Testing the performance of
Multipath TCP for connections
with limited bandwidth

Network performance analysis

Project Report
Group: 1020

Aalborg University
Electronics and IT

Copyright (© Aalborg University 2016

AALBORG UNIVERSITY
STUDENT REPORT

Title:

Testing the performance of Multi-
path TCP for connections with lim-
ited bandwidth

Theme:
Network performance analysis

Project Period:
Spring Semester 2016

Project Group:
1020

Participant(s):

Kim Ellegaard Jacobsen

Supervisor(s):
Tatiana Kozlova Madsen
Karen Elisabeth Egede Nielsen

Copies: 2
Page Numbers: 113

Date of Completion:
June 1, 2016

Electronics and IT
Aalborg University
http://www.aau.dk

Abstract:

This project analyzes the performance of the
protocol called MPTCP. It tries to determine
if the protocol is a viable candidate to be de-
ployed in a rural area of Denmark, where the
Internet connections are of poor quality with
slow throughput, and can aggregate the band-
width from a DSL connection and a 4G con-
necting and still be able to be used for inter-
active streaming purposes. It uses a testbed
setup specifically for this project that consists
of a Server running Ubuntu 14.04, a gateway
that creates 2 emulated DSL connections of 2048
Kbps downstream and 2048 Kbps upstream and
a client that uses two interfaces to aggregate the
bandwidth. Both the server and the client are
running a Linux implementation of the Multi-
path TCP kernel from [13]. The project con-
cludes that MPTCP is a viable candidate, for
deployment in a similar scenario as described in
this project, but that further testing is needed
in order to be able to fully conclude, if the net-
work connection is suited for running interactive
streaming applications, when using MPTCP

with heterogeneous paths.

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the author.

http://www.aau.dk

Preface

This report has been written by a student on Network and Distributed Systems
10" semester project. The project was proposed by Tatiana Kozlova Madsen. The
purpose of the project was to test bandwidth aggregation of the Multipath TCP
when dealing with unreliable connections.

Thanks to my supervisor Tatiana Kozlova Madsen for the time she has invested in
guiding this project and providing valuable feedback.

I would also like to thank Karen Elisabeth Egede Nielsen from Tieto for all the
feedback and knowledge supplied for this project.

Aalborg University, June 1, 2016

Kim Ellegaard Jacobsen
<kjacobll@student.aau.dk>

Contents

Preface

Glossary

1 Introduction

1.1 Motivation scenario e e e

1.2 History of Multipath TCP

1.2.1

Linux kernel implementation

1.3 Problem statement

2 Analysis

2.1 Motivation for Multipath TCP

2.2 MPTCP Overview o e

221

2.2.2

223

224

Regular TCP operation
Multipath TCP Operation
Paths with different characteristics

Congestion control in MPTCP

2.3 State-of-the-art

vii

xi

viii Contents

3 Scenario description 19
4 Implementation 23
4.1 Testbed setup L 23
4.1.1 Installing the Multipath TCP kernel 23

4.1.2 Setting up the routing tables on the client 25

4.1.3 Setup of the Multipath TCP protocol 26

4.1.4 MPTCP Schedulers 30

4.1.5 Configuring the congestion control 31

4.1.6 Gateway 36

4.2 Test prerequisiteso Lo 37
4.2.1 Designbase 37

4.2.2 Network metrics o oo 37

4.2.3 Path characteristics o 0. 38

424 Traffico 39

4.25 Hardware 42

4.2.6 Software 42

5 Tests 45
5.1 Goals . . . e 45
5.2 Testsetup L 46
5.3 Test description 50
5.3.1 dperfdserversetup 50

5.3.2 Regular TCP tests, 52

Contents

5.4

5.5

5.6

ix
5.3.3 Multipath TCP tests - homogeneous paths 53
5.3.4 Multipath TCP tests - heterogeneous paths 54
Regular TCP e 55

5.4.1 Test Al.1 - General purpose (3 Mbps limit) no background traffic 55

5.4.2 Test A2.1 - Interactive streaming (1 Mbps limit) no background
traffic 58

5.4.3 Test A2.2 - Interactive streaming (1 Mbps limit) with back-
ground traffico oL o L 64

MPTCP homogeneous paths 69

5.5.1 Test B1.1 - MPTCP DSL+DSL general purpose 3 Mbps limit
without background traffic 69

5.5.2 Test B1.2 - MPTCP DSL+DSL general purpose 5 Mbps limit
without background traffic 73

5.5.3 Test B2.1 - MPTCP DSL+DSL interactive streaming 1 Mbps
limit without background traffic 76

5.5.4 Test B2.2 - MPTCP DSL+DSL interactive streaming 1 Mbps
limit with background traffic 82

MPTCP heterogeneous paths 87

5.6.1 Test C1.1 - MPTCP DSL + 4G general purpose 3 Mbps limit
without background traffic 88

5.6.2 Test C1.2 - MPTCP DSL + 4G general purpose 5 Mbps limit
without background traffic 91

5.6.3 Test C2.1 - MPTCP DSL+4G interactive streaming 1 Mbps
limit without background traffic 95

5.6.4 Test C2.2 - MPTCP DSL+4G interactive streaming 1 Mbps
limit with background traffic 101

X Contents

6 Conclusion 107

6.1 Future worko 109

Bibliography 111

Glossary

DSL

IETF

MPTCP

RTT

TCP

Digital Subscriber Line.

Internet Engineering Task Force.
Multipath Transmission Control Protocol.
Round Trip Time.

Transmission Control Protocol.

xi

Chapter 1

Introduction

When the Transmission Control Protocol (TCP) [27] was first designed in 1974 as
a part of the Internet Protocol Suite, the idea revolved around a single device with
a single network connection. Since then the times have changed to supply different
demands. In 2014 64% of the American adult population [4] owned a smartphone.
A smartphone typically supports both a 2G/3G/4G connection as well as a Wi-
Fi connection. Even though smartphones have been around for a series of years,
there is a very limited usage of a protocol that utilizes the multiple connections,
available on the smartphone, to either aggregate bandwidth or as a reliability tool.
A typically smartphone works by using either the 2G /3G /4G connection or the Wi-
Fi connection [15] and then it uses different techniques for the handover or handoff
part. None of the most used smartphone operating systems uses multiple connections
simultaneously even though the technology already exists. Seen from the users point
of view, it might be beneficial sometimes to use all of the available connections, e.g.
when downloading a large file, to decrease the download time.

In a world where network technology is constantly evolving and the requirements
for bandwidth, latency and reliability is increasing, it could be beneficial to start
using a multipath approach in both smartphones as well as other scenarios where
multiple network connections are available. It would make a lot of sense to use it in
areas where network connectivity is almost non existent. When looking at a country
like Denmark, the network connectivity in the far side of the country is poor or
non existent. Typically in these regions the available types of Internet connection
will be a DSL connection and a 2G/3G/4G connection. An easy way to ensure
greater bandwidth in these regions, would be to aggregate the bandwidth of multiple
connections and this can be done by using a multipath approach on the transport

2 Chapter 1. Introduction

layer e.g. the Multipath TCP (MPTCP).

1.1 Motivation scenario

The motivation behind doing this project lies in the rural areas of Denmark, where
the coverage on 2G and 3G networks are poor and the DSL connections are slow.
This gives some problems for e.g. farmers using their network, to conduct interactive
streaming conversations regarding the maintenance and support of the robots they
use to produce milk. This has proved to be a somewhat hard task, since the network
connectivity in the rural areas often are slow. So instead of using a lot of money
on new network technologies such as fiber optics, which is very expensive, because
of the distance between the farms can be great. Then it would make more sense to
combine already existing technologies for bandwidth aggregation. This can be done
in several different ways, and there is already a research project running on Aalborg
University, which are trying to deploy software that runs on the application layer and
splits the TCP packet stream on multiple network connections in order to get some
bandwidth aggregation. However there is already a protocol called Multipath TCP,
which can do this on the transport layer and that makes the operation transparent
to the application. This project will be about deploying the MPTCP in a scenario
similar to what was discussed earlier in this paragraph.

1.2 History of Multipath TCP

Currently only a limited usage of the MPTCP implementation can be found. In 2013
the working group behind the MPTCP reported that 5 independent implementations
of the MPTCP was made. These were:

1.2. History of Multipath TCP 3

List 1.1: List of different implementations of MPTCP [24]

1. Linux kernel (reference implementation) from Université catholique de Louvain.
2. Android from Université catholique de Louvain.

3. FreeBSD (IPv4 only) from Swinburne University of Technology.

4. F5 Networks BIG-IP LTM.

5. Citrix Netscaler.

6. Apple iOS 7, released on September 18, 2013 is the first large scale commercial
deployment of Multipath TCP.

7. Apple Mac OS X 10.10, released on October 16, 2014.

As seen in the list above there has been made implementations of the MPTCP in
both Android and iOS but it is not part of the default setup in either of the mobile
operating systems. The most interesting implementation for this project scope will
be the Linux kernel implementation made by Université catholique de Louvain.

1.2.1 Linux kernel implementation

The Linux kernel implementation of MPTCP is at version 0.90 released 16. Septem-
ber 2015. It has a wide supported range of platforms already including:

4 Chapter 1. Introduction

List 1.2: List of platforms that support the MPTCP Linux kernel implementation [13]

1. Compile it by source
2. Install it from an apt-repository
3. Linux distributions

Debian

Ubuntu 12.10 and upwards
Fedora 19 to 21

CentOS 7

Gentoo
ArchLinux
OpenSUSE

4. OpenWRT
5. Android
6. PlanetLab

7. Amazon EC2

As seen in the list above, the MPTCP is already developed and usable for a wide
range of different platforms. This list is however only representative of the Linux
kernel implementation and other systems such as OSX and iOS also have a version
of the protocol that is usable.

The Linux kernel implementation is made from the standard called RFC 6824 [6].
It describes how the protocol works in depth and it is maintained by the Internet
Engineering Task Force (IETF). The standard was released in January 2013.

1.3 Problem statement

If we consider the farmer scenario, where Internet connections in the rural areas of
Denmark are both limited and of very poor quality, a cheap and very likely approach
can be a multipath solution as Multipath TCP. So the motivation for using MPTCP
in order to fulfill the problem description can be broken into three different parts,

1.3. Problem statement 5

namely:

e MPTCP adds redundancy e.g. if one link fails, the connection will stay active.

e MPTCP reduces congestion. MPTCP makes it possible to steer traffic away
from congested links.

e MPTCP can increase efficiency. The protocol can take advantage of additional
interfaces e.g. parallel paths.

So this leads us to a problem description which is stated below:

e Is it possible to setup a multipath scenario using the MPTCP, which
consists of multiple interfaces with different characteristics (e.g. 4G
and DSL), such that it aggregates the bandwidth and is able to sup-
port interactive streaming?

In this report, the author will analyze the different aspects of a multipath scenario and
the technology behind the protocol described in the IETF standard called RFC6824
[6] known as MPTCP. It will also focus on deploying this setup either in a testbed,
or in a rural area of Denmark to test if the performance and stability of a multipath
setup can be a solution for the scenario description given in section 1.1.

Following this text a short description of each chapter is given, with respect to its
content.

e Chapter 2 gives an in depth analysis of the Multipath TCP and the technology
behind it. It will also contain a refined problem description.

e Chapter 3 will give an overview of the scenario.

e Chapter 4 will cover the implementation, testbed setup and the test descrip-
tions.

e Chapter 5 will show the results for each test as well as a short analysis and
walk through of the results.

e Chapter 6 will be the conclusion and will include future aspects of Multipath
TCP.

Chapter 2
Analysis

In this chapter the MPTCP will be examined and the key features of the protocol
will be explained and described.

2.1 Motivation for Multipath TCP

In the 1970s when the TCP was initially designed, the typical setup for a computer
was a single device with a single network connection. However when the TCP was
designed, it was still an issue that network links could eventually fail and that some
sort of feature to decouple the layers would need to be designed. This ended up
being split into 2 layers, namely the network-layer and the transport-layer. That is
why the protocol today is known as TCP/IP.

Today networks are considered multipath network. Just look at a typical smartphone,
which has multiple wireless interfaces. Another example are large data centers, which
also have multipath networks within the centers themselves. This can present a
problem, when using a protocol as TCP, which is essentially a single-path protocol.
The way that TCP works is by binding a connection to a specific IP-address. When
the connections is broken it cannot migrate the connection to another interface on
the transport layer. There might be some applications that can support migrating a
network connection to another interface, but it would require some special software
to run on the devices in question.

If TCP would be used for load balancing on multiple paths within some network,
it would still be a problem to get the data reordered at the received end, and still
maintain a high network throughput. In this case the reordering would be interpreted

8 Chapter 2. Analysis

as congestion and would eventually slow down the performance.

Today most of the people in western countries own a smartphone with multiple
interfaces, but they are still unable migrate TCP connections from one interface as
Wi-Fi to an interface with a 3G or 4G connection without the connection stalls or
becomes unresponsive for a period of time. This is because the operating system has
to detect that an interface has lost connection and then switch to another interface.
A way to address these issues is to use Multipath TCP, which is a modification of
the normal TCP. It will allow multiple paths to be used simultaneously on a single
transport connection. The idea of a multipath approach is not new and was originally
proposed by a guy named Christian Huitema in IETF more than 15 years ago. Since
then multiple different projects have tried to solve this problem and the current
MPTCP standard by IETF draws on the experience from these past projects.

2.2 MPTCP Overview

In the design of MPTCP two key requirements are worth mentioning:

e Application compability: The applications that already use TCP should be
able to use MPTCP with no change.

e Network compability: The MPTCP should be able to operate on all Internet
paths that already use TCP.

Since most of todays Internet communication include devices such as Network Ad-
dress Translators, firewalls and other transparent proxies, these types of devices are
aware of the TCP connections they handle and they affect these connections in dif-
ferent ways. This is different in plain IP routers, because they will not affect these
TCP connections. So one of the biggest challenges of designing the MPTCP, has
been to design a protocol, which can traverse these middleboxes safely.

Before the MPTCP will be explained a short overview of how regular TCP works
will be given.

2.2.1 Regular TCP operation

A basic TCP operation can typically be split into three phases:

2.2. MPTCP Overview 9

e Connection establishment
e Data transfer

e Connection release

Connection establishment

Client (initiates the connection) Server (listens on a socket)

Time

Latency

L

/
K

Di!'a

Figure 2.1: Overview of a TCP connection and the 3-way handshake[12].

Figure 2.1 shows how a 3-way handshake works for a TCP connection. The client
initiates the connection by sending a synchronize (SYN) packet to the port on which
the server is listening. The SYN packet includes the source port (the port to which
the server answers) and the initial sequence number, which is chosen by the client.
It can also include options that are used to negotiate the use of TCP extensions.
The server then replies with a SYN+acknowledgment (ACK) packet. This packet
includes the serves initial sequence number as well as the options that the server
supports. Then the client sends back an ACK packet to the server and the connection
is established. All subsequent packets in the connection uses the information gained
in the 3-way handshake, namely the IP-addresses and the ports of the client and the
server respectfully.

10 Chapter 2. Analysis

Data transfer

When the connection is established the client and the server communicates the data
in what is known as segments. The sequence number is used to order the data in the
different segments and also used to reorder them, as well as detect losses in the data.
Included in the TCP header is a cumulative ACK, which is essentially a number that
is used to acknowledge the received data, by informing the sender, what the next
byte that is received is expected to be. If data is corrupted or lost there are different
techniques used by TCP to retransmit. These will not be explained here because
they are not important in understanding how the MPTCP works.

Connection release

When the client and the server are done communicating the TCP connection must
be closed. This can be done in different ways. The communication can be abruptly
closed if either the client or the server sends a Reset (RST) packet. This is not
the correct way of closing the connection. If a connection is to be terminated, the
correct way to do this is that, the client must send a Finish (FIN) packet to the
server. The FIN packets include the sequence numbers of the last transfered byte.
The connection is then terminated when the FIN packet has been acknowledged in
both directions.

2.2.2 Multipath TCP Operation

The following section makes use of [18] as source.

When using MPTCP it will allow multiple subflows to be set up for a single MPTCP
session. This works by by setting up an initial subflow for the MPTCP session and
this subflow works similar to a regular TCP connection, which is described in sub-
section 2.2.1. When an initial subflow has been set up for the MPTCP session it
is then possible to add additional subflows to the MPTCP session. Each of these
subflows will be setup complete with a SYN handshake and it also uses a FIN packet,
to mark that the data transfer has been completed. But unlike TCP, the subflows
are all added into the same MPTCP session and a data transfer can happen over any
of the subflows, given that the subflow has the capacity to handle it.

Before an in depth overview of the MPTCP will be given, a simple scenario where

2.2. MPTCP Overview 11

MPTCP is highly relevant will be explained. A normal smartphone typically has two
interfaces namely a 3G /4G connection and a Wi-Fi connection each of which has an
IP-address of its own. The user of the smartphone wants to connect to a server with
only a single interface. In this scenario, the MPTCP would allow an application to
connect to to the server with a single TCP connection from both interfaces. In this
case the application does not need to concern it self with what radio interface the
smartphone uses to connect to the server. This is all handled by the MPTCP and in
a similar scenario, where the server has multiple interfaces the MPTCP would then
create subflows between all the interfaces. So if the server has two interfaces and the
same goes for the smartphone four different subflows would be created.

When initiating a MPTCP connection, and the device being used it still a smart-
phone, the 3G interface is used to initiate the connection and it sends a SYN packet
to the server. This SYN packet includes the MP__CAPABLE TCP option. This
option is to indicate that the smartphone supports MPTCP. Also contained in the
SYN packet is a key chosen by the device. The server then replies with a SYN4+ACK
packet including the MP_ CAPABLE option and a key chosen by the server. The
smartphone then acknowledges the SYN+ACK by replying with an ACK packet and
the MPTCP session is started. Now the smartphone can send data via TCP segments
on the 3G path.

Client (initiates the connection) Server (listens on a socket)

Time

Latency

Figure 2.2: Overview of a MPTCP connection and the 3-way handshake.

In order for the smartphone to be able to also send TCP segments to the MPTCP

12 Chapter 2. Analysis

session from its Wi-Fi interface it would have to initiate a new subflow for this
to work. By simply sending TCP segments via the Wi-Fi interface to the server,
it would cause the TCP segments to be dropped by the Internet Service Provider
(ISP), because the source address of the TCP segments would contain the IP-address
of the 3G interface. If the smartphone would try to tell the server, that the packets
actually belong to the Wi-Fi interface and not the 3G interface, it would cause the
packets to be dropped by middleboxes since it is expected that a connection starts
with a SYN packet and not data packets.

In order to be able to send data from both the Wi-Fi interface and the 3G interface the
MPTCP would have to start a complete handshake for the Wi-Fi connection. This
works by sending a SYN packet to the server, which contains the MP_JOIN TCP
option. This packet contains all the information such that the server can distinguish
the 3G path from the Wi-Fi path. The server responds with a SYN+ACK packet
containing the MP__JOIN option and then the smartphone acknowledges. The new
subflow is then added to the MPTCP session.

Client (initiates the connection) Server (listens on a socket)

Time

Latency

Figure 2.3: Overview of a MPTCP connection when adding a new suflow to the session.

