
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCHOO

Nonline

effe

Mas

Johan Cl

AALBOR

OL OF ENG

ear analy

cts on co

ster of Sc

Lucian‐A

Su

ausen, As

Jun

 

RG UNIVER

INEERING 

 

ysis of re

oncrete 

cience Fin

Aurelian I

 

pervisor,

ssociate P

 

 

ne 8,2016

RSITY 

AND SCIEN

einforcem

element

nal Projec

onita 

Professor

6 

NCE 

ment  

ts 

ct 

r, PhD 





Lucian-Aurelian Ionita

School of Engineering and Science

Department of Civil Engineering

Fibigerstraede 10

Telephone: 99 40 84 84

Fax: 99 40 85 52

http://www.civil.aau.dk/

Title:

Finite-element modelling of

reinforced concrete

Project Period:

3rd and 4th Semester, Master's

Program in Structural and Civil

Engineering, 2015-2016

Members:

Lucian Ionita

Supervisor:

Johan Clausen

Issues: 3

Page Numbers: 71

Submission Date: 08.06.2016

Synopsis:

The project deals with the observation of

the e�ect of reinforcement on a concrete

element. The elements are analyzed with

both analytic and numerical approach in

order to see the e�ect of the reinforcement

on the load bearing capacities and defor-

mations.

The analytic determination of load bearing

capacities and deformations are done with

the help of a model based on the Eurocode

Standard.

The numerical model will be done with the

help of the software Abaqus.

A comparison of these two models and

their results was made and a conclusion

was carried out.
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Preface

The present project is created by Lucian-Aurelian Ionita, student of the Master's Program

in Structural and Civil Engineering at Aalborg University. The project title is "Finite

element analysis of reinforced concrete" and it has been done by the course of 3rd and 4th

semester.

Reading Guide

The report consist of an analytic and numerical analysis of concrete elements. The report

is enclosed on the Appendix CD.

In the report the source references are listed as the Harvard-method whereby the text

refers to [Surname, Year]. Books are listed with author, title, publisher, and year. Web

addresses are stated with author, title, and date.

Figures and tables are numbered with reference to chapter and an explanatory text is

shown below the �gure and above the table. The report uses numbered equations where

the numbering of the equations appears in parentheses and is placed in the right side of

the document. The numbering of the equations is likewise by chapter.
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Introduction 1
The objective of the project is a structural analysis, analytic and numerical, of

concrete elements with an uniform cross-section and simple geometry with and without

reinforcement, and compare their results. In Figure 1.1 it is seen a plain beam and in

Figure 1.2 it is seen a reinforced concrete beam.

Figure 1.1. Example of concrete beam with no reinforcement.

Figure 1.2. Example of concrete beam with rebar and stirrup reinforcement.

The main purpose is to see how di�erent types of reinforcement a�ects the bearing capacity

of the concrete elements. The analytic approach consists of calculating the strength of the

beam according to the Eurocode standard and the numerical approach will be done by

analyzing a model created with the software Abaqus. Because of the fact that concrete

is a non-linear material the analytic calculations, which are based on linear properties of

materials, will give an approximation of the real strengths. The numerical model is an

advanced 3D model which takes into account the non-linearity of the concrete properties

and it is expected to produce results closer to the behavior of the real concrete element.

The concrete elements are assumed to be simply supported. In order to simplify the

calculations a symmetry plane is used around the middle of the beam sectioning it in two

identical halves as seen in Figure 1.3.

1



Lucian-Aurelian Ionita 1. Introduction

Figure 1.3. Symmetry plane around the center of the concrete beam.

1.1 Thesis Statement

The main thesis statement of the report is:

The observation of the in�uence that reinforcement has on the bearing capacities and

deformations of concrete elements.

The bearing capacities are determined by analytic method with the help of the Eurocode.

Then they are determined again with a numerical model created in a �nite element analysis

software. Reinforcement rebars are introduced in the calculations to see it's e�ect on the

characteristic of the concrete element and a new analytic and numerical analysis are

performed. Additionally, stirrups are added to the existing reinforcement in order to see

their e�ects on load bearing capacity.

1.1.1 Assumptions and Limitations

Through the calculations and creation of the models di�erent assumptions are made which

are explained when used in each chapter. The limitations for the project are:

- Only simple cross-sections and geometries are analyzed.

- Simple type of reinforcement geometry used.

- Only one type of concrete class is being considered.

- No experiment is done to compare the analytic and numerical results with the real

behavior of the concrete elements.

2



Materials 2
In this chapter the materials, and their properties, used in the report are presented.

2.1 Concrete

Concrete is one of the oldest building material known to man, being used as early as the

Roman Empire. The modern concrete was created with the discovery of the Portland

cement. It is mainly composed of four elements:

� Coarse aggregate

� Fine aggregate

� Portland cement

� Water

With new technology available, concrete can have its properties change with the help

of special additives called admixtures, eg. speeding up the hardening, increasing the

workability of fresh concrete, etc. It is a material which has a very high compression

strength, but much lower tension strength. Concrete is a highly non-linear material which

makes it di�cult to model analytically or numerically without some assumptions which

simplify its behavior. The linear-elastic behavior is observed in Figure 2.1, the linear-

elastic perfectly plastic in Figure 2.2 and behavior of concrete in Figure 2.3.

Figure 2.1. Linear-elastic stress-strain curve of material.

3
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Figure 2.2. Linear-elastic perfectly plastic stress-strain curve of material.

Figure 2.3. Stress-strain curve of concrete.

The concrete chosen for the models in this project has the class C20/25, which means that

during testing of di�erent specimens, the cylindrical specimen has a compression strength

of 20 N/mm2 and the cube specimen has a compression strength of 25 N/mm2. According

to [EN 1992-1-1, 2014], the tensile strength for this concrete class is 1.5 N/mm2 and its

Young's modulus is 30 000 N/mm2. All the numerical models won't have any assumptions

so they will have the stress-strain curve seen in Figure 2.3.

2.2 Steel

Steel is an alloy of iron and other elements, mostly carbon, which is used as a construction

material due to it's high tensile strength and low cost. Steel alone is prone to �re and

corrosion and it's expensive to maintain, but it is used as reinforcement because the

4
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concrete o�ers protection against �re and corrosion. According to [Autodesk, 2015] the

stress-strain curve is seen in Figure 2.4.

Figure 2.4. Stress-strain curve of a uniaxially loaded steel specimen, [Autodesk, 2015].

According to [EN 1992-1-1, 2014] for analytic calculations, an ideal stress-strain curve is

used to show the behavior of steel as seen in Figure 2.5.

Figure 2.5. Idealized stress-strain curve of steel.

The type of steel used for reinforcement in the project is S275 Steel which has a yielding

strength of 275 MPa and Young's modulus of 2.1× 105 N/mm2

5





Analytic Beam design 3
In this chapter an analytic approach is used in order to calculate the bearing capacity and

maximum displacements of a 2D concrete beam due to an external load.

The analysis is performed based on calculation from the [EN 1992-1-1, 2014]. A plain

concrete beam and a reinforced concrete beam are compared in terms of deformation and

bearing capacity.

3.1 Plain concrete beam

3.1.1 Beam model

The analytic model is created such that it resembles the real model in order to be able to

get accurate results. For the model a simply supported, statically determinate beam with

a rectangular cross-section with a width of 300 mm and height of 650 mm and 10 000 mm

long is used. It is considered to be loaded with an uniform load q. The static scheme and

cross-sections of the beam is seen in Figure 3.1.

Figure 3.1. Static scheme and cross-section of the beam.

3.1.2 Load bearing capacity

In order to simplify the analytic analysis of the load bearing capacity, an assumption is

made, it is considered that the concrete has a linear elastic behavior. It is assumed that

the concrete reaches its characteristic strength. The stress distribution is seen in Figure

3.2.

7
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Figure 3.2. Stress distribution in the beam.

To �nd the moment capacity of the beam an equilibrium of moments is considered around

point R. The moment capacity is found with Equation (3.1).

σc ·
h

2
· b · 1

3
· 1

2
· h

2
−Mrd = 0

Mrd = σc ·
h

2
· b · 1

3
· 1

2
· h

2
(3.1)

Because it is assumed that the concrete reaches its characteristic strength the stresses

in the concrete are assumed to be the characteristic strength so the previous equation

becomes Equation (3.2).

Mrd = fck ·
h

2
· b · 1

3
· 1

2
· h

2
(3.2)

The resulting moment capacity is 1.05× 108 Nmm. In order to transform the moment

capacity in load bearing capacity, it is required to write the moment capacity in function

of load bearing capacity so Equation (3.3) is used.

Mrd = qcap ·
L2

8
(3.3)

Mrd Moment capacity of the beam

qcap Load bearing capacity of the beam

L Length of the beam

From this formula the load bearing capacity is isolated and its value is determined with

Equation (3.4).

