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Compositing images from multiple cam-
eras mounted on a car to create a bird’s-
eye view to assist a driver while park-
ing is a relatively new idea. Though
it has been researched in the past, it
is only in recent years that car makers
have begun selling these systems with
their cars. This project researches the
use of four fish-eye lens cameras to pro-
duce a 360 bird’s-eye view. The main ap-
proach for this revolves around rectify-
ing the input images using camera cali-
bration, aligning the four camera images
to a common ground plane, and com-
positing them into a single image. A sec-
ondary approach was researched as well,
which revolves around projecting the in-
put images directly onto semi-spherical
surfaces in a virtual environment to pro-
duce a composite image. The results
from the main approach showed that it is
possible to create a 360 view using only
four fish-eye lens cameras. The resulting
composited view is thought to be helpful
to a driver, by covering areas that would
be blinds-spots if only windows and mir-
rors were used.
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Abstract:

At sammensætte billeder fra flere kame-
raer monteret på en bil til et fugleper-
spektiv for at assistere en chauffør i at
parkere er en relativt ny ide. Det er blevet
forsket tidligere, men det er først for ny-
ligt at bilproducenter er begyndt at sælge
implementeringer af det med deres biler.
Dette projekt forsker i brugen af fire ka-
meraer med fish-eye linser til at produ-
cere et 360 fugleperspektiv. Den primære
fremgangsmåde er baseret på at rette in-
put billederne ved at bruge kamera kali-
brering, justere de fire billeder til et fælles
plan og sammensætte til et enkelt billede.
Den anden fremgangsmåde er baseret på
at projektere input billederne direkte på
semi-sfæriske overflader i et virtuelt mil-
jø for at skabe det endelige billede. Resul-
taterne fra den primære fremgangsmåde
viste at det er muligt at skabe et 360 fug-
leperspektiv kun ved brug af fire kame-
raer med fish-eye linser. Det resulterende
sammensatte billede menes at være nyt-
tig for en chauffør, da det dækker om-
råder der ellers ville være blinde vinkler
hvis man kun brugte vinduer og spejle.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale med

forfatterne.
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Chapter 1

Introduction

For the purpose of making cars and other vehicles more secure for the drivers
and pedestrians, in the past rear-view cameras have been added especially to large
cars and trucks to let the driver see areas that would be blocked otherwise. More
recently some car manufacturing companies (and third-parties) have developed
systems that gives the driver the opportunity to see most if not all the cars sur-
roundings, even in traditional blind-spot areas.

There are different ways of covering a large area with cameras. You could have
many regular cameras and combine/stitch their images together into one. You
have a single moving camera and combine the images taken at different angles.
Finally you could have a few wide angle lens cameras that are able to cover the
entire 360 view. For the use case of vehicles it would not be practical to use neither
many regular cameras or a single moving camera, as it would be both expensive
and difficult to cover the entire wanted area.

The problem with using few cameras with wide angle lenses is that the lens distorts
the image a lot in order to get such a wide view (distortion is worse the further
an object is from the optical centre in the image). Therefore camera calibration is
needed to undistort the images taken with each camera.

The goal of this project is to create a bird’s-eye view of the test set-up provided by
STMicroelectronics, which has four fish-eye lens cameras mounted on it. The four
individual images should be combined into a single image, covering the full 360
degrees surrounding the car.

Different solutions were investigated throughout the project’s period and in the
end a main approach was chosen along with a secondary approach.

This project continues the work on the 360CarView project done in [1].

1



2 Chapter 1. Introduction

In Chapter 2 the background knowledge needed in order to understand all aspects
of the following chapters is explained, in Chapter 3 the State of the Art relevant
to this project will be examined, in Chapter 4 the main approach and secondary
approach will be explained, both in idea and implementation, in Chapter 5 the
results from the two approaches is shown and discussed, along with a comparison
to the results of other similar projects, and finally in Chapter 6 the results and
project in general will be discussed and concluded upon.

1.1 Problem Description

In this section some of the problems that the proposed solution would fix are
explained.

As explained in detail in [7], a driver in a car can not see everything around
him/her. This is because parts of the car’s frame is blocking the driver’s view.
All cars are required to have mirrors that help prevent some of this by letting the
driver see behind the car and to the sides, but not all areas are covered.

Especially behind the car, the back hatch covers up a large region making it dif-
ficult if not impossible to see some objects, pets, or most importantly people and
children. An example of the blind-zones for a car can be seen in Figure 1.1 includ-
ing the area behind the back hatch. The rear-view blind-zone is dependent on the
driver’s height, in [7] they measured how far back a 0.71m tall traffic cone needed
to be for a driver to see it. In the same four-wheel drive vehicle, for a 1.73m tall
driver the distance was 13.4m, while for a 1.55m driver the distance was 21m.

(a) (b)

Figure 1.1: Images showing the blind-zones of a car, (a) top-down and (b) side-view also showing
how using a wide-angle lens camera could help the driver gain more visibility. [7]

The goal of this project is to create a 360 bird’s-eye view of the cars surroundings
in order to assist a driver in a parking scenario, both to make it easier to park, and
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more importantly to make it safer both for driver and his/her surroundings as the
driver can see if something or someone is in the way of the vehicle.

1.2 System Overview

The system used for this project has been supplied by STMicroelectronics, it is a
rigid set-up with four cameras mounted as seen in Figure 1.2, the size of the set-up
is close to that of a large RC car, and can be seen as a small scale version of an
actual car.

(a) (b)

Figure 1.2: The cameras mounted on the set-up, (a) top-down making it possible to see the camera
positions, and (b) side view making it easier to see the different angles at which the cameras are
pointing downwards.

The four cameras are pointing towards front, rear, left, and right (90 degrees apart)
and are pointing slightly downwards with different angles. The cameras are some-
what low in resolution with 512x512, and because they use circular fish-eye lenses,
only the inner circle contains information (making the total usable pixel count
much lower). The cameras stream images through UDP, how this works can be
found in Appendix A. The set-up is powered by an external power-supply run-
ning at around 13.5V which is in the area of what a car battery will output, which
makes sense given the fact that the goal is that this can be used for cars.

A 5-port ethernet switch is used to connect the four cameras with a PC.
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1.3 Project Delimitation

Most of the delimitations of the project comes from the supplied hardware set-up,
which is described in Section 1.2.

Even though they can lead to complications, this project addresses the use of fish-
eye (ultra wide angle) lenses, this is what is wanted from the company who sup-
plied all the hardware (STMicroelectronics). Their goal is to create a surround view
using as few cameras as possible while still maintaining a usable result.

This project will focus mainly on what is possible with only four fish-eye lens
cameras, as that is what is present on the provided set-up for the project.

The project will be focused on creating a top-down view of the car, as this is seen as
the most helpful view for the user when parking. Adding a view from the front or
rear camera might be useful as well, but that would be a trivial extra to implement,
and was therefore chosen not to focus on.



Chapter 2

Background Knowledge

In this chapter the theory deemed necessary for the reader to properly understand
the later chapters will be explained. This is general theory and later implementa-
tions might deviate slightly from this.

2.1 Fish-eye Lenses

In this section the lenses equipped on the cameras used for this project will be
explained. Most cameras use lenses which produce images that will look natural
under normal conditions when viewed by a human, this means for example that
straight lines look straight, this is done by having the focal length be around the
same length as the diagonal of the sensor in the camera.

(a) (b)

Figure 2.1: Two images taken from the same position using (a) a standard camera lens from smart-
phone, and (b) one of the fish-eye lens cameras used in the project.

The lenses used for this project however is what is called fish-eye lenses, which
have ultra wide viewing angles. There are two main types of fish-eye lenses, full

5



6 Chapter 2. Background Knowledge

frame which contains no borders, but has a lower Field of View (FOV) in the
vertical direction than the horizontal direction. The other type is called circular
fish-eye lenses which is what is used for this project, they are mapped spherically
making the image “round” in contrast to standard rectangular images. An example
showing the differences between a normal lens and a circular fish-eye lens can be
seen in Figure 2.1.

Fish-eye lenses are not often used for general photography, but has its applications
where a wide angle is needed and the cost should be effective, not that fish-eye
lenses are cheap as such but the alternative would be multiple cameras which
would in most cases be much more expensive. Examples of usages is meteorology
for monitoring cloud formations, or in video surveillance in order to cover a larger
area.

The wide angle is obtained by using multiple lenses of different shapes, an example
can be seen in Figure 2.2. This illustration shows how the light bends from one
lens to the other until finally reaching the sensor.

Figure 2.2: An example of how a fish-eye lens is constructed, and how the light bends through the
individual lenses. [16]

The wide angle lens causes straight lines to bend. This effect is called barrel dis-
tortion and is worse the further from the optical centre an object is, which can be
seen from the fish-eye lens example in Figure 2.2. Camera calibration is a way of
rectifying this effect, which is explained in Section 2.2.