An important thing to notice about MPTCP is that subflow can be added and re-
moved though the life span of the MPTCP session. This will not affect the applica-
tions using the byte stream. MPTCP also supports adding and removing addresses,
which also works when an end-point is located behind a NAT. Consider that the
smartphone switches to another Wi-Fi network in the neighborhood. This will give
the interface a new IP-address and the MPTCP simply handles this by creating a

2.2. MPTCP Overview 13

new subflow with the informations from the new Wi-Fi network.

2.2.3 Paths with different characteristics

Assume that the smartphone has established two subflows, one from the Wi-Fi in-
terface and one from the 3G interface. The smartphone will now be able to send and
receive data from both interfaces, but because these two paths will have different
characteristics, namely latency, this will cause the data packet to be received out of
order. In a regular TCP connection a sequence number is used. The easy solution
would be to reuse this sequence number in the subflows as well, but this will cause
the middleboxes (e.g. firewalls) to either drop the packets or to try and recover
packets by by updating the TCP acknowledgments. This is because they see gaps
in the data streams and have no knowledge that the packets are part of a MPTCP
session.

In order to fix this issue MPTCP uses its own sequence numbering space. Each seg-
ment that is sent through the MPTCP will have two individual sequence numbers.
The first being the subflow sequence number inside of the regular TCP header and
the other sequence number is a data sequence number stored inside a TCP option.
This fix makes sure that each subflow has consecutive sequence numbers and this will
not give any problems when traversing different types of middle boxes. The second
sequence number, the data sequence number, is simply ignored by older middleboxes
and it will then be used by the MPTCP at the received end to reconstruct the data
stream, before it is sent to the application that requested it.

2.2.4 Congestion control in MPTCP

In a regular TCP connection the congestion controller is one of the most important
components of the protocol. This controller makes sure that TCP can adapt its
throughput dynamically. This is especially important when communicating via a
networks with changing conditions, such as delay and packet loss and congestion.
The way it works for TCP is that each sender maintains a congestion window, that
describes how may packets the sender can send, without waiting for an acknowl-
edgment. This congestion window is updated dynamically and when there is no
congestion, it grows linearly and when a packet loss occurs, the congestion window
is then divided by two. If multiple streams are running over the same link, the TCP
congestion controller will ensure fairness and the data rate will converge to average
for all of the streams.

14 Chapter 2. Analysis

In order to understand how the MPTCP handles congestion three different goals are
defined:

e First goal: The congestion controller must ensure fairness to TCP. If several
different active subflows of a MPTCP session are running alongside a regular
TCP connection, and the link is a bottleneck, the MPTCP should not be able
to get more throughput than the TCP connection.

e Second goal: The performance of all the active subflows of a MPTCP session
should at least be able to obtain the same throughput as a regular TCP con-
nection. This is to ensure that there is incentive to deploy a multipath solution
in the first place.

e Third goal: When using a MPTCP session with multiple active subflows, the
paths used to send data should be the most efficient paths namely the paths
that are experiencing less congestion than the others.This third and last goal of
the MPTCP congestion controller would ensure load balancing of traffic. When
a MPTCP session is used the traffic will be pushed thorough the links, which
has the lowest congestion and this will then decrease the amount of traffic on
the congested links and increase the traffic on the non congested links. This
will in effect cause links to act together as a single larger capacity link that will
consist of all the subflows.

The MPTCP achieves these three goals by making simple changes to the congestion
controller used by regular TCP connections. In MPTCP each subflow will have its
own congestion controller that works exactly as a regular TCP congestion controller.
Furthermore when using resource pooling in MPTCP, the congestion controller will
allow less congested subflows to increase proportionally compared to the ones that
are congested. The increase of the MPTCP across all of its subflows is chosen to be
dynamically, and furthermore it is chosen in a way that fulfills goals one and two, as
described above.

2.3 State-of-the-art

When talking about Multipath TCP, there are a lot of applications for a protocol
that can connect multiple interfaces across different technologies. An example would
be an Ethernet connection combined with a Wifi or 4G connection, where Multipath
TCP is then able to maximize resource usage. This can both be utilized in the form

2.3. State-of-the-art 15

of bandwidth aggregation, as this project will focus on, or on creating a reliable setup
of a network connection, where using the multiple subflows as redundant connections.

To sum up what the bandwidth aggregation is, it aims at maximizing the resource
usage of multiple TCP connections. This can be done by evenly splitting the traffic
on all the available paths disregarding the characteristics of these paths. If bandwidth
aggregation is the only goal of using Multipath TCP, the performance of the network
connection will only depend on the throughput. If there is delay or packet loss on
some of the paths, this will just translate into a lower throughput at the receiver
end. As stated before, if the Multipath TCP is sensitive to latency then head-of-line
blocking can become a problem.

To sum up what the reliability aspect of the Multipath TCP is about, it is about
the usage of the different available paths, to secure that the network connection
is reliable. An example can be a smartphone setup, where there are two available
interfaces, namely the WiFi interface and the 4G interface. In this case it would be
able to primarily use the interface decided by the user, but it will be able to keep
the other interface added as a backup network connection. This backup connection
can be used, if the primary interface suddenly loses the network connection e.g. 4G
outage. Then the Multipath TCP will be able to handle a handover of the data
stream from one interface to the backup interface, without the need for notifying the
layers above the transport layer.

In 2013 the Multipath TCP was published by the Internet Engineering Task Force
as a experimental standard in RFC 6824 [24] [9]. As of today the Multipath TCP is
still not a final standard, so the implementations of the protocol are still limited and
the ones that are available has a limited functionality, since there are still details and
functions in the protocol, that are not yet done.

The current implementations, as listed in [13], count multiple Linux distributions,
Android, PlanetLab and Amazon EC2. Apple has also used Multipath TCP in i0S7
[2]. It is primarily used in their search application called Siri.

Since the experimental standard was released in 2013, there have been a lot of dif-
ferent research about how Multipath TCP should perform. There have been a lot
of focus on different congestion control algorithms as well as the scheduler used in
Multipath TCP. Both of these functions are crucial for the performance of the Mul-
tipath TCP. When looking at different congestion control algorithms for Multipath
TCP, they can have different goals. These goals can be to ensure fairness in con-
gestion control when compared to a regular TCP connection. Another goal can be
to ensure that the congestion control is able to adapt quickly to network changes.
In [8] they do an extensive analysis of the performance of the Multipath TCP. It

16 Chapter 2. Analysis

focuses on the different congestion control algorithms that are currently available for
the Multipath TCP. These congestion control algorithms are Alias Linked Increase
Congestion Control (LIA), Oppertunistic Alias Linked Increase Congestion Control
(OLIA), Balanced Linked Adaptation Congestion Control (BALIA) and Delay-Based
Congestion Control (wVegas). Their conclusion is that MPTCP outperforms normal
TCP and has many advantages in different scenarios.

In [5] they do an extensive analysis of the schedulers in Multipath TCP and how
these should work. They do an in-depth analysis of the performance of different
schedulers namely Round-Robin (RR), Lowest-RTT-First (LowRTT), Retransmis-
sion and Penalization (RP) and Bufferbloa Mitigation (BM). Only the first two, RR
and LowRTT, are available in the Linux implementation of MPTCP. They conclude
that the scheduling in Multipath TCP shoud ideally be done in a way, so the the data
arrives in-order at the receiver. This will help minimize the chance of head-of-line
blocking as well as any receive window limitations, since the application that receives
the data stream, is able to continuously read data from the receive queue. They also
state that it would be possible to design such a scheduler, by using estimates of the
round trip times (RTT) and the current capacity of the network connection, as they
can be maintained by e.g. the Linux kernel.

The current limitations of the Linux implementation of MPTCP is, that the only
two available schedulers are Round-Robin and Lowest-RTT-First. The Round-Robin
implementation is only an experimental scheduler and it is stated on the Multipath
TCP website, that this should only be used for testing purposes. The LowRTT is
the default scheduler and since RR is experimental it limits the possible usages of
the implementation.

When talking about different usage scenarios there are a few that are more suited
than other.

As stated earlier one of the applications of the Multipath TCP would be in a smart-
phone with two available active network connections as WiFi and 4G. In this scenario
the Multipath TCP could both be used for bandwidth aggregation as well as to en-
sure reliability e.g. when switching from one wireless network to another.

Another scenario where Multipath TCP could be beneficial, is a setup where there
are networks of limited bandwidth available. This could be in ares with poor quality
network connections e.g. the rural areas of Denmark. Here it could be beneficial to
be able to combine the bandwidth from several different available network connection
e.g. DSL and 4G. This scenario is also the motivation behind this report.

A third scenario could be the several different network paths inside of large data
center. Here it could be beneficial to aggregate multiple paths to be able to utilize
the network more effecient and to be able to move data from one server to another

2.3. State-of-the-art 17

server a lot faster. On [13] it is stated that Multipath TCP was used in an experiment
where a bandwidth of 51.8 Gbps was gained. This kind of setup would be beneficial
in a data center.

The work done in this project will focus more on the performance of Multipath
TCP, when using it for interactive streaming purposes. Since the scenario states
that, in the rural areas of Denmark, the farmers are having trouble with not having
enough available bandwidth for carrying out support related interactive streaming
conversations. This project uses a Multipath TCP testbed to gain results. These
results will either show if a Multipath TCP setup will be able to solve the bandwidth
limitation problems or not.

The current scenario is that, in these rural areas of Denmark, a maximum bandwidth
on a DSL connection is around 2 Mbps downstream and 512 Kbps upstream. This
bandwidth is not enough to carry out an interactive streaming support session and
therefore it will be examined, if deploying a Multipath TCP setup can be used as a
solution to gain more bandwidth. In the current scenario the setup of Multipath TCP
will be done using a emulated DSL connection combined with a real 4G connection.

Chapter 3

Scenario description

In this chapter an extended overview of the scenario will be given.

As described in the section 1.1, the motivation for using Multipath TCP as a resource
pooling of multiple connections, is because of the poor Internet connectivity in the
rural areas of Denmark. It all comes down to the connection speed of the Digital
Subscriber Line (DSL) that can be provided in these areas. The information provided
for this project is that it is only possible to get a DSL line with 2 Mbps downstream
and 512 Kbps upstream. This provides a problem for the farmers, that wants to
use this DSL connection to do interactive streaming to consultants, regarding the
technical setup and support of the robots they use for e.g. milking their cows. With
a 2 Mbps / 512 Kbps line there is simply not enough bandwidth to carry out an
interactive streaming session with the software, that the consultants use to carry out
support or setup of the robots/machines.

This is the motivation to investigate, if resource pooling using the Multipath TCP,
will allow enough bandwidth to carry out interactive streaming sessions with the

consultants.

Typically when talking about interactive streaming, it has some strict requirements
for one way delay, jitter and packet loss. In [11] they talk about VoIP and the re-
quirements to a voice conversation. In [11] they have that the one way delay can not
exceed 150 ms, since this would cause noticeable changes in the voice stream. They
also say that the delay variances can not exceed 100 ms since the buffers, that are
implemented to handle difference in delay, will not be able to correct this behavior
from a buffer point of view.

In [25] they recommend a network connection with at least 2 Mbps available band-

19

20 Chapter 3. Scenario description

width in order to watch streaming media. This is only one way bandwidth and if the
traffic type is interactive streaming a network connection with 2 Mbps downstream
and upstream is needed. It all depends on the codec that are used to encode the
video stream and the voice stream, but having an available bandwidth lower than 2

Mbps is not recommended.

Y ™
-~ ~

-
./ \({R)

Figure 3.1: This figure shows the scenario overview.

Proxy The setup shown in Figure 5.1 gives a good indication of what the real life
application of the multipath protocol can be. Figure 5.1 shows, on a high level, what
kind of setup that is deployed at the farmer and how a proxy setup with a multipath
tcp enabled proxy, could help the farmer in terms of bandwidth aggregation and
possibly also reliability. This project and the testbed that has been built will only
focus on the bandwidth aggregation part, since the current problem for the farmers
is that the DSL line they have available, is too slow to handle interactive streaming
conversations with the software that they use.

As seen in Figure 5.1, the current usage of multipath TCP would be to setup a proxy
at the location of the farmer. This proxy could be either some router capable of
running an implementation of the multipath TCP, or a simple gateway that runs
the Linux implementation. The idea behind using a proxy for the multipath TCP,
is that it is only supported if both end points has MPTCP enabled. So if the farmer
wants to use the advantages of the multipath TCP in e.g. his barn or his house he

21

would just use his normal devices without any modifications. The proxy in this case
will be the end point for the MPTCP and the incoming Internet will then get shared
to a different interface. This interface is then connected to a router and this router
then shares the Internet to the devices at the farmer.

Chapter 4

Implementation

4.1 Testbed setup

This section will take a closer look on how to get the Multipath TCP kernel up and
running, how to configure the routing on the client computer and how to setup a
gateway to throttle the network connection such that it emulates a DSL connection.

4.1.1 Installing the Multipath TCP kernel

In order to be able to fulfill the scenario described in the section 1.1 some hardware
are needed in order to setup a testbed to reproduce the scenario, where the network
connection in rural areas of Denmark has access to poor Internet connections such
as 2 Mbps downstream and 512 Kbps upstream DSL connection and a variety of 3G
and 4G connections. The hardware chosen to build the testbed will be:

e 1 computer running Ubuntu 14.04 LTS 64bit with 2 network cards to function
as the client/farmer.

e 1 computer running Ubuntu 14.04 LTS 64bit with a single network card to
function as the server or host.

e 1 computer running Ubuntu 14.04 LTS 64bit with 3 network cards.This will
function as a gateway and be used to emulate the DSL connection to the client.

23

-

24 Chapter 4. Implementation

The two computers used for both the client and the server will both be running
a custom prebuilt kernel running linux 3.18.* and the implementation of the the
Multipath TCP[13]. The kernel comes prebuilt and it is installed by getting it directly
from the Multipath TCP Apt Repository. Below the commands needed for installing
the kernel are shown:

wget —q —O — http://multipath—tcp.org/mptcp.gpg. key | sudo apt—key add — //The gpg key is added as a
trusted source

The file mptcp.list is created in /etc/apt/sources.list.d/. It will hold this line:

e deb http://multipath-tcp.org/repos/apt/debian trusty main

The the kernel is installed by issuing the following command:

sudo apt—get update
sudo apt—get install linux—mptcp

When the process is done, one last step needs to be completed in order to be able to
boot the Multipath TCP kernel. The grub bootloader needs to be edited to boot the
mptcp kernel. This is done by installing grub-customizer with the apt-get command:

sudo apt—get install grub—customizer //installs the program
sudo grub—customizer //runs the program

The the mptcp enabled kernel is moved to the top by using the arrows as shown in
Figure 4.1.

4.1. Testbed setup 25

Grub-Customizer

File

B %
is active name
v & lnux
& Ubuntu, with Linux 2.6.3 5-22-generic-pae (recovery mode)
Ubuntu, with Linux 2.6.3 5-22-generic
Ubuntu, with Linux 2.6.3 5-22-generic (recovery mode)

Edit View Help

4 C

linux_xen

memtestia+

Memory test (memtest86+)

Memory test (memtest86+, serial console 115200)
os-prober

custom

custom

Default title: Ubuntu, with Linux 2.6.35-22-generic-pae

Figure 4.1: Overview of the grub customizer program.

The Multipath TCP kernel is now running on both the server and the client computer

4.1.2 Setting up the routing tables on the client

In order to be able for the client to simultaneously use multiple subflows, some rules
for the routing of both flows is needed. These are setup in a static manner since this
is the easiest way to do it, when only dealing with two subflows. It is possible to setup
the routing tables automatically and can be done by incorporating scripts found on
the multipath-tcp website [13]. It can also be done via different tools, which can be
downloaded from github and these tools can be found on the official multipath-tcp
website.

The setup is currently being done by running a script, which contains the static
routing tables. As seen in 14 it creates two different routing tables for each of the
two network interfaces. It also creates a default route, which is used as the primary
interface for web browsing, downloading and all other tasks that are not MPTCP
enabled.

This creates two different routing tables, that we use based on the source—address.
ip rule add from 10.42.0.52 table 1
ip rule add from 192.168.137.2 table 2

Configure the two different routing tables

[C s Be)

11
12
13

1

26

ip
ip
ip
ip

Chapter 4. Implementation

route add 10.0.42.0/24 dev ethO scope link table 1
route add default via 10.4.0.1 dev ethO table 1

route add 192.168.137.0/24 dev ethl scope link table 2
route add default via 192.168.137.1 dev ethl table 2

default route for the selection process of normal internet—traffic

ip

route add default scope global nexthop via 10.0.42.1 dev ethO

Listing 4.1: Static routing tables for the two subflows of the client.

4.1.3 Setup of the Multipath TCP protocol

In

this section the different options that are included in the Linux kernel implemen-

tation of the Multipath TCP will be explained. It will include descriptions of the
different schedulers available in the kernel as well as a description of the different

algorithms used for the congestion control.

Enabling the mptcp enabled kernel parameter

In

order to be able to use the MPTCP it needs to be set as enabled in the kernel.

This is not done when installing and booting the kernel and therefore it needs to be

done in order to use the multipath option. This is done by changing a flag in the
kernel so the MPTCP option is enabled and is shown in 2.

sudo sysctl —w net.mptcp. mptcp_enabled=""1""

Listing 4.2: Enabling the MPTCP enabled option in the kernel.

When using the sysctl command it modifies the kernel parameters at runtime, which

means that no reboot is needed in order for the changes to take effect. This is also

the way the path manager, the scheduler and the congestion control is changed.

The mptcp parameter is now set to 1, which means that it is enabled.

Configuring the path-manager

The path manager of the Multipath TCP is used for the creation of new subflows.

At compile time different path-managers can be chosen:

e default: Does not actively create or announce new subflows. It will stay
passive and only accept incoming requests for the creation of new subflows.

4.1. Testbed setup 27

o fullmesh: Will create a full-mesh of subflows among all of the available sub-
flows. Since the version 0.90 it is possible to create multiple subflows per IP-
address and this is controlled with the option /sys/module/mptcp_ fullmesh/parameters/num_ subflows
which is then set to an integer larger than 1.

e ndiffports: It creates X subflows across the same pair of IP-addresses. It is
controlled by the num_ subflows as described in the fullmesh path-manager.

e binder: This path-manager uses Loose Source Routing which is described
in Binder: a system to aggregate multiple internet gateways in community
networks [14].

Configuring the scheduler

In order to be able to understand what the scheduler is when discussing multi-
path networks, an explanation of the problems, that emerges, when different types
of schedulers are used to direct the traffic along the different subflows when using
MPTCP, will be given.

Application Layer

standard Socket API

g Transport Layer Sso

Multipath TCP

TCP
subflow

kend-queue

Network Layer

Figure 4.2: Overview that shows the task of the scheduler of Multipath TCP.

28 Chapter 4. Implementation

In Figure 4.2 the task of the scheduler is presented graphically. It shows a scenario,
where the MPTCP send queue has 5 different packets ready to be sent via two
different subflows. The first 3 packets are sent over the first subflow and the 2 last
packets are sent over the second subflow. This is the scheduler that handles this
and by using different types of schedulers the throughput might be optimized. The
design of a scheduler should take different informations into consideration. In the
next paragraph some of the problems that exist with using multiple subflows will be
explained.

