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Chapter 1

Introduction

Over the past decades, the rapid development of ubiquitous mobile devices such as
smart phones, wearables (i.e. body-attached devices), hearing aids etc, has nour-
ished a search into more natural human-computer interfaces. In the traditional
sense, humans and machines have heavily relied on intermediate physical devices
to establish a communication link between the two, e.g. keyboards are commonly
used for machine input and a computer display or screen as output. In terms of ef-
ficiency of communication speed, interactions that involve visual and/or auditory
senses can obtain higher bandwidths; i.e. humans speak much faster than they
type and can perceive information contained in images even faster than speech.
When sensing modalities of different kind are combined (e.g. audition and sight)
it further aids the perception of information at either the human and/or machine-
end [1].

One such natural human-machine interface is speech, which have been an ac-
tive research field for several decades, and thus have matured to such an extend
that it is found in many practical implementations. Prime examples of such sys-
tems are constituted by Apple’s Siri [2], Microsoft Cortana [3], Google Now [4],
Amazon Echo/Alexa [5], and many more. Interaction via speech is a two-way
communication between human and machine; automatic speech recognition (ASR)
is employed at the machine-end to transform speech into text, the reverse action
is speech synthesis which generates a feedback to the speaker from the machine.
However, this does not imply that ASR algorithms can run in reverse to accomplish
speech synthesis. These are considered two distinct areas within this field, and are
therefore handled separately [1]. The work presented in this paper is bounded to
address matters concerning ASR, despite the overlapping technical issues that are
encountered in both fields of study.

The applications of ASR are countless, hence ASR systems adopt various complex-
ities and constraints. Ranging from the simplest task of recognizing isolated words
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2 Chapter 1. Introduction

of a single user, to speaker-independent dictation where all words in a continu-
ous utterance stream are detected from a large vocabulary. The above-mentioned
examples adopt the later approach that besides speaker variability also need to ac-
count for environmental noise conditions. Somewhere between the two extremes,
keyword spotting (KWS) systems are accommodated. KWS aims at detecting the
occurrence of predefined keywords (or a phrase of keywords) in an audio stream
among other out-of-vocabulary (OOV) words, also denoted (non-keyword) filler
words. Hence KWS can be considered a subproblem to ASR where only partial in-
formation within the speech signal needs to be decoded. The keyword may begin
and end anywhere in the spoken utterance, rendering KWS a non-trivial task. In
order for a keyword spotter to gain a high accuracy it should detect all keywords
in an utterance whilst minimizing the number of false alarms (i.e. false-positives)
[6].

The work of this thesis addresses the task of KWS particularly designed for mobile
devices, such a system is imposed by the constraints of the mobile environment
in which it operates. However, before drafting any such system, a mathematical
definition of the KWS problem setting is formulated.

1.1 The Keyword Spotting Problem

In the following a mathematical description is presented in Definition 1.1 [7] in
order to formalize the KWS task. The process can roughly be split into two stages;
a spotting stage that calculates the confidence score of a keyword being present in a
given utterance, and a decision stage that collects the scores exhibiting highest con-
fidence and determines whether or not a given keyword is present in the utterance.

In conventional ASR systems, it is commonplace to resort to a transform domain,
i.e. a feature domain in which a compressed representation of the speech signal
can be found and which accounts for the natural variations of speech signals. Both
temporal and spectral speech variabilities result from a combination of physiologi-
cal and ethnic differences; e.g. age, dialect, gender, emotional state, etc. [8]. Hence
features are designed to counteract the effects caused by these factors.

Definition 1.1 (KWS Problem Setting)
1. Spotting stage

An input utterance composed of a sequence of acoustic features;

x̄ = [x1 x2 . . . xT] , xi ∈ X ⊂ Rd (1.1)

for all 1 ≤ i ≤ T
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where X is the space of all feature vectors, and xi is the acoustic feature
vector extracted from the ith time frame and has dimension d. For now it is
assumed that x̄ contains at most one keyword. Moreover, there is a natural
variation in the time duration of a speech signal, even for the same uttered
word, hence T is not fixed.

The predefined keywords are indexed by k ∈ K, where K is the dictionary
of keywords. The goal of the spotting stage can be described in terms of
a mapping of x̄ to a confidence measure for the occurrence of k in x̄. De-
pending on the applied pattern matching, the score express a probability
in case a statistical model is used, such as a neural network (NN) or hidden
Markov model (HMM). Alternatively, it might be a distance measure, e.g.
in the case where dynamic time warping (DTW) is applied. Likewise the
different pattern matching methods are parametrized by a distinct set of
parameters θ. For an HMM, θ may express the initial probability distribu-
tion, the state transition distribution etc.
In summary, the mapping function takes as inputs x̄ and k along with the
parameters θ, and returns the confidence score Sk ∈ R:

Sk = f1(x̄, k ; θ) (1.2)

The same procedure is repeated for all keywords in K, to generate a score
for each keyword.

2. Decision stage

Based on the score acquired in the Spotting stage, i.e. Sk, a decision on
whether keyword k occurs in the spoken utterance x̄ is required. Therefore
the Decision stage can be described in terms of a function f2(·) that maps
the confidence information contained in Sk to a binary decision output,

Ok = f2 (Sk,o) (1.3)

let Sk be an expression of distortion, then the output value assumes either
two values

Ok =

{
1 if Sk,o ≤ b
0 if Sk,o > b

(1.4)

where b is a threshold value. Hence, decisions are commonly generated
by comparing Sk against a threshold value b ∈ R. When the distortion
score is equal to or below the threshold value, the hypothesis that k is
contained in x̄ is accepted, otherwise the hypothesis is rejected. Note that
Sk is not limited to be an expression of distortion, in principle it can be an
representation of any similarity metric which expresses the confidence that
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k has occurred in x̄, and therefore may require the inequalities in Equation
(1.4) to be reversed.

As a final measure, the two stages may be combined into a single stage.
Whereby the KWS objective is formulated as to learn a composite function
f = f1 ◦ f2, parameterized by θ such that the decision output,

Ok = f (x̄, k ; θ) (1.5)

generates as a good performance as possible, according to some predefined
figure of merit.

Numerous solutions have been developed to solve the KWS problem, among those
the most common solution categories from the literature are reviewed and pre-
sented in the following.

1.2 State-of-the-Art Keyword Spotting Methods

Solutions for the KWS problem have been extensively explored throughout recent
years, and has produced a vast number of different solutions. These often rely
on ASR techniques that have found its applicability in KWS with some modifica-
tions, and hence typically fall into one of three major categories; template-based (or
query-by-example) methods, keyword-filler methods, and large vocabulary contin-
uous speech recognition (LVCSR) methods.

• Query-by-Example Methods (Template Matching): Among the earliest methods
used in the field of ASR is the template matching paradigm [11][12], in
which the quired keyword template is matched against an input test ut-
terance across all possible time segments. In the literature it is sometimes
referred to as the sliding window approach [13], because the keyword tem-
plate is slided across the input utterance in overlapping time windows. At
each time window a similarity metric is computed using dynamic time warp-
ing (DTW) that also accounts for potential duration mismatch between input
and test utterance. Thereby the fit between the template and the test utterance
is evaluated at different time instances, i.e. a similarity score is calculated for
each time window, and the keyword is regarded as detected whenever the
score exceeds some predefined threshold value. The choice of the threshold
value is of great importance as it settles the precision-recall trade-off.
The whole procedure is carried out in two main steps; firstly, front-end pro-
cessing is applied that extracts acoustic features at the frame-level, next the
feature vectors of the template and test inputs are matched using DTW, from
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which the similarity scores are computed [14]. A decision rule then uses
the similarity scores to determine whether the putative keyword is deemed
present or not. The procedure is summarized in Figure 1.1.

Front-end
processing

test recording
DTWpre-recorded

template

Decision
rule

Distortion
scores

Detection
output

Feature
vectors

Figure 1.1: System-block overview of a template-based keyword spotter.

Template-based methods are generally computationally cheap since they do
not attempt to transcribe the whole word sequence of the test signal. Tem-
plate matching is in its essence simply a two-class discriminator that seeks to
classify time regions of the test signal into either keyword or non-keyword
instances. However, basic template-based systems also suffer from a num-
ber of drawbacks, in particular, they are prone to changes in the recording
conditions between the template and input utterance [9]. Moreover template-
based approaches become infeasible both memory-wise and computationally
for a growing number of templates, e.g. due to the use of multiple keywords
and/or multiple users.

• Keyword-Filler Methods: In the task of keyword spotting, the input recording
is assumed to be a concatenation of keywords and non-keyword instances.
Thus, one approach is to model them individually using a keyword model in
parallel with a “filler” or “garbage” model for the non-keyword. The front-
end processing remains unchanged in comparison to the template-based ap-
proach, i.e. keyword-filler models rely on per-frame speech features. How-
ever, the decoding process changes in that an acoustic model is being em-
ployed to decode the test utterance as outlined in Figure 1.2. Acoustic models
are used to establish statistical representations of the acoustic feature vectors,
thereby it can estimate the probability that a certain subword unit is uttered
in the speech input. Similarly a pronunciation dictionary containing the key-
words is applied to define the partitioning of a keyword into its subunits.

A common choice for the acoustic model is the subword unit based HMM.
Decoding is carried out by building a word-loop containing a network of
keyword and filler models as depicted in Figure 1.3. A distinct model is
allocated for each target keyword, and a filler-model is allocated to handle
non-keywords. Each keyword HMM is trained using its corresponding key-
word, and the filler HMM is trained using non-keyword segments [15].
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Front-end
processingtest recording Decoder

Decision
rule

Viterbi
bestpath

Detection
output

Acoustic 
model

Pronoun. 
dictionary

Feature
vectors

Decoding sources

Figure 1.2: System-block overview of a keyword spotter using keyword-filler approach.

Keyword  HMM - N

Filler HMM

Keyword  HMM - 1

Keyword  HMM - 2

...

Figure 1.3: HMM-based modeling using a keyword-filler approach. Each observation in the HMM
corresponds to an acoustic feature of the input utterance, whereas the hidden state corresponds to
the subword unit accountable for generating the acoustic feature.

Using Viterbi decoding, the purpose is to determine the underlying subword
sequence which is most likely to have generated the observed series of feature
vectors. Keyword detection is carried out by verifying whether the Viterbi
best-path includes the keyword HMM or not. In this regard, the choice of
state-transition probabilities in the keyword HMM settles the precision-recall
trade-off [9].

The keyword-filler methods generally outperform the classical template-based
methods, as they explicitly model both keyword and non-keywords. Includ-
ing a non-keyword provides higher confidence when accepting or rejecting
putative instances of keywords in comparison to template-based methods
that attempt discrimination solely based on knowledge of the target class
[13]. But unfortunately, keyword-filler models require large amounts of tran-
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scribed speech data for training the acoustic models, and in particular the
filler model. Moreover, the Viterbi algorithm generates the best-path from a
sequence of local decisions, making it prone to any local model mismatch,
since a mismatch of a single subword can cause a keyword occurrence to be
completely ignored. To gain robustness against the later limitation, likelihood
ratio strategies have been suggested in [16] and [17].

• Large Vocabulary Continuous Speech Recognition Methods: The LVCSR-based
methods differ from the other two methods in mainly two aspects; they at-
tempt full transcription of the speech input and next apply a search routine
for the designated keywords. Moreover they carry out recognition at the
word level and therefore require a large word vocabulary to match the input
signal against.
As outlined in Figure 1.4, an LVCSR engine is employed to transcribe the
entire input speech at word level. For this task conventional ASR system re-
sources are needed, i.e. a language model to learn how to compose sequences
of words, a large vocabulary of words, and not least acoustic models. The
LVCSR engine finds the most probable word sequence based on Viterbi de-
coding. Next, a search algorithm is applied that examines the recognized text
for the presence of of query terms. Prior to the search algorithm, the tran-
scribed text is sometimes indexed in order to accelerate the search response
time. One classical approach is to use word lattices for conducting the in-
dexing [18]. Some later approaches adopted confusion networks [19][20] that
makes use of posterior probabilities as opposed to prior probabilities that are
used in word lattices.

Although having proven very effective in terms of spotting accuracy [21], the
LVCSR methods require a considerable amount of speech resources, and ad-
ditionally has high computational demands as compared to template match-
ing and keyword-filler methods [22]. This is mainly due to the fact that a
conventional ASR system is employed prior to keyword spotting. Another
limitation of LVCSR-based KWS methods is the lack of ability to define and
include new keywords. Since the keyword list is usually predefined, any ad-
ditional term will be considered an OOV word. To overcome this problem,
other techniques such as subword modeling has been proposed in [23] and
[24].

1.3 Project Delimitations

Provided with an overview of the cutting-edge technologies within the field of
KWS, the next step is to delimit the range of potential solutions to the KWS prob-
lem at hand. In this context, it is of particular importance to select a solution
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Front-end
processing

test recording
LVCSR
engine 

Transcribed speech signal

Keyword
matching

Detection
output

Acoustic 
model

Vocabulary

Feature
vectors

Decoding sources

Keyword
list

Language 
model

Figure 1.4: System-block overview of a keyword spotter based on a LVCSR typology.

that ensures feasibility for the computational environment in which it operates.
In other words, the KWS solutions must be selected according to the capabilities
or resources of the targeted platform, which comprises the major constraint. As
outlined in the introduction, the application is aimed to run on a typical battery-
driven modern mobile device, e.g. a hearing aid. Such a device holds consider-
able restrictions with respect to the available computational power, memory-size
and not least the battery lifetime, rendering power consumption a crucial design
metric. Furthermore, it is desired to have a KWS algorithm that executes in soft
real-time, with a latency that resembles human-human communication delay (also
known as mouth-to-ear delay) i.e. in the vicinity of 150-200 [ms] [27].

The above-mentioned constraints disqualify the LVSCR-based systems, as they at-
tempt a full speech transcription that is computationally burdensome, not to men-
tion the computational cost of indexing and the search routine. In addition, a large
memory footprint follows from the requirement of a comprehensive vocabulary
that contains up to hundreds of thousands of words, in that the words of interest
need to be in the predefined vocabulary to be detectable. The keyword-filler meth-
ods have smaller memory footprint, since they resort to subword-based modeling
using e.g. phonemes, which are the smallest units of sound capable of distinguish-
ing one word from another. Most languages typically have a few tens of unique
phonemes [25] that can be used to form millions of words. In particular the En-
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glish language holds 44 phonemes [26], although this number may vary slightly
depending on the type of English being described. Thus phonetic-based keyword-
filler relaxes the memory requirement. But, the keyword-filler methods still at-
tain higher computational complexity in comparison to the template-based KWS,
mainly because they explicitly model both keyword and non-keyword terms using
two or more distinct models. In addition to low computational complexity and
small memory footprint, template-based methods have either little or no require-
ments of annotated speech data or prior knowledge of the underlying language
and hence hold considerable promise for low resource languages. In the context
of low power speech communication systems, template matching approaches are
therefore an appealing choice of solution to the KWS problem, and they will be the
main focus throughout this thesis.

As for the framework of the KWS system, we will make the following assumptions:

• The targeted platform is a personal mobile device that exclusively can be
triggered by the native user of the system, i.e. we limit our scope to speaker-
dependent recognition. As a practical example of a personal mobile commu-
nication device, the hearing aid will be highlighted.

• The size of the vocabulary is comprised of one or few personalized keyword,
but at maximum 10 keywords. The personalized keywords are recorded by
the user during a training phase.

• The keywords are carefully selected (in advance) by the system provider,
implying that these are distinct words that rarely occur in everyday conver-
sations. This also has the desired effect of averting false alarm detections.

1.4 Objectives

The core objective of this thesis is to enable users to communicate to a mobile
device via a speech interface by developing an “always-on” (i.e a continuously lis-
tening) system that listens for one or more keywords to initiate voice input. The
system is characterized by being highly specialized and accurate in detecting a few
spoken keywords, while it refuses all other words, phrases, noise and other sound
inputs. Thus keyword spotting is used as a mean of explicitly requesting the atten-
tion of some mobile device. Upon successful detection of the keyword/wake-up
word, the system can initiate different applications or take certain actions. Trigger-
ing the keyword detector can e.g. be used to resign from a sleep mode, or initiate
a “command-mode”, where any subsequent voice input is interpreted a command
for controlling the mobile device.
Generally, we will consider the KWS system to be language independent provided
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that the system is trained for the respective language for which it will be tested.
The system is therefore not aimed to handle multiple languages simultaneously.

A number of subgoals are formulated that pinpoint the steps taken to reach the
overall objective. The answers of the following questions will be presented in
Chapter 6.

• Review the fundamental principles behind speech production and speech
representation used in the context of keyword spotting.

• Propose a KWS system that takes advantage of state-of-the-art techniques
and accommodate the low-power constraints of a personal mobile device.

• Evaluate the selected keyword spotter for a practical mobile communication
device by using real-life hearing aid recordings, and compare its performance
relative to contemporary KWS systems.

• Investigate the degree of speaker dependency of the selected keyword spotter.

• Suggest various methods to improve noise robustness of the KWS system,
and evaluate the effect on the spotting performance accordingly.

• Compare the proposed noise compensation strategy against state-of-the-art
speech enhancement algorithms.



Chapter 2

Speech Fundamentals

Knowing the fundamental concepts and terminology behind speech theory is im-
perative to the understanding of existing as well as development of novel KWS
algorithms. The speech signal characteristics are vital to the understanding of how
speech signals must be processed in KWS systems and which assumptions can be
made. Therefore the human anatomy that generates such signals will be subject to
a brief description, along with an explanation of the human auditory system that
senses such signals. The human auditory perception mechanism is e.g. utilized in
acoustic feature extraction, as MFCC coefficients are derived by mimicking aspects
of the human auditory system.

2.1 The Human Communication Paradigm

The primary human-human communication interface is speech; the communica-
tion link is initiated when a speech signal in form of a sound pressure wave is
generated from the mouth of a speaker. The signal travels through the air and is
subsequently perceived in the ear of the listener.

The communication pathway from the speaker to the listener is split into sev-
eral steps at different abstraction levels as formalized by Denes and Pinson [28]
trough their concept named the speaker chain. They conceive human communica-
tion as a series of levels, where the output of one level serve as an input to the next
level [29], such as outlined in the speaker-chain diagram shown in Figure 2.1. The
communication process begins at the linguistic level, where an idea (or message)
is formulated in the mind of the speaker. Next, the idea is translated into language
code, and words/sentences are formulated in accordance with the grammar of the
spoken language. At the physiological level, the brain creates electrical signals that
stimulates the motor nerves controlling the speech organs, which ensure that the
requisite muscles are activated at the necessary time. The motor activity eventu-
ally results in a sound wave that propagates through space and into the ear of the

11
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human counterpart. In turn, the sound wave brings about a pressure change in
the ear canal of the listener and thereby causes vibrations in the ear drum. The ear
drum is a membrane that convert acoustic pressure variations to mechanical vi-
brations. Subsequently, these vibrations are transmitted through a group of small
bones denoted ossicles located in the middle ear, and thence to the cochlea of the
inner ear. In the cochlea mechanical vibrations are converted to electrical signals
that stimulates the sensory nerves and travels to the brain of the listener [30]. At
the final stage speech recognition and understanding is carried out; the brain in-
terprets the nerve impulses as messages in a linguistic form [29]. At this point
the listener has perceived the message of the speaker, which happens at the same
abstraction level as the outset level of abstraction.

