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Abstract

Two efficient programs for optimizing perfect plastic steel plates and reinforced concrete
plates, subjected to static, in-plane forces, are developed. The first program deals with op-
timization of steel plates by developing a submodeling technique with the purpose of veri-
fying critical stress spots caused by numerical errors in the finite element method. The
submodeling approach is possible to conduct as a result of the implementation of an efficient
self-developed script in ANSYS. The second program concerns load and material optimiza-
tion of reinforced concrete structures. The reinforced concrete program is capable of dealing
with different plate geometries, based on the restriction of nonlinear yield criterions with

regard to reinforced concrete and concentrated reinforcement.

Both programs concern on determining the load bearing capacity of plate structures based
on an interaction between a stress-based finite element method and the lower bound theo-
rem. Stress-based plate, beam, and bar elements are introduced as a part of the finite ele-
ment method. The lower bound limit analyses are conducted by nonlinear optimization
algorithms based on the interior point method, which leads to a scalar load multiplier «
defining the load bearing capacity. For enhanced optimization performance, the nonlinear
yield criterions in both programs are reformulated to second-order cones.

Finally, the efficiency of the submodeling technique to verify critical stress spots is demon-
strated by means of an example of a steel plate subjected to in-plane forces resulting in a
geometrical stress singularity.

The efficiency and versatility of the reinforced concrete program is presented by examples
of an end wall and casted u-stirrups in the load optimization, whereas a material optimiza-
tion example resulting in material reduction is presented. When considering the end wall in
the load optimization case, it is seen that a 32.5 % higher load multiplier is obtained in
comparison to the stringer method when the load is applied in the reinforcement. For the
load case where the load is applied in the concrete a 15.9 % higher load multiplier is obtained
in comparison to the approach in [1], which is a result of the implementation of nonlinear
yield criterions for both the plate element and reinforced bar elements. In the material
optimization, the total reinforcement volume is reduced by 30 % when applying the limit
load, and this shows the potential of the numerical approach in the thesis.
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Notation

Mathematical symbols
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Rectangular matrix or square matrix
Column vector, row vector

Latin Symbols

A

bi

maQqQws

Sk T

I I

VN;vm:tabs

Senl

== 5

pI; pv

cnc,JcQEU:U@Q

»

<

Wi

area of element

coordinate difference in x- and y-direction for element side ¢

number of outer boundary sides
constraint matrix

strength vector

direction vector

number of elements

Compressive strength in concrete
yield condition

tensile strength in concrete

yield strength

constraint function

element equilibrium matrix

assembled system equilibrium matrix, Hessian of Lagrangian

strength parameter

length of element and element side ¢
plastic momentum of resistance

shape functions

plastic resistance regarding normal forces
load intensity in the z- and y-direction
generalized external nodal forces

element nodal force vector

system load vector

self-weight load vector

number of inner boundary sides

diagonal matrix containing slack variables
number of shared sides

slack variable

displacements, (Lagrange multipliers)
x-coordinate

y-coordinate

external work

Internal work
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Notation

thickness
matrix containing partial derivatives of Lagrangian
diagonal matrix containing the Lagrange multipliers

Greek Symbols

Q

*

= ™

Y~ R LR

Oy Oy, T

01, O2

scalar load multiplier

system stress parameter vector

optimized system stress parameter vector

duality gap, difference between primal and dual solution
strain

strain rate of each plastic strain (Lagrange multiplier)
rotational angle

barrier parameter

reinforcement degree

in-plane stresses

principal stresses

Lagrange function
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1. Introduction

Reinforced concrete is the most widely used structural material in the world. A lot of con-
structions within different fields of civil engineering is nowadays build by use of reinforced

concrete, and two typical examples of application are shown in Figure 1.1

(a) Bridge pier. [2] (b) Azel towers in Copenhagen. [3]

Figure 1.1. Examples of application of reinforced concrete.

Different theories for mathematically deriving the strength of reinforced concrete plates have
been presented during the history, including the theory of plasticity. Plasticity is a widely
approved principle regarding the design of structures, especially when it comes to steel and
reinforced concrete structures as they possess ductile properties. By utilizing the theory of
plasticity in structural analysis, better proportioned and more economical structures can be
designed as the theory represents reality better than the conventional elastic method [4].
Within the field of plasticity, the assumption of perfect plastic material behaviour has often
been used in combination with the extremum principles in order to obtain the ultimate load
bearing capacity of steel and reinforced concrete structures. When considering a perfect
plastic material model, the assumption of sufficient deformation capabilities in the structure
is valid. This assumption is necessary in order to obtain stress redistributions. The extre-
mum principles are used in both analytical and numerical mathematics, and especially nu-
merical limit state analyses have gained more attention over the last decades as a result of
improved computers, and the invention of new optimization methods. Thus, nowadays
highly complex structures are solved efficiently based on numerical methods. The applica-
tion of a perfect plastic material model for assessing the load bearing capacity of reinforced
concrete plates has been treated by numerous engineers, including M.P. Nielsen, and the

approach is widely accepted since perfect plasticity is also as a part of the Eurocodes [5].

In a finite element context, it has been more challenging to implement plasticity models of
reinforced concrete plates in comparison to reinforced concrete slabs because the contribu-
tion from the concentrated reinforcement has to be included [1]. Different methods, based
on the extremum principles, for obtaining the load bearing capacity of plates have been
utilized, and among these is the widely used stringer method [6]. The stringer method is
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characterized as being an idealized representation of the concentrated reinforcement [6]. In
the stringer method, the plate is defined as a rectangular shear panel, while the orthogonal
concentrated reinforcement is capable of obtaining normal stresses. The demand for rectan-
gular elements and the assumption of a pure shear stress state in the shear panel makes the
stringer method disadvantageous for complex problems.

An enhanced numerical method for conducting optimization of reinforced concrete plates is
presented in [1]. The method is seen as a more efficient alternative to the stringer method,
and it has proven to be more advantageous in comparison to the stringer method as the
assumption of a pure shear stress state in the shear panels is not needed. Thereby, a much
more refined stress distribution can be obtained, and a higher load can be applied in the
design. The approach has proven to be more efficient than the stringer method regarding
both the ultimate load bearing capacity and material design. However, in [1] a linear pro-
gramming approach has been presented, which is not preferable as the yield criterions are
convex. This makes room for improvement of the method as both the yield criterion for
concrete and reinforcement, respectively, is linearized. By implementing nonlinear yield cri-
terions in the approach, a higher load bearing capacity and more economical structures can
be obtained. The advantages in our approach is the implementation of nonlinear criterions
for both the reinforced concrete and concentrated reinforcement bar, which makes it possible
to obtain a higher load bearing capacity. Furthermore, the nonlinear yield criterions are
reformulated to second-order cones, and thereby a time-efficient optimization is obtained.

The presented theory in [1] for optimization of reinforced concrete plates give rise to a wider
application. By excluding the concentrated reinforcement in the formulation, and by imple-
menting von Mises yield criterion in the method as a substitution to M.P. Nielsen yield
criterion, it is possible to develop an algorithm for optimizing steel plates defined by trian-
gular, stress-based elements. This leads to a program capable of verifying critical stress spots
in two-dimensional plates. In the finite element method, it is frequently seen that fulfilling
the ultimate limit state becomes a problem when designing static loaded structures by the
theory of elasticity [1].

Figure 1.2. Example of a plane structure with a critical stress singularity spot.
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More specific, numerical errors in terms of stress singularity spots (see Figure 1.2) often
induce stresses exceeding the elastic load bearing capacity. As a consequence, the verification
of critical stress spots often has to be conducted by means of a nonlinear plasticity analysis
of the entire structure, which is both time-demanding, in terms of iterations and model size,
and furthermore unsafe. To accommodate this problem, the study aims for an efficient
method to verify critical stress spots by the theory of plasticity. The objective of the calcu-
lation is to efficiently provide a scalar load multiplier that defines the optimal safety level.
The advantage of the approach in this study is that only a subarea is considered and that
the solver not only gives a lower bound solution, but it calculates the optimal stress distri-
bution. Thereby, it is possible to determine whether critical stress spots lead to structural
collapse.

For solving numerical plate problems with a perfect plastic material model in this study,
the lower bound method is implemented. The lower bound method has several advantages
over the upper bound method, including the fact that the collapse load is on the safe side.
The element formulation is stress-based in contrast to elastic finite element formulations
that are displacement based. A linear stress field is described in the calculations, which is
based on a finite element discretization where each element has a certain number of stress
parameters. As only statically underdetermined structures are considered, it gives rise to
stress redistributions at yielding spots in the structure. In the lower bound method, it cor-
responds to that only a part of the stress parameters has to secure equilibrium, whereas the
rest of the stress parameters are used to redistribute the load in order to obtain the maxi-
mum load bearing capacity. The calculations are based on nonlinear optimization program-
ming since M.P. Nielsen yield criterion and von Mises yield criterion are utilized.

Thereby, the focus of the thesis is to develop a numerical tool, which enables the engineer
to efficiently conduct verification of critical stress spots in static loaded steel plates. Sec-
ondarily, the aim is to develop an efficient program for reinforced concrete plates by imple-

menting nonlinear yield criterions.

1.1 Material Models

Through centuries various loading scenarios have been used to examine the response of
materials. The purpose was to set up mathematical material models that could forecast the
material response. In this thesis two materials are considered; namely, concrete and steel.

1.1.1 Concrete

Concrete is a composite material as it consists of at least two materials; namely, cement
paste and aggregate particles. The strength and properties of concrete is obtained by mixing
aggregate particles with cement and water, which results in a hydration process. A stiffness
difference appears in concrete as aggregate typically has a larger stiffness compared to ce-
ment paste. This means that the stress field becomes complex when a concrete structure is
subjected to loading. As a result of the material compound, stress concentrations occur at
the interface between the aggregate and cement paste, which leads to formation of cracks.
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Typically, the cracks are so small and occur at stresses much lower than the compressive
concrete strength. The internal cracks are so small that they cannot be seen and they are
often referred to as microcracks [7]. As a result of crack formation, concrete cannot be
considered as an isotropic material in a mechanical point of view.

a
~

o »~— Brittle failure
sﬂ
>

>
0 ¢

Dissipated Energy . e
i . pe o Elastic limit
Crushing Failure

Peak-stress —

Figure 1.3. Stress-strain curve for concrete subjected to uni-azial loading. Illustration from [7].

An example of a stress-strain curve for a concrete structure subjected to uni-axial loading
is shown in Figure 1.3. From the figure it can be seen that the compressive strength is much
higher in comparison to the tensile strength. The first part in the compressive zone (o < 0),
that is going from O to A, is the elastic region, and the area beneath is the elastic energy
absorbed in the material. When a structure is loaded beyond the elastic limit, the material
is subjected to irreversible deformation, which is referred as plastic deformations in this
thesis. A hardening process takes place in the transition from the elastic limit at point A to
the peak load at point B. After the peak, the structure undergoes a softening process, which
is a results of strength weakening because of damages inside the structure. The last stage in
the stress-strain curve is point C where the material undergoes global crushing and failure
has occurred [7]. When concrete is subjected to tension, a similar material behaviour is seen,
see Figure 1.3. The tensile strength of concrete is often neglected as it is highly dependent
on the crack formation which makes it unreliable. Thus, steel reinforcement is typically
casted into the concrete to establish a reliable tensile strength in the structure. When com-
bining the two materials it is often referred to as a reinforced concrete, and both a ductile
compressive and tensile strength is obtained. In both tension and compression, the concrete
structure will absorb energy corresponding to the area under the stress-strain curve.