There are 2 main problem scenarios that needs to be solved by using the correct
scheduler.

Head-of-Line Blocking

As seen in Figure 4.3 the image shows what happens when the two subflows have
different delay characteristics aka. Round Trip Times (RTT). In the shown scenario
the first subflow has a high delay of 150ms and the second subflow has a low delay
of 20ms. This presents a problem when the packets are split up and in this case
the first packet are sent via the first subflow and the last 3 packets are sent via the
second subflow, which has a much lower delay. The problem arises, when the host
are waiting for the first packet to arrive, so it can reassemble the packets and deliver
it to the application layer.

The reason why this is a problem, is because Multipath TCP ensures in-order delivery
so the packets sent on the low-delay subflow have to wait for the packets sent via
the high-delay subflow in order to reorder them. This need to be done to get a full
data segment and then deliver it to the application that requested the data. As seen
in Figure 4.3 when head-of-line blocking happens, it creates different problems such
as blocking the entire session, when waiting for packets sent through the high-delay
subflow. This creates high application-level delay since the receiver needs to wait for
data from both subflows, in order to reorder it and send it to the application layer. It
also creates burstiness, which comes from the fact that in the waiting period no data
will be delivered to the application-layer, whereas when the data has arrived large
chunks of data segments may be delivered to the application-layer in short period of
time.

4.1. Testbed setup 29

Head-of-Line Blocking

Low Delay (20ms)

Internet
11

11

High Delay (150ms)

\/

e Session blocked due to #1
e High application-level delay
e Burstiness

Figure 4.3: Graphical overview of the Head-of-Line Blocking problem.

Receive-window limitations

In regular TCP the TCP stack reserves a certain amount of memory for out-of-order
data segments. This memory is used in the event of in-network reordering or packet
loss. In Multipath TCP this functionality is implemented across all the different TCP
subflows due to the delay differences that can occur. So the receive buffer needs to
have enough memory to accommodate out-of-order data segments at the Multipath
TCP level. So the size of the buffer is important such that a high goodput can be
achieved.

To be able to fully utilize the entire capacity of all the paths, the receiver must have
enough buffer space, so that the sender can maintain all of the subflows fully utilized,
even if some data segments needs reordering due to the delay characteristics or from
packet loss. In [20] a recommendation for the receive buffer size for Multipath TCP
is presented:

Buffer = bw; - RT Ty - 2 (4.1)

This recommendation will allow each subflow to send at full speed in the time-
interval of the highest RTT among all the subflows, even though packet loss occurs.
However this recommendation can not always be fulfilled, since some of the hosts
are not able to provide enough buffer space, to utilize the full capacity of all the
different subflows. Since this article [20] was written, another approach has emerged,

30 Chapter 4. Implementation

which suggests incremental changes to the heuristics within the Multipath TCP, by
retransmitting segments and then penalizing the slower subflows.

Receive-window limitations

window = 4
Ll . I
Low Delay (20ms) O ofo-queue
ZZE
Internet
ZZE
1] 7

R, =
. Ll
High Delay (150ms) (

e Unused capacity on low-delay path

e Overall, reduced goodput

Figure 4.4: Graphical overview of the Receive-window limtations.

4.1.4 MPTCP Schedulers

In this section the different schedulers that are available in the MPTCP implemen-
tation will be explained.

Round-Robin scheduler

This scheduler works by selecting the different subflows one at a time in round-robin
fashion. This might guarantee, that the capacity of each subflow is utilized fully and
this is because the distribution across all subflows becomes equal. However if the
data transmission is bulk data, then the scheduler is not functioning in real round
robin fashion. This is because that whenever all the subflows have been filled with
capacity, the next packets to be transfered are scheduled as soon as capacity becomes
available again in the different subflows. This is because the different subflows can
have different bandwidth limitations and different delay characteristics, and then
some subflows might transfer packets sooner than it should using a real round robin
scheduler. This effect is known as the ack-clock [21].

4.1. Testbed setup 31

Lowest-RTT-First (Defalut Scheduler)

It make a lot of sense to schedule data transfers on the paths with the lowest round
trip times since it can improve the user experience. It also decreases the application
delay which is crucial if the type of service is interactive. The Lowest-RTT-First
scheduler works by first sending data on the paths with the lowest delay estimation
until the congestion window of the path is filled. Then the algorithm proceeds to
send data on the path with the next highest RTT. As stated in subsubsection 4.1.4,
whenever all the congestion windows are filled, the scheduling becomes ack-clocked.
This is because that in the individual subflows capacity is freed up whenever an
acknowledgment is received and then the scheduler is able to transmit new data on
the path in question.

4.1.5 Configuring the congestion control

In this section the different congestion control algorithms that are currently available
for the Multipath TCP will be explained.

In Multipath TCP the load is distributed by creating multiple subflows between all
of the potential paths from the source to the destination. The easiest way to solve
the congestion control in Multipath TCP is to just apply the standard congestion
control found in the TCP. However the congestion control in MPTCP is different from
regular TCP and simply applying the standard congestion control from TCP, would
cause the multipath flows to get a higher bandwidth, when sharing a bottleneck link
with a regular TCP connection. This is not be considered fair to the regular TCP
and therefore another course of action is needed. Another feature of the Multipath
TCP is that, when using multiple subflows it is desirable that the traffic is transfered
through the subflows with the least congestion such that resource pooling is achieved,
where a group of links acts like one shared link with larger capacity. Any algorithms
that control the congestion in Multipath TCP must meet three requirements|8]:

e A multipath connection should perform at least as well as single path TCP
would on the best of the available paths.

e A multipath subflow should not take more capacity than a single path TCP
would on the same link.

e The multipath flow should move as much traffic as possible to the least con-
gested paths.

32 Chapter 4. Implementation

In the Multipath TCP release v0.90 a total of four different algorithms for the con-
gestion control is present. These congestion control algorithms are:

e Alias Linked Increase Congestion Control (LIA).

e Opportunistic Alias Linked Congestion Control (OLIA).

e Balanced Linked Adaptation Congestion Control (BALIA).

e Delay-Based Congestion Control (wVegas).

These can all be switched as a kernel parameter at runtime and this is done by issuing
the command:

1| sudo sysctl —w net.ipvé4.tcp_congestion_control="lia"’

In the following sections an explanation of the different congestion control algorithms
included in the MPTCP will be given.

Alias Linked Increase Congestion Control

The Alias Linked Increase Algorithm (LIA) couples the congestion control algorithms
that are active on the different subflows by relating their increase functions and then
it automatically readjusts the congestion window. This algorithm is however only
applied to the increase part of the congestion avoidance phase. This ensures that the
algorithm is fair to a regular TCP connection at a bottleneck link and it also ensures
that traffic are moved away from congested paths. In [8] the relation of the increase
functions and the subtractive decrease behaviors is described as:

e For each ACK received on subflow i, the congestion window cwnd; is increased
by:

- Back - Mss, Bk - Mss,
Min { « ack SS; ack SS; } (42)

Yt ocwnd; T cwnd;

Where:

a: A parameter that describes the aggressiveness of the multipath flow.
Bgek: Number of acknowledged bytes.

Mgg,: Maximum segment size on subflow 4.

n: Total number of subflows.

4.1. Testbed setup 33

e For each loss on subflow i, decrease cwnd; by cwnd; /2

In Equation 4.2 it is shown that a minimum of two different calculations is taken.
This is calculated in bytes. The first calculation computes the increase value for the
multipath subflow and the second calculation is for a regular TCP flow in the same
scenario. By taking the minimum of these two calculations, it is ensured that the
multipath subflow will not take more capacity than a regular TCP connection on a
single path. The alpha value is used to describe the aggressiveness of the multipath
subflow and the value is chosen such that the total throughput of the multipath flow
is equal to the throughput, that a regular TCP connection would get on the best
path available.

As seen in Equation 4.2 the first calculation depends on alpha, maximum segment
sizes and the RTTs of the paths. It is not possible to chose a value for alpha,
which fulfills the first design goal stated in subsection 4.1.5, such that the desired
throughput is achieved at all times. To solve this, alpha is therefore computed
by taking the observed behaviors of all the multipath subflows. This is shown in
Equation 4.3.

Where:

Mazx {j;;”ﬁ; }: Maximum value of any possible path.

Yo Cé”T”}lZ: Summation of all possible values of all paths.

Opportunistic Alias Linked Congestion Control

In [19] an extensive performance evaluation of the LIA congestion control algorithm
was carried out and it was discovered that the LIA algorithm forces a tradeoff be-
tween optimal resource pooling and responsiveness. This is a problem since the LIA
algorithm is unable to fulfill both goals at the same time and this eventually leads
to a fairness problem for regular TCP users.

34 Chapter 4. Implementation

Opportunistic Alias Linked Congestion Control was introduced as an alternative
algorithm, that was capable of solving the problems that LIA presented and as
stated above. The algorithm works by linking the increase functions of the congestion
window and it uses the same behavior as regular TCP in the event of lost packets.
This algorithm is only applied to the increase function of the congestion avoidance.
Therefore the slow start algorithm is the same as used in regular TCP, but with a
small change, which is used when multiple paths are created.[19] To describe the
additive increase behavior[8]:

e For each ACK received on path 4, increase congestion windows cwnd; by:

cwnd,; v
RIT . (4.4)

((Z?zo cwnd;) - (0}1{"1{%))2 * cwnd;

Where:

cwndy,: Window size of a path p with largest congestion window.
RTT,: Round trip time of a path p with largest congestion window.
«;: Adjust parameter for a path i.

n: Total number of subflows.

e For each loss on subflow ¢, decrease cwnd; by cwnd;/2

The first term in Equation 4.4 ensures that optimal resource pooling is achieved and
furthermore this term is a TCP compatible version, which compensates for difference
in the round trip times. The second term is what guarantees that the algorithm has
responsiveness and is non flappy.

Balanced Linked Adaptation Congestion Control

As stated in LTA and OLIA these congestion algorithms suffer from either unfairness
to a single path TCP or they are unresponsive to network changes under specific
conditions. Among these conditions it is a problem when all paths used for the
Multipath TCP has the same round trip times. However a tradeoff between these
issues is inevitable and BALIA tries to judiciously balance this tradeoff [1]. BALIA
has a good balance between friendliness and responsiveness. In [8] the additive
increase and the subtractive decrease behaviors of BALIA is described as:

4.1. Testbed setup 35

e For each ACK on path ¢, increase cwnd; by:

<RTT1~(§?OM)2> ' (14;%) ' (44;%) (4.5)

. . __ cwnd;
Where: x; = RIT.

Max{z}
z
n: Total number of subflows.

a; =

e For each loss on path ¢, decrease cwnd; by:

< cwnd;

5) - Min{a;, 1.5} (4.6)

In the case that there is only one path available then a; will be 1 and both
the increment and decrement formulas will be the same as in the TCP Reno
algorithm [26].

Delay-Based Congestion Control

This delay based congestion algorithm was introduced in [16] and it works, unlike the
LIA algorithm which is basked on packet loss events, by taking the packet queuing
delay as a congestion signal. Because the wVegas algorithm is a delay based algorithm
it is more sensitive to network changes with respect to congestion and therefore it is
able to achieve a more timely traffic shifting and a faster convergence compared to
e.g. the LIA congestion algorithm. In order for wVegas algorithm to work it must
perform these operations after the end of each transmission round[8]:

e For a subflow 4, calculate the difference between the expected sending rate and
actual sending rate.

cwnd; _ cwnd;
base RTT; RITT;

dif f; = <) -base_ RTT; (4.7)

Where RTT; is the average RT'T on the last round on subflow 4, and base_ RTT;
is the RT'T of a subflow ¢ when the path is not congested.

In the case that the subflow is in the slow start phase and the threshold value
called gamma is larger than dif f;, then the algorithm goes into the congestion
avoidance phase.

36 Chapter 4. Implementation

e For the congestion avoidance phase it is checked if dif f; is less than the un-
fairness a; or not. If dif f; is not less than a; then the rate must be updated.

cund;

rate; = RIT, (4.8)
weight; = total rz(zzej)f all @ (4.9)
a; = weight; - total, (4.10)
If dif f; is larger than a; then:
cwnd; = cwnd; — 1 elsecwnd; = cund; + 1 (4.11)

e For the last task wVegas will try to improve the accuracy of the base_ RTT;
by ensuring that, when the algorithm detects a queuing delay larger than some
threshold, the congestion window backs off. By running this task, bottleneck
links can decrease the backlogged packets. But not only the flows with queuing
delay has a chance to obtain the most accurate propagation delay. This goes
for all the flows involved and wVegas tries to calculate the queuing delays as|8]:

queue__delay; = RTT; — base_ RT'T; (4.12)
This leads to two cases:

— current queuing delay < saved queue_ delay;, replace queue_delay; with
current.

— current queuing delay = 2 - queue__delay; then

cwnd; = (cwnd;) - (0.5) - (base]M)

4.1
RTT (4.13)

4.1.6 Gateway

The gateway will be used to throttle the network connection to the client. Since
the server and the client is running on the same local area network, the delay of the
traffic, when passing through the gateway is very low, there will be added delay at
the incoming network connection of the gateway. This delay will be set as 40 ms on
the outgoing packets from eth(. So the delay will be added when the client sends
an ACK to the server. This is perfectly fine, since the data that will be used is the
round trip times.

The gateway will use Ubuntu 14.04 and it will use the internal function to share the

4.2. Test prerequisites 37

Internet connection from ethO to ethl and eth2. On both the interfaces, ethO and
ethl, a queue will be created to throttle the bandwidth. This queue will use a token
bucket filter with a burst of 2 kB. The burst is explained in subsubsection 4.2.5 and
in [10].

4.2 Test prerequisites

In this section the prerequisites for setting up the tests and the Multipath TCP will
be described.

4.2.1 Design base

In this section the information of the design base of the test will be given. It will
provide information about the different paths that are setup, in order to test the
Multipath TCP bandwidth aggregation.

The design base will consist of 1 regular TCP connection that is limited to 2 Mbps
download and 512 Kbps upload. This path will be used to generate the base results,
such that when performing the tests with the Multipath TCP and 2 paths, one being
the 2 Mbps / 512 Kbps DSL line and the other being the 3G/4G connection, it will
either show that using the MPTCP is able to aggregate more bandwidth than the
single path.

4.2.2 Network metrics

In this section the network metrics that are important for this project will be outlined.

To verify the results of the tests run in this project it is important that some network
metrics are agreed upon. This is some basic requirements for avoiding quality of
service problems in VoIP conversations [11].

e Ideally there should be no packet loss for VoIP.

e A maximum latency of 150 ms.

e In order for jitter buffers to work correctly there should be no delay variations
that exceed 100 ms.

38 Chapter 4. Implementation

Besides these requirements there will be different bandwidth requirements depending
on which audio and video codec that are used for the interactive streaming. But this
gives a general idea of what network metrics are important for verifying our tests.
So to sum up the network metrics that will be used to evaluate the tests these three
will be chosen:

e Bandwidth
e Latency

o Jitter

Jitter

Jitter will be calculated from the distribution of ACK RTTs. It will be done by
making the assumption that the one way delay is half of the ACK RTT time. This
one way delay will then be used to calculate the mean jitter and the variance in the
jitter. This is explained further in chapter 5.

4.2.3 Path characteristics

In order to carry out the different tests it is important to be able distinguish between
homogeneous and heterogeneous paths. The difference between these two types of
paths will be given below.

Homogeneous paths

When using the term homogeneous paths this is to say something about the char-
acteristics of the paths. Homogeneous means that the paths, that the data traverse,
has similar network characteristics. This means that if two homogeneous paths are
used, it would be two paths with almost identical bandwidth, latency and jitter. In
this project when using more that one homogeneous path it will consists of emulated
DSL connections.

4.2. Test prerequisites 39

Heterogeneous paths

Using heterogeneous paths means that, the paths the data traverses, has very dif-
ferent network characteristics. This term can be used, when the Multipath TCP
consists of e.g. a DSL connection with a low and consistent latency is then combined
with a 4G connection that has a higher and more fluctuating latency.

4.2.4 Traffic

In this section the software that will be used to generate the traffic on both the
regular TCP and the Multipath setup will be described.

Traffic direction

This section will explain how the test will be setup and in which direction the data
will flow.

Because the DSL line is emulated by using a gateway, it is throttled at 2048 Kbps
downstream and 512 Kbps upstream. However a real ADSL line will not be able to
receive with full capacity if the upstream is maxed out. This is because an ADSL
line is asymmetric. However the gateway is not able to emulate this behavior so as
of now this will not be implemented.

In order to generate the traffic, so it is similar to the traffic from the normal scenario

described in chapter 3, the traffic will be split up in two different categories.

e Background traffic
e Foreground traffic

— General purpose (Surf, Netflix etc.)

— Interactive streaming

Background traffic

In order to generate some background traffic, that will model how normal web surfing
traffic looks like, a session where this type of traffic is being used will be recorded with

40 Chapter 4. Implementation

Wireshark and analyzed in order to model the packet sizes so it can be reproduced.
The traffic will either be generated using a piece of software or an application written
in c++ or Java that can mimic the burst traffic of a normal web surfing session. Since
the background traffic is not the most important part of the project a background
traffic model will be assumed.

The assumed model used for the background traffic will be:

e Downstream (From the server to the client: 500 Kbps in small bursts.
These bursts will be done so that traffic is generated and then there is a small
pause of 1-2 seconds.

e Upstream (From the client to the server: 100 Kbps in small bursts.
These bursts will be done so that traffic is generated and then there is a small
pause of 1-2 seconds.

iperf3 This tool has a lot of options that can be adjusted and tweaked. It is
especially relevant because the bandwidth can be limited directly in the application.
It can also provide bi-directional traffic and run in both directions.

Foreground traffic

Since the foreground traffic can be split into two different scenarios, namely being
interactive streaming and general purpose, they will be split into two different sec-
tions.

General purpose The name general purpose is used because this type of traffic
can traffic types such as video streaming, web browsing, file download but is not
limited to these types. It is in fact just a category that covers what ever traffic that
might pass through the network. This kind of traffic does not have any strict require-
ments when looking at latency or jitter and will mostly depend on the bandwidth
of the connection. This is where Multipath TCP can help since it will be able to
pool resource from several different active connections simultaneously. If the general
purpose is used for e.g. Netflix, YouTube or any other video streaming, there will be
some requirements to the jitter and latency.

For the general purpose it is assumed that the network traffic generated will be
some streaming video e.g. YouTube, Netflix or another similar service so here the

4.2. Test prerequisites 41

recommendations made by Netflix for the bandwidth of the Internet connection will
be listed. These will be used in the tests when analyzing the results in order to verify
if the bandwidth and jitter, obtained in the test, is sufficient to use the network
connection for the purpose of video streaming. The information listed is found at

[17].