Figure 2.1: The Speaker Chain [28].

In relation to classic communication systems, the speaker and listener can be re-
garded as the transmitter and receiver, respectively. However, the transmitter and
receiver serve other purposes than simply communicating. The transmitter has a
feedback loop through the ear that enables monitoring and regulation of its own
voice. The receiver part performs speech recognition that is robust to different
types of noise sources and interferences, it can e.g. handle recognition of a single
speaker among multiple (and possibly louder) interfering speakers [30].
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2.2 Speech Production

In order to formulate a mathematical model for speech production, it is imperative
to first consider and understand the physical speech generation process. Roughly
speaking, a speech signal is a pressure wave that is generated by movements of
the anatomic structures that make up the human speech production system. The
speech organs and muscles involved in the production process are shown in Figure
2.2, which provides a cross-sectional views of these components. The three main
groups of speech organs are the lungs, the larynx (commonly called the voice box),
and the vocal tract.

Figure 2.2: Cross-sectional view of the anatomy of speech production [30].

The main functionality of the lungs is to deliver air pressure to the speech produc-
tion process. Inhaling air causes the air pressure in the lungs to decrease, whereas
exhaling air causes the air pressure in the lungs to increase as the chest cavity is re-
duced. The increased air pressure forces air to flow into the larynx via the trachea
[31].

In the larynx stage, voice is generated by vibrations in the vocal tract or simply
by the absence of vibrations. The larynx is built from masses of muscles and
ligaments that control the vocal folds (or vocal cords). In between the two folds
there is a opening called the glottis. The vocal folds can assume a number of
states; when the folds are vibrating in a periodic manner, the folds are said to be in
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a voiced state. The resulting air waveform has a time period T0 known as the pitch
period, and the reciprocal value 1

T0
is known as the fundamental frequency. When

the vocal folds are not vibrating, they are in a unvoiced state and the resulting
speech signal has a non-periodic time representation. Vowels also known as voiced
sounds are produced in the voicing state, whereas unvoiced sounds that include
the majority of consonants are produced in the unvoicing state [31].

The air flow finally reaches the vocal tract after passing the vocal folds. At
this stage the oral and nasal cavity are located. The vocal tract can be modeled
as a time-varying linear filter that shapes the input waveform to generate different
types of sound output. The characteristics of the filter changes with the placement
of the vocal tract organs, i.e. the lips, tongue, jaw, etc [31]. The produced sound is a
composition of different sound units, of which the smallest units (that are capable
of conveying a distinct meaning) are called phonemes.

2.3 Speech Signal Representation and Speech Modeling

In general terms, speech signals can be attributed to number of different properties
and characteristics. It is well-known that speech signals do not change abruptly,
rather they change continuously over time. Besides being time variant, speech
signals are high non-stationary, meaning that their statistical properties vary with
time [31]. This becomes apparent by examining the spectrogram of a speech signal,
in that it reveals how the power at different frequencies changes over time, and
thus the variation in its second order statistics. An example waveform is shown in
Figure 2.3 along with its computed spectrogram.
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Figure 2.3: A spectrogram generated from the speech waveform (plotted in yellow), illustrates the
change of power over time, and thereby the non-stationary property of speech signals.
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When analyzing non-stationary signals, a common practice is to divide speech
signals into small time frames of 10-30 ms duration, whereby each time frame
obtain spectral properties that are approximately stationary. Therefore speech is
generally assumed to be quasi-stationary over short time periods, which renders
Fourier analysis applicable [31]. Especially the short-time Fourier transform (STFT)
is motivated by analyzing the spectral content of non-stationary signals. The basic
idea is to split the time domain signal into successive overlapping frames of some
sample length L, subsequently the STFT applies an analysis windows for which
the DFT is computed. While the windows moves along the time axis the discrete
Fourier transform (DFT) is computed at each instance, thereby a time-frequency
representation is obtained that exposes the variance in the frequency content over
time. The core principle behind the STFT is illustrated in Figure 2.4. Formally, the
discrete case of the STFT is defined as a function of a time index n and a frequency
index ω:

X(n, ω) =
∞

∑
n=−∞

x(m)w(n−m)e−j 2π
N ωm (2.1)

where x(m) is the discrete time signal to be analyzed, w(n) is some analysis win-
dow, and N can be interpreted as the frequency resolution. Given the STFT,
it is straight forward to generate the spectrogram from the following definition
|X(n, ω)|2 [31]. For frequency analysis of stationary stochastic signals, it is suf-
ficient to compute the power spectral density (PSD) that corresponds to a single
“time-slice” of the spectrogram or similarly a single plot of the ones shown in the
bottom of Figure 2.4.

Figure 2.4: The figure illustrates the basics behind the STFT; a window function (red) extracts a small
sequence of the time signal (blue) that is sufficiently small to be viewed as stationary. The analysis
window moves along the time axis, and at each instance the DFT (or fast Fourier transform (FFT)) is
computed.
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2.3.1 Speech Production Model

There exist considerable differences in the signal characteristics of different spo-
ken sounds or words. Depending on the state of the vocal folds during speech
production, the excitation is periodic or non-periodic. In particular, sound seg-
ments produced in the voicing state (i.e. the vocal folds vibrate) are quasi-periodic
by nature, whereas unvoiced sounds produced in the unvoicing state (i.e. vocal
folds do not vibrate) are more aperiodic and noise-like [31]. These properties are
widely reflected in the speech production model presented in Figure 2.5 that is an
engineering model of the human speech production process. The acoustic theory
behind the model, assumes the production process to be a linear system consist-
ing of a source and filter. As mentioned earlier, the vocal tract is modeled as a
time-invariant linear filter over a time frame and its parameters (e.g. the filter
coefficient) are determined by a set of resonances frequencies. Acoustic tubes of
any kind (and here in particular the vocal tract) have natural resonances, which
are a function of its physical shape [32]. The resonance frequencies in the context
of speech production are also referred to as formants, as they form the speech
spectrum 1.

Figure 2.5: An engineering model of the human speech production system [31].

The linear filter is fed by a source signal that is governed by a switch and thus
given either from a pulse generator or a random noise generator depending on
the voiced state. In the simplest case, the vocal tract filter is approximated by an

1“Formant” originates from the Latin word formāre (v.) which means to shape [33].
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all-pole filter, with the following z-domain representation

V(z) =
g

1−∑
p−1
k=0 akz−k

(2.2)

where g is the system gain, p is the number of coefficients, and {ak}, k = 0, . . . , p−
1 are the all-pole coefficients. The output generated from the vocal tract filter is
eventually passed on to another filter that simulates the radiation effect from the
lips. Such a filter usually takes the form

R(z) = 1− z−1, (2.3)

and is designed to add a 6 dB/octave tilt to the original source spectra, i.e. it in-
troduces about a high-pass boost [31].

In the voiced case, the z-transform of the production system is defined as a product
of the transfer functions that describes the glottal pulse input G(z), the vocal tract
filter V(z), and the lip radiation filter R(z):

X(z) = G(z)V(z)R(z) (2.4)

For the unvoiced case, the source signal is instead modeled as a random noise
sequence with a flat spectrum (i.e. white noise), thereby the new output from the
lips becomes:

X(z) = N(z)V(z)R(z) (2.5)

where N(z) is the z-transform of the noise sequence.

Note that the presented source-filter model is a simplistic linear model of the
speech production system, which assumes the excitation signal to be independent
from the vocal tract system, i.e. the filter that shapes the sound. But in fact the
coupling between source and filter is non-linear and far more complex than such.
While only an approximation, the source-filter model underlies nearly all speech
recognition system, mainly due to its relative simplicity in modeling speech signals
[31].

2.4 Acoustic Feature Representation

The auditory information contained in a speech signal can be represented in multi-
ple ways, one classical approach is the time domain waveform, which says very lit-
tle about the phonological content of the signal. Alternative representations (such
as the ones introduced in Section 2.3) include the amplitude spectrum, power spec-
trum and so forth. However, conventional ASR systems resort to acoustic features
for representing speech signals in a concise and compact manner by preserving
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only its key aspects, while discarding other less important information. The pro-
cess of transforming the original speech sequence into a set of dimension-reduced
features is known as feature extraction, but sometimes also referred to as front-end
processing or acoustic preprocessing [38]. In the feature extraction process, the short-
term stationarity property is taken into account, as a feature vector is computed
for each time frame. Hence a full speech signal is represented by a sequence of
feature vectors, rather than just a single feature vector.

It is desired to have acoustic features that preserve the information needed to
determine the phonetic class, while being general of nature, i.e. they are invari-
ant to e.g. the speaking person, speaker accent, speaking rate, background noise,
etc. The features need to represent the phonetic content in each segment in such
a way that segments of similar characteristics can be grouped together by simply
matching their features [39].

2.4.1 Mel Frequency Cepstral Coefficients

The Mel frequency cepstral coefficients (MFCCs) were introduced by S.B. Davis
and P. Mermelstein in the 1980’s [34], and have been state-of-the-art in the field
of ASR since then. The type of acoustic features that preceded the MFCCs are
mainly linear prediction coefficients (LPCs) and linear prediction cepstral coeffi-
cients (LPCCs).

The MFCCs as described in the following are inspired by the human auditory
system. This includes a mapping from normal frequencies to Mel frequencies. The
Mel frequency scale models the non-linear pitch perception characteristics of the
human ear. The relationship between the Mel frequencies Fmel and the actual fre-
quencies FHz is approximated by the following expression [40]:

Fmel =
1000

log (2)

(
1 +

FHz

1000

)
(2.6)

As it an be seen from the plot of the above function in Figure 2.6, the curve is
approximately linear below 1000 Hz and logarithmic above. The Mel scale is gen-
erated using an experimental approach, where a number of test objects were asked
to adjust a tone at some fixed reference frequency until they perceived the tone
to have reached half its frequency [40]. The experiment has among other things
revealed that humans are better at distinguishing frequencies in the low-end of the
frequency scale as compared to the high-end.

Recall from Section 2.3.1 that speech signals can be modeled as an excitation signal
e(t) filtered by a time-varying filter with impulse response v(t) that represents the
shape of the vocal tract. Hence the speech signal over a single frame denoted s(t),
can be defined as follows (while neglecting the radiation effect) [43]:

s(t) = e(t) ∗ v(t) (2.7)
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Figure 2.6: The Mel scale plotted as a function of the actual frequency scale.

Since the characteristics of the vocal filter shapes the produced sound, it is desired
to accurately determine these characteristics, to thereby identify the phonetic con-
tent in the speech signal. Now, the challenging part lies in the fact that only the
speech signal is observable in most cases, the parameters of the speech model and
the vocal filter are not directly obtainable. One approach to overcome this issue
used in MFCC extraction settings, is to apply cepstral analysis to deconvolve the
excitation signal from the filter response. This involves taking the logarithm of the
frequency domain representation of Equation (2.7), whereby two additive parts are
obtained [43]:

log S( f ) = log (E( f ) ·V( f )) = log E( f ) + log V( f ) (2.8)

Now, the final separation into the excitation model and the impulse response of
the vocal filter can be carried out by applying the inverse DFT to the log spectrum.
This particular operation transforms the signal to the quefrency domain or cepstral
domain, in which the vocal tract components are located near the low quefrency
regions, while the excitation model components are located at the higher quefrency
region. A general mathematical formulation of the Cepstrum c(n) is outlined in
Equation (2.9) [40], and is defined as the inverse Fourier transform of the log spec-
tra of the speech signal.

c(n) = F−1 {log |F {s(n)}|} (2.9)

where F {·} denotes the DFT. The terminology used for the word Cepstrum, origi-
nates from reorganizing the first part in the word spectrum.

MFCC features combine the Mel frequency scale with cepstral analysis in a multi-
step procedure outlined in Figure 2.7 [41]. Each step in the feature extraction
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process mimics aspects of the human auditory system, due to its effectiveness in
perceiving and recognizing sounds.

Figure 2.7: MFCC calculation procedure [41].

The procedure for computing the MFCC features can be categorized into four ma-
jor steps, assuming that pre-emphasis framing of the speech signal has been carried
out in advance [41]:

1. Short Time Fourier Transform: STFT is applied to obtain a power spectrum of
each frame.

2. Mel frequency filter bank: In order to emphasize the perceptually meaningful
frequencies and smoothen the spectrum, a Mel filter bank is applied, com-
prising M triangular filters distributed on the Mel frequency scale.

3. Logarithm operator: Once the filter bank energies have been extracted, the
logarithm is applied to the results. This is due to the fact that loudness is
perceived by humans on a non-linear scale.

4. Discrete Cosine Transform: As a final step the DCT is applied on the log filter
bank energies. It serves the purpose of decorrelating the filter bank energies,
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as some sort of correlation between the energies are expected due to the
overlapping filters. The decorrelation effect of the DCT is beneficial in the
sense that it makes the feature vector more compact, by discarding the high-
order DCT coefficients.

In the last step, the inverse Fourier transform has been replaced with the DCT (as
compared to the definition in Equation (2.9)). However, the optimal decorrelator
is theoretically the Karhunen-Loéve (KL) transform, as it exhibits the best energy
compactness properties, meaning that it has the ability to concentrate the energy in
as few coefficients as possible. The main obstacle with the KL transform is its data
dependency, therefore the KL transform is approximated by the DCT in speech
applications [42].

While MFCCs contain static information about a speech frame, other types of fea-
tures can be used in conjunction with the MFCC features (as outlined in Figure
2.7) to add dynamic information. This pertains particularly to delta and delta-
delta coefficients, which explore the rate of change between successive frames. The
addition of delta features to the MFCC coefficients have proven to strongly improve
detection accuracy, and thus they are found in nearly all ASR systems [35].

2.4.2 Delta and Delta-Delta Features

Unlike the MFCC features, the delta and delta-delta coefficients also referred to
as differential and acceleration coefficients contain information pertaining to the
dynamics of the speech signal, i.e. they infer about the trajectories of the MFCC
coefficients over time. Generally, delta coefficients are defined as the difference
across m successive frames represented by their corresponding static features [43]:

∆ [n, k] = c [n + m, k]− c [n−m, k] (2.10)

where ∆ [n, k] and c [n, k] are the delta coefficient and the static feature coefficient of
the nth frame and the kth frequency bin, respectively. Delta-delta features ∆2 [n, k]
are calculated by substituting the static feature in Equation (2.10) with the delta-
feature [43]. The delta and delta-delta coefficients are interpreted as first and sec-
ond order time derivatives, respectively, as they characterize the temporal variation
in the signal [36].

An alternative and perhaps more applied definition of the delta coefficient, uses
regression analysis to fit the slope of a straight line to the acoustic features for
a number of successive frames. This definition found in [37] can be expressed
mathematically as:

∆ [n, k] =
∑m

t=−m tc [n + m, k]
∑

p
t=−p t2

(2.11)
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In comparison to the definition in Equation (2.10), the later definition includes
more features in the computation of the delta coefficient, and therefore is the pre-
ferred choice for estimating the frame rate. The delta-delta coefficients are com-
puted in a similar manner as in Equation (2.10), i.e. by replacing the static features
with the delta features.

Appending the MFCC trajectories to the original feature vector (of MFCC coeffi-
cients) have proven to increase recognition performance, as compared to the case
where MFCC features are used in isolation. However, it should be noted that the
performance improvement provided by appending the delta coefficients drops at
lower signal to noise ratio (SNR) values, and therefore do not always achieve good
robustness against noise and reverberation [35]. Anyhow, this will no affect the
choice of applying these features for keyword detection.



Chapter 3

Keyword Spotting using Template
Matching

This chapter presents a keyword spotting algorithm that complies with the plat-
form constraints and the delimitations presented in Section 1.3 to ensure imple-
mentational feasibility. The work presented in [45] will serve as the baseline
system, around which modifications and simplifications will be introduced on a
smaller scale. Unlike the conventional statistical-based spotting methods, the work
in [45] proposes a template-based and unsupervised approach, i.e. it follows the
first KWS paradigm presented in Section 1.2, and further that it does not require
annotated speech data for training. This chapter covers the design of both the
front-end and back-end aspects of the system that includes feature extraction, pat-
tern matching, scoring and decision making. Finally, an evaluation of the spotting
performance will be carried out by testing the keyword spotter under different
acoustic scenarios.

In Section 3.1, a system overview is provided and followed by an explana-
tion of the different stages in the keyword spotter. The system is divided into
a number of training and test subsystems. The subsequent sections will provide
a more detailed description of each subsystem, and cover the applied methods
and techniques along with their underlying theory. In Section 3.2, the applied
pre-processing techniques on the raw speech recordings are explained, comprising
signal normalization, speech framing, and voice activity detection. Section 3.3 cov-
ers the feature extraction phase, with particular emphasis on the Gaussian mixture
model and its application to KWS. Section 3.4 deals with pattern matching and
classification of the test signal using dynamic programming methods, which in-
cludes DTW and its variant segmental DTW (SDTW). Finally scoring and decision
making is covered in Section 3.5.

23
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3.1 System Overview

The overall system as depicted in Figure 3.1 is partitioned into two training sub-
system and a test subsystem. The basic principle behind the presented keyword
spotter highly resembles the first approach put forth in Section 1.2 and Figure 1.1,
and has two major steps. In the first step templates of keyword(s) are generated
and stored during an offline training phase.This is followed by an online test proce-
dure, where features from a keyword template and a target utterance are extracted
and compared against each other, in order to determine possible occurrences of
the keyword term in the target utterance. The described approach assumes that a
number of audio examples of the keyword(s) are attainable from the native system
user. That is a fundamental prerequisite for the system, since it searches the test
string for the presence of template instances based on the known audio examples.
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Figure 3.1: This figure provides an overview of the different system blocks which constitute the
keyword spotter presented in [45], and includes both test and training procedures. The keyword
spotter combines Gaussian posteriorgrams with segmental DTW.

