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Abstract:

Light field displays have advantages to
traditional stereoscopic head mounted
displays, due to the fact that the
vergence-accommodation conflict is not
present. Rendering light fields can be
a heavy task for computers due to the
number of images that have to be ren-
dered. Much of the information of the
different images is repeated. We use
pixel reprojection from the corner cam-
eras, and from that the remaining im-
ages in the light field can be made.
We compare the reprojected images
with non interpolated images in a user
test. In most cases the users were un-
able to distinguish the images. In ex-
treme cases the reprojection approach
is not capable to create the light field.
Pixel reprojection is a feasible method
for rendering light fields as far as qual-
ity is concerned, but render time needs
to be reduced to make the method prac-
tical.

The thesis content is freely accessible, but publication (with source) may only be made by agree-
ment with the authors.





Summary

Context: The light field display allows an observer to perceive
a scene at different depths and angles by placing a distance-adjusted
array of microlenses in front of a display, and hereby eliminate conflict-
ing cues which have been under suspicion of causing visual discomfort
and nausea. But when rendering for a light field display, many 2D
subimages have to be rendered from different views, as seen from an
array of different cameras.

Objectives: In this study we conduct a user evaluation of light
field renderings for a head mounted display by comparing images cre-
ated with different methods. Images made with high-precision meth-
ods (equal to rendering one camera per subimage) are compared to
images made with pixel reprojection, in order to test the users’ ability
to perceive a difference. The advantage of using pixel reprojection is a
potential reduction of computing power necessary to render a frame,
since pixel reprojection is less depended on scene geometry complexity.

Methods: We implement a method for light field rendering, where
instead of rendering all virtual cameras for each subimage, we render
the four corner cameras and interpolate the rest of the views using
pixel reprojection in the Unity Engine. The user test was implemented
as a two-interval force choice test, were participants had to perform
matching-to-sample tasks.

Results: Experiments where conducted, and the images created
with the two different methods were compared. The image difference
revealed that we in general have a good pixel match, but the pixel re-
projection method has most problems with object edges and occlusion.
The user evaluation consisted of 34 test participants, and the results
showed that participants were in general not able to see a difference
in the images, but the method falls short when we have extreme oc-
clusion.
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Conclusions: We found that our pixel matching is good, since
the test participants seem not to notice small pixel displacement. The
method also has its shortcomings, since participants did notice larger
areas of difference e.g. extreme occlusion, but these cases are rare,
and can be avoided by using more than four corner cameras. From
our results, we are able to conclude that pixel reprojection is a satisfac-
tory method for interpolating in-between views and thereby creating
sufficient images for a light field display.

Keywords: light field rendering, pixel reprojection, shader program-
ming
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Chapter 1
Introduction

Development of head mounted displays (HMDs) has evolved increasingly during
the last years, especially when looking at consumer markets and consumers’ use of
HMDs eg. Oculus Rift, HTC Vive, Sony PlayStation VR, etc. One of the short-
comings and challenges of traditional HMDs is the lack of 3-dimensional cues,
hereunder the parallax effect and correct eye accommodation. The vergence-
accommodation conflict has been under suspicion of causing visual fatigue, eye-
strain, diplopic vision, headaches, and other signs of simulation sickness [1].

In the future it might be possible to eliminate visual discomfort and nau-
sea, since a light field display can provide correct retinal blur, parallax and eye
accommodation, which may balance out some of the conflicting cues which are
experienced with traditional HMDs. The light field display allows an observer
to perceive a scene at different depths and angles by placing a distance-adjusted
array of microlenses in front of a display.

When rendering for a light field display, several 2D subimages have to be ren-
dered from different views, as seen from an array of different cameras. Instead of
rendering an array of virtual cameras, views can be interpolated from only four
rendered cameras. This project investigates the feasibility of using pixel repro-
jection to create light field renderings, and explore the benefits and shortcomings
of pixel reprojection.

A head-mounted light field display has been built and implemented, and a
user evaluation of the light field images has been conducted. The goal of the
experiment is to find out if users are able to perceive a difference in the light field
images created with the two different methods; the full array or the four cameras.

1



Chapter 2
Related Work

2.1 Vergence-Accommodation Conflict
In reality the human ocular system will adapt when focus is changed between
different distances, such that the point of interest remains binocularly fused.
Vergence and accommodation are parameters that influence our perception of
depth and focus.

Accommodation refers to the physical shape of the lens of the eye, where the
eye increases optical power to maintain a clear focused image. When accommo-
dating, the shape of the lens inside the eye changes to allow for a focused image
at that distance (see Figure 2.1). Accommodation can be consciously controlled,
but usually acts like a reflex. Humans can change the optical accommodation of
their eyes by up to 15 diopters (the inverse of the focal length in metres), but the
accommodation diversity is reduced with age [2].

Figure 2.1: Vergence (a+c) is when the eyes move inwards (conver-
gence) or outwards (divergence) towards a focus point. Accommoda-
tion (b+d) is the physical shape of the eye

2
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Figure 2.2: (a) Correct retinal blur as experienced through a light field
display (b) Vergence-Accommodation Conflict

The vergence mechanism continually adjusts the angle between the two eyes
such that features at the focus distance remain fused in the binocular vision. A
pair of eyes will converge along the vertical axis, when an object in focus comes
closer to the eye, or in other words, as the distance of the point of interest de-
creases from infinity. The eyes will diverge when the distance to a point of interest
gets longer and/or goes towards infinity. The vergence and accommodation sys-
tem interplay with each other in a feedback loop, since there is a secondary set
of cues for both systems consisting of reciprocal signals from one another. This
means that a change in visual cues will affect both system; stereo disparity drives
the eyes to converge or diverge, and retinal blur prompts an oculomotor accom-
modation adjustment. To further strengthening the argument of these systems
being very tightly coupled, Suryakumar et al. have shown that visual disparity
in isolation elicits a fully comparable accommodation response to that of retinal
blur [3]. The reciprocal secondary cues between accommodation and vergence
serve to better coordinate the final accommodative response in natural viewing
conditions [4]. However, in traditional stereo imaging where the depth is fixed,
vergence towards a different distance will elicit conflicting cues between the two
systems, and this has been linked to discomfort [5], visual fatigue, and reduced
visual performance [1]. Research in resolving the vergence-accommodation con-
flict is still ongoing, and there are several proposals of solutions in both soft- and
hardware [6] (see Section 2.4).



Chapter 2. Related Work 4

One of the consequent benefits of a light field display is that it allows natural
accommodation and vergence (see Figure 2.2). Focusing at different distances
simply determines which parts of the 2D image slices that are focused onto the
retina. The light field images can be rendered to be perceived as if they are at
natural (or unnatural) distances away from the viewer. By adjusting e.g. the
field of view of each subimage camera, the depth of the optically reconstructed
image will be influenced. By taking advantage of this fact, the virtual distances
can correct for near- and far-sightedness of users [7], which can negate the use of
glasses (or contact lenses) when wearing a HMD.

2.2 The Light Field
To understand the light field and its influence in computer graphics research,
one must understand how to represent all light in a volume. The beginning of
the light field and its definition can be traced back to Leonardo Da Vinci, who
referred to a set of light rays as radiant pyramids [8]:

“The body of the air is full of an infinite number of radiant pyramids
caused by the objects located in it. These pyramids intersect and in-
terweave with each other during the independent passage throughout
the air in which they are infused.”

Later on, the light field has been defined as the amount of light travelling
in every direction through every point in space. Light can be interpreted as a
field, because space is filled with an array of light rays at various intensities. This
is close to the definition of the 5D plenoptic function, which describes all light
information visible from a particular viewing position. This can be explained
as recording the intensity of the light rays passing through the center of a pupil
placed at every possible x, y, and z in a 3-dimensional volume, and at every angle
θ and φ [8].

The plenoptic function allows reconstruction of every possible view, from every
position, at every direction (see Equation 2.1).

P (θ, φ, x, y, z) (2.1)

Since radiance does not change along a line unless it is blocked, the 5D plenop-
tic function can be reduced to 4D in space free of occluders [9]. The 4D light
field can explain the total light intensity of each ray as a function of position and
direction (see Equation 2.2).

P ′(θ, φ, u, v) (2.2)

The light intensity is given for every possible position u and v on a 2-dimensional
plane, and angle θ and φ.
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Figure 2.3: The light slab is a two-plane parameterization, where the
st-plane can be thought of as a collection of perspective images of
the scene, and the uv-plane corresponds to the position(s) of the ob-
server(s).

2.2.1 Parameterization of the 4D Light Field

Levoy et al. described how a light field can be parameterized by the position of
two points on two planes [9]. This parameterization is called a light slab (see
Figure 2.3). A light ray enters one plane (the uv-plane) and exits another plane
(the st-plane), and the result is a 2D array of images of a scene at different
angles. Since a 4D light field can be represented by a 2D array of images, it has
the advantage that the geometric calculations are highly efficient. The line of all
light rays can simply be parameterized by the two points.