0.5 Megabits per second - Required broadband connection speed

e 1.5 Megabits per second - Recommended broadband connection speed
e 3.0 Megabits per second - Recommended for SD quality

e 5.0 Megabits per second - Recommended for HD quality

e 25 Megabits per second - Recommended for Ultra HD quality

Interactive streaming In order to find out how interactive streaming traffic looks
like we will take a look at the voice codec called G.711. This codec has some basic
specifications that will help us in creating a model for the interactive streaming traffic.
In [22] we see that G.711 is a standard for voice communication namely telephony.
It was developed in 1972 and is also known as Pulse Code Modulation (PCM). It
is frequently used as an audio codec in videos as well. It works by sampling audio
signals in the range of 300-3400 Hz at a rate of 8000 samples per second. This gives
a new audio sample every 0.125 ms. So it has these specifications:

e Bit rate: 64 Kbps

e Frame size: 0.125 ms

If the audio is packetized every 20 ms this will give a packet size of 160 bytes and if
we include 40 bytes for the header the voice packet size will be 200 bytes. A packet
with this size will then get sent to the send buffer every 20 ms. Since this project is
about MPTCP it also makes use of sending segments of approximately 1500 bytes so
when the buffer has enough data available it will arrange this in one packet of 1500
bytes and then it will get sent to the client.

This is modeled in iperf3 by writing a small array of 8k bytes to the buffer a number
of times. This will ensure that the data available in the buffer, is handled as a steady
stream of data to send out, just as if the G.711 codec was used, the only difference
being that these writes are larger than when using G.711. This is to make up for the
fact that the project is about interactive video streaming and not only audio.

42 Chapter 4. Implementation

4.2.5 Hardware

In this section the setup of the hardware used in the testbed will be explained.

Gateway

In this section the gateway setup will be explained.

As per initial results have shown, the first setup used on the gateway included a
token bucket filter queue with a queue buffer of 2000 packets. This created a large
queue in some of the tests and it can be seen in the round trip time graphs that are
created by wireshark. The queue is changed to using a burst of 2000 bytes and a
maximum wait of 100ms for a token[10]. This means that the token bucket filter can
only have 2 kB tokens that can be available for instantaneously traffic. If more traffic
arrives in the buffer the packets will get dropped after a wait period for a token of
100 ms. This setup is done to make the setup reflect a real life setup.

Server

As it will show in the throughput graphs for the regular TCP tests the packet sizes
captured by wireshark is around 2900 bytes. This happens because because of some-
thing called offloading [3]. Offload is when the network interface card (NIC) handles
some of the network processing to offload the CPU of some of its processes. This
manifests it self in wireshark as packet sizes being 2900 bytes. It is because that the
particular NIC can reassemble traffic. Since this has no impact on the tests done
the setting will be left alone. This, however, only happens in the regular TCP tests
and not the Multipath TCP tests. This can be explained by the underlying kernel
implementation that changes some of the network settings in the operating system
to make sure that offloading happens in the CPU and not on the NIC. More info on
how to turn this function off can be found in [3]

4.2.6 Software

In this section the software used in the tests will be described and also the tools used
to analyze the data captured in the results.

0O Uk W

4.2. Test prerequisites 43

Wireshark

Wireshark is an open tool piece of software that is used to analyze e.g. network
packets. The tool is cross platform and is similar to the tool called tcpdump. However
Wireshark has a GUI, which makes it easy to use and customize, where tools as
tcpdump, which is command line based, take more knowledge to master.

Wireshark is an essential tool in order to capture the raw packets from the tests. The
information recorded in wireshark will be used to follow the TCP streams created
by the Multipath TCP kernel and to extract information used in the analysis of the
tests. Wireshark will be used to capture traffic at both endpoints, namely the at the
server and at the client.

Capinfos

Capinfos is a small commandline interface that is supplied along side wireshark and
it will be used to generate the statistics of average bit rate and average packet sizes
[7].

iperf3

For performing all tests iperf3 [23] will be used to generate the traffic. In this section
the different options used in iperf3 will be listed and described.

Iperf3 is a network testing tool that can create TCP and UDP data streams. These
are used to measure the throughput of the network on which the traffic is running.
The program is written in C.

Server or client:

—p, —port # server port to listen on/'connect to

Server specific:

—s, —server run in server mode

Client specific:

—c, —client <host> run in client mode, connecting to <host>

—b, —bandwidth #[KMG][/#] target bandwidth in bits/sec (0 for unlimited)

(default 1 Mbit/sec for UDP, unlimited for TCP)
(optional slash and packet count for burst mode)

—t, —time # time in seconds to transmit for (default 10 secs)
—w, —window #[KMG] TCP window size (socket buffer size)
—1, —len #[KMG] length of buffer to read or write

—N, —nodelay set TCP no delay, disabling Nagle's Algorithm

Chapter 5

Tests

In this chapter all the test results for each of the tests will be described and all the
relevant graphs that has been produced will be added.

5.1 Goals

By conducting all of these tests there are some results that have more importance,
for this project, than others. The results that are especially interesting are:

e How does regular TCP compare to Multipath TCP in terms of goodput and
jitter?

e When using Multipath TCP how does two homogeneous paths compare to
heterogeneous in terms of goodput and jitter?

In order to be able to say something about how one test compares to another all
the individual test will be analyzed and explained in the sections respectively. The
analysis will reflect upon:

e Throughput of all paths

e RTT of all paths

e Goodput of all paths

e Jitter of all paths

45

46 Chapter 5. Tests

5.2 Test setup

In all the tests carried out the traffic direction is only running from the server to
the client. The only traffic flowing from the client to the server is the ACKs and
the background traffic as explained in subsubsection 4.2.4. When running the tests,
the bandwidth limit added on the gateway, will work in both directions and instead
of using a setup of a downstream of 2048 Kbps and an upstream of 512 Kbps the
effectively setup will be, that the gateway throttles the connection in both directions.
So this give a bandwidth limit of 2048 Kbps downstream from the gateway to the
client and a 2048 Kbps upstream from the client to the gateway.

Y ey ™
-~ -~

—ch
=/ \({R)

Figure 5.1: This figure shows the scenario overview.

Figure 5.1 shows the general principles of the scenario as observed at the farmer. For
explaining how the tests was run Figure 5.1 will be split into 3 parts. These parts
will be described and explained in the next paragraphs.

To help explain Figure 5.6, Figure 5.4 and Figure 5.59:

e Server: The server is connected to the internet by a walled ethernet plug at
Aalborg University.

5.2. Test setup 47

e Gateway: The gateway is connected to the internet by walled ethernet (eth0)
and is used to throttle and share the incoming network connection to two other
network interfaces (ethl and eth2).

— Delay: A 40 ms delay has been added on the outgoing traffic of ethO.
This way the ACKs from the Client are delayed 40 ms.

— Queue: On the figures the Queue is the queue type e.g. token bucket
filter, the latency is how long the packets can maximum wait for a token
before they are dropped, the burst is the maximum size of the token bucket

queue.
e Client: The client is connected to the gateway by ethernet cables.

e Connections: If no number is added on the connections they are not limited
and where there is a number added it is to illustrate what the bandwidth limit
is set to. If a number is added the bandwidth limit is done in both downstream

and upstream direction.

In Figure 5.6 the setup is done using a single regular TCP connection from the
server to the client. In this setup the gateway will be used to throttle the network
connection, from the gateway to the client. The gateway will have a token bucket
filter queue, where the maximum total size of the tokens cannot exceed 2000 bytes.
The packets can wait for up to 100 ms for a token and after this they will be dropped.

192.28.55.81 172.26.24.116 10.42.0.52
3 rd 3
etho 2Mbps

Server © Gateway mesmmebm—— Client

Seeng seeny 0 eth1 so0alp
L e— *%00y = Queue:TBF |%004q —

Delay: 4oms * Latency: 100ms
Burst: 2 Kb

Figure 5.2: This figure shows how the test setup for regular TCP is done.

In Figure 5.59 the setup is done by using two multipath TCP connections consisting
of emulated DSL connections, that goes from the server to the client through the
gateway. As seen on Figure 5.59it is the same queue type, that was used for the
regular TCP.

48 Chapter 5. Tests

Queune: TBF
Latency: 100ms
192.38.55.81 172.26.24.110 Burst:2Kb 10.42.0.52

[— 5 [
| ho e |
Server Gateway * ey, | Client ©
I ety — Mppetites =

LX)
fteyy — tey — fteyy —

Delay: oms ~ Queue: TBF 3
Latency: 100md 0-42.1.14
Burst: 2 Kb

Figure 5.3: This figure shows how the test setup for MPTCP with two DSL connections is done.

In Figure 5.4 the setup is done using a single multipath TCP connection consisting
of an emulated DSL connection and a real 4G connection using the TDC network.
The queue implemented at the gateway, for the emulated DSL connection, is the
same as used in the setup of the regular TCP and the multipath TCP scenario with

two emulated DSL connections.

Queue: TBF
Latency: 100ms
192.38.55.81 Burst: 2 Kb 10.42.0.52
= D | o e =
Server o T Y0y Gateway 9 et Client o
- *eseg 9 ssse e B

e . — .
I Tegy —

SO —
\ 172.26.24.116 .
192.168.137.2
\ ' 45
=)

80.62.116.91

Figure 5.4: This figure shows how the test setup for MPTCP with one DSL connection and one

4G connection is done.

General purpose

In order to be able to determine the throughput when using regular TCP or Multipath
TCP the general purpose test will be performed. It will have two different bandwidth
limitations configured namely a bandwidth limit of 3 Mbps and a bandwidth limit of
5 Mbps. When testing the regular TCP a 3 Mbps bandwidth will be used in iperf3,
in order to not push too much traffic through the queue on the gateway. For the
Multipath TCP tests two different limits will be used, namely 3 Mbps and 5 Mbps.
The 3 Mbps limit is used to determine how the Multipath TCP performs, when the
bandwidth of the generated traffic is below the available bandwidth of the combined

5.2. Test setup 49

subflows. The 5 Mbps limit is used to examine how the Multipath TCP performs,
when the bandwidth of the generated traffic is higher, than the available bandwidth
of the combined subflows.

Interactive streaming

In order to be able to determine the performance of the network connection, when
using it for interactive streaming purposes it is important to define what characterizes
a good network connection for interactive streaming purposes. In order to be able
to have an interactive streaming conversation the first thing to look at will be the
audio stream or Voice-over-IP as it is also called. The minimum requirements for a

VoIP conversation is that:

e One way delay can be no more than 150 ms including processing delay, re-
assembly of packets etc [11].

e The variance in jitter should be below 100 ms. This is because the jitter buffers,
which are used to compensate for varying delay, are only effective when the
jitter is below 100 ms [11].

In order to calculate the jitter a few assumptions is made:

e 1: Since the maximum one-way delay can be 150 ms we assume that when all
processing through the layers are done 100 ms - 125 ms is left for the network

delay.

e 2: Since only the ACK RTT times are available we assume that the delay is
the same in both directions so the ACK RTT time will be divided by 2 to get
the one way delay.

In Figure 5.5 it is shown how the ACK RTT values are obtained at the server. Each
of these ACK RTTs will be used to calculate the jitter. So the definition of jitter for
these tests will be:

RTT(i+1) RTT(i)

Jitter =
itter > 5

(5.1)

50 Chapter 5. Tests

Jitter A 1 A 2

Server

el
ACk
el
Acg
e
«"{Q]‘,

Client

Time

Figure 5.5: This figure shows the Delta used to estimate the jitter.

Since the data is extracted from wireshark in order to calculate the jitter, these
ACK RTT times is per flow. So when calculating the jitter in the MPTCP tests it is
calculated per path and not when the TCP stream is reassembled. It would be better
to do an analysis of the jitter when the TCP stream has been reassembled because
this is comparable to a regular TCP connection. However since this information is
not accessible through wireshark the numbers for each path will be used.

5.3 Test description

In this chapter all the different test descriptions will be explained. The tests will be
numbered with A1.1, A1.2, A2.1 and so on and so fort. A tests will be for regular
TCP, B tests will be for Multipath TCP with homogeneous paths and C tests will
be for Multipath TCP with heterogeneous paths.

5.3.1 iperf3 server setup

Setup of the server will be done in the same way for all tests. It will use 4 in-
stances of iperf3 running on 4 different ports. This is done because the total amount
of connections needed when testing general purpose and interactive streaming plus
background traffic running in both directions, it will require 4 active connections and
since iperf3 only handles one connection per port, 4 instances are needed.

The server will setup iperf3 by running the following commands in a terminal.

1| $ iperf3 —s —p 60020
2| $ iperf3 —s —p 60021
3|$ iperf3 —s —p 60021

5.3. Test description ol

4|$ iperf3 —s —p 60021

All tests will be run for 60 seconds unless another time period is specified. The tests
will be split up in to three categories. These categories will be:

e Test A - Regular TCP: This category will perform tests using a single
regular TCP connection.

e Test B - MPTCP DSL + DSL: This category will perform tests using two
homogeneous paths namely two emulated DSL connections.

e Test C - MPTCP DSL + 4G: This category will perform tests using two
heterogeneous paths namely one emulated DSL connection and a 4G connection
using the TDC network.

A total of 3 tests will be performed for the regular TCP scenario and these are:

e General purpose without background traffic and a 3 Mbps limit in iperf3.
e Interactive streaming without background traffic.

e Interactive streaming with background traffic.

A total of 4 tests will be performed for the MPTCP scenarios and these are:

e General purpose without background traffic and a 3 Mbps limit in iperf3.
e General purpose without background traffic and a 5 Mbps limit in iperf3.
e Interactive streaming without background traffic.

e Interactive streaming with background traffic.

The purpose of the general purpose tests will be to determine the bandwidth so in
this case two different bandwidth limits will be used in iperf3.

The purpose of the interactive streaming is to determine whether or not the current
network connection is suited for running interactive streaming traffic. This is deter-
mined by looking at the jitter.

Only the tests with interactive streaming traffic will be run also with background
traffic. This is to determine if the interactive streaming traffic is sensitive to back-
ground traffic when using regular TCP and also when using MPTCP.

52 Chapter 5. Tests

5.3.2 Regular TCP tests

In this test the regular TCP test descriptions will be given.

Test A1l.1 - General purpose with a 3 Mbps limit

For the general purpose test a terminal is launched on the client and the following
command is issued:

1| iperf3 —c 192.38.55.81 —p 60020 —b 3M —| 64k —w 128k —N

The results of iperf3 will be saved in a text document and the traffic will be captured
with wireshark and saved in a dump file for later analysis.

Test A2.1 - Interactive streaming without background traffic

For the interactive streaming test a terminal is launched on the client and the fol-
lowing command is issued:

1| iperf3 —c 192.38.55.81 —p 60020 —b IM —I| 8k —w 256k —N

The results of iperf3 will be saved in a text document and the traffic will be captured
with wireshark and saved in a dump file for later analysis.

Test A2.2 - Interactive streaming with background traffic

For the interactive streaming test a terminal is launched on the client and the fol-
lowing command is issued:

1| iperf3 —c 192.38.55.81 —p 60020 —b 1M —I 8k —w 256k —N

The results of iperf3 will be saved in a text document and the traffic will be captured
with wireshark and saved in a dump file for later analysis.

5.3. Test description 53

The background traffic is generated by launching two terminals on the client and
issuing the following commands:

Downstream:

1| iperf3 —c 192.38.55.81 —p 60022 —R —b 0.5M/20 —I 64k —w 128k —N

Upstream:

1‘ iperf3 —c 192.38.55.81 —p 60022 —R —b 0.5M/20 —I| 64k —w 128k —N

5.3.3 Multipath TCP tests - homogeneous paths

In this section the Multipath TCP test descriptions will be given.

Test B1.1 - General purpose with a 3 Mbps limit

For the general purpose test a terminal is launched on the client and the following

command is issued:

1| iperf3 —c 192.38.55.81 —p 60020 —b 3M —I| 64k —w 128k —N

The results of iperf3 will be saved in a text document and the traffic will be captured
with wireshark and saved in a dump file for later analysis.

Test B1.2 - General purpose with a 5 Mbps limit

For the general purpose test a terminal is launched on the client and the following

command is issued:

1| iperf3 —c 192.38.55.81 —p 60020 —b 5M —1I 64k —w 128k —N

The results of iperf3 will be saved in a text document and the traffic will be captured
with wireshark and saved in a dump file for later analysis.

54 Chapter 5. Tests

Test B2.1 - Interactive streaming without background traffic

For the interactive streaming test a terminal is launched on the client and the fol-

lowing command is issued:

1| iperf3 —c 192.38.55.81 —p 60020 —b 1M —I 8k —w 256k —N

The results of iperf3 will be saved in a text document and the traffic will be captured
with wireshark and saved in a dump file for later analysis.

Test B2.2 - Interactive streaming with background traffic

For the interactive streaming test a terminal is launched on the client and the fol-
lowing command is issued:

1| iperf3 —c 192.38.55.81 —p 60020 —b IM —I 8k —w 256k —N

The results of iperf3 will be saved in a text document and the traffic will be captured
with wireshark and saved in a dump file for later analysis.

The background traffic is generated by launching two terminals on the client and
issuing the following commands: Downstream:

1| iperf3 —c 192.38.55.81 —p 60022 —R —b 0.5M/20 —I 64k —w 128k —N

Upstream:

1| iperf3 —c 192.38.55.81 —p 60022 —R —b 0.5M/20 —I 64k —w 128k —N

5.3.4 Multipath TCP tests - heterogeneous paths

The same tests as for the homogeneous paths will be performed. These will be named
Cl.1, C1.2, C2.1 and C2.2.

5.4. Regular TCP 99

5.4 Regular TCP

In this section the results of a total of 3 tests will be shown. It will include different
results such as the average bandwidth as reported by wireshark, the throughput
graphs for regular TCP extracted by wireshark as well as the ACK RTT graphs from

wireshark.

In Figure 5.6 the setup used in the regular TCP test is shown. The traffic flows from
the server in the direction of the client. The gateway creates a throttled connection
to the client where the downstream from gateway to the client is 2048 Kbps and the
upstream from the client to the gateway is 2048 Kbps.

192.38.55.81 172.26.24.116 10.42.0.52
3 rd 3
etho 2Mbps

Server © Gateway b Clicnit (8

Sseng eney 2 eth1 eee
‘reg gy — *909y =l Queue:TBF |[%veqq —

Delay: 4oms 4 éﬂteftlcff‘llzgoms
urst: 2

Figure 5.6: This figure shows how the test setup for regular TCP is done.

5.4.1 Test Al.1 - General purpose (3 Mbps limit) no background
traffic

In this test it is expected that the throughput will show no more than a bandwidth
of 2 Mbps, since the connection used is a throttled DSL connection with a limit of
2 Mbps. The test will be conducted with a limit in iperf3 of 3 Mbps and this is not
to send excessive traffic through the gateway.

Throughput graph

As seen in Figure 5.7 the throughput is slightly above 2 Mbps, which is not what
was expected from the test and it also corresponds to the average statistics made by
capinfos as seen in Listing 5.1. If we take a look at the paragraph 4.2.4 it states that
the recommended bandwidth of the Internet connection used for Netflix should be
at least 1.5 Mbps and when running this test it has shown a goodput of 1.96Mbps.
This should be sufficient for watching streaming videos form Netflix but the quality

56 Chapter 5. Tests

will also be poor.