In Figure 3.1 the two training phases are outlined. The first training phase is
used for training the Gaussian mixture model (GMM) from a set of observed
acoustic features. An often used approach for GMM training is the expectation-
maximization (EM) algorithm, and will similarly be the approach used for our
system. The GMM is a probabilistic model used for posterior feature extraction,
it transforms the traditional cepstral-based features to a type of posterior features.
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In this context, the GMM can roughly be regarded as a variant of a phone rec-
ognizer, which is trained to estimate the phone posterior probabilities based on
acoustic features. As opposed to the conventional phone recognizer, each cluster
in the GMM typically represents an unspecified independent acoustic unit rather
than a specific phonetic class. Hence the mixture of Gaussians aim at identifying
the underlying probability distribution of these acoustic subword units, instead of
explicitly modeling the phonetic units. The second training subsystem is used to
generate keyword templates. As with the first training phase, the training data is
preprocessed before the acoustic features are extracted. An MFCC feature vector
is extracted from each frame, hence an entire speech signal is necessarily repre-
sented by a sequence of feature vectors stored in a feature matrix. These features
are subsequently fed into the GMM. The concatenation of posterior probability
vectors obtained from feeding the cepstral-based feature matrix into the GMM is
denoted a Gaussian posteriorgram, and contains the posterior probability vector for
each frame. The computed posteriorgrams from each keyword are then stored in
a template database.
Once training of the keyword spotter has been fulfilled, an online test routine can
be applied. It works by first preprocessing the test input before being passed to
any subsequent detection routines. Preprocessing implies performing energy nor-
malization and next partitioning the speech signals into overlapping frames before
voice activity detection (VAD) finally is applied. The VAD aims at detecting and
discarding the frames in which speech is absent, therefore it is occasionally referred
to as silence suppression. Subsequently, the acoustic feature matrix is generated from
a series of feature vectors. In the posterior feature handling, the feature matrix is
converted into a Gaussian posteriorgram. Given one or more keyword templates
(stored in the template database), SDTW is used to compare the template posteri-
orgram against the test posteriorgram to detect any common patterns. The SDTW
is a simplified variant of the conventional DTW algorithm which implements a
sliding window approach. The test template is slided across the entire test utter-
ance in overlapping windows. At each window instance a similarity/distortion
score is computed between the keyword template and the windowed signal. The
resulting distortion scores are then collected and ranked accordingly to find the
best alignment path. As a final step, a decision threshold is applied to indicate the
extent of match and infer about the presence of a keyword.

3.2 Preprocessing

The major component in the preprocessing stage is undoubtedly the VAD, which
seeks to eliminate all silence regions in the applied speech data. A VAD algorithm
typically generates a binary decision output based on each time frame, to indicate
whether speech is present in that particular frame. The motivation behind intro-
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ducing a VAD into the system pertains to a general clustering problem experienced
in the presence of non-signal and noise components in the training data. This issue
will be manifested in the GMM output, where the vast majority of the probability
mass is concentrated in only a few Gaussian component, thereby creating unbal-
anced posteriorgrams [45]. More details on this particular issue is provided in
Section 3.3.3.

The used VAD is found and described in [46], hence only a brief introduction to
the main system functionality is given in the following. The applied VAD is based
on an unsupervised two-pass segment-based method. A system overview of the
VAD is shown in Figure 3.2.
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Figure 3.2: VAD system block overview.

In the first pass, the input signal is filtered through a high-pass filter with a cut-off
frequency of 60 Hz. To detect the high-energy segments in the filtered signal, a
posteriori signal-to-noise-ratio (SNR) weighted energy difference is applied. If the
difference measure between two consecutive frames exceeds a predefined thresh-
old, the frames are considered to be of high energy. Subsequently, high-energy
frames that occur in consecutive order are grouped together to form high-energy
segments. Next, pitch detection is applied to each segment; if no pitch is de-
tected within the segment, it is considered to be a high-energy noise segment. In
the second pass, noise reduction is applied using a modified minimum statistics
(MS) noise estimator to eliminate stationary noise from the speech signal, while
the high-energy noise segments are set to zero. As a final measure, the denoised
signal generated from the MS noise estimator is passed onto a subsequent block,
where the a posteriori SNR weighted energy difference is calculated to make voice
activity detection.
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3.3 Feature Extraction and Posterior Feature Handling

This section describes the basic theory behind GMMs and its application to KWS,
moreover we motivate its use for posterior feature handling. The speech analysis
for extracting static acoustic features (MFCCs) and dynamic features (deltas and
double deltas) is already described in Section 2.4. Hence, this section will focus
mainly on posterior feature processing.

An essential part of every ASR system is to model the individual phonetic sound
units within the test signals prior to any detection routines. Segmentation of the
speech signals into its phonetic classes is done either explicitly or implicitly. The
baseline system as presented in Figure 3.1 [45] relies heavily upon the research by
Hazen et al. in [47] in the aspect of posterior feature handling. In the later they
apply an independently trained phonetic recognizer to model the speech, from
which a phonetic posteriorgram is extracted. The phonetic posteriorgram can be
regarded a phonetic class time versus matrix as exemplified in Figure 3.3, whose
columns represent a probability vector containing the posterior probabilities for a
set of predefined phonetic classes at a specific time frame. These values are derived
directly from the acoustic likelihood scores as given by the phonetic recognizer.
However, the approach in [45] resorts to another modeling strategy which uses im-
plicit phonetic modeling, meaning that the posterior features are rendered a sym-
bolic phonetic representation rather than a direct representation of the phonetic
classes. Implicit modeling typically relies on unsupervised clustering to classify
acoustic features, during both training and testing. For the particular system pre-
sented in Figure 3.1, subword unit clustering of the speech data is handled by the
GMM. As a consequence of substituting the phonetic recognizer with a GMM, the
phonetic posteriorgram effectively turns into an Gaussian posteriorgram. While
the phonetic posteriorgram represents the likelihood scores for each phonetic class
for a certain time frame, the Gaussian posteriorgram models the posterior proba-
bilities for each Gaussian component. Using a completely unsupervised approach,
i.e. without any transcription information of the speech data, the GMM is trained
to label both test and template instances with a Gaussian posteriorgram. Using
an unsupervised training approach adds the advantage that the system can be
adapted to any language, rendering the system an appealing choice for e.g. low-
resource languages.

Besides the ability to cluster speech signals into their subword units, the posterior
features have other desirable properties that render them an appealing choice for
pattern matching. In particular, the posterior features exhibit an added stability
and robustness to noise as compared to the traditional MFCC features [48]. Moti-
vated by their desired characteristics, posterior feature handling using GMMs will
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Figure 3.3: A phonetic posteriorgram of the spoken phrase “Basketball and baseball”. The horizontal
axis shows the time in seconds, while the vertical axis represents the individual phonetic sound
units. The proportion of darkness in the figure expresses the posterior probability values, where
black pixels corresponds to one and white to zero.

be reviewed to the application of template matching.

3.3.1 Gaussian Mixture Models

Many natural occurring phenomena including speech have successfully been mod-
eled using the Gaussian distribution. GMMs are generally considered a powerful
tool for generating smooth approximations to any arbitrarily-shaped distribution
[51]. In particular, mixture of Gaussians has proven effective in modeling the prob-
ability distribution of the underlying acoustic units in a speech signal when com-
bined with e.g. MFCCs [49]. This is mainly due to the fact that feature vectors
appear in clusters in their respective feature space, rather than e.g. being centered
around a single point. Therefore a mixture of Gaussians has suitable modeling
capabilities for this particular application, since it has the ability to model each
cluster by a distinct Gaussian component. This is e.g. used in [45], where the
number of assigned Gaussian components roughly corresponds to the number of
underlying phonetic units.

In general, a GMM can be described as linear combination of K normal distribu-
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tions, with a probability density function (PDF) that is defined as follows:

p(x) =
K

∑
k=1

πkN (x | µk, Σk) (3.1)

where the model parameters of the kth component are given as

λk = {πk, µk, Σk} . (3.2)

The parameter πk is known as the mixing coefficient and expresses the prior prob-
ability that an observation originates from the kth Gaussian component. The re-
maining model parameters of the kth Gaussian component are given by the mean
vector µk and the covariance matrix Σk. The mean vector represents the expected
feature vector within the kth component, while the covariance matrix represents the
variability and correlations of the feature vectors in the kth component. The mix-
ture components are unimodal multivariate Gaussians, and hence can be described
by the following expression for some D-dimensional input vector x:

N (x | µk, Σk) =
1

(2π)
D
2 |Σk|

1
2

exp
[
−1

2
(x− µk)

ᵀ
Σ−1

k (x− µk)

]
. (3.3)

Given a set of feature vectors (e.g. from the training set), the GMM component
parameters can be estimated using a maximum likelihood (ML) approach which
maximizes the probability of observing the feature set. One such approach is the
EM algorithm which estimates the model parameters in a unsupervised and itera-
tive manner. Provided feature vectors derived from a training set of speech data,
the EM algorithm iteratively refines the Gaussian model parameters to maximize
the likelihood that the model fits the training data distribution. This type of train-
ing holds no requirements of annotated speech data, and converges to the final
solution in only few iterations [50].

3.3.2 Maximum Likelihood Parameter Estimation

Given a training set of feature vectors, the aim of the training procedure is to
estimate the GMM model parameters λk = {πk, µk, Σk}, k = 1, . . . , K such that
they best match the distribution of the training set in some sense. There exist
several methods for carrying out this training task, but the most applied and well-
established technique for GMM training is ML estimation [51]. The goal of ML
training is to estimate the model parameters which maximize the GMM likelihood
of observing the sequence of training vectors. The ML estimate of the parameter
set can be expressed by the following optimization problem

λ̂ = arg max
λ

L (λ | X) (3.4)
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where X = {x1, . . . , xN} is the training data given by a set of feature vectors, and
L (X | λ) is the log-likelihood function of the GMM which has the definition

L (λ | X) = log p (X | λ) =
N

∑
n=1

log p (xn | λ). (3.5)

Thus ML estimation seeks to maximize the probability of the observed feature
vectors by adjusting the model parameters λ. Unfortunately, there exist no an-
alytical solution to the problem in Equation (3.15). Instead ML parameter es-
timation can be conducted iteratively by using a variant of the EM algorithm,
which is outlined in Algorithm 1. The basic idea behind the algorithm, starting
from some model λl =

{
πl , µl , Σl}, is to estimate a new model λl+1 such that

p
(
X | λl+1) ≥ p

(
X | λl) [51]. Thereby the new model becomes the current model

of the next iteration. Using this approach the model parameters of each Gaussian
component is recalculated iteratively and runs until the convergence threshold is
reached, i.e. until the estimates of λ have stabilized.

Algorithm 1: EM algorithm used for GMM training.

Initialization: µ0
k , Σ0

k , π0
k

for l = 0, 1, . . . do
for k = 1, . . ., K do

E-step;

γn,k =
p(xn | µl

k, Σl
k)π

l
k

∑K
j=1 p(xn | µl

j, Σl
j)π

l
j

M-step;

µl+1
k =

∑N
n=1 γn,kxn

∑N
n=1 γn,k

Σl+1
k =

∑N
n=1 γn,k

(
xn − µl+1

k

) (
xn − µl+1

k

)ᵀ
∑N

n=1 γn,k

πl+1
k =

∑N
n=1 γn,k

N
end

end

After initialization, the EM algorithm alternates between two steps in each itera-
tion. The dual-step procedure ensures that the GMM likelihood function of the
observed feature set increases monotonically for each iteration. In short terms, the
functionality of each step may be summarized as follows:

• E-Step: To compensate for the hidden nature of the data labels, i.e. the
affiliation of a feature vector xn to the K Gaussian components is unknown,
the algorithm resorts to (soft) label estimation using posterior probabilities.
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To find which Gaussian is most likely to have generated a feature xn, the
posterior probability that each Gaussian generated xn is found, i.e. γn,k for
k = 1, . . . , K are computed.

• M-Step: Assuming that the data points was generated according to the
probability distribution from the E-step, the parameters of each Gaussian
λk = {πk, µk, Σk} are updated to maximize the probability that it would
generate the data it is currently responsible for.

The use of the EM algorithm is illustrated in Figure 3.4, where it is being applied
on the Old Faithful data set [54] and modeled by a mixture of two Gaussians. Fig-
ure 3.4(a) depicts the Gaussians in their initial state, whereas the first E and M step
are shown in Figure 3.4(b) and 3.4(c), respectively. The plots in Figure 3.4(b), 3.4(c),
and 3.4(c) shows the results after 2, 5, and 20 EM iterations.

The model parameters are often initialized at random, and followed by clustering
using the K-means algorithm. Combined with K-means clustering, ten iterations
of the EM algorithm will typically suffice for parameter convergence [52].
For cepstral-based features such as MFCCs, the computational requirements are
often relaxed by assuming the covariance matrices to be diagonal. This assumption
is valid as the DCT applied in the extraction process of the MFCC features acts as
a decorrelator [64].

3.3.3 Gaussian Posteriorgrams

Gaussian posteriorgrams are a novel type of posterior feature representation, which
have been adopted by recent template-based KWS systems such as the one in [45],
while [48] and [55] apply similar posterior feature representations. Whereas the
phonetic posteriorgram is defined as a phone versus time matrix, the Gaussian
posteriorgram is a time versus class matrix, where the classes refer to the Gaus-
sian components. In other words, a Gaussian posteriorgram is a probability vector
containing the posterior probabilities of each Gaussian component for a number
of speech frames. To state it formally, for a speech signal of N feature vectors
X = {x1, . . . , xN}, the corresponding Gaussian posteriorgram is defined as [45]

GP(X) = [q1, q2, . . . , qN ]
ᵀ (3.6)

where qn is the posterior probability vector of the nth feature vector for all Gaus-
sians and is calculated by

qn = [p(C1 | xn), p(C2 | xn), . . . , p(CK | xn)]
ᵀ (3.7)

where Ck denotes the kth Gaussian component, and K represents the total number
of Gaussian components. Using the posteriorgram representation, a speech signal
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(a) Unlabelled data points
shown in green, along the initial
state of the two mixtures shown
as the red and blue contours.
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(b) The result of the initial E-
step, where each point is de-
picted as a mixture of red and
blue to signify the posterior
probability values of each Gaus-
sian.
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(c) The result of the initial M-
step, where the component pa-
rameters are reestimated with
respect to the probability distri-
bution of each point.
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(d) Results after 2 EM iterations.
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(e) Results after 5 EM iterations.
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(f) Results after 20 EM iterations,
where the model parameters are
close to convergence.

Figure 3.4: Selected steps of the EM-algorithm applied on the Old Faithful data set modeled with
two Gaussian mixtures. [53].

of N frames is transformed into a matrix of dimensions K×N, where each column
represents a single frame.

An example of a Gaussian posteriorgram is visualized in Figure 3.5 which plots
the speech frames along the horizontal axis, while the Gaussian components are
shown on the vertical axis.
Generating Gaussian posteriorgrams is a two-fold process;

1. The GMM is trained on a training set of feature vectors, and once the model
parameters are estimated, the likelihood function of each Gaussian is used
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Figure 3.5: A Gaussian posterior gram shown for the uttered phrase “Oticon alta”, where the posterior
probabilities values are illustrated with different color codes. .

to generate the posterior probability vectors (according to the definition in
Equation (3.7)). These probability vectors are concatenated to form the raw
posteriorgram.

2. A discounting-based smoothening technique is applied on the raw Gaussian
posteriorgrams to avoid approximation errors. Meaning that a small amount
of the probability mass is shifted from high density to low density dimen-
sions.

GMM training should be handled carefully since it is of critical importance with
respect to creating a model that discriminates well between the underlying pho-
netic classes. Otherwise, the Gaussian posteriorgrams become unbalanced, in the
sense that a few Gaussian components will dominate the probability space, while
the remainder of Gaussians will represent only a small portion of the training data.
This is usually the case when training examples are noise contaminated and other
non-speech sources are present. In some of the worst-case scenarios observed in
[45], a few dimensions can occupy up to 95 % of the probability mass, while only
5 % of the probability mass is distributed among the majority of the dimensions.
One approach to avoid unbalanced posteriorgrams is to apply a VAD, and subse-
quently only train the GMM on the extracted speech segments.
After GMM training, the raw posteriorgrams can be generated in accordance to the
definition in Equation (3.6). Next, smoothening is applied to the posteriorgrams to
avoid any approximation errors. This implies setting a probability threshold floor
Pmin, below which all raw posterior values are zeroed out. The posterior probabil-
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ity vector is then re-normalized to set the sum across the dimensions to one. As
a final step in the discounting-based smoothening strategy, a small amount of the
probability mass is moved from the non-zero to the zero dimensions to remove the
effects of thresholding. For a posterior probability vector qi, each zero dimension
zi,j is rescaled to

zi,j =
β

count {zi}
for j = 1, 2, . . . , count {zi} (3.8)

where zi,j is the jth zero dimension in qi, β is a smoothing factor, and count {zi}
denotes the total number of zero dimensions in qi. The non-zero dimensions vi,j
are redefined according to

vi,j = (1− β)vi,j for j = 1, 2, . . . , count {vi} (3.9)

where where vi,j is the jth non-zero dimension in qi, and count {vi} denotes the
total number of non-zero dimensions in qi. These are the last steps in generating
the final posteriorgram. Using the above procedure template posteriorgrams can
be extracted from the training keywords (and stored in the template database),
similarly test posteriorgrams can be extracted from the test inputs. Thus the next
stage in the system process is to apply a matching routine, which searches for
common patterns between a test input and a template instance, each represented
by a Gaussian posteriorgram.

3.4 Pattern matching

In the field of ASR, dynamic time warping (DTW) was initially applied to isolated
word recognition for aligning isolated test instances with examples of keyword
terms. Later the technique was adapted to continuous word recognition, wherein
a reference template is matched against a continuous test utterance by applying
a sliding window approach on the speech segments. Although being initially de-
veloped for speech applications, DTW has found its applicability in other fields of
study, e.g. in handwriting recognition, bioinformatics, finance etc [59]. DTW is a
non-parametric method for time series alignment and comparison. It seeks to align
two feature vector sequences by warping the time axis iteratively until an optimal
match between them is found according to some suitable distance measure.

The main motivation of using DTW, is to account for the natural time duration
variance in spoken words. The same word is almost never uttered exactly the
same way twice, e.g. due to varying speaker rate, causing fluctuations in the
time duration of the speech signal. To cope with time deformations, non-linear
warping of the time axis is applied to ensure that the signal is matched against
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its reference signal in some optimal alignment. The difference between regular
linear alignment and non-linear type of alignment is outlined in Figure 3.6, where
alignment is attempted on two time sequences (i.e. the green and blue curves) that
are out of phase. However, since the optimal alignment will vary from case to case,
and no simple calculations for finding it exist, the alignment task must be dynamic
as indicated by the name of the method.

(a) A distance measure of any type which
aligns the ith point in one sequence to the ith

point in the reference signal is regarded as lin-
ear alignment, and will produce a poor com-
parison for temporally mismatched signals.

(b) Non-linear alignment is an elastic type of
matching which allows points to be aligned
across the time axis. It is often a more intuitive
similarity metric, as it allows similar shapes to
match even when they are out of phase.

Figure 3.6: Comparison of linear and non-linear alignment of two curves with time deformations
[56].

3.4.1 Dynamic Time Warping

DTW has extensively been applied in solving temporal mismatch problems be-
tween two data sequences. In the context of KWS, the objective of the DTW al-
gorithm is to optimally align the Gaussian posteriorgrams of the test input and
keyword template, while evaluating the similarity between them. The optimal
alignment path between the posteriorgrams is computed as the minimized residual
distance between them, after having eliminated the time difference. Afterwards the
accumulated cost along the optimal path is used as a basis for comparison. DTW
(and its variants as introduced later) lie the foundation for the pattern matching
methodology used throughout this thesis.