2.2 Camera Calibration

In most Computer Vision (CV) related subjects it is important that there is as little
distortion as possible in the images that are being processed. Because the images
from the fish-eye cameras used in this project are heavily distorted, it is important
to rectify them as best as possible. There are many different ways of doing this, the
simplest approaches attempt to stretch the image by different factors, stretching
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the outer edges more than the centre area, approaches like this can be useful in
some cases, but because it only “guesses” how to produce an output, a more ad-
vanced approach is more commonly used for this. Camera Calibration attempts to
model the camera’s lens and sensor parameters (intrinsics) along with the camera’s
position and viewing angle (extrinsics). The intrinsics are camera and lens depen-
dent, and therefore there is only one set of intrinsic parameters for each camera,
whereas there is a set of extrinsic parameters for each image. The main source of
information used for this Section is [2] and to a lesser degree [18].

The most common type of lens distortion is radial distortion which is very promi-
nent in the cameras with wide viewing angles such as the ones used in this project.
Radial distortion causes things to look as if they curve outwards from the optical
centre of the image and this effect will increase the further away from the centre
it is. An illustration of the cause of radial distortion can be seen in Figure 2.3(a).
The second most common type of distortion is called tangential distortion, which
occurs because of faults in manufacturing if the lens is not precisely parallel to the
imaging sensor. An illustration of the cause of tangential distortion can be seen in
Figure 2.3(b).

(a) (b)

Figure 2.3: The two most common types of lens distortion, (a) radial and (b) tangential [2].

As this project will contain several Computer Vision (CV) methods in order to
get the wanted final product of a bird’s-eye view, it is vital to rectify the image,
and remove the severe radial distortion that fish-eye lenses produce. The distor-
tion changes how objects look depending on how far from the optical centre they
are, which makes for aligning the four images difficult, and if the image is not
undistorted the feature matching part of image stitching will be poor.

There is no radial distortion in the optical centre of an image and it will increase
with the distance to the optical centre. Standard lenses have a low amount of
distortion which can in most cases be completely disregarded, but if camera cali-
bration was deemed necessary, it can be characterized by just the two first terms
of a Taylor series expansion around r = 0, these two terms are called k1 and k2, but
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for lenses with higher amounts of distortion like the ones used in this project, the
third term k3 is also needed. Generally points can be corrected using the following
two equations:

xcorrected = x(1 + k1r2 + k2r4 + k3r6)

ycorrected = y(1 + k1r2 + k2r4 + k3r6)
(2.1)

Where x and y are the original coordinates on the image, and xcorrected and ycorrected
are the corrected coordinates.

Tangential distortion can similarly be represented by terms of a Taylor series, the
two terms are called p1 and p2, the correction of tangential distortion can be done
as shown in the following equations.

xcorrected = x + (2p1y + p2(r2 + 2x2))

ycorrected = y + (p1(r2 + 2y2) + 2p2x)
(2.2)

This means that there are five coefficients that describe the general distortion (k1,
k2, k3, p1, and p2).

Along with these, the focal length of the camera ( fx, fy) and the optical centre (cx,cy)
has to be found as well. These are represented by a 3x3 matrix:

camera matrix =

 fx 0 cx

0 fy cy

0 0 1

 (2.3)

This means that there are nine unknowns that needs to be found, this is what
camera calibration does, and once they have been estimated the images can be
undistorted/remapped using these parameters.

There are many different approaches to camera calibration, most of them involving
presenting a known pattern to the camera. The approaches can in general be split
up into four categories as described in [18].

- 3D reference object based calibration: Here the used pattern is a 3D calibra-
tion object, which is presented to the camera and used to calibrate, normally
consisting of three orthogonal planes. Requires expensive apparatus and set-
up.
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- 2D plane based calibration: Perhaps the most used, here a single pattern
plane is presented to the camera. A simple approach that does not require
expensive materials, as anybody can print out their pattern of choice.

- 1D line based calibration: Here the calibration object consists of a number
of collinear points. Usually this is done with a stick containing three or more
easily findable points with known distances between each other. A quite
cumbersome approach to implement.

- Self-calibration: This approach is far more mathematically advanced, as
there is no presented object. Instead the camera is moved in the scene and
the parameters are estimated using only the image information. This is a less
intuitive and more difficult approach to implement.

The calibration object chosen here is the 2D object, because it is the most standard
way, and because the calibration object can simply be printed out (and put on a
rigid surface). In this category there are different options for the pattern to be used,
the most used is a chessboard or circle grid pattern, an example of both can be seen
in Figure 2.4. For this project the chessboard pattern was chosen. To calibrate the
camera, the pattern should be presented at various angles and distances to the
camera.

(a) (b)

Figure 2.4: Examples of calibration patterns, (a) chessboard pattern and (b) circle grid pattern.

In each image one can then search for and find corners (intersections between
the black squares) to get a set of 2D points for each image. Along with these
image coordinates, a set of object coordinates in 3D space must be specified as
well. For ease of calculation one can say that the z-value is always 0, to justify
this it is important to note that the images can either be seen as a static camera
taking images of a moving calibration object, or that the camera moves around the
object. This would, with respect to the pattern, result in the same. Another thing
to note is that the squares in the chessboard can be said to be 1 “unit” in width and
height, this will output a camera matrix that also uses this “unit” and can easily be
changed to whichever side length the squares have. From this you can generate a
set of 3D points as follows:
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(0, 0, 0), (0, 1, 0), (0, 2, 0), . . . ,

(1, 0, 0), (1, 1, 0), (1, 2, 0), . . . ,

. . .

(Bwidth − 1, Bheight − 1, 0)

(2.4)

Where Bwidth and Bheight are the number of intersections between squares across
the width and height respectively (using the pattern in Figure 2.4(a) it is 8x6),
by multiplying with the actual side length of the squares in cm, all the resulting
output values will also be in cm.

From this two sets of coordinates have been found; 2D coordinates in the image
(see Figure 2.5) , and 3D coordinates in the grid. These coordinates correspond to
each other, it is important that the points are in the same order, so that the right
points are used together.

(a) (b) (c)

Figure 2.5: Chessboard corners found in three images from the rear camera on the set-up.

For each view of the pattern, a homography matrix can be calculated, a homogra-
phy can be used to map from one plane to another.

An equation can be created that describes an image point q̃:

q̃ = sMWQ̃ (2.5)

Where q̃ is an observed point on the image plane, Q̃ is a point on the object plane,
s is a scale factor, M is the camera matrix of intrinsic parameters, and W =

[
R t

]
where R and t are the rotation matrix and translation vector for the current view.

Because all z values are 0 in the object coordinates, the third rotation vector of R
can be disregarded:
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x
y
1

 = sM
[
r1 r2 r3 t

] 
x
y
0
1

 = sM
[
r1 r2 t

] x
y
1

 (2.6)

From this the homography matrix H that maps from the object point plane to the
image point plane can be described as H = sM

[
r1 r2 t

]
, where q̃ = sHQ̃′. Note

that Q̃′ is only defined in the observed plane, whereas Q̃ is defined in all space.

The homography matrix H describes the relation between the points on source and
destination image planes as seen in the following equations:

pdst = Hpsrc, psrc = H−1 pdst

pdst =

xdst
ydst
1

 , psrc =

xsrc

ysrc

1

 (2.7)

One of the things to consider when doing camera calibration, is how many images
are needed for each camera. Technically it would be enough with only a couple of
images [2], but it is recommended to use at least ten, because there could be noise
in the images, and more images will reduce the effect of this.

If H is split into three 1x3 vectors we get the following equation:

H =
[
h1 h2 h3

]
= sM

[
r1 r2 t

]
(2.8)

from this, three separate equations can be extracted:

h1 = sMr1 or r1 = λM−1h1

h2 = sMr2 or r2 = λM−1h2

h3 = sMt or t = λM−1h3
(2.9)

Where λ is 1
s . The rotation vectors are orthogonal to each other, and because the

scale factor has been separated they are orthonormal as well, meaning that their
dot product is 0 and magnitudes are the same. This means that:
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rT
1 r2 = 0 (2.10)

Using the rule that for any vectors a and b we have (ab)T = bTaT, if r1 and r2 are
substituted using what is stated in equation 2.9 the first constraint can be derived:

hT
1 (M−1)T M−1h2 = 0 (2.11)

The magnitudes of the two rotation vectors are known to be equal, meaning:

||r1|| = ||r2||, or rT
1 r1 = rT

2 r2 (2.12)

Again, substituting r1 and r2 the second constraint can be derived:

hT
1 (M−1)T M−1h1 = hT

2 (M−1)T M−1h2 (2.13)

(M−1)T M−1 is set to B, which have a general closed-form solution which is:

B = (M−1)T M−1 =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 =


1
f 2
x

0 −cx
f 2
x

0 1
f 2
y

−cy

f 2
y

−cx
f 2
x

−cy

f 2
y

c2
x

f 2
x
+

c2
y

f 2
y
+ 1

 (2.14)

If B substitutes (M−1)T M−1 in the constraints, it can be seen that both constraints
are of the same general form hT

i Bhj. It can be seen in 2.14 that B is symmetric,
which means that the unique values can be taken out to form a six dimensional
vector b:

hT
i Bhj = vT

ijb =



hi1hj1
hi1hj2 + hi2hj1

hi2hj2
hi3hj1 + hi1hj3
hi3hj2 + hi2hj3

hi3hj3



T 

B11

B12

B22

B13

B23

B33



T

(2.15)
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When K images of the pattern has been acquired, VT
ij is a 2Kx6 matrix, if K ≥ 2

there is a solution (though ten or more images will be better and more robust to
noise). From the values of B the intrinsic parameters can be extracted using the
following equations:

fx =

√
λ

B11

fy =

√
λB11

B11B22 − B2
12

cx = −B13 f 2
x

λ

cy =
B12B13 − B11B23

B11B22 − B2
12

(2.16)

Where λ = B33 −
B2

13+cy(B12B13−B11B23)
B11

.

