the sample drive into a number of events
e.g. a trajectory of C2 is divided into two events, being a

TABLE V
CLASSIFICATION SCORE FOR THE HMMS ON A 2.5 HOUR DRIVE WITH

SELECTED SEQUENCES.

Class TP/GT Recall FP Precision

C1 17/21 81% 0 100%
C2 16/16 100% 5 76%
C3 18/19 95% 0 100%
C4 6/6 100% 1 86%
C5 4/5 80% 0 100%

Total 61/67 91% 6 91%

TABLE VI
TRAJECTORY ANALYSIS RESULTS.

Description Value

Passes - left/right 33/10
Lane changes - left/right 16/6
Tailgating 18
Average velocity of ego-vehicle 102kph
Average velocity of C1/ego 115kph / 104kph
Average velocity of C2/ego 113kph / 99kph
Average velocity of C3/ego 105kph / 104kph
Average velocity of C4/ego 109kph / 106kph
Average velocity of C5/ego 109kph / 97kph

left lane change followed by an overtaking on the left side of
the ego-vehicle. The events used to describe the drive used
in this work can be summarized as shown in Table VI, along
with the average velocity of the classified trajectories with
corresponding ego-vehicle velocity.

Looking at the estimated velocities also give rise to interest-
ing findings. The ego-vehicle is found to be overtaken several
times, although having an average velocity of 102 km/h, being
just within the speed limit of 105 km/h. The ego-vehicle is
even overtaken when slightly exceeding the speed limit as seen
for C4. The overtakes of C2 and C5 seems to be triggered by a
slightly lower velocity of the ego-vehicle. Overtaking vehicles
velocities are found to be close to the velocity of adjacent
lanes going straight. Even though overtaking on the right is
seen as bad behavior, the average velocity of the overtaking
vehicle is found to less than overtaking on the left. Lastly,
the trajectories of type C3 is close to the velocity of the ego-
vehicle as one would expect.

Even though the evaluations presented above are restricted
to daytime highway conditions, we intend to extend the
scenarios in which the system can be used to include nighttime
driving [48] and urban environments [21].

VII. CONCLUDING REMARKS

This research is particularly focused on introducing a frame-
work for estimating trajectories of surrounding vehicles in a
highway setting using four cameras with slightly overlapping
views to be used for data reduction for NDS.

The framework consist of the DPM detector and a modified
version of the MDP tracker optimized for multi-perspective
association of vehicles. The proposed method correctly as-
sociates 92% tracks between perspectives while also scoring
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higher than the original MDP tracker in the single-perspective
tracking evaluation. The framework is applied on sequences
of a test drive showing the variety of trajectories found
surrounding the ego-vehicle. Five types of trajectories are
analyzed in the application of NDS data reduction. Trajectories
are classified using trained HMMs, reducing the surrounding
vehicle trajectories into events as lane changes and overtakes.

As presented, the system proves useful for NDSs as a
powerful tool for understanding surrounding driver behaviors.
However, the proposed framework is not limited to NDSs,
but can be extended to ADASs. A possible ADAS is to
predict surrounding vehicle trajectories in order to warn the
driver of abnormal behaviors or of vehicles being on collision
course. ADASs are subject to strict real-time requirements.
Even though computation time has not been a priority in the
choice of detector and tracker used in this work, the real-
time capabilities are shortly examined. The DPM detector is
found to be the bottleneck and is replaced with an off-the-shelf
SubCat detector [49], detecting vehicles at approximately 1 Hz
for each perspective without any loss in accuracy. Further op-
timization can be made by e.g. downsampling the 2704×1440
images, specifying regions of interest, and limiting the number
of model orientations used for detecting in each perspective.
To equip such a system in a vehicle would require it to run
on an embedded platform as shown in [50]. To summarize,
though several steps need to be taken, the framework allows
for optimization of the individual modules potentially enabling
it to emerge as a real-time surround trajectory and behavior
tool for ADAS.

APPENDIX

Datasets will be available for evaluation and benchmarking
in the public domain at Vision for Intelligent Vehicles and
Applications1 (VIVA) 2016. A few sequences of the dataset
are added as a supplementary material for the review process.
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Vision for Intelligent Vehicles & Applications (VIVA):
Multi-Perspective Vehicle and Trajectory Challenge

Jacob V. Dueholm1,2, Miklas S. Kristoffersen1,2, Ravi K. Satzoda1,
Eshed Ohn-Bar1, Thomas B. Moeslund2 and Mohan M. Trivedi1

Abstract— 200 words – Lorem ipsum dolor sit amet, con-
sectetur adipiscing elit. Duis non mauris eros. Pellentesque in
enim eget arcu tincidunt ultrices in ut est. In non justo sed
nisl euismod rhoncus. Cras bibendum sapien a ligula pretium,
quis varius ante iaculis. Sed blandit, tellus sed sagittis feugiat,
enim magna laoreet tellus, vel accumsan dolor dui ac sapien.
Aliquam velit justo, mollis non mauris egestas, mollis consequat
lorem. Vestibulum lobortis id purus ac finibus.