1.1.2 Steel

Steel is a common material in many structural designs, and it is characterized by having a
ductile behaviour in both compression and tension. The first part of the stress-strain curve
describes the elastic progression until reaching the elastic limit, see Figure 1.4.
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Elastic limit Tensile failure
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Absorbed Energy
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Figure 1.4. Stress-strain for steel subjected to uni-azial loading.

When exceeding the elastic limit, steel shows plastic properties and irreversible deformations
are obtained. Steel is characterized by the ability to increase the strain level even though
the maximum level of stress is achieved, which is also illustrated in the figure above.

1.2 Applied Material Models

As the actual material behaviour is complex to describe mathematically, an idealized model
is used in order to formulate the constitutive relations elaborated in chapter 2. Thus, the
aim in this section is to describe and determine the material models appealing to the limit
state analyses in this thesis.

When optimizing a limit state problem, the basic concept is to estimate the most optimal
solution that satisfies a number of constraints. For that purpose, it is often preferable to
make an idealization of the actual material models. The idealization is achieved by a line-
arization of the plastic region, and it is especially convenient in a numerical perspective
where the implementation is more straightforward compared to a full nonlinear stress-strain
correlation. Similarly, the numerical approach is more time-efficient as hardening is not an
issue, which is a great advantage in large scale problems. In this thesis it is chosen to idealize
the material models for both concrete and steel, such that a perfect plastic material behav-
iour is obtained, see Figure 1.5.

Actual stress-strain

Perfect Plasticity

7 -"\
: . . /
f s
’ .\
' %

Actual stress-strain

Perfect Plasticity

Vall

Figure 1.5. Perfect plastic material models for concrete and steel, respectively.



6 1 Introduction

The perfect plastic material model is without question a coarse idealization in some respect.
First of all, no information about the deformation is known before reaching the yield value.
Secondly, the unloading scenario corresponds to linear elastic progression. Thus, the mate-
rial obtains the same stress level for different strain levels, which implies that the cumulative
strain is unknown when loading and unloading the structure into the plastic region more
than once. The potential to allow deformations going towards infinity is therefore present,
why the perfect plastic material model is normally only used to examine the ultimate limit
state where the deformational influence is of no interest or importance. In reality, however,
testing have proven the perfect plastic material model as being well suited for both steel
and reinforced concrete structures in the ultimate limit state, why this model in overall is
seen as reasonable for the limit analyses treated in the thesis. Yet, an effective strength is
normally added to reinforced concrete structures, which is also the case in this thesis. An
effective strength is often added to the concrete in order to use the perfect plastic material
model. The effective strength is a reduction factor, which downsizes the load bearing capac-
ity, and it is found by experiments that are hold against the perfect plastic material model.
The primary reason for using the factor is to account for the deviation between the actual
material model and the perfect plastic model. Similarly, the concrete strength is affected by
cracks, which is also included in this factor. This implies a different reduction factor as each
concrete strength various, see e.g. [8].

1.3 Scope of this Study

The scope of the thesis is to develop two engineering programs; the first program should
enable engineers to quickly determine whether stress singularities in two-dimensional steel
plates lead to structural collapse, whereas the other program should be capable of conduct-
ing load and material optimization of reinforced concrete plates. Both programs are based
on the lower bound theorem.

In the first program the aim is to set-up a stress-based finite element model based on a
submodeling technique and the lower bound theorem. The convex optimization is solved by
an interior point algorithm, and a load bearing capacity is obtained. On behalves of the load
bearing capacity it is possible to conclude whether the most critical stress state in the
submodel is allowable.

The second program is a further development of the first program since it uses the same
plate element formulation. By including bar and beam elements, the aim is to be capable of
efficiently optimizing reinforced concrete structures with regard to both material and load
optimization.
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1.4 Overview of the Thesis

This thesis describes the theory and application of both steel plates and reinforced concrete
plates. The application for steel plates describes the problem posed when critical stress spots
appear in plane structures, while the theory of reinforced concrete plates concerns load and
material optimization.

The theory and presumptions are presented from chapter 1 to chapter 5, while the applica-
tion of the theory is described from chapter 6 to chapter 8.

This chapter describes the issue regarding plate structures in a numerical context. The
actual material response when subjecting steel and reinforced concrete to loading is de-
scribed, and the chapter is concluded by describing different methods for conducting limit

analyses.

Chapter 2 introduces the extremum principles, which forms the basis for optimizing struc-
tures in this thesis. Furthermore, the yield conditions and the lower bound formulation are
presented, which are fundamental for the work in the later chapters. Alternative approaches
based on the extremum principles are also evident.

Chapters 3 describes the finite element formulation of plate, beam, and bar elements, and
it gives an introduction to the difference between the stiffness-based finite element method
and the stress-based finite element method with regard to the lower bound formulation.
Furthermore, an explanation of the equilibrium equations is given, and the assembling prin-
ciple is illustrated.

Chapter 4 deals with the yield criterion for steel plates, reinforced concrete, and concen-
trated reinforcement, respectively. The expression for the yield criterions are later formu-
lated in terms of constraints in the optimization in order to obtain an allowable lower bound
solution.

Chapter 5 initiates with an explanation of the differences between the simplex method and
interior point method, and the reason for choosing the interior point method is given. Fur-
thermore, the theory behind the path following primal-dual interior point method is derived.
Finally, the implementation of the lower bound theorem and finite element approach in
fmincon and Mosek is described.

Chapter 6 describes the procedure and theory of the developed program for optimization of
steel plates by a submodeling approach. The chapter is ended with an example of applica-
tion.

Chapter 7 and 8 focuses on reinforced concrete plates with regard of load and material
optimization. In both chapters the application of the program is presented by examples.






2. Theorems of Limit State Analysis

2.1 Extremum Principles

A lot of studies have taken place in the field of limit state analysis during the last century
in order to assess the load bearing capacity of structures [7]. Common for most of the studies
is that they are based on the extremum principles which were formulated by A. Gvozdev in
1936. The extremum principles assume a perfect plastic material model, and this leads to
three theorems, which are described in the followings, see Figure 2.1.

Static conditions Physical conditions Kinematic conditions

- Internal equilibrium in the whole body. - Constitutive equilibrium. - Compatibility equations.

- Stresses at boundary are equivalent - Collapse/yield criterion. - Kinematic boundary conditions
with external force (static boundary are satisfied.
conditions).

Lower-bound theorem Virtual work Upper-bound theorem

Figure 2.1. Extremum principles in relation to the fundamental conditions.

2.1.1 Lower Bound Theorem

The lower bound theorem is restricted by static conditions and physical conditions, see
Figure 2.1. An admissible lower bound solution has to satisfy both the static and physical
conditions, and this leads to the following lower bound sentence

The structure will be able to sustain a load if there exists a stress field
that is in equilibrium with the load, satisfies all boundary conditions, and

s not violating the yield criterion at any point in the structure.

When statically indeterminate structures are considered, multiple solutions exist and
thereby multiple stress fields that satisfies the conditions. This gives rise to an optimization
problem where the purpose is to find the largest possible collapse load.

In the lower bound theorem, it is assumed that the structure naturally finds the optimal
stress distribution. This implies the utmost load bearing capacity, even though the most
optimal stress field might not be chosen. The assumption for allowing stress redistributions
is an infinite strain capacity, why the lower bound theorem excludes itself from kinematic
conditions and the size of the deformations. The argument for neglecting the deformations
is often related to designs where structures are designed with respect to the ultimate limit
state. This entails that plastic deformations appear rarely. However, using the lower bound
method to estimate the collapse load for the ultimate limit state always leads to a load equal
to or lower than the strength of the given structure [9]. This is simply illustrated in 0, where
a static indeterminate beam system is calculated by means of the lower bound method.
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From this it can be seen that only optimum (the highest load) corresponds to the collapse
load.

2.1.2 Upper Bound Theorem

The upper bound theorem is based on kinematic collapse mechanisms and is restricted by
kinematic and physical conditions, see Figure 2.1. The upper bound sentence reads

At all possible kinematic collapse mechanisms, the internal plastic work
will be higher than the external work caused by the actual collapse load.

From the sentence it can be understood that the most critical collapse mechanism is always
found among all possible collapse mechanisms. [9] In the upper bound theory, the collapse
mechanism resulting in the smallest possible collapse load is to be found. That leads to an
optimization problem just as it is the case in the lower bound theorem. The upper bound
method is thus consistently unsafe when estimating the load bearing capacity since there is
a risk of overestimating the collapse load if the proper collapse mechanism isn’t determined.
The upper bound theorem has a great advantage in simple hand calculations since it is often
easy to imagine the collapse mechanisms. In contrast to the upper bound theorem, the stress
distribution in the lower bound method is much more difficult to predict as it involves large
optimization problems [6]. However, the upper bound method does not appeal for finite
element implementation due to time-consuming computational costs.

The indeterminate beam from the example in Appendix A: is likewise calculated by the
upper bound method, and it is seen that only one solution corresponds to the lower bound

solution.

2.1.3 Exact Solution

In order to obtain an exact solution in a structural term, the three fundamental conditions
illustrated in Figure 2.1 must be satisfied. Regarding limit analysis, this implies that an
exact solution is only obtained if the lower and upper bound solution corresponds to each
other. This is due to the conditional difference of each approach, which only together satisfy
all three conditions.

The exact solution can thus be understood uniquely, since only one lower and upper bound
solution is identical. This is also illustrated in the figure below, where the purpose is to find
the collapse load.
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T P
Upper-bound solutions, P+

- Infinity number of achievable
collapse mechanisms

«—— Exact Solution, P*=P

Lower-bound solutions, P~
- Infinity number of static
allowable stress distributions

Figure 2.2. Illustration of lower and upper bound solutions.

As earlier mentioned the lower bound solution provides estimates of a collapse load that is
smaller than or equal to the actual load bearing capacity, while the upper bound solution is
vice versa. However, in practice the exact solution is not always accessible by the optimiza-
tion method applied to the problem. A duality gap can reveal the difference between the
lower and upper bound solution and thereby the error of an accepted solution. This is further
elaborated when considering the actual optimization algorithm later in this thesis.

2.2 Existing Limit State Analysis Approaches

Different approaches, based on the extremum principles, have been developed in order to
predict the response of structures. Among these approaches are the strut-and-tie model,

yield line method, and the stringer Method.

The Strut-and-Tie method dates back to 1922 [10], and it is based on the lower bound
theorem. In the strut-and-tie method the compression bars (struts) are connected to the
tension bars (tie) in order to redistribute the load. An optimization problem regarding the
connection of the struts and ties has to be maximized in order to obtain the collapse load.

