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Summary

This thesis focuses on the design and implementation of a context-aware system for controlling a
smart home system using gesture recognition performed on a smartwatch.

The system is designed to utilize contextual information about the user and the environment
he resides in to determine which smart devices he wishes to interact with and what change of state
he wish to apply to the smart devices. To limit the scope of the project the system only utilizes the
following two sources of contextual information.
• The gesture the user has performed.
• The room the user is situated in.
The hardware requirements of the system is a smartwatch that supports Bluetooth Low Energy

and contains an accelerometer, a computer to act as a hub for communication between the wearable
and smart devices and one Estimote beacon per room in the smart home. The prototype was
implemented using a second generation Moto 360 smartwatch and a Raspberry Pi 3 running the
hub software.

The hub is intended to facilitate communication between the smartwatch and all the control-
lable devices and is responsible for triggering actions on these devices, such as turning on a lamp,
when a user performs a gesture and an action has been determined.

In order to recognize gestures performed by the user, we developed an algorithm that combines
the 1¢ [32] and the $3 [40] gesture recognizer algorithms. The algorithm takes accelerometer
measurements recorded on the Moto 360 smartwatch as input.

The second source of contextual information in this project is the position of the user which is
obtained using Estimote Bluetooth Low Energy beacons. One or more beacons are placed in each
room in the smart home. The beacons send out Bluetooth Low Energy signals that are picked up
by the smartwatch and based on the RSSI value, the smartwatch determines which beacon is the
closest and thus which room the user is in.

Users of the system can create configurations where combinations of a gesture, a room, a
device and a supported action are selected. The selected action is triggered when the user performs
the specified gesture in the selected room.

In order to utilize the gesture and room information to determine an appropriate action to
trigger, we developed a context engine based on a Bayesian network. Given probabilities of the
configured gestures and rooms, the Bayesian network computes beliefs of the configured actions.
When the belief of an action is sufficiently strong, the action is triggered, thus changing the state
of one or more smart devices in the home. If a single action cannot be determined, the user is
presented with a list of probable actions.

To evaluate how well the system performed when used by users, a user test was carried out
where seven people participated. The participants were asked to train four unique gestures ten
times each, resulting in a total of 40 gesture templates. The gesture shapes were predetermined
by us and the participants were instructed how to perform them but were given no opportunity to
practice them. They were then asked to perform these gestures in different rooms simulated by
turning the different beacons on and off.

Based on the user test we found that the correct action was triggered 44% of the time. A flaw
was discovered in our Bayesian network after the test which led us to consider ways of improving
it. The suggested improvements were tested using data from a single participant collected during
the user test and the most promising suggestions were influence diagrams and introducing the
state of the smart devices in the system as a contextual information to better eliminate false actions
such as turning off a device that is already turned off.
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CHAPTER 1
Introduction

In this report we wish to investigate the option of controlling a smart home using motion gestures
recognized using a smartwatch. In this chapter we will define the problem investigated in the
report. We also define the target group and present an example of a scenario in which the target
group can use the system envisioned in this report.

1.1 Initial Problem

In a previous report we documented the work on a system that integrated wearables into a home
automation environment in order to provide an interface for controlling devices that are connected
to the Internet [30].

In the previous report [30, pp. 69-73] we found that motion gestures can be used to control
a home automation environment. We found the system to have an accuracy of 4.29%, i.e. the
correct action was performed 4.29% of the time. The poor accuracy was due to the use of fine
grained position information used when determining which device in the smart home to control.

The position of the user was utilized when determining which device the user points at and
thus which device should be controlled. The future work of the report [30, pp. 71-73] suggests
using contextual information to determine which device should be controlled rather than the
granular positioning. By doing this it is no longer possible for the user to point at a device in order
to control it but we may be able to improve the accuracy of the solution and given the correct
contextual information we can narrow the set of devices the user desires to control sufficiently to
provide an attractive solution for controlling a smart home.

This report is based on the work done in our previous report.
In the previous report [30, pp. 1-4] we presented Figures 1.1 and 1.2 that show an increasing

trend in wearables and smart homes. Common for wearables and smart homes are that they
are both involved in the concept of Internet of Things. As both wearables and smart homes are
predicted to be an increasing trend [58, 35], it is interesting to combine the two in order to make
a system that provides an interface for controlling a smart home using a wearable device.

The definition of a smart home system is that the system uses a smartphone application or
a web portal as a user interface [35]. Therefore the numbers presented in Figure 1.2 does not
include homes controlled solely by switches, timers, sensors and remote controls.

In order for a web portal or a smartphone application to provide meaningful functionality in a
smart home system, the software should provide some mechanism for controlling or monitoring
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Figure 1.1: Wearables trend based on sales and statistics. Data from [58].
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Figure 1.2: Smart homes trend based on sales and statistics. Data from [35].

devices in the home. In order to do this, the devices are accessible using some technology for
exchanging data, e.g. WiFi or Bluetooth. These devices are involved in the concept of Internet of
Things.

While not directly related to the concept of a smart home, a wearable device can play a role in
a smart home. The wearable device can provide the application used for interacting with devices
in the smart home.

Note that the definition of a smart home system as presented in [35] does not include to
which degree the smartphone application or web portal is involved in the system. A simple system
including a smartphone application with a single button for turning a light on and off is a smart

2



1.2. Scenario

home system.
We accept the definition of a smart home presented in [35] and formulate it as shown in

Definition 1.1 as it is sufficient for our use in that we are interested in replacing the smartphone
application with an application running on wearable device.

Definition 1.1 A smart home, is a home that can be controlled using a smartphone application
or a web portal as a user interface.

1.2 Scenario

This section describes a scenario in which the envisioned system may be used and outlines the
target group of the system.

In [30, p. 15] we defined the target group as people who live in a smart home and are
interested in controlling the state of their home, e.g. lights, music centres, doors and windows in a
convenient way. The target group currently consist of early adopters of smart home technologies
but based on the trend in Internet of Things, abbreviated IoT, our assumption is that the technology
will be widespread within 5-10 years.

In this report we extend the definition of the target group presented in [30, p. 15] to include
a definition of the surroundings. As shown in Table A.1 the most common size of housings in
Denmark is 75-99 square meters. Therefore we assume that the solution presented in this report
is installed in a typical Danish apartment with a size of 90 square meters and with 3-4 rooms.

We make the following assumptions about the system and the environment in which the
scenario takes place:
• All controllable devices are connected through a central hub.
• The system is installed in a private home where the different rooms can be defined.
• The state of the controllable devices is always available.
We assume each room has two or three controllable lamps. The living room may have a

television and a music centre while the kitchen may have a controllable coffee machine. We
estimate that there are 2-5 controllable devices per room leaving us with a maximum of 20
controllable devices in an apartment.

We consider the system to be installed in the apartment shown in Figure 1.3. The rooms in
the apartment are listed in Table 1.1 along with the controllable devices that seem realistic to be
located in each room.

Table 1.1: Rooms in the apartment with possible devices in each room.

Region Controllable devices
Hallway Two lamps and a door lock.
Living room Three lamps, a television, a music centre, a thermostat and a weather station.
Kitchen Two lamps, a coffee maker and a music centre.
Bedroom Two lamps and a television.
Home office Two lamps and a music centre.
Bathroom A lamp.
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1. INTRODUCTION

Figure 1.3: Example apartment we envision the system to be installed in.

For each room there are a number of gestures that are valid in that room and when performing
a gesture, an action is sent to the hub and the action affects a device. Table 1.3 shows the devices
and actions associated with the gestures in each room. For example, when the user performs a
circle gesture in the hallway, he locks or unlocks the door lock.

We consider the following example of a day in a users life realistic to take place in the apartment
illustrated in Figure 1.3 and table 1.1 with the gestures outlined in Table 1.2.

The following example briefly shows how the user can move around his apartment and use
the same eight gestures to control different devices located in different rooms.

Example:
At the beginning of the day, the user wakes up in his bedroom. He makes a Z gesture to turn on
Lamp 8 in the bedroom and gets out of bed. He goes to the bathroom to take a shower and
turns on Lamp 12 by performing gesture Z as he enters. When he is done, he performs gesture
Z to turn off the Lamp 12.

The user goes into the living room, and increases the temperature by performing gesture
L, turns on Lamp 4 and Lamp 5 by performing gestures V and Triangle. Before he goes to the
kitchen, he starts the music in the living room by performing the Circle gesture. In the kitchen
he starts brewing coffee by performing the W gesture and gets some breakfast.

When the user is done eating breakfast, he goes to the living room and turns off the music
by performing the Circle gesture. The user goes to the home office, starts the music in the office
by performing the Circle gesture and turns on Lamp 10 and Lamp 11 by performing gestures Z
and V.

When done working, he goes grocery shopping. As he leaves the home office, he performs
gestures Z and V to turn off Lamp 10 and Lamp 11. He goes to the hallway and performs the
Circle gesture to unlock the door. The user locks the door by performing a Circle gesture.

When the user comes home, he unlocks the door by performing a Circle gesture and unpacks
his groceries in the kitchen and turns on Lamp 7 by performing a V gesture. When he is done
unpacking the groceries, he turns off Lamp 7 again by performing the V gesture.

Earlier that day, the user had turned on Lamp 4 and Lamp 5 in the living room. He goes to
the living room and turns off Lamp 4 and Lamp 5 by performing the V and Triangle gestures.

4



1.2. Scenario

Table 1.2: Gestures a user may perform in the apartment shown in Figure 1.3

Gesture name Illustration

Z

V

Circle

Triangle

L

W

Horizontal Line

Half Circle

He continues to the bedroom to watch television. The television is turned on by performing
the Circle gesture. After watching television, the user turns off the TV by performing the Circle
gesture and Lamp 8 by performing the Z gesture.

1.2.1 Handling Uncertainties

Not all scenarios will work out as well as the one previously presented. Sometimes a meaningful
action cannot be determined from the context of the user. Assume that a person is in his living
room and he performs a gesture that is recognized as “Turn on TV”, but the only TV in the house
is already turned on. In this case the action could be considered void, but we propose a different
solution. Instead of ignoring the persons request, a list of alternate actions could be presented to
him on his smartwatch. Which actions would be presented however, could be the inverse of the
one performed (if applicable) which in this case would be to turn the TV off. It could also be a list
of the actions most frequently performed by the user.

If the gesture performed is not recognized, this could be considered void and the person would
be asked to try again. Alternatively, the intended target could be assumed to be the device that
the person most recently interacted with, and a list of the most frequently used actions could be
presented on the persons smartwatch.

1.2.2 Controlling Devices in Other Rooms

Assume that a person is in his home office listening to music but then remembers that he forgot to
turn off the music in the living room. He wishes to turn off the music in the living room but not

5
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Table 1.3: Gestures that perform actions on controllable devices in each room of the apartment shown
in Figure 1.3.

Region Affected device Gesture
Hallway Lamp 1 Z turns on and off.
Hallway Lamp 2 V turns on and off.
Hallway Door lock Circle locks and unlocks.
Living room Lamp 3 Z turns on and off.
Living room Lamp 4 V turns on and off.
Living room Lamp 5 Triangle turns on and off.
Living room Thermostat L increases the temperature.
Living room Thermostat W decreases the temperature.
Living room Music centre Horizontal Line skips to next track.
Living room Music centre Half Circle skips to previous track.
Living room Music centre Circle plays and pauses.
Kitchen Lamp 6 Z turns on and off.
Kitchen Lamp 7 V turns on and off.
Kitchen Coffee maker W starts brewing.
Kitchen Music centre Horizontal Line skips to next track.
Kitchen Music centre Half Circle skips to previous track.
Kitchen Music centre Circle plays and pauses.
Bedroom Lamp 8 Z turns on and off.
Bedroom Lamp 9 V turns on and off.
Bedroom Television Circle turns on and off the television.
Bedroom Television L increases the volume.
Bedroom Television W decreases the volume.
Bedroom Television Horizontal Line changes to next channel.
Bedroom Television Half Circle changes to previous channel.
Home office Lamp 10 Z turns on and off.
Home office Lamp 11 V turns on and off.
Home office Music centre Horizontal Line skips to next track.
Home office Music centre Half circle skips to previous track.
Home office Music centre Circle plays and pauses.
Bathroom Lamp 12 Z turns on and off.

6



1.3. Controlling a Smart Home

on the speakers located in the home office. If the user performs the Circle gesture to pause the
music, he would pause it in the home office. To circumvent this, the smartwatch application could
allow the user to select which room he would like to control devices in.

1.3 Controlling a Smart Home

Controlling a smart home is a matter of changing the state of smart devices in the home. For
example, opening or closing a window, locking or unlocking the door or changing the temperature
on the thermostat. There are a variety of ways to control a smart home including, but not limited
to, the following.
• Using a smartphone application.
• Using a physical remote control such as the Logitech Harmony Remote1.
• Using rules that are automatically triggered when specific events occur, e.g. the time of the

day changes.
An alternative way of controlling a smart home is using motion gestures using a wearable worn

by the user. A survey of 37 people found that 76% consider gestures a natural way of controlling
devices, 8% found it unnatural and the remaining 16% left the question unanswered [37].

1.3.1 Required Amount of Gestures

The amount of gestures a person is able to recall is limited and the smaller a set of gestures is,
the easier it is for a person to remember. This is supported by [37] wherein a user study reported
that users would like to be able to use the same gesture for multiple devices and use a small set
of gestures. The ideal size of a gesture set is unknown, in part because people have differing
recollection capabilities. Miller [43] theorized that an adult can store 7±2 objects in their working
memory. Reuse of gestures across multiple devices results in fewer gestures to remember, but
imposes the challenge of making sure that only the user’s intended target device reacts to a gesture.

The scenario presented in Section 1.2 has a total of 30 actions that can be triggered. If we
assume there is only one music centre in the apartment that can be controlled from multiple rooms,
we can reduce the amount of actions to 24.

If we make a system in which one gesture maps to a single action, a minimum of 24 gestures
would be required to control the smart home shown in Figure 1.3. Previous studies suggests that
a user cannot remember 24 gestures and more so, cannot remember which action each of the
gestures trigger [37, 43].

By taking the location of the user into account, we can reduce the number of gestures a user
must remember in order to control the smart home.

From the scenario presented in Section 1.2 it is apparent, that in a gesture controlled system
in which the performance of a gesture triggers different actions depending on the room a user is
in, the maximum amount of gestures a user must remember equals the number of actions that can
be triggered in the room with the most actions.

In the scenario in Section 1.2, the living room has a total of eight different actions, making
it the room with most actions. Therefore a total of eight different gestures are required in the
system.

1More information about the Logitech Harmony Remote is available at http://www.logitech.com/
harmony-remotes
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1. INTRODUCTION

1.4 Problem Statement

It is our hypothesis that we can utilize contextual information to determine which device a user
intends to control in a smart home environment. Our problem statement is as follows.

How can we design and implement a system that utilizes contextual information for controlling
a smart home using a wearable in a gesture driven solution?

1.5 Related Work

Various ways of interacting with the systems in a smart home are presented in [11, pp. 9-10]
including speech, facial expressions and gestures. Gestures have been found to be an easy way of
interacting with systems [51, p. 6] and is utilized in the solution presented in this report. In [57,
pp. 2-3] motion gestures are described to be more convenient than regular remotes, since they
do not require the user to be carrying a remote with them or in the case of wall mounted panels,
walk up to the remote. Furthermore [57] describes how speech commands may drown in the
noise if users are controlling a media center and that interaction using speech is inconvenient in
multi-user configurations.

In [30, pp. 9-11]we described Reemo as related work. Reemo is a solution in which users point
at devices and control them using pre-programmed motion gestures [52]. While the company has
not released any details about their technology, we can see from their website that the solution is
limited to devices within line of sight as a receiver must be placed next to each controllable device.

Figure 1.4 illustrates how a user of Reemo points at a smart device and then performs a gesture
to send a command, i.e. trigger an action.

Figure 1.4: Using the Reemo wearable to control a smart device. Image from [30].

In [9] a solution for recognizing context-aware motion gestures using multiple Kinects is
presented. Users control devices by pointing at them and depending on the current state of the
device and the position of the user, different actions are triggered. The authors use two Kinects to

8



1.6. Requirements Specification

position the user and recognize motion gestures in a living room, requiring a total of 6-8 Kinects
in an apartment consisting of 3-4 rooms. The high number of Kinects results in a high price for
installing the system. Furthermore there may be privacy concerns when using Kinects, as the
cameras can be utilized for malicious activity.

In contrast to the previous solutions, the solution presented in this report differs in the way,
that controllable devices are not required to be within line of sight. Users are able to control all
devices within the system from anywhere in their house.

The solution will utilize beacons for positioning users as opposed to Kinects as utilized in [9].
This lowers the entry barrier by decreasing the initial cost as well as the cost for scaling the system
to more rooms.