Consider two speech patterns expressed as a series of feature vectors (or a series
of posterior feature vectors for that matter):

X = {x1, . . . , xN} , (3.10)

Y = {y1, . . . , yM} . (3.11)

To find the alignment path with respect to some minimal cost, a local distance
(or cost) metric between two features, i.e. c(xn, ym), needs to be defined. The
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choice of cost metric highly depends on the properties of the feature space [48].
Whereas traditional features apply the Euclidean or Mahalanobi distances for sim-
ilarity measure, the detection system in [45] uses a dot-product based measure,
while yet others use a novel type of distance measure such as the Kullback-Leibler
(KL) divergence in [48]. Typically, a low cost measure signifies high similarity be-
tween xn and ym, while a high cost signifies a low similarity measure. Evaluating
the cost measure of aligning each pair of vectors {xn, ym}, one attains the cost
matrix C ∈ RN×M [57]:

C(n, m) = c(xn, ym), ∀ {n ∧ m} (3.12)

In Figure 3.7(a) [57], the cost matrix of the two time sequences X and Y is depicted,
where each point (n, m) represents the cost value of aligning the nth element in
X to the mth element in Y, thereby indicating regions of high and low similarity
measures.
Given the cost matrix, the objective of DTW is to find the optimal alignment be-
tween X and Y. To do so, we define a warping path as a sequence of ordered pairs
[58]

ϕ = (nk, mk) , k = 1, 2, . . . , T (3.13)

where T = max {N, M} is the number of steps in the warping path. The warping
path ϕ represents a mapping function for each point in one sequence to a point in
the reference sequence:

xn1 ↔ ym1

xn2 ↔ ym2

...

xnT ↔ ymT

Hence two sequences can be compared based on the accumulated cost Dϕ(X, Y)
along the alignment path of ϕ:

Dϕ (X, Y) =
T

∑
k=1

c(xnk , ymk) (3.14)

The optimal warp path ϕ̂ is defined as the path minimizing the accumulated cost
measure [18]:

ϕ̂ = arg min
ϕ

Dϕ (X, Y) (3.15)

An ideal match between the segments in the feature vectors will be manifested as a
sequence of similar regions along the lower-left to the upper-right diagonal within
the cost matrix C. The same tendency can be observed in Figure 3.7(b), where
the optimal alignment path of the cost matrix in Figure 3.7(a) is emphasized. The
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(a) Cost matrix C of matching X and Y computed on the Manhattan distance, i.e. the
absolute residual distance. Regions expressing high similarity are marked in black
while low similarity regions are marked in white.

(b) Cost matrix introduced in Figure 3.7(a) shown along with the optimal warp path ϕ̂

(white curve).

Figure 3.7: Cost matrix computed on the two time sequences X and Y using the Manhattan distance
as a cost metric [57].

more the optimal path ϕ̂ deviates from the the diagonal, the more time warping is
required between the two sequences X and Y to get a suitable match.
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Testing each and every combination of the components in X and Y to find the opti-
mal path is a tedious and computational expensive process. Such a brute force pro-
cedure will result in a computational complexity that is exponential in the lengths
of N and M. The optimal alignment can instead be found using dynamic program-
ming (DP) techniques by applying a greedy algorithm, while imposing a number
of constraints. Using DP-based algorithms reduces the computational complexity
to O (MN) [57].

For a warping path ϕ described as a series of alignment points ϕ = (ϕ1, . . . , ϕT)
with ϕk = (nk, mk), three types of conditions need to be met, i.e. [57]:

[1.] Boundary condition:
ϕ1 = (1, 1) and ϕT = (N, M)

[2.] Monotonicity condition:
n1 ≤ n2 ≤ . . . ≤ nT and m1 ≤ m2 ≤ . . . ≤ mT

[3.] Step size condition:
ϕk+1 − ϕk ∈ {(1, 0) , (0, 1) , (1, 1)} for k = 1, . . . , T

Condition [1.] enforces the alignment path to tie the start points and the end points
of X and Y. In other words, the path starts at the bottom left index within C and
ends at the upper right index. The boundary condition ensures that both sequences
are considered in their entirety. The second condition pertains to the principle of
faithful timing, i.e. the alignment path does not turn back in time, either both
indexes (nk, mk) increase or remains the same, but they never decrease. Finally,
[3.] represents a continuity condition, ensuring none of the elements in either X
or Y are omitted, nor do any replicates occur (i.e. all ordered pairs (nk, mk) are
unique). Note that [2.] can be derived directly from [3.], but has been included
anyway for the sake of clarity. All the conditions are depicted in Figure 3.8 given a
simple toy-example, with Figure 3.8(a) illustrating a scenario where condition [1.],
[2.] and [3.] are satisfied. While violations of the three conditions are illustrated in
Figure 3.8(b)-3.8(d).

In addition to the constraints in [1.]-[3.], supplementary global constraints are
sometimes imposed to limit the scope of the warping path. This helps to reduce
the complexity of the search routine, by restricting the types of admissible moves.
Prime examples of such constraints are e.g. the Sakoe-Chiba bound [60] that en-
forces the warping paths to lie within a fixed distance to the diagonal of the cost
matrix, and the Itakura parallelogram [61] which constraints the path to lie within
a parallelogram located around the diagonal. The Sakoe-Chiba bound and the
Itakura parallelogram are illustrated in Figure 3.9(a) and 3.9(b), respectively.
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(a) An example of an
admissible alignment
path ϕ which satisfies
the conditions in [1.],
[2.], and [3.].

(b) Violation of the
alignment path w.r.t.
condition [1.].

(c) Violation of the
alignment path w.r.t.
condition [2.].

(d) Violation of the
alignment path w.r.t.
condition [3.].

Figure 3.8: Illustrating admissible and invalid alignment paths through the cost matrix of the data
sequences X of length N = 9 and Y of length M = 7 [57].

These restrictions of the warping path seek to lower the computational complexity
by delimiting the number of optimal path candidates. The intuition behind the
path bounds is that a decent warping path is unlikely to wander too far away from
the diagonal. Yet other constrains restricts the shape of the path slope, to ensure
the gradient is not too step nor too gentle, otherwise unrealistic warping of the
time-axis might occur. Having a too step or gentle slope causes an undesired effect
of mapping relatively long patterns to very short ones [63].

3.4.2 Dynamic Programming Algorithm

Revisiting the minimization problem in Equation (3.15), a DP algorithm will be
defined which aims at finding the optimal path alignment in a recursive manner.
DP is often deployed in applications where consecutive decisions are dependent,
and where the resulting sequence must ensures a optimal cost. By doing so the
number of possible alignment paths are reduced from O

(
NM) to O (MN).

In a DP setting, the optimal path is found using a cumulative cost matrix instead
of the traditional cost matrix defined in Equation (3.12). Given a set of partial
pattern sequences X (n) = {x1, . . . , xn} and Y (m) = {y1, . . . , ym}, the entry of
the cumulative cost matrix G(n, m) is expressed as the shortest path up to the
index pair (n, m):

G(n, m) = c(xn, ym) + min {G (n− 1, m) , G (n, m− 1) , G (n− 1, m− 1)} (3.16)

where the three terms inside the minimization reflects the step size condition on
the warping path ϕ as defined in item [3.]. Instead of treating a single cell (n, m)
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(a) The Sakoe-Chiba bound. (b) The Itakura parallelogram.

Figure 3.9: Two types of global constraints are illustrated on a cost matrix. The constraints are
imposed to delimit the number of optimal warping path candidates [62].

as the alignment of the nth element in X to the mth element in Y as in C(n, m), each
cell G(n, m) expresses the cost of the shortest path up to that particular cell de-
fined recursively based on the preliminary cells. The cumulative cost matrix can be
computed in a column-wise fashion by processing one column at the time starting
from the first column. In that case, all elements in the mth column are derived from
the previous column. Likewise, the matrix can be formed in a row-wise fashion.
However, the running time is the same in either case, i.e. O (MN).

The algorithm for computing the optimal path ϕ̂ using a DP approach is outlined
in Algorithm 2, and takes as input the cumulative cost matrix evaluated at all row
and column indices, i.e.

G = G(n, m) for {n = 1, . . . , N ∧ m = 1, . . . , M} (3.17)

The optimal path is derived in reverse order of the start indices starting from the
upper right corner cell ϕ̂T = (N, M), and tracing the optimal path backwards until
it reaches the start indices ϕ̂1 = (1, 1), where the algorithm eventually terminates.
At each iteration step l, the prior point of alignment ϕ̂l−1 is defined as the set of
adjacent cell indices which provides minimal accumulated cost. Except in the spe-
cific cases where ϕl is located in the border regions, then ϕ̂l−1 can assume only a
single value given by either decreasing the row index or the column index by one
(depending on whether the current alignment point is situated at the horizontal or
vertical border region). After termination of the back-tracing routine, the accumu-
lated cost of the optimal path is scaled by the total number of steps to achieve the
time normalized cost G.
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Algorithm 2: DTW algorithm for finding the optimal path ϕ̂.
Input: Cumulative cost matrix G
-Initialization: ϕ̂T = (N, M)

-Back-tracing:

for l = T, . . . , 2 do

ϕ̂l−1 =



(1, m− 1) if n = 1

(n− 1, 1) if m = 1

arg min


G (n− 1, m)
G (n, m− 1)

2 · G (n− 1, m− 1)
otherwise

end
-Termination:

G =
1

N + M
G(N, M)

In relation to the plots in Figure 3.7, the optimal alignment path derived using
the DTW algorithm is shown in Figure 3.10 [57] together with the cumulative cost
matrix. As compared to the former results presented in Figure 3.7(b), the trace of
the optimal path is more obvious from the cumulative matrix presented in Figure
3.10.

In the following a DTW variant denoted segmental DTW (SDTW) will be intro-
duced, which deviates from the classical DTW algorithm in respect to the con-
straints imposed on the warping path. However, in the other aspects the two
algorithms are much alike, e.g. do both incorporate DP into the algorithms.

3.4.3 Subsequence and Segmental Dynamic Time Warping

Matching sequences with a significant difference in the lengths is a common is-
sue encountered in many applications, including KWS where a relatively long test
posteriorgram representing a multitude of word is compared against a typically
shorter template posteriorgram representing a single word. In this regard, it is in-
appropriate to enforce a global alignment path between the two sequences, as such
a well-defined path does not exist. A particular branch within DTW named subse-
quence DTW [57] is tailored to handle these type of issues, which is the category of
which the SDTW algorithm also belongs to. Instead of attempting a global align-
ment of the sequences, the goal of subsequence DTW is to identify a subsequence
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Figure 3.10: Optimal alignment path ϕ̂ (white curve) depicted along the cumulative cost matrix
derived from the data values in Figure 3.7 [57].

within the longer sequence which matches the shorter one in an optimal way. The
principle behind subsequence DTW in a KWS context is illustrated in Figure 3.11,
where a template signal X is aligned to a test sequence Y, to find the fragment
within the test sequence that optimally fits the keyword. In practice, subsequence
alignment can be conducted by sliding the short reference sequence across the
longer target sequence in overlapping windows. Each observation window is then
scored with a similarity value, corresponding to the extent of the match.

Figure 3.11: Optimal alignment procedure using subsequence DTW where a short template sequence
X and is matched against a test sequence Y. The goal is to detect the fragment within the sequence
Y providing the best fit to the keyword sequence X [57].

In [45], SDTW is explored as a framework for solving the subsequence align-
ment problem, its effectiveness in unsupervised word detection has formerly been
demonstrated in [58]. The problem of comparing a test string to a keyword tem-
plate, is translated into detecting common patterns between two posterior prob-
ability distributions in the form of Gaussian posteriorgrams. A cost measure is
selected based on the criteria that two posterior probability vectors xn and ym orig-
inating from the same phonetic event must exhibit high similarity. A common cost
metric c (xn, ym) used in e.g. [45] and [47] is the dot-product evaluated on xn and
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ym in the log probability space as:

c (xn, ym) = − log (xn · ym). (3.18)

The resulting dot-product between the two probability vectors xn and ym will al-
ways lie in the range of 0 to 1, and is inclined towards the higher end when the
vectors exhibit strong correlation. The log operation maps the similarity score into
an expression of distortion. As shown from the function plot in Figure 3.12, a
strong similarity score is translated to a low distortion score, and vice versa.
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Figure 3.12: Mapping from similarity to distortion score via the log-function.

According to Equation (3.12), the new cost matrix can be extracted by evaluating
all combinations of the instances in X and Y on the above inner-product operation.
From the essence of SDTW, two further conditions are made in addition to con-
straints [1.]-[3.] as introduced in Section 3.4.1. They are as follows:

[4.] A global constraint is imposed to restrict the shape of the warping path, by
applying an adjustment windows of some size R.

[5.] Search only specific and predefined warping paths, defined at different start
and ending points.

The first additional constraint is imposed to prevent an excessive amount of tem-
poral skew in the warping path. This is done by applying an adjustment window
which restricts any coordinate pair in the warping path to deviate no more than a
fixed distance R from each other. To state it formally, the kth coordinate pair of the
warping path, i.e. ϕk = (nk, mk), must satisfy the inequality,

|nk −mk| ≤ R. (3.19)
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Imposing such a constraint ensures the warping path is not too far ahead nor lacks
too far behind with respect to either of the posteriorgrams GP(X) and GP(Y). As
seen from Figure 3.13, the constraint is manifested as a diagonal with width 2R + 1
that surrounds the warping path.
Introducing constraint [5.] fixes not only the start coordinates of the warping paths
but also the step size between them. The adjustment windows size is set to R,
meaning the distance between two consecutive segmentation paths is R steps.
Thereby, a number of fixed path bounds are generated based on the start coor-
dinates. As a consequence of fixing the starting points, the adjustment window
will restrict not only the shape but also the range of possible ending points. Thus
combining both constraints result in a number of fixed path structures, i.e. the cost
matrix is divided into multiple contiguous diagonal regions of width 2R + 1. For
a given case where R = 2, Figure 3.13 outlines the first two of such paths.

R = 2

n

m

s1 s2

R

2R+1

Figure 3.13: SDTW works by splitting the cost matrix (the blue dots illustrate indices in the ma-
trix) into regions of overlapping pentagons with width 2R + 1. The points s1 and s2 are the start
coordinates for the two first warping path bounds, with R = 2 [45].

The amount of overlap between the alignment regions is a balance between avoid-
ing redundant computations, and giving thought to potential keyword occurrences
across the segmentation boundaries. Specifically, the overlapping rate is regulated
by R, as the adjustment window size determines the number of steps before a new
DTW search is conducted. Since the width of the segmentation regions is selected
to 2R + 1 a overlapping rate of roughly 50 % is achieved.

For the particular application of KWS, only the test utterance is segmented while
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the template instance is fixed. Let GPK and GPT represent the posteriorgrams of
the keyword template and test input, respectively. From the definition in Equation
(3.12), the cost matrix then becomes

C(n, m) = c (GPK (xn) , GPT (ym)) = − log (qK, n, qT , m) (3.20)

where qK, n is the nth posterior probability vector belonging to the keyword posteri-
orgram, while qT , m is the mth posterior probability vector in the test posteriorgram.
From the above definition it becomes clear that segmentation and thus windowing
only is required along the m-dimension. For a given value of R and a length N of
the test utterance, the start coordinates of the sliding window are [45]

(1, (k− 1) R + 1) , 1 ≤ k
⌊

n− 1
R

⌋
(3.21)

Each time k is incremented by one, the window slides to the next position as spec-
ified by the starting point, and so forth until k reaches its upper limit. For a single
keyword template, the sliding window procedure results in a total of

⌊ n−1
R

⌋
warp-

ing paths, each representing an alignment between a template example and test
subsequence found by applying the DP algorithm in Algorithm 2.

In summary, the SDTW algorithm can be regarded a DTW variant which imple-
ments an identical warping routine, but differs in the aspects of the imposed path
constraints. Or interpreted in another way, SDTW is a DTW algorithm with an
additional pre-stage that extracts multiple bounded segments (in the shape of pen-
tagons) from the cost matrix and subsequently passes these to the warping routine.
Afterwards, a distortion score (i.e. the accumulated cost along the optimal warping
path) is computed for each alignment of the template and test subsequence. Once
all warping paths have been scored, the resulting values are sorted in ascending or-
der, and the one providing minimum distortion is then selected to be the candidate
region within the test signal where the keyword is most likely to have occurred.

3.5 Score Ranking and Evaluation Metrics

In Section 3.4, SDTW was reviewed as a method to pattern matching between the
test and template posteriorgrams. The matching routine returns a set of distortion
scores, one for each region segment, indicating the fit of a template instance across
a test utterance. All distortion scores are then collected and ranked accordingly,
such that appointing a candidate region for the keyword occurrence is simply a
matter of selecting the time region affiliated with the score giving minimum dis-
tortion (i.e. the first score on the ranked score list). In case multiple templates
are provided for the same keyword, a merging strategy is needed to calculate the
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final score considering the contribution form each keyword template, such an ap-
proach is e.g. discussed in [45]. Ideally, a system inspecting a test input with N
keyword occurrences, will return a ranked score list where the scores affiliated
with the keyword regions appear on the top N. However, such an ideal behavior
is rarely seen in practice, often detection systems make wrong classification and
therefore decisions. Hence suitable performance metrics are of great importance
when evaluating detection performance, as well as when comparing different key-
word detectors.

3.5.1 Metrics for Detection Performance

Prior to presenting the different evaluation metrics, it is essential to understand the
type of decision errors a keyword spotter can make. Two types of detection errors
may arise from the keyword spotter, one is triggering the keyword spotter when
no keyword is present, i.e. false-positive (FP), and the second error option is to
overlook a keyword occurrence, i.e. false-negative (FN). Conversely, correct classi-
fication results either from identifying a target keyword, i.e. true-positive (TP), or
simply rejecting a non-keyword, i.e. true-negative (TN). These four possible clas-
sification outcomes are represented in a confusion matrix as shown in Table 3.1.

Actual state

keyword no keyword

keyword TP FP
Hypothesis

no keyword FN TN

Table 3.1: A confusion matrix representing all possible classification outcomes in KWS.

The metrics displayed in from Table 3.1, are rarely sufficient when viewed in isola-
tion for evaluating the keyword spotter performance. This is due to the unbalanced
nature of the KWS problem; the target keywords occur infrequently in a continuous
listening system as compared to non-keywords, hence the system is considerably
more prone to false alarms than overlooking keyword terms [9]. A useless system
that does not detect any keywords will hence obtain a low error-rate, because it
will not raise any false alarms. Thus, a more befitting and informative figure-of-
merit (FOM) is required to ensure a fair system evaluation. Three such metrics are
described in the following.
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Receiver Operating Characteristic curve

One such classic FOM in the context of KWS is the receiver operating characteristic
(ROC) curve, which measures the true positive rate (TPR) also known as the recall,
as a function of the false positive rate (FPR). Each of which are defined as [10]:

TPR =
TP

TP + FN
(3.22)

FPR =
FP

FP + TN
(3.23)

The TPR measures the fraction of positive examples (i.e. keyword occurrences)
that are correctly classified, whereas the FPR measures the fraction of negative
examples (i.e. non-keyword occurrences) that are misclassified as keywords [10].
Hence, the ROC relates both to the ability of the system to spot the occurrence of
keywords and reject non-keywords occurrences.