8
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qcap = 8 · Mrd

L2
(3.4)

The obtained load bearing capacity is 8.45 N/mm.

3.1.3 De�ections

By using the bearing capacity the maximum de�ection can be calculated. For a beam

loaded by an uniformly distributed load the maximum de�ection are at the middle of the

beam as it is seen in Figure 3.3.

Figure 3.3. Maximum displacement for the beam.

According to [EN 1992-1-1, 2014] the maximum de�ection allowed in a beam is given by

Serviceability Limit State and has the Equation (3.5).

δmax =
L

250
(3.5)

δmax Maximum allowed displacement

L Initial span of beam

The maximum allowed de�ection is 40 mm.

To calculate the maximum displacement in the beam Equation (3.6) is used. In order for

this equation to be true, the concrete is assumed to act linear-elastic.

δ =
5

384
· qcap · L

4

E · I
(3.6)

δ Displacement at half span

qcap Load bearing capacity

L Span of beam

E Young's Modulus

I Moment of inertia

9
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The elastic modulus is di�erent for each type of concrete class. For the calculation

Concrete class 20 is chosen and its Elastic modulus according to Table 11.3.1 from [EN

1992-1-1, 2014] is 30 000 N/mm2. The moment of inertia depends on the cross-section of

the beam and is calculated with Equation (3.7).

I =
b · h3

12
(3.7)

I Moment of inertia

b Width of beam

h Height of beam

The obtained moment of moment of inertia is 6.87× 109 mm4. The displacement in the

middle of the beam is 5.52 mm which is less than the maximum allowed displacement of

40 mm, meaning that the Serviceability Limit State equation is satis�ed.

3.2 Reinforced concrete beam

A plain concrete beam is rarely suitable for construction of a building as it has a low

bearing capacity so reinforcement is added to the beam in order to increase the bearing

capacity. The reinforcement used for the beam can vary depending on the type of building

constructed, its importance to society, etc.

3.2.1 Beam model

During its life a beam is mostly subjected to bending which cause the beam to de�ect in

such a way that it has a compressed zone and a tensed zone as seen in Figure 3.4.

Figure 3.4. Compressed and tensioned parts of the beam.

It is well known that concrete is a material that has a very good compression resistance

but acts poorly in tension so reinforcement is introduced in the tensioned part in order to

10
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take the tensile stresses the beam is subjected to and to increase the bearing capacity of

the beam. In some occasions reinforcement is also used in the compressed part in order to

further increase the bearing capacity or for constructive reasons, such as being supports

for stirrups. For example in case a load which would make the building vibrate, eg. an

earthquake, the beam will continously alternate the two zones during the time the load is

acting on the structure as seen in Figure 3.5.

Figure 3.5. Compressed and tensioned parts of the beam during and earthquake.

In this case the reinforcement at the top of the beam is as important as the one at the

bottom.

The beam analyzed in the project is considered to never be acted by an earthquake load

so only the bottom reinforcement will be calculated and the top reinforcement will only

be considered for constructive reasons. The cross section beam is seen in Figure 3.6.

Figure 3.6. Reinforced concrete beam cross section.

As the tensioned zone is the important one, the rebars at the bottom of the beam need

to be stronger so a higher diameter of the rebar is chosen, while at the top of the beam a

smaller diameter of the rebar is chosen. The bottom reinforcement will consist of four φ

20 and the top reinforcement will consist of two φ 10 as seen in Figure 3.7.

11
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Figure 3.7. Reinforced concrete beam cross section.

3.2.2 Materials

A reinforced concrete beam is a composite beam made of concrete and steel. It is

considered composite as the materials are behaving simultaneously when a force acts

on it.

Steel

Steel is a material which has a very good tensile strength, hence why it is used as

reinforcement for the tensioned part of the concrete. The properties of steel are presented

in Chapter 2.

Concrete

The properties of concrete are presented in Chapter 2. Because the concrete has low

tensile strength, steel reinforcement bars are used in order to increase it's strength.

3.2.3 Load Bearing Capacity

In order to be able to do analytic calculations an assumption of the real behavior of

concrete is done. It is considered that the concrete has a linear elastic behavior. This

doesn't re�ect the real behavior of the concrete and the assumption is done in order to

simplify the calculations. All the dimensions required for the computation of the stresses,

strains and de�ection are shown in Figure 3.8.

12
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Figure 3.8. Dimensions of the beam cross-section.

b Width of beam

h Height of beam

a1 Concrete cover for the bottom reinforcement

a2 Concrete cover for the top reinforcement

d E�ective height of the cross section

As1 Area of bottom reinforcement

As2 Area of top reinforcement

x Compressed zone

NA Neutral Axis

There are two ways of calculation the bearing capacity of the beam depending on how we

consider the behavior of the concrete and reinforcement.

Linear Elastic Approach

The bearing capacity of the beam is calculated assuming that the stresses in the concrete

reach its characteristic strength. The stress distribution is seen in Figure 3.9.

13
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Figure 3.9. Assumed stress-strain of concrete.

σc Stress in concrete

σs1 Stress in the bottom reinforcement

σs2 Stress in the top reinforcement

εc Strain in concrete

εs1 Strain in the bottom reinforcement

εs2 Strain in the top reinforcement

Mrd Resistive bending moment

The initial limit state equations used in calculations are the following:

σc = εc · Ec = fck (3.8)

σs1 = εs1 · Es ≤ fyk (3.9)

σs2 = εs2 · Es ≤ fyk (3.10)

Ec Young's modulus of concrete

Es Young's modulus of steel

fck Characteristic strength of concrete

fyk Characteristic strength of steel

In the project it is considered that the reinforcement starts to yield before the concrete

fails and concrete fails before the bars fail so by using the aforementioned equations we

limit the maximum stress in the concrete but not in the reinforcement. In this case the

stresses in the bottom rebars are 402 N/mm2 and the top stresses in the top rebars are

113 N/mm2, which means that the bottom rebars fail before the concrete fails so the

consideration is wrong. In order to correct this the stresses in the bottom bars are limited

to the yielding stress and new values for the strains and stresses are calculated.

By using the new values, the new recalculated stresses and strains are smaller than the

ones before. The new stresses in the top bars are 77.64 N/mm2.

14
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In order to �nd the compressed zone of the beam, which is the only part of the beam in

which concrete has strength, an equilibrium equation on the horizontal direction is used.

The equilibrium equation is Equation (3.11).

σs1 ·As1 − σs2 ·As2 − σc · x ·
1

2
· b = 0 (3.11)

Equations (3.8), (3.9) and (3.10) are introduced in Equation (3.11) so a new equation is

formed which is Equation (3.12).

εs1 · Es ·As1 − εs2 · Es ·As2 − fck · x ·
1

2
· b = 0 (3.12)

Because of the new limit state equations the strains have to also be recalculated, this is

done in order to be sure that the strains do not exceed the limits. The new strains are

found with Equations (3.13) and (3.14).

εc
εs1

=
x

h− x− a1
⇒ εs1 =

εc · (h− x− a1)
x

(3.13)

εc
εs2

=
x

x− a2
⇒ εs2 =

εc · (x− a2)
x

(3.14)

By introducing Equations (3.13) and (3.14) in Equation (3.12) a new equation in function

of x is obtained. The obtained formula is Equation (3.15).

εc · (h− x− a1)
x

· Es ·As1 −
εc · (x− a2)

x
· Es ·As2− fck · x ·

1

2
· b = 0 (3.15)

Solving x from this equation the height of the compressed part of the beam is found out.

The obtained height is 162.7 mm

In order to �nd the bearing capacity of the beam an equilibrium of moments is considered

around point R. The moment capacity is found with Equation (3.16).

1

3
· σc · x ·

1

2
· b+ a2 · σs2 ·As2 − (h− a1) · σs1 ·As1 −Mrd = 0

Mrd =
1

3
· σc · x ·

1

2
· b+ a2 · σs2 ·As2 − (h− a1) · σs1 ·As1 (3.16)

The resulting moment capacity is 1.85× 108 N×mm. In order to transform the moment

capacity in load bearing capacity, it is required to write the moment capacity in function

of load bearing capacity so Equation (3.17) is used.

15
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Mrd = qpl ·
L2

8
(3.17)

Mrd Moment capacity of the beam

qpl Load bearing capacity of the beam

L Length of the beam

From this formula the load bearing capacity is isolated and its value is determined with

Equation (3.18).

qpl = 8 · Mrd

L2
(3.18)

The obtained load bearing capacity is 14.85 N/mm.

Fully Plastic Approach

In this approach it is assumed that concrete reaches full plasticity and the rebars reach

their yielding stress. According to [EN 1992-1-1, 2014] the stress distribution in the

concrete in real life is parabolic but in order to simplify it for the calculations it is assumed

to be a rectangular distribution which has the area as 80 % the area under the curve of

the parabola as seen in Figure 3.10 and Equation (3.19).