When parameterizing the light field into 2D-images, the elemental images
correspond to images taken from different positions on the uv-plane, and each
image represents a slice of the 4D light slab. In other words, the st-plane can be
thought of as a collection of perspective images of the scene, and the uv-plane
corresponds to the position of the observer.
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Figure 2.4: (a) Light from one pixel travels through lenses in the
microlens array. Some of the light rays reach the eye, and some light
rays will be bent in other directions. (b) Light from several pixels
travel through the microlens array and (some) reach the eye or area
of the eyebox with different incident angles. This allows the observer
to focus his/her eyes while getting the corresponding light rays.

2.3 Light Field Displays
The light field can be optically reconstructed by placing a distance-adjusted array
of microlenses in front of a display (see Figure 2.4). This is known as a light field
display. The light field display allows an observer to integrate a correct 2D image
of the light field at different depths and angles in accordance with the spatial and
depth resolution that the light field contains. In other words the light field display
allows an observer to accommodate and converge his/her eyes on a virtual object
as if it were part the real world. Since every pixel on the screen emits light, and
all lenslets in the full microlens array transmit the light in accordance with the
angular information, the result will be a full light field. Depending on where the
observer is looking, different subimage pixels will be used to create the view, and
hence the 3-dimensional holographic effect can be experienced. The image seen
through a light field display has focus cues, where the convergence point is the
point in focus, and the rest of the image appears blurred just like the real world.
Even a monocular experience of the light field will give appropriate depth and
focus cues, since the eye will focus at a point behind the screen at the correct
distance (see Section 2.1). Since distances can be virtually manipulated, the light
field can be optically reconstructed to account for near- and far-sightedness of
users.
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Light field display technology is being researched in several areas: 3D-displays
[10], light field projection [11], and holography [12]. Commercial products, like
the Leia 3D display, are already on the market, and claim to give holographic im-
agery with content appearing to come out of a conventional liquid crystal display
(LCD) and showing the parallax effect with head movement without the need
of any glasses. Likewise does the head mounted light field stereoscope [13] not
use a microlens array, but creates the light field via stacked liquid crystal panels
and hereby emphasizes that light field renderings can be shown with different
technologies.

2.3.1 Head-Mounted Light Field Displays

Head-Mounted Displays are still struggling with being heavy and having big and
bulky optics [14]. Most HMDs do not account for the vergence-accommodation
conflict (see Section 2.1), and they suffer from low resolution and a low field-of-
view (FOV). Since light fields consist of more information than usual 2D images,
light fields can improve on some of the limitations of traditional fixed-focus HMDs.

With the benefits from using microlenslet arrays in HMDs, Lanman and Lue-
bke have shown that a light field display can be integrated into a HMD, which can
both minimize the size of HMDs and potentially allow for much more immersive
VR solutions compared to the fixed focus displays used in most common HMDs
[7]. Lanmanand Luebke have created near-eye light field displays with a thickness
of 1 cm. [15], and Shaulov et al. demonstrated that ultracompact imaging op-
tical relay systems based on microlenslet arrays can be designed with an overall
thickness of only a few millimetres [16].

We have also previously implemented a Near-eye Light Field Display [17]
and examined the perceived accommodation range and spatial resolution. We
evaluated the performance of test participants using standardized visual acuity
tests and compared several accommodation ranges. We found that the best visual
acuity scores were obtained when the distance between viewer and object were
below 2m, and that as of today the most limiting factor of the Light Field Display
is the resolution.

2.4 Light Field Rendering
One of the first times light fields were introduced into computer graphics was by
Levoy et al. in 1996, where they used image based rendering to compute new
views of a scene from pre-existing views without the need for scene geometry [9].
The technique showed a real-time view of the light field, where it was possible to
see a scene with correct perspective and shading, and with the option of zooming
in and out. When zooming in, the light samples disperse throughout the array of
2D slices, so the perceived image is constructed from pieces from several elemental
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images.
Davis et al. have created a system for interactively acquiring and rendering

light fields using a camera being waved around an object [18]. They present a new
rendering algorithm that triangulates the captured viewpoints and is specially
designed for the unstructured and dense data of the light field. Using direct light
field rendering, Jeoung et al. have introduced an image-based rendering method
in the light field domain, which attempts to directly compute only the necessary
samples, and not the entire light field, to improve rendering in terms of complexity
and memory usage [19].

Light field technology is competing with other technologies that are trying to
display some of the same effects but with different advantages and short comings.
Foveated rendering is a technique where the image resolution is not uniform across
the image, and where the abilities of the human peripheral vision can be taken
advantage of. The technique can be used to create retinal blur, which is the
blurred perception of objects outside the center of gaze (and therefore in the
peripheral vision).

Gupta et al. worked on tracking and predicting eye gaze accurately with
the objective of improving interactivity using eye-gaze information by enabling
foveated rendering or simulate retinal blur [20]. Since the method also can be
used to accelerate graphics computation, Guenter et al. performed a user study
on foveated 3D graphics. Their method tracks the user’s gaze point and from
that renders three image layers around it at progressively higher angular size but
lower sampling rate. They state: "The result looks like a full-resolution image
but reduces the number of pixels shaded by a factor of 10-15" [21],

Reducing complexity is highly desired when working with light fields, and
(re)construction of overlapping views is a good place to start, since this is where
the light field contains a lot of redundant information.

Much of the data is repetitive, especially when looking at a scene placed
at infinity, where all subimages are created from parallel light rays. Instead of
creating a virtual camera or capturing an individual subimage for each elemental
image, interpolation can be used to reduce the computational effort.

2.4.1 Capturing the Light Field

In light field photography a 2D representation of the 4D light field can be captured
and then sampled into a 2D image with a specific focus plane within the limits of
the stored light field. The light field can be captured in several ways; either with
an array of cameras [22, 23], by moving a camera forward and backward [24], or
by using a plenoptic camera containing an array of microlenses [25].

The first hand-held plenoptic camera that captures the 4D light field in one
photographic exposure was created by Ng et al. [25]. The 4D light field is re-
constructed into a 2D image in software post-capture, and can compute sharp
photographs focused at different depths. In other words this method creates a
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synthetic aperture, that expands editing possibilities in post production by elim-
inating limitations related to a fixed aperture.

Interpolation strategies for optimizing resolution with light field photography
are also being explored. Georgeiv et al. [26] have created an interpolation method
that creates a better resolution in the final light field photograph by virtually
increasing the amount of views to be more than the amount of microlenslets.

Naimark et al. created a stereo image capture rig, that captures a pair of
stereo images [27]. From that a synthetic scene with depth could be calculated
using cross dissolve. Since the light field gives a high accuracy of sampling it is
possible to triangulate points into a point cloud, which provides the ability of
tracking objects and semi-reconstruct objects and scenes 3-dimensionally.

This is one of the reasons why light field technology has potential benefits in
the field of visual effect (VFX). Since light field photography essentially captures
depth, it can be used to redefine previous methods (e.g. chroma keying) and
develop new approaches (e.g. depth screen removal). Depth screen removal is
one example of a new and improved technique for the VFX workflow, where
the volumetric data from the light field can be used to disperse the object of
interest from the background. The depth can among things be used to create
semi-automated segmentation and rotoscoping [28].

VR is already exploring the use of live-action footage, e.g. with the use of the
Ricoh Theta, which is an omnidirectional camera that with two fish-eye lenses
captures 360° with a single shot. The captured images overlap, and can therefore
be stitched together, taking every photo from that single point of view. Similar
solutions include the Jaunt, the Nokia Ozo, and the GoPro Odyssey, but a 360°
spherical image will though only create a flat panorama in VR, and will get no
3D and parallax effect.

The Lytro Immerge is a new light field solution for cinematic virtual reality
(VR), with a configurable dense light field camera array, that is declared to have
six degrees of freedom. With six degrees of freedom the solution claim to allow
virtual views to be generated with precise visual perspectives in a seamless capture
that requires no stitching [29]. The future might bring light field live-action
footage to the VR platform, and therefore the motivating force to research light
field renderings and evaluating it through user testing is both interesting and
relevant for future studies and implementation.

2.5 Pixel Reprojection
Pixel reprojection is about reprojecting data (e.g. pixel color value) from one
image to another. Geometrically valid pixel reprojection techniques have been
studied by Kang, who states "If the depth value at each pixel is known, then
the change in location of that pixel is constrained in a predictable way" [30].
The traditional approach for generating virtual views of a scene is to render a
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3-D model, but with image-based rendering techniques new views can be created
using pixel reprojection from source images onto the target image, and thereby
the method only relies on simple interpolation calculations. Another benefit is
that the cost of rendering is independent of the scene complexity.