Morbi sit amet ligula enim. Donec in iaculis erat. Aenean
bibendum maximus lorem, a vehicula nisi volutpat eget. Sed
tempor sem quis diam scelerisque molestie. Praesent porta, est
mattis faucibus vehicula, dui nisi posuere quam, nec cursus
neque elit eget eros. Nam velit nibh, tristique at ligula congue,
commodo molestie ipsum. Proin pharetra est a auctor iaculis.
Mauris molestie nulla non nisi interdum pretium eget eu felis.
Sed consequat mauris auctor, congue elit at, eleifend enim.
Suspendisse sed nunc erat. Mauris enim magna, aliquet sit
amet sem imperdiet, tincidunt auctor erat. Nam at justo et
metus placerat placerat sed eget felis. Nullam nec enim mattis,
maximus sapien nec, rhoncus enim. Aliquam vitae imperdiet
sem. Morbi aliquam, ligula a feugiat fringilla, elit nunc rhoncus
tortor, ut dapibus leo lorem ut.

I. INTRODUCTION

Detecting and tracking vehicles in full surround the ego-
vehicle are a natural next step given the improved seen
in monocular perspectives. This allows for the study of
on-road behaviors [1], identifying behaviors [2], [3] and
long-term prediction [4] for both active and passive safety
applications. To this end, the research community has pushed
forward the need for publicly available datasets and common
benchmarks, as to strengthen the scientific methodology for
development and evaluation of novel research.

Vision for Intelligent Vehicles & Applications (VIVA)
[9] is a vision-based challenge set up to serve two major
purposes. The first is to provide the research community with
naturalistic driving data from looking-inside and looking-
outside the vehicle, and thus to present the issues and
challenges from real-world driving scenarios. The second
purpose is to challenge the research community to high-
light problems and deficiencies in current state-of-the-art
approaches and simultaneously progress the development
of future algorithms. Current challenges in VIVA include
hands [10], faces [11], traffic signs [12], [13], traffic lights
[14] and nighttime vehicles [15]. In this paper we introduce
multi-perspective vehicle detection and tracking as a new

1Laboratory for Intelligent and Safe Automobiles, University of Califor-
nia, San Diego, USA

2Visual Analysis of People Laboratory, Aalborg University, Denmark

Fig. 1. Vehicle instrumented with four cameras (top), ground truth
bounding boxes in the four perspectives (middle), and 3D ground truth
trajectories (bottom).

part of the VIVA challenge, moving towards understanding
trajectory based behaviors surrounding the ego-vehicle.

Mention Active Sensors??
Delete trajectory column from table, or rename
The related datasets are summarized in Table I. Several

benchmarks have emerged for vision-based vehicle detec-
tion. The Pascal VOC Challenge ref?? is used to detect
cars at various viewpoints in static images among 20 other
object classes. The TME dataset [5] is continuous in a front
faced perspective on Italian highways. Annotations are done
automatically from lidar data. The PKU POSS dataset [6]
used the omni-directional Ladybug3 to obtain full surround
images which is divided into four images of equal size for
vehicle detection at different viewpoints. Most notably, is
the KITTI Vision Benchmark Suite [8] which comprises a
large collection of on-road data, also from a single front
faced perspective. KITTI furthermore annotated IDs which
allows Tracking. Various work is found in both detecting and
tracking of vehicles in traffic scenes seen from a surveillance
perspective, as for the DETRAC [7] dataset. Trajectory



TABLE I

Dataset Sensors Detection
Tracking
Trajectory

Moving
Platform

Full
Surround

Environment

TME [5] Two 1024× 768 front faced color
cameras at 20 Hz, IBEO 4 layer
laser scanner

3/7/7 3 7 Northern Italian
Highways

PKU POSS [6] Ladybug3 1 Hz 3/7/7 3 3 Chinese
Highways

DETRAC [7] 3/3/7 7
NGSIM?? 3/3/3 7 U.S. Highway??
KITTI [8] lidar, front faced stereo camera

1392× 512 at 10 Hz, GPS
3/3/7 3 7 Germany, mid-

size city, rural,
highway

LISA Trajectory Four GoPro with capturing 2704×
1440 at 12/24 Hz

3/3/3 3 3 U.S. Highways

databases as [16] estimated using both real and simulated
data with the focus of clustering similar trajectories.