Then the extrinsic parameters can be computed using the the equations in 2.9:

r1 = λM−1h1

r2 = λM−1h2

t = λM−1h3

(2.17)

The third rotation vector can, because the vectors are orthogonal, be calculated
simply by taking the crossproduct between the two others r3 = r1 × r2.

The final part of the camera calibration procedure is to calibrate the distortion
coefficients, as mentioned earlier there are three for radial distortion (k1, k2, and
k3), and two for tangential distortion (p1 and p2).

The observed points in an image are because of distortion in the wrong location.
Let (xp,yp) be the location of a point if the camera was perfect, and (xd,yd) be that
point’s distorted location.

[
xp

yp

]
=

[
fx

XW

ZW + cx

fy
XW

ZW + cy

]
(2.18)

Using the results of the camera calibration, to substitute into:
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[
xp

yp

]
= (1 + k1r2 + k2r4 + k3r6)

[
xd
yd

]
+

[
2p1xdyd + p2(r2 + 2x2

d)

p1(r2 + 2y2
d) + 2p2xdyd

]
(2.19)

This will produce a large number of equations (because of all the input images) to
be solved in order to find the distortion coefficients.

2.2.1 World Coordinates

The previously mentioned calibration deals with the camera itself and its lens.
However because this is a multi-camera set-up, it could be helpful to use extrinsic
parameters to find the cameras’ positions in the real world as well, which describes
the rotation and translation (position) of the camera in world space. For this some
assumptions/definitions must be set up, some assumptions of the camera is that
they are pointing 90◦ apart, and they are placed in the world coordinate system as
seen in Figure 2.6.

Figure 2.6: World coordinate system, note that the z-axis is pointing upwards according to the right-
hand rule.

From this it can be said that the yaw angle (Rx) is equal to the values shown in
Table 2.1.

Moreover it is assumed that all four cameras have a roll angle of 0◦, if they were
different from zero the cameras would be tilted. Then what is left to be found is
the pitch angle, which must be calculated.
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Camera Yaw angle
Back 0◦

Right 90◦

Front 180◦

Left 270◦

Table 2.1: Yaw angles of the four cameras.

The approach for finding this is that if a calibration pattern is placed in front of
the camera lying flat on the ground/surface, its yaw and roll angles are 0◦ and its
pitch angle is 90◦. So in the calibration procedure, a rotation and translation vector
can be estimated which describes how the pattern is oriented in the image, or if
you think of it the other way around, how the camera is positioned in order to get
the image at that angle.

As mentioned earlier the object coordinates are all defined as zero on the z-axis,
in the calibration these coordinates are seen as the “world coordinates”, lets call
them object coordinates though, to not confuse them with the world coordinates
as shown in Figure 2.6. So the rotation and translation vectors from each view
describes the camera position with respect to the object world coordinate system.

So by physically measuring the distance in the x-axis and y-axis from the object
world coordinate origin to the global world coordinate origin (the origin in object
world is the top left corner of the calibration pattern). For example the position
in world coordinates of the object world coordinate system’s origin for the front
camera was measured as being (7.2, -44.3, 0) measured in cm, again for simplicity
the z value is set to zero as this makes the surface/floor surrounding the set-up all
zero in the z-axis.

Then if the rotation vector is transformed into a standard 3x3 rotation matrix using
for example Rodrigues’ formula, the position of the camera in object coordinates
can be found by:

camera position = (RT)−1 ∗ t (2.20)

Where R is the rotation matrix and t is the translation vector. This gives (for the
front camera) (7.38; 18.72; -11.06) in the object coordinates. And given that the
position of the origin is known the position of the cameras can be approximated.
Though the calculation will be slightly different for each of the cameras as the
object coordinate systems are all rotated differently. This can be seen in Figure 2.7.
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Figure 2.7: Top-down view of the object coordinate systems placement in the world coordinates (note
that according to the right-hand rule, except world coordinates, all z-axes point downwards).

From this it can be seen that the axis positions of the front camera can be calculated
as:

f ront_cam_world_x = origin_object_x− f ront_cam_object_x

f ront_cam_world_y = origin_object_y + f ront_cam_object_y

f ront_cam_world_z = origin_object_z− f ront_cam_object_z

(2.21)

Whereas the equations change a bit when for example the left camera axis positions
are calculated, as it is rotated by 90 degrees (so the x-axis of one corresponds to
the y-axis of the other and vice versa):

le f t_cam_world_x = origin_object_x− le f t_cam_object_y

le f t_cam_world_y = origin_object_y− le f t_cam_object_x

le f t_cam_world_z = origin_object_z− le f t_cam_object_z

(2.22)

Now all positions are known, the next step is to extract the rotation/pose of the
camera. This can be done using the rotation matrix. By itself this does describe the
rotation of the calibration object in the camera view (as mentioned earlier), so that
means that the matrix should be transposed in order to explain the rotation of the
camera according to the calibration object.
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In [5] it is explained how to extract euler angles from a rotation matrix, this can
often result in either imprecise results or issues with Gimbal Lock which means
that for example the second rotation could align the first and third making the
rotations not unique, this method attempts to avoid this by first calculating the
first and second rotations and then calculate what the third angle should be in
order to match the target rotation (from the matrix). Given the rotation matrix:

M =

M00 M01 M02

M10 M11 M12

M20 M21 M22

 (2.23)

The equations needed to calculate the euler angles are:

θ1 = atan2(m12, m22)

c2 =
√

m2
00 + m2

01

θ2 = atan2(−m02, c2)

s1 = sin(θ1)

c1 = cos(θ1)

θ3 = atan2(s1m20− c1m10, c1m11 − s1m21)

(2.24)

Where θ1, θ2, and θ3 are the three rotations, which of cause can easily be calculated
from radians to degrees.

Thereby all the information that is wanted about the cameras have been found,
the intrinsic parameters: focal length, optical centre, and distortion coefficients
along with extrinsic parameters: the position of the camera in world-space and its
pose/pointing direction.

2.3 Image Stitching

In many applications it is useful to use multiple images to create a single wider
view composite image, this is called stitching.

The general approach of image stitching is to find the same part of the same object
in both camera’s images, and then align those with each other, doing this will result
in having an area with redundant data, here an approach is needed to choose what
the pixel values of the resulting image should be. There are many ways of doing
this, most are variations on the two listed here.
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- Superimposing: Align the matching interest points but only use the pixel
values from one of the cameras in the overlapping region. This will in most
cases produce poor results on the boundary between the region and the sec-
ond image which was not used in the output of the overlapping region. This
boundary could be minimized by smoothing the transition between the two
images.

- Blending: Align the matching interest points and blend the two images in
some way. The blending is always done using x of image 1 and 1.0-x of image
2, sometimes x is set to 0.5, sometimes it is useful to interpolate, so that it
increase/decrease from one image to the other in order to have a smooth
transition.

Both of these compositing methods will be investigated.

2.3.1 Scale-Invariant Feature Transform

The goal of SIFT is to find stable and strong features, meaning that they should
be robust with respects to scale differences, rotations, and illumination changes.
There are many steps to go through to create a SIFT scale space, which will be
explained in this section.

Octave Generation

Firstly as the features need to be scale invariant, a scale space has to be created.
This is done by downscaling the image a number of times, for example by halving
the size of the image. This is however not the only way the SIFT scale space is
created, a second scaling is done by the use of blurring using Gaussian kernels.
A number of different Gaussian kernels are being applied to each image in the
original scale space. an image and all its blurred versions is called an octave,
where the first octave is the original image and all of its blurred counterparts, the
second octave is the first downscaled image and its blurred versions and so on.
This can be seen in Figure 2.8.
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Figure 2.8: How the SIFT algorithm creates the octaves in the scale space. [9]

The equations used to blur/smooth the images in the octave is:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

G(x, y, σ) =
1

2πσ2 e
x2+y2

2σ2
(2.25)

Where I is the original image, L is an image with Gaussian blur applied, G is the
Gaussian operator, x and y are image coordinates, and σ is the scale of the blurring,
so a greater value of σ would mean a more blurred image L. The number of octaves
and scales per octave needed depends on the original image resolution.

Keypoint Localization

When all the octaves have been created, keypoints can be extracted in each octave.
This is done using Difference of Gaussians (DoG) which means that image 1 and
2 are subtracted from one another, image 2 and 3 and so on, this can be seen in
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Figure 2.9(a). Then the DoGs are searched for extrema, if a point is the maximum
or minimum within its 26 neighbourhood pixels (see Figure 2.9)(b)) it is considered
an extrema and used as a keypoint (some filtering is done to remove edge-points).