Pixel reprojection can be used when rendering video, where data reprojection
can exploit the natural temporal coherence between consecutive frames by caching
expensive intermediate shading calculations performed at each frame, and then
reuse this data when rendering subsequent frames [31]. In other words, temporal
anti aliasing can be created by matching pixels from the current frame with
pixels from the last frame, and using that information in-between views can be
calculated.

Pixel reprojection can therefore also be used as a tool to optimize shaders,
since reusing data between consecutive frames can accelerate real-time shading
[32] [33]. The spatio-temporal coherence of image sequences has been exploited
for several rendering systems [34][35] (e.g. for global illumination), and in general
pixel reprojection is studied in the field of computer graphics.

2.5.1 Summary

We have investigated related work in the light field area, and found that Light
field displays and renderings for light field displays are gaining interest, but still
a lot of research needs to be done to understand the problems and benefits that
arise with new technology.

By studying previous work of light field renderings, we find that by parametriza-
tion of the 5D plenoptic function we can reduce it to a 4D light field, which can be
represented by a 2D array of images. The light field can be optically reconstructed
using an array of microlenses, but first all subimages have to be rendered.

When previously implementing a Near-eye Light Field Display, the perceived
accommodation range and spatial resolution where examined. In this project we
re-implementing the physical Light Field Display with better alignment methods
(and thereby reducing the need of small rotational and translational alignment
changes done in software (see Appendices A, B, and C)). More importantly we
want to focus on rendering the light field using pixel reprojection, and evaluate
whether or not test subject are able to notice a difference in the image quality.
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Implementation and Methods

Our approach is to render only the four corner cameras of the subimage array, and
then interpolate between these four views in order to create all subimages of the
light field. We want to implement the interpolation of the subimages in the light
field with the use of pixel reprojection, while maintaining correct perspective and
shading, and investigate where short-comings of the interpolation might occur.

A user evaluation of the light field images will be conducted with the goal
of finding out if users are able to perceive a difference in the light field images
created with the full array of virtual cameras and our method using four cameras
and pixel reprojection.

3.1 The Light Field Display
The head mounted near-eye light field display is constructed using an array of
lenses (a Fresnel Technologies #630 microlens array) in front of a similar size
adjusted array of rendered images (see Figure 3.1). The #630 microlens array
has a focal length of 3.3 mm and a physical lenslet size of 1 × 1 mm, which
determines the subimage array size and the number of pixels in each subimage.

Based on research by Lanman and Luebke [7], each of the lenslets in the
microlens array can be seen as a simple magnifier for each of the subimages in
the array. Depicting the individual lenslets as a thin lens is though only an
approximation, since the lenslets are influenced by parameters of a thick lens;
curvature, its index of refraction and its thickness. Since we are working with
precision on micrometre scale, there are many sources of error, and therefore our
approach is based on a thin lens model, but certain parameters are determined
by observations (see Appendices A, B, C, and D).

The lens separation dl can be found using the Gaussian thin lens formula (see
Equation 3.1) where dl is the distance between the lens and the display (with
0 < dl ≤ f), f is the focal length, d0 is the distance to the virtual image, and de
is the eye relief.

1

f
=

1

dl
− 1

d0 − de
⇔ dl =

f(d0 − de)
f + (d0 − de)

(3.1)
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Figure 3.1: An observer sees the light field by looking through a mi-
crolens array in front of a screen, where each lens covers one subimage.
Rays from different subimages enter the pupil of the observer, and the
light field is experienced as one image, where the light samples dis-
perse throughout the array of subimages. When focus (vergence and
accommodation) is changed, the perceived image will be constructed
from rays from other subimages.

The lens separation dl is one of the parameters in the formula with the greatest
impact on the perceived image, since the microlens array should be placed at a
distance 0 < dl ≤ f . With f = 3.3 mm the lens separation should be dl ≈ 3.29mm
or in other words just below the focal length f = 3.3 mm. With an eye relief of
35mm and d0 set to 1 meter, then the lens separation dl = 3.2888 mm.

The lens separation was manually adjusted to the best possible alignment
dl ≈3.29mm using a 3D printed spacer (see Appendix A). Since the microlens ar-
ray has a thickness of 3.3mm, it had to be turned with the flat side up, which might
cause sources of error, since it is difficult to confirm the distance dl = 3.2888mm
(see Appendix B).

The magnification factor can be used to calculate the field of view, since it
tells us the magnification of the image on the screen to the image plane at d0.
With f = 3.3mm and d0 = 1000mm the magnification factor is M=293.42 (see
Equation 3.2 [7]), where w0 is the width of the virtual image at the plane of focus,
and ws is the width of the microdisplay.
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M =
w0

ws

=
d0 − de
dl

= 1 +

(
d0 − de
f

)
(3.2)

The FOV is either limited by the extent of the lens (lens-limited magnifier)
or it is limited by the dimensions of the display (display-limited magnifier). The
lens-limited magnifier is influenced by wl

2de
, whereas the display-limited magnifier

is influenced by Mws

2d0
, and since our FOV only can be limited by the lens (see

Equation 3.3), we can then calculate the FOV for each of our virtual cameras in
the array.

Field of view α (from the lens) per camera:

α = 2 arctan

(
∆ws

2dl

)
(3.3)

The FOV per rendered camera is then calculated to be 17.28°. When confirming
the FOV, we could though conclude, that a FOV of 19.86° gave a sharper image
(see Appendix C). In the end we decided to work with the FOV = 19.86°, and we
suspect the thin lens equation to be the source of error, since the approximation
is not good enough.

Since a microlens array can be interpreted as a set of independent lens-limited
magnifiers, the total field of view αt from the viewer’s eye can be found using the
array width Nlwl, and the eye relief de. Nl is the number of lenses, and wl is the
lens width. The total FOV αt should then given by [7]:

αt = 2 arctan

(
Nlwl

2de

)
(3.4)

The vertical FOV for 15 lenses is calculated to be FOVv = 24.2° and the horizontal
FOV for 8 lenses is FOVh = 13.0° (see Equation 3.4).

We can also calculate the maximum spatial resolution Np, by using the dis-
tance to the virtual image d0, the FOV α, the magnification factor M and the
pixel pitch p. When calculating with the used FOV = 19.86° and a pixel pitch p
calculated to be 0.012 mm for both vertical and horizontal axis (with a resolution
of 1280× 720 and the screen size 15.36mm×8.64mm).

Lanman and Luebke [7] state that the maximum spatial resolution Np is given
by:

Np =

(
2d0 tan(αt/2)

Mp

)
(3.5)

We get a maximum spatial resolution of 121x64 px (see Equation 3.5), but
since αt is expanded by the number of lenses Nl, and part of the rendered subim-
ages are repeated across some or all of the elemental images, this repetition
will reduce the perceived spatial resolution. Also, since the virtual cameras are
quadratic, we either will have to cut off the top and bottom to fill the 15x8 ratio
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of the screen, or we will show the complete quadratic view plus extra views of the
light field on the sides.

In ray optics focus appears at an image point, which is the point where light
rays from the scene converge. The point is on the focus plane when it is in perfect
focus. If the point is not on the focus plane the point will form a circle due to
the light converging either in front of or behind the image plane. This is called
the circle of confusion. Due to the circle of confusion the focus plane is the only
section of a scene being in focus. Since the size of the circle of confusion decreases
(approaching zero) when a point approaches the focus plane, then any circle of
confusion below the lowest level of detail that the system is able to distinguish
will appear to be in focus. On a screen the smallest distinguishable detail is the
pixel, so if the circle of confusion is equal to or smaller than to one pixel, the
point shows the highest focus resolution that it can.

The circle of confusion c′0 is therefore dependent on the optical characteristics
that determine how the size of the circle of confusion changes over distance d′0.
Additionally the circle of confusion depends on the screen since the circle can
not be smaller than a single pixel (see Equation 3.6 [7]). Note that the circle of
confusion being calculated is not the circle of confusion on the image plane but
rather on the focus plane, which changes over distance d′0.

c′0 = max

((
d′0 − d0
d0 − de

)
wl,

(
d′0 − de
dl

)
p

)
(3.6)

The depth of field is the area surrounding the focus point that appears to be in
focus due to the circle of confusion being smaller than the smallest distinguishable
detail (pixel pitch p). Two factors affect the circle of confusion: actual circle of
confusion from the lens, and the smallest detail possible due to pixel pitch (see
Figure 3.2). As long as the optical circle of confusion is smaller than a pixel the
point appears to be in focus. In our setup the depth of field stretches from 24.8cm
and continues to infinity.