By utilizing an accelerometer, a common component in wearables [30, pp. 3-4], the user may
not need to buy hardware specifically for recognizing gestures.

1.6 Requirements Specification

This section presents the requirements for the solution. The requirements are divided into the
following three groupings.
Functional requirements These represent the functionality the solution should implement.
Performance requirements These requirements describe how well the solution should perform

in given conditions.
Overall requirements These are requirements that the system as a whole should fulfill and that

does not fit within any of the two other groupings.

1.6.1 Functional Requirements

Train and recognize gestures Users should be able to train a motion gesture and the system
should be able to recognize the gesture when the user performs this gesture.

Trigger actions on controllable devices using gestures Users should be able to trigger an ac-
tion on a controllable device by performing a gesture using a wearable.

Context-aware The system should be context-aware such that different actions may be triggered
from the same gesture depending on contextual information. For example, a circular gesture
may turn on the TV when the user is in the living room but turn on the lights when the user
is in the kitchen.

Associate a gesture with actions The user should be able to associate a gesture with one or
more actions that a controllable device can perform. A gesture can only be associated with
multiple actions, if the controllable devices to which the action belongs reside in different
rooms. Actions change the state of one or more smart devices in a smart home when
triggered.

Virtual positioning of users A user should be able to virtually position himself in his home using
the wearable. This allows the user to perform gestures in one room, while being in another.

1.6.2 Performance Requirements

Limit the amount of gestures by letting devices share gestures As described in Section 1.3,
users should be able to use the same gestures for multiple devices and thus reduce the
overall amount of gestures they need to recall.

9



1. INTRODUCTION

Handle 15-20 controllable devices As described in Section 1.2 we assume the system is deployed
in an apartment with 3-4 rooms with 2-5 devices in each room. Therefore the system should
be able to handle a minimum of 15-20 controllable devices.

Trigger Correct Action The correct action should be triggered at least 80% of the time. An action
is considered correct if it is the one that the user intended.

1.6.3 Overall Requirements

Use inexpensive hardware and software As described in Section 1.2 the target group are people
living in a smart home, typically in an apartment with a size of 90 square meters. Therefore
we are not interested in expensive solutions when looking at hardware or software.

Not limited to smart devices in line of sight Reemo [52] limits the user to control devices that
are in line of sight. We do not want to have this limitation in our solution, as it limits the
smart devices that can be controlled.

10



CHAPTER 2
Analysis

2.1 Hardware Components

The following section summarizes the hardware components needed in order to design and
implement the scenarios presented in Section 1.2.

We envision two different configurations for locating the user in the system. Both configurations
assume that Bluetooth technology is utilized to determine the position of the user as described in
Section 2.6.

1. One configuration in which the wearable continuously scans for Bluetooth beacons. The
wearable determines the position of the user based on data advertised by the bacons.

2. Another configuration in which Bluetooth enabled microcontrollers scan for wearables and
upload the Received Signal Strength Indication (RSSI) to a central location in which the
position of the user is determined based on the set of available RSSIs.

The idea of the second configuration is to design the system in such a way that it works on
wearables that do not provide access to the Bluetooth APIs. A microcontroller should do one of
the following.

• It should either continuously scan for wearables and read their RSSI.
• Given the MAC address of the wearable, it should obtain the RSSI.

The second configuration was abandoned due to restrictions posed by the Bluetooth Low
Energy (BLE) specification. The specification poses the following limitations that prevent such a
system from working properly.

• A BLE peripheral, e.g. a wearable, can only be paired with a single other device.
• A peripheral must advertise in order to be discovered by a central. Advertising requires a

piece of software to be running on the peripheral and thus access to the Bluetooth API.
• A central can obtain an RSSI based on the MAC address of a peripheral. However, the

Bluetooth specification allows a peripheral to change its MAC address in order to prevent
tracking of the user [5, p. 91]. The change of MAC address could be disabled for this
approach, if this is possible on the wearable. However, since this is a security feature
introduced in the Bluetooth specification, this seems undesirable for our purposes.

The rest of the report will focus on the first configuration of the system.
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2. ANALYSIS

2.1.1 Required Hardware

The following list presents the hardware needed for the system.
• A computer running the hub. The hub is responsible for forwarding commands from the

user to the controllable devices, e.g. lamps. The benefit of running the hub on a central
computer rather than the smartwatch, is that the hub could potentially be configured with
rules for automation and should therefore always be running, compromising the battery life
of a wearable. Furthermore placing the logic in a central place can prove beneficial in an
environment with multiple users in which multiple hubs would have to be synchronized.

• A wearable which provides access to APIs for both Bluetooth and the accelerometer. Further-
more it should be possible to give some sort of feedback to the user when a gesture could
not be recognized. The wearable should also be able to communicate with hub.

• Minimum one Bluetooth beacon per room. Two beacons are needed in order to test the
system in more than one room. The Bluetooth beacons are used to determine which room
the user is in.

• Minimum two controllable devices, one per room in the system. These devices receive
requests from the hub that ask them to change their state.

The above lists the bare minimum of hardware required in order to implement the system.
Sections 2.3, 2.5 and 2.6 elaborates on the choice of hardware components.

2.1.2 Accelerometer

One of the required components the wearable should contain according to Section 2.1.1 is an
accelerometer.

Accelerometers are used for measuring the acceleration of an object. In our case we use it to
measure the acceleration of the wearable installed on a users wrist and as a result of this, the
users arm movements. When measuring the users movements, we can recognize the gestures he
performs.

When an object is subjected to a force, including gravity, it accelerates. Acceleration can be
expressed as change in velocity over time as in Equation (2.1) where ~a is the acceleration, ∆v is
the change in velocity and ∆t is the duration. Velocity is measured as meters per second and time
is measured in seconds, hence the acceleration is measured as meters per second per second or
m
s2 . Acceleration can also be expressed in terms of force applied to the object as in Equation (2.2)
where a is the acceleration of the object, F is the forces applied to the object expressed as a vector
with a force for each axis and m is the mass expressed as a scalar value. The forces are measured
in Newton and mass is measured in kg.

~a =
∆v
∆t

(2.1) a =
F
m

(2.2)

The accelerometer determines the force applied to the object [17, pp. 392-393] so in order to
calculate the acceleration, the mass of the object must be known.

Accelerometers of varying design exist [17, pp. 392-411]. An example of these is the capacitive
type semiconductor accelerometer which is illustrated in Figure 2.1. The accelerometer has an
electrode in the middle (14) which is supported by a beam (13). The beam is flexible enough
to move slightly up and down when the accelerometer is moved, thus moving the electrode up
and down. The beam is mounted to the side of the accelerometer (2). The gap between the
electrode (14) and the two stationary electrodes (25, 26) constitute two electric capacitors having
capacitances of C1 and C2. When the movable electrode in the middle (14) moves up and down,
the capacitances C1 and C2 changes slightly [39].
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2.1. Hardware Components

Figure 2.1: Capacitive type semiconductor accelerometer. Illustration from [39].

The changes are registered and constitutes the acceleration. This allows for measuring the
acceleration on one axis. The same principle can be used to measure the acceleration on several
axes.

In this project we utilize the accelerometer for recognizing gestures but other common appli-
cations of the accelerometer include pedometers, game controllers and fall detection.

2.1.3 Bluetooth

We use Bluetooth Low Energy (BLE) in order to position the user wearing the smartwatch. Blue-
tooth is a standard for short-range and low-power wireless communication between devices
and is commonly found in a broad range of devices including desktop computers, phones and
speakers [29].

Bluetooth has a maximum range of 100 meters but is typically used for much shorter dis-
tances [29, p. 20]. Accomplishing the maximum range is difficult as walls, furniture and people
can dampen the strength of the signals [15].

Figure 2.2 shows the high-level layered architecture of Bluetooth. The layers are described
below.
Lower layers Perform low level operations, including discovering devices, establishing connec-

tions and exchanging data packets. The functionality is implemented on the Bluetooth
chip [29, pp. 21-22]. We will not go into details about this layer.

Upper layers Use functionality of the lower layers to perform complex functionality, including
transferring large amounts of data by splitting it into multiple packets and streaming of
data [29, p. 22].

Profiles The profiles define how the protocol layers within the upper and lower layers implement
specific use cases, e.g. proximity detection [29, p. 22].

Applications These are applications utilizing the Bluetooth stack, e.g. mechanisms for discover-
ing and connecting to Bluetooth devices, choosing music to stream and selecting files to
transfer [29, p. 22].

As part of the upper layers, is the Logical Link Control and Adaption Protocol, abbreviated
L2CAP. The protocol builds on top of protocols in the lower levels, to exchange data with a remote
Bluetooth device. L2CAP provides functionality that includes segmentation and reassembly of
packets, quality of service, streaming data and retransmission of packets. Devices communicating
using L2CAP exchange Packet Data Unit (PDU) packets, containing information about the L2CAP
protocol, e.g. the type of the PDU and a payload [29, pp. 80-83]. For example, the PDU type of a
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2. ANALYSIS

Figure 2.2: High-level architecture of Bluetooth. Illustration from [29, p. 22].

beacon can be ADV_NONCONN_IND, indicating a non-connectable undirected advertising packet.
The payload of a PDU is referred to as the Service Data Unit (SDU) which originates from a level
above the L2CAP, e.g. the Attribute Protocol [29, p. 201].

Attribute Protocol, abbreviated ATT, uses L2CAP to transfer data. Mechanisms provided by
ATT include discovering the attributes provided by a remote device and reading and writing the
attributes. An attribute represents data, for example the temperature from a thermostat, the unit
in which the temperature is provided or the name of a device. Attributes can be pushed or pulled
to and from a remote device. Attributes have a handle that identifies an attribute, a value and
access permissions. The protocol works in a client-server manner in which a server exposes a set
of attributes and a client can read and write the attributes [29].

The Bluetooth Core 4.0 Specification [6], i.e. the specification including BLE, introduces the
General Attribute Profile (GATT) architecture illustrated in Figure 2.3. The GATT framework
specifies how a device can discover, read, write and indicate its characteristics. Profiles consist of
one or more services that are needed in order to provide a specific functionality, e.g. proximity
monitoring [29, p. 259-261]. Services provide one or more characteristics that describe a feature,
e.g. the temperature of a thermostat. Services may be shared by multiple profiles.

The Bluetooth Special Interest Group, the group that maintains the Bluetooth standards,
provide a range of profiles, e.g. a proximity profile for monitoring the distance to devices and
a profile for heart rate sensors. Apple and Google have developed the iBeacon and Eddystone
profiles, respectively, for region monitoring. Eddystone GATT profile defines the Eddystone Service
that advertises frames of information. These are described in detail in Section 3.1 as well as the
Eddystone Configuration Services in which a device is connectable and the advertised values can
be configured by a client BLE-enabled device.
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2.2. Context

Figure 2.3: Relationship between profiles, services and characteristics. Illustration from [29, p. 261].

2.2 Context

In the envisioned system the context is used to determine which actions should be triggered when
the user performs a gesture. Therefore the context plays an important part in the envisioned
system.

The notion of context is researched in multiple fields, including philosophy and psychology [7].
For the purpose of this project we focus on the notion of context in context-aware software systems.
In [2], the context for a context-aware system is defined as in Definition 2.1.

Definition 2.1 “We have defined context to be any information that can be used to characterize
the situation of an entity, where an entity can be a person, place, or object. In context-aware
computing, these entities are anything relevant to the interaction between the user and application,
including the user and the application.” [2]

According to this definition, information is context if the information characterizes the situation
of a participant in an interaction [2].

Consider the following example.

Example:
A clothing store has a system installed that sends notifications to users mobile devices with
offers when they are near the clothes that the offer apply to. If a t-shirt is 20% off, and the user
is near the t-shirt, the user will receive a notification letting them know that the t-shirt is on
sale.

In the above example, context includes:
• The position of the user.
• The position of the t-shirt on sale.
• The sex of the user.
• The age of the user.
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• The percentage the price of the t-shirt is reduced with.
Information such as what other customers are in the store and the time of the day is not context

because it is not relevant to the interaction between the user and the application.

2.2.1 Context Types

In [2] the context is divided into two categories, primary and secondary. The “Location, identity,
time, and activity ” [2, p. 5] are categorized as the primary context types that “answer the questions
of who, what, when, and where” [2, p. 5]. Answering these questions help us understand why a
given situation occurs. In this project an action is triggered on a controllable device because the
user is interested in triggering it (that is the why).

Secondary context types can be derived from the primary context types. When the identity of a
user is known, additional information can be derived. In the previous example the sex and age of
the user are primary context types that can be derived from the identity of the user. The price
reduction of the t-shirt is secondary information as well as it can be derived from the identity of
the t-shirt. The position of the user and the t-shirt are both primary context types.

2.2.2 Context Features

Abowd et al. [2] defines a context-aware system as in Definition 2.2.

Definition 2.2 “A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.” [2, p. 6]

Based on this definition, [16] outlines the following three main features a context-aware
system can provide to its users.
“Presentation of information and services” [16, p. 13] Systems with this feature use context

to suggest services to the users or present them with relevant information. Yelp, a service
that presents users with nearby businesses, is an example of a system implementing this
feature.

“Automatic execution of a service” [16, p. 13] Systems with this feature automatically execute
a service based on context. Philips Hue, which can automatically change the lighting based
on the time of day, is an example of a system implementing this feature.

“Tagging of context to information for later retrieval” [16, p. 13] Systems with this feature
associate information with context. [16] uses a service that tags locations with a virtual note
for other users to see as an example of systems implementing this feature.

According to the categorization of context-aware systems by Ferreira et al. the system envisioned
in this report belongs to the category of systems implementing automatic execution of a service.
Based on context, the system automatically triggers an action on a controllable device. While
the user must perform a gesture in order to trigger the action, the system is still automatic as we
consider the gesture to be context.

2.2.3 Conclusion

We follow the definitions of context and context-aware systems proposed by Abowd et al. We also
introduce the term contextual information as defined in Definition 2.3.
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Definition 2.3 Contextual information is information that is part of the context, e.g. the position
of the user.

Examples of contextual information, include the following.
• The day of the week.
• The time of the day.
• The position of the user.
• The mood of the user.
• The sex of the user.
• The age of the user.
• Users present, e.g. users that are home.
• Sentences or words pronounced by the user.
• Motion gestures made by the user.
• The state of the controllable devices in the system.
While other context can be included in the system, for the purpose of the prototype presented

in this report, we chose to focus on the following two contextual informations.
• The position of the user.
• The gesture performed by the user.
The contextual information provides us with a way of initiating the process of determining

the correct action to trigger. When the user has performed a motion, we begin the recognition
of the context. Gestures can trigger different actions depending on the position of the user, thus
reducing the number of gestures the user needs to remember as a single gesture can be configured
to trigger different actions as illustrated in Section 1.2.

We refer to the combination of gesture, room and action as a gesture configuration as defined
in Definition 2.4. Gesture configurations are meant to be configured by a user. For example, a
user can configure a circle gesture to turn on the table lamp when he is in the living room.

Definition 2.4 A gesture configuration is the combination of a gesture, a room and an action.
When the user performs the gesture in the specified room, the selected action is triggered in the
system.

The system is context-aware as it automatically executes a service when a gesture is performed,
provided that an appropriate action to trigger can be determined.

2.3 Choice of Wearable

The wearable is primarily used for gesture recognition and positioning of the user. Furthermore
the wearable is utilised to give feedback to the user when a gesture could not be recognized and
for creation of gesture configurations. The wearable should allow for interactions, such as virtually
changing the position of the user as described in Section 1.2.

Hence we decided on the following requirements.
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• The wearable must possess a screen on which visual feedback can be presented and allow for
presenting and interacting with proposed actions, in case we are unable to determine one
specific action to be triggered. Furthermore, displaying and interacting with information is
needed when the user virtually changes his position.

• The wearable must possess an accelerometer in order to detect the users movements and
derive gestures from those.

• As described in Section 2.6, Bluetooth is used for positioning the user. Therefore the wearable
should possess Bluetooth in order to position the user.

• WiFi connection in order to send commands to the hub. The wearable should ideally be
independent of the phone and should send commands directly to the hub. WiFi is suitable
for this as it is assumed that a WiFi connection is available in the entire house of the user.
Had we used Bluetooth for communication between the wearable and the hub, it is likely
there would often be connection issues as Bluetooth signals are significantly weakened by
walls and furniture.
• We must be able to install and run our own applications on the wearable.
As we want a wearable that allows for both performing gestures, providing visual feedback to

the user and let the user interact with an application running on the wearable, we chose to focus
on smartwatches.

Performing gestures using a hand feels more natural than the feet, head or other body parts.
This makes smartwatches ideal for recognizing gestures as they are worn on the wrist. Furthermore
smartwatches are typically equipped with a touchscreen or buttons to interact with a screen or
both.