Figure 3.10. Distribution of stresses and strains in the beam.

Aassumed = 0.8 ·Areal (3.19)

Areal Area of the parabolic distribution

Aassumed Area of the rectangle distribution

16
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The stresses in the bottom bars are limited to the yielding stress. Because the top bars

are inside the compressed zone it is very unlikely for them to reach yielding stress but

nevertheless this has to be checked. According to [Agent, 2008] in order for the top

reinforcement to yield, the height of the compressed zone has to be twice the height of

the concrete cover so Equation (3.25) has to be checked. The height of the concrete cover

considered is 35 mm.

xpl > 2 · a2 ⇒ xpl > 70 (3.20)

Firstly it is assumed that the top bars also yield so this means that the stresses are also

limited to the yielding stress. This gives a new set of initial conditions which are the

following:

σs1 = fyk (3.21)

σs2 = fyk (3.22)

fyk Characteristic strength of steel

Equilibrium of forces is being considered on the horizontal axis which has the Equation

(3.23)

σs1 ·As1 − σs2 ·As2 − σc · xpl · b = 0 (3.23)

By substituting the stresses σc, σs1 and σs2 with their limit values, the new equilibrium

is Equation (3.24).

fyk ·As1 − fyk ·As2 − fck · xpl · b = 0 (3.24)

From this equation the height of the compressed concrete zone, xpl, is isolated and

Equation (3.25) is formed.

xpl =
(As2 −As1) · fyk

b · fck
(3.25)

The obtained height of the compressed concrete zone is 50.39 mm which doesn't ful�ll

Equation (3.20), which means that the initial assumption was not correct so the top rebars

don't yield. This was expected as it was initially considered that the beam will only be

subjected to normal loads and not exceptional loads, for example loads from earthquake.

17
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Because the initial assumption is incorrect, a new distribution of stresses where the top

reinforcement doesn't yield is seen in Figure 3.11.

Figure 3.11. Distribution of stresses in the beam.

In this case the height of the compressed zone can't be computed. To calculate the

capable moment Mrd, equilibrium of bending moments is applied around point R and

gives Equation (3.26).

σs1 ·As1 · (d− a2) + b · xpl · σc · (a2 −
xpl
2

)−Mrd = 0

Mrd = σs1 ·As1 · (d− a2) + b · xpl · σc · (a2 −
xpl
2

) (3.26)

By substituting the stresses in the concrete and in the rebars with the maximum allowed

stresses it is obtained Equation (3.27).

Mrd = fyk ·As1 · (d− a2) + b · xpl · fck · (a2 −
xpl
2

) (3.27)

According to Agent [2008], when the compressed zone is small, as seen from the Figure

3.11, it can be ignored from calculating moment capacity so the �nal formula becomes

Equation (3.28).

Mrd = fyk ·As1 · (d− a2) (3.28)

The obtained capable moment Mrd is 2× 108 N×mm which has to be transformed in

load bearing capacity and is done with the Equation (3.29).

Mrd = qcap ·
L2

8
(3.29)

18
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Mrd Moment capacity of the beam

qcap Load bearing capacity of the beam

L Length of the beam

From this formula the load bearing capacity is isolated and its value is determined with

Equation (3.30).

qcap = 8 · Mrd

L2
(3.30)

The obtained load bearing capacity is 16.03 N/mm.

3.2.4 Displacements

In order to �nd the maximum displacement of the beam, from Euler-Bernoulli beam

theory, Equation (3.31).

δ =
5

384
· qcap · l

4

E · I
(3.31)

δ Displacement

qcap Load bearing capacity

l Span of beam

E Young's Modulus

I Moment of inertia

Because the section is a composed one, an equivalent bending sti�ness has to be calculated.

Having the fact that the cross-section is not symmetric on both direction, the centroid

of the cross-section is displaced. By having a larger area of the bottom reinforcement

bars than the top reinforcement bars, the centroid is displaced toward the bottom

reinforcement. In Figure 3.12 the new centroid of the cross-section is seen.

19
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Figure 3.12. Centroid of the cross-section.

In order to �nd the position of the new centroid an equation is required from where the

coordinate of the centroid is isolated. The equation of the static moment is used. The

formula to of the static moment is Equation (3.32).

Sz =
∑

(yi ·Ai) = yc ·AT (3.32)

Sz Static moment

yi Position relative to the centroid

Ai Area of object relative to the centroid

yc Coordinate of the centroid

AT Total area of the cross-section

As the cross-section is not homogeneous Young's modulus for di�erent materials has to

be taken into account so the new equation of the static moment is Equation (3.33)

Sz · Ei =
∑

(yi ·Ai · Ei) = yc ·AT ·
∑

(
Ai
AT
· Ei) (3.33)

20
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The equation is expanded for the cross-section as Equation (3.34).

− (
h

2
− a1) ·As1 · Es · 4 + (

h

2
− a2) ·As2 · Es · 2

− (−(
h

2
− a1) ·As1 · Ec · 4 + (

h

2
− a2) ·As2 · Ec · 2

= yc · b · h · (
As1 +As2

At
·+AT − (As1 +As2)

At
· Ec) (3.34)

From this yc is isolated and can is computed with Equation (3.35)

yc =
(h2 − a1) ·As1 · (Ec − Es) + (h2 − a2) ·As2 · (Es − Ec)

(As1 +As2) · Es + (b · h− (As1 +As2)) · Ec
(3.35)

The position of the new centroid axis is at a distance of −9.76 mm from the center of the

cross-section. The minus sign shows that, as expected, the centroid is displaced toward the

bottom reinforcement. With the new centroid calculated, the equivalent bending sti�ness

can be computed.

The idea behind the computation of the equivalent bending sti�ness is that the concrete

is being "removed" from the cross-section and rebars are introduced in the removed holes.

The general formula to compute the equivalent bending sti�ness is Equation (3.36).

E · I =
∑

Ei · y2 · d ·Ai (3.36)

For the current cross-section the formula becomes Equation (3.37)

E · I =
1

12
· b · h3 · Ec + b · h · y2c · Ec−

− (4 · π
4
· (φ1

2
)4 + 4 ·As1 · (

h

2
− a1)2 + 2 · π

4
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)4 + 2 ·As2 · (
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+ (4 · π
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· (φ1

2
)4 + 4 ·As1 · (

h

2
− a1)2 + 2 · π

4
· (φ2

2
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h

2
− a2)2) · Es (3.37)

By using the common factor of Ec and Es the previous formula becomes Equation (3.38)

E · I =
1

12
· b · h3 · Ec + b · h · y2c · Ec+

+ (4 · π
4
· (φ1

2
)4 + 4 ·As1 · (

h

2
− a1)2 + 2 · π

4
· (φ2

2
)4 + 2 ·As2 · (

h

2
− a2)2) · (Es − Ec)

(3.38)

The obtained equivalent bending sti�ness is 1.79× 1014 Nmm2 and is introduced in

Equation (3.31). From Equation (3.31) a maximum displacement of 10.79 mm for the

21



Lucian-Aurelian Ionita 3. Analytic Beam design

load bearing capacity calculated with the linear-elastic approach and 11.65 mm for the

load bearing capacity calculated with the fully plastic approach.

The results for the load bearing capacity and maximum displacements are seen in 3.1.

Table 3.1. Load bearing capacity of di�erent approaches.

Load bearing Maximum

Type of beam capacity displacement

[N/mm] [mm]

Plain concrete 8.45 5.52

Reinforced concrete 14.85 10.79

(Linear-elastic approach)

Reinforced concrete 16.03 11.65

(Fully plastic approach)

From the Table 3.1 it is seen an increase of 90% in load bearing capacity and an increase

of 110% of the maximum allowed de�ection. From this it is observed that the rebars have

a big in�uence on the strength of a beam.
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In this chapter a numerical approach is used in order to calculate the bearing capacity and

maximum displacements of a 3D concrete beam due to an external load.

The numerical approach is done with the help of Abaqus which is a 3D �nite element

analysis software. The same beams which were calculated in the previous chapter will now

be modeled and the results will be compared with the ones obtained from the analytic

analysis.