P Rectangular Shear P
lHr / Element p
v
K Strut j
{Compression Bar)
P
—
SN
Tie Stringer
(Tension Bar) (Concentrated Reinforcement)

Figure 2.3. Example of a Strut-and-Tie model. Figure 2.4. Example of a Stringer model.
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The yield-line theory, based on the upper bound theorem, was formulated by Johansen in
1943 [11] [12]. In manual limit state analysis, the method is widely used for estimating the
collapse load of slabs, even though it can lead to an underestimation of the load bearing
capacity. The yield-line method can be used for calculating the collapse load of both slabs
subjected to bending, and plates subjected to in-plane forces. Despite the wide application
in manual limit state analysis, the method isn’t suited for finite element implementation.

The stringer method was formulated by Lundgren in 1949, and it is based on the lower
bound theorem [13]. In the stringer method, the rectangular fields are defined as shear
elements, while the stringers (orthogonal concentrated reinforcement) are capable of carry-
ing normal forces. The demand for rectangular shear panels and the assumption of a pure
shear stress state leads to an underestimating of the collapse load. Furthermore, complex
models can’t be treated due to the geometrical restrictions in the method. An example of a
structure modelled by the stringer method is illustrated in Figure 2.4.

A numerical approach for optimizing plates subjected to in-plane forces was proposed in [1].
The approach is based on the lower bound theorem and it is considered as an enhanced
strut-and-tie method. In the approach, the stress field is approximated in terms of triangular
fields. Their approach has an advantage over the stringer method as the triangular stress
fields are capable of carrying both normal stresses and shear stresses, whereas it is only
possible to carry shear stresses in the stringer method. Another advantage of the method is
the possibility to handle complex structures as the geometry doesn’t necessarily has to be
of rectangular shape. The method in [1] is also emphasized in this thesis.

2.3 Yield Conditions

A yield criterion is a mathematical model that defines the transition from elastic to plastic
material behaviour. The yield condition is also called a yield surface since it makes a convex
boundary as seen in Figure 2.5.

f(O'x,O'y,Txy> =0 vV f(01702> =0, (21)

When assuming a perfect plastic material behaviour, it leads to a yield criterion with a non-
expanding boundary. The yield criterion consists of three stress components for plane struc-
tures as indicated in Eq. (2.1).

The yield criterion has a significant role when the extremum principles are considered in
the limit analysis. In the lower bound limit analysis, the yield criterion is used to tell whether
a given stress state is safe. A model is said to have an allowable stress state if all stresses
within the model lies inside or on the yield surface, i.e. f(o) < 0. A visualization of the
general considerations can be seen in the figure below.
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— fte) = 0 Inadmissible
f(o) =0 Yielding
fte) <0 Elastic region

>(}'J,

— Yield surface

Figure 2.5. General yield condition by principal stresses.

When loading the construction into the plastic region the stress state can solely be modified
by a stress rearrangement leading to a stress point located along or inside the yield surface.
A load normally resulting in hardening will therefore not expand the yield surface and the
stress point must for this reason still be located at the yield boundary. Although no expan-
sion of the yield surface can occur due to the perfect plastic material behaviour, the stress
point will still relocate when increasing the load.

In the upper bound theorem, the yield condition is used to describe the collapse mechanism
for a given strain field. The plastic strain e is expressed by von Mises flow rule where the
strain state is described as an outward normal to the yield surface [7]

er = 7 (2.2)

where the plastic multiplier 4 has to be greater or equal to zero, i.e. A > 0. The geometrical
interpretation of the strain vector is seen in the figure below.

4

gf

— Yield surface
(Convex)

Figure 2.6. Flow rule.

Most yield criterions in engineering are based on empirical test that are conducted based on
hypotheses.
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2.4 Lower Bound Formulation

The lower bound method is to be applied in the limit state analysis, where the aim is to
determine an optimized stress distribution by maximizing the intensity of the predefined
external load. In the lower bound method two conditions have to be satisfied in order to
obtain a feasible stress state

e Equilibriums equations (Local equilibrium and equilibrium of stresses across ele-
ment boundaries)
e Yield criterion

In this case the problem is accommodated by the finite element method with stress-based
elements. Stress-based elements are used instead of the traditional displacement-based ele-
ments since the problem is formulated as a lower bound method. In the finite element

method, the discretized equilibrium equations are written as
Hf=R_+aR, (2.3)

where 3 is a column vector containing the variables and H is the global, assembled equilib-
rium matrix. The external load is divided into two parts; namely, a constant part R, de-
scribing the self-weight of the structure and a part R that is proportional to the scalar load
multiplier a. The global equilibrium matrix H consists of contributions from all individual
elements of a model. When the global equilibrium matrix H is set up, the number of stress
parameters should be higher than the number of equilibrium equations, which results in a
statically underdetermined structure.

The discretized equilibrium equations in Eq. (2.3) can be rewritten to Eq. (2.4), which is
later written in a more conventional way

HB—aR=R,. (2.4)

Two types of constraints have to be set up. The first set of constraints has the purpose of
satisfying equilibrium equations, whereas the second set of constraints has to secure that
the yield criterion is not violated. The constraint securing that the yield criterion is not
violated has to be checked in a number of points in each element. For all elements in a

structure, the yield criterion can be expressed as

f](/ﬁak) S Oa .7 = 1>27"'7pl (25)

where k is the strength parameter. The nonlinear optimization problem becomes a maximi-

zation problem since the lower bound method is considered.
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2.4.1 Load Optimization

Load optimization has to be conducted for both the steel plates and the reinforced concrete
plates. A scalar load multiplier a has to be determined, which describes the optimal stress
distribution in the structure.

The nonlinear lower bound load optimization problem is expressed as

maximize: «
subject to: Hf —aR =R, (2.6)
f](67k>§07 j:1727"'7p

As it is expressed in Eq. (2.6), the maximization problem is subjected to both equality
constraints, since the elements are formulated in terms of equilibrium equations, and ine-
quality constraint in terms of the yield criterions.

By solving the maximization problem in Eq. (2.6) with the corresponding linear and non-
linear constraints, it is possible to obtain the optimal value for the load multiplier o and

the corresponding stress parameters 3.

In many cases it is convenient to convert the inequality constraints to equality constraints.
This is done by implementing slack variables, which only takes positive values. When adding
slack variables, the maximization problem in Eq. (2.6) takes the following form

maximize: a
subject to: Hf—aR =R, (2.7)
[i(B)+s;=0, s,>0, j=12..,p.

This maximization problem has to be solved in order to determine the scalar load multiplier
and thereby the collapse load. In the mathematical optimization theory, the primal problem
in Eq. (2.7) is reformulated in order to obtain the dual problem. The primal and dual
problem can be related to lower and upper bound theorem, and thereby the solution can be
obtained in terms of a gap. The mathematical expressions of the primal-dual formulation

for load optimization of steel plates is derived in Appendix B:.

2.4.2 Material Optimization of Reinforced Concrete Plates

Material optimization has to be conducted for the reinforced concrete plate. The objective
is to minimize the total amount of reinforcement volume in order to obtain a more
economically advantegous plate structure. Similar to the load optimization, a scalar has to
be determined, which in the case of material optimization is the sum of multiplie material
parameters. The formulation of the material optimization, including slack variables, can be

expressed as
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ﬁl
minimize {07 ... 07T ’wT}! : l
IBTL
Ug )
‘ (2.8)
subject to HfB =R

f](/87d)+8] :()7 Sj 207 j: 1727---710
d>0.

The minimization problem is subjected to both equality constraints and inequality
constraints, where the objective is to minimize the material parameter d, which is a column
vector consisting of the material parameters. The material parameters d are positive since
a strength parameter by nature can’t be negative. w is a row vector containing the material
weighting factors, which include the relative cost of of the different material groups. The
equality constraints ensure equilibrium between the internal work and external work. In the
material optimization approach, the stress variables are fixed with regard to the external
work R in contrast to the load optimization. The inequality constraints are a funtion of
both the stess variables and the material parameters. The application of the theory is

presented later in the thesis by means of an example.



3. Finite Element Formulation

The lower bound formulation is accommodated by using stress-based elements as a part of
an equilibrium based finite element method. In equilibrium based finite element methods,
the stress field is approximated and not the structural displacement field as is the case in
displacement-based finite element methods. Stress-based elements are used instead of dis-
placement-based elements even though displacement-based elements are the most widely
used elements within the finite element method today. The advantage of using stress-based
elements in the limit state analysis is that the formulation of the extremum principles is

more direct [7].

In the optimization of steel plates only the linear triangle plate element is considered,
whereas a combination of the plate element, bar element, and beam element is considered
when optimizing reinforced concrete plates.

O Inter Element Equilibrium Node
® Element Stress Node
A Internal Element Equilibrium Node

Plate Element
QO Geometry Node

Bar Element

Beam Element

Figure 3.1. Equilibrium based triangle element, bar element, and beam element.

In the optimization of reinforced concrete, a formulation of a reinforcing bar (rebar) element
is introduced as a tension device for concrete plates. In order to compensate for the relatively
weak concrete tensile strength, rebars are casted into concrete to obtain a tensile strength
capacity. Since the material behavior is assumed perfect plastic, the rebars only guarantee
a resistance needed for the design load, whereas the size of the deformations is unknown.

In order to set up the global equilibrium matrix H of a structure it is necessary to express
the equilibrium equations for a single element. In Eq. (3.1) the equilibrium equations are
given in a compact form as

qg=hg, (3.1)

17
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where h is the local equilibrium matrix for an element, [ is a vector containing the variables,
and g are the generalized nodal forces. The nodal forces can either be stresses, forces or

moments. [1]

When each local equilibrium element h of a structure is formulated, it is necessary to as-
semble each element h into the global equilibrium matrix H just as it is the case in the
finite element method. The assembly procedure is described later in this chapter.

3.1 Triangle Plate Element

A stress-based triangle plate element is formulated, and it is to be used for optimizing both
steel plates and reinforced concrete plates. The stress state of each triangular plate element
is described by the stresses at each element node. In contrast to the displacement-based
methods, the nodal values are unique to each element, which means that stresses don’t
necessarily take the same value at the same node for the adjacent element. For linear stress
elements the admissible stress field is secured at two points on each element side. If higher
order stress-based elements were used, an additional node should have been included along
each element side. Furthermore, the internal equilibrium of each element must be satisfied
in order to obtain a statically admissible solution. This is done by satisfying the equilibrium
equations in a number of points lying within each element. For the linear stress triangle,
the internal equilibrium equations have to be satisfied at a single point in each element as

shown in Figure 3.1.

The stress variation in the element is chosen to be linear, which means that the stresses
within the element are interpolated linearly between the nodes. Each plate element consists

of three stress parameters o, o,, and 7 at each node, and thereby a total number of nine

stress parameters for each element is obtained, see Figure 3.2.

Figure 3.2. Stress parameters for a plate element.

The equilibrium equation from Eq. (3.1) is formulated for a plate element in terms of the
following compact form
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qplate = hplateﬁplate' (32)

The formulation in Eq. (3.2) can be extended to the following matrix form

qd, hl ,81
;12 — { h, . w {gQ}, (3.3)
3 3
e |~h’c1 th h’cSJ IBS

where the subscripts 1, 2 and 3 refer to the nodes shown in Figure 3.2, and the letter ¢ re-
fers to the center of the element.