The following wearables were chosen based on their popularity, availability and a desire to
include a watch by each of the major players in the mobile market which, as of writing is Google,
Microsoft, Apple and Samsung. Furthermore we included a Pebble Classic in our analysis as we
already had access to one.
• Pebble Classic running Pebble OS.
• Second generation Moto 360 running Android Wear.
• Samsung Gear S2 running Tizen.
• Apple Watch running watchOS.
• Microsoft Band running Microsofts wearable architecture.
Table 2.1 shows a comparison of the smartwatches based on the parameters previously listed.

The table shows that the Pebble Classic and the Apple Watch do not provide access to the Bluetooth
API and thus we cannot perform positioning directly on the smartwatch. An alternative is to
accept this limitation and perform the positioning of the user on a smartphone and continously
transfer the positions to the hub. The smartwatch can then retrieve the positions when needed.
This limitation requires the user to carry the phone wherever he goes.

2.3.1 Conclusion

Table 2.1 shows that only two wearables fulfill our requirements, namely the second generation
Moto 360 by Motorola and the Gear S2 by Samsung. The other wearables provide access to the an
accelerometer but do not provide access to the Bluetooth API.

Of the two proposed wearables, we find the Moto 360 to be best suited for our project as we
already have experience with the Android platform and therefore should be able to make progress
on a prototype of the system faster.

0We found no reference to this in the official documentation and therefore assume that the feature is not available.
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Table 2.1: Comparison of wearables

Pebble Classic Second generation Moto 360

Feedback Screen with hardware buttons for
interaction.

Touchscreen.

Gesture recognition Accelerometer. [50] Accelerometer and gyroscope
available from API level 3 and 9
respectively. [44, 22, 23, 24]

Positioning No access to the Bluetooth API. Access to the Bluetooth API avail-
able from API level 1. [44, 22, 20,
21]

WiFi Unknown0. Yes.

Samsung Gear S2 Apple Watch

Feedback Touchscreen with a rotating bezel. Touchscreen with digital crown.

Gesture recognition Accelerometer and gyroscope. [53,
62]

Accelerometer.

Positioning Access to the Bluetooth API. [53,
61]

No access to the Bluetooth API.

WiFi Yes. Yes.

Microsoft Band

Feedback Touchscreen.

Gesture recognition Accelerometer and gyroscope. [41,
42]

Positioning Unknown0.

WiFi No.

2.4 Choice of Gesture Recognizer

As in our previous report [30, p. 19]we divide gesture recognition into the following two categories
based on [37]:
• Camera based.
• Motion based.
Examples of camera based approaches for gesture recognition include the use of one or more

Microsoft Kinects that record the users movements [9]. The benefit of Microsoft Kinects is, that
they can potentially record gestures performed with any part of the body. Another approach is an
infrared gesture pendant worn by the user which records their hand motions when gestures are
performed in front of their chest [57].

As stated in Section 1.5 we opt to not use camera based methods as they require a line of sight
between the user and any device he intends to interact with or optionally, a line of sight between
the user and multiple cameras installed in his smart home.

Hence we elected to use a motion based approach. As of spring 2016 a significant amount
(55%) of wrist-worn wearables contained an accelerometer [30, pp. 2-3] and as such it makes
sense to focus on motion based gesture recognition utilizing an accelerometer.

While it is natural to use hands to perform gestures, we chose to look at wearables that are
worn on the wrist rather than wearables that are worn on the hands or the fingers. As shown in
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2. ANALYSIS

Figure 2.4 only very few wearables are worn on the hands and we found it more interesting to
develop for more widely available devices. In regards to gestures, the primary difference between
recognizing a gesture with a wearable worn on the hand and on the wrist, is that the motions
must be larger, when the wearable is worn on the wrist, i.e. the user must move the entire arm in
order to produce significant accelerations on the axes of the accelerometer.
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Figure 2.4: Placements of wearables. Graph from [30, p. 2], data from [34].

In [30] we used the $3 recognizer [40] which is based on the $1 recognizer [65]. Both
are designed to be simple and easy to implement and the main difference between them is
that $1 is designed for two-dimensional gestures drawn on a screen whereas $3 is designed for
three-dimensional gestures captured using a tri-axis accelerometer.

While the $3 gesture recognizer works adequately [30, p. 55], we decided to search for an
alternative that would possibly work better on embedded and resource constrained devices.

We have the following requirements for the gesture recognizer.
• It must utilize an accelerometer to detect gesture motion data.
• It must run on Android Wear.
• It must recognize a gesture faster than 200 milliseconds.
• It must support user-defined gestures.
• Preferably it should run on the wearable independently from the smartphone.

Based on these criteria we will examine the $3 [40] and 1¢ [32] gesture recognizers.

2.4.1 $3

The $3 gesture recognizer is based on the $1 gesture recognizer but works with three-dimensional
accelerometer measurements instead of two-dimensional coordinates [40].

The $3 gesture recognizer translates measurements on a tri-axis accelerometer to coordinates by
using the first measurement as origo and adding the difference between subsequent measurements
to form a timeseries of acceleration deltas as shown in Figure 2.5.

This timeseries T is known as the gesture trace and will be rotated to find the smallest distance
to the trained gesture templates.

The gesture recognizer was used in [30] and was found to have a precision between 58% - 98%,
depending on the user utilizing the recognizer [40, p. 344]. The concrete implementation of the
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T = {p1, . . . , pX } s.t. pi = pi−1 + ai − ai−1

Figure 2.5: Gesture trace representation in $3. T is the gesture trace, ai is an accelerometer measure-
ment and X is the number of accelerations measured. This equation is not available in [40] but is
created by us to illustrate how they create gesture traces.

recognizer was also found to have memory issues where allocated memory was not deallocated [30,
p. 54].

2.4.2 1¢

The 1¢ gesture recognizer is designed as an improvement of the 1$ recognizer [65]. Improvements
are made by removing computationally expensive rotate-and-check methods and instead using
a one-dimensional representation of gestures that is rotation-invariant. This means that rather
than attempting to rotate a given gesture trace to best match the stored templates, an alternative
representation is used such that rotating the trace is not required regardless of how it was
performed.

A gesture is recorded as a timeseries of two-dimensional coordinates which is then resampled
to contain a fixed amount of equidistant points. The 1¢ recognizer uses a resample rate of 64 to
match that of $1 but state that any value between 16 and 128 will suffice [32, p. 41]. $3 resample
the gesture traces with N = 150 and state that a higher resample rate N provides higher precision
at the cost of increased computation time [40, p. 342]. Once a gesture has been resampled, the
centroid is calculated and for each point in the gesture the euclidean distance between that point
and the centroid is calculated and stored in an array as shown in Figure 2.6.

d = {di , . . . , dN} s.t. di = ||pi − c||

Figure 2.6: Gesture trace representation in 1¢. d is the gesture trace represented as distances to the
centroid, pi is a point in the trace and c is the centroid of the trace. Source: [32]

This array of distances to the centroid is the one-dimensional representation of a gesture,
called a template in [32]. The idea behind this one-dimensional representation is that it does not
matter whether the user performs a rotated version of the gesture because the distance from each
point in the trace to the centroid is the same regardless. This is illustrated in Figure 2.7 which
shows the same gesture with two different rotations. The distances D1 and D2 from two points to
the centroid C will remain the same in both cases.

When attempting to recognize an input from a user, the input is resampled and converted to
a template in the same way to enable comparison between the input and the stored templates.
Comparison between the input and a template is done by calculating the distance between the
input and each stored templated using Figure 2.8. The template with the lowest L2 distance to
the input is the best match.

2.4.3 Conclusion

Concrete implementations of $3 and 1¢ are available and both support the Android Wear platform,
although only $3 utilizes the accelerometer data in order to train and recognize gestures. While
we have previous experience with the $3 algorithm and it is sufficiently accurate, we chose to
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Figure 2.7: Star Example. Source: [32]

L2(v1, v2) = ||v1 − v2||2

Figure 2.8: Distance between two templates. Source: [32]

utilize the 1¢ as it requires fewer computations by not rotating the trace and is thus better suited
for embedded devices.

The 1¢ gesture recognizer only supports recognition in two dimensions, e.g. recognition on
a touch screen, therefore we chose to implement support for a third dimension and use it with
accelerations on the X, Y and Z axes provided by the accelerometer of an Android Wear device by
merging it with the technique used in $3.

2.5 Choice of Hub

As mentioned in Section 1.2, we intend to use a central hub for connecting devices in the smart
home setting. In [30] we presented a list of different home automation hubs and decided to use
HomePort.

For this project we decided to revisit the following hubs to determine which one we deem to
be the right one to use now.

• HomePort
• SmartThings
• OpenHAB

Common for all three solution is that they serve as adapters. Devices that fit within the concept
of IoT, e.g. smart bulbs, media centres, windows, door locks etc. communicate using different
protocols. These protocols include ZigBee, Z-Wave, HTTP and Bluetooth. The hubs expose devices
communicating using those protocols under a common interface e.g. HTTP.

The hub should fulfill the following requirements.

• We intend to keep the price of the entire solution presented in this report at a minimum,
therefore we are interested in an inexpensive hub.

• As the primary focus of the report is not on the development and research of a hub, we
intend to choose a solution which can easily be used within our system with little to no
modifications.

• The hub should be commonly accessible.
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2.5.1 HomePort

HomePort is a free open and source software solution developed as a research project at the
Institute of Computer Science at Aalborg University [8, 1]. HomePort is a software solution that
the user needs to install on a computer that will then act as the hub.

HomePort supports communication with Phidget USB devices and expose them over the HTTP
protocol. Other applications can control the Phidget devices and read their state by issuing requests
to HomePort.

When using HomePort in [30] we experienced the following issues.
• We found that the Phidget adapter was not compatible with the most recent version of

HomePort.
• We had difficulties getting an older version of HomePort with a compatible Phidget adapter

running on OS X.
• We got the older version of HomePort running on a Windows machine but found that it

would frequently crash requiring a reboot of the HomePort software.

2.5.2 SmartThings

SmartThings [33]1 is commercial home automation hub offered by Samsung. SmartThings is a
hardware device that comes preinstalled with the necessary software.

Protocols supported by SmartThings include ZigBee and Z-Wave as well as devices communi-
cating over WiFi within the local network [54]. SmartThings expose the devices over HTTP using
a REST API [55].

While exposing devices using a REST interface, Samsung also provides a concept of SmartApps,
applications installed in the cloud, i.e. on Samsungs servers. These applications react to events
within the users SmartThings environment, i.e. a new temperature reading and triggers other
events based on the new information. SmartApps can also run events periodically.

At the time of writing the retail price for the hub is $99.

2.5.3 OpenHAB

Unlike SmartThings, openHAB [47] does not come with the hardware needed to run the hub.
openHAB is based on Eclipse SmartHome2, an open source framework for building software for a
smart home. Amongst others, the framework provides mechanisms for handling data (including a
common type system) and a rule engine. openHAB and Eclipse SmartHome are both Java based
software solutions that support any platform capable of running a JVM [46].

openHAB is free and open source maintained by a community of enthusiasts. It supports a
wide range of devices, 121 as of writing [48]. Amongst these are devices communicating using
ZigBee, Z-Wave, MQTT and HTTP. openHABs concept of adapters is called “bindings” and these
can be specific to a protocol or a product. For example, the community has developed bindings
for the HTTP, Bluetooth and MQTT protocols as well as for the Philips Hue, Netatmo, and Sonos
products.

The devices connected to an openHAB environment is exposed over HTTP.

1More information about SmartThings is available at https://www.smartthings.com/products/hub
2The Eclipse SmartHome project can be found at https://www.eclipse.org/smarthome/
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2.5.4 Conclusion

While the SmartThings hub is a consumer oriented solution which is easy to install, we want to
keep the price of our solution to a minimum and thus prefer a free software solution rather than
purchase the SmartThings hub.

The choice between HomePort and openHAB came down to the following two things.
• We experienced various issues with HomePort. In a previous project [30] we found that

the Phidget adapter is incompatible with the most recent version of HomePort, that we
were unable to run previous a previous version on OS X and that the same version would
frequently crash on Windows.

• Furthermore we found that the community developing openHAB has created bindings for
hardware we already have access to and assuming these work, we will not need to create
our own adapters.

The main focus of this report is not the research or development of a smart hub and therefore
we do not intend to spend much time installing and configuring a hub. Hence we think that
openHAB is the best fit for this project and will be our choice of hub.

2.5.5 Hardware

The hardware that, together with openHAB, constitutes the hub should fulfill the following
requirements.
• Compatible with openHAB as this is our software of choice.
• Low cost in order to reduce the barrier of entry.
• Small in order for it to easily fit into any place of a home, e.g. a closet.
openHAB runs on any computer that can run a Java virtual machine (JVM) [46]. It can be

installed on desktop computers running Windows, Linux or OS X.
Typical desktop computers are not a great fit for this project as they are typically large and

take up more space than recently introduced tiny computers such as the Raspberry Pi. The tiny
computers are typically assembled from hardware components that are less powerful than the
components installed in desktop computers. Therefore tiny computers consume less power than
traditional desktop computers thus reducing the long-term cost of running the hub.

Furthermore tiny computers such as the Raspberry Pi Zero are priced as low as $5 dollars [63].
While the Pi Zero requires an adapter to be connected to the Internet, the total cost of the solution
is still less than a setup using a desktop computer. Recently Adafruit, the company behind the
Raspberry Pi, released the Raspberry Pi 3, which is the first Raspberry Pi with built-in WiFi and
BLE.

Raspberry Pi is completely compatible with openHAB and is one of the recommended computers
for running openHAB [45]. Therefore we choose to base the hub on a Raspberry Pi but the hub
should be able to run on any machine that can run a JVM.

2.6 Indoor Positioning

Indoor positioning concerns determining the position of a device placed indoors. For outdoor
positioning, the Global Positioning System, shortened GPS, can be used to determine the position
of a device. GPS can be unreliable indoor because the waves from the satellites used to position
the device are weakened and scattered by the roof and walls of a building as well as the objects
inside and outside the building.
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Instead, alternative technologies can be used to estimate the position of a device, or a user
carrying a device, while the user is indoor. As per [30] we differentiate between the following two
types of indoor positioning.
Ranging Granular positioning of the user in which we attempt to determine his precise location

in a room. Trilateration can be used to estimate the users position given a minimum of three
anchors, e.g. WiFi hotspots.

Region monitoring Coarse grained positioning of the user in which we determine which region
of a larger area the user is located in. A region is specified by one or more anchors. We
determine the user to be in the region which contains the anchor from which we receive the
strongest signal.

[30] investigates solutions based on various technologies for positioning the user indoors. The
technologies include WiFi, ultra-wideband, Bluetooth Low Energy, shortened BLE, as well as the
accelerometer. Ranging using BLE beacons was proven to have an average accuracy of 2.92m [30,
p. 63]. The accuracy is not high enough to perform ranging in a home or apartment of 90 square
meters with 3-4 rooms, where each room would be an average of 23-30 square meters. Because
we have previously seen bad results when performing granular positioning indoor, we choose to
focus on region monitoring and determining which room in an apartment the user is situated in.

WiFi, ultra-wideband and BLE are all technologies that can be used to perform region moni-
toring but we choose to use BLE beacons to position the user in the apartment because we have
experience with the technology from [30] and more specifically we have experience with beacons
from Estimote, a company producing BLE beacons, as well as the SDK for reading RSSI values
from the beacons. Refer to Section 3.1 for more information on positioning using BLE beacons.

2.7 Recommender System Methods

Given the gesture a user has performed and his location in a smart home, i.e. contextual information,
we want to determine an appropriate action to trigger thus changing the state of one or more
devices in the smart home. The following section focus on approaches for determining the
appropriate action.

It is our hypothesis that we can use concepts from the field of machine intelligence to deter-
mine the action to trigger given contextual information. Recommender systems are designed to
recommend some item to the user given information about the domain the system is operating in.
For example, the video streaming service Netflix can utilize a recommender system to recommend
movies to its users based on movies the user has previously expressed interest in, e.g. through
ratings. In the case of the system presented in this report, items are actions that change the state
of one or more smart devices in a smart home. The recommendation is based on the provided
contextual information.

This section presents selected techniques for creating a recommender system. The strengths
and weaknesses of the techniques are outlined and the technique used in this project is decided.

2.7.1 Collaborative Filtering

Collaborative filtering is a technique that uses information about multiple users to recommend
items for a given user. In a setting in which it is used to recommend movies, a source of information
could be user-submitted movie ratings. Based on information about the movies a user has rated
highly, such as genres, actors and release year, the recommender system begins acquiring the
preferences of that user. The system then find users with similar preferences and look at which
movies they have rated highly. These movies can be suggested to other users.
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Consider the example of John. Because John has given high ratings to western movies from
the 50s, the system knows that John likes those movies. The system then looks for users with a
similar taste in movies, i.e. users who have given high ratings to western movies from the 50s. If
the set of movies retrieved from the users with a similar taste in movies contains a movie John
have not watched, the movie can be suggested to John. Note that it is key that both John and the
users have given high ratings to the movies. As a consequence, if users with similar taste in movies
have given the western movies from the 50s low ratings, these are not recommended to John.