Wireshark I0 Graphs: regularTCP_general_noBG_3mbit

2.1°106 |\ a 7\ o A A -
N~ NNAAN - /N A\ AN\ N /\

2106 | |

191106 |- [‘

Bits/s

1.8106 i
1.7:106 | i

|
1.6°106 - ‘

15106 |- b

I
0 10 20 30 40 50 60
Time (s)

Figure 5.7: Graph of the throughput when running general purpose with a 3 Mbps limit without
background traffic

RTT graph

The RTT graph for this test shows, that even though the setup of the gateway has
a burst rate of 2 kB and a max wait time for tokens on 100 ms, the RTTs still show
somewhat of a queuing tendency. This is displayed in the RTT graph as the packet
jumps up and down in RTTs.

Round Trip Time for 192.38.55.81:60020 — 172.26.24.116:46307

regularTCP_general_noBG_3mbit.pcapng

210 -
175
140 -

105 [

Round Trip Time (ms)

L=y

w
‘
-y
=
Wy
—p

F}r iy

I I I I I
0 2500000 5000000 7500000 10000000 12500000
Sequence Number (B)

Figure 5.8: Graph of the RTT of the TCP stream as reported by wireshark.

5.4. Regular TCP 57

Capinfo
1| Number of packets: 11 k
2| Data byte rate: 258 kBps
3| Data bit rate: 2071 kbps

Listing 5.1: Capinfo for regular TCP general purpose 3 Mbps limit no background traffic.

Retransmissions

Listing 5.2: Retransmissions as reported by wireshark

Bandwidth from iperf3

As seen in Listing 5.3 the goodput of the test is 1.96 Mbps at the receiver end and
if we convert the average throughput as seen in Listing 5.1 we get 2.022 Mbit/sec
which is very plausible. The difference between the throughput and the goodput
should be the overhead used by the TCP.

1| [ID] Interval Transfer Bandwidth Retr
2| [4] 0.00—-60.00 sec 14.1 MBytes 1.97 Mbits/sec 86 sender
3 [4] 0.00—60.00 sec 14.0 MBytes 1.96 Mbits/sec receiver

Listing 5.3: iperf3 bandwidth for regular TCP general purpose 3 Mbps limit no background traffic.

So this test shows that when using only one regular TCP connection, that has a
downstream bandwidth of 2 Mbps, then the goodput is around 1.96 Mbps. This
is sufficient for using e.g. Netflix for streaming videos. It is however the lowest
recommended bandwidth required by Netflix as stated in paragraph 4.2.4.

58 Chapter 5. Tests

5.4.2 Test A2.1 - Interactive streaming (1 Mbps limit) no back-
ground traffic

This test is trying to replicate an interactive streaming session on a single regular
TCP path. This test is therefore limited to 1 Mbps in iperf3 and this is because we
want to catch the behavior of the interactive streaming scenario more than we want
to maximize the throughput of the network connection. That is what the general
purpose tests is designed for. We want to be able to show, that if the single path
TCP has enough capacity, what is the jitter of the network connection and will the
connection be suited for interactive streaming conversations.

The expected outcome of the test is that the bandwidth will be around 1 Mbps and
that the jitter should be low enough to support an interactive streaming conversation
as explained in subsubsection 5.2.

Throughput graph

As seen in Figure 5.9 the throughput for this test is very close to 1 Mbps. This is
the expected outcome and even though it fluctuates the goodput should be 1 Mbps.
The fluctuation of the graph may be a result of the way iperf3 limits the bandwidth.

Wireshark I0 Graphs: regularTCP_interactive_noBG

1.1°106 [
1106 |-
900000 |-

800000 -

Bits/s

700000 [~

600000 -

500000 [-

400000

I I I I I I I
0 10 20 30 40 50 60
Time (s)

Figure 5.9: Graph of the throughput when running interactive streaming with a 1 Mbps limit
without background traffic.

5.4. Regular TCP 59

RTT graph

As seen in Figure 5.11 the RTTs show a very fluctuating pattern that can be explained
by the queue in the gateway. The RTTs show a sign of queuing discipline since the
queue is a token bucket filter the rate of the traffic through it, will depend on the rate
that the tokens arrive. The RTT graph shows the same tendency through the entire
duration of the test, which aligns with the fact that the traffic is passing through the
queue in an even fashion.

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:55648
egularTCP_interactive_noBG.pcapng

ind Trip Time (ms)
© S

|
75 || | ”
I

I
60 “

Figure 5.10: Graph of the RTT of the TCP stream as reported by wireshark.

60 Chapter 5. Tests

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:55648
regularTCP_interactive_noBG.pcapng
135

120

105 ’

Round Trip Time (ms)

45*“““ l«

I I I
0 100000 200000 300000 400000 500000 600000
Sequence Number (B)

Figure 5.11: Graph of the RTT of the TCP stream as reported by wireshark. This is zoomed to
show the queuing tendency better.

Capinfo
1| Number of packets: 5579
2| Data byte rate: 130 kBps
3| Data bit rate: 1040 kbps
Listing 5.4: Capinfo for regular TCP general purpose 3 Mbps limit no background traffic.
Retransmissions
i)

Listing 5.5: Retransmissions as reported by wireshark

Bandwidth from iperf3

As seen in Listing 5.6 the reported goodput is exactly 1 Mbps, which is the expected
goodput. iperf3 has reported two retransmissions and by looking at Figure 5.11 there
are two spikes in the beginning of the test that could be these 2 retransmissions.

1| [ID] Interval Transfer Bandwidth Retr
2| [4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec 2 sender
3| [4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec receiver

Listing 5.6: iperf3 bandwidth for regular TCP general purpose 3 Mbps limit no background traffic.

5.4. Regular TCP 61

Jitter

To calculate the jitter, the one way delay will be used by dividing all the values in
the RTT distribution by 2. This will be an estimate because we assume that the
delay is equal in both directions.

The one way delay will be:

delay = g (5.2)

The mean and variance of the one way delay is:

mean(delay) = 29.3901 ms
var(delay) = 39.9737 ms

One way delay plot regular TCP

B P al
o o o

w
o

Miliseconds
= = N N w
o u o o o

o

o

.
0 10 20 30 40 50 60
Seconds

Figure 5.12: This is a plot of the one way delay.

62

Chapter 5. Tests

One way delay histogram regular TCP
1000 - y y g g

800 [

600 [

500 [

Counts

300 [

200 [

0 I I I
0 5 10 15 20 25 30 35 40 45 50

Miliseconds

Figure 5.13: This is a histogram of the one way delay.

Jitter histogram regular TCP

Counts

-40 -30 -20 -10 0 10 20 30
Miliseconds

Figure 5.14: This is a histogram of the jitter.

5.4. Regular TCP

Figure 5.15: This is a histogram of the absolute values in the jitter.

Counts

1000 Jitter histogram absolute values regular TCP

900

800

600
500
400
300
200

100
0 —_ . .)
0 5 10 15 20 25 30 35 40
Miliseconds

The mean and variance of the jitter is:

mean(jitter) = 6.5598 ms
var(jitter) = 22.1216 ms

63

In Figure 5.14 we see that there are quite a few samples with negative jitter but since

the mean and the variance of the jitter are relatively small this will only have a small

impact on a interactive streaming conversation. The variance of the jitter does not

exceed 100 ms and the one way delay never exceeds 50 ms. So when using this setup

for a regular TCP connection, it would be possible to use it for interactive streaming

purposes as long as the connection has enough bandwidth.

64 Chapter 5. Tests

5.4.3 Test A2.2 - Interactive streaming (1 Mbps limit) with back-
ground traffic

This test is almost the same as test A2.1 but with added background traffic. This
is to test if the interactive streaming setup is sensitive to background traffic in the
sense of the jitter. The expected outcome is that the goodput will still be 1 Mbps as
in the previous test, but the throughput graph should reflect that the data stream
gets more fragmented in the presence of background traffic.

Throughput graph

Figure 5.16 shows that the throughput of the test is still around 1 Mbps but now
the tendency of the graph is much more uneven. The graph shows that the through-
put now fluctuates a lot more than in Test A2.1. This must be due to the added
background traffic.

Wireshark I0 Graphs: regularTCP_interactive_BG

1.2106 [
11106 [

1106 |-
900000 [{

800000 [~

Bits/s

700000 -

600000 -

500000 [~

400000 -

I I I I I I
0 10 20 30 40 50 60
Time (s)

Figure 5.16: Graph of the throughput when running interactive streaming with a 1 Mbps limit
with background traffic.

RTT graph

Figure 5.17 shows that the RTTs of the data stream now is more uneven that in the
test with no background traffic. It has a lot more spikes than in Test A2.1 but the
base tendency of the graph is still that the RTTs jump from around 40 ms to around
85 ms. If we look at Listing 5.9 iperf3 reports 71 retransmissions. This corresponds
to the spikes in the RTT graph so the conclusion here is that when there are large

5.4. Regular TCP 65

spikes in the RTT graph it is due to reaching the maximum delay since the queue is
being filled and this causes packets to be subjected to the maximum latency when

traversing through the queue.

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:55660

regularTCP_interactive_BG. pcapng

210 -

180 [~

Round Trip Time (ms)

| I | " . h N
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Sequence Number (B)

==

Figure 5.17: Graph of the RTT of the TCP stream as reported by wireshark.

Capinfo
1| Number of packets: 6567
2| Data byte rate: 132 kBps
3| Data bit rate: 1061 kbps

Listing 5.7: Capinfo for regular TCP general purpose 3 Mbps limit no background traffic.

Retransmissions

1[50

Listing 5.8: Retransmissions as reported by wireshark

Bandwidth from iperf3

Listing 5.9 shows a goodput of 1000 Kbps, which is very close to 1 Mbps. Even with
the added background traffic the 2 Mbps network connection is still able to handle
all the traffic, so the goodput for the interactive streaming is virtually unchanged
compared to the test without background traffic.

W N =

66 Chapter 5. Tests

[ID] Interval Transfer Bandwidth Retr
[4] 0.00—60.00 sec 7.16 MBytes 1.00 Mbits/sec 71 sender
[4] 0.00—60.00 sec 7.15 MBytes 1000 Kbits/sec receiver

Listing 5.9: iperf3 bandwidth for regular TCP general purpose 3 Mbps limit no background traffic.

Jitter

To calculate the jitter, the one way delay will be used by dividing all the values in
the RTT distribution by 2. This will be an estimate because we assume that the
delay is equal in both directions.

The one way delay will be:

delay = LZT (5.7)

The mean and variance of the one way delay is:

mean(delay) = 30.4546 ms
var(delay) = 75.3203 ms

120 One way delay plot regular TCP

100 -
80

60 [

Miliseconds

40

20

0 . . .
0 10 20 30 40 50 60

Seconds

Figure 5.18: This is a plot of the one way delay.

5.4. Regular TCP

One way delay histogram regular TCP

0 20 40 60 80 100 120
Miliseconds

Figure 5.19: This is a histogram of the one way delay.

Jitter histogram regular TCP
1000

900
800
700
600

500

Counts

400

300

-80 -60 -40 -20 0 20 40 60 80
Miliseconds

Figure 5.20: This is a histogram of the jitter.

68 Chapter 5. Tests

1200 Jitter histogram absolute values regular TCP

1000
800

600

Counts

400

200

. . .)
0 10 20 30 40 50 60 70 80
Miliseconds

Figure 5.21: This is a histogram of the absolute values in the jitter..

The mean and variance of the jitter is:

mean(jitter) = 5.1953 ms (5.10)
var(jitter) = 58.3802 ms (5.11)

By adding background traffic to the interactive streaming traffic, it shows that in
the throughput graph, it becomes much more unstable over the duration of the test.
There are a lot more fluctuations than in Test A2.1, where there was no background
traffic. In Figure 5.20 we see that the jitter is mostly positive and it has a mean of
approximately 5 ms so the mean jitter is actually a bit lower than in the previous
test. In Figure 5.18 we see that there are 8 samples which exceed 100 ms. Since we
established earlier that, when the one way delay is between 100 ms and 125 ms it
starts to become problematic, to have an interactive streaming conversation, since
the voice stream will begin to show signs of stutter. In this case since the samples
does not occur in a back-to-back form it will only have a little, but noticeable impact
on a voice stream. The variance of the jitter when running with background traffic
is almost triple of what it was when having no background traffic. So in conclusion
the network connection can still be used for interactive streaming purposes as long
as there is sufficient bandwidth and that the background traffic is not more intense
than used in this test, however the variance of the jitter is sufficiently large to cause
some problems e.g. stutter in the audio.

5.5. MPTCP homogeneous paths 69

5.5 MPTCP homogeneous paths

In this section the results of a total of 3 tests will be shown. It will include different
results such as the average bandwidth as reported by wireshark, the throughput
graphs for Multipath TCP extracted by wireshark as well as the ACK RTT graphs
from wireshark.

In Figure 5.59 the setup used in the Multipath TCP DSL+DSL test is shown. The
traffic flows from the server in the direction of the client. The gateway creates two
throttled connections to the client where the downstream, on each connection, from
gateway to the client is 2048 Kbps, and the upstream from the client to the gateway
is 2048 Kbps.

Queue: TBF
Latency: 10o0ms
192.38.55.81 172.26.24.116 Burst:2Kb 10.42.0.52
L L4 S [
= etho o 2‘1\1‘0 L =
e -
Server @ Gateway ° eth Client ©
e = Nt =] i =
wil— e = Ds ey =5
Delay: goms " Queue: TBF)
Latency: 100md0.42.1.14
Burst: 2 Kb

Figure 5.22: This figure shows how the test setup for Multipath TCP with 2 DSL connections is
done.

5.5.1 Test B1.1 - MPTCP DSL+DSL general purpose 3 Mbps limit
without background traffic

In this test the Multipath TCP will be used with homogeneous paths namely two
throttled DSL connections. The general purpose will be limited to 3 Mbps in iperf3.
The expected outcome is that with the default scheduler in the MPTCP the traffic
should be split almost evenly between the two subflows, since the default scheduler
uses the subflow with the lowest RTT first. It should show that the throughput
should be around 3 Mbps and the RTT graphs on each subflow should be somewhat

similar.

70 Chapter 5. Tests

Throughput graphs

If we look at Figure 5.23, where the blue line is flow 1 and the green line is flow 2, we
see that both flows have almost the same behavior and they are both slightly above
1.5 Mbps. The reason why they are slightly above 1.5 Mpbs is probably because of
the added overhead that comes with Multipath TCP.

Wireshark IO Graphs: MPTCP_DSLDSL_general_noBG_3mbit
1.8:106 -
1.6°106 |-

1.4106 |-

1.2106 [~

Bits/s

1°106 -

800000

600000

I I I I I I I
0 10 20 30 40 50 60
Time (s)

Figure 5.23: Graph of the throughput for general purpose with a 3 Mbps limit when running a
MPTCP setup with 2 DSL connections. Blue is flow1, green is flow 2.

RTT graph

If we look at Figure 5.24 and Figure 5.25 we see almost two identical graphs, which
was what we expected. The traffic is split almost even between the two subflows,
and this will cause the RTT graphs to resemble each other. Now in both the graphs
we see a lot of spikes that are as high as what we observed in Test A2.1 and Test
A2.2. While the spikes in these two tests was caused by retransmissions and the
queue being filled because of this, the spikes in Figure 5.24 and Figure 5.25 are not
cause by this. This is confirmed by looking at Listing 5.14, where iperf3 does not
report any retransmissions. The spikes in Figure 5.24 and Figure 5.25 can still be
caused by the queue and it might also be because of the TSO settings in Linux or a
combination of both.

5.5. MPTCP homogeneous paths

Round Trip Time for 192.38.55.81:60020 — 172.26.24.116:33488

MPTCP_DSLDSL_general_noBG_3mbit.pcapng

160
140 -
120
g
3
&
= 100
=
5
s
I
8ol |
IR
i 'y
Wil e 1
eor JH|‘ i [t it U
i
ol

IIl‘llm, I ||'1\‘ |

] ullh \|

e i
| lllui\!luhll Ilplllln.

]\]mhl\ Ji gl w"”\ullh o P l'||| '\lh

le

“‘ |H \ ||! |
Iyl ||'! | il |Il I

\lul\l\ i A “nu I||"‘||||M‘I”\q|l\h|”n il 'Mn .'H“i.’ -I“hul‘\l\\l\\ﬂ il “\I"!“!""“
“”‘".l‘ U ‘u“‘;.“w‘ i iyl ' I‘nln’unh gy gl LK ||\|‘|“““i

[
e
|
[|||| \hw

i

il ||ii It

iy lei Iy g Iy by I[ity [“h'dtl!umwl\u\l\‘n. ‘”‘v‘u iy

0 1500000

3000000

4500000 6000000

Sequence Number (B)

7500000

9000000

10500000

71

Figure 5.24: Graph of the RTT of the TCP stream for general purpose with a 3 Mbps limit as
reported by wireshark. This is for flow 1.

Round Trip Time for 192.38.55.81:60020 — 172.26.24.116:38414

MPTCP_DSLDSL_general_noBG_3mbit.pcapng

1

I I’I\ln i

b

i Il ||IH ,
|\II\|I|Iw||||\' I \lml' k

i

160
140 -
120 -
€
g
&
2 100 -
g
2
3
]
80 | I ‘
' I | \
I Il 1l I
ol ll \H i i |||| i | 1] 11 ||| |\| 1N 1l
ill il | 1 \i‘ 1 T T < [| |1||||lm| 1 gl w||\ o Al
T l‘l\iv hh i l\ 1 Iw;‘ il g 0 0 ARl il il Jly \I| Al IW|| i qu il Silbh
T 'le‘hiu.;'mlu it g g ol T ot e b g g g g g o gl U
400y
0 1500000 3000000 4500000 6000000 7500000

Sequence Number (B)

9000000

10500000

Figure 5.25: Graph of the RTT of the TCP stream for general purpose with a 3 Mbps limit as
reported by wireshark. This is for flow 2.

Capinfo
1| Number of packets: 15 k
2| Data byte rate: 208 kBps
3| Data bit rate: 1664 kbps

W N =

72

L

Chapter 5. Tests

1

Listing 5.10: Capinfo for MPTCP DSL+DSL general purpose 3 Mbps limit with no background
traffic. This is for flow 1.

Number of packets:
Data byte rate:
Data bit rate:

15 k
208 kBps
1669 kbps

Listing 5.11: Capinfo for MPTCP DSL+DSL general purpose 3 Mbps limit with no background
traffic. This is for flow 2.

Retransmissions

[|

Listing 5.12: Retransmissions as reported by wireshark. This is for flow 1.

[|

Listing 5.13: Retransmissions as reported by wireshark. This is for flow 2.

Bandwidth from iperf3

If we take a look at Listing 5.14 we see that the goodput of the test is 3 Mbps,
which was the limit used in iperf3. So the Multipath TCP is capable of aggregating
the traffic on both of the subflows to achieve a higher throughput than when only
using one path. In Listing 5.10 and Listing 5.11 we see that there are only 5 Kbps
difference on the throughput on the two subflows, which is also what we expected.