The local equilibrium matrix Ry in Eq. (3.3) is a 1429 matrix, and it has the purpose of
satisfying all equilibrium equations, which is fundamental in the lower bound method.

Some of the equilibrium equations secure continuity in the stresses across element sides,
whereas other has the purpose of securing internal element equilibrium [1]. The first twelve
rows in the equilibrium matrix h has the purpose of securing continuity in the stresses across
element sides, whereas the last two rows secure equilibrium between forces from intersecting

line elements, also called internal element equilibrium.

side 1

Y

q,’ J side 3

Figure 3.3. Generalized nodal forces for the stress-based plate element.

3.1.1 Internal Element Equilibrium

The three stress variables at each element node, as seen in Figure 3.2, has to fulfil internal
equilibrium in the 2~ and ydirection as given in Eq. (3.4).

do,, n 3Txy B
Ox oy % (3.4)
do, Or .
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where ¢, and ¢, are the distributed loads per unit area (body forces) in the gravitational
direction. Since the stresses are assumed to vary linearly across the element, the stresses
throughout the element are expressed by linear shape functions [14]

3 3 3
o, = g N,o,., o, = E N;oy; s Ty = E N7, (3.5)
i=1 i=1 i=1

where 0,,;, 0,; and 7,,,; are the stress parameters, and N, are the linear shape functions. The

xi)

generalized nodal forces ¢, corresponding to local equilibrium consists of contributions from
each element node [1]

dx
qc = {q } =41 + ) + dcs - (36)
Yy

The stress contribution from each corner is formulated in both the 2~ and ydirection by
substituting Eq. (3.5) into Eq. (3.4), and thereby the following expression is established for
the generalized nodal forces

b, a; z.
—~ 0 =% (toz)
_JO_ |24 24 L
et = {qy} B 0 _ % b it%{} = heiBi, (3.7)
24 24 trt

where h,; is depending on the geometry of the element as a,, b;, and A are included in the
formula, see Figure 3.4. In Eq. (3.7) it is seen that g, = 0, which is due to that it is assumed
that the gravitational force only acts in the y-direction.

The area of the plate element A is calculated by means of the coordinates of the three
element nodes

1 Loz oy,
A= det {1 x; yj} , (3.8)
Lz, yy

where %, j and k are indices 1, 2 and 3.

The element is numbered such that side i is opposite node i (see Figure 3.3 and Figure 3.4),
and the length of side [, is expressed by the vector (a;,b;)

1) 71

i =T — 25, b=y — l; = /a3 +b7. (3.9)

a
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Figure 3.4. Area coordinates.

3.1.2 Equilibrium of Stresses across Element Boundaries

As described earlier the equilibrium of stresses across element boundaries also have to be
secured. This regard the stresses normal to the plate sides and the shear stresses. Since the
stresses are assumed to vary linearly, the equilibrium has to be satisfied at two points along
an element side [1]. In this case the nodes at the side ends are chosen as reference points for
fulfilling equilibrium, see Figure 3.3.

The generalized nodal forces at node i are expressed by the internal stresses at node i. At
node ¢ the four generalized forces are expressed as

- 2 2 —_
& aj B 2ajbj
pon o
q;a a’]b] a’]b] (bj2 - ajz) i
j 2 T2 2 to
q l [= l
g = ir — JQ 23 J tol ¢ =h;B;, (3.10)
0y b ek 2ab ||
qr, i I i
aby, aby, bi - ai
L li li li ]

where a, b and [ are given from Figure 3.4. The constants in the local equilibrium matrix h
are made from the general continuum stress transformation equations based on equilibrium
between forces

— 02 2 "
0, =0,sin"0 + o, cos” 0 — 27, cosfsin b

1 (3.11)
Tat =5 (0, —0,)sin20 4 7, cos 26.

The establishment of the equilibrium matrix h for a plate element is done by combining

plate
Egs. (3.3), (3.7) and (3.10), which thereby satisfies the equilibrium equations.
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3.1.3 Assembling of the Plate Equilibrium Matrix

Unlike displacement-based elements, each node is unique to the element, and equilibrium is
obtained between shared element sides by summarizing the local load contribution ¢; and
thereby obtaining equality. If two element sides are united, the equality is satisfied when
the equality constraint equals to zero, see Figure 3.5 (b). This is also the case for the outer
boundaries, which has to be in equilibrium with the static boundary conditions.

Q9 2
~ Vo I
(14{} \

q[b’

9
/BN ver 3 P
, # N
. q.
QM — \Ji/q}.'i
Jqu.-z —_ 1 .
q, f q::;l U Do 12z 4,44,=0
3 -— g ) / (;m-i—q_,‘:!')
< fq? 4 /qm
q 2
1 q,, 'Ny'd a, = . 2
@ q,+q,=0 ’
/PN N
Y qd; 45
q qi}\ q"
’ 1IN, YN
: 7
(a) Two free elements with local node (b)  Two assembled elements with global node
numbers. numbers.

Figure 3.5. Before and after assembling of two plate elements.

The stress variables located at the corners are implicit considered infinitesimal close to the
corner nodes, see Figure 3.2. The connection between the stress variables and the generalized
nodal forces on the element sides is made from the equilibrium matrix, see Eq. (3.10).

The assembling principle for the global equilibrium matrix H is shown in terms of the
example given in Figure 3.5. The equilibrium matrices for the example is as shown in Figure
3.6.
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Figure 3.6. Global equilibrium matriz H for ezample (a) and (b) given in Figure 3.5.

The numbers in Figure 3.6 on the vertical left side and the horizontal top denotes the row
and column number, respectively. When having a model consisting of two or more assembled
plate elements, the total number of equilibrium equations n, becomes

n, =14E —4s, (3.12)

where F is the number of elements and s is the number of shared sides. It should be noted
that the number of columns is constant regardless of the connection between elements,
which means that only the number of equilibrium equations is reduced and not the number
of stress variables.

3.1.4 Kinematic Boundary Conditions

Kinematic boundary conditions are implemented in the finite element structure by removing
the equilibrium equations that correspond to given generalized nodal forces ¢. In the example
given in Figure 3.5 (b), simple supports are introduced in the geometrical node 1 and 2, as
seen in the figure below.
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Figure 3.7. Kinematic boundary conditions for example in Figure 3.5 (b).

For the example in Figure 3.7 the global equilibrium matrix H is reduced by removing the
equilibrium equations related to the following generalized nodal forces; qi, ¢z, ¢s, @i, ¢5, qs,
q15, and ¢qie. The resulting equilibrium matrix H after assembling and implementing kine-
matic boundary conditions is seen in Figure 3.8.
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Figure 3.8. Resulting equilibrium matriz H including internal equilibrium.

It should be noticed that m < n, where m is the number of rows and n is the number of
columns of the equilibrium matrix. From the figure it is seen that the resulting equilibrium
matrix consists of 16 equations and 18 stress variables, which means that the system is two
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times statically indeterminate (18 — 16 = 2). Thereby, it is possible to make a rearrange-
ment of the stresses.

3.1.5 Outer Boundary Conditions

The load vector is assembled by the same principles as the global equilibrium matrix, H.
The task in a finite element context is to apply the outer boundary load g, to the corre-
sponding equilibrium equation (see Eq. (3.1)), and thereby prescribe the equality constraints

on the global outer boundary. The boundary load is given from the three stresses o,, o,

and 7., which vary linearly along the element boundary. In Figure 3.9 a simplification is

Ty
made by showing the stress variation acting normal to an outer boundary.

4

—— QOuter boundary

- = = Inner boundary

e -
v, side 1

Figure 3.9. Boundary condition for element j.

In Figure 3.9 the three external stresses are acting linearly on side 2, which is located on an
outer boundary. The dashed sides, 1 and 3, are located on an inner boundary and they have
to be in equilibrium with the adjacent elements. The nodal stress parameters that are lo-
cated at a node with one side belonging to an outer boundary have two equality constraints,
which means that a side on a boundary produces four equality constraints, see the figure
below.

A N
q.rr,;'2/

\ —— Outer boundary

» - = = Inner boundary

Figure 3.10. Generalized outer boundary loads for element j.
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The boundary stresses are transformed to equality constraints by the following expression

, q . ,
{a;1 = { i } = [l ;Hob ;) (3.13)
T,J
where 7 is the node number, j is the element number, ¢, is the generalized boundary load,
including ¢, and ¢, h; is the boundary transformation matrix, and o, are the boundary

stresses 0,,0,, and 7,,.

th \

Figure 3.11. Transformation from outer stresses to generalized forces.

By use of the same parameters given in Figure 3.4, the transformation matrix, h,, referring
to the equality constraints at node 1 on side 2 can be written as

5 a_% _ 2ay b,
[5,5] bk g (3.14)
b7 . prm— .
! asby . asby (b3 — a3)
i3 3 i3
where the boundary stresses at node 1 are arranged as
{ob; 3" ={0ns oy 7oy} (3.15)

The procedure applies to node 3, which together with node 1 produces 4 equality constraints
to the 6 stress variables on the outer boundary (side 2), see Figure 3.10.

3.1.6 Assembling of Load Vector

The load vector R is assembled with respect to all the equalities that have to be fulfilled in
the finite element formulation. The load vector contains the three different equality con-
straints, which are determined from Eq. (3.7), (3.10) and (3.13). The equalities have to be
inserted in the appropriate rows in order to satisfy all the equilibrium equations. The as-
sembling of the load vector can then be summarized by
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B E S
{R} = Z{Qb,j} + Z{qc,k} + Z{qi,l} ) (3.16)

where R is the global load vector/equality constraints, B is the number of outer boundary
nodes, F is the number of elements, and S is the number of inner boundary sides.

3.2 Bar and Beam Element

A formulation of a beam and bar element (rebar element) is introduced with the main
purpose of acting as a tension device in concrete plates. In a finite element perspective, the
rebar element is a combination of a bar and beam element, and thus the rebar element holds
both beam and bar properties. Since concrete is assumed having no tensile strength, the
purpose is to obtain all the tensile stresses in the reinforcement, whereas the compressive
stresses have to be obtained in the concrete.

Rebar Element

Ezternal Generalized Forces ) — q2N

Iniernal Generalized Forces k
It
1 [ mter Element Equilibrium Node

. External Equilibrium Node
Figure 3.12. External and internal generalized nodal forces for a rebar element.

The forces in the formulated concrete structure are transferred by an interaction between
the plate elements and the rebar elements. The rebar element must ensure equilibrium
between adjacent plate elements as well as adjacent rebar elements. In order to secure
interaction between two adjacent rebar elements external generalized forces are introduced,
whereas equilibrium between rebar elements and plate elements is secured by the internal
generalized forces. The external generalized forces acting on the rebar element are equivalent
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to the well-known displacement-based element formulation, where three degrees of freedom
are acting at each node, see Figure 3.12.

To obtain equilibrium in the rebar element ten equality constraints for each rebar element
has to be fulfilled, where the 6 equality constraint corresponds to the interaction between
the adjacent rebar elements, and the last 4 equality constraints corresponds to the interac-
tion between rebar and plate elements, see Figure 3.12.