Each point on the ROC curve corresponds to one decision outcome at one spe-
cific threshold value b (in accordance with the description in the Decision stage
from Definition 1.1), for which the metrics in Equation (3.22) - (3.23) are calculated.
Therefore, generating the ROC curve necessitates a threshold sweep across all pos-
sible output scores [9]. In Figure 3.14 two example curves are shown, one which
exhibits a excellent performance (solid curve), and secondly a dashed curve that
corresponds to random guessing, and therefore represents a worthless detector.
Each point on the ROC curve represents a trade-off between the two types of errors;
i.e. either reducing the number of false alarms while more keyword occurrences are
overlooked, or vice versa. This trade-off is sometimes referred to as the precision-
recall trade-off. Often the preferred trade-off is not known on beforehand, in this
case the average performance over all the points is used as an alternative evaluation
metric. In particular, preference will be given to systems that attains the highest
area under the ROC curve (AUC) [9].

Equal Error Rate

The equal error rate (EER), is a commonly accepted evaluation metric of overall
system performance. It corresponds to the threshold at which the false positive
rate is equal to the false negative rate (FNR), indicating the proportion of false
rejections is equal to the proportion of false acceptance at this very point. Since the
FNR is defined as

FNR = 1− TPR =
FN

TP + FN
, (3.24)

it can be obtained directly from the intersection point between the ROC curve and
the off-diagonal of the unit-square. A corresponding visual explanation is given
in Figure 3.15. The lower the EER value is, the better the system performance is.
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Figure 3.14: ROC curve which exhibits examples with excellent (solid) and worthless (dashed) per-
formance. The dashed curve is also used as a performance reference.

Interpreted visually, a small EER implies that the ROC curve is shifted towards the
upper left corner, and thus attains a high AUC.

The equal error rate is also referred to in the literature as the crossover error rate
(CER) [67].

Precision@N and mean average precision

From a list of ranked distortion scores, the precision@N (P@N) metric measures
the average detection precision of a keyword ki among the top Ni hits, where Ni is
the total number of occurrences of the ith keyword in the test string [68]. The P@N
value is calculated as the number of distortion scores affiliated with the keyword
ki among the top Ni hits, normalized by Ni,

P@Ni =
# {ki occurrences in top Ni hits}

Ni
(3.25)

A simple approach of combining the average precision score of multiple keywords
K = [k1, k2, . . . , kN ], is using the mean average precision (MAP) score. This metric
considers the ranking of each keyword, as opposed to the P@N measure which
ignores a keyword target ki ranked lower than Ni. The MAP score computes the
average precision for each keyword and finds the mean across the dictionary of
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Figure 3.15: Visually, the EER can be interpreted as the intersection between the ROC curve and the
off-diagonal line.

keywords [68]:

MAP =

N
∑

i=1

(
1
Ni

Ni

∑
r=1

r
pi, r

)
N

(3.26)

where N is the size of the keyword vocabulary, Ni is the total number of repetitions
of the ith keyword term contained in the test input, pi, r represents the position of
the rth keyword target in the ranked score list for the ith keyword.

Following a complete system description, and a short review of relevant metrics
for evaluating detection performance, the next step is to analyze and simulate the
system behavior. The simulations are carried out under different training and
testing conditions, to mimic real case scenarios of the keyword spotter in use, and
verify the system work as intended under a given set of conditions. Eventually
the spotting performance is compared to contemporary KWS systems using the
above-mentioned metrics as a frame of reference.





Chapter 4

Experiments and Results

This chapter aims to evaluate the unsupervised KWS framework presented in
Chapter 3. The system is implemented and tested in MATLAB, the complete code
can be found in the appendix CD and an overview of the CD content is given in
Appendix B. The code for the implementation is mainly written by the author, but
is in its entirety a combination of the author’s code with public available scripts
and toolboxes. In particular, the voicebox toolbox [69] has been applied for feature
extraction, while a classical DTW implementation found in [70] has been modified
to a STDW setting and used for pattern matching.
The experimental data used for both training and testing are acquired through
speech recordings from a number of test persons. All recordings are made in a
controlled acoustical environment, to generate as noise free speech signals as pos-
sible. This implies that recordings are conducted in an acoustically isolated room
to avoid interference from external noise sources, and the distance between micro-
phone and speaker is relatively short. Recordings have been carried out with both
a conventional studio microphone and with a microphone embedded in a hearing
aid. Details on the experimental setup are provided in Appendix A. Hence the
initial system evaluation aims to assess the spotting performance in a controlled
acoustical environment. Generally, this chapter seeks to examine the KWS system
under different test scenarios and conditions, which reflects real case applications.
Initially, a short description of the training an test data is provided in Section 4.1.
Next, the experimental setup used in the application of single word detection is
described in Section 4.2, along the the resulting detection performance. A more
comprehensive keyword detection experiment is presented in Section 4.2.3, which
explores detection performance in a multiple speaker, multiple keyword setting. In
Section 4.3, a similar experiment is carried out for testing (false) keyword rejection
capabilities of the keyword spotter. Later, in Chapter 5, an investigation into the
system performance is carried out under non-ideal acoustical conditions.

51
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4.1 Training and Test Data

Before going into details regarding the system evaluation, a short description of
the test and training data is given. An essential part of evaluating every classifier
is to separate the available data into a training and data set. As the name indi-
cates, the training data is a set of speech recordings allocated solely for training
purposes, and here in particular for the GMM to learn the partitioning of a feature
vector into a set of components. After the system model (i.e. GMM) has been
learned based on the training data, the keyword spotter is evaluated against the
test data. The set of test data helps to investigate how well the system generalizes
when being exposed to unseen data. Therefore it is of critical importance that any
data applied during the training phase is excluded from the test set, and vice versa.
A fundamental principle in machine learning applications pertaining to the distri-
bution the training and test data, assumes the training data to be representative of
the test data. This implies that the phonetic distribution of the training examples
is somewhat identical to that of the unseen test examples. Violations of this basic
assumption typically result in a poor classification accuracy, because the test data
will behave differently from the training data, and therefore the performance of
the learned system on the test data will degrade [71].
Since the test set contains values for the attributes we want to predict, i.e. the true
classification of the test instances is known on beforehand, and therefore it can eas-
ily be determined whether the system model has correctly classified a test instance
or not. In a KWS context, the test input is a speech signal labeled with the exact
location of the keyword occurrences, and therefore it is apparent to verify from the
detection output whether keyword regions are classified properly according to the
signal labels.

In general speech processing applications, a database of prerecorded audio files
and corresponding text transcriptions are often used for system evaluation. These
databases referred to as speech corpora, consist of hours of speech data recorded
from a number of test subjects covering both male and female speakers. However,
testing and system evaluation as presented in the subsequent sections will rely on
own recordings. Using such an approach gives the freedom to define and regulate
the acoustical settings for the recordings, this pertains e.g. to the noise conditions
in the room, the distance to the microphone, the type of microphone, the location
of the microphone (e.g. behind the ear as in the case of a HA) etc. As a first
step, the acoustical settings are adjusted to facilitate the operating conditions of
the keyword spotter, and thereby evaluate its detection performance under acous-
tical favorable conditions. Furthermore, there is a limitation in the existing speech
corpora in relation to the variety of keywords as well as the number of repetitions
for each keyword. Conducting own recordings, allows for customizing the training



4.1. Training and Test Data 53

and test data from a set of self-determined speech recordings.

Details on the speech recordings are provided in Appendix A, where the recording
procedure along with the experimental setup is described. A total of nine different
keywords shown in Table 4.1 are recorded from five male and five female speak-
ers, with every keyword repeated 30 times. Additionally, all test subjects were
asked to read the same newspaper article to collect some general speech data. The
duration of each keyword recording, i.e. 30 repetitions of the particular keyword
is approximately 1 minute, while the article takes around 5 minutes to complete,
resulting in roughly 15 minutes of speech data from each test person. All are
recorded with with two types of microphones; initially a studio microphone was
used for the recordings, and afterwards the recordings were repeated with a mi-
crophone embedded in a commercial hearing aid (HA). The selection of the studio
microphone pertains to the aforementioned objective of creating an ideal (acoustic)
setting for initial evaluation purposes. Due to its cost, size, features, complexity,
etc, the studio microphone is expected to produce recordings of higher quality (as
compared to microphones embedded in some mobile device), e.g. in the sense
of achieving higher SNR values of the recordings. Whereas, the HA microphone
closer resembles the microphone expected to be found in a mobile device, and thus
better represents the achievable performance in a real-case scenario. In the result
sections, the studio microphone and the HA microphone will be referred to as
micHQ (high quality microphone) and micHA (hearing aid microphone), respec-
tively.

# Keyword
1 Oticon Alta
2 Oticon Epoch
3 Oticon Agile
4 Program 1
5 Program 2
6 Program 3
7 Volume up
8 Volume up
9 Go to sleep

Table 4.1: Recorded keywords for experimental use.

The collected data is apportioned into a training and test set, of which the keyword
repetitions are reserved in a ratio 2:3 for training while the remaining third is used
for testing, i.e. the majority of the keywords are allocated for the GMM to learn the
respective keywords. As for the article recordings, they are mainly used for GMM
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training, but also to create customized test sentences at which keyword instances
are inserted at certain points, preferably in silence regions.
From a practical perspective, personal keyword recordings from the system user
need to be acquired somehow. One such approach is to introduce a preliminary
training session, in which the system user is prompted to utter the keyword(s) in
isolation a number of times while the system is recording. Subsequently, the cap-
tured keyword examples are stored and divided into a training and a test group
according to the aforementioned distribution.

The experiments mainly serve the objective of evaluating the keyword spotter in
two types of scenarios:

1. Keyword detection: This is the most typical scenario, where a speaker n (re-
ferred to as the native system-user) intends to trigger his or her personal
mobile device by uttering a wake-up word. In that case, the system model is
trained on the speech recordings of the nth speaker, likewise the keyword test
inputs originate from the native system-user. The specificity of the keyword
spotter and in particular the GMM may vary, as a of result of using more or
less keywords. For our experimental framework, the maximum number of
different keywords is nine (see Table 4.1), while the minimum is one.

2. Keyword rejection: Conversely, if a test utterance is spoken by a non-native
user (i.e. any of the other n − 1 test speakers), the keyword detector is ex-
pected to ignore that keyword utterance, as triggering the system is reserved
to none but the native user. This scenario is easily tested by composing
keyword recordings from multiple non-native system speakers into a test in-
put. The system model is still trained on recordings from the nth speaker,
i.e. the native system-user, but the spoken keywords originates from the re-
maining n − 1 speakers. Thus, the keyword rejection scenario can help to
clarify how speaker dependent the keyword spotter is, according to its abil-
ity of averting non-native speakers’ attempt to trigger the system. In wider
terms, this scenario investigates the ability of the detector to refuse all other
words, phrases, noises, and sound inputs besides the keyword(s) uttered by
the native system-user.

4.2 Keyword Detection

In the following, the keyword spotter will be evaluated according to its ability of
detecting a single keyword. This resembles one of the simplest scenarios in the
discipline of continuous keyword spotting, where a prerecorded keyword tem-
plate represented in the feature domain is matched against a test utterance in an
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online classification routine. Nonetheless, this particular setting is highly rele-
vant in many practical applications, one such prime example is to trigger a device
running in a sleep-mode (or low power mode). Upon successful detection of the
wake-up word, i.e. the keyword, the device can safely resign from the sleep-mode.
Therefore, it is desired to device a system which is highly specialized and precise
in detecting a single keyword. Such a system can be accommodated through dif-
ferent training strategies of the GMM.
In the approach used in [45], the TIMIT corpus [72] is used to train a GMM with 50
components based on a set of 3,696 speech sentences recorded from 462 speakers
of both sexes. Using such a training strategy, the GMM becomes a general speech
model that represents a broad phonetic space. In the following experiments a sim-
ilar approach is embraced; the GMM is trained on general speech data in the form
of article recordings. However, since the quantity of general speech data is rather
restricted in our case, it must be ensured that the GMM learns the partitioning of
the keywords otherwise, such that the keywords are represented in the phonetic
space modeled by the GMM. To that end, an adaption phase is introduced where
the GMM learns a keyword through training examples of that particular keyword.
To reflect a realistic scenario of the training phase, the system model for a test
speaker n is not trained on the article recording conducted by the speaker himself
(or herself), as longer general speech recordings of the system user is unlikely to be
available in any practical case. Rather, the system model will be solely trained on
the article recordings of the remaining n− 1 speakers. As for the keyword adap-
tion, 20 repetitions of the respective keyword recoded by system user will be used.
This is indeed a realistic approach, since the keyword examples from the system
user (here denoted speaker n) are acquired through the above-mentioned training
phase.

For testing, a sentence is constructed for each speaker, containing a total of 10
keyword repetitions throughout the whole test string. For this purpose, a VAD
is utilized for detecting silence regions in the test string at which the keywords
are inserted. Using the VAD, automates the work of constructing test inputs, and
furthermore provides a more natural way of combining an already existing speech
recording with keyword insertions such that they do not overlap in any sense. The
keyword chosen for this initial experiment is the first one in Table 4.1. Having ten
different speakers, give rise to ten corresponding test strings that each is evaluated
individually.

4.2.1 Procedure

The experimental procedure is initiated by applying a VAD on speech segments
of 25 ms duration and with 10 ms overlap. Each extracted signal frame is then
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represented by 13 MFCCs including the zero coefficient, with first and second
order derivatives (delta and delta-delta coefficients), resulting in a 39-dimensional
feature vector per frame. All feature vectors generated from the training set are
used to train a 50 component GMM, with exception of the keyword template.
Upon completion of the training procedure, the GMM is used to decode test and
template frames to generate Gaussian posteriorgrams. Finally pattern matching
between the posteriorgrams is carried out via SDTW, using the parameter setting
found in [45] to exhibit the best performance, i.e. the smoothening factor β is fixed
to 0.0001 while the window size R is set to 6. The minimum distortion scores found
from each alignment window are then collected and sorted in ascending order for
computing the performance metrics.

4.2.2 Experimental Results

In this initial evaluation case, it assumed that only one keyword template is avail-
able for detection. Under this assumption, ten keyword repetitions from each of the
ten speakers are included in the experiment, yielding a total of 100 trial searches.
The optimal alignment scores from the search routine are plotted in Figure 4.2
for the micHQ recordings, while Figure 4.3 shows the corresponding results for
micHA. The results from each test speaker are shown in separate warping path vs.
distortion score plots, these are depicted with green regions indicating the time
interval for the true keyword occurrences, expressed in terms of warping path co-
ordinates. Obviously, the red regions mark the span of warping coordinates at
which no keyword is present.

Figure 4.2 clearly shows that good matches between the keyword template and
test keywords are consistently found for all keyword repetitions. Within each
plot, the distortion scores affiliated with the background words lies roughly in
the same score range and thus appear as a large cluster, meaning the majority of
the non-keyword segments are classified in similar manner. Likewise, keyword
scores are clearly separated from the non-keyword scores by a large margin, and
appear as abrupt deflections at their respective time of occurrence. Having a clear
and distinct partitioning of true and false classes is a desired property in many
classification tasks, and particular in KWS where it facilitates the task of select-
ing an appropriate decision threshold. Thus a keyword spotter which possesses
significant discrimination capabilities produces a broad margin between the classi-
fied entities and thereby attains higher performance. The virtue of having a large
margin is e.g. measured by the ROC curve which sweeps a threshold across the
distortion scores and computes the FPR and TPR at each instance. By virtue of
having a broad margin, false positives and false negatives are less likely to occur.
The idea behind is illustrated in Figure 4.1, where a set of keyword (green) and
non-keyword (red) distortion scores are depicted along the possible classification
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outcomes. From the figure it becomes clear that a classifier which discriminates
well, yields a broader FP and FN margin, which in turn improves the FPR and
TPR of the ROC curve.
The ROC curves generated from the micHQ distortion scores are shown in Figure
4.4. These plots signifies optimal detection performance as the AUC is 1 in all
cases, and therefore the resulting EER values are consistently zero for micHQ. The
EER values across all the speakers are reported in Table 4.2 for both micHQ and
micHA.

FN

TP

FP

TN

FN margin

FP margin Threshold

Figure 4.1: Keyword (green) and non-keyword (red) distortion scores are shown in the four possible
categories they can be classified into. The figure expresses the virtue of having a broad margin,
namely to avert false positives and false negatives. Eventually, such differences in the margins
become evident from the ROC curve.

The results shown in Figure 4.3 follows more or less the same trend as that of the
plots in Figure 4.2, i.e. apparent score deflections occur in keyword segments, while
the distortion scores in the non-keyword regions are mostly grouped together at
the higher end of the distortion score scale. However, there are specific result sets,
like the plots for test person 2 and 8, where keyword occurrences are not detected
perfectly. This drop in performance can be observed as a dip in the respective ROC
curves shown in Figure 4.5, as the number of false negatives increases at the major-
ity of examined threshold levels during the sweep. This in turn causes the TPR to
drop until the threshold value reaches above the undetected keyword scores. Con-
sequently, the EER metric will increase due to the notch in the ROC curve. This is
because the intersection of the off-diagonal line with the ROC curve shifts in the
right direction and thereby attains higher EER value.

Another important aspect of the observed distortion scores is the affiliation of those
warping indices which attain minimal distortion (i.e. whether they are generated
from a keyword or background word), as they will be ranked highest on the final
score list. Given N repetitions of a keyword k in a test string, the precision of the
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system will be 1 equivalent to 100 % if all N keyword instances appear among the
top N hits, i.e. P@Nk = 1, and declines gradually as more keyword scores falls
outside the top N. The precision metric is reported for each speaker and each mi-
crophone in Table 4.2, together with the average precision (across the speakers) for
each microphone. A quick inspection of the plots in Figure 4.2, easily reveals that
the vast majority of the distortion scores lying in the lowest end of the scale appear
in the green regions, and are therefore affiliated with keyword occurrences. When
ranking the scores, it becomes clear that the precision is optimal or near optimal
in all cases, more specifically the average precision is 0.98 for micHQ and 0.89 for
micHA. The results generated from the micHA data generally attains a bit lower
performance, primarily due to the scoring results of speaker 2 and 8. In the worst
case, i.e. for speaker 8, only half the keyword trials are ranked among the top 10
hits, giving a precision equal to 0.5. But, overall the micHA recordings generate
decent results that are comparable to micHQ.

Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5

P@N - micHQ 1 0.9 1 1 1

P@N - micHA 1 0.8 1 1 0.8

EER - micHQ 0 0 0 0 0

EER - micHA 0 0.05 0 0 0.06

Speaker 6 Speaker 7 Speaker 8 Speaker 9 Speaker 10 Average

P@N - micHQ 1 1 1 1 0.9 0.98

P@N - micHA 1 1 0.5 0.9 0.8 0.89

EER - micHQ 0 0 0 0 0 0

EER - micHA 0 0 0.1 0.005 0 0.02

Table 4.2: Performance metrics for single word spotting for micHQ and micHA.