(a) (b)

Figure 2.9: SIFT keypoint finding, (a) the principles of DoG and (b) maxima localization. [15]

After localizing these extrema keypoints, a dominant orientation is assigned to
achieve invariance to rotations. This is done by taking a neighbourhood surround-
ing the keypoint (the size differs depending on the scale), wherein the gradient
direction and magnitude is calculated. A 36-bin histogram is created covering the
total 360 degrees. The histogram is weighted by the gradient magnitude, and the
highest peak is used as the dominant orientation (some approaches involves taking
the orientations that are above 80% of the peak to create multiple keypoints that
share location and scale, but has a different rotation).

Generating SIFT Features

Then the keypoint descriptors are created. This is done by using a neighbourhood
region of 16x16 around the keypoint, so each of them contains a 4x4 subregion.
In each subregion the gradients and their magnitudes are collected into an 8-bin
histogram (points closer to the keypoint are weighted higher), resulting in 16 subre-
gions each having 8 histogram values, which makes for a 128-dimensional feature
for each keypoint, a simplified representation of the SIFT feature generation can be
seen in Figure 2.10.
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(a) (b) (c)

Figure 2.10: The stages of SIFT feature generation, (a) finding the dominant direction, (b) finding
16x16 pixels around keypoint, and (c) putting this into histogram-bins to create the 128-dimensional
feature vector. [12]

SIFT Matching

Having produced feature vectors for two images, the next approach is to search
for matches between them. There are different ways of doing it, either brute-force
which can be inefficient with a large number of features, or as described in Lowe’s
original SIFT paper [11], a neighbourhood search. The search method used in [11]
is called Best-Bin-First (BBF) which searches for the closest neighbour with a high
probability of being a match.

After that it is important to filter out bad matches. This can be done using a ratio
test, if the ratio between the best match and the second-best match is below a
threshold the match can be rejected, in Lowe’s paper [11] he suggests using 0.8 as
the threshold, as he found that it filtered out around 90% of the incorrect matches,
while only disregarding 5% of the correct matches. This can be seen in Figure 2.11,
where matches between two overlapping images are shown before and after ratio
test.

(a) (b)

Figure 2.11: Sift matching, (a) all points matched, and (b) points matched after ratio test with thresh-
old set to 0.8.
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2.3.2 Image Blending

With features matched between two images, they can be stitched together into one
composite image. The first step needed is to map one image to the other using the
matched points to create a homography matrix. The homography matrix should
be formed so that a point from the source image can be mapped to the destination
image (and vice versa):

pdst = Hpsrc, psrc = H−1 pdst (2.26)

Once one of the images has been warped to the other, they can be blended together.
The simplest way it to average the two images this way:

Pstitched = 0.5 ∗ Pimage1 + 0.5 ∗ Pimage2 (2.27)

This would however result in the pixels that don’t overlap only have half the pos-
sible values (can only go between 0 and 127) while in the overlapping region the
resulting pixel are influenced by both and therefore have a full range (0 to 255). A
result of this can be seen in Figure 2.12.

(a) (b) (c)

Figure 2.12: Image blending, (a) image 1, (b) image 2, and (c) average blending.
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A better approach would be to only average blend where the images overlap as
seen in Figure 2.13.

Pstitched = Pimage1 Pstitched = 0.5Pimage1 + 0.5Pimage2 Pstitched = Pimage2

Figure 2.13: Blending is done differently for the three areas, averaging where there is overlap

The result of using this approach can be seen in Figure 2.14.

(a) (b) (c)

Figure 2.14: Image blending, (a) image 1, (b) image 2, and (c) average blending.

There is still slightly visible borders in the stitched image though, and there are
ways of blending that is better at reducing that by dynamically choosing the weight
of the blending (instead of having it always be 0.5).

This way images can be stitched together to form a single composite image. Some
issues might arise during implementation of this, due to the cameras being posi-
tioned differently and therefore objects in view will look vastly different making it
difficult to match features.
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2.4 Projection

Image projection is a Computer Graphics (CG) method that maps a flat image onto
a surface, it can also happen the other way around, though that is not relevant to
this project.

If a panorama that covers 360x180 degrees has been made (some of it can be empty,
for example the top half would be mostly irrelevant to the driver in a parking
situation) there are different ways of making use of it. From an implementation
standpoint it would be easy to just show the panorama itself to the user, but this
would be confusing and unhelpful. Another idea is to use projection, which is
what this section focuses on. There are three main projection methods, though
others do exist, these three can be seen in Figure 2.15.

(a) (b) (c)

Figure 2.15: A globe as projected by, (a) planar, (b) cylindrical, and (c) spherical projection. [8]

As is evident from Figure 2.15, the planar projection is distorted in both the hori-
zontal and vertical directions (increasing with the distance to the centre), the cylin-
drical projection is distorted in the vertical direction, while spherical projection is
mostly without distortion.

Because the bird’s-eye view is the most wanted view for this project, it will make
most sense to create a spherical projection. This way the bird’s-eye view can easily
be created by moving the virtual camera above the sphere and pointing it down-
wards. The cameras do not cover the full 360x180 area, as there are parts above and
below without information. A way to remedy this is to place a car in the virtual
scene where a car would be if this was a real set-up, the missing information above
the car can be neglected as it is never relevant for the user to see. Multiple virtual
cameras can be placed together making it possible for the user to for example both
see a bird’s-eye view and the rear camera when he/she is backing the car.

An example of how the Unity3D program applies an image to a sphere, can be
seen in Figure 2.16, where a 2048x1024 image has been applied to a sphere.
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(a) (b)

Figure 2.16: Projection in Unity, (a) panorama image (b) applied as texture to a sphere (right).

So if there are missing parts of the 360 view it would be helpful to pad the missing
areas, so the image does not get too stretched, this can be done by making sure the
image is in 2:1 format, as the entire 360◦ are shown horizontally, and 180◦ vertically.

A 360x180 was found and applied to a sphere, this can be seen in Figure 2.17.

(a) (b)

Figure 2.17: Projection and viewpoint generation, (a) original panorama, (b) applied to a sphere with
flipped normals. [4]

With the image projected onto the inside of a sphere (by flipping the surface nor-
mals) it is easy to create different views of the scene by simply moving and rotating
the virtual camera in the scene, examples of this can be seen in Figure 2.18.

It can be seen in Figure 2.18(a) that this panorama is not stitched perfectly in the
lower part, but this would be the area where the virtual car would be placed and
so would not matter, as the rest looks quite good.
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(a) (b) (c)

Figure 2.18: Projection and viewpoint generation, (a) top-down view in the scene, (b) rear view in
scene, and (c) front view in scene. [4]

It is impossible to create anything as close to the quality of this panorama with a
set-up like the one used in this project (low resolution, distorted images, etc.). But
it can be seen here, that if a panorama was created, it would be easy to generate
the wanted views as seen in Figure 2.18.



Chapter 3

State of the Art

In this chapter the previous work done in similar areas and projects with simi-
lar goals will be examined and explained. The related projects have been chosen
because of their good results, and interesting use of methods.

In [18] the standard camera calibration approaches are explained. In [2] the maths
behind OpenCV’s camera calibration functionalities are explained. In [19] they
undistort fish-eye lens images using two pairs of vanishing points from a single
image of a chessboard calibration pattern to estimate an initial guess on the camera
parameters, followed by a minimization problem to increase the precision.

In [6] they stitch a 360 degree video using four fish-eye cameras. The result is
a cylindrical projection, where they reduce the effects of ghosts by using seam
estimation. In [3] they made a dynamic stitching program that could automatically
stitch any number of images, no matter which order they were fed to the system,
or if some of the images did not match, or if there are multiple stitching “scenes”
in the batch of images.

3.1 Bird’s-Eye View Vision System for Vehicle Surrounding
Monitoring

In this paper [10], they have the same goal as this project which is to create a bird’s-
eye view for use in cars and other vehicles. Their set-up is different though, as they
have six fish-eye lens cameras mounted on a real to-scale car.

The approach they use is firstly to calibrate all the cameras, and undistort them to
get perspective images instead of the input fish-eye images. The next step is to do
planar alignment to warp the images from their original view to a bird’s-eye view.

27
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When objects that are not coplanar to the ground surface are present, they get
heavily distorted when the perspective is changed. When one of these objects are
placed so that it crosses between two images, it will be misaligned as can be seen
in Figure 3.1(d).

To fix this and to find out which input image should contribute to each pixel in the
composite image a seam is estimated between each neighbouring pair of images.
To avoid ghosting and blurring along the seams, Dynamic Image Warping (DIW)
is used to move the images so that one side of the seam align as best as possible to
the other side.

To remove the effect of images having different exposures, a weighted blending
approach is used to stitch the images along their seams.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Approach and results from [10], (a) optimal seams, (b) composite image of the field
for registration, (c) composite of ground-level objects, (d) composite of non-ground-level objects, (e)
composite after registration along seams, (f) composite after compensating exposure and blending.

The advantage of this system is that the end result looks really good, with near
perfect alignment because of the Dynamic Image Warping (DIW) applied along
the seams between each neighbouring pair of images.