3.2.1 Equilibrium across Rebar Element Boundaries

Since the force varies linearly along the plate element boundary, the normal force has a
quadratic variation and the moment has a cubic variation. The normal force in the bar
element is interpolated by an equally spaced 3-point arrangement with two nodes, see Figure
3.13.

qir qzl‘
qI N — — q2N
- B—{] 4 {7—3 —»
1 3 2
i
—

Figure 3.13. Quadratic bar element with generalized nodal forces.

The moment in the beam element is interpolated by an equally spaced 4-point arrangement
with 2-nodes, see Figure 3.14.

f q.‘a q20 ?

qm-{) —{} @ {— ) dopr
1 3 4 2
Qv 1 Doy ?
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Figure 3.14. Cubic beam element with generalized nodal forces.

To fulfil the continuity requirements of the stress variation over the entire element, the
quadratic stress variation is described through three stress variables, which is related to a
2nd order polynomial. Similarly, the cubic stress variation is described through four stress
variables, which is related to a 3rd order polynomial.
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(a) Variation of normal stresses through bar (b) Variation of moment through beam
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Figure 3.15. Variation of normal stresses and moments.

The quadratic interpolation fits a parabola to the points (x,, Ny), (24, N,), and (x5, N3),
where z is the position and N is the normal force acting in the bar. The cubic interpolation
fits 3th order polynomial to the points (z,, M), (24, M,), (3, N3) and (z,, N,). The quad-
ratic and cubic shape function are made from Lagrange’s interpolation formula, which in
the physical coordinate system is expressed by

qn(z) = ZLz(‘T)Nz
7 (3.17)
Q@) = 3" Li(o)M,

where L, is the Lagrange shape function expressed in physical coordinates.

The generalized axial stresses g, are determined by the first derivative of the internal normal
stresses, which in the physical coordinates can be determined from Eq. (3.18).

0 () = (o) (3.18)

In order to have a proper interaction between beam elements, it is necessary to formulate
the internal distribution. Due to the cubic varying moment, the shear force ¢;, must be
quadratic. The variation of shear stresses is determined by the first derivative of the mo-
ment. In the physical coordinate system it can be expressed as

d
T)=— x). 3.19
v (z) dr an (@) ( )
Equally the generalized transverse load is of a linear varying form due to the moment vari-
ation and it can be determined by the second derivative, which in the physical coordinate
system can be expressed from

00 @) = gy (). (3.20)
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The equilibrium matrix which ensure equilibrium between the bar element, beam element
and plate element is in compact form expressed by

Qpeam = hbeamlgbeam7 (321>

where ¢y.,,, is a vector with generalized forces, and hy,,,, is a matrix that ensures equilib-
rium between internal and external stresses. The equilibrium matrix, hy,,,,, is divided into
two parts, in which the first part only includes the generalized forces from Eq. (3.18) and
Eq. (3.20). The two equations express the equilibrium between bar elements, beam elements
and plate elements.

J/

- 18 9 45 367

o0 0 -—— 2 2 _2
Z 2P 2| | N,

, 1 4
Zi % ;-7 O 0 0 0 N
7% I 18 36 45 %1 (3.22)
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The other part includes the nodal forces from Eq. (3.17) and Eq. (3.19) and ensures equi-
librium between beam/bar elements.

—1 0 0 0 0 0 07 (N,
qiv 21 l l 21 N,
Qo 0 00 —1 0 0 0
p— M
don 0 1.0 0 0 0 0 M” (3.23)
qoy 1 11 9 9 2
sy 000 7 50 a1 | |Ms
Lo 0 0 0 1 0 o 4 (M,

The rotation is obtained in the concrete by directly transferring the stresses perpendicular
to beam in the plate generalized nodal forces.

Finally, moments and shear stresses in the beam are small in order to fulfil the static bound-
ary condition, why it is assumed to be negligible to control yielding due to shear stresses.
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3.2.2 Assembling of the Concrete Equilibrium Matrix

The assembling procedure when including rebar elements is similar to the procedure de-
scribed earlier in this chapter. An example of assembling a rebar element with a plate
element is seen in the figure below.

O Inter Element Equilibrium Node

B Faxternal Equilibrium Node

Figure 3.16. Principle of assembling a rebar element with a plate element.

The generalized nodal forces, ¢, and ¢,, in the inter element equilibrium node for the rebar
element has to be added up with the corresponding nodal forces for the plate element. The
sum of the generalized nodal forces in the inter element equilibrium node has to equal zero.
Two rebar elements are assembled with by adding the three external generalized nodal forces
with the corresponding forces in the adjacent rebar element. The total number of equations
n, describing the rebar nodal forces becomes

n, = 6N, —3s,, (3.24)

where N, is the number of rebar elements, and s,, is the number of shared nodes. It should
be noted that the number of columns is constant regardless of the connection between ele-
ments, which means that only the number of equilibrium equations is reduced and not the
number of normal force and moment variables.






4. Yield Criterions

The objective function in the lower bound formulation in section 2.4 is constrained by a
yield criterion, which has to be fulfilled in order to obtain an allowable lower bound solution.
Hence, this chapter presents the criterions used to define the limit of steel plates and rein-

forced concrete plates with regard to load optimization and material optimization.

4.1 Yield Criterion for Reinforced Concrete Plates

In order to optimize reinforced concrete plates, a yield criterion is needed to describe the
capacity of the composite material. [5] M.P. Nielsen suggested a yield criterion that defines
the shear capacity of reinforced concrete plates with respect to normal stresses. Fundamental
for the understanding of the criterion is the assumption of zero tensile capacity in the con-
crete, perfect plastic material behaviour of the reinforcement, and no shear capacity in the
reinforcement. For the concrete this implies that the yield condition in a plane of principal
stresses can be visualized as a modified Coulomb material, see Figure 4.1.

9,

A

Y
Q

—f

Figure 4.1. In-plane yield condition of concrete by principal stresses (f. is the compressive
strength).

Reinforcement in concrete is needed since a pure shear stress state will result in cracking
since the tensile strength of concrete is assumed zero, see Figure 4.2.

Mohr’s Circle

iR -0
- l I r = Cracking

4
= o=7# ¥ Ng=1 k

Figure 4.2. Pure shear stress state transformed to pure tension/compression by Mohr’s Circle.

Hence, the plate structure needs reinforcement, which is most clearly seen by the shear
stress example. The inclusion of reinforcement to concrete provides either an isotropic or

33
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anisotropic tensile strength to the material. This tensile strength of the composite concrete
material is given by

At
fi=—7" n fl=

Ayfy
t )

(4.1)

where A, and A, are the areas of reinforcement per length unit, f, is the yield stress of the
reinforcement, and ¢ is the thickness of the concrete. In reality, the reinforcement adds a
compressive strength to the plate structure as well, but as this contribution in many cases
is small compared to the compressive strength of concrete it is chosen to be neglected. The
plane yield condition of reinforced concrete plates is illustrated in Figure 4.3.

a
A’
S e /i -
. i
@ O,
TJ'!.’
fHfe
~f

Figure 4.3. In plane yield condition of reinforced concrete plates.
Consequently, the normal stresses must be located within the following intervals
—f.< o, < (4.2)
—fo< o, <f (4.3)

In a finite element aspect, the stress-based elements are assumed to have both compressive
and tensile properties. An illustration of the element is seen in Figure 4.4.

—— Plate element

— Orthogonal and isotropic
reinforcement

Figure 4.4. Plate element with properties from composite material.

In order to formulate the three-dimensional M.P. Nielsen yield surface, the shear capacity,
T.y» has to be described as a function of the normal stresses, o, and o,, that are located

inside the contour of Figure 4.3. By realizing that the three-dimensional yield surface can
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only be described by two functions, it is possible to use the expressions for principal stresses
to derive M.P. Nielsen yield criterion

—(foto)(f. + ay) + Tﬁy <0. (4.5)

If considering the above equations, it can be seen that the constraints restrict each other
with respect to the allowable shear capacity.

Figure 4.5. M.P. Nielsen’s yield criterion for reinforced concrete plates. Illustration from [1].

The full derivation of Eq. (4.4) and (4.5) can be seen in e.g. [5], and it is important to notice
that the above equations are only allowed for reinforcement degrees, ®, less than 0.3.

Aty Ayt
=" 2203 4.
tfe  tfe 77 (+6)
When @ = 0.3, a bound for the shear capacity needs to be added to the system
—05f. < 7, <05f., (4.7)

which can be seen as a simplification of the high reinforcement degree. This limit is needed
as the shear capacity is only related to the concrete as a start. Hence, for small reinforcement
degrees, ® < 0.3, the influence is considered small and therefore no limit is introduced.

4.2 Yield Criterion for Concentrated Reinforcement

The concentrated reinforcement capacity in reinforced concrete plates is established by a
yield locus that accounts for the plastic bending moment and the normal force (MN-rela-
tion). The limit of the plastic MN-relation is given by the following two expressions [15]

F(M,N) = (%) + (Nﬁ)Q —1=0 (4.8)
(M, N) = (%) _ (Nﬁ) ‘10, (4.9)
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where M, and N, denotes the plastic resistance with respect to the moment and the plastic
normal force capacity, respectively. The full derivation of the above equation can be seen in
[16], and common is that shear is not accounted for in the concentrated reinforcement as
the shear capacity is considered despairingly small. This is further explained in [5].

The corresponding elastic limit is given by

M N

f(M’N)_i(M_)i(N—l)_l_o’ (4.10)

(& €

where M,, and N,; are the elastic moment and normal force capacity, respectively.

The fractions in Eq. (4.9) and (4.10) are restricted to be located in the interval of

—1<(£> A <£> A (£> A (i) <1. (4.11)
—\M, N, M., N,,) — ’
An illustration of the plastic and elastic limit is shown in Figure 4.6 a). As perfect plasticity
is assumed for the limit state problems, optimization of the reinforced concrete plates nat-
urally follows the plastic limit. For that reason, the moment and normal force values acting
on the beam and bar elements must be located inside or along the plastic yield surface.
Hence, the cross-sections of the reinforcement have a stress distribution dictated by the
yield function, which depends on the observation point. This is illustrated in Figure 4.6 b).

(a) Elastic and plastic yield locus (b) Stress distributions at plastic limit

Figure 4.6. Yield criterion for reinforcement in concrete plates.

4.3 Yield Criterion for Steel Plates

A perfect plastic material behaviour is considered for the steel plates and thereby the as-
sumption of sufficient deformation capabilities in the structure is valid. The assumption is
necessary in order to obtain stress redistributions and a limit for this distribution must be

defined, that is, the von Mises yield criterion. This criterion is well known for suiting a
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ductile material behaviour and is often expressed by the so-called von Mises stress g,,, which
in a plane case is defined as

o, = \/0926 —o0,0,+02+ 302, , (4.12)

and for principal stress states by

o, = \/0'% — 0,05+ 03. (4.13)

Optimization of the steel plates must obey von Mises yield criterion, which means that every
stress state in the optimized structure has to be located in the feasible domain of the convex
yield locus.