One of the issues with collaborative filtering according to [10] is that it depends heavily on
users actually providing ratings, otherwise the recommender system will have nothing to base its
recommendations on. This issue will occur every time a new item is added as users have yet to
rate it. In addition, when a new recommender system is created, the system will suffer from lack
of data and every user will be afflicted by this “Early rater problem” for all items.

2.7.2 Content-based Filtering

A different method to compensate for the “Early rater problem” is content-based filtering which
relies on the correlation between a user’s preferences and the information about items [10].
e.g. John, the user who likes western movies from the 50s, is more likely to be recommended other
western movies from the 50s regardless of how other users have rated the recommended movies.
One of the challenges of this technique is to create proper classification of items and their attributes
along with user profiles such that they can be matched. [49] classify web pages by analysing the
word frequencies, excluding common English words. To determine the preferences of the user
some form of relevancy feedback is required, either positive or negative. An example of this is
to have the user categorize the web pages he visits as either hot, luke-warm or cold [49]. It is
also possible to use implicit feedback such as the time spent on a web page [64]. However when
using implicit feedback one has to be cautious with how strong belief is put into each observation.
One could look at ignored links as being negative feedback on those pages, but perhaps the user
did not dislike the link but rather did not see it [64].

2.7.3 Decision Trees

Decision trees are a model for decision making and prediction using a graph structure where leaf
nodes represent outcome and non-leaf nodes test attributes or random variables. The branches
that leave non-leaf nodes are labeled with the value of the corresponding attribute. Decision trees
need not be balanced trees so some paths may end in a leaf node after very few nodes.

A decision tree is built on rules, e.g. (A∧ B) => C . That is, if both A and B are observed, then
C applies. Decision trees are commonly used for content-based filtering [3].

2.7.4 Bayesian Networks

Bayesian networks are a model for classification. The representation is a directed acyclic graph
where each node represents a random variable and edges between represent conditional depen-
dencies. This means that any child node is conditionally dependent on its parents. Each node or
item in the network has a probability distribution that may change when evidence is observed. A
node representing the probability for a given disease may be conditionally dependent in such a
way that observing the symptoms of a patient will change the likelihood that the patient is afflicted.
One of the advantages of Bayesian networks is that they can handle missing data well [31].

A Bayesian network is based on joint probabilities, e.g. P(G, S) is the joint probability of events
G and S. P(A|G, S) is the probability of event A given information about events G and S.
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In the system designed in this report, we are interested in finding the probabilities of events
occurring based on the observations of other events. More specifically, we want to determine an
action to trigger based on the performed gesture and the room the user is in.

As per the requirements presented in Section 1.6, we are interested in presenting the user
with actions he is likely to trigger when we are unable to determine which action he desires to
trigger. Working with probabilities is a good way to fulfill this requirement. When working with
probabilities, an action can be triggered if it is the only action with a sufficiently high probability,
P. When no action have a probability exceeding P or more actions has probabilities exceeding P,
the actions can be suggested to the user.

2.7.5 Conclusion

A multitude of different solutions have been proposed for recommender systems [3] with just a
few presented in this report. Collaborative filtering, presented in Section 2.7.1, can be a useful
approach when different users are comparable and the interests of other users may have a positive
impact on a given user.

However in this project we focus on single user needs and do not see the behaviour of other
users as applicable to a given user. Hence we deem content-based filtering to be a better fit for
this project.

Decision trees, described in Section 2.7.3, though prevalent for use in content-based rec-
ommender systems, do not handle missing data as well as Bayesian networks and thusly we
deem Bayesian networks a better suited model for the purposes of this project. Furthermore
Bayesian networks is highly based on probabilities, a desired feature in our system as we will see
in Sections 3.3.2 and 3.3.3, and is a natural way to model the contextual information.

2.8 Bayesian Network

Determining the correct action to trigger based on the contextual information is done using a
Bayesian network. In this section, we will describe key aspects of a Bayesian network.

A Bayesian network is modelled as a graph which is composed of nodes and edges between
the nodes. Each node in the network represents a variable and edges connect two nodes. If there
is a causal relationship between two nodes, the edge is directed. If there is only some correlation
between two nodes, the edge is undirected [60].

Two nodes, A and C are said to be conditionally independent if there is no edge between them.
If we introduce a variable B and directed edges from B to A and B to C, both A and C are said to
be dependent on B. B is totally independent because it does not depend on other nodes where as
A and C are said to be conditionally independent given B [60]. The network is illustrated in figure
Figure 2.9.

For each variable in the Bayesian network there is a probability distribution function which
depends on the edges leading into the variable. Probability distribution functions can be illustrated
using probability tables. A probability table is said to be conditional, i.e. it is a conditional probability
table if the variable to which the table belongs depends on one or more variables.

Probabilities are denoted P(A|B), meaning the probability of A given B. An alternative notation
is P(A= a|B = b), meaning the probability of variable A having value a, also referred to as being
in state a, when B is in state b. We have that P(A|B, C) = P(A|B) when A and C are conditionally
independent as is the case in Figure 2.9. The joint distribution of nodes, X = X1, . . . , Xn, in a
network is computed as shown in Equation (2.3) [60].
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Figure 2.9: Simple Bayesian network. The network consist of three nodes, i.e. three variables: A, B
and C. A and C depend on B and B is totally independent [60].

P(X ) =
n
∏

i=1

P(X i|parents(X i)) (2.3)

In case of the network illustrated in Figure 2.9, the joint distribution of all variables is as shown
in Equation (2.4) [60].

P(A, B, C) = P(A|B) · P(B) · P(C |B) (2.4)

We also have that if the node x0 does not depend on xn, then we can remove xn when
calculating the probability of x0 as shown in Equation (2.5) [60].

P(x0|x1, . . . , xn, . . . , xk) = P(x0|x1, . . . , xn−1, xn+1, . . . , xk) (2.5)

A graphical model of a Bayesian network consists of a set of nodes V , a set of edges E between
the nodes and a set of probability distributions P for each variable [60]. In case of Figure 2.9 we
have that V = {A, B, C} and E = {{B, A}, {B, C}}. An example definition of P can be the probability
table and conditional probability tables shown in Table 2.2. For example, the tables show that
P(B = Yes) = 0.3 and P(A = No|B = Yes) = 0.8. This is the prior distribution, i.e. our beliefs
before any evidence is observed.

Table 2.2: Sample probability table and conditional probability tables for nodes A, B and C in the
network illustrated in Figure 2.9.

B

Yes No

0.3 0.7

A

Yes No

Yes 0.2 0.8

No 0.7 0.3

C

Yes No

Yes 0.9 0.1

No 0.3 0.7

2.8.1 Evidence

Bayesian networks are used in order to reason under uncertainty. When reasoning under uncer-
tainty we update the beliefs of some events based on observations of other events, i.e. evidence on
those events [38, p. 90].

When using a Bayesian network, we assign evidence to the states of a node. If a node, X , in
a Bayesian network has states x1, x2 and x3 then an evidence function εX = (1,0,0) indicates
that X = x1, i.e. node X is in state x1 with certainty. If εX = (1,2,0) then we are sure that X
is not in state x3 and X = x2 is twice as likely as X = x1 [38, pp. 23-24]. The probabilities
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for a column in a conditional probability table should have a sum of 1. That is for a node X ,
P(x1) + P(x2) + ...+ P(Xn) = 1 where n is the number of states in X .

We distinguish between hard evidence and soft evidence [38]. If an evidence function assigns a
probability of zero to all but one state in a node, then there is hard evidence on that one state. If
an evidence function assigns an evidence greater than zero to multiple states, there is said to be
soft evidence on the states.

Bayesian inference or belief propagation is the action of updating beliefs of variables when
evidence is observed in the network. This means that the posterior distribution, i.e. the probability
after evidence is observed, is computed.

Let x1, . . . , xn be the prior distributions for node X with n states and ε the soft evidence
observed for X where εi is the soft evidence for state x i. Then the posterior probability of x i,
P(xb,i) is computed as shown in Equation (2.6).

P(xb,i) =
x i · εi

n
∑

i=1
xn · εn

(2.6)

2.8.2 Hugin

The Hugin Tools3, also referred to as just Hugin, amongst others consist of the Hugin Decision
Engine and the Hugin Graphical User Interface [36]. Hugin can be useful for modelling Bayesian
networks and is used in the design phase of our system.

The Hugin Decision Engine provide functionalities for constructing, learning and analysing
Bayesian networks and influence diagrams. The engine supports manual creation of networks and
learning the structure of networks based on provided data [36]. Manual creation of networks can
be done by experts in a field who knows the relationships between nodes. If the relationship is
not known but the data is available, the structural learning can be used to build the network with
no knowledge of relationships.

The graphical user interface builds on top of the decision engine to provide an easy-to-use
interface for creating and running Bayesian networks and influence diagrams [36].

Figures 2.10 and 2.11 show screenshots of the Hugin graphical user interface. In Figure 2.10
the screen is split vertically, showing the network on the right-hand side and the beliefs and
evidence of all nodes on the left-hand side. In Figure 2.11 the screen is split horizontally showing
the network at the bottom and the probability tables and conditional probability tables at the top.

The features of the software used in this project are highlighted on the screenshots with black
cirtcles and annotated with a letter referencing the below description of the features.

A. Enter editing mode shown in Figure 2.11. The mode is used when editing edges, nodes and
probability tables in the network.

B. Enter running mode shown in Figure 2.10. The mode is used when computing beliefs in the
network given some evidence on the nodes.

C. Indicates hard evidence on one of the states in the node.
D. Indicates soft evidence on one of the states in the node.
E. Green bars show beliefs of states in a node. For example, in Figure 2.11 the “Television:

on/off” state of the Action node has a belief of 28.61%.
F. Blue bars show soft evidence on states of a node. For example, in Figure 2.11 the “Bedroom”

state of the Room node has soft evidence of 80% where as the “Living room” state has soft
evidence of 20%.

3The Hugin Tools are available at http://www.hugin.com.
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G. Red bars show hard evidence on one of the states in the node. For example, in Figure 2.11
hard evidence is applied to the “Yes” state of the TV_IsOn node.

H. Example of a conditional probability table in which probabilities given some states are
entered. The first column in the screenshot configures the probabilities for both the Sys-
tem_State, Room_Action and Gesture_Action nodes being in state “Music centre: play/pause”.
Note that Hugin supports normalizing the probabilities.

Figure 2.10: Screenshot of Hugin while running the Bayesian network. The screenshot highlights
important features of the software. See above for a description of the features.
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Figure 2.11: Screenshot of Hugin while editing the Bayesian network. The screenshot highlights
important features of the software. See above for a description of the features.

2.9 Context Engine

As presented in Section 1.6, the system should be context-aware in order to ensure that the correct
actions are triggered on the correct devices in accordance with the user’s intention. To accomplish
this we propose what we call a context engine. This context engine should ideally encompass all of
the contextual information regarding the system, such as which gesture the user performed and
where he is located. Using this information the context engine will determine which device the
user intended to control as well as which action he intended to perform on it. Since gestures are
part of the context, the user can use the same gesture for multiple devices assuming the entire
context is not identical. This allows for a reduced set of gestures that the user has to recall. We
suggest a design of the context engine based on the following requirements.
• While this project is focused on combining gesture recognition with the position of a user,

the design should make no assumptions about the type of supplied contextual information.
• The design should support suggesting multiple actions if it is unsure which action the user

desired to trigger.
• The design should support an arbitrary number of contextual information with zero being

an exception as it does not make sense to determine the context with no information about
it.

The context engine can be regarded as a recommender system which given some input, in our
case the gesture performed by the user and his position in the smart home, recommends one or
more actions the user may desire to trigger. Section 2.7.4 described the technique chosen for the
context engine. Section 3.3 describes the design of the context engine.
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CHAPTER 3
Design

This chapter describes the design of core components of the system.

3.1 Positioning Using BLE

In Section 2.6 various technologies for positioning a user was presented. We chose to use Bluetooth.
The following section describes how we utilize Bluetooth for indoor positioning.

In [30] we used Estimotes beacons for indoor positioning. The beacons are BLE-enabled
devices that can be installed throughout a house. The beacons continuously emit a signal that
other BLE-enabled devices can pick up. Estimote beacons can use either the iBeacon protocol or
the Eddystone protocol. The two protocols and their uses are described below.

3.1.1 iBeacon

The iBeacon protocol is designed by Apple. When using the iBeacon protocol, a beacon will
broadcast the following three identifiers [18, ch. 1].
UUID A Universally Unique Identifier is 16-byte string specific to a deployment of a set of bea-

cons [14]. For example, if McDonalds deployed iBeacons in all of their restaurants, the
beacons would all have the same UUID letting their application know which beacons to look
for [18, ch. 1].

Major The major value is a 2-byte string that distinguishes a smaller group of installed beacons [18,
ch. 1][14]. For McDonalds, the major value could be specific to an installation of iBeacons
in a certain restaurant.

Minor The major value is a 2-byte string that further distinguishes a group of beacons [18, ch.
1][14]. McDonalds could use this to distinguish between the floors of a restaurant.

Measured Power A value, measured in dBM, that helps BLE-enabled devices with ranging accu-
racy [4].

The Measured Power is broadcast by the beacon in order for other BLE-enabled devices to
more accurately determine a granular proximity to the beacon. The value is measured using the
following method and is performed using an iPhone 5s [4].

1. The iPhone 5s must be held in portrait orientation with nothing covering the top half.
2. RSSI values from the broadcasting beacon is recorded with a distance of 1 meter to the

beacon. This should be done for a minimum of 10 seconds.
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3. The highest 10% and the lowest 20% of the values are discarded.
4. The remaining values are averaged. This average constitutes the Measured Power value.
Tables 3.1 to 3.3 show examples of packets McDonalds could broadcast in order to retrieve

information about a users positioning. Amongst others, McDonalds could use this for tracking
users and sending them advertisements or offers based on their position.

In the examples in Tables 3.1 to 3.3, 664E170A− 21BB − 457C − A86B − F9265595452A is
the UUID of all McDonalds’ beacons, a major value of 1 indicates a restaurant in Copenhagen and
a major value of 2 indicates a restaurant in Aalborg. Beacons installed on first floor has a minor
value of 1 and beacons installed on second floor has a minor value of 2. Note that all examples
are fictitious.

Table 3.1: Example package emitted by one of McDonalds’ beacons installed on first floor in Copen-
hagen.

UUID 664E170A-21BB-457C-A86B-F9265595452A

Major 1

Minor 1

Measured Power -44

Table 3.2: Example package emitted by one of McDonalds’ beacons installed on second floor in
Copenhagen.

UUID 664E170A-21BB-457C-A86B-F9265595452A

Major 1

Minor 2

Measured Power -44

Table 3.3: Example package emitted by one of McDonalds’ beacons installed on first floor in Aalborg.

UUID 664E170A-21BB-457C-A86B-F9265595452A

Major 2

Minor 1

Measured Power -44

3.1.2 Eddystone

Eddystone is an open protocol designed by Google [13]. The Eddystone protocol supports the
following frame types, i.e. different types of packets that can be broadcast [25].

Eddystone-UID

Eddystone-UID frames are broadcast when interested in identifying groups of beacons or particular
beacons within a group. The beacon emits the following information [27]:
Namespace 10-byte identifier. Groups a particular set of beacons, similar to the UUID in the

iBeacon protocol
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Instance 6-byte identifier. Specific for each beacon within the namespace.
Tx Power The received power at 0 meters from the beacon, measured in dBm. Similar to the

Measured Power in the iBeacon protocol. Resolution of 1 dBm.
The Eddystone-UID frame type is suitable for granular indoor positioning as the packet includes

the Tx Power. Furthermore it is suitable for non-granular indoor positioning as each room can be
identified using the instance.

Table 3.4 shows an example of a frame with the UID frame type.

Table 3.4: Example of an Eddystone-UID frame [27].