3.2 Rendering the Light Field
Through the Unity engine, a virtual image is rendered for every lenslet that is
within the bounds of the microdisplay, so the light field will be perceived as one
holographic image with focus cues. Each subimage (or elemental image) is ren-
dered to a portion of the microdisplay; optimally 15mm × 8mm out of 15.36mm
× 8.64mm to utilise most possible of the spatial resolution (see Appendix C).
The center of a subimage should be calibrated to correspond to the center of the
lenslet, and the virtual camera array should form a grid that would ideally be
spaced with the same distance as that between each lenslet (1mm × 1mm). Any
spacing is usable, as long as the relationship follows the physical lens-spacing in
both axes.
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Figure 3.2: The red line shows the computed circle of confusion while
the green line shows the smallest detail (pixel) that is possible to show
due to pixel pitch p (see Equation 3.6).

Scaling the grid spacing in the scene essentially scales the virtual world size
accordingly. For our rendering engine we increase this grid by a factor of 1000
to move the world further away from the nearest possible camera clipping plane.
As already mentioned, object distances can be adjusted to correct for near- and
far-sightedness (see Section 2.1).

The light field is computed by extracting the two-dimensional slice from the
4D light field (see Figure 3.3). Since the perceived image is constructed from
pieces from several subimages, we need to render all these subimages in an array
corresponding to the dimensions of our microlens array.

The secure and reliable solution would be to render 15 × 8 different virtual
cameras, where each camera has the same alignment as the lenslets. We refer to
this as a light field image created with virtual cameras, we consider this the golden
standard and compare our approach to this method in tests. Our approach is to
render only the four corner cameras of the subimage array, and then interpolate
between these four views by using pixel reprojection to create the subimages
in-between the four corner cameras.

Our method can be outlined by several steps (see Figure 3.4):

1. First we render the four corner cameras to separate render textures. The
depth is saved in the alpha channel.

2. Then a shader calculates the in-between images on the x-axis on the top
and bottom row (note: the images between the top and bottom row are not
used and are, because the are empty, filled with an average colour of the
available information from the four corner cameras (see Section 3.2.2)).
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Figure 3.3: A 4D light field can be ssen as a collection of images of a
scene, where the focal points of the cameras are all on a 2D plane.

3. The x-axis result is saved to a render texture, and from that another shader
calculates the in-between images on the y-axis.

4. Again the result is saved to a render texture, and anti-aliasing is done using
super sampling in a third shader.

5. At last the image is scaled to fit the display output by a fourth shader.

3.2.1 Pixel Reprojection

Pixel reprojection involves the redistribution of information from a set of input
pixels to a set of output pixels. To capture an image of a scene consisting of
vertices in a 3D volume (world space) the vertices must be transformed to the
camera’s space (camera/eye space), where a 2D image with perspective distortion
within near and far plane can be generated (see Figure 3.5).

The interpolation of the subimages is accomplished by using pixel reprojection,
where the pixels from the corner images are copied to the corresponding place
in the interpolated subimage. To achieve this the pixel must be placed back to
the 3D world and be "captured" to the interpolated subimage (see Figure 3.6).
Here the view space must be projected to the image plane that will be displayed
on the screen. The view space renders through a camera centered in the origin,
hence view space is also referred to as camera space or eye space. The input
pixel energy must be redistributed to the output pixel based on the exact overlap
between these pixels. Not having a correct calculated image for one or more of
the four corner cameras is a good way of debugging, since flaws in the corner
views will always produce incorrect in-between views.
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Figure 3.4: Flowchart of the complete process. Note that the step
where the top and bottom row are calculated portions of the texture
that are not used have been grayed out.
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Figure 3.5: 2D projection: The vertices are transformed to eye space
where a 2D image with perspective distortion is generated. The ge-
ometry in the scene is projected onto the 2D plane, and using that
information the image can then be calculated.

The transformation goes back and forward between the projection plane (the
2D generated image) and the eye/camera space (the 3D scene with the camera
as the center). All sub-views (interpolated cameras) have an individual position
in world space and need to do a transformation between these spaces in order
to generate the interpolated subimages. If the projection plane for one camera
and the transformation in relation to the other camera is known, then the pixels
can be reprojected to the other camera. Finally the view space is projected onto
the 2D screen, where near and far clipping plane are obtained via frustum culling
(clipping), and the clip coordinates are transformed to the normalized device
coordinates.

Our transformation depends on the x-coordinates on both the projecion plane,
xp, and in eye space, xe, as well as the near clipping plane n and the z-position
ze in eye space (see Equation 3.7).

xp
xe

=
−n
ze

(3.7)

The clip coordinate system projects all vertex data from the view space to the
clip coordinates by comparing xclip, yclip, and zclip with wclip (which are [x,y,z,w]
in clipping space). Any clip coordinate vertex that is less than a certain −wclip

or greater than a certain wclip will be discarded, and then the clipping occurs.
The x-coordinate of eye space, xe is mapped to xp, which is calculated by

using the ratio of similar triangles (see Equation 3.8).

xe = −xp · ze
n

(3.8)
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Figure 3.6: Pixel reprojection shown betwen two cameras (CamA and
CamB). A pixel can be reprojected from a corner camera (CamA), to
an interpolated camera (e.g. CamB). The cameras have coordinates
in the 3-dimensional eye space, whereas the projection plane is 2-
dimensional.

Likewise the transformation from eye/camera space to the projection plane is
influenced by the position in eye space xe, the position on the projection plane
xp, the near clipping plane n, and the depth ze (see Equation 3.9).

xp = −n · xe
ze

(3.9)

We need the depth information of the scene to effectively interpolate between
the images. Using perspective projection the relation between ze and zn is non-
linear with high precision at the near plane and little precision at the far plane.
We need to account for the non-linear relationship (from vertex position in object
space to vertex position in clip space) to get correct distances and depth in a
normalized [0,1] range [36].

The transformation from the projection plane to the eye space requires the
depth from the eye space. The depth is saved from the corner cameras into the
(unused) alpha channel. It was found through experimentation that a 24 bit
texture (8 bits per channel) was not sufficient to give accurate depth information,
if, however, a 32 bit (float32) texture was used, the problem was negated.

Accurate depth is crucial for the pixel reprojection method to work. This also
means that no anti-aliasing can be performed on the four corner cameras due to
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the fact that while the smoother edges of a anti-aliased image are more esthetically
pleasing, they would no longer match the depth map, resulting in artifacts in the
reprojected images. Anti-aliasing can still be achieved by supersampling after all
pixel reprojection calculation are finished (see Section 3.2.4).

3.2.2 Filling the Gaps

There are cases where pixel reprojection will not yield a full image, but rather
an image with gaps. This is because in some cases objects will occlude other
objects in such a way that when the camera is being reprojected, information is
missing. The effect can be seen, when an interpolated image is comprised of the
pixels from two corner cameras, but because of the way the objects are placed in
the scene, there are spots where the depth and colour are unknown (see Figure
3.7). The size of the "shadow" depends on the distance from the camera to the
occluding object and the distance between the camera that captures the scene
and the pixel reprojected "camera".

The problem is that the information needed is not available, so there is no easy
way to find the correct information to fill the holes. The only easy solution would
be to include more cameras to the scene (5 cameras, one in the center and one
in each of the four corners, would eliminate many cases). When the information
is not available then the holes must be filled with something that hides them as
well as possible. One could use the pixels on the edge of the hole and use them to
fill it out. This could however lead to visible pixel "streaks". Another solution is
the use an average colour of the available information. In this project the missing
pixel values were filled by using the subpixel position where the pixel value from
the corner images were read, and then using the mean of these values, the pixel
value could be created. The result is that the hole is filled with colours that are
present in the scene and there are no pixel "streaks" (see Figure 3.8).

3.2.3 Shader Programming

The pixel reprojection requires a number of calculations to be made for every
pixel. Because of the large amount of calculations and the repeatability of the
calculations, a shader would be a good tool. In this case a cg shader was used in
the Unity Engine.

The interpolation is implemented as an image post-processing effect. Unity
works with image effects as scripts attached to a camera to alter the rendered
output, and the computation is done in the shader scripts [37]. The rendered
images can be accessed via render textures, which are created and updated at
runtime [38].

There are disadvantages of using a shader for the pixel reprojections. It is
easy to find out where a (known) pixel on one subimage would be reprojected to
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Figure 3.7: Example of a scene where the corner cameras (red and
blue) do not have the necessary information to create an in between
camera (green). The colour of the rectangles indicates what camera
can see them. Red indicates that the red camera can see it, blue
indicates that blue can see it and grey indicates that neither red or
blue can see it.

on another subimage. It is not as simple to go the other way since there is no
depth map for that subimage (because it is not one of the corner images).

One alternative to a shader is to use a compute shader. Compute shaders are
capable of both random read and write. In this project random write would make
it possible to make the pixel reprojection calculation from each of the corner pixel
to all subimages, and write the color value directly to the relevant pixel.