A0, o T

\

O
> gf \
¥~—_ von Mises
yield surface ' \
(a) Principal stress state (b) Generalized stress state

Figure 4.7. von Mises yield criterion.

If the limit is violated no information is known about the stress state and it is considered
inadmissible. By taking the material yield strength into account it is possible to define a
function that can be utilized in the optimization

flo,Y,)=0,—Y, <0, (4.14)

where Y, defines the initial yield strength of the material.






5. Numerical Limit State Analysis

Optimization is a well-known problem in calculus, which for centuries has been studied with
great interest. As many other mathematical topics, the invention of computers made a
significant breakthrough in the way of conducting optimization, and nowadays highly com-
plex problems are optimized by numerical methods. Thus, the lower bound limit analysis
problems presented in section 2.4 can be optimized using one of several numerical ap-

proaches.

5.1 Interior Point Method versus Simplex Method

The yield criterions associated with each limit analysis is defined in chapter 4, and common
for all optimization problems treated in this thesis, is the nonlinearity due to a convex yield
surface. The nonlinear aspect is worth noticing as the numerical approach is chosen on this
behalf. Within the field of mathematical optimization two optimization approaches are
widely used; namely, the simplex method and the interior point method. The simplex
method was developed by Dantzig in 1947 and is strictly related to linear problems, while
the interior point method invented by Karmarkar in 1984 [17] can be seen as a solving type
capable of handling both linear and nonlinear problems. Thus, an interior point method
requires no linearization of a convex yield surface unlike the simplex method. The search of
optimum is diverse, and the major difference is found in the way the methods traverses the
feasible region.

Optimum

Optimum
solution

solution

Decreasing
barrier term

Linearized
von Mises
yield surface

von Mises
yield surface

a) Interior Point Method b) Simplex Method
Figure 5.1 Searching principle for the interior point method and simplex method.

As illustrated in Figure 5.1, the simplex method traverses along linearized boundaries,
whereas the interior point method traverses the interior region by the restriction of a de-
creasing barrier term, which is further elaborated later in this chapter. Previously studies
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have proven that the interior point method is effective in limit analyses as the number of
iterations is only minimal affected by the size of the problem, see e.g. [18].

The yield criterion is linearized by a few number of linear constraints in Figure 5.1 b), and
it would require a higher degree of discretization to obtain a more accurate optimum. This
would lead to more iteration steps if utilizing the simplex method, and thereby more com-
putational time. Consequently, the interior point method is found to be more suitable for
optimizing the limit state problems in this thesis.

5.2 Path-following Interior Point Method

A number of interior point methods has been developed, and the choice of algorithm for a
given problem depends on the problem type. [15] In this section the path-following interior
point method is covered since it is suitable for large scale optimizations. The derivation is
accomplished by standard notation for nonlinear problems as the limit state problem in this
thesis can be transformed to this notation. When considering the path-following interior
point method three major topics are fundamental for the understanding

e the barrier term,
e the method of Lagrange multipliers and the Lagrange function,
e Newton’s method.

In order to make the notation more general and help understanding the numerical imple-
mentation issue, it is chosen to reformulate the original equations from section 2.4 to the
following problem

maximize bTy (5.1)
subjected to Ay =c (Equilibrium) (5.2)
f(ly) <o, (Yield Criterion) (5.3)

where the above notation corresponds to the lower bound formulation of the load optimiza-
tion problem in section 2.4 since

b=1[01]"

y =B q (5.4)
A = [H - R]

c=R, .

The first operation in obtaining the optimum solution is to convert the yield criterion ine-
quality constraint in Eq. (5.3) into an equality constraint by introducing a slack variable,

s, for each inequality constraint
fly) +s;=0, s; >0, j=12,..,p. (5.5)

The value of the slack variable, s, expresses the additional stress capacity before reaching
yielding. This operation is solely allowed by the restriction of a non-negative slack variable.
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5.2.1 Barrier Term

[15] Fiacco and McCormick developed a barrier term, which has the purpose of replacing
the inequality constraints (s > 0) by a penalizing term in the objective function. The ob-
jective function including the barrier term is given as

k
bTy +pu) log(s), u>0, (5.6)
i—1
where p denotes a decreasing barrier parameter greater than zero. The parameter is worth
noticing since the additional logarithmic expression will imply that the objective decreases,
when the slack variable approaches zero. To visualize this fact, the logarithmic expression
is illustrated in the figure below.

log(s)

A

Y

Figure 5.2. Illustration of the log contribution to the objective function.

The issue with the barrier term is that if the constrained optimum is located at the bound-
ary, meaning that one or more slack variables are equal to zero at optimum, then the
logarithmic expression will prevent the objective from reaching optimum. Thus, the barrier
parameter y is needed in order to balance the contribution of the true objective function in
Eq. (5.1), with that of the barrier term in Eq. (5.6). This implies that g determines the
quantity of the barrier term, which must go towards zero such that the objective function
corresponds to the original objective expression at the optimum solution. [15] Seen from a
visual point of view it implies that as u decreases, the feasible domain expands and eventu-
ally corresponds to the entire feasible domain, see e.g. Figure 5.1 a).

The total expression in Eq. (5.6) has to be maximized, and it leads to an algorithm favouring
feasible stress points located as far away from the yield surface as possible. This fact leads
to a more optimal search direction that converges towards optimum faster than starting by
considering the entire space.

5.2.2 Lagrange Multipliers

The method of Lagrange multipliers is an optimization strategy for finding maximum and
minimum of an equality constrained object function. The method was named after Joseph
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Louis Lagrange, and can be applied in both simple hand calculations and numerical meth-
ods. In a numerical manner the purpose is to establish the so-called Lagrange function by
the use of Lagrange multipliers from which the optimum solution can be found afterwards.
However, in order to understand the Lagrange function, the Lagrange multipliers is firstly
presented.

The method of Lagrange multipliers relies on the intuition that the objective function has
reached maximum when its gradient vector is parallel to the gradient vector of an equality
constraint function. Thus, the method is based on the insight of gradient vectors, which in
multivariable calculus always provide a direction and magnitude of a vector perpendicular
to a given function at the considered point. The directions must be the same when reaching
the optimum solution. In a simple case with a function f(x,y) constrained by another func-
tion g(x,y) this would lead to

[ (@, y)
y

Vitey) = [fy/(w, J | Vg(z,y) = [g“/(‘””’yq

g,/ (x,y)]

The principle is illustrated in Figure 5.3.

flzy) N
\
Vi(z.y)

vo(z,y)

\ = T

9(z.y)

Figure 5.3. Parallel gradient vectors V f(x) and Vg(x).

In order to verify that the vectors are parallel, a new variable is introduced; namely, the
Lagrange multiplier, 1. Lagrange multipliers are needed due to the obvious issue that a
gradient vector for an objective function and the gradient vector for a constraint function
might be parallel, but have different magnitudes. However, if the vectors are parallel it is
possible to find a scalar, which multiplied with one of the vectors equals the other vector.
This implies that if considering the above example once again, the following expression must
be satisfied when having reaching optimum

A - [0,
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where 4 is the Lagrange multiplier that verifies whether the vectors are parallel. The phys-
ical aspect of the multipliers has already been explained in section Appendix B: and thus,
the Lagrange function can now be established.

5.2.3 Lagrangian Function

The idea of the Lagrange function or Lagrangian is to define a single function describing
the entire problem. Thus, an incorporation of the constraint functions into the objective
function is achieved by multiplying a Lagrange multiplier, A, with each constraint equation.
The Lagrangian is established as follows

K
Lly,sav) =bTy+ Y log(s) ~XT(E(y) +5) ~Vi(e—Ay),  (57)
i=1
where A and v denotes the earlier mentioned Lagrange multipliers. More specific, 4, can be
seen as the magnitude of the plastic strains in the upper bound solution formulated in
section Appendix B:. Likewise, v, can be seen as the magnitude of the plastic displacements
in the upper bound solution.

The Lagrangian in Eq. (5.8) is differentiated with respect to all the variables to obtain the
first order optimality conditions elaborated in section Appendix B:

_a—,c_
oy -
9L Vyf(y)X—A v—b 0

_las| S\ — pe |0

VL(y,s,\, V) = 0|~ Fy) + 5 = ol (5.8)

DN c— Ay 0
0L
Loy

where e is a vector of ones. The optimum solution is reached when the equations equal a
zero vector. An iteration process is therefore needed in order to find the variables providing
this solution.

5.2.4 Newton’s Method

Newton’s method is often used within mathematical optimization for numerically solving
nonlinear expressions. The iterations in the method end when a proper solution is obtained.
The solution is achieved by using first order Taylor series expansion from which an inverse
operation is used to find new increments that updates the variables as each iteration pro-
ceeds. For the sake of convenience, a simple case with a single variable problem is firstly
considered, where the task is to satisfy the following equation

fly) =0

The function has to be once continuously differentiable in order to use Newton’s method.
Newton’s method uses first order Taylor series expansion to approximate the increment that
is required to fulfil the above expression
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FO ~fy* )+ Ad-F ),

where k denotes the iteration number, f(ykfl) is a known solution, and Ad denotes the
increments required to obtain a zero solution, that is, y* — y*~1. This process is illustrated
in the figure below.

fy) A

it )]

0

Figure 5.4. Principle of Newton’s Method with one variable.

The f(y*) is set to zero since the optimum solution must converge against that. The incre-
ment dA is solved by the following expression for each iteration

0= f(yk—l) + Ad - f/(yk—l) = Ad=— f(yk_1>

et
Each iteration provides a new increment, which in simple case is added to the previous

variable value
Yy =y + Ad.
With this clarified it is possible to convert this iteration principle into the Lagrange problem
given in Eq. (5.7)
0=V<L(y,s,\,v)+Ad-V3L(y,s,\v), (5.9)
which can be rewritten as

_ _V’C(yv S, >\7 V)

Ad =
V2L(y,s,\, V)’

(5.10)

where the partial derivatives of the Lagrange function form the Hessian matrix in Eq. (5.11)
and thus, Eq. (5.10) is actually an inverse operation.

H 0 V,(f(y) -AT

V2e(y,sav)=|_0 ~z S 0 (5.11)
vV f(y)' I 0 0
~A 0 0 0

z is a diagonal matrix of A, and I provides an unit matrix. The H-matrix is given as

H=>) X\VZf(y). (5.12)
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The equilibrium equations play no role in this matrix because the second derivatives are all
zeros. When conducting the inverse operation, a direction vector Ad containing increments
of all the variables and the Lagrange multipliers is found to

Ad=[Ay AsT AXT ApT]" . (5.13)
From this the new variables are updated by the following expressions

y =y +Ay-n

sk =sk"1 4+ As-p

A=A AN g

vk:vk_1+Av-n,

(5.14)

where the iteration number is denoted by k, and 7n is an appropriate step length ensuring
that s and 4 stay positive.
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5.3 Numerical implementation in MATLAB — fmincon

The formulated lower bound problem in Eq. (2.6) is to be implemented numerically into
MATLAB and Mosek since the optimization algorithms in these two software programs are
based on the interior point method.

MATLAB offers an optimization toolbox that provides functions capable of solving linear,
quadratic, integer and nonlinear problems. [19] The functions can be used to obtain param-
eters that minimize or maximize objective functions. Both discrete and continuous problems

can be solved for finding optimal solutions.