4.1 Concrete damage plasticity

The main failure mechanism for concrete are crushing under compression and cracking

under tension and concrete is known to be a highly plastic material. Abaqus has di�erent

ways of modeling plasticity, from simple ones which only take into account, compression

and tensile strengths, to more complex one which take into account various phenomena

which happen during loading of a concrete element. The concrete damage plasticity is the

most complex one. According to [Simulia, 2016] concrete damage plasticity:

� Provides a general capability for modeling concrete and other quasi-brittle materials

in all types of structures (beams, trusses, shells, and solids);

� Uses concepts of isotropic damaged elasticity in combination with isotropic tensile

and compression plasticity to represent the inelastic behavior of concrete;

� Can be used for plain concrete, even though it is intended primarily for the analysis

of reinforced concrete structures;

� Can be used with rebar to model concrete reinforcement; is designed for applications

in which concrete is subjected to monotonic, cyclic, and/or dynamic loading under

low con�ning pressures;

� Consists of the combination of nonassociated multi-hardening plasticity and scalar

(isotropic) damaged elasticity to describe the irreversible damage that occurs during

the fracturing process;

The stress-strain curves are seen in Figure 4.1.
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Figure 4.1. Stress-strain curves. Case a)Uniaxial tension. Case b)Uniaxial compression.

[Simulia, 2016]

As seen in the �gures, at any point after σt0 or σcu the unloading doesn't produce a perfect

response, this is due to the degradation of the elastic sti�ness of the material. The damage

of the material is represented by the coe�cients dt and dc which are function of plastic

strain, temperature and �eld variables. Their value range from zero, which means the

concrete is undamaged, up to one, which means total loss of strength. The stress-strain

relationships are seen in Equation (4.1).

σt = (1− dt) · E0 · (εt − ε̃tpl)
σc = (1− dc) · E0 · (εc − ε̃cpl) (4.1)
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σt Tensile stress

σc Compression stress

dt Damage coe�cient for tension

dc Damage coe�cient for compression

E0 Initial Young's modulus

εt Tensile strain

εc Compression strain

ε̃t
pl Equivalent plastic strain in tenstion

ε̃c
pl Equivalent plastic strain in compression

The yielding surface is determined by the e�ective tensile and compression stresses. The

e�ective stresses are given by Equation (4.2).

σ̄t =
σt

1− dt
= E0 · (εt − ε̃tpl)

σ̄c =
σc

1− dc
= E0 · (εc − ε̃cpl) (4.2)

σ̄t E�ective tensile stress

σ̄c E�ective compression stress

According to [Simulia, 2016], the model is based on the yield function of Lublinier et. al

(1989), with the additional modi�cations of Lee and Fenves (1998). The modi�cations

account for the evolution of strength under tension and compression, which a�ect the

evolution of the yield surface by the hardening variables ε̃t
pl and ε̃c

pl. The yielding function

is presented in Equation (4.3).

F =
1

1− α
· (q̄ − 3 · α · p̄+ β · (ε̃pl)〈ˆ̄σmax〉 − γ〈−ˆ̄σmax〉)− σ̄c · (ε̃cpl)

α =
(σb0/σc0)− 1

2 · (σb0/σc0)− 1
; 0 ≤ α ≤ 0.5

β =
σ̄c · ε̃cpl

σ̄t · ε̃tpl
· (1− α)− (1 + α)

γ =
3 · (1−Kc)

2 ·Kc − 1
(4.3)

ˆ̄σmax Maximum principal e�ective stress

σb0/σc0 Ratio of initial equibiaxial compression yield stress to initial uniaxial compression

yield stress;

Kc Ratio of the second stress invariant on the tensile meridian, to that on the

compressive meridian, at initial yield for any given value of the

pressure invariant p such that the maximum principal stress is negative.

σ̄t · ε̃tpl E�ective tensile cohesion stress

σ̄c · ε̃cpl E�ective compression cohesion stress
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The yield surface in deviatoric plane is seen in Figure 4.2 and the yield surface in plane

stress is seen in Figure 4.3.

Figure 4.2. Yield surface in deviatoric plane. [Simulia, 2016]

Figure 4.3. Yield surface in plane stress. [Simulia, 2016]

In the report the beams are constituted of concrete and steel reinforcement, subjected

to monotonic loading with no con�nement so in order to get results close to real life

conditions, the concrete is modeled with this type of plasticity.
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4.2 Plain Concrete Beam

Firstly in order to verify that the modeling in Abaqus is done correctly, a simple type of

beam will be created. The easiest type is a concrete beam which is considered to behave

linear elastic with no plasticity. It is well known that concrete is a plastic material so this

model is solely done in order to verify that the modeling in Abaqus is done correctly.

4.2.1 Beam model

The beam is modeled as a homogeneous solid having the same cross-section as the analytic

beam, with a height of 650 mm and a width of 300 mm. Because this time it is a 3D model

a "depth" is also required to be inputted. Typically the depth of the beam should be the

length of the beam of 10 000 mm, but because in Abaqus the beam has to be supported in

order for the analysis to work an extra 100 mm will be added to the length of the beam.

The �nal length of the beam is 10 100 mm but the distance between the supports will still

be 10 000 mm, this way the beam is still the same as the analytic one.

The model is seen in Figure 4.4.

Figure 4.4. 3D model of the beam.

4.2.2 Materials

After the beam is modeled, material properties have to be assigned to it. The beam is a

homogeneous beam, which means it is made only of one type of material.

Concrete

Because a linear-elastic analysis is done, Young's modulus and Poison's ratio are de�ned

when a material is created. The Young's modulus used in creating the concrete material

is 30 000 N/mm2 and the Poison's ratio of 0.2, which are the values for C20/25 concrete.

Material properties of concrete are presented in Chapter 2.
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4.2.3 Analysis

When the model has its material assigned then in order to be able to run the analysis the

boundary conditions and loads are de�ned.

Boundary Conditions

The model has the same static scheme as the analytic beam so it is simply supported.

In order to avoid in�nite stresses in one point the supports are modeled as metal plates.

This is also done to re�ect real life testing of a beam. The support plates have the height

of the cross-section of 100 mm, the width of 300 mm and thickness of 20 mm. The support

plate attached to the beam is seen in Figure 4.5.

Figure 4.5. Model of the support plate attached to beam.

The boundary conditions are assigned in order to block displacement and rotation on

one or more directions, because of this it is imperative that the correct displacements

are blocked or else the obtained results will have no meaning. In one of the supports

the displacement on Y and Z directions are blocked and in the other support only the Y

direction is blocked which is seen in Figure 4.6.

Figure 4.6. The boundary conditions for both supports.
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Loading

The load applied on the model has the same magnitude as the load seen in Table 3.1. In

order to be able to apply the load from the analytic case, which is a uniformly distributed

line load, it has to be transformed in a uniformly distributed surface load. This is done

by dividing the magnitude of the load to the width of the model cross-section as seen in

Equation (4.4).

Q =
qcap
b

(4.4)

Q Uniformly distributed surface load

qcap Uniformly distributed line load (Taken for plain concrete beam)

b Width of model cross-section

The resulting uniformly distributed surface load has a magnitude of 0.028 N/mm2 and

is seen in Figure 4.7. It is applied on the surface between the initial length of beam of

10.000 mm.

Figure 4.7. The surface of the applied load.

In order to get more accurate results from the analysis the load is applied in increments.

In this case the minimum increment is 1× 10−5 and the maximum increment allowed is

0.1.

If the model doesn't fail it means that its load bearing capacity is higher than the applied

surface load so a higher load than the previous one will be applied in order to produce

failure.

Meshing

The model has to be segmented in multiple �nite elements in order to see the way the

model behaves. To do this the model is meshed. Abaqus has various type of elements

which can be used for meshing, for example:

- Tetrahedral

- Hex
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The mesh formed by tetrahedral elements are best used when dealing with complicated

geometry, for example circular cuts, as the mesh is more �ne around key spots of the

model. The tetrahedral elements can be 4-node or 10-node. The 10-node element will

give more accurate results as they have a higher number of degrees of freedom but at the

same the time the computational power needed to run the model is also higher. A sketch

of the tetrahedral elements is seen in Figure 4.8 and a model meshed with tetrahedral

elements can be seen in Figure 4.9.

Figure 4.8. Sketch of the tetrahedral elements. [MIT, 2014]

Figure 4.9. The beam meshed with tetrahedral elements.

The mesh formed by hex elements are better for simple geometry model. While this

type of meshing provides less accurate results, but with no important di�erence, the

computational time is far less then tetrahedral elements as the mesh will consist of smaller

number of elements. The hex elements can be 8-node or 20-node, as with the previous

case the 20-node element mesh having more accurate results than the 8-node but requiring

a larger amount of computational power. A sketch of the tetrahedral elements is seen in

Figure 4.10 and a model meshed with tetrahedral elements is seen in Figure 4.11.
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Figure 4.10. Sketch of the hex elements. [MIT, 2014]

Figure 4.11. The beam meshed with hex elements.

Because this model is a simple one with no complicated geometries or complicated cross-

section, four analysis with di�erent types of elements has been done in order to compare

the di�erence in displacements and time required to run the analysis.

Table 4.1. Displacement and time for di�erent meshes.