The disadvantages of this project is that it uses six cameras, instead of four, which
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is the minimum (a single 360 fish-eye camera is not feasible in a vehicular sce-
nario, as there is no single position to place it on the car that would cover all the
wanted areas). This increases the price of it as a product. The system makes use
of many different approaches such as seam estimation, non-ground object detec-
tion, DIW, blending, exposure compensation, etc. which might result in it being
computationally heavy and will need more processing power to run in real-time.

3.2 A Surround View Camera Solution for Embedded Sys-
tems

The approach in this paper is similar to that mentioned in Section 3.1. A focus that
is different in this approach is that they implement it on an embedded system. The
approach revolves around three steps which is geometric alignment, photometric
alignment, and composite view synthesis [17].

In geometric alignment, the first step is to do fish-eye lens distortion correction.
After that they estimate a perspective transformation matrix for each of the cameras
in order to register them with a ground plane. They work under the assumption
that the world is a flat 2D surface.

To do the alignment a calibration pattern is placed in the overlapping region be-
tween two neighbouring cameras. They firstly make an initial “guess” of the per-
spective transformation, after which they use Harris Corner Detection to find the
pattern in both images, and then calculate a perspective transform that minimizes
the distances between the points in the two images.

Photometric alignment attempts to fix the issue with different illumination between
cameras causing the cameras’ auto white-balance and auto exposure to make ob-
jects look slightly different between cameras. They do this in the overlapping
regions, as pixels in these areas are affected by multiple cameras. What they call
a tone-mapping is computed for each colour channel in the RGB space, this map-
ping should minimize the difference between a pixel value from one camera and
its spacial counterpart from the other (neighbouring) camera.

In surround view synthesis the geometric and photometric alignments are used
to form a composite image. They choose to use alpha-blending to blend the im-
age data in the overlapping regions. The result from the paper can be seen in
Figure 3.2(b).
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(a) (b)

Figure 3.2: Surround view for embedded systems, (a) the RC car set-up, (b) the end result.

An advantage of this system as can be seen in Figure 3.2(b) is that they have really
good results in their simple test scenario.

A disadvantage would be that they work under the assumption that the world is
flat (as is their test scene), so one would assume far worse results if a non-flat object
was inserted into the scene (though they do not show it in the paper).

3.3 Nissan Around View Monitor

In efforts to increase safety for their drivers, many automotive companies continu-
ously work on new technologies to implement in their vehicles. An example of this
is Nissan who have created a product they call Nissan Around View Monitor [14].
It solves the same problem as this project aims to, it makes use of four wide-angle
cameras mounted on the rear, front, left, and right sides of the car which is similar
to the set-up used in this project (although the scale is different).

Their system can show three different things to the driver, a bird’s-eye, front, and
rear view. They have added other functionalities such as showing where the car
is headed with the current position of the steering-wheel through superimposed
lines. The bird’s-eye view contains small gaps between the cameras, so it does not
contain stitching or blending to produce the image. The alignment between the
cameras looks good, though objects that are not coplanar with the ground surface
will be stretched out and cause misalignment if the object spans multiple cameras.

The system can also do object detection if the car is moving below a certain speed,
and will prompt the user by adding a yellow frame to the image. The camera
placements, and example of how the views are displayed to the user can be seen
in Figure 3.3.
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(a) (b)

Figure 3.3: Nissan Around View Monitor, (a) camera positions on the Nissan Leaf and (b) view of
the monitor showing front and bird’s-eye view.

An advantage of Nissan’s system is that it is relatively simple, meaning that it cov-
ers the entire 360 degrees though with small gaps between the each neighbouring
image which means that they don’t loose processing time by stitching the images
in the overlapping regions. Another advantage is that they have added extra func-
tionality, such as a simple object detection system, and a secondary front/rear view
with superimposed lines showing where the car is going depending on the current
position of the steering wheel.

A disadvantage would be that there are some issues with the alignment between
the images, and some blurry parts in the image.

3.4 Discussion

Given the results from the systems described above, and their advantages and
disadvantages, the implementation(s) for this project can be chosen.

All three systems use fish-eye cameras, and undistort/rectify them using camera
calibration or similar (unknown for Nissan), it is an important step, when Com-
puter Vision (CV) approaches are being performed on the images so it is therefore
chosen to be the first part of the proposed system for this project.

Given that the goal of this project (as it is with the first two projects listed above)
is to create a single bird’s-eye view from the four input images, it is important
that they are aligned to a shared surface, so they can be combined with each other
directly. This is done using a homography matrix to warp the perspective of each
input image to align them to a plane.

Lastly the images should be combined into one, preferably the final image does
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not have any borders between the four camera images, though from a usability
standpoint it will not be vital, as long as the entire area is covered.

Though most of the focus will be on the main approach, a secondary approach will
be developed separately from the main approach. This will be based on Computer
Graphics (CG) methods in stead of CV. The idea is that each fish-eye images can
be projected directly onto a surface in a 3D environment, and if they are placed,
shaped and rotated correctly it would produce a somewhat similar result as the
main approach. The advantage of this is that once the 3D environment has been
set-up it is easy to run it in real-time.



Chapter 4

Design and Implementation

Because of issues that arise from working with fish-eye lenses as seen in [1], it was
chosen to implement two different approaches with the same main goal, which is
to create a bird’s-eye view of the scene. This chapter will explain why these two
approaches were chosen, how they work and how they were implemented. The
end results of both will be shown in Chapter 5.

Approach 1 is based on Computer Vision (CV) methods, where the images from
each camera are to be undistorted using camera calibration, aligned to a shared
ground plane, and put together into one composite image. The reason for choos-
ing this approach is that it follows the same basic procedures used by others
[10][17][14] and should be able to create a 360 view of the car’s surroundings with
reduced effects of fish-eye lens distortion

Approach 2 is based on Computer Graphics (CG) methods, where the images from
each camera are directly applied as a texture to a spherical surface, with a cam-
era directly above observing the scene. This approach was chosen because it can
potentially create the full 360 view in a quite simple way.

It is to be expected that approach 1 will create a scene that looks more natural as
it makes use of undistortion, minimizing the effect of radial distortion from the
fish-eye lenses, but the image quality will probably be lessened, as the images are
warped multiple times. Approach 2 can make the fish-eye effect smaller as well by
the use of spherical projection, but certainly not to the same extent.

Approach 1 will for each image have to do many calculations (e.g. undistortion,
warping, compositing) making it difficult to run it real-time, while approach 2 will
have no issues running real-time once the scene is set up correctly.

Both approaches are inspired by [14] (see Section 3.3), because this is a useful

33
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product for the user, even though it is not perfect. Approach 1 is largely inspired
by the approach described in [10] (see Section 3.1 )

The two approaches will both be explained, by first describing the idea behind it,
then an explanation of how it was implemented, followed by a short discussion on
the result.

Both of the approaches described here are making use of image streaming, which
makes use of the command line code described in Appendix A, the flow of this can
be seen in Figure 4.1.

Start

Stream cam 1

Start master
batch script

Stream cam 2

Stream cam 3

Stream cam 4

Image storage 
location

Figure 4.1: Flow of image streaming.

4.1 Approach 1: Planar Alignment and Composite Genera-
tion

This approach follows some similar approaches to [10], [17], and [14], which were
described in Chapter 3.

4.1.1 Design

The idea of this approach is to create a bird’s-eye view of the car where the driver
is able to all 360 degrees around the car. The flow of operations can be seen in
Figure 4.2. This section describes the full idea of the approach, though not all steps
were possible to implement, which will be seen further down.

Firstly the images are undistorted using intrinsic camera parameters to make them
from fish-eye images to perspective images. Then each image is aligned to a
ground-level plane, so they all share a common plane. Finally the images should
be stitched/combined into one image.
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Figure 4.2: Flow chart showing the different operations done in this approach.

4.1.2 Implementation

In order to do the camera calibration, the C++ library OpenCV (also available for
other programming languages) is used, as it has all the functionalities needed to
do this.

As explained in Section 2.2, a set of images of a calibration pattern at different
positions and angles must be used. From each of these images, the corners within
the pattern can be found, these are called image points. OpenCV has a function
to create an array of points given an image containing a calibration pattern which
can be seen in Listing 4.1.

127 found = findChessboardCorners ( grey , boardSize , imgp ) ;
128 i f ( found == t rue )
129 {
130 cout << " found corners in " + camera_str ing + " img " << endl ;
131 cornerSubPix ( grey , imgp , S ize ( 5 , 5 ) , S ize (−1 , −1) , TermCriter ia (

CV_TERMCRIT_EPS + CV_TERMCRIT_ITER , 40 , 0 . 0 0 1 ) ) ;
132 }

Listing 4.1: Locating chessboard corners.

In line 127, the boolean found returns true when the chessboard was found in the
image, grey is the grey-scale input image, boardSize is the number of corners in
the pattern on each axis, in this case (8,6) and imgp is the image points that are
found in the image. The corners in the image are found on pixels, so the second
function on line 131 improves the corners by finding them on a sub-pixel level.
Two examples of found points can be seen in Figure 4.3, where the corners are
marked with colours going from red to blue.