The fmincon function in MATLAB is used for optimizing the lower bound problems in
section 2.4. fmincon is a function that is capable of finding minimum and maximum of

constrained nonlinear multivariable functions. By default, the minimization problem in
MATLAB has to be specified by

IN

c(zr) <0
[ ceq(z) =0
min f(x) such that A-x<b (5.15)
’ Aeq - x = beq
b<z<ub,

where f(x) is a scalar objective function, ¢(z) and ceq(z) are nonlinear inequality and equal-
ity constraints, respectively. A and Aeq are linear inequality and equality constraints, and
Ib and ub are the bounds. The objective function f(z) can either be linear or nonlinear.

In fmincon it is possible to use four different solvers and among these is the interior point
algorithm. The interior point algorithm is the default solver, and it is the one used for
solving the lower bound formulation. The algorithm is capable of handling both large!,
sparse problems and small dense problems, and that is why it is preferable compared to the
other solvers. [20] One of the benefits of using the interior point algorithm is that it can
recover from NaN (Not a Number) or Inf (Infinite numbers). By using the interior point
algorithm in MATLAB, the user is not demanded to formulate key concepts in the method,
such as the Lagrange function, hessian matrices nor establishing Newton’s method as itera-
tion process to secure first order optimality since it is already implemented in the function.
Thus, the user is only required to provide input to the function.

! Large scale problems are based on linear algebra that doesn’t need to use full matrices.
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5.3.1 Barrier Function and Solving Methods

The original problem that has to be solved by the fmincon interior point algorithm is ex-

pressed by
minimize —f(x)
subjected to  h(x) =0 (Equilibrium) (5.16)
g(x) <0, (Yield Criterion)

where h(x) are the equality constraints and g(x) are inequality constraints. The problem in
Eq. (5.16) is reformulated by introducing a logarithmic term, also called a barrier function

minimize —(fu(z,s) — By In(s;)), s;>0
subjected to  h(x) =0 (Equilibrium) (5.17)
g(x)+s, (Yield Criterion)

where u is a barrier parameter that has to be greater than zero (1 > 0). For each inequality
constraint g there is a slack variable s. Each slack variable has to be greater than zero (s >
0). When p decreases, the objective function f, approaches f. By reformulating the problem
in Eq. (5.16) to the problem in Eq. (5.17) only equality constraints are considered which
are much easier to solve than the original inequality constraints.

fmincon uses one of two types of step at each iteration to solve the minimization problem
in Eq. (5.17)

e Newton’s step
e CG (conjugate gradient) step

By default, fmincon uses Newton’s step, but if it is not possible then a conjugate gradients
(CG) step is used instead. Newton’s step solves the first order optimality conditions (KKT-
conditions) as described in section Appendix B: by a linear approximation.

5.3.2 Including Gradient and Hessian

In the fmincon algorithm in MATLAB it is possible to include the gradient and hessian of
for objective function and for the nonlinear constraints. By default, the gradient and hessian
are calculated numerically by approximated methods. The disadvantage is that the solvers
return an approximated hessian that in some cases is far from the true hessian. As an
alternative to the approximated methods it is possible for the user to provide a function
that is able to calculate the partial derivatives analytically [21]. The analytical approach to
the gradient and hessian typically leads to a faster, robust and more accurate solution to
the problem.
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fmincon Hessian
The Hessian of the nonlinear constraints can be calculated by selecting one of the following

algorithms in the interior point algorithm in fmincon

e ‘bfgs’ (Broyden—Fletcher-Goldfarb—Shanno algorithm)

e ‘Ibfgs’ (Limited-memory Broyden—Fletcher—Goldfarb—Shanno algorithm)
o ‘fin-diff grads’

e ‘HessianFcn’

‘bfgs’, ‘Ibfgs’ and ‘fin-diff-grads’ are three different ways of calculating an approximated
Hessian matrix, whereas ‘HessianFnc’ is a user-defined approach. The default way of calcu-
lating the Hessian to the nonlinear constraints in fmincon is by ‘bfgs’, which calculates the
Hessian by a dense quasi-Newton approximation. The second approach, ‘Ibfgs’, is also a
quasi-Newton approach but it is more suited for limited-memory, large-scale problems as is
the case with the lower bound formulation. By choosing the ‘fin-diff-grads’, the Hessian
matrix is calculated by a Hessian-times-vector product by finite differences of the gradients.

The ‘HessianFcn’ is the only non-approximated way of calculating the Hessian matrix, but
the user has to define the Gradient and Hessian analytically [22]. Fewer iterations are typ-
ically needed to solve the problem when the analytical approach is implemented. In the
interior point algorithm, the Hessian of Lagrangian includes the Lagrange multipliers and
the Hessian corresponding to the nonlinear constraints. The Hessian for the nonlinear con-
straint functions has to be developed as a separate function but it still has to be able to
include the Lagrange multipliers.

The relative memory usage compared to the relative efficiency for each Hessian approach is
seen in Table 5.1.

Table 5.1. Different Hessian approaches for ‘interior point’ in fmincon [23]

Hessian Relative Memory Usage Relative Efficiency

'bfgs' (default) High (for large problems) High

'Ibfgs' Low to Moderate Moderate

'fin-diff-grads' Low Moderate

'"HessianFcn' (depends on user-defined code) High (depends on your code)

The memory usage of the user provided partial derivatives depends on the programmed
code. For the lower bound problem, the ‘bfgs’ isn’t recommended since it is not suitable for
large-scale problems. Generally, the ‘Ibfgs’ and user-defined approaches are the most effi-
cient when calculation time and accuracy is considered in combination.
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5.4 Numerical implementation in Mosek (SOCP)

The lower bound load formulation for steel plates and reinforced concrete plates can also be
optimized by means of the interior point optimizer in Mosek as an alternative to fmincon.
Mosek is an efficient software for solving large-scale sparse problems, especially when it
comes to second-order cone programming. Therefore, the lower bound formulation has to
be expressed in terms of constraints describing second-order cones.

5.4.1 Second-Order Cone Programming (SOCP)

During the history it has been shown that the interior point method was effective in solving
problems with convex constraints. The discovery gave rise to that the method could be
extended to new algorithms, and among these is the second-order cone programming
(SOCP) [7]. The constraints in SOCP are defined by a number of cones.

Z, Zy

Figure 5.5. Second-order cone with three variables (€, > \/x2 + x3)

The most general constraints in SOCP are the Quadratic Cone (QC)

n
x> Zx?, (5.18)
\ 7=

and the Rotated Quadratic Cone (RQC)

n

2m,wy > Y 2 sy, 3y >0 (5.19)
j=3

When considering limit state analysis of reinforced concrete plates, M.P. Nielsen’s yield
criterion is effective since the formulation is already expressed as two cones. In this study,
von Mises yield criterion is formulated such that it corresponds to the quadratic cone (QC)
in Eq. (5.18), whereas M.P. Nielsen’s yield criterion and the MN-relation for reinforcement
is formulated such that it corresponds to the rotated quadratic cone in Eq. (5.19). By refor-
mulating von Mises, Nielsen’s yield criterion and the MN-relation, it gives rise that Mosek
can be implemented to solve the lower bound problem. The reformulation of the yield cri-
terions is derived in Appendix E:.
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5.4.2 Mosek Optimization Procedure

Mosek is a software package capable of efficiently optimizing linear and nonlinear problems.
The optimization is in this case based on second-order programming and the well-known
primal-dual formulation as described in section 5.2. Besides optimization, Mosek is capable
of utilizing some pre-steps that makes the algorithm faster and numerically more stable. A
general procedure for conducting an optimization in Mosek is as follows [24]

e Presolve (reduces the problem size)

e Dualizer (choosing whether to run primal or dual solution)
e Scaling (scales the unknown variables)

e Optimize (solves the problem)

In the presolve stage, Mosek reduces the problem size by e.g. removing redundant equations
before optimizing. This is because some constraint equations may be linearly dependent,
and by removing those, a more efficient and stable optimization can be obtained. This issue
has also been treated in [25].

Another relevant feature that is included in Mosek is the possibility to scale different vari-
ables. If the value of a variable is large or small, say 1.0e 4+ 11 or 1.0e — 9, some optimization
algorithms struggle to converge and inaccurate results may be obtained. This is because
computers are based on finite precision and some important digits may be truncated [24].
A well-scaled problem is preferable, which means that the variables should have more or
less the same magnitude. The scaling issue can be circumvented in Mosek and a better
numerical stability is obtained. The scaling possibility feature isn’t implemented in e.g.

fmincon.

Different examples on optimizing steel and reinforced concrete plates in Mosek is presented
later in the report.



6. Program for Verification of Critical

Stress Spots

In the finite element method, numerical errors induce critical stress spots that can make it
a challenge to fulfill the ultimate limit state when designing static loaded steel plates by the
theory of elasticity. More specific, stress concentrations and stress singularity spots often
induce stresses exceeding the elastic load bearing capacity. Critical stress spots are common
in finite element analyses as a result of concentrated loads, concentrated supports, poor
mesh discretization, and concave geometrical corners. As a consequence, the stress spots
often lead to oversized designs due to high local stresses that in fact don’t appear in reality.
The stresses can be verified in terms of conducting a nonlinear analysis of the entire struc-
ture, but this is time-demanding, in terms of both iterations and model size, and furthermore

it is unsafe.

Figure 6.1. Examples of critical stress spots in plates.

To accommodate this problem, an efficient program for verifying the influence of critical
stress spots in two-dimensional plates has successfully been developed. The same approach
could have been made in the tree-dimensional case. Furthermore, a paper regarding the
submodelling program has been elaborated, which is presented in Appendix I:.

The developed program relies on the intuition that a subarea enclosing the critical stress
spot is examined based on perfect plastic material behaviour. The assumption of the material
behaviour is needed as the subarea is investigated by a lower bound limit state analysis.
The limit analysis provides a load bearing capacity for the enclosed region by allowing a
redistribution of the stresses. The capacity is defined by a scalar load multiplier, ¢, that is
optimized by different optimization approaches in this thesis. The scalar load multiplier is
an indicator of the load bearing capacity of the structure in comparison to the originally
applied load. A scalar value greater than 1.0 implies that yielding will not occur in the
considered region. Thus, a verification of the problem size is found by considering only a
small domain of the entire structure. Besides dealing with submodels, the program is also
capable of optimizing global models in order to obtain the load bearing capacity, see Ap-
pendix F.1 Full Plate Model Optimization.
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The advantage of using our submodeling approach is that the load multiplier is always on
the safe side since the capacity is only verified in a restricted part of the model. By only
considering a subarea, yielding can be specified to only involve a defined part of the struc-
ture. This is of great advantage in comparison to nonlinear analyses of global models, where
the capacity is defined as the point when yielding in the entire cross section is obtained.
Another advantage of our approach in comparison to numerical analyses based on a nonlin-
ear material behaviour, is the convergence path as illustrated in Figure 6.2.

“A

ANSYS nonlinear

convergence
Eract solution

Ve Lower-bound
4 convergence

Mesh
refinement

Figure 6.2. Convergence path for nonlinear and lower bound convergence.