This vision based dataset consists of on-road full surround
in high resolution at 12 FPS, suitable for both detection,
tracking, and estimating trajectories around the ego-vehicle
introduced as Multi-Perspective 3D Tracking. Contribu-
tions: 1) Full Surround 2) U.S. Highways, High resolution
images at 12 FPS 3) Few fully annotated sequences 4)
Propose metrics for full surround

II. DATASET AND CHALLENGES

A. Data Acquisition

The database is collected on U.S. Highways in southern
California over 2.5 hours of driving. The drives are divided
into sequences consisting of challenging behaviors found
around the ego-vehicle including e.g. overtaking, cut-ins, and
cut-outs. The data capturing vehicle is equipped with four
GoPro HERO3+ achieving a full surround view with limited
overlap as seen from Figure 1. Each camera is recording
at a resolution of 2704× 1440 at 12 Hz, and post-processed
offline to synchronize and correct distortion. All four cameras
are calibrated to a common road plane using homographies
estimated from recordings at a parking lot, where the relative
world positions of points used for the estimation are known.

Challenges??
CAN bus??

B. Ground Truth Annotation

The ground truth is obtained for each of the four perspec-
tives by manually annotating bounding boxes in the format
as seen in (2), where (x1, y1) denotes the top-left corner, and
(x2, y2) denotes the lower-right corner.

[frame, id, occlusion, truncation, x1, y1, x2, y2] (1)

Each vehicle is assigned an identification number, id, to
evaluate tracking. Note the id is consistent between perspec-
tives giving the option of multi-perspective tracking. The
occlusion and truncation tags are both divided into three
levels being No, Partial, and Heavy. Here, No equals 0%,
Partial includes vehicles up 50%, while Heavy covers 50%+
for both occlusion and truncation. Three levels are chosen

to simplify the annotation workload, while maintaining a
certain division for analysis purposes. Annotation examples
are shown in Fig. 2.

The bounding box annotations allow for evaluation of both
detection and tracking. In order to evaluate 3D tracking,
we use the homographies to transform each ground truth
trajectory to the road plane. The middle of the bottom of the
bounding box, (x1 + 0.5(x2 − x1), y2), is used as vehicle
position. The road plane annotations have four entries:

[frame, id, x, y] (2)

Examples of ground truth trajectories in the road plane are
shown in Fig. 3. Note that the annotations rely on the
homography.

C. Evaluation Metrics

Explain how we handle multiple views?? Well-
established metrics exist for both detection and single-
perspective tracking. In detection the average precision (AP)
is commonly used, calculated as the area under the precision-
recall curve. For a ground truth bounding box to be matched
with a detected bounding box, an overlap defined as the
intersection over union is required to be at least 0.7 in this
work.

The single-perspective multiple-object tracking is evalu-
ated using the CLEAR MOT metrics (MOTA, MOTP) [17],
together with metrics including fragmentations (Frag) and ID
switches (IDS) [18], mostly tracked (MT), and mostly lost
(ML) [19]. A ground-truth trajectory is counted as mostly
tracked if it is associated more than 80% of the time by
definition. Likewise is a ground-truth trajectory accounted
as a ML if associated in less than 20% of the time. A
fragmentation is added every time a ground-truth trajectory
is split. An ID switch is added if a ground-truth trajectory
is matched with another ID than the one that is currently
associated.

The field of multi-perspective 3D tracking is less ex-
plored without any common metrics. The problem, however,
is not so different from tracking in single perspectives.
For this reason, we propose to use similar metrics in the
road plane. Instead of association between ground truth
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Fig. 2. Sample images from one of the sequences in the dataset with overlaid ground truth annotations at six different time instances. The bounding
boxes are color coded by id and labled with PO, HO, PT, and HT denoting partial occlusion, heavy occlusion, partial truncation and heavy truncation,
respectively.