Byte offset Field Description Value

0 Frame type Type of the frame. UID, in this case. 0x00

1 Ranging data Tx Power. Signed 8-bit integer. 0xD4

2 NID[0] 10-byte namespace. 0x3C

3 NID[1] 0x7B

4 NID[2] 0xB8

5 NID[3] 0x1A

6 NID[4] 0xEE

7 NID[5] 0x6E

8 NID[6] 0x97

9 NID[7] 0x1D

10 NID[8] 0x74

11 NID[9] 0x3B

12 BID[0] 6-byte instance. 0x0F

13 BID[1] 0x27

14 BID[2] 0x15

15 BID[3] 0x23

16 BID[5] 0x11

17 BID[6] 0xA6

18 RFU Reserved for future use.

19 RFU Reserved for future use.

Eddystone-URL

Eddystone-URL frames are broadcast when interested in redirecting users to a website. The frame
is used in the Physical Web, in which beacons broadcast URLs that can be retrieved by users by
tapping the beacon with their phone1 [28]. The beacon emits the following information [28]:
Tx Power The received power at 0 meters from the beacon, measured in dBm.
URL Scheme Scheme prefix of the broadcast URL.
URL The broadcast URL.

Table 3.5 shows an example of an Eddystone-URL frame broadcasting the
http://goo.gl/POKXkv.

1More information about the Physical Web is available at https://google.github.io/physical-web/
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Table 3.5: Example of an Eddystone-URL frame [28].

Byte offset Field Description Value

0 Frame type Type of the frame. URL, in this case. 0x10

1 Ranging data Tx Power. Signed 8-bit integer. 0xD4

2 URL scheme Value defined by the specification for the http:// prefix. 0x02

3 URL[0] Encoded URL. Length 0 - 17. g

4 URL[1] o

5 URL[2] o

6 URL[3] .

7 URL[4] g

8 URL[5] l

9 URL[6] /
10 URL[7] P

11 URL[8] O

12 URL[9] K

13 URL[10] X

14 URL[11] k

15 URL[12] v

Eddystone-TLM

Eddystone-TLM frames are broadcast when interested in monitoring the health of beacons. The
Eddystone-TLM is meant to be transmitted along with either the Eddystone-UID or the Eddystone-
URL. The beacon emits the following information [26]:
Version TLM version. Always 0x00 [26].
Battery voltage Voltage of the battery, i.e. remaining power, measured in 1 mv/bit.
Beacon temperature Temperature of the beacon, measured in degrees Celsius. Signed 8.8 fixed-

point notation.
Advertisement count Number of frames advertised since the beacon was powered on or rebooted.
Seconds count Number of seconds since the beacon was powered on or rebooted. Resolution of

0.1 seconds.
Table 3.6 shows an example of an Eddystone-TLM frame that broadcasts 50% remaining battery

power, a temperature of 24.25°C, 2674 frames advertised and an uptime of seven days, that is,
604800 seconds.

3.1.3 Conclusion

Both the iBeacon and the Eddystone protocols are suitable for the system described in this report.
The iBeacon protocol solely supports positioning of the user, either granularly using the Measured
Power or non-granularly using regions defined by the major and/or minor value of the beacon.

The Eddystone protocol supports more than positioning of the user. It also supports the
monitoring the health of the beacon. While technically, Eddystone-URL frames can be used for
positioning the user in regions based on the broadcast URL, i.e. different URLs for each regions,
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Table 3.6: Example of an Eddystone-TLM frame [26].

Byte offset Field Description Value

0 Frame type Type of the frame. TLM, in this case. 0x20

1 Version. TLM version. 0x00

2 VBATT[0] Battery voltage. 1 mV/bit. 0x00

3 VBATT[1] 0xFF

4 TEMP[0] Beacon temperature. Signed 8.8 fixed-point notation. 0x18

5 TEMP[1] 0x40

6 ADV_CNT[0] Number of frames advertised since power-on or reboot. 0x00

7 ADV_CNT[1] 0x00

8 ADV_CNT[2] 0x05

9 ADV_CNT[4] 0x39

10 SEC_CNT[0] Time since power-on or reboot. 0x00

11 SEC_CNT[1] 0x09

12 SEC_CNT[2] 0x3A

13 SEC_CNT[3] 0x80

the Eddystone-UID frame seems better suited for this purpose. Using Eddystone-UID regions can
be identified based in the instance of a beacon.

While the iBeacon protocol is only officially supported by iOS devices, the Eddystone protocol
is officially supported by both iOS and Android [13]. Since we are using a smartwatch running
Android Wear for our prototype, we will use the Eddystone protocol.

In [30]we worked with granular positioning using the Measured Power in the iBeacon protocol.
In this report we focus on non-granular positioning of the user. That is, we only determine the
region which the user is currently in.

The smartwatch must pick up the frames advertised by the beacons and determine the region
the user is in based in the namespace and instance of the Eddystone-UID frame. The smartwatch
may also need to investigate the Tx power and RSSI received by the beacons, to determine which
beacon the user is closest to if more beacons are available.

By analyzing the namespace, instance and Tx power in the frames advertised by the beacons,
we can determine which region the user is in.

3.2 Gesture Recognition

As stated in Section 2.4 we decided to use the 1¢ gesture recognizer. However, as the 1¢ gesture
recognizer is designed to be used for recognition of two-dimensional gestures we have created
a modified version of it that is able to recognize three-dimensional gestures recorded using a
three-axis accelerometer by utilizing one of the techniques used by $3 [40].

3.2.1 Converting 1¢ to Three Dimensions

For use in this project we created a modified version of 1¢ that works with three-dimensional
accelerometer data. A naive approach would be to use raw accelerometer data as coordinates
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but the problem with this approach, besides lack of filtering, is that these coordinates would not
properly represent a gesture.

Imagine a minimalistic example where the the accelerometer registers two consecutive accel-
erations, the first one is on the x-axis and the other is on the y-axis. The z-axis is ignored for
the sake of the argument. This is illustrated by the two blue arrows in Figure 3.1. If these two
measurements are used as coordinates for the gesture, it would end up looking like the gesture
shown in Figure 3.2(a).

y

x

Figure 3.1: Two consecutive accelerometer measurements {4, 0} and {0, 4}. Accelerations are measured
in m

s2

The proper path is illustrated in Figure 3.2(b). The way we achieve the proper path is by bor-
rowing a technique from [40] where points are acquired by subtracting the current accelerometer
measurement from the previous one to obtain an acceleration delta and adding it to the previous
point to create the new point as shown in Figure 2.5. However, in our specific implementation we
do not add the acceleration deltas to the previous point but instead add the current acceleration
measurement.
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y

x

((a)) Path drawn between the measured points by using
measurements as coordinates.

y

x

((b)) The proper path of the accelerometer-recorded ges-
ture by adding accelerations together.

Figure 3.2: Minimalistic example of the difference between using accelerometer measurements directly
as coordinates in a gesture trace compared to adding accelerations together as in $3.

3.3 Bayesian Network

The network is illustrated in Figure 3.3. We consider there to be the following three levels in the
network.
• The uppermost level containing the “Gesture”, “Room”, “TV_IsOn” and “MusicCen-

tre_IsPlaying” nodes provides contextual information.
• The middle level depends on, i.e. is children of, the uppermost level to provide probabilities

for each action in the system based on a subset of the information observed in the uppermost
level.

• The bottom level depends on all nodes in the middle level to provide probabilities for
the actions in the system. Based on these probabilities the correct action to perform is
determined.

The benefit of this structure is, that contextual information such as the performed gesture
and the users position is always translated to probabilities for actions and these probabilities
are independent of other contextual information that we may observe. When the contextual
information is modelled as probabilities for actions, it becomes trivial to combine all the contextual
information to choose the right action to perform.

The probability tables and conditional probability tables shown in Tables 3.7 to 3.12 only show
selected states. In reality, the tables include states for all gestures, rooms and actions in the system
but some have been left out for readability purposes.

Table 3.7 shows an excerpt of the probability table for the gesture node. The node contains
prior beliefs for all gestures in the system and they should all ahve the same belief This is because
the user is equally likely to have performed the gestures when we have not observed any evidence.
Based on the likelihoods of each gesture supplied by the gesture recognizer, we can add soft
evidence to the Gesture node. The evidence is assigned as described in Section 3.3.2.
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Figure 3.3: The Bayesian network used for determining the appropriate action to trigger based on the
gesture performed by the user, the position of the user and the state of the system.

Table 3.7: Excerpt of the probability tables for the Gesture and Room nodes.

Gesture

Z Half circle Horizontal line
1
3

1
3

1
3

Room

Bedroom Living room

0.5 0.5

Table 3.8: Probability tables for the TV_IsOn and MusicCentre_IsPlaying nodes.

TV_IsOn

Yes No

0.5 0.5

MusicCentre_IsPlaying

Yes No

0.5 0.5

The Gesture, Room, TV_IsOn and MusicCentre_IsPlaying nodes constitute the uppermost
level in the network. The middle level is constituted by the Gesture_Action, Room_Action and
System_State_Action nodes.

The nodes on the middle level observes nodes in the uppermost level and based on the observed
information, compute probabilities for the all actions in the system. Without any evidence on
a state, the probabilities of the states in nodes in the middle level is determined by gesture
configurations.

Consider the prior beliefs of the Gesture_Action node as shown in Table 3.9. In the scenario
presented in Section 1.2 we presented a configuration of the system. Table 3.9 shows an excerpt
of the configuration in which the user has configured the Z gesture to turn Lamp 3 and Lamp 8 on
and off. The Half Circle gesture skips to the next track on the music centre and changes to the
next channel on the television. The Horizontal Line gesture skips to the previous track on the
music centre and changes to the previous channel on the television. The valid actions for each
gesture have the same probability.

As the Gesture_Action node depends on the Gesture node, the probabilities of each action are
changed when evidence is added to the states of the Gesture node.

The principle of the Room_Action and System_State_Action nodes are the same as the Ges-
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Table 3.9: Excerpt of the conditional probability table for the Gesture_Action node.

Gesture_Action

Z Half circle Horizontal line

Lamp 3: on/off 0.5 0 0

Lamp 8: on/off 0.5 0 0

Music centre: next track 0 0.5 0

Music centre: previous track 0 0 0.5

Television: next channel 0 0.5 0

Television: previous channel 0 0 0.5

ture_Action node. Each state of the nodes correspond to an action in the system. The probabilities
of the nodes change when evidence is added to the Room, MusicCentre_IsPlaying and TV_IsOn
nodes.

The evidence added to the states of the Room node, is likely to be soft evidence as we adjust the
probability of the user being in a room over time as he walks around as described in Section 3.3.3.
The evidence of the MusicCentre_IsPlaying and TV_IsOn nodes are hard evidence as we can
observe this with certainty from the state of items in openHAB.

Table 3.10: Excerpt of the conditional probability table for the Room_Action node.

Room_Action

Bedroom Living room

Lamp 3: on/off 0 1
3

Lamp 8: on/off 1
3 0

Music centre: next track 0 1
3

Music centre: previous track 0 1
3

Television: next channel 1
3 0

Television: previous channel 1
3 0

Table 3.11: Excerpt of the conditional probability table for the System_State_Action node.

System_State_Action

MusicCentre_IsPlaying Yes No

TV_IsOn Yes No Yes No

Lamp 3: on/off 1
6 0.25 0.25 0.5

Lamp 8: on/off 1
6 0.25 0.25 0.5

Music centre: next track 1
6 0.25 0 0

Music centre: previous track 1
6 0.25 0 0

Television: next channel 1
6 0 0.25 0

Television: previous channel 1
6 0 0.25 0

Based on the posterior beliefs of the Gesture_Action, Room_Action and System_State_Action
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nodes, the posterior beliefs of the states in the Action node are computed. The beliefs of the node
are used to determine which action to trigger.

Table 3.12 shows a very small excerpt of the conditional probability table of the Action node.
For readability purposes the table only contains two states, A and B. We assume A and B are actions
in the system. For example, A= “Lamp 3: on/off” and B= “Music centre: next track”.

When System_State_Action = A1, Room_Action = A1 and Gesture_Action = A1 there is a
strong belief that action A should be triggered. The same applies for action A2 when all three
nodes are in state A2. If only two nodes are in state A1, then the probability of P(Action = A1) =

2
3

and as a result P(Action= A2) =
1
3 and vice versa.

Table 3.12: Excerpt of the conditional probability table for the Action node in the Bayesian network
presented in Figure 3.3.

Action

System_State_Action A1 A2

Room_Action A1 A2 A1 A2

Gesture_Action A1 A2 A1 A2 A1 A2 A1 A2

A 1 2
3

2
3

1
3

2
3

1
3

1
3 0

B 0 1
3

1
3

2
3

1
3

2
3

2
3 1

3.3.1 Alternative Model of System State

In Figure 3.3 both the TV_IsOn and the MusicCentre_IsPlaying nodes are parents of the Sys-
tem_State_Action node. One may propose an alternative model for the sytem state as shown in
Figure 3.4.

The System_State action node have been replaced by the TV_IsOn_Action and MusicCen-
tre_IsPlaying_Action nodes. Each observes a specific part of the system state. The conditional
probability tables for the nodes are shown in Table 3.13.

Consider the table for TV_IsOn_Action with a subset of the actions presented in the scenario.
As the node knows nothing about the state of the television, it must have equal probabilities
for the two states when the television is on. However, if the television is off the node has
zero probability of changing the channel on the television. The same principle applies for the
MusicCentre_IsPlaying_Action node.

The consequences of the alternative model is illustrated using screenshots from Hugin shown
in Figures 3.5 and 3.6. Note that the difference between the beliefs of the states in the Action
node is smaller in Figure 3.6. This is the reason we choose to model the system state as presented
in Figure 3.3 as it does not reduce the difference between states as significantly.

3.3.2 Evidence in Gesture Node

The following section describes how the evidence assigned to the states in the Gesture node of the
Bayesian network is determined. In order to determine the evidence, we introduce the gesture
context provider.

The gesture context provider determines the actions that make sense to trigger based on the
motion performed by the user. When the user performs a motion, the gesture recognizer scores the
trained gestures as explained in Section 2.4.2. When the gestures are scored, they are passed to
the context provider which calculates the probabilities of each action associated with the gesture.
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Figure 3.4: Alternative approach for modeling the system state in the Bayesian network.

Table 3.13: Probability tables for the TV_IsOn_Action and MusicCentre_IsPlaying_Action nodes in the
alternative Bayesian network illustrated in Figure 3.4.

TV_IsOn_Action

Yes No

Music centre: play/pause 1
4

1
3

Music centre: next track 1
4

1
3

Television: on/off 1
4

1
3

Television: next channel 1
4 0

MusicCentre_IsPlaying_Action

Yes No

Music centre: play/pause 1
4

1
3

Music centre: next track 1
4 0

Television: on/off 1
4

1
3

Television: next channel 1
4

1
3

Because the gesture recognizer scores all trained templates, gestures that are obviously not
correct are returned by the gesture recognizer. Therefore we introduce a threshold which the
gesture scores must be below to be considered. We only consider gestures with a score of 70 or
below. The threshold of 70 was determined by considering the scores of multiple gesture templates
and we found that generally, gestures with a score of 70 or below can be considered as a properly
recognized gesture.

The set of matches returned by the gesture recognizer are not unique per gesture name. A
gesture named “Circle” may appear several times if the gesture trace matches multiple templates
of the trained gesture templates. We take the average of each gesture, grouped by the name of the
gesture.

The gesture recognizer uses the distance of the recorded template to each trained template as
the score for the gesture. Thereby the lower the score, the better the result. When calculating
the belief of gesture nodes, we create a translated score where a high score indicates a better
match. Let G = {G1, G2, . . . , Gn} be the set scores, then the translated score, G′i is computed as

G′i = max(G) · max(G)
Gi

. This ensures the proportions between scores are the same.

For example, if we have recognized gestures with scores G = {40,62}, then the translated
scores are computed as G′ = {62 · 62

40 , 62 · 62
62}= {96.1,62}.

Given the translated scores, we can calculate the beliefs as shown in Equation (3.1).
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Figure 3.5: Screenshot from Hugin. Refer to Section 2.8.2 for a detailed description of the elements
shown. The network shows beliefs of actions when using one node at the middle level for system state.
Nodes are configured according to the scenario presented in Section 1.2. Conditional tables for the
TV_IsOn and MusicCentre_IsPlaying nodes are configured as shown in Table 3.13.

Bi =
G′ i
∑

x∈G′
x

(3.1)

3.3.3 Evidence in Room Node

The following section describes how the evidence assigned to states in the Room node of the
Bayesian network is determined. In order to determine the evidence, we introduce the position
context provider.

The position context provider is responsible for determining which actions make sense to
trigger given the users current position. For each action it provides the likelihood of those actions
being the intended ones. The likelihoods are the evidence assigned to the states in the Room node.

The context provider determines the position of the user using BLE. One or more Estimote
beacons are installed in rooms that should be tracked. The beacons broadcast using the Eddystone
protocol as described in Section 3.1. The smartwatch continuously scans for nearby beacons using
the Estimote SDK.

The Estimote beacons delivers a set of discovered beacons several times each second. Each
time beacons are discovered, the provider chooses the beacon with the highest RSSI. We assume
that the higher the RSSI is, the closer the user is to the beacon as the RSSI is an indicator of the
signal strength between the two Bluetooth devices.