Then a corresponding set of object points are created which should be the same for
all images, these points are in 3D, but can be set to 0 on the z-axis. The points are
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(a) (b)

Figure 4.3: Example images showing the found chessboard corners.

(0, 0, 0), (0, 1, 0), (0, 2, 0), . . . , (1, 0, 0), (1, 1, 0), (1, 2, 0), . . . , (Bwidth − 1, Bheight − 1, 0).

Creating a vector containing image points from all images, and a separate vector
for object points, these can be used to calibrate each camera which can be seen in
Listing 4.2.

116 f l o a t rms = f i s h e y e : : c a l i b r a t e ( o b j e c t P o i n t s , imagePoints , image_size ,
cam_matrix , d i s t _ c o e f f s ,

117 rvec , tvec , f i s h e y e : : CALIB_RECOMPUTE_EXTRINSIC | f i s h e y e : :
CALIB_CHECK_COND | f i s h e y e : : CALIB_FIX_SKEW ) ;

Listing 4.2: OpenCV fish-eye camera calibration function.

This function takes the object points, image points and size of the original image as
input, and outputs a camera matrix which contains intrinsic parameters, distortion
coefficients, and lastly rotation and translation vectors for each of the images.

102 f i s h e y e : : undistortImage ( img , dst , cam_matrix , d i s t _ c o e f f s ,
cam_matrix , S ize ( ) ) ;

Listing 4.3: OpenCV fish-eye undistortion function.

The function in Listing 4.3 undistorts the input image img and outputs an undis-
torted image dst using the previously calculated camera matrix and radial distor-
tion coefficients. An example of this can be seen in Figure 4.4.

During implementation it was found that the undistorted image had lost too much
of its original FOV, meaning that there was no overlap, so the result would not
cover the entire 360 degrees. Alternatives to traditional camera calibration was
looked into, but it was found that because these other approaches only guessed
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(a) (b)

Figure 4.4: Undistortion using camera calibration, (a) input fish-eye image, (b) output undistorted
perspective image.

how the image should be rectified, and does not model it like camera calibration,
it did not give proper results.

Luckily it was discovered that OpenCV has extra functions for this, which can be
seen in Listing 4.4.

120 new_cam_matrix = getOptimalNewCameraMatrix ( cam_matrix , d i s t _ c o e f f s ,
image_size , 1 . 0 , S ize ( ) ) ;

Listing 4.4: Estimating the "new" camera matrix.

This line attempts to estimate what the secondary camera matrix should be, as
could be seen in Listing 4.3 cam_matrix was used twice. Instead the secondary
camera matrix should be substituted instead of the second usage. However because
of the heavy distortion the function in Listing 4.4 could not properly estimate
values for new_cam_matrix, and therefore it was chosen to change them by hand
instead. As mentioned earlier a camera matrix contains four main values, two
for focal length and two for optical centre. The centre should be the same as the
original cam_matrix but the focal length should be adjusted so that the resulting
undistorted image appears more “zoomed out”, though it does become more noisy
and blurry the more it is “zoomed out”. An example of the output making use of
the new_cam_marix can be seen in Figure 4.5.

it can be seen that especially away from the centre the image still looks very dis-
torted, but the FOV is better which is more important, and for the most part things
do not appear curved in the image.

Now all the images have been undistorted and made into perspective images. Then
to align all the images to a shared ground plane, the program needs to warp the
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(a) (b)

Figure 4.5: Undistortion using camera calibration, (a) without using the secondary camera matrix,
(b) using the secondary camera matrix.

images in perspective so that it appears to have been taken by a camera situated
directly above the set-up.

This is done by using the function to find chessboard corners, then creating a new
set of points in the same size, but with all distances to neighbours being equal (not
diagonally). This can be seen in Figure 4.6.

(a) (b)

Figure 4.6: Two point sets (a) found in the image and (b) new points for ground plane.

From these two point sets a homography matrix can be made that can be used to
map from one to the other. This is done using the line of code in Listing 4.5.

150 Mat H = findHomography ( imgp , newCorners ) ;

Listing 4.5: Calculating the homography matrix that maps from one plane to another.
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This homography matrix is then used to warp the image to the ground plane as
shown in Listing 4.6.

164 cv : : warpPerspective ( src , dst , H, warped . s i z e ( ) , INTER_CUBIC ,
BORDER_TRANSPARENT) ;

Listing 4.6: Warping an image using a homography matrix.

Here the input image src is warped in perspective using the homography matrix
H and saved to the output image dst.

Now all four images have been aligned to a shared ground plane, which can be
seen in Figure 4.7. It is obvious that the image for the most part looks quite bad,
however most of the image can be cut away, as it is too far away from the car to
really be relevant in a parking situation.

(a) (b)

Figure 4.7: Image from the front mounted camera, (a) input fish-eye image, (b) output undistorted
and aligned to ground plane.

From here the initial idea was to stitch the images together into one composite
image, but because a lot of the original image quality is lost especially towards
the edges where the images overlap, it was not possible to match SIFT features
accurately enough. If there were six or eight cameras instead of four, traditional
image stitching would likely be more feasible.
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For stitching both doing all the steps manually, and using a built-in set of functions
from OpenCV was looked into. Specifically the two lines in Listing 4.7 are all that
is needed to do stitching.

61 S t i t c h e r s t i t c h e r = S t i t c h e r : : c r e a t e D e f a u l t ( try_use_gpu ) ;
62 S t i t c h e r : : S t a t u s s t a t u s = s t i t c h e r . s t i t c h ( imgs , s t i t c h e d ) ;

Listing 4.7: OpenCV stitcher code using default values.

Here the Stitcher class is set up to use all its default values, try_use_gpu is a
boolean, that if true makes the stitcher try to utilize the Graphics Processing Unit
(GPU) whenever possible. The second line does all the needed steps of image
stitching, it takes the array of images imgs (needs to contain two or more images)
and returns stitched, which is the final stitched together image. It might be nec-
essary to use some non-default methods of the Stitcher class, but this was not
fully looked into.

Semi-manual stitching was also implemented, but did not perform as well as the
fully automated implementation using the Stitcher class. The steps of semi-
manual stitching revolves around using SIFT to find features, matching them, cre-
ating a homography matrix to transform one of the images to the space of the
other, warping it using the homography matrix, blending the images into one, and
maybe some extra post-processing steps to make the result look better. Most if not
all of these things can be done using OpenCV functions.

In this case where the overlap is narrow and the quality in the overlapping region
is poor, it was chosen to simply place the four images according to the cameras’
real-world position and place the front and rear images on top of the left and right
images.

Using a set of images taken with a calibration pattern in each of the overlapping
regions, the initial positions of the images were changed in order to align them
so the calibration patterns aligned best as possible with no parts repeating (being
visible in two camera images). Straight lines have been added between each pair
of neighbouring images to make it look more natural when objects moves between
them (and change appearance).

As a last step, an image of a car has been added on top of the image, to make it
look more like a commercial product, the result of that can be seen in Figure 4.8.
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(a) (b)

Figure 4.8: Composite images (a) all four planar aligned images, (b) with an added image of a car
on top of it.

4.1.3 Discussion

Flat objects in the scene are aligned very well, however when non-flat objects are
added they will be heavily stretched due to the perspective change.

There is an issue with exposure differences between the cameras, making them
appear brighter or darker than one another.

Some additional work could be done by adding exposure compensation, but also
trying to dynamically warp along the small border lines to make everything align
better along them. Something similar is done in [10] along the seams they esti-
mate.
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4.2 Approach 2: Direct Spherical Projection using Unity

This approach is an attempt to make a simple approach that works real-time while
still being useful for the driver.

4.2.1 Design

The idea of this approach is similar to approach 1, in that they both generate a
bird’s-eye view of the car’s surroundings. It is based on spherical projection, and
the flow of operations in this approach can be seen in Figure 4.9.

Start Read Camera images
Apply images as 

texture

Load new images

Are images valid?
Yes

Image location

Figure 4.9: General flow of operations in the Unity based approach.

The idea is that once a scene has been created with the required spherical surfaces,
that images can just be streamed directly to these surfaces to create the sought after
bird’s-eye view.

4.2.2 Implementation

Firstly, the wanted surfaces for this is created, the main idea is that they should be
spherical so that the shape of them will help undistort the streamed images just
from the shape itself. Because Unity does not have any functionality for creating
and modelling shapes, Blender was used for this. Two different spherical shapes
were created, a half-sphere and a quarter-sphere. The half-sphere will be the basis
of this explanation, though the same approach was used for creating the quarter-
spheres.

Firstly a sphere is created in Blender as shown in Figure 4.10(a), then half of the
circle is removed by marking and deleting their vertices as seen in Figure 4.10(b).
Lastly some of the top of the image was deleted, this is because this would be (in
the image) the furthest away area from the camera, and therefore not important.
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(a) (b)

Figure 4.10: Sphere created in Blender (a) full sphere, (b) half of the sphere deleted.