Our method runs in a loop, where all calculated pixel values start with an
output value of [0.0,0.0,0.0,2.0] (see Figure 3.9). If the depth is initially smaller
than 2.0 (which it will always be), then the color for the actual fragment position
is chosen from the camera with the lowest depth.

If the scene being captured by the cameras is placed at infinity, then all
subimages will show the same image. In this case any position on any subimage
should be filled with the colour from a corner camera at the same position. If,
however, the scene contains elements placed closer to the cameras, then there
will be a difference between the position of those points in the two projection
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Figure 3.8: On the left the hole is filled with the edge pixels and re-
peated until the hole is full. In the center the hole is filled by averaging
the pixel values in the corresponding position on the corner cameras.
On the right is the image as it should look.

planes. This distance is greatest at the near clipping plane and zero at infinity
(see Equation 3.9) where xe is increased in order to offset it to a new camera
position, the position xp would depend on the depth ze.

Knowing this and the two subimages’ position relative to each other, one only
needs to check all possibilities. Given any subimage position the same position
is checked in the camera subimages, then the neighbours are checked until the
maximum disparity is reached. Whether left or right neighbours are checked
depends on where the corner camera is relative to the pixel reprojected "camera".
The variables that affect maximum disparity is the distance to the closest object
(or rather the cameras near clipping plane) and the distance between the corner
camera and the point where the pixel reprojected "camera" is placed and the
cameras field of view. None of reprojected pixels are necessarily a perfect match,
but one should be the closest, and within 0.5 pixels.

It is important to note that the disparity is not one-dimensional but two-
dimensional since the images are two dimensional. Here the x- and y-axis can be
combined into one or the two axis can be calculated separately. The difference
between the "one step" and the "two step" approaches would be computation
time. If the "two step" approach is used, then one axis would be calculated
first and saved to a texture, after this the other axis would be calculated. If the
"one step" approach is used, then the number of times that values have to be
written to textures would be reduced. One would, however, need to consider the
added calculation (and logic) necessary to find the correct pixel in one step (see
Appendix G). The two step approach was used in this project due to debugging
purposes where errors would easily be located because the different stages of the
program would be inspected separately.

The sub-pixel offset needs to be corrected since the subimages are a result
of (up to) all four corner cameras. The offset will be slightly different for each
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Figure 3.9: Image reprojection flowchart
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camera due to their different positions. The closest pixel match is up to 0.5 pixels
off. This offset is known. By subtracting the closest pixel match with the offset
a point is found that is close to be a perfect match. In our setup this point is
between two pixels a corner camera image, and then a color value is found by
interpolation.

The pixel values lend themselves quite well to interpolation, but this is not the
case with the depth map. The depth map can easily be interpolated on surfaces.
The edges will, however, be smudged since the the difference between the two
depths is so large. The result is three neighbouring pixels where one will have
the depth of the background, one will have the depth of an object and the middle
pixel will have a depth that is somewhere in between. The simple solution is not
to interpolate the depth while interpolating the colour values. This will result in
an image where the pixel values and depth values do not match completely but
are quite close to correct. The downside is that the pixel values are interpolated
while the depth isn’t, meaning that the edge of an object can go beyond the edge
in the depth map, effectively spilling colour to the neighbouring objects.

The interpolation of the corner images was split into three steps (before these
steps the depth map is saved to the alpha channel of the corner cameras). The
first step interpolated the subimages on the x-axis between the corner images
(see Figure 3.4). The result was an image where the top and bottom row were
filled with subimages. The rest of the image was filled with the mean of the colour
values from the corner cameras at that subimage position. This is because nothing
was there and it was therefore seen as a hole (since information was missing). The
next step interpolated the values from the two rows of subimages and thus filled
the remainder of the image with subimages. Because of the two step interpolation
special care had to be made to avoid looking beyond the boundaries of the images
in question. This is achieved by checking that the position is within the image,
but after this step the sub pixel correction is performed. This process utilises
linear interpolation of two pixels. If this interpolation is performed sufficiently
close to the edge of the image, then the interpolation will be made between one
pixel that resides on the images and one that does not. The problem was solved
by "clamping" all textures, clamping means that the edge pixels will be repeated
if a position is requested that is beyond the boundaries of the image. This is
however not the case in the texture that has the top and bottom row filled with
subimages. The edges of the texture are clamped but this is not the case between
the two rows, thus the edge of the subimages facing the middle was repeated to
achieve the same effect as the edges of the texture.

The two previous steps were performed on textures that were four times larger
than the output (screen) size because of super sampling. The next step reduces
the size by taking the mean of several pixels, thus minimising the "staircase"
effect.

The last step in the interpolation was scaling. The reason for this step is that
the previous steps are relying on that each subimage has a resolution in whole
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pixels. This is, however, not the case as one millimeter on the screen occupies
≈ 831

3
pixels/mm, but due to scaling this number was ≈ 801

3
pixels/mm. The

subimages had therefore a size of 81px×81px and were scaled down to size in the
scaling shader.

3.2.4 Anti-aliasing

When rendering to a near eye light field, anti-aliasing must be used [7]. The prob-
lem with paring pixel reprojection and anti-aliasing is that anti-aliasing smooths
out hard edges, but pixel reprojection requires the pixel colours to stay on the
pixel position in order to have an accurate depth for that point and still maintain
the correct colour. The depth can not be interpolated since that would result
in edges being averaged between objects that are not at the same depth. This
would result in pixels where the depth lies between objects in the scene effectively
creating new objects. This would not show up in the corner images, but as soon
as the camera view is moved from the original position.

The solution is to apply anti-aliasing after all pixel reprojection is completed.
To achieve this super sampling is needed where an image with a resolution much
higher than the intended output image is rendered, then the image size is reduced
to its intended resolution by combining the pixel values of the high resolution
image.

In this project a 4× (double width and double height) resolution image was
used. When reducing the size, several methods can be used. One example is
a 2 × 2 box where the mean of a box of 2 × 2 pixels is found and used in the
lower resolution image. This will improve the look of the edges by reducing the
"staircase" effect. The effect is, however, still strong. Another method is to use
a 4× 4 box where the outermost ring will overlap with the outermost ring in the
neighbouring pixels [39]. In this project we used the 4× 4 box to obtain a higher
quality image.
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Experiment

4.1 User Test
This experiment aims at statistically comparing if subjects can discriminate be-
tween the image created with virtual cameras (VC), created with 120 (8 × 15)
virtual cameras in Unity Engine, and the interpolated image (IC), created with
our pixel reprojection method. The 120 camera image was created by capturing
the camera views to individual render textures (162 px × 162 px) and combin-
ing them to a larger render texture that would fit 15 × 8 subimages, these were
super sampled and scaled to the appropriate screen size. Essentially the same
method as when interpolating the images just without the interpolation. 5 differ-
ent scenes were tested (see Appendix F) in a total of 10 different image tests (5
shown with the light field display and 5 single-image (position [4;8] out of [8;15])
on a computer monitor.

The 5 different scenes were designed to test different rendering scenarios, and
how the difference in geometry influence our rendering method. The different
scenes include various numbers of objects, shapes, sizes and textures.

1. Scene with many objects occluding each other

2. Scene with few objects occluding each other

3. Scene with semi-few object occluding each other

4. Scene with curved texture

5. Scene with extreme occlusion (objects 12 cm away from the camera).

Image 5 was intentionally designed to fail the test. The image was created to
push the boundaries of the method with the presumption that the test partici-
pants were able to notice a difference between IC and VC. It is also important
when designing an experiment to account for participant frustration. If the test
participants are never sure if their answers are correct or not, they can get frus-
trated, and decide that the task is impossible and then start answering randomly
[40]. This would bias the results and should particularly be avoided.

26
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4.1.1 Test Setup

The test took place at Universitarium, an experimentarium in Aalborg organised
by Aalborg University, UCN, Tech College, and Aalborg Municipality. Universi-
tarium is targeted at young children but they are accompanied by adults. Both
adults and children took part in the test.

Results from 34 test participants are in the experiment, since some samples
have been removed due to test participants having bad sight. Since the objects
in the scenes were within 12 cm to 6 m, then test participants with nearsight-
edness were fit, but participants with farsightedness would bias the results, since
farsightedness does not allow participants to accommodate on objects that are
close. Therefore most test participants had normal vision or corrected to normal
vision, and a few test participants were in the (glasses/contact lenses strength)
range -1.75 to +0.50, but do not have corrected to normal vision. All samples
were independent. 16 female and 18 male participants attended and their age
ranged from 9 to 67 years (some participants refused to answer the age question).