40 20 0 20 40
X Distance [m]

8.0

4.8

1.6

1.6

4.8

8.0

Y
 D

is
ta

n
ce

 [
m

]

Fig. 3. Ground truth trajectories in the ground plane. The trajectories are
marked with a start position X and an end position O to indicate relative
velocity to the ego-vehicle.

bounding boxes and tracked bounding boxes, this will require
association between points in the road plane. To this end,
we use a weighted euclidean distance from ground truth
trajectory points. This does however mean that the cost of
matching a candidate to ground truth is not normalized (as
the bounding box overlap definition), and thus MOTP is not
well-defined ([20] suggests to normalize the distance with the
matching threshold). The original definition of MOTP says
that it is the average dissimilarity between all true positives
and their corresponding ground truth targets. With bounding
box overlap a score as close to 1.0 is ideal. Using euclidean
distance changes the ideal score to be as close to zero as
possible, as it is now defined as the average distance between
true positives and their corresponding ground truth targets.
To reduce the confusion, we refer to this score as multiple
object tracking euclidean precision (MOTEP):

MOTEP =

∑
t,i dt,i∑
t ct

(3)

Where ct denotes the number of matches in frame t, and
dt,i is the weighted euclidean distance between target i in
frame t and the corresponding ground truth target. Another
important aspect is the choice of matching threshold, which
is traditionally chosen as either 0.5 or 0.7 bounding box
overlap. A direct transfer to the road plane domain would be
a static distance allowed from each ground truth trajectory
point. However, as a nature of inverse perspective mapping
small variations close to the ego-vehicle will not be as severe
as small variations further away. We propose to make the
matching criterion a function of the x-distance from the ego-
vehicle. A target is matched to a ground truth target if it
fulfills:

dt,i < a|x|+ b (4)

where |x| is the absolute x-coordinate of the ground truth
target, a is the gradual increase in allowed distance, and b is
the allowed distance at |x| = 0. Specifically, we use a = 0.04
and b = 2. It should however be noted that variations in the
y-direction is more likely to cause erroneous matches. For
this reason, we define the weighted euclidean distance as:

dt,i =

√
(gtx − trx)

2
+ 4 (gty − try)

2 (5)

where gt = [gtx gty]
T is the 2D ground truth position and

tr = [trx try]
T is the position of the target. Thus, distances

in the y-direction have a double weight.
The metrics suggested above do however not encapsulate

the importance of ID switches that happen between per-
spectives. For this reason, we intend to include trajectory
similarity measures in the future, which could e.g. be longest
common subsequence (LCSS).
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Fig. 4.

III. EXPERIMENTAL EVALUATION

In this section we evaluate methods for each of the
tasks; detection, tracking, and 3D tracking. Vehicle detection
is performed for each of the four inputs of the cameras.
The detections in each perspective are used by a vehicle
tracker to associate detections between frames for each of
the four perspectives. The positions of the tracked vehicles
are transformed to the road surface, where the trajectories
are connected between perspectives. A detailed description
of the implementation has been submitted for a journal and

is currently under review.

In this baseline a bounding box overlap criterion of 0.7 is
used for both detection and tracking. A partial truncation
level is used to evaluate up to 50% truncated vehicles.
Heavily truncated vehicles are ignored i.e. not included even
if it is correctly detected or not. Also, vehicles with a height
less than 35 pixels are ignored, since these are far away
from the ego vehicle (approximately 50 meters) and therefore
not of interest. Lastly, an ignore region is defined to ignore
oncoming traffic on the other side of the crash barrier.
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Fig. 5. Precision-Recall curve of DPM and SubCat detections with the
average precision denoted in the label. Note the lower precisions in the side
perspectives. Evalutated with a minimum bounding box overlap 0.7 and up
to 50% occlusion and 50% truncation level.Remake with new SubCat,
and remake label.

Both the DPM [21], [22], [23] and the SubCat [24] are
tested on the proposed dataset for detection of vehicles in
the four different perspectives. The detectors are evaluated
using the average precision calculated as the area under
the precision-recall curve found in Fig. 5. SubCat is found
to outperform the DPM, especially in the front and rear
perspectives, with mixed results for the side perspectives.
This shows that the side views introduce new challenges
compared to the traditional front and rear perspective. DPM
employs parts, which implies more robustness to distortion
in appearance due to side views. SubCat learns many models,
so on normal settings it operates better on rigid or quasi-rigid
objects like vehicles. DPM is found to run at 60 seconds per
frame on full resolution images of 2704×1440, even though
speed up can be achieved [25]. Compared to SubCat running
at 1 second per frame being significantly closer to real-time.

The detections are used by a modified version of the
MDP tracker presented in [26] to track the vehicles between
frames. The tracking evaluation is presented in Table II.

Multi-Perspective 3D Tracking
SubCat + Modified MDP + 3D tracking

Table with MOTA and MOTP similar to the individual
perspectives

MOT metrics with y distance has double cost (1m=2m).
Matching using c<ax+b (a=0.04,b=2,x is gt distance from
ego). MOTP does not have the same meaning anymore, since
cost is not normalized. It is rather the average distance from
TP to GT. So lower is better.

IV. CONCLUDING REMARKS
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