Then the texture mapping of the half-sphere must be fixed, as can be seen in
Figure 4.11(a) if it is left with standard mapping, it will keep the bottom part of the
image still there, which does not contain relevant information (in this case parts of
the set-up, in a real-world case it could be the side of the car itself). After moving
the vertices in the texture mapping, this area will automatically be excluded from
the texture when applying it (see Figure 4.11(b)).

(a) (b)

Figure 4.11: Texture mapping (a) directly onto half-sphere, (b) corrected texture mapping.
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When these surfaces have been created, the scene can be set up. To do this, two of
each of the sphere cut-outs are placed according to how the cameras are positioned
on the physical set-up. Then a script is created that is able to read the image and
apply it as a texture, this can be seen in Listing 4.8.

1 ï » ¿ v a r u r l = "file://C:/images/left/image.jpg" :
2
3 function S t a r t ( )
4 {
5 GetComponent . < Renderer > ( ) . m a t e r i a l . mainTexture = new Texture2D ( 4 , 4 ,

TextureFormat . DXT1 , f a l s e ) ;
6 while ( t rue )
7 {
8
9 var www = new WWW( u r l ) ;

10 y i e l d www;
11
12 i f (www. t e x t u r e . width == 512 && www. t e x t u r e . height == 512)
13 {
14 www. LoadImageIntoTexture ( GetComponent . < Renderer > ( ) . m a t e r i a l .

mainTexture ) ;
15 www. Dispose ( ) ;
16 www = null ;
17 Resources . UnloadUnusedAssets ( ) ;
18 }
19 }

Listing 4.8: Reading the camera stream and apply it as texture.

The first line specifies the location of the image, then in line 9, the program starts
downloading from the location, yield on line 10 specifies that it will wait until it
is done downloading, note that the www module for Unity is made for accessing
webpages, but can also access data on the computer’s drives. The if statement
checks if the image is of the correct size, which in this case is 512x512, this is
needed because the stream occasionally produces empty/invalid images. If the
image is of a valid size, it is loaded into the texture of the object the script is
attached to. The last three lines inside the loops removes the image from the RAM,
if this is not done, the RAM will overflow and the program will crash.

To get the textures to be streamed to the inside of the spheres, the normals are
flipped. The camera should be moved so that it is placed directly above the spher-
ical surfaces, and pointing downwards which can be seen in Figure 4.12. Then to
make it look more like the real world, a car is added to the scene, a model of this
was simply found in Unity’s own Asset Store.
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(a) (b) (c)

Figure 4.12: The unity scene (a) with four spherical surfaces, (b) with an added car, and (c) with an
extra camera and plane.

To add to the usability of the system it was chosen to show a secondary view to the
user of the rear camera. This was simply added by having a plane with the script to
read from the rear camera image location and, similarly as before, adding a facing
down camera directly above it. The result of this can be seen in Figure 4.12. The
final view from the cameras can be seen in Figure 4.13.

Figure 4.13: The view from the two cameras in the unity scene.

4.2.3 Discussion

This approach has some issues with mis-alignments and objects not transitioning
smoothly between camera images and the image still look distorted, but the ap-
proach can easily run real-time, and if the issue described in Appendix A with
many of the streamed images being empty/invalid was solved, the results would
be very usable in a real-world set-up. More work could be done to better the align-
ment between the camera streams in the scene, but because of the difference in
viewing direction and placement, the result will likely never be close to perfect in
this rather simple solution.





Chapter 5

Results

In this chapter the results from the two approaches described in Chapter 4 will
be presented. These results are mostly visual, and they will be used to assess the
usability and how realistic the scene is represented in the results. The resulting
bird’s-eye view will be compared to each other, along with an image taken with a
standard camera above the set-up, and lastly with results from the related projects
[10],[17], and [14] which were described in 3.

5.1 Test Scenario 1

The first scenario is different from the rest, as the set-up is not placed in a realistic
scene, but with calibration patterns in the overlapping regions instead. This was
used to verify the alignment of the four images with easily recognisable patterns,
making it straightforward to see the performance of the system in a completely flat
scenario. The four input images can be seen in Figure 5.1.

(a) (b) (c) (d)

Figure 5.1: Scenario 1 from (a) front, (b) right, (c) rear, and (d) left.

47
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The result is compared to an image taken with a standard camera facing down-
wards on the set-up which can be seen in Figure 5.2.

(a) (b) (c)

Figure 5.2: Bird’s-eye view from (a) standard camera, (b) using planar alignment approach, and (c)
direct texture mapping approach.

In this Scenario the results from the planar alignment look quite good. Even though
the image gets quite blurry towards the edges the alignment is really good with
no objects occurring twice. This is the simplest scenario to place the set-up in, as
there are no non-flat objects close to the cameras.

The results from the direct texture mapping has some issues with mis-alignments
between the images but it does keep more of the details from the original input
images than the planar alignment approach because there is no change in perspec-
tive applied to the images. The images appear curved as well, making it look as
though the car is on a hilltop.

5.2 Test Scenario 2

For the rest of the scenarios, the set-up is placed on a printed surface mimicking
a road, with pavement on both sides which is elevated to a height that should be
realistic in the small-scale scenario.

In scenario two, the set-up is placed in the middle of the road where the only non-
flat objects in the close range is the pavement. This is a very simple scenario as
well, because the small elevation will not be effected a lot by the planar alignment.
The input images for the scenario can be seen in Figure 5.3.
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(a) (b) (c) (d)

Figure 5.3: Scenario 2 from (a) front, (b) right, (c) rear, and (d) left.

The results from the two approaches can be seen in Figure 5.4.

(a) (b) (c)

Figure 5.4: Bird’s-eye view from (a) standard camera, (b) using planar alignment approach, and (c)
direct texture mapping approach.

In this scenario the result from the planar alignment approach looks quite good,
with the road and pavement having good alignments between the neighbouring
images. The outer parts of the pavement on both sides does look quite blurry
which is an issue, but given that the proposed use case for this system is for parking
assistance, it might be out of the range that is relevant in that situation.

For the direct texture mapping, the alignment looks fine between the side cameras
and the bottom camera, whereas the alignment is a bit off with the front camera.

5.3 Test Scenario 3

In the rest of the scenarios, two non-flat objects have been added to the scene. A
cardboard box which is roughly the size of the car/set-up and a paper cylinder
mimicking a pedestrian.
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In the third scenario, the box is placed directly next to the set-up’s right-hand side
only about a centimetre from the right camera, while the cylinder is placed in the
bottom-left on the pavement. The input images for the scenario can be seen in
Figure 5.5.

(a) (b) (c) (d)

Figure 5.5: Scenario 3 from (a) front, (b) right, (c) rear, and (d) left.

The results from the two approaches can be seen in Figure 5.6.

(a) (b) (c)

Figure 5.6: Bird’s-eye view from (a) standard camera, (b) using planar alignment approach, and (c)
direct texture mapping approach.

In this scenario the drawback to any system like this is very apparent. Whenever
a non-flat object is in the scene and close to one or more of the cameras, it will
get stretched almost beyond recognition. Because the box was so close to the right
camera it covers most of what the camera can see. The alignment looks good for
the most part but it is hard to judge if the right camera image aligns with the front
and back camera images, because of the box taking up all the view of the right
camera.

The result looks poor for the direct texture mapping approach with bad alignment
between the cameras.
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5.4 Test Scenario 4

The fourth scenario is close to the same as scenario three, though here the set-up
has been moved down so that the right camera is only covered by the box in half
of its vision. The input images for the scenario can be seen in Figure 5.7.

(a) (b) (c) (d)

Figure 5.7: Scenario 4 from (a) front, (b) right, (c) rear, and (d) left.

The results from the two approaches can be seen in Figure 5.8.

(a) (b) (c)

Figure 5.8: Bird’s-eye view from (a) standard camera, (b) using planar alignment approach, and (c)
direct texture mapping approach.

In this scenario it is clear that when a non-flat object covers the view of two of the
cameras, as the box does here, the alignment will not be as good with the current
approach. Another approach might be to dynamically align the images across the
line between them in a fashion similar to what they do in [10].

Again in this scenario the alignment is off for the direct texture mapping approach,
but an advantage of this approach is that the non-flat objects do not look as dis-
torted as in the planar alignment approach, because the perspective is not changed
in that way.
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5.5 Test Scenario 5

In the fifth scenario the set-up has been moved down and turned slightly so that it
is no longer placed parallel to the road. The input images for the scenario can be
seen in Figure 5.9.

(a) (b) (c) (d)

Figure 5.9: Scenario 5 from (a) front, (b) right, (c) rear, and (d) left.

The results from the two approaches can be seen in Figure 5.10.

(a) (b) (c)

Figure 5.10: Bird’s-eye view from (a) standard camera, (b) using planar alignment approach, and (c)
direct texture mapping approach.

In this scenario the planar alignment approach has issues with non-flat objects,
although the alignment along the road and pavement looks quite good.

The alignment using the direct texture mapping approach is for the most part poor,
especially for the front camera.
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5.6 Test Scenario 6

In the sixth scenario the set-up has been moved and turned further. The input
images can be seen in Figure 5.11.

(a) (b) (c) (d)

Figure 5.11: Scenario 6 from (a) front, (b) right, (c) rear, and (d) left.