In order to account for sporadic and false measurements indicating that the user is in the
wrong room, we store a reference to the room in which the beacon with the highest RSSI is placed.
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Figure 3.6: Screenshot from Hugin. Refer to Section 2.8.2 for a detailed description of the elements
shown. The network shows beliefs of actions when using multiple nodes at the middle level for system
state. Nodes are configured according to the scenario presented in Section 1.2. Conditional tables for
the TV_IsOn and MusicCentre_IsPlaying nodes are configured as shown in Table 3.13.

Each reference lives in the queue for 30 seconds. We keep each reference for 30 seconds, because
Estimote estimates that a region exit in their SDK usually takes up to 30 seconds and therefore we
make the same assumption [12]. Whenever the context provider is asked to provide its context,
we calculate the occurrence of each beacon in percentage. For example, consider the following set
where R1, R2 and R3 are different rooms.

{R1, R1, R2, R2, R1, R1, R1, R2, R3, R1, R1, R1}

There are a total of twelve items in the queue. R1 occurs eight times, R2 occurs three times
and R3 occurs one time. Therefore we assign a 66.67% probability that the user is in R1, a 25%
probability that the user is in R2 and a roughly 8.33% probability that the user is in R3. The
normalized probabilities are used as soft evidence of the states in the Room node.

3.3.4 Evidence in System State Nodes

In Figure 3.3 we suggested two nodes that supply information about the system state. The TV_IsOn
supplies information about whether not the television is on and the MusicCentre_IsPlaying node
supplies information on whether or not the music centre is playing music. Naturally these are
examples of nodes that can describe the state of the system. Other examples can include if a lamp
is on or not, a door is locked or unlocked or who is home.

Evidence on the system state nodes in the uppermost level is likely to be hard evidence,
assuming that the state of the system retrieved from openHAB can be trusted. There could be
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cases where the system state returned by openHAB is not the correct state. The following are
examples of cases where we may not be able to trust the state stored in openHAB.
• Assume a television which can be controlled though openHAB. When a request to turn on

the television is send to openHAB, the request is forwarded to the television. openHAB
can store the new state of the television. If some user decides to control the television
using an regular TV remote, the request is not send through openHAB and unless openHAB
continuously polls for the state, the state of the television is never updated in openHAB.
Fortunately, openHAB supports polling of states.

• When a request to change the state of an item is send through openHAB, the new state can
be stored by openHAB if the request was successful. For some protocols, e.g. UDP, it is not
known if a message is delivered correctly and therefore openHAB cannot depend on storing
the state of a device only if a request is successful, except if it only use protocols that support
this. Another issue with UDP is that the order of messages is unknown, hence it is unknown
which state the device ends in.

When trusting the state stored in openHAB, the evidence can be hard. If the state is not trusted,
one can resort to using soft evidence. e.g. based on historical data for each device.

3.4 Context Engine

In Section 2.9, we outlined the requirements for the context engine. According to the requirements
the design of the context engine should support suggesting multiple actions, if a single action
cannot be determined due to multiple actions having an approximately equal probability. The
requirement is fulfilled by the nature of a Bayesian network as the result of running the network
is beliefs on all states of all nodes. In the case of the Bayesian network shown in Figure 3.3 the
beliefs of the Action node indicates which action the user may desire to trigger. If multiple actions
have beliefs that are approximately equal within a threshold, the actions are presented to the user
in a list and he can choose the appropriate action to trigger. We found that a threshold of four
percentage points results in an acceptable behaviour. Actions which have a probability that is
within four percentage points of the action with the highest probability, is considered accepted,
i.e. they are presented on the list of possible actions.

The requirements also outline that the design should make no assumptions about the type of
contextual information supplied to the context engine. We have decided to fulfill this requirement
by enforcing a “translation” of probabilities in the uppermost level, i.e. the level containing
the Gesture and Room node in our specific implementation, to probabilities of actions in the
middle level. The consequence of this, is that the design makes no assumptions about the type of
information but it enforces a uniformity of the parents to the Action node. Because the nodes at
the uppermost level are independent of each other, we can implement it as two components with
no knowledge to each other. This implementation allows us to easily extend the engine with new
nodes providing contextual information as described in Section 4.4.

Furthermore the requirements mention that the design should support an arbitrary number
of contextual information. While the design in principle fulfills the requirement, the conditional
probability table of the Action node will grow exponentially when parent nodes are added. A
solution for this can be to replace the conditional probability table with a deterministic function
that, given the parent nodes as input, counts the number of nodes pointing at each state. In
principle, this means that each parent node “votes” on which action should be triggered and the
action with most votes is triggered. If multiple actions have the same amount of votes, the actions
are presented to the user who can choose the correct action to trigger.
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CHAPTER 4
Implementation

The following chapter describes the implementation of the system. Jayes, the third party imple-
mentation used for the Bayesian network is briefly presented. We give a detailed description of
the context engine, which provides developers with a flexible way of supporting new contexts in
the system. The implementation used for communicating with OpenHAB is briefly described and
lastly the prototype is presented.

4.1 Status

As part of the project we have designed and implemented a context-aware home automation
solution on an Android Wear and a Raspberry Pi with Philips Hue light bulbs and a desktop
machine running a Spotify client acting as the controllable devices.

Figure 4.1 shows a deployment diagram of the prototype developed during the project. Sec-
tion 4.1.1 describes the devices involved in the deployment as well as the features implemented on
the devices. In our specific prototype, we have a computer acting as the media centre and we have
two Philips Hue light bulbs connected to openHAB. The number of devices will vary depending
on the specific deployment, e.g. there can be more Philips Hue light bulbs or other devices in the
system, e.g. door locks, a television or a thermostat.
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Figure 4.1: Deployment diagram of the prototype developed in the project.
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4.1.1 Devices

Below we present the features implemented as part of the project. Features are grouped by the
hardware the software is running on.

Smartwatch

The user utilizes the Android Wear smartwatch to perform gestures which starts the context
recognition process. Furthermore the smartwatch is used for positioning the user and configuring
parts of the system. The following features are implemented on the watch.
• Retrieval of available devices and actions from openHAB.
• Configuration of the smartwatch application based on rooms and beacons registered in

openHAB.
• Training of gestures using the 1¢ gesture recognizer as described in Section 3.2.
• Recognition of gestures using the 1¢ gesture recognizer.
• Positioning of the user using Estimotes BLE beacons as described in Section 3.1.
• Setup of gesture configurations, i.e. a combination of a gesture, a room and an action.
• Recognition of the context using a Bayesian network as described in Section 3.3.
• Presentation of a list of actions if one single action cannot be determined but rather we have

a set of actions to choose from.
• Configuration and use of virtual positions, i.e. allowing the user to manually determine

which room he is in.

BLE Beacon

The Bluetooth Low Energy beacons are used to position the user indoor. We have not implemented
any features on the BLE beacons but in order to position the user, the smartwatch reads the RSSI
values from the Bluetooth beacons and based on those values determines which room the user is
in. This is described in detail in Section 3.3.3.

Raspberry Pi

The Raspberry Pi runs openHAB, which was described in Section 2.5. openHAB is the home
automation software utilized in the project. The software receives requests over HTTP. Each
request is then translated to an equivalent request using an appropriate protocol, e.g. Bluetooth,
HTTP or MQTT. The translated request is forwarded to a controllable device. The following
features were implemented on openHAB.
• We implemented an openHAB plugin for configuring which beacons are installed in the

rooms of the users house or apartment.
• openHAB was configured to support the actions in the scenario presented in Section 1.2,

e.g. we implemented rules to toggle a lamp between the on and off states as this is not
directly supported by openHAB.

Computer

The desktop machine serves as the media centre used for testing while developing the solution. In
order to control Spotify, we developed a smart application that runs on the desktop machine. The
application receives requests over HTTP and forwards them to the Spotify client for OS X which
is an AppleScript scriptable application, meaning that it provides a terminology that scripts can
use to send events to the application. An event triggers a handler within the application which in
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some way modifies the application. For the Spotify application, events includes “next”, “previous”
and “playpause”. When the application receives an event, an appropriate action is taken in the
application.

The following feature was implemented in the application running on the desktop machine.
• Skip to next track, skip to previous track, play and pause the music in Spotify by issuing

HTTP requests to the application.

Philips Hue Bridge

A bridge provided by Philips is installed in the users home. The bridge communicates with the
Philips Hue lights using the ZigBee protocol. The protocol is described later in this section. We
have not implemented any features on the bridge but use it in order to control the Philips Hue
light bulbs.

Philips Hue Light Bulb

The light bulbs provided by Philips are controlled using gestures on the smartwatch, i.e. using the
CARMA application. The bulbs receive commands from the Philips Hue bridge when they need
to change their state, e.g. turn on, turn off, change color or change temperature. The bulbs can
communicate with each other using the ZigBee Light Link protocol to extend the range of the
network by forwarding commands between bulbs.

4.1.2 Known Issues

The following describes known issues in the implementation.
• There is an issue with the implementation of the gesture recognizer that causes the smart-

watch application to crash if recognition is started while little to no measurements from the
accelerometer are available to the gesture recognizer. In order to fix the issue, recognition
should most likely be abandoned all together when little information is available. We have
only seen the issue when users have accidentally stopped recognition immediately after
starting it.

• Sometimes the application will hang, i.e. “freeze”, when context recognition is started. The
fix for the issue is most likely to perform the context recognition on another thread.

• In order to present the settings (see Figure 4.6(c)), the user must scroll from right to left
on the gesture recognition screen (see Figure 4.6(a)). The list of settings is meant to be
scrolled vertically but it seems that the horizontal scroll gesture interferes with the vertical
scroll causing the list of settings not to scroll. It is, however, possible to tap in the top and
the bottom of the list to change the selected setting.

4.1.3 Missing Implementation

While not part of the requirements presented in Section 1.6, we presented a model for including
the state of the system in Section 3.3. The system state was introduced in the model to illustrate
how contextual information different than the gesture performed by the user and the users location
can be included in the system.

The following features were not implemented.
• Inclusion of the system state in the Bayesian network used for recognizing the context.
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• Reuse of the Bayesian network. The Bayesian network is created every time the recognition
is started. When the network is created once, it could be reused for future computations of
beliefs.

While inclusion of the system state is not implemented, a naive implementation of the system
state is trivial to implement. The Android Wear application can periodically request the state of
all controllable devices registered in openHAB and based on the response, populate the system
state nodes in the Bayesian network with the appropriate states. The nodes will typically have
hard evidence on one of the states as openHAB is considered to hold the truth of the systems state,
e.g. it knows if a television is on or not and if music is playing or not.

Reuse of the Bayesian network could be implemented by creating the network when the
application whenever the network changes, i.e. new gesture configurations are created. The
network could then be stored either in memory or on disk and loaded. For sufficiently large
networks, this may be faster than recreating the network whenever it is needed.

4.1.4 HTTP

As shown in Figure 4.1 we use HTTP for communication between the smartwatch, the Raspberry
Pi and the computer acting as media centre. HTTP, or Hyptertext Transfer Protocol, is a protocol
generally used for exchanging hypertext, text which includes hyperlinks. HTTP is a client-server
protocol, in which a client sends a request to the server which in turn sends a response. Resources
provided by the server are identified by a URL, a Uniform Resource Locator. An example of a
URL is “http://mysite.com/index.html” which requests the “index.html” file on the “mysite.com”
hostname using the “http” protocol. When a web server returns a response, it will return an HTTP
status code as part of the response. Examples of this includes the status code 200 for success, 404
for a resource not found and 400 for a bad request. HTTP utilizes TCP/IP to transfer information.
TCP transfers information in small packets between machines and IP is responsible for addressing
machines in a network and routing the information between the machines.

In our prototype we use a framework appropriate for the platform to issue requests and send
a response, e.g. in the case of the smartwatch application we use the Android Volley framework
for making requests1. In the case of the Spotify Controls API, we use the Express2 framework for
building the server. The requests are sent to either openHAB or the Spotify Controls API which
will return a response formatted using JSON. In the case of a simple request, e.g. for changing the
state of the music centre, the JSON response, as well as the HTTP status code, indicates whether
or not the request was successful. For a more complex request, e.g. when requesting the available
items in openHAB, the response will contain all available items in openHAB formatted as JSON
along with a HTTP status code.

HTTP defines methods for sending requests to a server. Amongst others are GET, POST and PUT,
which are generally used for retrieving content,creating content and updating existing content,
respectively. The Spotify Controls API uses the HTTP method PUT for changing the state of the
player. Likewise the openHAB API also uses the GET, POST and PUT where appropriate.

4.2 Programming Languages

In order to give a better understanding of the implementation details, we present the programming
languages used for the implementation with the reasoning of the language choices.

1For more information about Google Volley, refer to https://developer.android.com/training/volley/
2For more information about Express, refer to http://expressjs.com
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4.2.1 Android Wear

The primary application presented in this report is an Android Wear application. While Googles
Android framework APIs are targeted towards a Java environment, Google does provide Android
NDK, a toolset for writing parts of an Android application in the C or C++ programming languages.
Google emphasizes that Android NDK is intended only for parts of an application and is generally
not suited for most applications. The Android SDK is meant to be used when reusing existing code
libraries or frameworks written in C or C++.

Alternative tools for developing to the Android platform includes Xamarin3 and Phonegap4 in
which developers write applications in either C# or HTML and CSS respectively. The tools are
targeted towards cross-platform development, i.e. developing for multiple platforms using the
same codebase.

For the purpose of the prototype, we have no interest in supporting other platforms than the
Motorola 360. Furthermore we are comfortable with the Java programming language. Therefore
we chose write the application in Java.

4.2.2 Raspberry Pi

We developed an addon for the openHAB which runs on the Raspberry Pi. Because openHAB
provides a Java based framework for writing addons and we were already writing Java for the
Android Wear platform, we decided to write the addon in Java.

4.2.3 Desktop Machine

The small application created for controlling a Spotify client running on a desktop machine using
HTTP requests, was developed in JavaScript using the Node.js framework5. The client calls a
script written in AppleScript.

Because the application does not depend on APIs from other services but merely invokes a
local AppleScript, the choice of language and framework was based on our familarity with the
two.

4.3 Component Diagram

Figure 4.2 shows a component diagram of the primary components involved in the application
developed for the Android Wear smartwatch. The component diagram illustrates which key
components are involved in the software and how they interact with each other. The diagram
focus on the smartwatch as most of our development was concentrated on that platform.

Below is a brief description of the components in the diagram. Notice the note in the diagram.
Components which communicate without an assembly connector, i.e. communicating using a
required and a provided interface, communicate without the use of Java interfaces, e.g. invocation
of public methods that are not part of a Java interface. Since the components are still considered to
be independent of each other, it makes sense to revisit the implementation to communicate using
assembly connectors, i.e. Java interfaces. When information is passed without the use of assembly
connectors, the edge is annotated with the information being passed between the components.
PositionManager Responsible for determining which room the user is in.

3For more information on Xamarin, refer to https://www.xamarin.com.
4For more information on Phonegap, refer to http://phonegap.com.
5For more information on Node.js, refer to https://nodejs.org.
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PositionContextualInformationProvider Provides the context recognizer with information
about the users position. The provider encapsulates the Room and Room_Action nodes of
the Bayesian network and computes evidence for all rooms.

GestureContextualInformationProvider Provides the context recognizer with information about
the gesture the user performed. The provider encapsulates the Gesture and Gesture_Action
nodes of the Bayesian network and computes evidence for all gestures.

ContextRecognizer Determines an appropriate action to trigger based on the in-
formation provided by PositionContextualInformationProvider and
GestureContextualInformationProvider.

GestureRecognizer Given X, Y and Z-accelerations obtained from the accelerometer of the smart-
watch, the component scores the gesture templates and thus determines the gestures the
user is likely to have made.

OpenHABClient Communicates with openHAP over HTTP.
App UI The component represents the UI of the Android Wear smartwatch application.

For a more detailed description of the components involved in the context engine, refer to
Section 4.5.
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Figure 4.2: Component diagram showing the primary components of the Android Wear application.
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4.4 Bayesian Network

In Sections 2.7 and 3.3 we described our motivation to use a Bayesian network for determining
the appropriate action to trigger given a context. In order to save time on the implementation of
the Bayesian network, we decided investigate third party implementations.

Our requirements for the implementation were the following:
• The implementation should be correct, i.e. given a set of nodes with states, edges, probabili-

ties and evidence the computed belief of the nodes should be correct.
• The implementation should support soft evidence as described in Section 3.3.
• The implementation should be written in Java.
We chose to only consider implementations written in Java as we are familiar with the language

and we were confident that implementations written in Java would run on Android platforms with
only little work required.