The test participants were asked to sign a consent form (if they were underage,
their guardian would sign). They were explained that they would be shown a
reference image and then two other images - one of which was the same at the
reference image - and that they should identify it. They were explained how to use
the controller that they used to switch between the images. They were given the
choice to put headphones on for auditory feedback, when they pressed the same
button more than once or when they tried to choose the reference image. If they
declined, then the facilitator would give the feedback. They first took the test
with the light field HMD, and after that they took the same test where the center
subimage of the light field was shown. Finally they filled out a questionnaire.
The order of the images was randomised.

Controller

An xBox 360 controller was used as an input device for the test participants. The
screen was black when they took the HMD on. They would then start the test
by pressing the A, B, X or Y button, and the reference image would be shown.
They could then press the left trigger to view one image or the right trigger to
view the other image. They could also press the A, B, X or Y button to view the
reference image again. They could view the different images as many times as
they saw fit. When they had made a decision they would press both bumpers to
choose the currently shown image (see Figure 4.1). If the current image at that
time was the reference image, the controller would vibrate to indicate that the
image could not be chosen.
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Figure 4.1: The controller used as the input device for the test. The
same image was used to explain the controls to the test participants.

4.1.2 Two-interval Forced Choice Test

A forced choice test is one that requires the test participants to identify a stimulus
by choosing between a finite number of alternatives. We chose the 2-interval
forced choice test where test participants must choose one of two alternatives with
no neutral alternatives listed. The test participants were asked to solve several
matching-to-sample tasks, where the standard stimuli (the sample or reference) is
shown together with two other stimuli (the comparison stimuli), and then the test
participants are requested to choose the comparison stimulus that most closely
matches the reference.

The experiment was conducted as a delayed matching-to-sample, where the
test participants were first shown a reference image, and then after the sample
was removed two stimuli were presented sequentially. The inter-stimulus interval
(ISI), which is the break between two stimuli, should be minimum 250 ms to help
prevent temporal integration and masking effects. The time spent looking at each
stimuli, the inter-trial interval (ITI), should be longer than the ISI [40].

With two possible choices shown sequentially this is referred to as a two-
interval forced choice (2-IFC) procedure. If the test subjects can do no better
than a random guess, then the test has been passed, meaning that we can con-
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clude that the test participants experience no difference between VC and IC.

The 2-IFC tasks are:

1. The reference image is shown.

2. Two visual stimuli are presented in random order (visual stimulus and ref-
erence image can be revisited as many times as the test participant desires
and the delay interval ISI is properly implemented).

3. The test participant chooses one of the two visual stimuli.

This test is passed if the probability for test participants to incorrectly identify
IC as VC is greater than 19% with a confidence level of 95%. This corresponds to
the commonly used threshold of test participants guessing incorrectly minimum
25% of at least 100 trials and complies with true hypothesis testing where the
probability of incorrectly rejecting the null hypothesis is less than 5% [41].

The probability mass function for the number i of incorrect answers [42]:

f(i|n, pnull) =
n!

x!(n− i)!
px(1− pnull)n−x (4.1)

where pnull is the probability of IC incorrectly identified as VC, i is the number
of incorrect answers and n is the number of trials. From the probability mass
function we can find the critical number ic which is the minimum amount of test
participants that need to incorrectly identify the IC image to be the best match
to the the reference image (VC) [42].

ic(n, pnull) = min{i|
n∑

j=i

f(j;n, pnull) < 0.05} (4.2)

With 34 test participant the critical number ic = 11.

4.1.3 Performance Test

The implementation of pixel reprojection made in this project was made in order
to see the possibilities (and limitations) of this approach. It was, however, not
optimised and thus the performance should not be comparable with alternative
methods, a performance test was nonetheless performed. The test is a comparison
of two methods to render light fields; one is pixel reprojection, the other uses 120
cameras in the Unity Engine. The image size and position on the viewport/screen
is adjusted such that it matched the subimages in the other method (making it
compatible with the HMD). We refer to this method as "Direct to Screen" (DS).

The data collected is the time it takes to render a frame, 1000 samples are
collected. The frame rate will in some cases be low on start but will stabilise.
Data capture is started after 100 frames to avoid these outliers. The data is stored
in an array during the test and written to a file after all data is captured.
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Results and Analysis

The results from the experiment show that with ic = 11 at least 11 of the test
participants would have to choose our image, IC, to match the reference image,
VC, in order for the test to be passed. With 10 different image tests (5 shown
with the light field display and 5 on a computer monitor) we see that image 1-
4 passed the test (see Table 5.1 and Figure 5.2). When looking closely at the
images (see Figure 5.1), we can find small mistakes in the IC images, and it is
especially easy to notice the difference between VC and IC on image 5. Image 5
was designed to show the inadequacy of our method. Holes in the interpolated
images are created when occluded objects need to be shown on the screen, when
this happens no information is available and a hole is created. We expect our test
participants to notice the difference in IC and therefore will choose VC to match
the reference image (VC).

Figure 5.1: Image samples from the center virtual camera of the five
different scenes (position [4, 8] out of [8, 15]). When looking closely we
can see small mistakes in the IC images, and especially Image 5 have
a large difference.
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Figure 5.2: When 11 or more test participants choose IC, we can
conclude that the test participants can do no better than a random
guess, and therefore that they do not see a differenec between VC and
IC.

In our setup with 15 × 8 cameras (120 cameras total) and a inter-camera-
distance matching our microlenses (1mm×1mm) we were pressing the boundaries
of the method when objects were only 12 cm away from the cameras. Areas
(holes) that are invisible to the corner cameras (the occluded regions) becomes
larger when the objects are close to the camera, but small problems can occur at
any distance. With higher disparity, the occlusion will also be more extreme.

With only 6 test participants choosing IC for image 5 the critical number
ic = 11 was not reached and therefore the tests failed. We can then conclude
that our method is inefficient when we have extreme occlusion, since participants
are able to notice the difference. When subtracting IC from VC and taking the
absolute value, we can see the difference between the two images (see Figure 5.3).

We have found the difference between all VC and IC images (see Appendix
F), and analysed the pixel difference for the red, green and blue colour channel
individually. A complete pixel match will be shown as black [0], and the pixel
differences is normalized and therefore in the range [0;1] (for our test images our
difference is between [0;0.6] (see Table 5.2). The worst maximum pixel value is
found in image 5 in the green channel, and as already mentioned, we have extreme
occlusion in image 5, which is also why this is the image with the worst result.
We do though also find relatively high peak values in image 3, where we have a
maximum difference value of 0.4471 in the green channel (in other words there is
a pixel value difference of 44.71%). But since the maximum values are only peaks
of the whole image, it is also interesting to look at the overall difference in the
images.
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Image no. ilfdisplay LF Display imonitor Monitor
Image 1 12 PASSED 19 PASSED
Image 2 21 PASSED 18 PASSED
Image 3 16 PASSED 11 PASSED
Image 4 15 PASSED 16 PASSED
Image 5 6 FAILED 6 FAILED

Table 5.1: Image 1 to 4 all have values equal to or above the critical
minimum ic = 11, and therefore we can conclude, that the test partic-
ipants were not able to notice a difference in the images. Image 5 did
not pass the test, since only six test participants chose our IC image,
and this is below ic = 11.

Image no. Min (R) Max (R) Min (G) Max (G) Min (B) Max (B)
Image 1 0 0.3569 0 0.3725 0 0.3569
Image 2 0 0.3686 0 0.3804 0 0.3725
Image 3 0 0.3922 0 0.4471 0 0.3882
Image 4 0 0.2157 0 0.3020 0 0.2902
Image 5 0 0.5451 0 0.6431 0 0.4549

Table 5.2: The minimum value is always 0, meaning that for all pixels,
the smallest difference we find is equal to zero, and thereby an exact
pixel match. The maximum value differs for the different images, with
the highest peaks in image 5. That signifies that some pixels are not
well reprojected, and the result is that some pixels of IC does not
match VC.

The mean pixel value of the difference image will as previously mentioned be
0 (completely black) if we have an exact pixel match for all pixels in the image
(range is still normalized to [0;1]). In general we see the largest mean in image
5 and the smallest mean in image 4 (see Table 5.3). A low mean difference does
though not necessarily indicate that more test participants will choose IC, but it
gives us a general idea of how similar/different the images IC and VC are.

We can see that our method has a small image difference, and the difference
is largest around the edges of objects (see Figure 5.4), and/or when we have
extreme occlusion and data simply is not available. We can also see small pixel
value differences in textures, but in general we have many black or dark pixels,
and thereby a good pixel match. We see that the pixel value difference is not
equally spaced on the whole image, and therefore we can also look at the pixel
difference median (see Table 5.4).