Type of Degrees of Displacement Time

element freedom [mm] [s]

4-node tetrahedral 180 840 5.067 35

10-node tetrahedral 452 100 5.337 45

8-node hex 50 904 5.459 26

20-node hex 127 260 5.337 33

Because the 8-node hex elements mesh has the quickest analysis time and also the closest

result to the analytic calculation, for the next models the mesh will consist of this type of
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element.

Convergence analysis

Di�erent type of meshes produce various results so a balance between accuracy and

computational power is required and in order to do this a convergence analysis is

performed. This is done by making the mesh �ner or coarser. The �ner the mesh is the

more accurate are the results but more computational power is required. The maximum

displacement is calculated for the same uniformly distributed load and is compared for

di�erent types of meshes. The results are seen in Table 4.2 and presented as graph in

Figure 4.12.

Table 4.2. Maximum displacements for di�erent meshes.

Mesh size Number of degrees Maximum displacement Time

mm of freedom [mm] [s]

25 3 025 152 5.356 287

50 378 144 5.380 40

75 115 776 5.418 22

100 50 904 5.459 14

125 19 440 5.566 12

150 13 056 5.697 12

175 11 328 5.692 11

200 7488 5.999 11

Figure 4.12. Maximum displacement for di�erent meshes.

From the results it is seen that the maximum displacement which is closest to the analytic

result is obtained when the mesh size is 100 mm. This is the best balance between result

accuracy and computational time. The next models will have a mesh size of 100 mm.
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Symmetry

In order to reduce the computation time, a symmetry plane is used around the center of

the beam. This way the beam is divided into two identical models with half the initial

span. The new span of the beam is calculated with Equation (4.5).

l =
L

2
(4.5)

l Half span of the beam

L Initial span

The new span of the beam is 5 m. Because only half of the beam is considered, the beam

becomes statically undetermined so a new support is introduced where the "cut" has been

made, which permits rotation but not translation on X direction. The new model of the

beam is seen in Figure 4.13.

Figure 4.13. The new static scheme of the beam.

4.2.4 Results

With the model now meshed the analysis can be done. After the analysis �nished a

deformed model is produced seen in Figure 4.14.

Figure 4.14. Output result of the analysis.
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Bearing capacity

The analysis is being run with a model de�ned by an elastic material so a bearing capacity

can not be obtained from Abaqus as the model will never fail and can have in�nite

displacements.

Displacements

The relevant results are the displacements on Y axis which can are compared with the

ones obtained from the analytic analysis. The results should be very close as there will

always be di�erences in accuracy of results between numerical and analytic analysis. This

is because a 3D model adds a third dimension to the model and is a more realistic, but

can also be because of errors in modeling. The obtained displacement on Y-direction is

5.459 mm and as expected, in concordance with Euler-Bernoulli beam theory, is at the

middle of the beam. The results is seen in the table in Figure 4.15

Figure 4.15. Displacement results.

In Table 4.3 is presented the di�erence between analytic and numerical results. The

results are very close so this means that the beam has been modeled correctly and now

more complex behavior can be analyzed.

Table 4.3. Displacement results for analytic and numerical analysis.

Type of analysis Analytic Numerical Di�erence in

Percentage

Displacement[mm] 5.52 5.459 1 %

4.2.5 Plasticity

Concrete in real life is a plastic material so in order to see how the beam would behave

more realistic plasticity is added to the material properties of the model. A new property

named "concrete damaged plasticity" is added.

The plasticity properties are the default ones o�ered by Abaqus. The compression strength

is 20 N/mm2 and the tensile strength is 1.5 N/mm2, these are the strength for concrete

class C20/25. The behavior of concrete is shown in Chapter 2.
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Analysis

All the elements of the analysis, including the boundary conditions, meshing and loading

are the same as the previous model.

Results

The analysis is performed identically as before. Because the material is de�ned as plastic

now it means that it can fail under loading so the bearing capacity can now be obtained

from the model.

As stated previously the beam is again loaded in increments with load having a magnitude

of 0.028 N/mm2. This time the analysis doesn't �nish and this means that at an increment

of the load the beam model has failed.

This also is be observed from the obtained Load-Displacement curve as seen in Figure

4.17. The Load-Displacement curve is obtained by choosing a node from the output

results, because the maximum displacement is at the middle of the beam, the node chosen

will also be at the middle of the beam as seen in Figure 4.16.

Figure 4.16. Position of the analyzed point.

Figure 4.17. Load displacement curve for the load of 0.028 N/mm2.

The Load-Displacement curve shows that when the beam started to behave plastic it soon

failed. This is because concrete behaves poorly in tension. From this the bearing capacity

of the model can be computed, this is done with Equation (4.6).
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Qcap = qload · it (4.6)

Qcap Bearing capacity of the beam

qload Applied load

it Increment

The obtained bearing capacity is 0.014 14 N/mm2. A new analysis is performed with the

model being loaded with the obtained bearing capacity. This is done in order to see if the

analysis �nishes and acts as a check to see if the results are correct. The analysis �nishes

this time which means that the model doesn't fail.

The �nal results of the analysis of the concrete homogeneous beam model are presented

in Table 4.4.

Table 4.4. Load bearing capacity.

Type of Load Bearing Load Bearing

Analysis Capacity (Surface) Capacity (Line)

[N/mm2] [N/mm]

Elastic 0.028 16 8.45

Plastic 0.014 14 4.242

4.3 Reinforced concrete beam

One way of increasing the bearing capacity of the beam is by adding reinforcement to the

cross-section.

4.3.1 Beam model

The beam model will no longer be homogeneous as now rebars will be inserted in the

cross-section. The concrete part of the beam will be modeled the same as before. For the

reinforcement, the rebars can be modeled in two ways:

- Solid element

- Wire element

Both types of models will have the length of 10 100 mm, matching the length of the beam.

The solid rebar is created by the same procedure as the beam. This is seen in Figure 4.18.

As mentioned in the analytic analysis, there are two types of rebars used. There are four

φ20 bars at the bottom and two φ10 bars at the top.
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Figure 4.18. Solid rebar model.

The wire rebar is modeled as a wire element and it is assigned to it a circular pro�le. This

is seen in Figure 4.19

Figure 4.19. Wire rebar model.

The solid rebar model is closer to a real life rebar so the results should be more accurate

than that of a wire rebar model. In order to see the di�erence in the accuracy of the results

and computational time between the two types of rebars, two separate beam models have

been created each using a di�erent model of the rebar. For the beam and rebars to work

together as a whole, conditions have to inputted. For the solid rebars model the beam and

the rebars are merged together as a whole piece which resembles more real life conditions

and for the wire rebars a constraints has to be assigned between the beam and the rebars.

This way Abaqus will embed the rebars inside the beam which will make them work

together. The cross-section for the reinforced concrete beam with solid rebars is seen in

Figure 4.20. The cross-section of the reinforced concrete beam with wire elements is not

shown as the rebars do not appear on the face of the cross-section.
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Figure 4.20. Cross-section of reinforced concrete beam with solid rebars.

4.3.2 Materials

The reinforced concrete beam is composed of two type of materials, concrete for the beam

cross-section and steel for the rebars.

Concrete

Concrete is de�ned exactly the same as in the concrete homogeneous model.

Steel

Steel is a ductile material which works very well in tension, this being the reason for its use

as reinforcement. For the elastic part, Young's Modulus of 2.1× 105 N/mm2 and Poison's

ratio of 0.3 are de�ned and for the plastic part the yielding strength of 275 N/mm2 is

de�ned.

4.3.3 Analysis

The overall analysis is identical with the one performed for the homogeneous beam.

Boundary Conditions

Same boundary conditions of simply supported beam, which restrict displacements on X

and Y directions, are applied as seen in Figure 4.6.

Loading

The loading will be applied on the same surface seen in Figure 4.7. The load applied

will be the analytic bearing capacity, calculated in the previous chapter, transformed in a

uniformly distributed surface load. The load applied to the beam is 0.053 N/mm2.
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Meshing

For the concrete cross-section 8-node hex elements will be used as stated in the previous

analysis in order to save computational power. The meshing will be di�erent for the solid

rebars model and for the wire rebar model. For the model with solid rebars it is necessary

to create cutting planes in order to make a �ne mesh. Firstly cutting planes are created

through the middle of each rebar, secondly a cutting plane is created around the Y-axis

splitting the beam in two halves seen in Figure 4.21. Lastly three more cutting planes are

done around the X-axis each of them splitting the model in smaller half sections as seen

in Figure 4.22.

The meshing will be di�erent for the solid rebars model and for the wire rebar model.

For the model with solid rebars it is necessary to create cutting planes in order to make a

�ne mesh. Firstly cutting planes are created through the middle of each rebar, secondly

three cutting plane are created around the Y-axis and two around Z-axis splitting the

beam in smaller half section as seen in Figure 4.21. Lastly three more cutting planes are

done around the X-axis each of them splitting the model in smaller half sections as seen

in Figure 4.22. This will let Abaqus choose the appropriate geometry of the elements for

each part of the mesh. As is seen in Figure 4.23, the geometries of the hex-elements near

the rebar are di�erent than those in other parts of the beam.