The results from the two approaches can be seen in Figure 5.12.

(a) (b) (c)

Figure 5.12: Bird’s-eye view from (a) standard camera, (b) using planar alignment approach, and (c)
direct texture mapping approach.

In this scenario there is another example of non-flat object causing issues for the
planar alignment approach. The cylinder gets stretched out, and because of the
difference in viewing direction of the front camera to the left, the cylinder looks as
if it disappears in the front image, even though (as can be seen in Figure 5.11(a))
it is not in view of the front camera. The alignment of the road and pavement is
good here as well. It is obvious that there is an issue with exposure differences
between the cameras, this can be seen in the other scenarios as well, but is more
visible here, especially in the bottom-right corner where the back camera looks
over-exposed compared to the cameras that it neighbours up to.
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In this scenario the alignment using the direct texture mapping approach is bad,
with none of the neighbouring images having anything close to a smooth transi-
tion.

5.7 Test Scenario 7

In this scenario the box is placed directly in front of the set-up while the cylinder
is placed to the left near the left camera. The input images for the scenario can be
seen in Figure 5.13.

(a) (b) (c) (d)

Figure 5.13: Scenario 5 from (a) front, (b) right, (c) rear, and (d) left.

The results from the two approaches can be seen in Figure 5.14.

(a) (b) (c)

Figure 5.14: Bird’s-eye view from (a) standard camera, (b) using planar alignment approach, and (c)
direct texture mapping approach.

Here because there is a bit more distance to the box, it does not look as bad as it
did in scenario 3. But here again the exposure differences is quite obvious, the left
and right images look similar, the front looks to have a blue tint to it, while the
rear camera is slightly over-exposed.
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Again in this scenario for the direct texture mapping approach, the alignment looks
a lot better in the lower part of the image, while the top part is a bit off, though
this seems to be the scenario where the result from this approach looks best.

5.8 Comparison to Related Work

Firstly the results will be compared to the commercial product from Nissan called
Surround View Monitor (see description in 3.3), the images from their system can
be seen in Figure 5.15.

(a) (b)

Figure 5.15: Example frames from Nissan’s Surround View Monitor. Note that the dog that appears
on the right in (a) looks vastly different when it moves to the front in (b) [13].

It can be seen here that the results from this project produces similar, but slightly
better results than Nissan’s system. They also have issues with non-flat objects,
and them changing appearance when moving between cameras because of the
large change in viewing direction.

Secondly the results from the project are compared to the results from papers
with similar goals. The first is from [10] which has the title Bird’s-Eye View Vision
System for Vehicle Surrounding Monitoring (see description in 3.1), images of their
results can be seen in Figure 5.16.

(a) (b)

Figure 5.16: Result from [10]. (a) Without and (b) with a virtual fish-eye effect added.
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It can be seen that the results from this project is not quite up to the same level as
the results they got in [10]. They were able to create an image without visible over-
laps, and without objects changing appearance between neighbouring cameras.
This was achieved by dynamically warping the images across the seam between
them to align them properly. Using six cameras also helped reduce the effect that
the difference in viewing angles can have.

The last related project results to compare with is from [17] with the title A Sur-
round View Camera Solution for Embedded Systems (see description in 3.2), im-
ages of the results they obtained can be seen in Figure 5.17.

Figure 5.17: Result from [17]

While their result looks good, with no visible gaps, and good if not perfect align-
ment, it should be said that they only show results in an entirely flat scenario,
and it is unknown how it would perform with a non-flat object added to the scene,
though one could guess that it will be severely distorted and might make the align-
ment poorer if it is placed between two cameras.

From the results shown in this chapter, it is clear that the proposed system have
its advantages and disadvantages. The advantages are that the alignments of flat
or close to flat objects are quite good. In the scenarios shown above there is no
repeating objects near the set-up in the results. Close to the entire 360 view around
the car is visible to the user, with only small gaps added to show where the cameras
intersect.

A disadvantage is that non-flat object cause issues with over-stretching and mis-
alignment if they cross multiple cameras. This is to some extent a problem that is
inherent to the problem itself, and will always be present because the images will
always have to be aligned to a common surface, meaning that the perspective of
the original images will have to be changed. In [10] they attempt to minimize the
effect by trying to model the flat and non-flat objects separately. Another disad-
vantage is that there are issues with exposure/white-balance differences between
neighbouring images. This problem could be solved relatively easily by either do-
ing global exposure correction or changing it in the transitional areas between each
neighbouring pair.
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The results themselves are comparable to Nissan’s commercial product. It offers
the same general usefulness to a driver as the system proposed in [10] though the
final result does not look as good.





Chapter 6

Discussion

In this chapter some ways to improve or move the project forward will be ex-
plained. After this there will be an overall conclusion on the results and the out-
come of the project as a whole.

6.1 Future Work

In this section some ways to improve the system described throughout the report
will be mentioned.

A small improvement to the system would be to correct the difference in expo-
sure between neighbouring cameras. This could be done both on a global scale by
histogram fitting, or be done locally in the transition area between the two neigh-
bouring images. It was chosen to skip this as it was not seen as a vital inclusion.

More cameras, as shown in [10], using six cameras instead of four would result
in larger overlaps between neighbouring images in the undistorted perspective
images. The main reason that image stitching was difficult to implement in this
project was that the image quality of the calibrated images was poor towards the
edges and that objects that overlap look very different because of the 90◦ difference
in viewing angle. Using more cameras could help make stitching more practical.
Though arguments could be made that the small gaps between the cameras are
unimportant to the user.

The cameras used for this project are low resolution, running only at 512x512 or
0.26 megapixels (only about 0.2 megapixels if one takes out the areas with no
relevant data outside the image circle). If the images had a higher resolution with
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more details it would not only make the result look better, but might make it easier
to stitch the images as well.

An obvious next step is to mount the cameras either on a real car or a set-up on full
scale. It would be interesting to see how the system would perform in a real-world
scenario.

6.2 Conclusion

In the problem description (see Section 1.1 ) it was stated that the goal of the project
is to make it possible for the user to see everything surrounding the car.

From the results in Chapter 5 from the approach described throughout this report,
it can be seen that the user would be able to see everything around the car, and even
though non-flat objects such as other cars would be severely stretched/distorted, it
would still be very useful to a driver, as it covers all the blind spots he/she would
otherwise have when using only windows and mirrors (see Figure 1.1 on page 2).

There is still a slight gap between the four camera images, though this is seen as
inconsequential, as it is such a small gap that if an object was in that area, it would
also cover one or both of the cameras it is between.

Because the goal of the project was reached, it can be said as a conclusion that
the results are good enough. Though there is room for improvement, some of
still-present issues are either, in case of resulting image quality in some areas,
because of hardware limitation, or in case of non-flat objects getting stretched out,
an inherent issue present in a project such as this where perspective change is an
essential part.
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Appendix A

Image Acquisition

Given that this project makes use of a certain set-up, the acquisition of images
from the cameras can only be done in one way. The cameras mounted on the set-
up are ethernet cameras streaming through UDP (User Datagram Protocol). As
this project continues the work in [1], the same program called GStreamer is used
to connect to the stream and store images.

Gstreamer is a framework for multimedia that is based on pipelines. A pipeline is
essentially sequential software, meaning that the output of one process/function
is the input to the next, occasionally some of the processes can be run in parallel.
Since GStreamer is made for multimedia these different process could for example
be encoding/decoding, filters, etc.

So the way that images are saved using GStreamer is to set up a pipeline, in this
case a quite simple one is used, which connects via UDP to a sink and stores
it somewhere on the PC. The command for this was put into a batch file, that
opens the stream, and if the stream terminates it will restart, this can be seen in
Listing A.1.

1 cd C:\ gstreamer−sdk \0.10\ x86_64\bin
2 : s t a r t
3 gst−launch −0.10 . exe udpsrc caps=" a p p l i c a t i o n /x−rtp , media =( s t r i n g ) video ,

c l o c k r a t e =( i n t ) 90000 , encoding−name=( s t r i n g ) JPEG , payload =( i n t ) 96 ,
framerate =30/1 " port =20004 ! rtpjpegdepay ! m u l t i f i l e s i n k l o c a t i o n =C:/
images/ f r o n t /image_%%d_front . jpg

4 goto s t a r t

Listing A.1: Batch file for opening a stream from the front camera.
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Where it is important that the settings and port match the transmitter, the program
could also be gst-launch-1.0.exe if that version is used, there should not be any
difference in the functionalities in this simple example though.

A master batch file was then created, which starts all four camera streams. A
slightly altered version of the code shown in Listing A.1 was made where the only
change was location, where the image name was change from “image_%%d.jpg”
to “image.jpg”. With this change, the cameras only stream one image, which is
continuously updated instead of creating a large number of images.

One of the issues encountered when using these cameras is that they occasionally
stream images that are empty, and therefore unusable. A non-optimal workaround
to this would be to always check if the image is valid for example using the image
size, and only updating the image when the image is valid. This will however cause
the cameras to be out of sync with each other, as they will independently from each
other have empty images at random times, which will cause the resulting bird’s-eye
view to be confusing to the user.
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