The results and the corresponding evaluation metrics presented in this section sug-
gest the keyword spotter works as intended; it is capable of extracting meaningful
patterns and subsequently detect any occurring keyword instances, however, un-
der certain conditions. The first condition concerns the aim of creating an ideal
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acoustical setting for the recordings which are described in Appendix A, such as
to avoid any type of noise artifacts in the recordings. To that end, a close match
between the keyword template and test examples of the keyword is to be expected,
because they are recorded immediately in succession and in the same acoustic
environment. Conversely, if the recording conditions between template and test
instances differ, a degradation in the detection performance is expected. Secondly,
the system is highly specialized in modeling only a single keyword, e.g. a wake-up
word, which eventually facilitates the task of detection. Additionally, it should be
noted that evaluation is based on a restricted quantity of speech data with a limited
amount of test keyword occurrences. The effects from this restriction are visible on
the ROC curves (see Figure 4.4 and 4.5), which have a rough curvature. A more
comprehensive experiment is carried out in Section 4.2.3, where multiple keywords
are included in the test string, thereby the number of test instances are increased
by an amount proportional to the number of included keywords. Nonetheless,
the results including the generated ROC curves from this initial experiment are
promising, and demonstrate a KWS algorithm that hold great potential to work in
practice, even in a constrained mobile environment such as a HA platform. This
initial performance indication is challenged further in Section 4.2.3, where a more
thorough test is conducted, which in addition explores how the presented keyword
spotter performs compared to contemporary KWS systems.
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Figure 4.2: micHQ: Distortion scores resulting from single keyword detection for all test subjects.
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Figure 4.3: micHA: Distortion scores resulting from single keyword detection for all test subjects.
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Figure 4.4: micHQ: Generated ROC curves from the initial keyword detection experiment for all test
subjectst.
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Figure 4.5: micHA: Generated ROC curves from the initial keyword detection experiment for all test
subjects.
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4.2.3 Multiple Keyword Detection

An extended experimental evaluation of the keyword spotter will be carried out
in the following. The main objective is to perform a comprehensive system eval-
uation, in line with the test setups used in the evaluation of contemporary KWS
systems [45][47][87]. This implies the use of multiple keywords each with mul-
tiple keyword repetitions. In the following a similar test setup will be adopted,
such that the performance of the KWS system can be compared against contem-
porary state-of-the-art KWS systems. The first keyword spotter included in the
comparison is described [47], and highly resembles the KWS architecture outlined
in Figure 3.1, apart from the GMM which is replaced by a dedicated phonetic rec-
ognizer. Since the approach in [47] combines phonetic posteriorgrams with SDTW,
it will be abbreviated PP+SDWT. The second KWS framework applied in the com-
parison is described in [68], and uses a posterior feature variant denoted acoustic
segment model (ASM) posteriorgrams. The ASM posteriorgrams are derived from
a set of HMMs (which are the acoustic segmental models) that are obtained in a
unsupervised manner. In [68] a combination of ASM posteriorgrams and SDTW is
applied, which subsequently will be denoted ASM+SDTW, additionally a second
KWS architecture is proposed which forms a fusion of GMM and ASM posteri-
orgrams with SDTW, this will be referred to as ASM+GMM+SDTW. Finally, the
KWS architecture from Figure 3.1 is abbreviated GP+SDTW, as it combines Gaus-
sian posteriorgrams with SDTW.

The keywords used for the extended experiment are keyword 4-9 in Table 4.1. A
test sentence is constructed for each speaker in which ten keyword repetitions of
each keyword occur. Given ten different speakers and six keywords with each ten
keyword repetitions, yields a total of 600 trial searches in the experiment. The pa-
rameter setting described in Section 4.2.1 has been reused for this experiment. All
results are reported in terms of the P@N, EER, and MAP metrics. Regarding the
P@N and EER metrics, one value is reported for each speaker for each keyword. In
order to obtain a single expression of performance for each metric, the P@N and
EER values are averaged over each word, and next over the different speakers. The
MAP metric is slightly different in this regard, because it has an inherent approach
of averaging over the different keyword, therefore it is only necessary to average
the reported MAP values over the different speakers. The resulting performance
metrics from the extended experiment are shown in Table 4.3

The reported metrics in Table 4.3 shows a significant degradation in the detection
performance, relative to the initial experiment results presented in Table 4.2. From
inspecting the resulting distortion scores, it appears that the performance degra-
dation mainly is due to the obvious similarities between the selected keywords,
e.g. “program 1”, “program 2”, and “program 3”. The resulting scores from the
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P@10 P@N MAP EER

GP+SDTW - micHQ 59.3 59.3 57.2 6.31

GP+SDTW - micHA 52.8 52.8 50.3 6.98

PP+SDTW 63.3 52.8 - 16.8

ASM+SDTW 56.6 40.6 40.4 -

ASM+GMM+SDTW 59.2 42.1 43.1 -

Table 4.3: Extended experiment results, with a comparison to contemporary state-of-the-art KWS
systems.

matching routine when applying a keyword template corresponding to any of the
three keywords, say “program 1”, will exhibit low distortion for almost all test oc-
currence of the three keywords. For this example, it means that the “program 1”
template will provide a good match in the test sentence to “program 2”, and “pro-
gram 3” occurrences. Hence the top-ranked distortion scores are often a confusion
of the three keywords. The same intuition is behind the confusion of the keywords
“Volume up” and “Volume down”. Hence, the precision is expected to increase if
the keywords are replaced with other words which have a more distinct phonetic
content.

Considering the relative performance between the different KWS systems in Table
4.3, shows that the GP+SDTW is competitive to the other systems regarding the
P@10 metric. Since there are always ten keyword test occurrences of each keyword
in the considered GP+SDTW test setup, P@N and P@10 will always be equal in
this case. This is not the case for the remaining KWS systems, as a varying number
of keyword occurrences is used for each keyword. Hence, the most fair assessment
is given based on the P@10 metric (as opposed to P@N), when comparing the
GP+SDTW to the other methods. Additionally, the GP+SDTW system outperforms
the other KWS systems, regarding both the EER and MAP metrics (for those KWS
systems where these metrics have been reported). However, the results need to be
considered with caution, as the training and test data typically differ in relation
to the applied speech corpus, and e.g. in the number of keywords and keyword
repetitions.
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4.3 Keyword Rejection

Next, the keyword spotter is tested by its ability to reject keyword utterances spo-
ken by non-native system users. A training setup identical to the one in Section 4.2
is used, while the test setup for obvious reasons differs from the previous one. In-
stead of inserting true keyword instances (i.e. keyword examples recorded by the
native system-user) into the test string, these are substituted by keyword record-
ings from all the non-native system users. So, a practical scenario is simulated
where group of speakers utter the keyword used to trigger the personal device
some speaker. This experiment is repeated in ten different settings, such that each
of the ten test speakers play the role of the native system user in one setting, while
representing a non-native system user in the remaining nine settings. A single test
string (representing one setting) contains in total ten keyword examples uttered
by the non-native system users, one of these test subjects is selected at random to
have two keyword repetitions included in the test string while the remaining test
subjects have only one. In addition to interchanging the roles of the native versus
non-native system user between the test speakers, the experiments will also be con-
ducted using both types of microphones, i.e. micHQ and micHA. In this respect,
there lies a notable difference in the configuration of the microphone recordings
for this particular experiment. In the micHQ recordings, the keywords are re-
coded by speaking directly into a microphone placed immediately in front of the
speaker. Whereas micHA recordings resembles a more realistic approach, where
the speaker (playing the role of non-native system user) is displaced 1.2 meter,
equivalent to a speaking distance, from the microphone while attempting to trig-
ger the detector. In this recording setup, the HA microphone is mounted on the
ear of a head and torso simulator (HATS) to make the recordings more authentic
from a practical point of view.
The simulation procedure and the parameter setting follow the description in Sec-
tion 4.2.1.

4.3.1 Experimental Results

The resulting distortion scores from the keyword rejection experiments are shown
in Figure 4.6 for micHQ and Figure 4.7 for micHA. These plots represents the re-
sults from the ten test settings described above, which are distinct in their distribu-
tion of the native and non-native user roles among the test speakers. Furthermore,
the green regions are now replaced by orange colored regions to emphasize that
these regions contain false keyword occurrences, and that instances of FPs can
potentially appear across these warping path indices. Comparing the keyword de-
tection results from Figure 4.2 and 4.3 to the results in Figure 4.6 and 4.7, it becomes
evident that the false keyword occurrences in the two later figures do not exhibit
as strong deflections as true keyword occurrence do in the two former figures. In
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fact, the majority of the false keyword insertions show either little or no evidence
of detection, meaning the keyword detector to some degree, can discriminate key-
word occurrences originating from the native system user from those that do not.

In certain cases the results strongly suggest that FPs will inevitably occur, this per-
tains especially to test person 2 and 7 in Figure 4.6, where several close matches are
found between the keyword template and instances of false keyword occurrences.
Less significant, though still clear matches are derived from the micHA results as
indicated in Figure 4.7, for e.g. test person 2, 6, and 9. In terms of the rejection
capabilities of false keyword terms, there is no striking difference between the re-
sulting scores for the two types of microphones. However, the micHA results seem
to provide a minor improvement in rejection performance, since the number of
apparent FP instances are fewer and less severe in their distortion scores (i.e. they
generally attain higher distortion).

Since no true keywords appear during testing, calculating the TPR is pointless
and so becomes the computation of ROC curves. In fact, the absence of true key-
word occurrences disqualifies the use of any of the described performance metrics.
Therefore we resort to a more simplistic approach, where the FPR is plotted as a
function of the threshold levels, as shown in Figure 4.8 and 4.9. These plots sig-
nifies that selecting a global threshold value is not straightforward, as the curve
characteristics differ from speaker to speaker. On the other hand, there appears
to be a threshold value at 200, where the FPR is close to zero across all speak-
ers. A comparison of the plots in Figure 4.8-4.9 to Figure 4.2-4.3, seems to verify
that 200 is a suitable threshold value for this particular experiment. At this exact
threshold value, a desired balance is attained at which the threshold is sufficiently
low to avoid false positives and therefore reject keyword occurrences uttered by
a non-native system user (i.e. false keyword occurrences), while the threshold is
sufficiently high to maintain a good detection rate of the true keyword occurrences.

In summary, the presented KWS system do exhibit a decent degree of speaker
dependency for the majority of the test speakers, which is a highly favorable prop-
erty in the context of KWS for a personal mobile device. This is mainly verified
through inspection of the distortion score results in Figure 4.6-4.7, as there exist
no explicit performance metrics to measure keyword rejection capabilities. From
the plots, there is also evidence that FPs most likely will occur at several time in-
stances. To that end, it is important to keep in mind that recordings are carried out
in an acoustically controlled environment, which creates favorable conditions for
keyword detection, but has the opposite effect in the case of keyword rejection. In
fact, such a recording setup facilitates the conditions for a non-native system user
to trigger the mobile device, in comparison to a real-life scenario where environ-
mental noise is present, etc.
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Figure 4.6: micHQ: Distortion scores resulting from single keyword rejection for all test subjects.



68 Chapter 4. Experiments and Results

Figure 4.7: micHA: Distortion scores resulting from single keyword rejection for all test subjects.
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Figure 4.8: micHQ: FPR versus threshold plot.
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Figure 4.9: micHA: FPR versus threshold plot.





Chapter 5

Noise Compensation and Evaluation

In the previous chapter, recognition performance of the KWS system has been eval-
uated under an acoustically controlled and particularly noise-free environment. In
close resemblance to real world operating conditions, it is desired to investigate
the resulting effect of introducing various noise and disturbances into the tests. In
particular, different sources of noise will be considered, i.e. both real life noise
measurements obtained from the DEMAND (Diverse Environments Multichannel
Acoustic Noise Database) noise corpus [83], and secondly babble noise and speech
shaped noise (SSN).
As a first step, is important to clarify how detection performance is affected in the
presence of various noise sources at different signal-to-noise ratios. In this regard,
Section 5.2 evaluates the performance of the KWS system when the test data is
contaminated with noise at various pre-defined noise sources and SNRs. Subse-
quently, different noise compensation strategies will be proposed to the applica-
tion of keyword spotting, and more specifically in relation to the KWS architecture
described in Section 3.1. The class of compensation methods considered in the fol-
lowing are known as back-end (or model domain) techniques, as they incorporate
noise robustness into the system architecture. Finally, the spotting performance of
the KWS system with noise compensation implemented, will be compared against
state-of-the-art speech enhancement algorithms, as well as to the baseline system
(i.e. without noise compensation). The classical speech enhancement are also re-
ferred to as front-end techniques, as they attempt noise compensation outside the
folds (and independently) of the specific system architecture.

5.1 Training and Test Data Mismatch

It is well known that detection performance of conventional ASR systems drops
dramatically, when recognition is carried out in noisy environments, due to the

71
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resulting mismatch between training and test conditions [73]. Especially template-
based KWS systems are prone to the mismatch problem, because the noise-contaminated
test keywords will differ from the template keywords to a greater or lesser extent,
depending on the noise type and the severity of the noise. This statement will
be substantiated by experimental results in Section 5.2. Various noise compensa-
tion methods exist, with the goal of minimizing the effects of such mismatches,
to obtain a detection performance close to that of the outset performance under
matched conditions. Noise compensation techniques cope with the mismatch ef-
fects by compensation in either the test data, training data or in both. In the
following, mainly two types of solution categories to the mismatch problem will
be considered;

1. The application of classical speech enhancement methods as a pre-processing
step, to remove or attenuate noise contaminants from noisy observations of
the test data, thereby improving the SNR.

2. Incorporating noise compensation into the modeling stage, typically through
machine learning techniques. This often implies adapting the back-end model
to a specific noisy environment. In this context, the term back-end model refers
to the (acoustic) model found within the system architecture, which is typi-
cally an HMM, GMM, etc.

Solutions belonging to the first category are considered front-end techniques, i.e.
they attempt to increase the intelligibility and quality of the noisy test signals prior
to feeding them into the keyword spotter, and hence does not require any advance
knowledge about the particular keyword spotter. This category includes a number
of classical speech enhancement algorithms such as spectral subtraction [31] and
Wiener filter [31], but also non-linear estimators such as the spectral amplitude
MMSE estimator [31]. Contrary to the classical speech enhancement algorithms,
the solutions belonging to the second solution category require insight into the
particular KWS system, since noise compensation is attempted by incorporating
robustness into the back-end model, e.g. through various training strategies. For
this reason, model based methods can be considered a sort of back-end techniques,
because they embrace the test input in its noisy form and instead perform com-
pensation within the core of the recognizer. As opposed to the methods in the first
solution category which attempt compensation directly on the noisy test signal,
regardless of the applied keyword spotter. In the following sections both cate-
gories shall be considered; various noise compensation using model adaption will
be explored and evaluated, while selected state-of-the art algorithms from the first
solution category will be used as a reference for comparison.
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5.2 Noise Sources and Performance Degradation

When evaluating machine learning based KWS algorithms, it of great importance
to select suitable noise sources used for constructing training and test data. The
chosen noise source must be selected such that they fit into the application which is
desired to investigate, and not least be realistic. A commonly used approach is to
apply a noise corpus, and for the subsequent experiments the DEMAND database
will be used, which contain real-world noise recordings from a variety of environ-
ments. In particular, car and traffic noise will be used for evaluation, since they
both represent the type of environmental noise encountered many typical real-life
applications of a mobile device. A typical use-case where such noise sources are
likely to be encountered, is in a hands-free dialog system in a car, which allows
for controlling the vehicle functions (e.g. adjust temperature, radio, etc.) via voice.
Furthermore, they are both stationary noise types, and will be considered in re-
lation to non-stationary noise types. Thus, besides using noise recordings from
the noise database, babble noise and SSN noise will additionally be considered for
evaluating purposes. These have each distinct stochastic properties; the SSN noise
is stationary by nature and is generated by filtering a sequence of white Gaussian
noise with a all-pole filter in the form of Equation (2.2). The generated SSN se-
quence has a PSD similar to that of a long-term PSD of speech. On the other hand,
babble noise is non-stationary, and is generated by mixing the speech recordings
of different speakers, thereby simulating the scenario of having multiple simulta-
neously competing speakers. Keyword detection in the presence of babble noise
is considered a difficult task, since the noise source highly resembles the target
speaker, and additionally is non-stationary meaning the PSD of the noise can po-
tentially change from frame to frame.

A general concern in machine learning applications when constructing training
and test data, is to ensure that training and test data are unique in their speech
signal as well as their noise signal, while being sufficiently large to carry out a
proper system evaluation. On the contrary, using the same noise material for train-
ing and test purposes can generate misleading results, as the classifier might learn
the noise sequence during the training phase, and thereby result in a artificially
high classification accuracy. By the same token, the generalization capabilities are
not evaluated properly when using such an approach. Furthermore, training and
testing of the KWS system will be carried out without the use of looped noise, but
only unique and unseen noise realizations. Looped noise here, refers to the process
of replicating the same noise sequence a number of times to fit the length of the
training and test set, i.e. until all clean training and test instances are contaminated
with the particular type of noise. Hence all noise contaminated training and test
in the following are constructed from non-looped noise realizations.
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The effective impact of the different noise sources on the detection performance is
shown in Figure 5.1, for a set of pre-defined SNR levels. The experimental setup
described in Section 4.2 has been reused, but the test inputs have been scaled to
the appropriate SNR level for the given noise source. Further an ideal VAD is em-
ployed for the experiments, i.e. the VAD is applied on the clean speech signals,
to remove any effects that may be caused due to misclassification of speech and
noise/silence segments. Additionally, the number of keyword occurrences in the
test string has been doubled to improve the resolution of the ROC curves, i.e. the
available keywords are allocated in a ratio 1:3 for training, while 2:3 of the key-
words are reserved for testing.
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Figure 5.1: Noise effects on detection performance of the KWS system, for babble noise, SSN, trafic
and car noise each evaluated at the SNR levels (10, 5, 0, −2, −10).
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From the resulting ROC curves in Figure 5.1, it is clearly observed that babble
noise degrades detection performance the most, whereas e.g. car noise is much
less severe and only has a small impact in some extreme SNR scenarios. Generally,
the effect of the measured noise sources is less visible as compared to babble noise
and SSN, especially at lower SNR values where they have little or no impact. The
observed results from Figure 5.1 are expected due to the difference (of the noise
sources) in respect to the spectral and spectro-temporal similarities to speech [84];
regarding SSN, its spectral characteristics highly resembles that of regular speech,
and therefore comprises a greater challenge to the keyword detector, than e.g. car
and traffic noise. As for babble noise, it is highly non-stationary in resemblance
to speech signals, and therefore its spectrum changes much faster over time as
compared to other noise sources. Therefore babble noise will cause a relatively
larger distortion to the information contained in the speech signal. With regards to
car noise, most of its energy is concentrated at lower frequencies, and therefore its
characteristics changes slower with time as compared to speech [84]. Intuitively,
larger SNR is obtained for noise classes with characteristics different from speech,
e.g. car and traffic noise, which is also confirmed in Figure 5.1.

5.3 Classical Speech Enhancement

As initially stated, the main objective of the speech enhancement algorithms is to
increase intelligibility and quality of a noisy signal, by alleviating or eliminating
noise artifacts in the observed noisy signal. The focus in the subsequent sections
is directed towards state-of-the-art STFT-based speech enhancement algorithms,
where two of the most well-known algorithms are described, i.e. spectral subtrac-
tion and the Wiener filter. These are considered front-end techniques in the context
of ASR, as they attempt noise compensation independent of and outside the folds
of the KWS system.