Figure 4.21. Cutting planes around Y-axis, Z-Axis and through the center of the rebars.

Figure 4.22. Cutting planes around X-axis and through the center of the rebars.
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Figure 4.23. Final mesh of the model with solid rebars.

For the wire rebars there is no speci�c type of meshing. The beam model with wire rebars

is meshed the same way as the homogeneous beam.

4.3.4 Results

The results obtained from the analysis are the load bearing capacity and the maximum

displacements which are then compared with the analytic results. As mentioned earlier,

the time necessary to run the two types of model is also analyzed. The results for the

displacements and computational times are seen in Table 4.5.

Table 4.5. Displacement and time for di�erent meshes.

Model Solid rebar Wire rebar Di�erence Analytic

type beam model beam model % model

Degrees of 2189952 407808 81 [-]

freedom

Uniformly distributed 0.053 0.053 [-] 0.053

Surface load [N/mm2]

Maximum 21.82 20.16 6 11.65

displacement [mm]

Computational 1454 141 90 [-]

time [s]

From the table it is seen that the di�erence between the obtained displacements from the

two numerical models is 7%, but the time required to analyze the wire rebar model is 90%

faster than the solid rebar model. Even though the solid rebar beam model is more close

to a real life beam, the computational time saved with the wire rebar model is signi�cant,

thus the next analyzes will be done on models with wire rebars. It is observed that

there is an important di�erence between the displacements obtained in the analytic and

numerical analyses. This is because in the analytic analysis the cross-section is considered
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with 0 tensile strength, while Abaqus takes into account the tensile strength. The bearing

capacity is also analyzed as in the homogeneous beam and compared with the analytic

results. As before the beam is loaded with a force greater than the bearing capacity of

the analytic model. The load imposed is 0.1 N/mm2. The wire rebar beam model fails

at the increment of 0.747 s, from this it results that the bearing capacity of the beam is

0.0747 N/mm2. This is an increase of 29% in comparison with the analytic calculation.

4.4 In�uence of stirrups

After the analysis of the beam is performed stirrups are added as additional reinforcement.

While the rebars support the bending moment acting on the beam, the stirrups are used

to support the shear forces. They are disposed transversal on the cross-section. The new

cross-section is seen in Figure 4.24.

Figure 4.24. Beam cross-section with stirrup.

The distribution of the shear force acting on the beam is seen from Figure 4.25. From this

�gure it is seen that the highest values of the shear force is at the supports so because of

this the distance between the stirrups in the zone near the supports will be 125 mm and

the distance between them in the �eld will be the maximum allowable distance mentioned

by [EN 1992-1-1, 2014] which is 250 mm.

Figure 4.25. Shear force diagram.
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4.4.1 Modeling

The stirrups are modeled as wire elements, as demonstrated previously that the di�erence

in results between solid and wire elements are small. The material of which the stirrups

are made is S275 steel, the same as the rebars. The diameter of the bars from which the

stirrups are manufactured is φ8. In reality the stirrups are longer than the length required

to envelope the rebars, this is done in order to have a region with which the stirrup is

tied with the rebars in order to limit its movement. In Abaqus this extra length is not

present as it is not necessary, the way the stirrups are made to work together with the

cross-section is through assigned constraints. The 10 m beam section is seen in Figure

4.26.

Figure 4.26. Cross-section of the 10 m beam.

4.4.2 Analysis

In order to see how the stirrups in�uence the bearing capacity, six di�erent reinforced

concrete beam models with various lengths are created and the results obtained from their

analysis compared. Only the length is modi�ed in the models, all other characteristics

remain the same.
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4.4.3 Results

The load displacement curve for each model is presented in the following �gures.

Figure 4.27. Load displacement curve for the 1 m beam.

Figure 4.28. Load displacement curve for the 3 m beam.

Figure 4.29. Load displacement curve for the 5 m beam.
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Figure 4.30. Load displacement curve for the 7 m beam.

Figure 4.31. Load displacement curve for the 9 m beam.

Figure 4.32. Load displacement curve for the 10 m beam.
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Table 4.6. Load bearing capacity for the models.

Model 1 meter 3 meter 5 meter 7 meter 9 meter 10 meter

type beam beam beam beam beam beam

Bearing capacity

without stirrups 5.3449 0.5939 0.2138 0.1091 0.0660 0.053

(Analytic) [N/mm2]

Bearing capacity

without stirrups 3.995 0.854 0.301 0.154 0.095 0.0747

(Numerical) [N/mm2]

Bearing capacity

with stirrups 4.412 0.862 0.308 0.158 0.099 0.0787

(Numerical) [N/mm2]

Di�erence in

bearing capacity[%] 10 3 3 2 2 2

From this table it is observed that the shorter the beam is the higher the bearing capacity

it has. The stirrups don't have a signi�cant in�uence on the bearing capacity but it is

observer that their in�uence increases as the length of the beam decreases. This happens

because the e�ect of shear forces increase as the length of the beam decreases. The reason

why the for the 1 m beam the analytic value is higher than the numerical values, is because

in the analytic solution it is assumed to fail due to the e�ect of the bending moment, but

in the numerical model it fails due to shearing.

4.5 Bent reinforcement rebar

According to [EN 1992-1-1, 2014] bent rebars can be used as reinforcement to provide

higher bearing capacity in beams. The two top φ 10 straight rebars have been replaced

with two φ 10 bent rebars. They are modeled as wire elements and the model is seen in

Figure 4.33. The angle of the bending is 45 deg.

Figure 4.33. Model of the bent rebar.

4.5.1 Analysis

Five models have been created in order to see the in�uence of bent rebars. The models

have the length of 3000 mm, 5000 mm, 7000 mm, 9000 mm, 10 000 mm respectively and

their results are compared with the beams of the same length from the previous analysis.
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4.5.2 Results

The load displacement curves obtained from the analysis are compared with the ones

obtained from the previous models and are seen in Figure 4.34, Figure 4.35, Figure 4.36,

Figure 4.37, Figure 4.38.

Figure 4.34. Load displacement curve for the 3 m beam.

Figure 4.35. Load displacement curve for the 5 m beam.

Figure 4.36. Load displacement curve for the 7 m beam.
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Figure 4.37. Load displacement curve for the 9 m beam.

Figure 4.38. Load displacement curve for the 10 m beam.
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The results are presented in Table 4.7

Table 4.7. Load bearing capacity for the models.

Model 3 meter 5 meter 7 meter 9 meter 10 meter

type beam beam beam beam beam

Bearing capacity

without stirrups 0.5939 0.2138 0.1091 0.0660 0.053

(Analytic) [N/mm2]

Bearing capacity

without stirrups 0.854 0.301 0.154 0.095 0.0747

(Numerical) [N/mm2]

Bearing capacity

with stirrups 0.862 0.308 0.158 0.099 0.0787

(Numerical) [N/mm2]

Bearing capacity

with bent rebars 0.921 0.326 0.165 0.102 0.0796

(Numerical) [N/mm2]

Di�erence in

bearing capacity[%] 7.2 8.5 6.8 7 6

From the table it is observed that the bent rebars increase the bearing capacity between 6%

and 8.5%, which is more than twice than the increase of 3% obtained by using stirrups.

This might be because the bent rebars have a higher reinforcement area than straight

rebars.
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Analytic Column design 5
In this chapter an analytic approach is used in order to calculate the critical buckling load

of a concrete column due to an external load.

The analysis is performed based on calculation from the [EN 1992-1-1, 2014]. A plain

concrete column and a reinforced concrete column are compared in terms of critical

buckling load.

5.1 Plain concrete column

5.1.1 Column model

As in the case of the beam, the column is created to resemble as much as possible a real

column inside a structure. This is done in order to get more accurate results. The cross-

section has a width of 300 mm, a height of 300 mm and a length of 10 000 mm. This is seen

in Figure 5.1. The supports of the column are �xed at the bottom and simply supported

at the top.

ol

Figure 5.1. Static system and cross-section of the column.
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5.1.2 Materials

The column is made of C20/25 concrete with a Young's modulus of 30 000 N/mm2. The

concrete is assumed to act linear-elastic in order to simplify the analysis. This type of

behavior is seen in Chapter 2.

5.1.3 Load bearing capacity

A centrally loaded column will compress under loading and at the critical buckling load

it will fail by buckling. For a linear-elastic material, as it is currently assumed for the

concrete, the critical buckling load is calculated with Euler formula seen in Equation (5.1).

Ncr =
π2 · E · I

l20
(5.1)

Ncr Critical buckling load

E Young's modulus of concrete

I Moment of inertia of the cross-section

l0 Buckling length

The moment of inertia is calculated with Equation (5.2).