The median value of 0.0078 can be seen repeated several times, and is equiv-
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Figure 5.3: Example of the shortcomings of our pixel reprojection
method; When objects are occluded from the corner cameras they can
not be reprojected and therefore we are missing information. Left
image shows what the image should look like. Center image shows our
method with mean corner camera colors used for filling holes. Right
image shows the difference. NOTE: Picture Image 5, Difference has
enhanced brightness and contrast for printing

alent to a pixel difference of 0.78% or 2 in the range [0;255] (since we have an
8-bit image per colour channel). The median is in general low, meaning that the
difference of the images for minimum half of the pixels have a color change of
maximum 1.18%. As already mentioned the pixel value difference is not equally
spaced on the image, and colours used in the scene will affect the mean and
median difference of the images: were dark and bright colours meet (especially
edges and occlusion), we can expect to see a larger pixel difference. Our pixel
matching is good, though not perfect, but since the test participants seem not to
notice small pixel displacement but rather notice larger areas of difference (e.g.
extreme occlusion), we can conclude that pixel reprojection is a sufficient method
for interpolating views in-between corner cameras. The results indicate that the
method is satisfactory for both light field renderings and single-image renderings
shown on a screen. The test participants were in general not able to see a dif-
ference between our image IC and the 120 camera image VC, but when objects
get really close to the cameras, shortcomings of our method will be noticed, since
we are missing camera information due to extreme occlusion. In our setup the
extreme occlusion happens when objects are app. minimum 12 cm away from the
camera(s), but since our depth of field stretched from 24.8 cm and continues to
infinity, then we have created a scenario that in all cases is inadvisable.
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Image no. Mean (R) Mean (G) Mean (B)
Image 1 0.0133 0.0121 0.0155
Image 2 0.0098 0.0091 0.0116
Image 3 0.0150 0.0133 0.0164
Image 4 0.0099 0.0084 0.0089
Image 5 0.0236 0.0245 0.0215

Table 5.3: A low or high mean difference does not necessarily indicate
whether or not test participants will choose IC, but it gives us a general
idea of how similar/different the images IC and VC are.

Figure 5.4: Example of the short comings of our pixel reprojection
method; edges and textures can have a small pixel value difference.
NOTE: Picture Image 5, Difference has enhanced brightness and con-
trast for printing

5.1 Performance Test
The performance test consisted of two parts. One compared the super sampled
pixel reprojection to the DS method (see Section 4.1.3). The other compared DS
to pixel reprojection without super sampling.

The test was performed on an Asus K53SV with memory upgraded to 16GB.
Mean render time of super sampled pixel reprojection (mean 0.1870 sec, sd

0.1577) was significantly larger than DS (mean 0.0184 sec, sd 0.0027) (twosample
t-test, p = 2.2× 10−16).

Mean render time of (non super sampled) pixel reprojection (mean 0.1794
sec, sd 0.1511) was significantly larger than DS (mean 0.0184 sec, sd 0.0027)
(twosample t-test, p = 2.2× 10−16).

The difference between pixel reprojection and DS is around a factor 10. The
DS method has a quite high frame rate of ≈ 54.3 fps and could be considered
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Image no. Median (R) Median (G) Median (B)
Image 1 0.0078 0.0078 0.0118
Image 2 0.0078 0.0039 0.0078
Image 3 0.0078 0.0078 0.0118
Image 4 0.0078 0.0039 0.0039
Image 5 0.0078 0.0078 0.0078

Table 5.4: Table with the median difference value of the three channels
in the five images.

usable, although rendering is only performed for one eye. The pixel reprojection
method on the other hand has a completely unusable framerate of ≈ 5.35 fps,
and super sampling doesn’t appear to a considerable influence on the frame rate
(≈ 5.57 fps without super sampling). Note that all renderings were made for one
eye, and stereo should be used in any production model.



Chapter 6
Conclusion and Future Work

6.1 Conclusion
Our approach was to render only the four corner cameras of the subimage array,
and then interpolate between these four views in order to create all subimages of
the light field. We have implemented the interpolation of the subimages in the
light field with the use of pixel reprojection, while maintaining correct perspective
and shading, and investigated where shortcomings of the interpolation occur.

4 out of 5 images passed the test, meaning that test participants were not
able to notice a difference between the image created with 120 cameras and our
image created with 4 cameras and pixel reprojection. The results were applicable
for both images rendering for a light field display, but did also pass the test on a
computer monitor.

Image 5 was deliberately designed to fail the test in order to find the short
comings of the pixel reprojection method. In our setup we have problems when
points are invisible to the corner cameras, and we therefore are missing informa-
tion to create the in-between views. Missing data creates noticeable gaps (extreme
occlusion) when objects are e.g. approximately 12 cm away from the camera(s),
but since our depth of field stretched from 24.8 cm and continues to infinity, then
we can argue that this scenario in all cases is inadvisable. In other words, the
general problem is not extreme occlusion but points that are invisible from the
corner cameras, but should not from in-between "cameras". Since our in-between
views are created only from the corner cameras, then our in-between views will
have gaps whenever the corner cameras have invisible points.

We have successfully re-implemented a head-mounted light field display us-
ing a distance-adjusted array of microlenses, and improved upon the calibration
methods of the physical design of the HMD. We have focuses on pixel reprojec-
tion through shader programming and found that pixel reprojection can be used
to lower the amount of cameras needed to render the 4D light field. There are
several benefits of using a light field display over a traditional HMD; in partic-
ular the light field can avoid the vergence-accommodation conflict and can also
correct for near- and farsightedness. Development of light field displays and effi-
cient rendering of the light field is highly desired, and the technology is gaining
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interest in several areas. There are though still limitations related to the tech-
nology. Our light field display with a resolution of 1280px×720px and the screen
size 15.36mm×8.64mm (0.012 mm/px), we get a maximum spatial resolution of
121× 64px and each subimage size under each lenslet is only ≈ 801

3
pixels/mm.

In other words, the resolution is low and the quality is still not good enough to
be usable for more than prototyping. Furthermore the frame rate achievable with
pixel reprojection is too low to be usable.

6.2 Future Work
Future development would require higher resolution displays, but we can conclude
that our pixel reprojection method is applicable on higher resolution images. With
a pixel offset error of maximum 0.5 px, the pixel error percentage will only lower
with higher resolution images.

We have shown that the pixel reprojection method creates acceptable images
for light field renderings, but the method needs optimization before being ap-
plicable in real-time scenarios. The performance test showed that the framerate
(≈ 5.35px) is far from usable, and needs to be drastically optimized before being
useful.

6.2.1 Performance

Using pixel reprojection to render light fields is comparable in quality to the DS
method. This can though not be said about the performance, if pixel reprojection
is being used in a realistic user scenario improvements have to be made.

Currently pixel reprojection is too slow to be usable in a real time scenario.
This project sought to test the possibility of using pixel reprojection to render
light fields. Shaders were used in order to utilise the GPU, but the code is not
optimised. If pixel reprojection is to be a feasible method to render light fields,
then the issue of performance needs to be addressed.

When pixel reprojecting the color value of fragments is found by testing a line
of pixels of the corner cameras. Currently these pixels are tested one by one. To
decrease render time one could use a method to find the correct pixel without
using brute force.

6.2.2 Occlusion and Gaps

Extreme occlusion is one of the shortcomings of our method, since the experiment
showed that test participants notice when gaps are filled with a mean corner
camera value due to no real camera information is available. This problem could
be solved by using extra corner cameras eg. a fifth camera could be placed in the
middle of area covered by the four corner camera, and this camera would in many
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cases contain some of the unavailable information, that none of the four corner
cameras can see. Rendering more cameras than four (but less than eg. 120), is
easy to implement in this method, and four cameras is just an example of how
few cameras we can be used to create fairly good results.

6.2.3 Stereoscopic Rendering

Stereoscopic rendering simulates the natural stereoscopy of the human eyes by
rendering two images representing the view of each eye. For this project there are
two possibilities, squeezing the two views in to a single image and let the HMD
stretch the images out and display them on the correct display. The downside is
that the resolution is effectively cut in half, considering how low the resolution
is for each lenslet, another solution is needed. The alternative is the use quad
buffering, where the left and right image is rendered in full resolution.

Adding stereo to the HMD is a relative simple task, but is crucial for making
a usable HMD.



Appendix A
HMD Construction

The HMD was constructed using a plastic VR headset for mobile devices, the
screens from a Sony HMZ-T2, a Fresnel Technologies 630 microlens array and
custom designed 3D printed parts (see Figure A.1).

The Fresnel Technologies 630 microlens array is a rectangular conventional
lens array that comes in an overall size of 152 × 152 mm. It has a thickness of
3.3 mm and has 100 lenslets per sq. cm, with a lenslet spacing of 1 mm.

Before laser cutting the microlens array in smaller pieces that could fit in front
of the screens (app. 1× 1.5 cm) the lenses where checked for optical defects (see
Figure A.2).