The correctness of the implementation was validated using Hugin, a decision making tool
previously described in Section 2.8.2. Given a set of nodes with states, edges, probabilities and
evidence on the states, the resulting belief of the states should equal the resulting belief when the
same configurations were made in Hugin.

When investigating third party solutions, we found that only few implementations supported
soft evidence. Since we utilize this in the design of the Bayesian network, the implementation
must support it.

We found that the Jayes6 and Bruse7 implementations fulfilled our requirements. We chose to
use the Jayes framework for the following reasons.
• The framework is maintained by Eclipse Foundation, who use it in Code Recommenders, a

tool for intelligent code completion8. The implementation being used in a large project and
maintained by a foundation may be the reason it is more widespread and more information,
such as documentation, is available.

• The framework has unit tests which eases the process of getting started using the framework
as the unit tests help document how the framework is intended to be used.

4.5 Context Engine

In Sections 3.3 and 3.4, the reason for introducing action nodes at the middle level of the Bayesian
network and thus “translating” probabilities of gestures and rooms at the uppermost level to
probabilities of actions is described. Modelling the Bayesian network in this way results in a
modular design in which contextual information observed by different sensors can be independent.
In the following we will briefly describe the realization of this design, which we refer to as the
context engine. We will also discuss the benefits of the engine.

Figure 4.3 shows a class diagram of all classes and interfaces involved in the context engine.
Below is a brief description of the classes and interface.
ContextualInformationProvider Observes a delimited area of the context and pro-

vides information about the area to the ContextRecognizer. The pro-
vided information is encapsulated in a ProvidedContextualInformation
model. Examples of ContextualInformationProviders in-
clude the GestureContextualInformationProvider and the

6The Jayes implementation is available at http://www.eclipse.org/recommenders/jayes/.
7The Bruse implementation is available at https://github.com/slangevi/bruse.
8More information about the Eclipse Code Recommenders is available at http://www.eclipse.org/

recommenders/.
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PositionContextualInformationProvider which provide information about
the gesture performed and the room the user is in respectively. Providers encapsulate one
or more nodes in the Bayesian network presented in Section 3.3. It encapsulates a node
at the middle level in the network and zero or more nodes at the uppermost level. For
example, the GestureContextualInformationProvider encapsulates the Gesture and
Gesture_Action nodes. The providers are described in greater detail later in this section.

ContextualInformationListener Objects conforming to the interface can get a callback when a
ContextualInformationProvider either has the necessary contextual information or
fails to retrieve it. The ContextRecognizer pass these as anonymous classes in Java.

ProvidedContextualInformation Encapsulates information from a
ContextualInformationProvider. The model contains the node which should
be parent to the Action node, a node to apply evidence to and the soft evidence to apply to
the node. The parent node, which resides at the middle level in the Bayesian network, and
the node to apply evidence to can be the same.

ContextRecognizer The recognizer orchestrates the retrieval of contextual information from the
providers. Because a provider is not required to provide its contextual information instantly,
the recognizer will timeout and thus cancel the provider if it takes too long to deliver the
information.

ContextRecognizerListener When recognition completes, the context recognizer informs a lis-
tener about the outcome. Objects conforming to the ContextRecognizerListener inter-
face can be informed about the outcome.

ContextOutcome A context outcome encapsulates an action that can be triggered and the
probability that the action should be triggered. Context outcomes are the result of per-
forming context recognition. The outcomes are parsed to the object conforming to the
ContextRecognizerListener interface.

Because the Baysian network is modelled to “translate” probabilities of states on the upper-
most level to probabilities of actions in the system at the middle level, we can implement the
contextual information providers to be entirely independent of each other and have each provider
encapsulate all the information it needs. In order to use the provider, it is added to the context
recognizer which needs to know nothing about the contextual information encapsulated but only
the probabilities of the states, i.e. the ProvidedContextualInformation, as defined by the
ContextualInformationProvider interface.

Figure 4.4 shows a class diagram of the contextual information providers registered with the
context recognizer in the prototype developed during the project. Below is a brief description of
the classes and interfaces.
Beacon A representation of a beacon installed in a room. Beacons are retrieved from openHAB

over HTTP using the REST API.
Room A representation of a room which the user can be in. Rooms are retrieved from openHAB

over HTTP using the REST API.
PositionManager The manager continuously listens for changes to the users position using the

Estimote SDK. Based on RSSI measurements received by the Estimote SDK, the manager
determines which room the user is in.

EventListener Part of the PositionManager. Objects conforming to the interface can be in-
formed when the manager registers the user in a room.

GestureContextualInformationProvider Encapsulates the Gesture and Gesture_Action nodes in
the Bayesian network presented in Section 3.3. When gesture recognition ends, the provider
is updated with the matches which it stores and use to compute the evidence when asked to
provide its contextual information as described in Section 3.3.2.
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Figure 4.3: Class diagram showing all classes and interfaces involved in the context engine.

PositionContextualInformationProvider Encapsulates the Room and Room_Action nodes in the
Bayesian network. Based on the observations made by the PositionManager, the provider
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calculates probabilities for the user being in each room as described in Section 3.3.3.

Figure 4.4: Class diagram showing the classes and interfaces involved in the providers.

4.6 Communication with openHAB

For a detailed description on the implementation used for communication with openHABs API,
refer to Appendix B. When communicating with openHAB, we must send actions supported by the
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Table 4.1: Supported actions for each item type in openHAB [56].

Item type Description Action types

Color Color information (RGB) ON, OFF, INCREASE, DECREASE, Per-
cent, HSB

Contact Item storing status of e.g. door/win-
dow contacts

OPEN, CLOSE

DateTime Stores date and time

Dimmer Item carrying a percentage value for
dimmers

ON, OFF, INCREASE, DECREASE, Per-
cent

Group Item to nest other items / collect them
in groups

Number Stores values in number format Decimal

Player Allows to control players (e.g. audio
players)

PLAY, PAUSE, NEXT, PREVIOUS,
REWIND, FASTFORWARD

Rollershutter Typically used for blinds UP, DOWN, STOP, MOVE, Percent

String Stores texts String

Switch Typically used for lights (on/off) ON, OFF

Table 4.2: Actions supported by the smartwatch application.

Item type Action types

Dimmer ON, OFF, INCREASE, DECREASE, 10, 20, 30, 40, 50, 60, 70, 80, 90

Switch ON, OFF

items in openHAB.
Eclipse SmartHome, which openHAB is built on top of, has a set of supported item types. An

item type defines which actions an item supports. Table 4.1 shows a list of the item types supported
by Eclipse SmartHome and thus also by openHAB. For each item type, the actions supported by
the item type is listed. Item types DateTime and Group are special items in openHAB which has
no support for actions but is used to hold a date and time and a group of other items respectively.
The action types “Percent”, “HSB”, “Decimal” and “String” are not exact actions that can be send
to openAB but refers to type of action, e.g. a lamp supporting the “Percent” action can receive a
request containing “50” and adjust its brightness to 50%. The other action types are exact actions
that can be send in a request to openHAB.

In the smartwatch application, we create a list of supported actions for each item. A supported
action for an item is represented as the string, which is sent to openHABs API when an action
should be triggered. For example, an item of type Switch has the set of actions {”ON”, ”OF F”}.
For the sake of this prototype, we only support a limited subset of item types and actions. The
supported types and actions are shown in Table 4.1.

4.7 Prototype

This section presents the prototype of the Android Wear application as well as the binding, i.e. an
addon providing functionality specific to a problem domain, for openHAB developed during the
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project.

4.7.1 Android Wear

Figure 4.5 shows a navigation diagram for the user interface of the smartwatch application. The
letters in the top right corner of the nodes in the diagram references the screenshots shown in
Figure 4.6. The diagram shows that the application can be considered divided into the following
two areas.
Primary use We refer to the parts of the application which the user uses the most as the primary

use. This involves the recognition of gestures as well as the picker presented when an action
to trigger could not be determined after context recognition.

Configuration The user will need to configure the application, i.e. train gestures and create
gesture configurations. We refer to this part of the application as configuration.

When opening the application, the user is presented with a screen to perform gesture recogni-
tion. This enables the user to start context recognition fast, whereas he needs to dive deeper into
the navigation in order to train gestures and create gesture configurations, i.e. features that he will
not use as often as the context recognition. For a list of the supported features in the application,
refer to Section 4.1.

Figure 4.5: Navigation diagram for the user interface of the Android Wear application. Letters in the
top right corner of each node refers to the screenshots in figure Figure 4.6.
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(a) Screen on which the user can start
gesture recognition by touching the
screen.

(b) Screen on which the user can stop
gesture recognition by touching the
screen. The orange color indicates
that recognition has been started.

(c) Settings screen from which the
user can set his virtual position, train
a gesture and create a new gesture
configuration. When a virtual posi-
tion is set, the setting can be selected
again to unset the virtual position.

(d) Screen shown when the user
starts training a gesture. Tapping the
“Gesture name” button will present
the user with a speech recognition
interface from which he speaks the
name of the gesture to configure it.

(e) Screen shown when training a ges-
ture and the gesture recognizer has
not been started. We see that two ges-
ture samples, i.e. gesture templates,
have been trained.

(f) Screen shown when training a ges-
ture and the gesture recognizer has
been started, i.e. the user is perform-
ing a gesture.

(g) Gesture picker showing the ges-
tures the user has trained. The ges-
ture picker is used when creating a
gesture configuration.

(h) Room picker shown when the user
creates a gesture configuration. The
picker is also shown when setting a
virtual position.

(i) Action picker shown when creat-
ing a gesture configuration. A similar
picker is shown when the context en-
gine suggests multiple actions.

Figure 4.6: Screenshots of the prototype developed for the Android Wear smartwatch.
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4.7.2 openHAB

We developed a binding for openHAB. A binding is an addon for openHAB which relates to a specific
problem domain. For example, there is a binding for communicating with Philips Hue lights and
a binding for controlling a Sonos media centre. We have created a binding for configuring the
rooms and beacons in a users home.

We chose to place the configuration of the rooms and beacons in openHAB, as this is a one time
configuration which can be shared amongst the users in a home where as the creation of gesture
configurations is placed on the watch as this can be independent for each inhabitant of a home.
The rooms and beacons are synchronized to the smartwatch when the application is loaded.

A room has a name and when it is created, openHAB assigns it a UID. When creating a beacon,
the user must enter the UID assigned by openHAB in order to specify which room the beacon
is placed in. Furthermore the user should enter the Eddystone namespace and instance, both
described in Section 3.1. This identifies the specific beacon. When the smartwatch registers a
beacon, it can determine which room the user is in by the beacons reference to a room.

In order to control Spotify running on a desktop machine, we created the Spotify Controls API.
We configured openHAB to communicate with the API using the default Exec binding, a binding
which executes a shell command when some event occurs in openHAB.

4.8 Version Control

We use version control management for keeping track of changes to the codebase developed
through the project as well as this report. Below is a list of advantages of using version control
management.
• Collaborators can work on the same file at the same time, due to the way changes to the file

can be merged. This is in contrary to a shared folder, e.g. a Dropbox folder which always
synchronize the most recent version of a file with a central location.

• Keeping track of what files were changed, what was changed in the files and who changed
it.

• When publishing changes to the files, authors typically tag the changes with a message with
a description of the changes making their intention clear to collaborators.

• Changes can be rolled back to a previous state.
• Collaborators of a project can branch out from the main codebase to create changes without

touching the currently stable code base. When their changes are done, they can merge in
their changes to the stable codebase.

• Depending on the amount of collaborators and the system used, the codebase is inherently
backed up.

There are several software solutions for version control management, including Git, Subversion,
CVS and Bazaar. When choosing a system to use, we decided to only look into the Git and
Subversion as we have experience with the two.

The key difference between Git and Subversion is, that Git is decentralized and Subversion
is centralized. When using Git, collaborators have a local copy of the entire repository in which
the codebase resides. Collaborators then push their changes to a central location when they are
done working on a feature or a fix. With Subversion, collaborators are working in a central online
repository, meaning that the version control features are unavailable when there is no connection
to the repository.

We chose Git over Subversion because of it being decentralized. This provides two advantages
over Subversion.
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• When we are working with no or an unstable internet connection, version control features are
still available. Several times during the project we have worked with no internet connection.

• We believe that a decentralized and local system provides extra safety in terms of backups.
All collaborators always have a backup of the repository on their local machines. In addition,
we push the changes to GitHub, a website for hosting Git repositories, from which we also
pull the changes other collaborators make.

63





CHAPTER 5
Evaluation

This chapter describes the test we setup in order to evaluate our solution and presents modifications
that can be made to the solution in order to improve the results.

5.1 User Test

A user test was performed in order to investigate the accuracy of the system given data from
different users. The test is presented in the following section.

5.1.1 Goal

The goal of the test was to see how well the system performed when used by other people as well
as to determine if it achieved the requirement of triggering the correct actions 80% of the time as
specified in Section 1.6.

5.1.2 Setup

The setup of our user test consisted of a Macbook Pro running OpenHAB and Spotify, two Philips
Hue lamps and two Estimote beacons. Seven people were asked to train four unique gestures,
creating ten templates per gesture resulting in a total of 40 gesture templates per person. The
gestures used were:
• Circle
• Swipe Left to Right
• V
• Zorro
The people who participated in the test were fellow masters students and as such were adept

at using modern technology, however none of them had any prior experience with our project.
The setup was limited to a subset of the smart devices and gestures presented in the scenario

in Section 1.2, because we did not have the necessary hardware and space available to perform a
test of the entire scenario as well as to keep the invested time for each participant to a minimum.

The gesture templates stored in the database were removed before each test so each participant
was only using his own templates and not those created by others.

The participants were instructed how to perform the gestures but were allowed to scale them
to their personal preference, e.g. either create large circles or small circles.
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5. EVALUATION

Figure 5.1: Image of the setup used for the user test.

5.1.3 Method

Once the gesture templates had been created the participants were asked to complete seven tasks,
each of which required them to perform a given gesture five times. The test took place in a single
room but to simulate the participant moving between two different rooms, only one Estimote
beacon would be turned on at a time. A list of the gestures and locations is shown in Table 5.1,
along with the OpenHAB actions they were supposed to trigger.

Action Gesture Location

Shelves_Lamp_Toggle V Home Office

Spotify_PlayPause Circle Home Office

Spotify_Next Swipe Left to Right Home Office

Architect_Lamp_Toggle V Living Room

TV_Lamp_Toggle Zorro Living Room

Spotify_Next Swipe Left to Right Home Office (Virtual Position)

Shelves_Lamp_Toggle V Home Office

Table 5.1: The actions, gestures and locations that were used during the user test.

For each participant and task, the success rate of the actions triggered was calculated as the
number of times the intended action was triggered divided by the number of attempts and can be
found in Figure C.9. Figures C.10 and C.11 also shows the success rate of gestures and locations.

5.1.4 Results

The average success rate of actions is below the 80% requirement specified in Section 1.6 with
a combined average of 44%. Triggering the correct action less than half of the time is not a
satisfactory result and is thus something that needs to be looked into. The locations are correctly
identified in the majority of the cases with an average success rate of 83% which indicates that
the positioning is reliable.

One source of the inaccuracy comes from the low average success rates of the gestures.
Figure C.8 shows that the gesture success rates are generally higher than those of actions with an
average of 56%. However differences between the average gesture success rates of the participants
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Figure 5.2: Average success rate for gestures, actions and locations for the participants who performed
the best and worst respectively.

are noticeable. The most noticeable example is comparing Figures 5.2(a) and 5.2(b). Something
to note here is that both of these participants, as well as participant 1 experienced some technical
difficulties which prevented them from completing the Spotify_PlayPause (Virtual) task. Participant
2 has an average success rate for gestures of 93% and participant 6 has an average success rate of
20%. While our lowest success rate is below the one reported in the paper about the $3 gesture
recognizer, our results are not much different from the ones presented in the paper with $3 having
a success rate between 58% and 98% [40]. This is a significant difference and indicates that
possibly something went wrong during the tests of participant 6, or the gesture recognizer is not
capable of handling people with different capabilities of performing these gestures.

Another source of the inaccuracy of actions is the way we have modeled the context engine.
Loking at the success rates for Shelves_Lamp_Toggle in Figure 5.2(a) shows that the correct gesture
and location was always identified, yet the correct action was only triggered 40% of the time.

In a single trial of participant 2 the scores in Table 5.2 were recorded. The gesture V correctly
received the highest belief in the Gesture node but because V is configured to be used with two
actions, Shelves_Lamp_Toggle as well as Architect_Lamp_Toggle, the Gesture_Action node divides
the beliefs amongst these. The gesture Circle did not match as well as V and only received
approximately half of the belief value of V. However, since Circle is only configured to trigger a
single action, its belief value remains intact in the Gesture_Action node. This results in the beliefs of
Spotify_PlayPause and Shelves_Lamp_Toggle being approximately equivalent even after the location
beliefs have been applied.