I =
b · h3

12
(5.2)

I Moment of inertia

b Width of cross-section

h Height of cross-section

The buckling length depends on the supports type of the column. According to [Agent,

2008], the calculation for di�erent buckling lengths is seen in Figure 5.2.

Figure 5.2. Buckling lengths and deformed shapes for di�erent types of supports. [Agent, 2008]

.
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The column will have the buckling length according to case "e" from the Figure 5.2, so

the buckling length is 10 000 mm. The critical buckling load obtained is 1.932× 106 N.

When the concrete is considered to act non-linear, as in real life, the critical buckling

stress is computed with Equation (5.3).

σcr =
fck

1 + fck
π2·Ec0k

· ( l0i )2
(5.3)

σcr Critical buckling load

fck Compressive strength of concrete

Ec0k Young's modulus of undeformed concrete

l0 Buckling length

i Radius of gyration

The radius of gyration is calculated with Equation (5.4).

i =

√
I

A
=

√
b·h3
12

b · h
(5.4)

i Radius of gyration

I Moment of inertia of the cross-section

A Area of the cross-section

b Width of cross-section

h Height of cross-section

The obtained critical buckling load is obtained by multiplying the critical buckling stress

with the area of the concrete cross-section. The value of the critical buckling load is

0.931× 106 N.

5.2 Reinforced concrete column

The column is now strengthened with the help of reinforcement in order to increase the

load bearing capacity. For this type of column it is considered that the materials behave

non-linearly.

5.2.1 Column model

The column has the same dimensions and properties as before and now four φ 20 rebars

are introduced as reinforcements, as seen in Figure 5.3.
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Figure 5.3. Cross-section of reinforced concrete column.

5.2.2 Materials

Along the concrete, S275 steel rebars with a yielding strength of 275 N/mm2 are added.

Behavior of steel is seen in Chapter 2.

5.2.3 Load bearing capacity

The formula to compute the critical buckling load is Equation (5.5).

Ncr = σcr · (Ac −Ast) + sigmacrs ·Ast (5.5)

Ncr Critical buckling load

σcr Critical buckling stress of concrete

σs Stress of steel

Ac Concrete cross-section area

Ast Reinforcement area

To calculate the stress in steel Equation (5.6) is used.

σs =
σcr · Ec
Es

(5.6)
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σs Stress in steel

σcr Critical buckling stress of concrete

Ec Young's modulus of concrete

Es Young's modulus of steel

The area of steel is the area of the four φ 20 rebars. The area of concrete is the area of

the concrete cross-section. The critical buckling load is 1.013× 106 N

The critical buckling loads obtained are seen in Table 5.1.

Table 5.1. Load bearing capacity of di�erent approaches.

Critical buckling

Type of column load [N · 106]

Plain concrete 1.932

(Linear-elastic)

Plain concrete 0.931

(Non-linear)

Reinforced concrete 1.013

(Non-linear)

From the previous table is observed that the reinforcement increase the critical buckling

load by 8%.
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Numerical column design 6
In this chapter a numerical approach is used in order to calculate the bearing capacity of

a 3D concrete column.

The numerical approach is done with the help of Abaqus. The same columns which were

calculated in the previous chapter will now be modeled and the results will be compared

with the ones obtained from the analytic analysis.

6.1 Plain concrete column

The static scheme of the column is seen in Figure 6.1. In Abaqus the model is created

with the same boundary conditions as the analytic model in order for the results to be

accurate.

Figure 6.1. Static scheme and cross-section of column.

6.1.1 Materials

As in the case with the beam, concrete is de�ned in Abaqus with a Young's modulus of

30 000 N/mm2 and a Poisson's ratio of 0.2, with a compression strength of 20 N/mm2 and

tensile strength of 1.5 N/mm2. Materials are presented in Chapter 2.
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6.1.2 Analysis

In order to run the analysis other parameters have to be de�ned. The analysis assumes

that the concrete behavior is linear-elastic so the properties regarding plasticity, the

compression strength and the tensile strength, are not taken into account.

Boundary conditions

The boundary conditions are set to be the same as the analytic model in order to get

results which can be compared. The static scheme used to model the boundary conditions

is seen in Figure 6.1.

Loading

Because Abaqus will in�netly compress the column during its analysis a very small

uniformly distributed lateral load q is added on the Z direction to start the instability

process. In order to see the in�uence of the lateral on the critical buckling load of the

column, four models with di�erent lateral loading have been analyzed. The lateral loads

applied are 0.01 N/mm2, 0.001 N/mm2, 0.0001 N/mm2 and 0.000 01 N/mm2.

In order to get more accurate results, instead of loading the column with a load, a

displacement of 100 mm is forced on Y direction along the column length.

6.1.3 Meshing

Knowing, from the beam analysis, the fact that an 8 node hex element is the quickest and

also gives good results, this type of element is used in order to mesh the model. The mesh

of the model is seen in Figure 6.2

Figure 6.2. Boundary condition at the bottom of the column.
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Convergence analysis

A convergence analysis is performed the same way as in Chapter 4 in order to �nd a

balance between accuracy of results and computational pwer. The critical buckling loads

calculated for the same lateral load of 0.01 N/mm2 are compared for di�erent types of

meshes. The results are seen in Table 6.1 and presented as graph in Figure 6.3.

Table 6.1. Critical buckling load for di�erent meshes.

Mesh size Number of degrees Critical buckling Time

mm of freedom load [N · 106] [s]

25 1 382 400 1.765 782

50 172 800 1.762 43

75 51 072 1.760 27

100 38 400 1.763 20

125 7680 1.400 11

150 6432 1.402 11

175 5472 1.402 10

200 4800 1.412 10

Figure 6.3. Critical buckling loads for di�erent meshes.

From the results it is seen that the critical buckling load doesn't di�er much with the

increase of the number of degrees of freedom. The big di�erence between a mesh size

of 100 mm and 125 mm is due to the way the column cross-section is meshed as seen in

Figure 6.4
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Figure 6.4. Meshing of the column cross-section.

From the mesh size of 25 mm and 100 mm the critical buckling length is closer to the

analytic one. The best mesh as computational power and accuracy of the results is the

one with a mesh size of 100 mm so the next models will have this mesh size.

6.1.4 Results

After the analysis is done the obtained critical loads obtained are compared with the one

in the analytic analysis. The deformed shape is seen in Figure 6.5. It is observed that the

deformed shape matches the one from the analytic analysis, seen in case "e" from Figure

5.2.

Figure 6.5. Deformed shape of the column.
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A plot of the analysis results is presented in Figure 6.6. The results are seen in Table 6.2.

Figure 6.6. Force-displacement diagram for di�erent lateral loads.

The critical buckling load is chosen from the analysis when the graph becomes a stable

line, which shows that the column failed due to instability.

Table 6.2. Load bearing capacity of di�erent approaches.

Critical buckling

Type of analysis load [N · 106]

Lateral Load 0.01 N/mm2 1.763

Lateral Load 0.001 N/mm2 1.803

Lateral Load 0.0001 N/mm2 1.813

Lateral Load 0.000 01 N/mm2 1.815

Analytic Analysis 1.932

From the table it is observed that the critical buckling load of the column acted with

the largest lateral load and the smallest lateral load is 3 %. Also from the results it is

seen that there is a 6 % di�erence between the critical buckling load calculated with the

analytic method and the critical buckling load from the analysis with a lateral load of

0.000 01 N/mm2.

The results are presented in the form of a graph which is seen in Figure 6.7
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Figure 6.7. The critical buckling load in function of the lateral load.

From the �gure it is observed that critical buckling load increases as the lateral load

decreases.

6.1.5 Plasticity

The same analysis is run as before only this time plasticity is added to the concrete and

all the concrete properties mentioned before are taken into account, which means that the

concrete acts non-linear.

Results

Again, four models are tested in order to see the in�uence of the eccentricity. A plot of

the results is presented in Figure 6.8. The results are seen in Table 6.3.

Figure 6.8. Force-displacement diagram for di�erent lateral loads.
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Table 6.3. Load bearing capacity of di�erent approaches.

Critical buckling

Type of analysis load [N · 106]

Lateral Load 0.01 N/mm2 1.461

Lateral Load 0.001 N/mm2 1.634

Lateral Load 0.0001 N/mm2 1.643

Lateral Load 0.000 01 N/mm2 1.685

Analytic Analysis 0.931

From the results it is seen that the di�erence of the obtained critical buckling load

from the model with a lateral load of 0.01 N/mm2 and then one with a lateral load of

0.000 01 N/mm2 is 13 %. From all the results it is seen that the model with a lateral

load of 0.000 01 N/mm2 is the closest simulation of a buckling failure. Also the analytic

solution is very conservative in comparison with the numerical solution.