The precise optical center of the lenses in the array was not known. We knew
that the distance between the optical center of the lenses and the screen should
be the optimal distance calculated (see Section 3.1), but this distance would be
close to impossible to achieve. The distance should be 0 < dlf , where the lens to
screen distance is dl and the focal length of the lens is f = 3.3.

The problem was solved by 3D printing spacers of different sizes (see Figure
A.3). The spacer that was just small enough to produce a sharp image was used,
due to the fact that the calculated dl was so close to the focal length of the lens
(see Section 3.1). This however meant that dl was close but not the calculated
value dl = 3.2888 mm.
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Figure A.1: The headset with the Sony HMZ-T2 screens, the Fresnel
Technologies microlens array and custom designed 3D printed parts

Figure A.2: The lenslet quality was checked before cutting out the
pieces used in the HMD. From left we see a good lens, a lens with a few
surface scratches, and a lens where the curvature has been destroyed.

Figure A.3: 3D printed parts from left: Eye relief distance adjustment,
vertical slider (to allow for vertical adjustment of the screen) and the
lens separation (dl) spacer. The lens separation spacer was printed
several times and the best fit was chosen.



Appendix B
Lens Calibration

The lenslet array must be placed in front of the screen so that the lenses and the
subimages align. This is especially true for the rotation since the position of the
subimages can easily be adjusted in the shader. This is, however, not the case
for rotation.

The alignment was achieved by placing a microscope directly above the screen.
The image from the microscope was then sent to a Processing sketch that placed
a (green) grid on top of the sub-images (see Figure B.1, top).

The image will appear distorted if the rotation alignment is off by several
degrees (see Figure B.1, center). If the alignment, however, is close to correct the
image will appear correct.

The lenslet array was placed on top and another grid (red) was shown that
had the same position and rotation but was scaled to accommodate the larger
squares (see Figure B.1, bottom). The lenslet array was held in place by sticky
fix while fine tuning the position and rotation. Once the lenses aligned with the
grid, they were glued in place with epoxy resin.
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Figure B.1: Aligning the subimages with the lenslets. Top Image
shows a grid superimposed over the subimages in the screen. Middle
image shows lenses misaligned with the subimages. Bottom image
shows the correct alignment of the subimages and lenses



Appendix C
Confirming Field of View

dl was used to find the field of view of the images on the screen and, by extension,
the field of view of the cameras in Unity Engine. A mismatch of these fields of
view would result in erroneous perception of depth when looking at the light
field. To combat this problem the field of view was measured with the chosen 3D
printed spacer.

The image of the screen was changed so that one subimage was one colour
(green) and the rest of the screen was another colour (red). The lens above the
green subimage was surrounded by black tape to avoid confusion (see Figure C.2).
The screen was then placed directly under a camera so that the lens in question
was in the middle of the image coming from the camera. This alignment was
achieved by sending the image from the camera to a processing sketch that has
a small circle overlaid in the center of the image. The position of the screen was
marked, at this point the image from the lens was completely green. If the screen
was moved to the left or right (or up/down), at some point the image would
change from green to red. Between the two extremes the edge between the two
colours would appear. The point where this line was in the center of the lens
was marked on the left and right side (see Figure C.1). If the distances between
the edges and the center were not the same, then the alignment of the subimage
relative to the lens was off. This was corrected until the distance was the same on
both sides. Once this was achieved, the length was measured. With this length
and the distance between the camera and the lenslet array the angle could be
calculated. As expected the angle was close but not equal to the field of view
calculated and the cameras in Unity Engine adjusted accordingly.

To confirm that the field of view measured was correct, a test was devised.
Two ellipses were placed in the scene, one was in the center of the light field, the
other was placed next to the first at an angle. If the ellipses parent object was
scaled, the scale and position of the ellipses would change but they would appear
to have the same position and scale in the light field but the depth would change
(see Figure C.3). A camera was looking down at the screen with the same angle
as the second ellipse relative to the center of the light field. If the ellipse appeared
to be in the same place when the parent object was scaled, then the FOV was
correct (see Figure C.4).
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Figure C.1: The camera is moved to find the FOV of the subimage.
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Figure C.2: Finding the FOV of the subimages.
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ᶚupper

ᶚlower

Figure C.3: Confirming that the FOV is correct; if Θlower and Θupper

are the same, then the angled camera will see both red spheres. If
the angles are not the same, it won’t see both spheres (it will follow
another line e.g. the red line).
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Figure C.4: Confirming the field of view of the light field; the camera
should be able to see the thin green sphere, when the camera looks
straight down, and the thin red sphere when the camera was angled
with θ. When moving the spheres closer or further away in the virtual
scene and scaling the spheres accordingly, the spheres should look
consistent on the light field display.



Appendix D
Virtual Scaling of the Screen Size

When the software was at a stage where a light field could be produced, it was
discovered that the image wasn’t sharp. It was found that if the size of the
subimages was scaled down the image became sharp. First thought was that the
implemented scaling was off, but this was not the case (see Figure D.1). Another
possibility is that the lenses are not the advertised 1mm× 1mm [43] but slightly
smaller (at least the small section that was used for the hmd).

Figure D.1: Scaling of the screen size. Scale x-axis is the size of the
screen. If the screen size is set to be larger than real life then the
subimages will be smaller than 1mm × 1mm. The reason for this
slightly backwards approach was the fact that the adjust was already
implemented and could be used to solve this problem.
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Appendix E
Initial Experiment

An experiment was done early in the project. The experiment took place at
the Create building at AAU (Rendsburggade 14, Aalborg). The test was very
similar to the test used in this project, but the problem with it was that the test
participants were not given the option to look at the reference image after they
had proceeded to view the other images. This meant that they had to remember
the reference image with which many had trouble with. Another test was therefore
devised where the test participants had the option to view the reference image at
any time. Below are the results of the first test. Note that in this test when there
were occlusion holes, they were filled with black, rather than an averaged colour
from the corner cameras. Super sampling was not utilised in this test (see Figure
E.2). The images used in this test had different textures than the ones used in
the final test (see Figure E.1). The change was made to fit with Univeritariums
theme which was space exploration.

There were 40 test participants (8 female, 32 male), age ranging from 21 to
28 years, samples were independent. With 40 test participant the critical number
ic = 13. The 2-IFC tasks were:

1. The reference image is shown.

2. Two visual stimuli are presented in random order (visual stimuli can be
revisited as many times as the test participant desires and the delay interval
ISI is properly implemented).

3. The test participant chooses one of the two visual stimuli.

Image no. ilfdisplay LF Display imonitor Monitor
Image 1 25 PASSED 13 PASSED
Image 2 20 PASSED 17 PASSED
Image 3 15 PASSED 17 PASSED
Image 4 18 PASSED 11 FAILED
Image 5 8 FAILED 2 FAILED

Since reference image can not be revisited, this experiment might test memory
instead of similarity between VC- and IC-images.
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Figure E.1: Image samples from the center virtual camera of the five
different scenes (position [4, 8] out of [8, 15])

Figure E.2: Example of the short comings of our pixel reprojection
method; edges are off by 1 pixel and occlusion happens at an extremely
close distance (12 cm). NOTE: Pictures of Difference have enhanced
brightness and contrast



Appendix F
Image Difference

We have evaluated the pixel colour difference by subtracting IC from VC and
taking the absolute value. A complete pixel match will be shown black, and the
difference can be seen for the RGB-values (see Figure F.1). The compared images
have the same resolution as rendered for the light field display (1215× 648px).

Figure F.1: Left: VC light field. Right: The image difference (the ab-
solute value of subtracting IC from VC). OBS: Brightness and contrast
have been enhanced for printing.
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Appendix G
One Step Interpolation

In this project a "two step" approach was used when interpolating between the
corner cameras, where the first step was to interpolate the top and bottom row
(the x-axis). After this the pixels in between the two rows were interpolated (the
y-axis). These two steps can be combined to one step. The interpolation works
by starting from its current subimage position. This position is read from the
corner camera, the pixel is reprojected. If, after the reprojection, the position is
within 0.5 pixels, the correct pixel is found. Then the next step can begin (sub
pixel offset) if not then the next pixel is tested. In the "two step" approach this
pixel would be offset by one on either the x- or y-axis (see Figure G.1). In the
one step approach a direction has to be calculated. This is done by using the
subimage index on the x- and y-axis. From this and the known position of the
corner cameras the slopes between the cameras and the subimage of interest are
found.

Figure G.1: Left: Direction of pixel lookup in the two step approach.
Right: The two steps combined to one step.

When using this method it is important to consider the slope when moving
to the next pixel; if the slope is small one should move in the x-axis, if the slope
is larger than 1 the y-axis should be used (see Figure G.2). If the wrong axis was
used then each increment would be more than one pixel and would in many cases
result in skipping the correct pixel.
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Figure G.2: Difference in small and large slope. One had to increment
with the correct axis.
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