As such it is easier to trigger actions that only have a single gesture associated with them than
actions that have multiple.

5.1.5 Threats

The following are threats, that could potentially have impacted the results from the user test.
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Intended Action Shelves_Lamp_toggle

Intended Gesture V

Intended Location Home_Office

Gesture Belief

Circle 33.18003597

Swipe Left to Right 0

V 66.81996403

Zorro 0

Gesture_Action

Spotify_PlayPause 33.18003597

Spotify_Next 0

Shelves_Lamp_Toggle 33.40998201

Architect_Lamp_Toggle 33.40998201

TV_Lamp_Toggle 0

Room

Living Room 0

Home Office 100

Room_Action

Spotify_PlayPause 33.33333333

Spotify_Next 33.33333333

Shelves_Lamp_Toggle 33.33333333

Architect_Lamp_Toggle 0

TV_Lamp_Toggle 0

Action

Spotify_PlayPause 33.25668465

Spotify_Next 16.66666667

Shelves_Lamp_Toggle 33.37165767

Architect_Lamp_Toggle 16.70499101

TV_Lamp_Toggle 0

Table 5.2: Belief values for the different nodes in the bayesian network of the context engine for a
single trial of Participant 2.

• The system was only tested with users who had never tried to use the system before. Users
who have more experience with the system would likely perform gestures with a higher
accuracy, thus potentially triggering the correct actions more often.

• The chosen gestures might be too similar and thus the gesture recognizer might be unable
to precisely determine which gesture the user performed.

• As part of the gesture recognition, a gesture trace is resampled in order to consist of the
same amount of points as the templates. We use a resampling rate of 64 to be consistent
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Figure 5.3: Action success rate across all participants.

with 1¢ [32]. $3 uses a resampling rate of 150 [40]. As our solution is a combination of
both 1¢ and $3, it could be that a higher resampling rate result in a higher accuracy.

5.1.6 Conclusion

From the results of the user test we can see that the average success rate of actions falls below the
80% stated in Section 1.6 with a value of 44%. The two primary causes of this is likely the low
average success rate of gestures and the way the context engine is modeled.

The gesture recognition performs sufficiently well for some participants, like participant 2, but
the success rate varies too much between different participants. The success rate of the gestures
could perhaps be improved if the participants had been asked to practice the gestures before
training and using them. It may also work better if the users were allowed to make up their own
gestures instead of using the ones selected by us.

The success rate of the actions could be improved by using a different model as the current
model favors actions that have only a single gesture associated with it, as seen the example shown
in Table 5.2. An alternative model could be one where the Gesture and Room nodes were direct
parents of the Action node and removing the Gesture_Action and Room_Action nodes.

From the user test we found the accuracy of the system to be unsatisfying. The poor accuracy
is likely to be due to the model used for context recognition, i.e. the Bayesian network and the
design of it. If more comprehensive tests in Hugin were done before implementing the system, we
might have been able to discover the issue earlier.

One approach for discovering the issue earlier could have involved some user testing as we
could have validated that the gesture recognizer worked, recorded gesture traces from multiple
users and using the data, design the and test the system.

5.2 Alternative Models

As the user test described in Section 5.1 showed that the system had an accuracy of 44%. This
section describes some of the alternative models that were considered and whether or not they
addressed the issues raised in Section 5.1.6.
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5.2.1 Bayesian Network With a Single Action Node

The Bayesian network used on the context engine consists of an Action node and its parent nodes
are Gesture_Action and Room_Action. These two parent nodes were intended to make the network
more modular to support additional context information later but in this model the probability of
each action is calculated multiple times based on different prior probabilities. Hence we considered
an alternate model in which the Gesture and Room nodes were direct parents of the Action node.

Figure 5.4: Bayesian network without the intermediate gesture_action and room_action nodes.

This alternate network was tested with the belief values of the Gesture and Room nodes of
participant 7 and a new success rate of 36% was computed. Compared to the previous success
rate of 41% for the participant, this model did not prove to be an improvement over the existing
one and was discarded.

5.2.2 Influence Diagram

Influence diagrams can be regarded as Bayesian networks extended with decision variables and
utility functions [38]. Figure 5.5 shows an influence diagram modelling a context engine. The
model does not correspond exactly with the model previously presented in this report but is an
alternative model.

As for the graphical representation of an influence diagram, the square nodes represent decision
nodes, i.e. something we must decide to do or not to do. Diamond nodes represent utility nodes
describing a utility function and oval nodes represent uncertainty nodes. In an influence diagram
we are generally interested in taking the decision that results in the highest utility, therefore utility
can be regarded a measurement of the quality of a decision.

In the model presented in Figure 5.5, the utility is a function of the gesture, room and action.
We assign a high utility to combinations of gesture and room that are part of a gesture configuration.

Influence diagrams provide a natural way of including the system state, as actions which it
does not make sense to trigger given the current state of the system, can be assigned a very low
utility.

Due to inference in the probabilistic network, actions are assigned a utility when soft or
hard evidence on the gesture and room nodes is available. The utility of an action is shown
with dark green bars below the name of the action in Figure 5.6. For example, the utility of the
Shelves_Lamp_Toggle is 6682, making it the action with the highest utility and thus the action that
should be triggered1.

1More information on influence diagrams in Hugin is available at http://www.hugin.com/technology/
getting-started/ids
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Figure 5.5: Example model of the context engine using an influence diagram.

The scenario discussed in Section 5.1 in which the belief values of a gesture was divided when
the gesture was associated with multiple different actions is addressed in Figure 5.6 where the
correct action has a greater utility and can be triggered with greater confidence.

When testing the Bayesian network with a subset of the recorded data from the user test, we
found that when using the influence diagram, we were able to trigger the correct action more
often. During the user test a correct action was triggered 36% of the time for participant 7. Using
the exact same beliefs on gesture and room nodes in the influence diagram, the correct action is
triggered 50% of the time.

Figure 5.6: Screenshot of example influence diagram in Hugin. The screenshot shows that the
influence diagram solves the problem of a single gesture being bound to multiple actions, can result in
an incorrect action being triggered because the belief is reduced as shown in Table 5.2 and discussed
in Section 5.1.
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5. EVALUATION

Table 5.3: Example beliefs of the Gesture node for participant 7 when attempting to trigger an action.
The beliefs are shown before the computations were improved and after.

Action Belief before Belief after

Spotify_PlayPause 28.39 42.24

Spotify_Next 30.06 16.67

Shelves_Lamp_Toggle 22.87 28.88

Architect_Lamp_Toggle 6.20 12.21

TV_Lamp_Toggle 12.48 0

Table 5.4: Average scores of gestures used when computing the beliefs for the “Belief after” column
shown in Table 5.3.

Gesture Score

Circle 89.80

Swipe Left to Right 116.03

V 94.03

Zorro 110.54

5.2.3 Calculation of Gesture Beliefs

In Section 3.3.2 the computation of beliefs on the Gesture node in the Bayesian network is specified.
We only consider gesture templates with a score of 70 or below and then compute the average
score. We found that this approach may cause issues, because a single gesture template may have
a very low score but all other gesture templates with the same name have very high scores, thus
the single gesture template is an outlier potentially causing us to consider an incorrect gesture
recognized.

Instead we propose computing the average before filtering the gesture templates. Naturally,
the average of each gesture will be larger as we include templates with a higher score in the
computation and as such the threshold for accepted gesture should be higher.

Using the scores of the gestures performed by participant 7 in the user test, we computed how
many actions would be correctly triggered when computing the average of the scores first and
then filter them based on a threshold. We chose a threshold of 100. We found that 45% of the
actions were correctly triggered when we adjusted the computations of the gesture beliefs. This is
in contrast to 41% before the adjustments were made. While the adjustments are not a big impact,
this can be considered an indication that the computations of beliefs in the Gesture node should
have been performed differently.

We also found that when changing the way we compute beliefs for the Gesture node, we are
generally able to put a greater belief on the correct action. This is examplified in Table 5.3. The
beliefs are taken from a scenario where the user desires to trigger the Spotify_PlayPause action.
Note that in the beliefs before the improvements to the computations, Spotify_Next has the greatest
belief where as after the improvements are made, the Spotify_PlayPause has the highest belief.
The average score used when computing the improved beliefs are shown in Table 5.4. Note that
only the Circle and V gestures have an average score below 100 and thus only those two gestures
are assigned a belief greater than zero. Before improving the computations, all four gestures were
assigned a belief greater than zero.
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CHAPTER 6
Conclusion

This chapter concludes on the solution described in this report, and implemented in the project.

6.1 Project Results

In this section, we will conclude on the results from investigating the problem statement presented
in Section 1.4:

How can we design and implement a system that utilizes contextual information for controlling
a smart home using a wearable in a gesture driven solution?

We have presented an approach for recognizing gestures and once a gesture is recognized
beginning to recognize the context and trigger an appropriate action. The system presented has
been designed and implemented on an Android Wear smartwatch and a Raspberry Pi, allowing
users to control a music centre and smart bulbs.

We intended to model a generic engine for recognizing context based on various sources for
contextual information. Our concrete implementation of the system utilizes BLE for positioning
the user and a gesture recognizer derived from 1¢ [32] and $3 [40]. In practice the context engine
suggests different actions for the same gesture depending on the position of the user in his smart
home.

As described in Section 5.1, the system triggers the correct action 44% of the time. According
to the requirement specification presented in Section 1.6, an accuracy of at least 80% was desired
and as such, the system is not satisfyingly accurate.

We presented a concrete design and implementation for a system utilizing contextual infor-
mation to control a smart home. As the accuracy of the system is unsatisfying, better designs of
such a system may exist. We have investigated an alternative design of the Bayesian network
and found that it was not more accurate. We also presented an influence diagram to potentially
replace the Bayesian network. The diagram proved to perform better when tested with data from a
single participant. Further work on this project should investigate the possibility of using influence
diagrams as the model for the context engine.
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6.2 Future Work

Based on the evaluation presented in Chapter 5 and the project results presented in Section 6.1,
we believe that a context-aware smart home controlled using gestures is feasible in the future. In
this section, we present functionality and design changes that would make sense to investigate, in
case future work is to be done on the project.

6.2.1 Continuous Recognition of Gestures

Investigation of battery efficient approaches for continuous gesture recognition could be beneficial.
The current implementation requires the user to open the Android Wear application, tap to start
recognizing a gesture, perform the gesture and then tap again to stop the gesture recognition.
From the tests we conducted with users, we found the approach to be unsuitable as starting the
recognition must be done with the arm on which the watch is mounted, held in a position ready
to do the gesture and stopping the gesture must be done in the position where the gesture ended.

In order to avoid this, we imagine a solution where the smartwatch continuously attempts to
recognize gestures based on accelerometer data, even when the smartwatch application is in the
background. Such a solution would solve the following two issues.
The need to open the application to perform recognition When gesture recognition can be

done with the application put into the background, i.e. not launched and visible on the
screen of the smartwatch, there is no longer a need to open the application thus making it
faster to control the smart home using gestures.

Starting and stopping the recognition The user no longer has to manually start and stop the
gesture recognition after performing each gesture. The continuous gesture recognizer should
automatically detect when the user starts performing a gesture and when he stops performing
it.

Research has been conducted in continuous gesture recognition, or real time gesture recognition
as it is referred to in [19]. The authors have implemented a solution for continuous recognition
using a Kinect infrared camera to detect motions and claim that it works with other sensor data as
well, e.g. accelerations from an accelerometer [19]. The article does not state an accuracy of the
recognition.

6.2.2 Inclusion of System State

In the design of the Bayesian network used for context recognition presented in Section 3.3, we
introduced the state of the system as contextual information and as explained in Section 4.1, the
functionality was not implemented. The point of introducing the state of the system, is to achieve
lower belief values of actions that it does not make sense to trigger given the current state of the
system. For example, an action for changing channel on the television would have a lower belief
value when the television is turned off, than when it is turned on.

When excluding the system state, the context engine may suggest such actions and since it
is fair to assume that the user knows at least part of the system state, the suggested action is
likely not the intended one. By including the system state, we could potentially reduce the risk of
suggesting unintended actions.

6.2.3 Inclusion of User History

Looking further into inclusion of concepts from machine intelligence could present interesting
possibilities for the project. Using machine intelligence, attempts to suggest a user actions based
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on his historical behaviour could be made. For example, if the system detects that the user is often
in a specific room at a specific time of the day, a stronger belief could be applied to that room at
that time of the day. It is also a possibility to detect actions that the user is likely to trigger at
certain times of the day. If the user often turns on specific lights when he gets home from work at
17:00, a stronger belief could be applied to the actions turning those lights on.

Short-term historical data, i.e. data of the users behaviour collected minutes or hours ago, could
be used to further determine the context that the user is in. If he interacted with his television
within that past five minutes, the belief of actions related to the television may be enhanced. This
is based on the assumption that if the user recently interacted with his television, he may want
to interact with it again. Further research into the behaviour of users in a smart home and their
interactions with electronic devices could help confirm of dismiss this hypothesis.

6.2.4 Improve Handling of Uncertainties

In Section 1.2.1, we presented suggestions for handling uncertainties in the system, e.g. when
a performed gesture was not recognized. In that case, we suggest presenting a list of actions
for smart devices the user has recently interacted with. The list of actions could be prioritized,
e.g. ordered by how often the user triggers the action.

This functionality was not implemented in the project. Further research can investigate how
we can improve handling of uncertainties.

6.2.5 Investigate Alternative Designs for Context Recognition

We have found the Bayesian network designed and implemented in this project to produce
inaccurate results, especially when a gesture is associated with multiple actions, and as such future
research should focus on investigating alternative designs for the context engine.

In Section 5.2 we proposed using an influence diagram rather than the Bayesian network.
Further research can focus on determining whether modeling the context engine using an influence
diagram would result in an accuracy exceeding 44%. Furthermore future research could focus on
determining if alternative models of the Bayesian network would produce an improved accuracy,
as suggested in Section 5.2.
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APPENDIX A
Housing Types

Table A.1: Sizes of inhabited housings in Denmark as of 2015. Data from Danmarks Statistik [59].

Inhabited housings in DK, 2015

-50 m2 149 433

50-74 m2 528 552

75-99 m2 603 484

100-124 m2 438 493

125 - 149 m2 357 712

150 - 174 m2 252 164

175+ m2 292 739

Unspecified 5 761
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APPENDIX B
Communication With openHAB

The open source home automation hub openHAB described in Section 2.5 exposes an API with a
REST architecture. Clients can communicate with the API over HTTP.
The communication with the openHAB API consists of the following two components.
REST client A base REST client suitable for communicating with a REST API which carries its

data using JSON. The client implements base methods for interacting with a REST API. This
includes retrieving, deleting, updating and creating entities. The base client parses data
received by the API into models.

openHAB client The client builds on top of the base REST client and adds openHAB specific
methods. This includes retrieving things and items as well as updating the state of an item.

Figure B.1 shows a class diagram of the REST client. The involved components are briefly
described below.
RESTClient The base REST client which is responsible for performing requests and mapping

response to models that can be further processed or displayed in the application.
RequestQueue Responsible for creating worker threads for network requests.
ResultListener Interface implemented by objects that should receive a result when a network

request completes, either because of a failure or because of a successful response.
EntityBuilder Interface implemented by objects mapping from the received JSON to models.
Result Encapsulates a network result. A result can either be a success or a failure. In case of a

success, the result will contain a the value received from the API. In case of a failure, the
result must contain an error.

Figure B.2 shows a class diagram of the openHAB client. The involved components are briefly
described below.
OpenHABClient A specialization of the base REST client implementing openHAB specific

functionality.
BooleanResult Similar to the Result, this either represents a success or a failure. In the case of a

success, the BooleanResult does not contain a value.
Item Model representing an item in openHAB.
Thing Model representing a thing in openHAB.
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Figure B.1: Class diagram showing the architecture of the REST client used for communicating with a
REST API.
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Figure B.2: Class diagram showing the architecture of the openHAB client used for communicating
with the openHAB API
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APPENDIX C
User Test Results
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Figure C.1: Participant 1
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Figure C.2: Participant 2
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Figure C.3: Participant 3
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Figure C.4: Participant 4
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Figure C.5: Participant 5
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Figure C.6: Participant 6
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Figure C.7: Participant 7
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Figure C.8: All participants combined
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Figure C.9: The rate at which the correct action was triggered for each participant. The last bar for
each action is the average success rate of all participants. The last group of bars is the average success
rate per user, across all actions.
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Figure C.10: The success rate for gestures. The last bar for each gesture is the average success rate of
all participants. The last group of bars is the average success rate per user, across all gestures.
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Figure C.11: The success rate for locations. The last bar for each location is the average success rate of
all participants. The last group of bars is the average success rate per user, across all gestures.
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