The results are presented in the form of a graph which is seen in Figure 6.9.

Figure 6.9. The critical buckling load in function of the lateral load.

From the �gure it is observed that critical buckling load increases as the lateral load

decreases.

6.2 Reinforced concrete column

To increase the critical buckling load, reinforcement is added to the concrete cross-section

as seen in Figure 6.10.
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Figure 6.10. Reinforced concrete cross-section.

6.2.1 Column model

Even though in Chapter 4, it is shown that modeling the reinforcement as wire elements is

the fastest way to run the analysis, for the case of column, due to the non-linearity taken

into account, the models won't work, so the reinforcement is modeled as solid.

6.2.2 Materials

The materials are de�ned the same as in the analysis done in chapter 4.

6.2.3 Analysis

The analysis is done the same way as before with the previous models.

6.2.4 Boundary Conditions

The boundary conditions are the same as the homogeneous column, being �xed at the

bottom and restricting displacement on Y direction at the top.

6.2.5 Loading

The loading is done in the same way as with the homogeneous column. There are also

four models analyzed with di�erent lateral loading in order to see its e�ect.

6.2.6 Meshing

The meshing is done with 8 node hex elements as in the previous analysis.
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6.2.7 Results

The obtained critical buckling after �nishing the analysis is compared with the previous

obtained results and with the analytic results. This is done to see how much of an

improvement the reinforcement has on the critical buckling load.A plot of the results

is presented in Figure 6.11. The results are seen in Table 6.4.

Figure 6.11. Force-displacement diagram for di�erent lateral loads.

Table 6.4. Load bearing capacity of di�erent approaches.

Critical buckling

Type of analysis load [N · 106]

Lateral Load 0.01 N/mm2 1.580

Lateral Load 0.001 N/mm2 1.729

Lateral Load 0.0001 N/mm2 1.743

Lateral Load 0.000 01 N/mm2 1.776

Analytic Analysis 1.013

From the table it is observed that the di�erence in critical buckling load between the model

with a lateral load of 0.01 N/mm2 and the one with a lateral load of 0.000 01 N/mm2 is 11

% .

The results are presented in the form of a graph which is seen in Figure 6.12
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Figure 6.12. The critical buckling load in function of the lateral load.

From the �gure it is observed that critical buckling load decreases as the lateral load

increases.

6.3 In�uence of stirrups

After the analysis of the reinforced concrete column, stirrups are added along the column

length in order to see their in�uence on the critical buckling load. The stirrups are

also modeled as solid elements, the same as the longitudinal reinforcement, with a

diameter of 8 mm. Six models are created with a distance of 100 mm, 200 mm, 300 mm,

400 mm and 500 mm, 1000 mm between the stirrups. Even though the closest model to

a centrally loaded column is the one with a lateral load of 0.000 01 N/mm2 it requires

large computational power to run the analysis so the lateral load chosen is 0.0001 N/mm2.

The column cross-section and the longitudinal reinforcement are considered merged as one

piece in the model and the stirrups are considered to be embedded inside the column. In

Figure 6.13 it is seen the cross-section of the column with the stirrups.
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Figure 6.13. Cross-section of the column with stirrups.

6.3.1 Analysis

Six models are analyzed with the same parameters the only di�erence between them being

the number of stirrups and distance between them. Initially only three models were used

but because of observing no trend in the results, three more models were analyzed. The

force-displacement diagrams for the models are shows in Figure 6.14. The results are

presented in Table 6.5.

Figure 6.14. Force-displacement diagrams for models with di�erent distance between stirrups.
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Table 6.5. Critical buckling load for di�erent models.

Distance between Number of Critical buckling

stirrups [mm] stirrups load [N · 106]

100 100 1.752

200 50 1.784

300 34 1.780

400 25 1.783

500 20 1.765

1000 10 1.773

From Figure 6.14, it is observed that the distance between stirrups makes a di�erence of

3% between the highest obtained critical buckling and the lowest obtained critical buckling

load.

In order to observe the results better, they are plotted in a graph. The graph is seen in

Figure 6.15.

Figure 6.15. Critical buckling load with di�erent distance between stirrups.

From the graph it is observed that there is no particular trend in the increasing or

decreasing of the critical buckling depending on the distance between stirrups. The highest

critical buckling load is obtained when the distance between stirrups is 200 mm.

The critical buckling loads of all the analytic analyses and numerical analyses of the models

with a lateral load of 0.0001 N/mm2 are presented in Figure 6.16 and Table 6.6.
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Figure 6.16. Critical buckling load with di�erent analyses.

Table 6.6. Critical buckling load for di�erent models.

Type of Elastic Plastic Reinforced Reinforced

analysis without stirrups with stirrups

Analytic 1.932 0.931 1.013 -

Numeric 1.813 1.643 1.743 1.784

From Figure 6.16 it is observed that the highest critical buckling load is obtained with

the analytic linear elastic approach and the lowest critical buckling load with the analytic

plastic approach the di�erence between them being 52%. From the numerical analysis it

is also observed that the di�erence between the critical buckling load of a plain concrete

column and a reinforced one is 10% and the addition of stirrups raises the critical buckling

load by an additional 3%.
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Conclusion 7
In order to design reinforced concrete structure, along the years analytic solutions were

developed in order to assist the designer and also to ensure safety of the population using

these buildings as workplaces or homes, etc. Now with the help of modern technology 3D

�nite element analysis software are starting to be used in designing of structures, which

even though require understanding of the software itself, it brings more accurate results,

closer to real life situations than the analytic solutions. The purpose of this report is too

compare the results of two type of analyses, numerical and analytical, for two di�erent

structural elements, beams and columns.

In order to be sure the physical phenomenons are understood gradually more complex

elements are analyzed. The bearing capacity and maximum displacement of a plain

concrete beam is calculated with the assumption that the concrete acts linear-elastic.

Because in most real-life structures reinforcement is used in order to increase the bearing

capacity of the beam, the same is done in the report. As in real life conditions when adding

reinforcement to the concrete beam, it's bearing capacity and maximum displacement

allowed are increased.

Numerical analysis with Abqaqus software is performed with the exact same steps as in

the analytic model. Because of the challenges of modeling concrete in Abaqus, the beam

is modeled with increasingly complex materials, in order to make sure that the models

provide good results. Initially a linear-elastic material is used to model the beam and the

results obtained from the analysis is compared with the analytic results. The di�erence

between the results is very small so it is shown that the model is created correctly. After

that plasticity is added to the material in order to simulate concrete and a load bearing

capacity is calculated.

Reinforcement is added to the model with the same dimensions and properties as in the

analytic analysis and it is observed that the bearing capacity is increased in comparison

with the model without reinforcement which shows that the model is created correctly.

The presence of the reinforcement greatly increases the load bearing capacity of the beam.

The e�ect of stirrups is investigated in order to see how it a�ects the bearing capacity

of the reinforced concrete beam. Ten models with di�erent lengths are analyzed. It is

observed that as the length of the beam increases, the in�uence of the stirrups decreases,

this is due to the shear force having a higher in�uence in short beams and bending moment

in long beams.

[EN 1992-1-1, 2014] shows the possibility of using bent rebars. Their in�uence is

investigated and it is observed that they increase the bearing capacity even more than the
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straight rebars or the stirrups. This is due to the increase in reinforcement area.

An analytic analysis of the critical buckling length of a centrally loaded column is

performed. Initially it is assumed that the concrete act linear-elastic and after this it

is assumed that it acts non-linear. It is observed a 50 % di�erence between the two

approaches in the calculation of the critical buckling load. This is due to the fact that the

formula used for the plastic approach is very conservative.

A reinforced concrete column is analyzed in order to see how the reinforcement a�ects the

critical buckling load. The reinforcement has a small in�uence on the critical buckling

load this is because the area of the reinforcement rebars is small compared to that of the

concrete cross-section.

A numerical model is created in order to compare the results with the analytic solution.

The material is modeled with increased complexity as with the case of the beam. As

Abaqus would compress the column inde�nitely a lateral load is applied on a lateral

surface of the column in order to start the instability process. Analyses with di�erent

lateral loads are performed and it is observed that the lateral has a small impact on the

critical buckling load of the column modeled with a liner-elastic concrete and a higher

impact on the critical buckling load modeled with a non-linear concrete. The di�erence

between the critical buckling load obtained from numerical analysis and analytic analysis

is small in case of linear-elastic concrete, but the di�erence is high in case of non-linear

concrete.

Reinforcement is added to the column model and it is observed that the critical buckling

load increases.

In order to see the in�uence of stirrups, six models are created with di�erent distance

between the stirrups. No particular trend is observed in increasing or decreasing the

critical buckling load with di�erent distances between stirrups, but the highest critical

buckling load is obtained when the distance between stirrups is 200 mm.
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