N =

[ID] Interval Transfer Bandwidth Retr
[4] 0.00—-60.00 sec 21.5 MBytes 3.00 Mbits/sec 0 sender
[4] 0.00—-60.00 sec 21.5 MBytes 3.00 Mbits/sec receiver

w

Listing 5.14: iperf3 bandwidth for MPTCP general purpose 3 Mbps limit no background traffic.

5.5. MPTCP homogeneous paths 73

5.5.2 Test B1.2 - MPTCP DSL+DSL general purpose 5 Mbps limit
without background traffic

In this test iperf3 will be set to a limit of 5 Mbps, which will then generate more
traffic than the two combined subflows is able to handle. The expected outcome is
that the traffic will still be almost evenly distributed on the two subflows, given that
the RTTs of both subflows are identical. The goodput of the test should be very
close to 4 Mbps, but it is also expected that some retransmissions might occur, since
the queue on the gateway is relatively small. The RTT graphs should be almost
identical on both of the subflows, given that the traffic is expected to be distributed
evenly on the two subflows.

Throughput graphs

If we look at Figure 5.26, where flow 1 is the blue line and flow 2 is the green line,
we see that the flows are almost on top of each other, and despite some fluctuations
the throughput looks more or less identical, which is because the setup is using
homogeneous paths.

Wireshark I0 Graphs: MPTCP_DSLDSL_general_noBG_5mbit

22106

2106

1.8°106 [

1.6°106

Bits/s

1.4-106

1.2'106 [~

1106 -

800000

I I I I I I
0 10 20 30 40 50 60
Time (s)

Figure 5.26: Graph of the throughput for general purpose with a 5Mbps limit when running a
MPTCP setup with 2 DSL connections. Blue is flow1, green is flow 2.

RTT graph

Looking at Figure 5.27 and Figure 5.28 shows the same behavior as with the through-
put. The two graphs have clear indications that a queue is present at the gateway.

74 Chapter 5. Tests

The spikes that occur from 40 ms to 80 ms on the RTT graphs are the packets moving
through the queue, where the large spikes is delayed acks. There are retransmissions
on both flows and this causes the tendency, where the queue is handling even more
packets due to the retransmissions of the ones that was dropped.

Round Trip Time for 192.38.55.81:60020 — 172.26.24.116:33490

MPTCP_DSLDSL_general_noBG_5mbit.pcapng

140

I}
S
T

Round Trip Time (ms)
5
3
T

0 2000000 4000000 6000000 8000000 10000000 12000000 14000000
Sequence Number (B)

Figure 5.27: Graph of the RTT of the TCP stream for general purpose with a 5 Mbps limit as
reported by wireshark. This is for flow 1.

Round Trip Time for 192.38.55.81:60020 — 172.26.24.116:43660

MPTCP_DSLDSL_general_noBG_5mbit.pcapng

140

100

Round Trip Time (ms)

1 S S K [8
o O O P o R R
01404 01,07 2

I [k L I
Mol Il oI ‘

O g R Ry
idh @ aREs @p @b A @h g AR 0 Rl ok N R RN
il ol | ol ol R Yl ol I 1] ;“i i‘l I il
TP TP E LT O
{ {1 {] i ¢

h 1 i I I
0 2000000 4000000 6000000 8000000 10000000 12000000 14000000
Sequence Number (B)

Figure 5.28: Graph of the RTT of the TCP stream for general purpose with a 5 Mbps limit as
reported by wireshark. This is for flow 2.

5.5. MPTCP homogeneous paths 75

Capinfo
1| Number of packets: 19 k
2| Data byte rate: 265 kBps
3| Data bit rate: 2123 kbps

Listing 5.15: Capinfo for MPTCP DSL+DSL general purpose 5Mbps limit with no background
traffic. This is for flow 1.

1| Number of packets: 18 k
2| Data byte rate: 264 kBps
3| Data bit rate: 2119 kbps

Listing 5.16: Capinfo for MPTCP DSL+DSL general purpose 5Mbps limit with no background
traffic. This is for flow 2.

Retransmissions

1‘28

Listing 5.17: Retransmissions as reported by wireshark. This is for flow 1.

1‘29

Listing 5.18: Retransmissions as reported by wireshark. This is for flow 2.

Bandwidth from iperf3

The goodput listed in Listing 5.19 is close to 4Mbps as we expected. The difference
from 4 Mbps is 0.16 Mbps, which might be explained by the extra header added by
using the Multipath TCP.

1| [ID] Interval Transfer Bandwidth Retr
2| [4] 0.00—-60.00 sec 27.5 MBytes 3.85 Mbits/sec 0 sender
3 [4] 0.00—60.00 sec 27.4 MBytes 3.84 Mbits/sec receiver

Listing 5.19: iperf3 bandwidth for MPTCP general purpose 5 Mbps limit no background traffic.

In this test we showed that when generating a higher throughput than the combined
subflows can handle, the recorded goodput is very close to 4 Mbps. The traffic is
almost evenly split among the two subflows, which is what we expected since this
setup consists of two subflows with similar characteristics. The test also show that
when using Multipath TCP it is possible to get bandwidth aggregation.

76 Chapter 5. Tests

5.5.3 Test B2.1 - MPTCP DSL+DSL interactive streaming 1 Mbps
limit without background traffic

This test is with the interactive streaming traffic and is to determine what happens
to the jitter, when distributing the traffic on two subflows. The expected outcome
is that the goodput of the test will be 1 Mbps and that it will be split evenly on
the two subflows. The RTT graphs should show similar behavior. The jitter should
not be that affected by the traffic being split on two subflows, since the paths are
homogeneous and has almost identical RTTs.

Throughput graphs

Figure 5.29 shows that the throughput has a larger variance than when running the
general purpose traffic. This effect can be due to the scheduler of the Multipath TCP
and because the RTTs are almost identical, the scheduler distributes the traffic on
either flow 1 or flow 2. Since the RTTs on the two flows change by a few ms all the
time this behavior is to be expected.

Wireshark I0 Graphs: MPTCP_DSLDSL _interactive_noBG

640000

560000

480000 [

Bits/s

400000 -

320000 [~

240000

160000 I I I I | I
0 10 20 30 40 50 60
Time (s)

Figure 5.29: Graph of the throughput for interactive streaming with a 1 Mbps limit when running
a MPTCP setup with 2 DSL connections. Blue is flowl, green is flow 2.

RTT graph

If we look at Figure 5.30 and Figure 5.31 we see that they look almost similar. The
small jumps from 40 ms to 80 ms is still due to the nature of the queue at the gateway.
The large spikes from 40 ms to 280 ms is these delayed ACKs.

5.5. MPTCP homogeneous paths 77

240

200

160

Round Trip Time (ms)

120

80

40

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:54252

MPTCP_DSLDSL _interactive_noBG.pcapng

I | I
0 600000 1200000 1800000 2400000 3000000 3600000
Sequence Number (B)

Figure 5.30: Graph of the RTT of the TCP stream for interactive streaming with a 1 Mbps limit
as reported by wireshark. This is for flow 1.

280

240

200

160

Round Trip Time (ms)

120

80

40

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:37262

MPTCP_DSLDSL _interactive_noBG.pcapng

I I I I
1800000 2400000 3000000 3600000

Sequence Number (B)

L I
0 600000 1200000

Figure 5.31: Graph of the RTT of the TCP stream for interactive streaming with a 1 Mbps limit
as reported by wireshark. This is for flow 2.

Capinfo
1| Number of packets: 5203
2| Data byte rate: 67 kBps
3| Data bit rate: 540 kbps

W N =

1’8

1E

M

L

78 Chapter 5. Tests

1

Listing 5.20: Capinfo for MPTCP DSL+DSL interactive streaming 1 Mbps limit without
background traffic. This is for flow 1.

Number of packets: 5457
Data byte rate: 71 kBps
Data bit rate: 572 kbps

Listing 5.21: Capinfo for MPTCP DSL+DSL interactive streaming 1 Mbps limit without
background traffic. This is for flow 2.

Retransmissions

Listing 5.22: Retransmissions as reported by wireshark. This is for flow 1.

Listing 5.23: Retransmissions as reported by wireshark. This is for flow 2.

Bandwidth from iperf3

Listing 5.24 shows that the goodput of the test is 1 Mbps. This aligns with the fact
that the two subflows have more than 1 Mbps combined. As we saw in the capinfo
statistics the traffic is not evenly distributed but very close to it.

[ID] Interval Transfer Bandwidth Retr
[4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec 0 sender
[4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec receiver

Listing 5.24: iperf3 bandwidth for MPTCP interactive streaming 1 Mbps limit without background
traffic.

Jitter

To calculate the jitter the one way delay will be used by dividing all the values in the
RTT distribution by 2. This will be an estimate because we assume that the delay
is equal in both directions.

The one way delay will be:

delay = RTT (5.12)

5.5. MPTCP homogeneous paths

79

The mean and variance of the one way delay is:

(5.13)
(5.14)

mean(delay) = 28.9289 ms
var(delay) = 39.9714 ms

Figure 5.32: Mean and variance flow 1.

One way delay plot Flow 1

N o -} ~
S =} =} o

Miliseconds
w
o

n
o

=
o

o

40 50 60

o
=
o
N
o
w
o

Seconds

Figure 5.34: One way delay plot flow 1.

One way delay histogram Flow 1

0 10 20 30 40 50 60 70
Miliseconds

Figure 5.36: One way delay histogram flow 1.

(5.15)
(5.16)

mean(delay) = 29.1133 ms
var(delay) = 39.9963 ms

Figure 5.33: Mean and variance flow 2.

One way delay plot Flow 2

”

Figure 5.35: One way delay plot flow 2.

60

N
o

Miliseconds
w
o

20 30 40 50 60
Seconds

One way delay histogram Flow 2

20 30 40 50 60
Miliseconds

0 10

Figure 5.37: One way delay histogram flow 2.

80 Chapter 5. Tests

Jitter histogram Flow 1 Jitter histogram Flow 2
1400 2000
1800 -
1200 -
1600 -
1000 - 1400 -
1200 -
¢ 800F 0
3 5 1000}
S 3
600 800 -
400 - 600
400 [
200 -
200 -
0 0
-50 -40 -30 -20 -10 0 10 20 30 -40 -30 -20 -10 0 10 20 30
Miliseconds Miliseconds
Figure 5.38: Jitter histogram flow 1. Figure 5.39: Jitter histogram flow 2.
Jitter histogram absolute values Flow 1 Jitter histogram absolute values Flow 2
1800 1800
1600 - 1600 -
1400 - 1400 -
1200 - 1200 -
£ 1000 £ 1000
c c
3 =]
o o
O 800 O 800
600 600 -
400 400
200 & 200
0 —1 1 L L S S Il 0 L L Il
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40
Miliseconds Miliseconds
Figure 5.40: Abs jitter histogram flow 1. Figure 5.41: Abs jitter histogram flow 2.

The mean and variance of the jitter is:

mean(jitter) = 5.082 ms (5.17) mean(jitter) = 5.180 ms (5.19)
var(jitter) = 28.535 ms (5.18) var(jitter) = 28.993 ms (5.20)

Figure 5.42: Mean and variance flow 1. Figure 5.43: Mean and variance flow 2.

If we look at both Figure 5.34 and Figure 5.34 we see that the spikes on both flow
1 and flow 2 are lower than compared to Test A2.1, where the spikes peaked at

5.5. MPTCP homogeneous paths 81

approximately 110 ms. Here the maximum one way delay does not exceed 70 ms on
either flow 1 or flow 2. If we look at Figure 5.38 and Figure 5.39 the jitter should
be more or less the same for both of the subflows. The mean jitter for both paths
are approximately 5 ms and the variance is approximately 30 ms. Comparing this
with Test A2.1 the jitter is slightly lower when using this Multipath TCP setup with
homogeneous paths. The variance is slightly higher than when using the regular TCP
connection, but since the spikes in the one way delay never exceeds 70 ms and the
variance is below 100 ms, the network can be used for interactive streaming purposes.

82 Chapter 5. Tests

5.5.4 Test B2.2 - MPTCP DSL+DSL interactive streaming 1 Mbps
limit with background traffic

This test will be the same as the previous test just with added background traffic.
The expected outcome is that the goodput should still be 1 Mbps and the throughput
graphs should look similar to the ones in test Test B2.1. The RTT graphs should show
a little more variance than in the test without background traffic, simply because
the queue needs to process the background traffic as well.

Throughput graphs

Looking at Figure 5.44 we see the expected behavior and the two flows look very
similar to the throughput graphs of the previous tests. The throughput graphs show
that the traffic is almost evenly distributed on the subflows.

Wireshark IO Graphs: MPTCP_DSLDSL_interactive_BG

700000 [~

600000

500000

Bits/s

400000 [~

300000 [~

200000

I
0 10 20 30 40 50 60
Time (s)

Figure 5.44: Graph of the throughput for interactive streaming with a 1 Mbps limit when running
a MPTCP setup with 2 DSL connections. Blue is flowl, green is flow 2.

RTT graph

When looking at Figure 5.45 and Figure 5.46, they show that there are more variance
between the samples compared to the test without background traffic. This is because
the queue is handling both the background traffic and the interactive streaming traffic
so in some cases the RTT will be slightly higher or lower. The large spikes is still
due to the delayed ACKs.

5.5. MPTCP homogeneous paths 83

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:54291

MPTCP_DSLDSL _interactive_BG.pcapng

270

2251

Round Trip Time (ms)

f I I I 1 I
0 600000 1200000 1800000 2400000 3000000 3600000
Sequence Number (B)

Figure 5.45: Graph of the RTT of the TCP stream for interactive streaming with a 1 Mbps limit
as reported by wireshark. This is for flow 1.

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:35819

MPTCP_DSLDSL _interactive_BG.pcapng

270 -
2251

180 [

Round Trip Time (ms)

90

il
of

454

1 I | | h h
0 600000 1200000 1800000 2400000 3000000 3600000
Sequence Number (B)

Figure 5.46: Graph of the RTT of the TCP stream for interactive streaming with a 1 Mbps limit
as reported by wireshark. This is for flow 2.

Capinfo
1| Number of packets: 5255
2| Data byte rate: 69 kBps

3| Data bit rate: 557 kbps

W N =

L

84

Chapter 5. Tests

1

Listing 5.25: Capinfo for MPTCP DSL+DSL interactive streaming 1 Mbps limit with background
traffic. This is for flow 1.

Number of packets:
Data byte rate:
Data bit rate:

5349
69 kBps
555 kbps

Listing 5.26: Capinfo for MPTCP DSL+DSL interactive streaming 1 Mbps limit with background
traffic. This is for flow 2.

Retransmissions

1’9

Listing 5.27: Retransmissions as reported by wireshark. This is for flow 1.

15

Listing 5.28: Retransmissions as reported by wireshark. This is for flow 2.

Bandwidth from iperf3

As see in Listing 5.25 and Listing 5.26 the average data bit rate is only differing with
2 Kbps so the traffic in this test is closer to evenly distributed than it was in the test
without background traffic. The difference was 32 Kbps in the previous test so the
magnitude of the difference is still very low and it is probaly due to the nature of
the scheduler used in Multipath TCP.

1| [ID] Interval Transfer Bandwidth Retr
2| [4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec 0 sender
3| [4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec receiver

Listing 5.29: iperf3 bandwidth for MPTCP interactive streaming 1 Mbps limit with background
traffic.

Jitter

To calculate the jitter the one way delay will be used by dividing all the values in the
RTT distribution by 2. This will be an estimate because we assume that the delay
is equal in both directions.

5.5. MPTCP homogeneous paths 85

The one way delay will be:

TT
delay = RT (5.21)

The mean and variance of the one way delay is:

mean(delay) = 29.0500 ms (5.22) mean(delay) = 29.3430 ms (5.24)
var(delay) = 41.9535 ms (5.23) var(delay) = 59.5477 ms (5.25)

Figure 5.47: Mean and variance flow 1. Figure 5.48: Mean and variance flow 2.

One way delay plot Flow 2

One way delay plot Flow 1

60 150

100

IS
S

Miliseconds

iZ “ W ol

Miliseconds
w
o

00 10 20 30 40 50 60 0
Seconds Seconds
Figure 5.49: One way delay plot flow 1. Figure 5.50: One way delay plot flow 2.

One way delay histogram Flow 1 1200 One way delay histogram Flow 2

1000 -

800

600

Counts

400

200 -

1
0 10 20 30 40 50 60 100 150

Miliseconds Miliseconds

Figure 5.51: One way delay histogram flow 1. Figure 5.52: One way delay histogram flow 2.

86 Chapter 5. Tests
Jitter histogram Flow 1 Jitter histogram Flow 2
1800 2000
1600 1800 -
1400 F 1600 -
1400
1200
1200
9 1000 @
3 5 1000
O 800 3
800 -
600 -
600
400 400 -
200 200+
o o ‘ L ‘
50 40 30 20 -10 0 10 20 30 -100 -50 0 50 100 150
Miliseconds Miliseconds
Figure 5.53: Jitter histogram flow 1. Figure 5.54: Jitter histogram flow 2.
Jitter histogram absolute values Flow 1 Jitter histogram absolute values Flow 2
1600 2500
1400
2000
1200
1000 1500
@ 2
S 800f E
&} O
eool 1000
400
500
200
0 : : 0 : : : : :
0 5 10 15 20 25 30 35 40 45 0 20 40 60 80 100 120
Miliseconds Miliseconds
Figure 5.55: Abs jitter histogram flow 1. Figure 5.56: Abs jitter histogram flow 2.
The mean and variance of the jitter is:
mean(jitter) = 5.488 ms (5.26) mean(jitter) = 5.459 ms (5.28)
var(jitter) = 33.777 ms (5.27) var(jitter) = 54.654 ms (5.29)

Figure 5.57: Mean and variance flow 1.

Figure 5.58: Mean and variance flow 2.

Looking at Figure 5.49 and Figure 5.50 we see that the tendency of both graphs
are the same except for 3 large spikes on flow 2. These spikes are almost 150 ms

5.6. MPTCP heterogeneous paths 87

so it would cause noticeable changes in an interactive streaming conversation. The
mean jitter is approximately the same for both paths, namely 5.5 ms however the
variance in the jitter on flow 2 is almost double of flow 1. This shows that the
variance in the jitter is very sensitive to large spikes in the one way delay. So we can
conclude that large spikes in the one way delay, even if it is only a few spikes, will
give a significantly higher variance in the jitter. Too many of these spikes will make
the network connection unusable for interactive streaming purposes. In this case
the traffic is split almost evenly between the subflows but when the variance in the
jitter on flow 2 is almost 60 ms it cannot be used for interactive streaming purposes.
Comparing these results to the previous test this behavior can be caused by the added
background traffic. So when using this setup we can conclude that if the network is
used for interactive streaming purposes it becomes sensitive to background traffic.

5.6 MPTCP heterogeneous paths

In this section the results of a total of 4 tests will be shown. It will include some differ-
ent results such as the average bandwidth as reported by wireshark, the throughput
graphs for Multipath TCP extracted by wireshark as well as the ACK RTT graphs

from wireshark.

In Figure 5.59 the setup used in the Multipath TCP DSL + 4G test is shown. The
traffic flows from the server in the direction of the client. The gateway creates one
throttled connections to the client where the downstream from gateway to the client
is 2048 Kbps, and the upstream from the client to the gateway is 2048 Kbps. An
android phone is used as a hotspot to share a 4G connection to the client as the
second subflow.