Initially, the signal model considered in the following will be stated, i.e

y(n) = x(n) + n(n) (5.1)

where y(n) is the noise-contaminated input signal, x(n) is the clean speech signal,
and n(n) is the additive noise signal. All entities in the signal model are regarded
realizations of a stochastic process, while the signal and noise realizations are as-
sumed to be independent. Taking the STFT on both sides of in Equation (5.1),
and given the linear property of the Fourier transform, the corresponding time-
frequency (T-F) domain representation is obtained,

Y(n, ω) = X(n, ω) + N(n, ω) (5.2)
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where Y(n, ω), X(n, ω), and N(n, ω) expresses the complex-valued T-F represen-
tation of the signal model entities, while n-index is used as a representation of the
time frames rather than a single sample. The majority of the classical speech en-
hancement algorithms depend on either or both the clean signal spectrogram and
noise spectrogram, and estimates of these will consequently have a significant im-
pact on the performance of the applied speech enhancement algorithms. Though,
it proves that the clean speech signal can be estimated from the speech and noise
PSDs [44], these are rarely available in isolation in any practical case, and there-
fore need to be estimated. However, this is beyond the scope of this thesis, in the
following explanation of existing speech enhancement algorithms, the noise and
speech PSDs are simply assumed to be known. This assumption is only applied in
the following review of the algorithms, and not in the actual implementations.
It should be noted that speech enhancement is essentially a trade-off; on one hand,
one desires to maintain the information contained in the speech signal, and on the
other hand avoid that noise artifacts remains after the enhancement process [31].
Thus, one must be aware of the existing trade-off between speech distortion and
noise suppression.

5.3.1 Spectral Subtraction

Mainly due to its relative simplicity of principle and implementation, spectral sub-
traction is undoubtedly among the best known acoustical noise suppression algo-
rithms. Assuming additive noise in accordance with the speech model outlined in
Equation (5.1), an estimate of the clean speech T-F representation X(n, ω) can be
obtained by subtracting the noise T-F representation N(n, ω) from Y(n, ω). The
noise-free speech and the noise T-F domain estimates will be denoted X̂(n, ω) and
N̂(n, ω), respectively. Hence N̂(n, ω) can be used to estimate X̂(n, ω) as,

X̂(n, ω) = Y(n, ω)− N̂(n, ω). (5.3)

An alternative representation using the polar form may be used to define X̂(n, ω),
by rewriting the T-F representations of Y(n, ω) and N̂(n, ω) on polar form:

Y(n, ω) = |Y(n, ω)| exp
{

jφy(n, ω)
}

(5.4)

where |Y(n, ω)| is the magnitude spectrum and φy (n, ω) is the phase of the noisy
speech signal. A similar polar representation of the noise signal can be expressed:

N(n, ω) = |N(n, ω)| exp {jφn(n, ω)}, (5.5)

where |N(n, ω)| is the magnitude spectrum and φn (n, ω) is the phase of the noise
signal. In practical applications, it has been found that the noise phase can be used
as a reasonable estimate to the phase of the noise-contaminated speech signal,
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i.e. φy(n, ω) ≈ φn(n, ω) [40]. Applying this approximation to Equation (5.3) in
combination with Equation (5.4) and (5.5) the following expression in obtained,

X̂(n, ω) =
(
|Y(n, ω)| −

∣∣N̂(n, ω)
∣∣) exp

{
jφy(n, ω)

}
. (5.6)

An alternative formulation referred to as power spectral subtraction [31], estimates
the clean speech power spectrum directly from the noise PSD and the observed
signal PSD: ∣∣X̂(n, ω)

∣∣2 = |Y(n, ω)|2 −
∣∣N̂(n, ω)

∣∣2 . (5.7)

As a finale measure to obtain the clean speech signal, the inverse STFT is applied
to Equation (5.6). One of the main disadvantages of spectral subtraction, is the
potential of introducing speech distortion. When too much subtraction is applied,
speech information is lost during the enhancement process, whereas to little sub-
traction leaves noise contaminants in the enhanced signal. Another drawback of
spectral subtraction, is that estimation errors can cause the expression in (5.6) to be-
come negative, which is meaningless for a magnitude spectrum. A simple solution
when encountering such negative values, is to set

∣∣X̂(n, ω)
∣∣ to zero. Unfortunately,

using such a non-linear approach causes a type of distortion referred to as music-
noise [31], which is visible as isolated peaks in the spectrum occurring at different
locations within each time frames. In the time domain, music-noise causes random
distortion of the tones at the analysis frame rate. Approaches to overcome music-
noise are discussed in [31].
Even though it is relatively easy to understand the underlying principles behind
spectral subtraction, as well as implementing the algorithm is affordable, the method
has shown to possess several shortcomings. This pertains mainly to the introduc-
tion of speech distortion and music-noise.

5.3.2 Wiener Filter

In this section, the Wiener filter will be formulated for the application of speech
enhancement, which serves the same purpose as the spectral subtraction algorithm
discussed in Section 5.3.1, i.e. to attenuate the additive noise considered in Equa-
tion (5.1). Whereas the spectral subtraction method is not derived in a theoretical
optimal way, the Wiener filter is optimal in a mean-squared error (MSE) sense un-
der certain statistical assumptions as discussed in the following. The Wiener filter
model will shortly be reviewed in the following, together with a description of its
asymptotic SNR behavior.
Since the Wiener filter is restricted to be a linear type of filter, the model can be
derived from either an infinite impulse response (IIR) filter or an finite impulse
response (FIR) filter. For the sake of convenience and due to the fact that FIR filters
are inherently stable, the following description will be based on the FIR filter. The
Wiener filtering problem is illustrated in Figure 5.2, annotated with relevant model
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entities. The filter depicted in the figure is a M-tap FIR filter, hence a delay line of
length M is used for the input signal. The pertinent signals in the Wiener filter can
be summarized as follows:

Σ
Linear filtery(n)

d(n)

e(n)-
d(n)ˆ

h

Figure 5.2: Block diagram of the linear model applied in the Wiener filter.

• Input signal,

y(n) = [y(n) . . . y(n−M + 1)]ᵀ (5.8)

• M-tap FIR filter with coefficients,

h = [h0 . . . hM−1]
ᵀ (5.9)

• Filter output signal,

d̂(n) = ∑
i

hiy(n− i) = yᵀ(n)h (5.10)

• Desired zero-mean wide sense stationary (WSS) signal, d(n)

• Error signal

e(n) = d(n)− d̂(n) = d(n)− yᵀ(n)h (5.11)

A basic assumption in the derivation of the Wiener filter, is that the input signal
y(n) and the desired signal d̂(n) are jointly WSS, by definition this implies that
they are individually WSS and the cross-correlation sequence is simply a function
of the time-lag.
When applying the Wiener filter for speech enhancement, the input signal to the
Wiener filter model is the noisy speech input y(n) introduced in Equation (5.1).
This further implies that the desired signal in this case corresponds to the noise-
free signal, i.e. d(n) = x(n). Under assumption that the noise signal has zero
mean, and is uncorrelated with the desired signal, the solution to the Wiener filter
can be defined as [31],

h = (Rxx + Rnn)
−1 rxx (5.12)
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where Rxx is the auto-correlation matrix of x(n), Rnn is the auto-correlation matrix
of n(n), and rxx is the cross-correlation sequence. According to [74], the Wiener
filter solution can be rewritten as a function of the SNR [74]:

h =

[
I

SNR
+ R̂−1

nn R̂xx

]−1

R̂−1
nn R̂xxu1 (5.13)

where the SNR is given by
σ2

x
σ2

n
, R̂xx ,

Rxx

σ2
x

, R̂nn , Rnnσ2
n , σ2

x is the signal variance,

σ2
n is the noise variance, and I is the M×M identity matrix, of which is first column

is denoted u1. The asymptotic behavior of h in the cases where the SNR converges
to zero and to infinity, can be expressed as follows [74]

lim
SNR→ 0

h = 0 (5.14)

and,
lim

SNR→ ∞
h = u1 (5.15)

The expressions in Equation (5.14) and (5.15), represents the two extremes scenar-
ios of the SNR level; when the SNR is inclined towards infinity, the Wiener filter
has very little effects as, yᵀ(n)h = yᵀ(n)u1 = y, and therefore does not provide
any attenuation to the noisy speech signal. Conversely, when the SNR is inclined
towards zero, the input signal is highly attenuated and becomes close to zero, re-
sulting in loss of speech information of the input signal.

So far, the Wiener filter has been considered only in the time domain. However,
a corresponding T-F representation of the Wiener filter can be expressed, as it is
more often implemented in the STFT domain. Such a definition is found in [31],

H(n, ω) =
Pxx(n, ω)

Pxx(n, ω) + Pnn(n, ω)
(5.16)

where Pxx(n, ω) is the PSD of the noise-free signal, and Pnn(n, ω) is the PSD of
the noise signal. As a next measure, the Wiener filter can be expressed in terms of
the a priori SNR value ξ(n, ω) [31],

H(n, ω) =
ξ(n, ω)

ξ(n, ω) + 1
(5.17)

where ξ(n, ω) is the a priori SNR defined as,

ξ(n, ω) =
Pxx(n, ω)

Pnn(n, ω)
. (5.18)

The final T-F representation of the filter output defined in Equation (5.10), is given
by,

X̂(n, ω) = H(n, ω)Y(n, ω) =
ξ(n, ω)

ξ(n, ω) + 1
Y(n, ω). (5.19)
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Note that the asymptotic behavior in the frequency domain given in Equation
(5.19), is in line with the asymptotic behavior observed in the time domain ac-
cording to Equation (5.13). That is, extremely low SNR regions, ξ → 0, forces
X̂(n, ω) ≈ 0, and extremely high SNR regions, ξ → ∞, forces X̂(n, ω) ≈ 1.

5.4 Noise Adaptive Model and Template Training

Apart from the investigated state-of-the-art speech enhancement algorithms, we
shall explore the use of machine-learning based compensation techniques for the
use in KWS under noisy conditions. In particular, an approach similar to that of
[75] is considered in the following. Current ASR architectures usually include all
the training material in the training of the back-end model, which models a certain
phonetic space. However, detection performance is known to degrade significantly
in the presence of environmental noise in the speech data, especially when the
ASR system is trained exclusively on clean speech data. The introduced noise has
two major effects; it generates a distortion of the speech signal in its correspond-
ing representation space, and secondly the random nature of the noise causes a
loss of speech information. As for the first effect, it causes a mismatch between
the clean training data and the test data, which have become noise-contaminated.
Consequently, the acoustic model trained on clean speech data does not model
speech data acquired under noisy conditions accurately, which eventually leads
to degradation in detection performance. Regarding the second effect, it will also
cause a distortion of the speech information, even in the case of optimal mismatch
compensation [85].

One approach to mitigate noise mismatches between training and test data is by
corrupting the training data with noise sources of similar nature to that of the
test data, before the training procedure is applied. This intuition has led to sev-
eral noisy training strategies [76][77], also known as multi-style training. The main
motivation behind these methods relates to the principle that machine recognizers
typically attain the best performance for a degraded speech input only when the
training material is degraded as well [78]. In addition to the noise class, another
factor influencing detection performance is the SNR [75]. In order to account for
potential SNR variation in the environmental noise, a combined SNR and noise-
type dependent training (SNT) strategy will be considered in the following. Adapt-
ing SNT into the KWS architecture in Figure 3.1, implies training a distinct set of
GMMs, each representing a particular noise type at a specific SNR value. Noise is
artificially added at a particular SNR to the training set for each GMM, such that it
is trained for its corresponding noise class. Hence, a GMM database is generated
which contains a set of pre-trained GMMs covering a set of pre-defined noise types
and SNR levels. This is expected to give sharper PDFs within each GMM, as they
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are tailored to one specific noise setting, e.g. compared to having a single GMM to
handle all types of noise at the different SNRs. Given a set of different noise type
and SNR models, keyword detection may be carried out in either two ways:

1. The first option implies a parallel multi-detection structure, where results
are generated from all the GMMs. Subsequently, the detection hypothesis is
selected based on the GMM which provides the best match, corresponding
to minimum distortion.

2. Alternatively, a single GMM is selected for keyword detection according to
the noise class and the SNR value estimated from a background noise classi-
fier (BNC).

In similar studies of noisy speech in a car environment [86], the later approach has
shown to have much lower computational complexity than the first approach, and
a recognition performance which is similar, and in some cases even better.

For the same reasons as pointed out in [86], a similar strategy is adopted which
combines the use of a BNC for the selection of a GMM from the model database.
Subsequently this method shall be referred to as SNT-KWS. The architecture of the
noise compensation framework is presented in Figure 5.3. This method assumes
the availability of an ideal background noise classifier (BNC). Since various of such
noise classifiers exist already [79][80][81], this will not be our focus point, and we
shall simply assume an ideal classifier to be available. Rather, this section serves to
investigate the SNT-KWS strategy as a method to mitigate the performance degra-
dation outlined in Figure 5.1, which follows from the corruption of test data for
various noise types and at different SNR values.

In addition to the noise adaptive model training applied for the GMMs, the use
of noise compensation in the keyword templates will be considered as well. For
this purpose an identical training strategy to nullify SNR mismatches between key-
word templates and keyword test input will be applied. The basic idea is to expand
the existing database of keyword templates outlined in Figure 3.1, with a number
of templates corresponding to the number of pre-defined noise scenarios, each of
which is corrupted with a particular noise type and SNR (representing one of the
pre-defined noise scenarios). The selection of the keyword template for pattern
matching is carried out in a similar way of selecting the appropriate GMM, namely
according to the noise class and SNR of the noisy test input as estimated by the
BNC. This idea also appears from the SNT-KWS architecture depicted in Figure
5.3. As for the SNT-KWS approach, we assume here an ideal BNC is available.

In [75] the impact of SNR mismatches on the ASR performance has been thor-
oughly studied for an HMM-based recognizer. In this regard the optimal SNR
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Figure 5.3: SNT-KWS system architecture.

compensation values to be used in the SNT-training procedure have been explored
for a number of test noise types and SNR values. The results generally exhibit a
linear relation between the optimal SNR compensation values used in the training
set and the SNRs of the test set. Hence the optimal performance is achieved where
the SNR of the training data is in the close vicinity to that SNR used for the test
data, i.e. within a few dB. This further implies that minor mismatches in the SNR
of training and test data does not impact detection performance significantly. For
low SNRs in particular, the optimal SNR compensation lies above its reference,
thereby suggesting that employing a GMM which is trained on higher SNR values
may be advantageous in such situations, despite the apparent SNR mismatch.

The proposed SNT-KWS noise compensation method will be subject to a further
investigation; as a next step we shall evaluate its relative performance in alleviating
the performance degradation due to the mismatch problem. In particular, two dis-
tinct implementations of the SNT-KWS will be considered. In the first approach,
GMM noise adaption is omitted, rather noise compensation is solely applied for
the template instances contained in the keyword template database. This is a con-
siderably simpler and cheaper approach than applying noise compensation to the
GMM training data, and does not require the storage of multiple statistical models
(here in the meaning of GMMs). Secondly, a merged approach will be considered
where template noise compensation is combined with noise adaption in the GMMs
such as shown in Figure 3.1. Practical implementations of the Wiener filter and
spectral subtraction will be used as a benchmark against the proposed SNT-KWS
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framework.

5.4.1 Experiments and Results

For assessment of the discussed front-end (classical speech enhancement) and
back-end (model-domain adaption) noise compensation methods, the results in
Figure 5.1 will be used as as a frame of reference. Hence it is desired to asses the
performance of the noise compensation methods relative to the baseline system,
i.e. with no noise compensation, and secondly examine the resulting performance
of those methods which attempt noise compensation in one way or another. For
this reason, an identical experimental setup to that of Section 5.2 is applied, for
the exact same noise sources and SNR values. The implementation of the Wiener
filter and the spectral subtraction algorithms are found in [31], for the experiments
an iterative Wiener filter algorithm is considered which runs two iteration. For
the SNT-KWS framework, a proportional SNR compensation strategy is applied,
i.e. the training data is scaled to an SNR equal to that of the noisy test data. This
approach is followed in both implementation of the SNT-KWS. In summary, the
following five methods will be subject investigation and thus comparison:

• No noise compensation, i.e. simply the baseline system (shortened: No comp.).

• SNT-KWS compensation using keyword templates exclusively (shortened:
SNT-KWS-TE).

• SNT-KWS compensation using a combination of keyword templates and GMM
training (shortened: SNT-KWS-TR+TE).

• Spectral subtraction (shortened: SS)

• Wiener filter (shortened: WE)

The generated results are shown in Figure 5.4, of which noise compensation in
the presence of babble noise, SSN, traffic and car noise are evaluated in Figure
5.4(a), 5.4(b), 5.4(c), and 5.4(d), respectively. Note that SNT-KWS-TE and SNT-
KWS-TR+TE in the figures are further shortened to TE and TR+TE, respectively.
Each noise scenario, i.e. a certain setting of a noise type plus a SNR value, is quan-
tified by the EER (red) and P@N (blue) metrics. Whereas P@N measures precision
of the detected keywords, the EER specifies the point at which the FPR is equal to
the FNR, and therefore is an expression of the performance quantified by the ROC
curve. Since there is a strong relation between the EER metric and the ROC curve,
the plots of the ROC curves will be left out for now.

As evident from the results, there is a considerable difference in the performance
of the SNT-KWS methods; the SNT-KWS-TR+TE variant is consistently superior
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to the SNT-KWS-TE in all cases. In most cases the SNT-KWS-TE has similar or
even worse performance to that of the baseline system. These results signifies that
noise adaption of the keyword templates considered in isolation, has no beneficial
effects in terms of aiding the keywords spotter in noise robustness. One explana-
tion might be that the loss of speech information in the test input can not simply
be compensated by causing a similar loss of information in the keyword template,
since the phonetic distortion due to the noise may differ. This presumption per-
tains especially to non-stationary noise types such as babble noise, which statistical
properties changes fast over time. Therefore two sequences of babble noise (such
as the one appearing in the test data versus the noise in the keyword template) are
unlikely to be similar. This can possibly explain the tendency observed in Figure
5.4(a), where the overall performance of SNT-KWS-TE for the case of babble noise
is inferior to the baseline system.

In regard to the SNT-KWS-TR+TE method, it appears to outperforms all the in-
vestigated methods in almost all the considered noise scenarios, as it typically
attains the highest precision rates while maintaining a relatively low EER. This
suggests that the SNT-KWS-TR+TE method has the potential to boost the detec-
tion performance in a broad variety of noise environments relative to the baseline
KWS system. An example of the relative improvement in detection performance
of the SNT-KWS-TR+TE method is expressed in Figure 5.5 using the ROC curve,
for a specific noise scenario with babble noise at -2 dB SNR. This clearly shows
how SNT-KWS-TR+TE manages to lift the baseline performance, signified as an
increase in the AUC, and in this case also outperform the other noise compensa-
tion methods. However, at extremely low SNR values, there is no clear indicator
of which compensation algorithms that attains the best performance, sometimes it
turns more useful to apply no noise compensation at all, this pertains especially to
the measured noise types as outlined in Figure 5.4(c) and 5.4(d). Hence the base-
line KWS system seems to have an inherent robustness to particular noise types,
which may be a property of the selected feature domain representation.

Another interesting finding, is that the classical speech enhancement algorithms,
performs better when they are exposed to SSN noise, as opposed to the non-
stationary babble noise. This observation fits the underlying theory behind these
methods, as they highly depend on the estimation of the noise spectrum. Intu-
itively, a good noise spectrum is easier to estimate in the presence of stationary
noise, like SSN, as compared to a non-stationary noise environment. In addition,
the Wiener filter exhibits a relatively large degradation of performance for the mea-
sured noise types and mainly in the lower half of the investigated SNR range. As
opposed to the Wiener filter performance in the study of SSN, where it performs
relatively well and in fact is second best after the SNT-KWS-TR+TE. Hence the per-



5.4. Noise Adaptive Model and Template Training 85

-10 -5 0 5 10

SNR [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e 

[%
]

Babble noise

P@N
EER
No comp.
TE
TR+TE
SS
WE

(a) Babble noise compensation.
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(b) Speech shape noise compensation.
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(c) Traffic noise compensation.
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(d) Car noise compensation.

Figure 5.4: Results from various noise compensation strategies; i.e. the SNT-KWS-TE and SNT-KWS-
TR+TE, as well as spectral subtraction and Wiener filter. The experiments are carried out for babble
noise, SSN, trafic and car noise each evaluated at the SNR levels (10, 5, 0, −2, −10).

formance of the Wiener filter seem to be highly dependent on the noise type and
SNR, and therefore it is not expected to generalize well for different noise settings.

As a concluding remark of the results in Figure 5.4, it should be emphasized that
the SNT-KWS-TR+TE methods stands out from the other included methods in
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Figure 5.5: Noise compensation performance for the investigated front-end and back-end techniques.
Evaluation is carried out for babble noise at -2 dB SNR, quantified by the ROC curve.

three principal aspect:

• SNT-KWS-TR+TE appears to consistently boost noise-robustness of the base-
line KWS system under almost any of the investigated noise scenarios. For
specific noise scenarios, the SNT-KWS-TR+TE increases precision with up to
50 percentage points relative to the baseline.

• More generally, the experiments have shown that SNT-KWS-TR+TE outper-
forms both the classical state-of-the-art front-end speech enhancement and
SNT-KWS-TE, in more or less all considered noise scenarios.

• As opposed to the other methods, such as the Wiener filter, which attains
good performance in specific noise scenarios, the SNT-KWS-TE has proven
to generalize well for all considered noise scenarios. Further, it might even
have the potential to generalize for unknown noise types, which is a subject
that requires further investigation.

The results also suggests that SNR noise compensation is more effective when ap-
plied to both the back-end model and the keyword templates, than simply apply-
ing isolated keyword template compensation. The involvement of storing multiple
statistical models in the combined compensation strategy implies an increased cost
in memory footprint, which is an constrained resource for mobile devices such as
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an HA. Secondly, SNT-KWS-TR+TE comes at an increased computational cost of
training such multiple models. However, this is considered less critical as back-
end model training is not a an online procedure, in fact, the models are trained
offline and only once, before finally being stored. In the online detection proce-
dure (i.e. the matching of a test input with a keyword template), it is simply a
matter of selecting the appropriate GMM based on the estimated noise labels from
the BNC.





Chapter 6

Conclusion

This thesis has looked into the field of keyword spotting for the application to
personal mobile devices, and with a particular emphasis on the application to
hearing aids. To that end, a suitable contemporary KWS system described in [45]
has been selected, and evaluated on HA recordings according to its capabilities in
mainly two aspects:

1. keyword detection; i.e. to evaluate its detection performance.

2. keyword rejection; i.e. to investigate aspects of speaker dependency, and
more generally the rejection capabilities to background words.

3. noise robustness; it has been investigated how existing machine-learning
based noise compensation techniques can be adopted into the selected KWS
framework to boost noise robustness. The performance of the proposed
methods are evaluated relative to the baseline system (i.e with no noise com-
pensation) and additionally to state-of-the-art spectral-based speech enhance-
ment algorithms.

Based on the discussions and results throughout the paper, a concluding remark
will be provided for each of the six items in the objectives. For the sake of conve-
nience the objectives are reposted in the following.

Objectives

• Review the fundamental principles behind speech production and speech
representation used in the context of keyword spotting.

• Propose a KWS system that takes advantage of state-of-the-art techniques
and accommodate the low-power constraints of a personal mobile device.
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• Evaluate the selected keyword spotter for a practical mobile communication
device by using real-life hearing aid recordings, and compare its performance
relative to contemporary KWS systems.

• Investigate the degree of speaker dependency of the selected keyword spotter.

• Suggest various methods to improve noise robustness of the KWS system.

• Evaluate the effect of the proposed noise compensation strategy on the spot-
ting performance, and compare it against state-of-the-art speech enhance-
ment algorithms.

Objective 1

The reviewed speech fundamentals have been described in Chapter 2, based on
scientific literature within the field. This covers both temporal and spectral aspects
of speech, and treats subjects such as speech production, stationary properties,
speech representation domains, etc. Fundamental principles behind speech signals
and their characteristics have been reviewed to better understand the intuition be-
hind the methods involved in the different stages of a conventional ASR system.
This pertains e.g. to MFCC features which have proven to be a compact represen-
tation for aspects of the speech signal which are relevant to speech understanding.
Thus prior knowledge of speech fundamentals to some extent is a prerequisite to
understand such concepts. The learned principles from speech fundamentals are
similarly applied in speech modeling, and for our application to the GMM which
attempts partitioning of speech represented in the MFCC domain into its underly-
ing phonetic units.

Objective 2

For the application of a personal (low-power) mobile device, more specifically a
HA, a feasible KWS framework has been selected among contemporary KWS al-
gorithms. The selected KWS system described in [45] is based on the template
matching paradigm, and generally satisfies the platform constraints of a mobile
device as outlined in Section 1.3. The selected architecture uses an unsupervised
learning framework that without any transcription information trains a GMM to
decode training and test instances into Gaussian posteriorgrams. The Gaussian
posteriorgrams are then matched via segmental DTW, and the detection results are
obtained from ranking the distortion scores returned by the matching routine.

Objective 3

The detection performance of the KWS system has been evaluated under two dif-
ferent recording setups, of which the first aims at creating an ideal setting for the
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recordings and hence involves the use of a studio microphone, whereas a HA mi-
crophone is used in the second setup and thus represents the expected recording
conditions of a practical mobile communication device. Under controlled acoustic
conditions and using a simple test setup of only one keyword, the results have
been overwhelmingly positive, in terms of the reported performance metrics (Ta-
ble 4.2). The micHQ results, exhibits 98 % accuracy among the classified distortion
scores, while the precision observed in the micHA case is 88.8 % and thus slightly
inferior, but nonetheless still attains high precision. Further, the micHQ results at-
tain optimal ERR equal to zero, also in this aspect the micHA results show slightly
degraded performance, with an EER of 2 %. These results are also observable from
the shape of reported ROC curves, as the AUC in these cases are close to or equal
to one.

A more comprehensive experiment conducted in Section 4.2.3, where a more chal-
lenging test setup is applied in line with the evaluation procedure applied in some
of the most recent keyword spotters [45][47][87]. This implies the use of multiple
keywords each with multiple occurrences in the experiment. The results (Table
4.3) show that the selected KWS system is competitive to that of the state-of-the-
art keywords spotters; in terms of the P@N, the micHQ is only surpassed by the
phonetic posteriorgram+SDTW approach, while both micHQ and micHA have the
lowest EER among all the considered methods. Furthermore, the considered KWS
system exhibits superior performance in terms of the MAP metric.

Objective 4

Assessing the speaker dependency of the KWS system is a bit more challenging
than keyword detection as there exist no explicit evaluation metric for this pur-
pose. The evaluation metrics currently considered depend on true keyword occur-
rences (i.e. keywords in the test string uttered by the native system user), e.g. to
measure the keyword detection precision among the top ranked distortion scores
as in the case of the P@N and MAP metrics. Whereas the extraction of ROC curves
(and therefore also the EER) depend on true keyword occurrences to compute the
TPR, which is not possible in the absence of true keyword occurrences in the test
string. However, a comparison between the results from the keyword rejection
experiments with that of the keyword detection results, suggests that a threshold
can be found which avoids false positives and therefore rejects keyword occur-
rences uttered by a non-native system user (i.e. false keyword occurrences), while
maintaining a good detection rate of the true keyword occurrences.
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Objective 5

A keyword spotting algorithm applied in a real-world scenario will inevitably be
exposed to a large variety of noise sources at different SNRs. Therefore it was ex-
plored how noise robust the keyword spotter is to a set of pre-defined noise types
and SNR values, and assess the resulting effect on the detection performance. To
compensate for the performance degradation due to the noise, several noise com-
pensation strategies have been proposed. In this thesis we have explored a back-
end noise compensation strategy to cancel SNR mismatches between training and
test data, i.e. by using noise adaptive GMM and template training. This method
is denoted SNT-KWS. The GMMs and keyword templates are adapted to a spe-
cific noise type and SNR, and subsequently stored in a database. An ideal noise
classifier is assumed to be available for estimating the noise source and SNR of the
noisy input speech, such that an appropriate keyword template and GMM can be
selected based on the estimated noise label.
Two variants of the SNT-KWS method have been considered; a simple and training-
wise cheap approach which implements only template compensation, i.e. SNT-
KWS-TE, and secondly a merged approach is considered where template noise
compensation is considered in combination with noise adaptive GMM training,
i.e. SNT-KWS-TR+TE. The computational complexity of the online detection pro-
cedure is the same in the two cases, however SNT-KWS-TR+TE comes with an
increased cost in the memory footprint for storing the various GMMs. Hence, one
should exercise caution regarding the number of considered noise scenarios, as
memory is a constrained resource in mobile platforms.

Objective 6

The resulting plots from the noise compensation experiments (Figure 5.4) show that
SNT-KWS-TR+TE outperforms both the classical state-of-the-art front-end speech
enhancement algorithms and SNT-KWS-TE, in more or less all considered noise
scenarios. As opposed to the other methods, such as the Wiener filter, which
attains good performance in specific noise scenarios, the SNT-KWS-TE has proven
to generalize well for all considered noise scenarios. Further, it might even have the
potential to generalize for unknown noise types, which is a subject that requires
further investigation.
In summary, the SNT-KWS-TR+TE appears to consistently boost noise-robustness
of the baseline KWS system under almost any of the investigated noise scenarios.
For specific noise scenarios, the SNT-KWS-TR+TE increases precision with up to
50 percentage points relative to the baseline.
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Final Remark

Throughout this thesis, the application of keyword spotting has been explored for
the application of hearing aids. Through an experimental approach, it was found
that the selected KWS system described in [45], has the feasibility and an adequate
detection performance to be implemented in a practical mobile device, under the
recording circumstances of which the system has been evaluated. To simulate the
KWS system behavior in a real-life recording scenario using a mobile device, HA
recordings have been conducted, on which the system performance is evaluated.
The results (Table 4.2 and 4.3) have revealed that no significant performance degra-
dation followed from the use of micHA recordings as compared to the micHQ
recordings. Furthermore, the KWS system has shown to be competitive to recent
keyword spotters for the P@N measure, while it is superior regarding the EER and
MAP metrics. However, these results need to be considered with caution, as the
training and test data typically differ in relation to the applied speech corpus, and
e.g. in the number of keywords and keyword repetitions.

Based on these observations, the investigated KWS framework is considered prac-
tically applicable under the acoustic circumstances considered in the experiments.
However, it is strongly expected that the considered keyword spotter can maintain
a decent performance in broader variety of acoustical environments besides those
considered in the experiments, by incorporating elements of noise robustness into
the system architecture. In particular, the SNT-KWS-TR+TE method has shown to
mitigate the performance degradation followed by noise corruption of the test data
for a range of different noise scenarios. The main concern with SNT-KWS-TR+TE
from a practical point of view is that the number of pre-defined noise scenarios
must be kept at a minimum, in consideration of the memory footprint. The results
observed so far (Figure 5.4) indicates that the SNT-KWS-TR+TE generalizes well
for known noise types, therefore it is worth investigating the generalization ability
for a broader range of known and unknown noise scenarios when using only a
restricted number of GMMs. This can potentially be accommodated by modifying
the current training strategy, such that each GMM is trained for a range of differnt
noise sources and SNRs. However, this is a subject for further investigation. Ad-
ditionally, a practical application requires the ideal BNC to be replaced with an
actual implementation. In this respect, exact noise labeling of the SNR levels is not
considered an absolute must, since the findings in [75] allow for a deviation in the
estimated SNR level without any considerable loss in performance. In summary,
the methods investigated throughout the thesis is believed by the author to have
great potential for a practical implementation, and successfully be able to detect
keyword utterances in real-life applications.
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Appendix A

Measurement Report

The purpose of this experiment is to conduct speech recordings for the evalua-
tion of the KWS system described in Chapter 3. The experimental data will be
used in relation to both test and training purposes. All recordings are made in
a controlled acoustical environment, to generate as clean speech signals as pos-
sible. This implies that recordings are conducted in a acoustic isolated room to
avoid interference from external noise sources, the distance between microphone
and speaker is relatively short. In particular, recordings are first carried out us-
ing a conventional studio microphone, and secondly with the microphones in a
commercial hearing aid (HA). The experimental setup used for the HA recordings
attempts to simulate real case scenarios of a speaker with a personal mobile device.

All recordings are carried out for an equal amount of male and female speakers,
with a total of number of 10 different speakers. Each speaker was asked to repeat
each of the nine keywords in Table A.1 thirty times. Subsequent to the keyword
recordings, the speakers were asked to read out the same newspaper article (con-
taining 680 words) in order collect some general speech data. The duration of each
of the 9 keyword recordings (with each 30 repetitions) is approximately 1 minute,
while the article takes around 5 minutes to complete, resulting in roughly 15 min-
utes of speech data from each test person.

The experiments described in the following aim to evaluate the KWS system through
the data acquired in the recordings. First and foremost, it is investigated how well
the keyword spotter serves its main purpose of detecting spoken keywords uttered
by the native system-user. While the second objective is to explore the ability of
the keyword spotter to reject instances of keywords uttered by a non-native user.
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# Keyword
1 Oticon Alta
2 Oticon Epoch
3 Oticon Agile
4 Program 1
5 Program 2
6 Program 3
7 Volume up
8 Volume up
9 Go to sleep

Table A.1: Selected keywords for the recordings.

A.1 Measurement Equipment

For the recording setup, the following equipment have been used:

Equipment Description
Microphone RØDE NT2000
Microphone stand -
Hearing aid Oticon Vigo recording set
Laptop Lenovo T450s
USB sound card Edirol UA-25EX
Head and torso simulator -

Table A.2: Measurment equipment.

A.2 Experimental Setup

In the following, two different setups are described, one used for regular micro-
phone recordings, while the second setup is used for hearing aid recordings.

A.2.1 Microphone Setup

The setup used for the regular microphone recordings is shown in Figure A.1,
where the microphone is placed on a regular table 30 cm from the speaker’s mouth.
The recorded signals are sampled through an external sound card connected to the
microphone through an analogue input port. All signals are then collected in MAT-
LAB running on a laptop. In between the speaker and the sampling equipment, a
wall partition1 is placed to attenuate any type of interference between the two.

1i.e. a movable sort of wall that is build from sound absorbing material, but is commonly is used
to divide the interior space of a room.
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All signals are sampled at 44.1 kHz with a resolution of 16 bit. To reduce
computational complexity of running the KWS algorithms, the signals are down-
sampled to 8 kHz in MATLAB.

Speaker

Microphone

USB 
soundcard Laptop

Wall partition Sound isolated
walls

30 cm

Figure A.1: Experimental setup for the first test scenario.

A.2.2 Hearing Aid Setup

A somewhat similar setup to the one in Figure A.1 is used for the hearing aid
recordings. But, instead of using a single setup for both keyword detection and
rejection testing, the HA setup is split in two corresponding to the number test
scenarios, these are shown in Figure A.2. The HA experiments closer resemble a
real case scenario mainly in three aspects:

• Location of the microphone

• Quality of the microphone

• Distance to the microphone

The first test scenario depicted in Figure A.2(a), is used for evaluating the detection
performance. In this case, the HA microphone is used for the recordings, with the
HA placed behind the ear of the speaker during the recordings of the keywords
and the newspaper article. The second setup shown in Figure A.2(b), is used to
mimic an attempt of a non-native user to trigger the keyword detector. A head
and torso simulator (HATS) is equipped with the HA, and is displaced within
a speaking distance from the speaker, more specifically 1.2 meter is used in the
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experiment. In this case the HATS plays the role of the native system-user, while
the speaker mimics the non-native user attempting to trigger the keyword detector
by uttering the keyword. Therefore only keyword recordings are carried out in the
second test scenario.

Speaker

USB 
soundcard Laptop

Wall partition

Hearing 
aid

(a) Keyword detection; HA experimental setup.

Speaker

USB 
soundcard Laptop

Wall Partition

HATS

Hearing 
aid

1.2 m

(b) Keyword rejection; HA experimental setup.

Figure A.2: Hearing aid experimental setup for the two test scenarios.

A.3 Error Sources

The main source of error in the recordings, are due to the speaker pronunciation
and rate variability. During the experiments it was clear that certain test speakers
unintentionally changed the pronunciation of the keywords significantly, due to
the many consecutive repetitions of the same keyword. Consequently, keyword
templates generated from the recordings may differ greatly from the generated
keyword test set, thereby causing a mismatch between template and test instances.
In more general terms, too large variability of the recorded signals can cause the
training data to differ significantly from the test data. Furthermore, several prob-
lems have been encountered when the speaker talks either too fast or too slow.
This pertains mainly to the process of partitioning the recorded keywords into in-
dividual audio files via the VAD. In particular, pronouncing the keywords too fast
leaves just a narrow time gap between each repetition, and therefore can cause
the VAD to detect multiple keyword repetitions as one. Conversely, speaking too
slow can cause the VAD to cut the keywords in halves, this applies especially to
composed keywords like “go to sleep”. So far, this problem has been solved by
manually tuning the VAD parameters for each speaker and each keyword such
that it separates the keyword repetitions correctly. However, in a practical scenario
the issues of pronunciation and rate variability during the recording session of the
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keywords need to be dealt with. To this end, the by far simplest solution is to
define clear guidelines for how the recordings must be conducted by the system
user, e.g. demanding a pause of a specific duration between each keyword repeti-
tion and instructing the system user to speak loud and clear during the recordings.
Lastly, it should be mentioned that sound reflections from either the table or the
wall partition may be captured by the microphone.





Appendix B

CD content

The content on the CD includes:

• Digital copy of the thesis

• MATLAB scripts used during the project

– KWS_experiment.m: Contains the baseline keyword spotter.

– Evaluation.m: Evaluates the performance of the results obtained by
KWS_experiment.m and plots an ROC curve.

• MATLAB toolboxes used for the KWS algorithm and evaluation
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