Queue: TBF
Latency: 100ms

192.238.55.81 172.26.24.116 Burst: 2 Kb 10.42.0.52
) L3 S L
& o =P |
Server 0 Gateway ° oy, | Client @
sensy 8 :'loo_ 20 = tenng
thne gy = AT “Mbpg 20y =

- Delay: 4oms " Queue: TBF

Latency: 100md 0-42.1.14
Burst: 2 Kb

Figure 5.59: This figure shows how the test setup for Multipath TCP with 1 DSL connection and
1 4G connection is done.

88 Chapter 5. Tests

5.6.1 Test C1.1 - MPTCP DSL + 4G general purpose 3 Mbps limit
without background traffic

In this test a 3 Mbps limit will be used in iperf3. This is done to determine how
the Multipath TCP works, when there is enough capacity on the subflows combined.
The expected outcome is that the traffic will be split between the two subflows but
it might be an uneven split, since the scheduler in the Multipath TCP takes the
subflow with the lowest RT'T first until this gets congested.

Throughput graphs

As we see in Figure 5.60 the throughput on the 4G flow path, it is the blue line, is
fluctuating around 3 Mbps so it seems that the scheduler, in this case, favors the 4G
path. This must be because the path has the lowest RT'T and does not get congested.
At around 44 seconds some of the traffic is routed via the DSL path. This is shown
as the green line increasing to 0.6 Mbps. It aligns with the fact that the blue line at
the same time drops from approximately 3 Mbps to 2.4 Mbps.

Wireshark IO Graphs: MPTCP_DSL4G_general_noBG_3mbit

3106 -
2.4'106

1.8'106 -

Bits/s

1.2106 [~

600000

I I I I I I I
0 10 20 30 40 50 60
Time (s)

Figure 5.60: Graph of the throughput for general purpose with a 3 Mbps limit when running a
MPTCP setup with 1 DSL connection and a 4G connection. Blue is the 4G, green is the DSL path.

RTT graph

If we look at Figure 5.61 we see the same behavior in the throughput, namely that
around 44 seconds the 4G path changes characteristics and then there are traffic
getting routed between the DSL interface.

5.6. MPTCP heterogeneous paths 89

Wireshark I0 Graphs: MPTCP_DSL4G_general_noBG_3mbit

160 [~

140 [

100 -

COUNT FIELDS(Y Field)

60

IR N

0 10 20 30 40 50

Figure 5.61: Graph of the RTT of the TCP stream for general purpose with a 3 Mbps limit as
reported by wireshark. This is for flow both flows.

Capinfo
1| Number of packets: 19 k
2| Data byte rate: 379 kBps
3| Data bit rate: 3033 kbps

Listing 5.30: Capinfo for MPTCP DSL+4G general purpose 3 Mbps limit with no background
traffic. This is for flow 1 (4g).

1| Number of packets: 1827
2| Data byte rate: 23 kBps
3| Data bit rate: 187 kbps

Listing 5.31: Capinfo for MPTCP DSL+4G general purpose 3 Mbps limit with no background
traffic. This is for flow 2 (dsl).

Retransmissions

1‘2

Listing 5.32: Retransmissions as reported by wireshark. This is for flow 1.

1‘3

Listing 5.33: Retransmissions as reported by wireshark. This is for flow 2.

N

90 Chapter 5. Tests

Bandwidth from iperf3

Listing 5.34 shows a goodput of 3 Mbps, which is what was expected since the two
subflows have enough capacity to handle the traffic generated.

[ID] Interval Transfer Bandwidth Retr
[4] 0.00—60.00 sec 21.5 MBytes 3.01 Mbits/sec 0 sender
[4] 0.00—-60.00 sec 21.5 MBytes 3.01 Mbits/sec receiver

Listing 5.34: iperf3 bandwidth for MPTCP general purpose 3 Mbps limit no background traffic.

This test showed, that when using a Multipath TCP setup with heterogeneous paths
MPTCP is still able to aggregate the bandwidth. Even though almost all the traffic
was transfered via the 4G path, Figure 5.60 still shows that around 44 seconds some
of the traffic is routed via the DSL path. This is because the RTT changes on the 4G
connection, and the scheduler of the MPTCP then routes traffic through the path
with the lowest RTT, which in this case changes to the DSL path.

5.6. MPTCP heterogeneous paths 91

5.6.2 Test C1.2 - MPTCP DSL + 4G general purpose 5 Mbps limit
without background traffic

In this test a 5 Mbps limit will be used in iperf3. This is to determine what happens
to the goodput when the generated traffic exceeds the capacity that the two homo-
geneous paths were able to handle. Since the capacity of the 4G link is unknown and
it changes over time due to other users and signal strength etc. the 5 Mbps limit is
used to be able to compare the results from the tests with the homogeneous paths.
The expected outcome is that the traffic will still be routed through the path with
the lowest RTT. Taking into consideration the results from the previous test it is
expected that most of the traffic will get routed through the 4G path.

Throughput graphs

If we look at Figure 5.62 we see that the throughput for the blue line, which is the
4G path, fluctuates around 4.5 Mbps, which aligns with the expectation that most
of the traffic would get routed through the 4G path. The green line, which is the
DSL path, shows that the throughput for this path is around 1 Mpbs. Looking at
Listing 5.35 it shows an average data bit rate of 4353 Kbps for the 4G path and an
average data bit rate of 1067 Kbps for the DSL path.

Wireshark I0 Graphs: MPTCP_DSL4G_general_noBG_5mbit

5.6°106 [
4.8°106 |-
4106 1

3.2:106

Bits/s

2.4°106

1.6°106 |-

800000

of . © I I I I I
0 10 20 30 40 50 60
Time (s)

Figure 5.62: Graph of the throughput for general purpose with a 5 Mbps limit when running a
MPTCP setup with 1 DSL connection and a 4G connection. Blue is the 4G path, green is the DSL
path.

92 Chapter 5. Tests

RTT graph

As expected the RTT graphs show the same behavior observed in the previous test,
that in some cases the DSL path has a smaller RT'T than the 4G path and this causes
some of the traffic to be routed via the DSL path. It is however not an even split
between the two paths. If we compare Figure 5.63 and Figure 5.64 we see that even
though the 4G RTTs fluctuate the DSL path still shows higher RTTs most of the
time.

Round Trip Time for 192.38.55.81:60020 — 80.62.116.91:50497

MPTCP_DSL4G_general_noBG_5mbit.pcapng
140

120

Round Trip Time (ms)

I I I I I I I I
0 4000000 8000000 12000000 16000000 20000000 24000000 28000000
Sequence Number (B)

Figure 5.63: Graph of the RTT of the TCP stream for general purpose with a 5 Mbps limit as
reported by wireshark. This is for flow 1 (4g).

5.6. MPTCP heterogeneous paths 93

Round Trip Time for 192.38.55.81:60020 — 172.26.24.116:35346

MPTCP_DSL4G_general_noBG_5mbit.pcapng

210 -

150 -

120

Round Trip Time (ms)

90

60

I | I | f
3000000 4000000 5000000 6000000 7000000
Sequence Number (B)

L I
0 1000000 2000000

Figure 5.64: Graph of the RTT of the TCP stream for general purpose with a 5 Mbps limit as
reported by wireshark. This is for flow 2 (dsl).

Capinfo
1| Number of packets: 29 k
2| Data byte rate: 544 kBps
3| Data bit rate: 4353 kbps
Listing 5.35: Capinfo for MPTCP DSL+4G general purpose 5 Mbps limit with no background
traffic. This is for flow 1 (4g).
1| Number of packets: 10 k
2| Data byte rate: 133 kBps
3| Data bit rate: 1067 kbps
Listing 5.36: Capinfo for MPTCP DSL+4G general purpose 5 Mbps limit with no background
traffic. This is for flow 2 (dsl).
Retransmissions
[
Listing 5.37: Retransmissions as reported by wireshark. This is for flow 1.
1‘ 23

Listing 5.38: Retransmissions as reported by wireshark. This is for flow 2.

W N -

94 Chapter 5. Tests

Bandwidth from iperf3

The goodput reported by iperf3 is still 5 Mbps, so the general purpose traffic gener-
ated is still lower than the total available capacity of the paths combined.

[ID] Interval Transfer Bandwidth Retr
[4] 0.00—-60.00 sec 35.8 MBytes 5.01 Mbits/sec 0 sender
[4] 0.00—-60.00 sec 35.8 MBytes 5.01 Mbits/sec receiver

Listing 5.39: iperf3 bandwidth for MPTCP general purpose 5Mbps limit no background traffic.

This test showed that the MPTCP is able to aggregate the bandwidth even if the
paths have different characteristics. In this case the majority of the traffic was
transfered via the 4G path, which is plausible when looking at Test C1.1.

5.6. MPTCP heterogeneous paths 95

5.6.3 Test C2.1 - MPTCP DSL+4G interactive streaming 1 Mbps
limit without background traffic

In this test the traffic for interactive streaming will be generated. It is done to
determine that impact it has on the jitter when using Multipath TCP on two hetero-
geneous paths. The expected outcome is that the traffic will be routed via the path
with the lowest RTT. Looking at the results of the previous tests with heterogeneous
paths it is expected that most of the traffic will get routed via the 4G path. Since
the difference in RTT on the two paths are not great, in this case where only 1 Mbps
of the capacity will be utilized, it is expected that head-of-line blocking will not have
a big impact.

Throughput graphs

If we look at Figure 5.65 we clearly see that virtually no traffic is routed via the DSL
path. This aligns well with the fact that the 4G path in this test has the lowest RTT
and that the path never gets congested, so the scheduler of the Multipath TCP only
utilizes the 4G path. In this case it assures that head-of-line blocking will not be a
problem.

Wireshark I0 Graphs: MPTCP_DSL4G_interactive_noBG

1.05:106 -
900000
750000

600000 [~

Bits/s

450000 [~

300000 [~
150000 \
ore
0

Figure 5.65: Graph of the throughput for interactive streaming with a 1 Mbps limit when running
a MPTCP setup with 1 DSL connection and a 4G connection. Blue is the 4G path, green is the
DSL path.

I I I I I i
10 20 30 40 50 60
Time (s)

96 Chapter 5. Tests

RTT graph

Since almost all the traffic gets routed via the 4G interface Figure 5.67 is very limited
in data points, but it is worth noticing that the data points that are plotted are higher
than the ones in Figure 5.66, so the scheduler from Multipath TCP works as intended.

Round Trip Time for 192.38.55.81:60021 — 80.62.116.91:51394

MPTCP_DSLA4G_interactive_noBG.pcapng

160

140

o
S
T

Round Trip Time (ms)

I I I
5000000 6000000 7000000

I I I
2000000 3000000 4000000

I
0 1000000
Sequence Number (B)

Figure 5.66: Graph of the RTT of the TCP stream for interactive streaming with a 1 Mbps limit
as reported by wireshark. This is for flow 1 (4g).

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:47036
MPTCP_DSL4G_interactive_noBG.pcapng

360 -
|

240
|

Round Trip Time (ms)

120
-

60 ,,f///'/ir// \ 7«///'7/7¢//
-— I
17500

I I I
7000 10500 14000
Sequence Number (B)

Figure 5.67: Graph of the RTT of the TCP stream for interactive streaming with a 1 Mbps limit
as reported by wireshark. This is for flow 2 (dsl).

N

1‘1

1‘0

N

5.6. MPTCP heterogeneous paths 97

Capinfo

Number of packets: 6824

Data byte rate: 133 kBps
Data bit rate: 1070 kbps

Listing 5.40: Capinfo for MPTCP DSL+4G interactive streaming 1 Mbps limit without
background traffic. This is for flow 1 (4g).

Number of packets: 39
Data byte rate: 438 bytes/s
Data bit rate: 3509 bits/s

Listing 5.41: Capinfo for MPTCP DSL+4G interactive streaming 1 Mbps limit without
background traffic. This is for flow 2 (dsl).

Retransmissions

Listing 5.42: Retransmissions as reported by wireshark. This is for flow 1.

Listing 5.43: Retransmissions as reported by wireshark. This is for flow 2.

Bandwidth from iperf3

The goodput shows 1 Mbps at the server but slightly lower at the client. The
magnitude of the difference should not matter.

[ID] Interval Transfer Bandwidth Retr
[4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec 0 sender
[4] 0.00—-60.00 sec 7.15 MBytes 999 Kbits/sec receiver

Listing 5.44: iperf3 bandwidth for MPTCP interactive streaming 1 Mbps limit without background
traffic.

Jitter

To calculate the jitter the one way delay will be used by dividing all the values in the
RTT distribution by 2. This will be an estimate because we assume that the delay
is equal in both directions.

98 Chapter 5. Tests

The one way delay will be:

RITT
delay = 5 (5.30)

The mean and variance of the one way delay is:

mean(delay) = 21.8353 ms (5.31) mean(delay) = 37.1155 ms (5.33)
var(delay) = 10.538 ms (5.32) var(delay) = 1579.651 ms (5.34)

Figure 5.68: Mean and variance 4G. Figure 5.69: Mean and variance DSL.
0. One way delay plot 4G 200 - One way delay plot DSL h
180 q“ ‘\‘
50 J‘\
160 | \‘
140 ‘\“ “\‘
aor .
8 g 120p [
g 2 L 8 100] I
i T a
v | [
ot T P d I
ol —— N
0 . . . L s ! 0 . . . s s !
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Seconds Seconds
Figure 5.70: One way delay plot 4G. Figure 5.71: One way delay plot DSL.
500 - One way delay histogram 4G B One way delay histogram DSL

Counts
Counts

. . .
0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160 180 200
Miliseconds Miliseconds

Figure 5.72: One way delay histogram 4G. Figure 5.73: One way delay histogram DSL.

5.6. MPTCP heterogeneous paths 99

Jitter histogram 4G Jitter histogram DSL
900 14

12

10

Counts

NI N B

-40 -30 20 -10 0 10 20 30 200 -150 -100 -50 0 50 100 150 200
Miliseconds Miliseconds
Figure 5.74: Jitter histogram 4G. Figure 5.75: Jitter histogram DSL.
800 Jitter histogram absolute values 4G 1 Jitter histogram absolute values DSL
700 12
600
10
500
2 28
5 400 H
o O 4
300
4
200
100 2
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100 120 140 160 180
Miliseconds Miliseconds
Figure 5.76: Abs jitter histogram 4G. Figure 5.77: Abs jitter histogram DSL.

The mean and variance of the jitter is:

mean(jitter) = 1.975 ms (5.35) mean(jitter) = 21.711 ms (5.37)
var(jitter) = 7.969 ms (5.36) var(jitter) = 2507.139 ms (5.38)

Figure 5.78: Mean and variance 4G. Figure 5.79: Mean and variance DSL.

If we look at Figure 5.70 and Figure 5.71 we clearly see that almost all of the traffic
is routed via the 4G path. Looking at the capinfo it is seen that only 39 packets was

100 Chapter 5. Tests

transfered via the DSL path. So we will focus on the results of the 4G path.
Looking at Figure 5.74 we see that there are both negative and positive jitter but
most of the samples are located around 0-5 ms. This is supported by looking at the
mean jitter for the 4G path, which is only 2 ms. The variance of the jitter is also
very low, when comparing them to both the regular TCP tests but also the MPTCP
homogeneous tests. In this case the 4G connection would actually be a very good
candidate for running interactive streaming traffic.

5.6. MPTCP heterogeneous paths 101

5.6.4 Test C2.2 - MPTCP DSL+4G interactive streaming 1 Mbps
limit with background traffic

This test will be done in the same way as the previous test but with added back-
ground traffic. This is to determine how background traffic impacts the jitter and
the goodput.

The expected outcome is that the background traffic should have almost no impact
on the jitter of the 4G path. It is also expected that the traffic will mainly get routed
through the 4G path. The background traffic should have no impact on the goodput
since the two subflows have more than enough capacity to handle the 1 Mbps limit
ued in iperf3.

Throughput graphs

Figure 5.80 shows that the blue line, which is the 4G path, has a throughput of 1
Mbps, so the interactive streaming traffic is getting routed through the 4G path just
as in the test without background traffic. The green line, which is the DSL path,
shows that virtually no traffic was routed through the DSL path.

Wireshark I0 Graphs: MPTCP_DSL4G_interactive_BG

1.05:106 [~
900000 [~
750000

600000 [~

Bits/s

450000 [~
300000

150000 [\/\
ofo

T I I I I I i
0 10 20 30 40 50 60
Time (s)

Figure 5.80: Graph of the throughput for interactive streaming with a 1 Mbps limit when running
a MPTCP setup with 1 DSL connection and a 4G connection. Blue is the 4G path, green is the
DSL path.

102

RTT graph

Chapter 5. Tests

Looking at Figure 5.82 shows that in the cases where an ACK RTT is calculated
the value is higher than in Figure 5.81, which aligns with the fact that the traffic is
routed via the 4G path.

Round Trip Time (ms)

90

80

70

60 -

40 [~ (|

Round Trip Time for 192.38.55.81:60021 — 80.62.116.91:44630

MPTCP_DSL4G_interactive_BG.pcapng

“ \ ‘
s
’H\ \uu.‘ ‘Mmu u

‘HI‘ ‘
| N)
Ihl\ i ‘l r

\
”| ku‘ u
\H‘Hlu “|| \mﬂ\” |‘ ! w

‘ ‘Ju \, ‘ \\h

i ; N‘m

il \|| il " h

,“ J

I I I I
0 1000000 2000000 3000000 4000000 5000000

Sequence Number (B)

6000000

7000000

Figure 5.81: Graph of the RTT of the TCP stream for interactive streaming with a 1 Mbps limit
as reported by wireshark. This is for flow 1 (4g).

Round Trip Time (ms)

360

300

240

180

120

Round Trip Time for 192.38.55.81:60021 — 172.26.24.116:53136

MPTCP_DSL4G_interactive_BG.pcapng

Figure 5.82:

I I I
18000 24000 30000

Sequence Number (B)

I
0 6000 12000

I
36000

Graph of the RT'T of the TCP stream for interactive streaming with a 1 Mbps limit
as reported by wireshark. This is for flow 2 (dsl).

N

1‘1

1‘0

N

5.6. MPTCP heterogeneous paths 103

Capinfo

Number of packets: 6967

Data byte rate: 133 kBps
Data bit rate: 1068 kbps

Listing 5.45: Capinfo for MPTCP DSL+4G interactive streaming 1 Mbps limit with background
traffic. This is for flow 1 (4g).

Number of packets: 65
Data byte rate: 743 bytes/s
Data bit rate: 5949 bits/s

Listing 5.46: Capinfo for MPTCP DSL+4G interactive streaming 1 Mbps limit without
background traffic. This is for flow 2 (dsl).

Retransmissions

Listing 5.47: Retransmissions as reported by wireshark. This is for flow 1.

Listing 5.48: Retransmissions as reported by wireshark. This is for flow 2.

Bandwidth from iperf3

The goodput form iperf3 shows 1 Mbps as expected. The background traffic has no
impact on the goodput in this test.

[ID] Interval Transfer Bandwidth Retr
[4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec 0 sender
[4] 0.00—-60.00 sec 7.16 MBytes 1.00 Mbits/sec receiver

Listing 5.49: iperf3 bandwidth for MPTCP interactive streaming 1 Mbps limit with background
traffic.

Jitter

To calculate the jitter the one way delay will be used by dividing all the values in the
RTT distribution by 2. This will be an estimate because we assume that the delay
is equal in both directions.

104

The one way delay will be:

delay = ——

Chapter 5. Tests

The mean and variance of the one way delay is:

mean(delay) = 21.3305 ms
var(delay) = 11.262 ms

Figure 5.83: Mean and variance 4G.

One way delay plot 4G

Miliseconds
N N
o (52
—
===
=————
=
=
—_—
=
———
_—
_
E—
=
i
=
=
=
=
_—
=
_—
E‘%
=
= e
———

. . . .
0 10 20 30 40 50 60
Seconds

Figure 5.85: One way delay plot 4G.

One way delay histogram 4G

0 5 10 15 20 25 30 35 40 45 50
Miliseconds

Figure 5.87: One way delay histogram 4G.

(5.40)
(5.41)

RTT
(5.39)
2
mean(delay) = 32.7455 ms (5.42)
var(delay) = 1000.752 ms (5.43)

Miliseconds

Figure 5.84: Mean and variance DSL.

One way delay plot DSL

.
0 10 20 30 40 50 60
Seconds

Figure 5.86: One way delay plot DSL.

One way delay histogram DSL

1 1 1
0 20 40 60 80 100 120 140 160 180 200

Miliseconds

Figure 5.88: One way delay histogram DSL.

5.6. MPTCP heterogeneous paths

Jitter histogram 4G
800

700 -
600 -
500 -

400 -

Counts

300

200 -

100 [

. .
-40 -30 -20 -10 0 10 20 30
Miliseconds

Figure 5.89: Jitter histogram 4G.

Jitter histogram absolute values 4G
900

800
700
600

500

Counts

400
300
200

100

Miliseconds

Figure 5.91: Abs jitter histogram 4G.

The mean and variance of the jitter is:

mean(jitter) = 2.0400 ms
var(jitter) = 7.753 ms

Figure 5.93: Mean and variance 4G.

(5.44)
(5.45

)

Counts

Counts

105

Jitter histogram DSL

100 150 200

0
-200

-150 -100 -50 0 50

Miliseconds

Figure 5.90: Jitter histogram DSL.

Jitter histogram absolute values DSL
25

20
15

10

160

0 20 40 60 80
Miliseconds

100 120 140

Figure 5.92: Abs jitter histogram DSL.

(5.46)
(5.47)

mean(jitter) = 15.372 ms
var(jitter) = 1473.974 ms

Figure 5.94: Mean and variance DSL.

If we look at Figure 5.85 and Figure 5.86 it has the same behavior as in the previous
test. Virtually all the traffic was transfered via the 4G path so we will only focus on

106 Chapter 5. Tests

the results of the 4G path.

If we look at Figure 5.89 it looks almost identical to the one in the previous test.
This is confirmed by looking at the mean and variance of the jitter, which is almost
the same as the previous test. So in this case, where there was added background
traffic, the mean and variance in the jitter is almost unchanged. And since the traffic
is still routed via the 4G path it can be concluded that with this setup the network
is not sensitive to background traffic and can be used for interactive streaming pur-
poses. It can however not be concluded if using a Multipath TCP setup consisting of
heterogeneous paths is able to be used for streaming purposes, since it only utilizes
one subflow.

Chapter 6

Conclusion

When looking at the fact that, in the rural areas of Denmark, the quality of the
Internet connections are very slow, there is a demand for a technology, that can
help by combining already existing technologies and aggregate the bandwidth. This
will be a cheap and smart solution, since it does not depend on installing expensive
cables and equipment such as fiber optic solutions, and it can be done solely with
some basic hardware and an existing technology like Multipath TCP.

This project tries to uncover if using the Multipath TCP technology will be a possible
candidate to ensure that, in the rural areas of Denmark, greater bandwidths of the
Internet connections can be reached, by aggregating already existing technologies
such as DSL and 4G.

In chapter 1 the motivation for using a multipath approach is given. It explains how
Multipath TCP was thought up as well as the history behind the protocol. It also
explains how far the development of Multipath TCP has come.

In chapter 2 an extended analysis of how the protocol works is given. It compares
a Multipath TCP operation to a regular TCP operation in order to understand
the differences between these two protocols. It then proceeds to explain how the
performance of Multipath TCP is dependent on the characteristics of the multiple
paths used in a Multipath TCP setup, namely a setup with homogeneous paths and
a setup with heterogeneous paths.

It also contains a section that explains what the state-of-the-art is, when talking
about Multipath TCP and in which direction Multipath TCP is headed. Since
Multipath TCP is an experimental standard with the IETF, it still has a long way
to go before it will be used in practice.

107

108 Chapter 6. Conclusion

In chapter 3 a short explanation of how the scenario is in the rural areas of Denmark
is given. It describes how a proxy solution can be setup at a location and act as a
gateway with an MPTCP enabled kernel in order to achieve bandwidth aggregation.

In chapter 4 an extensive description of how the setup of the testbed is done is given.
It also contains a section, where the prerequisites that are needed in order to run the
tests, are described. This included descriptions of the hardware, software and also
which metrics that will be used to determine the performance achieved in the tests.

In chapter 5 an analysis of the results are given. This analysis will use data from the
wireshark dump files recorded while running the tests. In each test a short analysis
of the performance is given by looking at the achieved goodput, the ACK RTTs as
calculated by wireshark and the calculated jitter from the ACK RTT distribution.

This project has showed that, by using a protocol as the Multipath TCP, bandwidth
aggregation can be achieved. It works in cases where the setup consists of homo-
geneous paths as well as cases where the setup consists of heterogeneous paths. As
shown in chapter 5 the Multipath TCP outperforms a single regular TCP connection
when looking at the goodput. So it can be concluded that Multipath TCP is a viable
candidate for deployment in rural areas where bandwidth aggregation is the goal.
In chapter 5 it was also shown that, when using Multipath TCP, even though the
traffic is split on two routes, the network connection is still suited for running inter-
active streaming conversations. In only a few tests we saw a tendency with spikes
over 100 ms, which would cause problems for interactive streaming traffic, due to
the jitter buffer not coping well with variations over 100ms. However to be able to
definitely conclude that MPTCP will not experience any problems if used in a real
life setup, more test would be needed. This is because in the MPTCP heterogeneous
tests only the 4G path was utilized and this basically makes the test the same as one
single regular TCP connection. So here it is especially hard to compare the jitter
results to the other tests.

The jitter calculations made in the MPTCP part of chapter 5 is only done as the
jitter per path.The jitter calculated after the TCP stream is reassembled is the cor-
rect, but since the values needed for these calculations is not accessible in wireshark,
the ACK RTT times was used instead.

6.1. Future work 109

6.1 Future work

The testbed setup in this project should be able to be deployed as a setup in a
real life location. The setup would work as a proxy setup as explained in chapter 3
where the proxy would be MPTCP enabled and then it will not matter what kind of
devices that are connected to the proxy e.g. router, switches etc. Then all it would
take to establish a MPTCP connection with multipled subflows would be a MPTCP
enabled device in the other end of the communication network e.g. a IT consultants
device. Since Multipath TCP is still only an experimental standard they way the
protocol works might change in the future. As of now the most critical step is to
get an implementation of the Multipath TCP distribution where more schedulers are
present. The schedulers mentioned in [5], that as of now are not available in the Linux
implementation, Retransmission and Penalization (RP) and Bufferbloat Mitigation
(BM) would be a nice addition to Multipath TCP, since they bring another approach
than the current default scheduler, which works by using the paths with the lowest
RTT first.

When looking at the different congestion control algorithms in the current version
of Multipath TCP, the different algorithms seem to be sufficient to handle a lot of
different scenarios, but it also seems that a congestion control algorithm, that can
both be responsive to network changes as well as robust at the same time is possible.
Maybe this will be implemented some time in the future.

When talking about congestion control algorithms and Multipath TCP, there are a lot
of information about, whether or not a congestion control algorithm is fair or not to
regular TCP. The reason for wanting to use a different congestion control algorithm
that is different from regular TCP, is that if a TCP connection and a MPTCP
connection with multiple subflows competed for the bandwidth the MPTCP would
be able to get an unfair advantage since the congestion control algorithm would run
on each of the subflows. If we look at an example with 1 regular TCP connection
and a MPTCP connection with 2 subflows, all running the same congestion control
algorithm as used in regular TCP, the bandwidth, if they share a bottleneck link,
would be split evenly 3 ways. So MPTCP would get roughly 67% of the bandwidth
and the regular TCP would get 33% of the bandwidth. However if this was to be
deployed in a scenario where there are actually need for a higher bandwidth when
using MPTCP, as it is the case in the farmer setup, where the MPTCP would be
utilized for interactive streaming, using the regular TCP congestion in the MPTCP
would actually ensure that the MPTCP traffic would get an unfair share of the
bandwidth allocated.

Bibliography

1]

[10]

[11]

J. Hwang S. Low A. Walid Q. Peng. Balanced Linked Adaptation Congestion
Control Algorithm for MPTCP. https://tools. ietf .org/html/draft-
walid-mptcp-congestion-control-00. 2015.

Apple. 1OS: Multipath TCP Support in iOS 7. https://support.apple.com/
da-dk/HT201373. 2016.

Anders Broman. Offloading. https://wiki.wireshark.org/CaptureSetup/
0ffloading. 2013.

Pew Research Center. Mobile Technology Fact Sheet. http://www.pewinternet.
org/fact-sheets/mobile-technology-fact-sheet/. 2016.

Ozgu Alay Olivier Bonaventure Christoph Paasch Simone Ferlin. Ezperimental
Evaluation of Multipath TCP Schedulers. http://inl . info.ucl.ac.be/
system/files/paper_7.pdf. 2014.

Internet Engineering Task Force. TCP Extensions for Multipath Operation with
Multiple Addresses. https://tools.ietf.org/pdf/rfc6824.pdf. 2013.

Wireshark Foundation. Wireshark. https://www.wireshark.org/docs/man-
pages/capinfos.html. 2016.

Mohammad M. N. Hamarsheh Hamzah M A Hijawi. Performance analysis of
multi-path TCP network. http://aircconline.com/ijcnc/V8N2/8216cncl3.
pdf. 2016.

IETF. TCP Eztensions for Multipath Operation with Multiple Addresses. https:
//tools.ietf.org/html/rfc6824. 2013.

Alexey N. Kuznetsov. tbf - Token Bucket Filter. http://linux.die.net/man/
8/tc—-tbf. 2016.

VOIP-Info.org LLC. QoS. http://wuw.voip-info.org/wiki/view/QoS.
2016.

111

https://tools.ietf.org/html/draft-walid-mptcp-congestion-control-00
https://tools.ietf.org/html/draft-walid-mptcp-congestion-control-00
https://support.apple.com/da-dk/HT201373
https://support.apple.com/da-dk/HT201373
https://wiki.wireshark.org/CaptureSetup/Offloading
https://wiki.wireshark.org/CaptureSetup/Offloading
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
http://inl.info.ucl.ac.be/system/files/paper_7.pdf
http://inl.info.ucl.ac.be/system/files/paper_7.pdf
https://tools.ietf.org/pdf/rfc6824.pdf
https://www.wireshark.org/docs/man-pages/capinfos.html
https://www.wireshark.org/docs/man-pages/capinfos.html
http://aircconline.com/ijcnc/V8N2/8216cnc13.pdf
http://aircconline.com/ijcnc/V8N2/8216cnc13.pdf
https://tools.ietf.org/html/rfc6824
https://tools.ietf.org/html/rfc6824
http://linux.die.net/man/8/tc-tbf
http://linux.die.net/man/8/tc-tbf
http://www.voip-info.org/wiki/view/QoS

112

[12]

[17]

[18]

Bibliography

Log-Normal. Analysing network characteristics using JavaScript and the DOM,
Part I http://www . lognormal . com/blog/2011/11/ 14/ analysing -
network-characteristics/. 2012.

Université catholique de Louvain. MultiPath TCP - Linux Kernel implementa-
tion. http://www.multipath-tcp.org/. 2016.

Mahesh K. Marina Luca Boccassi Marwan M. Fayed. Binder: a system to ag-
gregate multiple internet gateways in community networks. http://dl.acnm.
org/citation.cfm?id=2502894. 2013.

Carlos J. Bernardos M. Isabel Sanchez Antonio de la Oliva. How does my smart-
phone manage network connections? http://www.it.uc3m.es/cjbc/papers/
pdf /2016 _sanchez_comnet_connectivity_management _smartphones.pdf.

2016.

Enhuan Dong Mingwei Xu Yu Cao. Delay-based Congestion Control for MPTCP.
https://tools.ietf.org/html/draft-xu-mptcp-congestion-control-
01. 2015.

Netflix. Internet Connection Speed Recommendations. https://help.netflix.
com/en/node/306. 2016.

Costin Raiciu Olivier Bonaventure Mark Handley. An Overview of Multipath
TCP. http://inl.info.ucl.ac.be/system/files/bonaventure_O.pdf.
2012.

Miroslav Popovic Utkarsh Upadhyay Jean-Yves Le Boudec Ramin Khaliliy
Nicolas Gast. MPTCP is not Pareto-Optimal: Performance Issues and a Possi-
ble Solution. http://conferences.sigcomm.org/co-next/2012/eproceedings/
conext/pl.pdf. 2012.

Olivier Bonaventure Sébastien Barré Christoph Paasch. MultiPath TCP: From
Theory to Practice. http://inl.info.ucl.ac.be/system/files/networking-
mptcp.pdf. 2011.

Michael J. Karels Van Jacobson. Congestion Avoidance and Control. http:
//ee.1lbl.gov/papers/congavoid.pdf. 1988.

Wikipedia. G.711. https://en.wikipedia.org/wiki/G.711. 2016.
Wikipedia. Iperf. https://en.wikipedia.org/wiki/Iperf. 2016.

Wikipedia. Multipath TCP. https://en.wikipedia.org/wiki/Multipath_
TCP. 2016.

Wikipedia. Streaming media. https://en.wikipedia.org/wiki/Streaming_
media. 2016.

http://www.lognormal.com/blog/2011/11/14/analysing-network-characteristics/
http://www.lognormal.com/blog/2011/11/14/analysing-network-characteristics/
http://www.multipath-tcp.org/
http://dl.acm.org/citation.cfm?id=2502894
http://dl.acm.org/citation.cfm?id=2502894
http://www.it.uc3m.es/cjbc/papers/pdf/2016_sanchez_comnet_connectivity_management_smartphones.pdf
http://www.it.uc3m.es/cjbc/papers/pdf/2016_sanchez_comnet_connectivity_management_smartphones.pdf
https://tools.ietf.org/html/draft-xu-mptcp-congestion-control-01
https://tools.ietf.org/html/draft-xu-mptcp-congestion-control-01
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
http://inl.info.ucl.ac.be/system/files/bonaventure_0.pdf
http://conferences.sigcomm.org/co-next/2012/eproceedings/conext/p1.pdf
http://conferences.sigcomm.org/co-next/2012/eproceedings/conext/p1.pdf
http://inl.info.ucl.ac.be/system/files/networking-mptcp.pdf
http://inl.info.ucl.ac.be/system/files/networking-mptcp.pdf
http://ee.lbl.gov/papers/congavoid.pdf
http://ee.lbl.gov/papers/congavoid.pdf
https://en.wikipedia.org/wiki/G.711
https://en.wikipedia.org/wiki/Iperf
https://en.wikipedia.org/wiki/Multipath_TCP
https://en.wikipedia.org/wiki/Multipath_TCP
https://en.wikipedia.org/wiki/Streaming_media
https://en.wikipedia.org/wiki/Streaming_media

Bibliography 113

[26] Wikipedia. TCP congestion control. https://en.wikipedia.org/wiki/TCP_
congestion_control#TCP_Tahoe_and_Reno. 2016

[27] Wikipedia. Transmission Control Protocol. https://en . wikipedia . org/
wiki/Transmission_Control Protocol. 2016.

https://en.wikipedia.org/wiki/TCP_congestion_control#TCP_Tahoe_and_Reno
https://en.wikipedia.org/wiki/TCP_congestion_control#TCP_Tahoe_and_Reno
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

	Front page
	English title page
	Preface
	Contents
	Glossary
	1 Introduction
	1.1 Motivation scenario
	1.2 History of Multipath TCP
	1.2.1 Linux kernel implementation

	1.3 Problem statement

	2 Analysis
	2.1 Motivation for Multipath TCP
	2.2 MPTCP Overview
	2.2.1 Regular TCP operation
	2.2.2 Multipath TCP Operation
	2.2.3 Paths with different characteristics
	2.2.4 Congestion control in MPTCP

	2.3 State-of-the-art

	3 Scenario description
	4 Implementation
	4.1 Testbed setup
	4.1.1 Installing the Multipath TCP kernel
	4.1.2 Setting up the routing tables on the client
	4.1.3 Setup of the Multipath TCP protocol
	4.1.4 MPTCP Schedulers
	4.1.5 Configuring the congestion control
	4.1.6 Gateway

	4.2 Test prerequisites
	4.2.1 Design base
	4.2.2 Network metrics
	4.2.3 Path characteristics
	4.2.4 Traffic
	4.2.5 Hardware
	4.2.6 Software

	5 Tests
	5.1 Goals
	5.2 Test setup
	5.3 Test description
	5.3.1 iperf3 server setup
	5.3.2 Regular TCP tests
	5.3.3 Multipath TCP tests - homogeneous paths
	5.3.4 Multipath TCP tests - heterogeneous paths

	5.4 Regular TCP
	5.4.1 Test A1.1 - General purpose (3 Mbps limit) no background traffic
	5.4.2 Test A2.1 - Interactive streaming (1 Mbps limit) no background traffic
	5.4.3 Test A2.2 - Interactive streaming (1 Mbps limit) with background traffic

	5.5 MPTCP homogeneous paths
	5.5.1 Test B1.1 - MPTCP DSL+DSL general purpose 3 Mbps limit without background traffic
	5.5.2 Test B1.2 - MPTCP DSL+DSL general purpose 5 Mbps limit without background traffic
	5.5.3 Test B2.1 - MPTCP DSL+DSL interactive streaming 1 Mbps limit without background traffic
	5.5.4 Test B2.2 - MPTCP DSL+DSL interactive streaming 1 Mbps limit with background traffic

	5.6 MPTCP heterogeneous paths
	5.6.1 Test C1.1 - MPTCP DSL + 4G general purpose 3 Mbps limit without background traffic
	5.6.2 Test C1.2 - MPTCP DSL + 4G general purpose 5 Mbps limit without background traffic
	5.6.3 Test C2.1 - MPTCP DSL+4G interactive streaming 1 Mbps limit without background traffic
	5.6.4 Test C2.2 - MPTCP DSL+4G interactive streaming 1 Mbps limit with background traffic

	6 Conclusion
	6.1 Future work

	Bibliography