Nonlinear analyses produce an exact solution in the plasticity analysis based on the given
mesh of the considered model. This can lead to a load multiplier that is on the unsafe side
and thereby an overestimation of the load bearing capacity if a proper mesh is not assigned.
The load bearing capacity in our approach will always be located on the safe side as the
lower bound theorem is utilized.



6.1 Procedure for Stress Verification 53

6.1 Procedure for Stress Verification

In this study the approach for verification of critical stress spots in static loaded plates is
based on an interaction between ANSYS Workbench and MATLAB. Instead of ANSYS
Workbench an arbitrary finite element software could have been used.

The overall proces of the program, from creating a global model to obtaining a submodel
solution, is exemplified in Figure 6.3.
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<15 ¥ 0 o submaodel
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Figure 6.3. Overall process of the program.

In the first steps, ANSYS Workbench is used to solve a global user-defined model by means
of a displacement-based finite element method. By solving the global model, it is possible
to conclude whether critical stress spots appear. A submodel area is defined by only consid-
ering a specific region of the domain. In this region the problematic stress spots are solely
located, why the problem is significantly reduced regarding calculation time and numerical
errors. The submodel is exported to MATLAB by an interaction with ANSYS Workbench
that includes a direct transformation from a displacement-based mesh utilized in ANSYS to
a stress-based mesh generated in MATLAB. The problem is solved in MATLAB where a
nonlinear load optimization is conducted based on the interior point method. The optimi-
zation results in a scalar load multiplier « verifying the problem size.
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6.2 Submodeling Technique

In order to verify critical stress spots, the user has to discretize a global problem to a
submodel that encloses the critical region. The submodeling technique is well known within
finite element analysis where the aim is to obtain more accurate stress results in specific
regions. In order to conduct a submodel analysis a global model is needed and the corre-
sponding solution. The global model has a coarse mesh, whereas the mesh of the submodel
is fine to obtain accuracy. By making a coarse global model, the computational cost is
minimal.

Location of
submodel

External
boundaries

r

L I .
rd
1 .. | .
.
L . A T )

T
-

A\

Cut boundaries
with interface nodes

Global model Submodel
Figure 6.4. Technical terms within the field of submodeling.

The solution from the global model is used as boundary conditions for the defined submodel.
All the boundary conditions are imported to a separate defined finite element submodel
with a refined mesh as illustrated in Figure 6.4.

For the submodeling approach in this study, the stresses from the global model are interpo-
lated and applied on the cut boundary of the submodel. There is no need for the cut bound-
ary to coincide with the element boundaries in the global model, which is of great advantage.
Another advantage is the ability to assign arbitrary mesh types and elements for the global
model in the submodel approach.

6.3 Submodeling in ANSYS Workbench

ANSYS Workbench is used for two purposes in this study. Firstly, ANSYS is used to solve
a global plate model and secondly to create a submodel for the upcoming limit analysis in
MATLAB. The global model in ANSYS is solved by using displacement-based elements (see
Figure 6.5) where the structural stresses are related to the nodal displacements.
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7~ A

Stress-based triangular

Displacement-based plate elements

2d elements

@ Cut boundary nodes
A Support

(a) Global model (b) Submodel

Figure 6.5. FExample of the submodeling principle in this study.

After solving the global model, a custom made APDL-script is implemented in ANSYS
Workbench in order to create a submodel and to export the submodel topology and bound-
ary conditions for the 2D stress-based element formulated in MATLAB.

I INPUT —————
Geometry = 2 !
!

1l = Cirecle,
! 2 = Rectangls

! Center coordinates of submodel

x = 100.0 ! ®x—oocerdinate of center of radius
1 ! ] + £ + £ ;
vy = 25.0 ! y—ocoordinate of center of radius

!' Number of divisicon of external boundary of submodel
nodiv = 16 ! 16 Recommended for rectangular submodsl
: : ! 70 Recommended for circular submodel

! Only if the submodsl is a circls
r = 10 ! Radius of circle

! only if the submodsel is a rectangls
w = 25 ! Width of rectangle
1 =25 ! Length of rectangle

Figure 6.6. Input windows in the APDL-script.

The submodel is made by a user-defined stress path in ANSYS. An APDL-script is necessary
to implement since ANSYS Workbench isn’t able to export boundary stresses and the to-
pology for a submodel by default.

In order to conduct a lower bound limit analysis in the developed program, the following
parameters need to be exported from ANSYS Workbench:

e node coordinates

e clement topology

e plate thickness

e stress components at cut boundary

e density

e gravitational acceleration and direction
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6.3.1 Submodel Geometries

In the developed program, the submodel can either be defined from a circular or a square
cut boundary, see Figure 6.6 and Figure 6.7.

(a) Global model with circular submodel (b) Global model with rectangular submodel
selection selection

Figure 6.7. Example of different submodel geometries.

The size and mesh of the two submodel geometries are user-defined, which is done by typing
the specifications in the imported APDL-script in ANSYS Workbench. The rectangular
submodel is defined based on the coordinates of the center in global Cartesian coordinates
and the length and width, whereas the circular submodel is defined by the circle radius and
coordinates to the center, see Figure 6.6.

6.3.2 Export of Cut Boundary Stresses

The submodel is based on a stress path that can be placed anywhere in the model independ-
ent of the global node and element position as earlier described.

(a) Circular submodel (b) Rectangular submodel

Figure 6.8. Example of normal stress distribution along a stress path on the submodel

boundary.

A linear elastic analysis is conducted in ANSYS Workbench for a global model and from
the analysis it is possible to obtain the stress state for the global model. After conducting
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the linear analysis, the three stress components at each node on the cut boundary are inter-
polated to perform the lower bound limit analysis in MATLAB. The stresses from the stress
path are used as boundary conditions in the limit state analysis in MATLAB.

6.3.3 Mesh Generation for the Submodel

The principle of making submodels is that the global model has to be meshed coarsely,
whereas the mesh of the submodel has to be fine. The mesh of the submodel is assigned
based on a user defined edge sizing of the cut boundary. The edge sizing is based on the
number of divisions chosen for the path operation, see Figure 6.6. This makes it possible to
directly apply the shear and normal stresses calculated from the displacement -based ele-
ments into the boundary nodes in the stress-based model. This is due to that the stresses
are assumed to vary linearly over the element edges and that the stress-based elements are
located at the same position as the displacement -calculated path stresses.

The fine submodel mesh is created with ANSYS Workbench by means of the input in the
APDL-script where the mesh is assembled from CST-elements since triangular stress-based
elements use the same topology. By having the same element geometry and number of nodes
on the displacement -based CST-elements as the stress-based elements, it is possible to

directly import node coordinates and element topology from ANSYS to the program in
MATLAB.

(a) Clircular submodel (b) Rectangular submodel

Figure 6.9. Examples of submodel mesh.

In the APDL-script, the mesh of the submodel is set to be free, but a mapped mesh can also
be assigned if the submodel geometry allows it.

6.4 Parameters Influencing the Load Multiplier

When conducting the submodel analysis, the user has to be aware of the parameters that
influence the scalar load multiplier « in the limit analysis

e mesh of the global model
e size of the submodel
e mesh of the submodel.
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The mesh of the global model has a large influence on the load multiplier since the imported
stresses depend on the mesh of the global model. A study of the global mesh influence on
the load multiplier is seen in Appendix G.4 Study of Cut Boundary Stresses. In order to
obtain the most accurate value for the load multiplier, the global model mesh should consist
of higher order elements as concluded in the appendix. A study of the submodel size is
shown in Appendix G.1 Study of Submodel Size. From the appendix it is concluded that a
larger subarea results in a higher load multiplier. Thereby, the load multiplier is always on

the safe side when the optimization is conducted for a submodel rather than a global model.

If a fine mesh is assigned a more accurate scalar load multiplier is obtained, but it also
increases the problem size and thereby the calculation time, see Appendix G.2 Study of
Submodel Mesh Refinement. The influence of refining the submodel mesh is not as signifi-
cant factor as applying an appropriate global model mesh and choosing a proper size of the
submodel. Thereby, when conducting a submodel optimization the load multiplier is an

interaction between the size and mesh of the submodel, and the mesh of the global model.

6.5 Example of Application — Plate with Stress Singularity

A plate with a hole is evaluated to exemplify the application of the submodeling program,
see Figure 6.10. Stress singularities appears as a result of the concave corner in the structure.
The plate is subjected to a transverse force of 5 kN at the right side, and a fixed support is
defined for the left edge. The plate has a thickness of 10 mm.

80 mm 70 mm 150 mm
130 mm
200
mm @50 . 5 kN
60 70 mm
mm
60 mm
—_

300 mm

Figure 6.10. Free body diagram of the considered plate structure.

The plate is made of steel and the yield strength is assigned to 235 MPa.
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6.5.1 Linear Elastic Stress Analysis in ANSYS Workbench

A linear elastic stress analysis has been conducted in ANSYS Workbench based on the
boundary conditions shown in Figure 6.10. The mesh of the model consists of Q8-elements
as seen in Figure 6.11.

A: Static Structural

Equivalent Stress

Type: Equivalent (ven-Mises) Stress
Unit: MPa

Time: 1

304,46 Max.
F 11231
' 9B347

1 B4.387
T0A26
56.466
42506

28545
14.585
0.62481 Min

Figure 6.11. Plot of mesh and resulting von Mises stresses.

From the linear elastic stress analysis in ANSYS Workbench it is seen that the highest von
Mises stresses are obtained in the region of the sharp corner, whereas the stresses are much
lower in the remaining part of the plate.

300
200 -

100 [

-100

-200
von Mises yield curve e
®  Principal Stress States g .
-300 4 st - S 200 100

-300 -200 -100 0 100 200 300 400 500 -

7

(a) Principal stresses. (b) Generalized stresses including o, o, -plane.

Figure 6.12. Plot of von Mises yield criterion and stress states for the global model.

By plotting the stresses of each node of the global model, as seen in Figure 6.12, it is seen
that only a single stress state is critical as it is located outside the yield criterion. Since the
structure has a lot of capacity, the stresses at the critical areas can be redistributed such
that an optimized stress state is obtained.

6.5.2 Submodeling

In order to redistribute the stresses, a circular subregion with a radius of 20 mm is sliced,
in which the redistribution of stresses has to be conducted. By choosing a radius of 20 mm
it means that the upcoming load multiplier corresponds to that yielding is only allowable
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up to 20 mm from the singularity spot. This is advantageous in comparison to a nonlinear
analysis in ANSYS, as the entire structure needs to be considered.

Figure 6.13. Global model with selected subregion.

For the submodel area a mesh is generated in ANSYS Workbench by means of the APDL-
script. The external force is applied in the submodel at the nodes located on the cut bound-

ary, see Figure 6.14.

Figure 6.14. Submodel mesh.

The model consists of 630 elements, and a refinement is performed at the edges near the
singularity spot. The submodel is statically indeterminate, which gives rise to stress redis-

tributions.

6.5.3 Verification of Critical Stress Spots

The scalar load multiplier « is to be calculated for the submodel in order to clarify whether

the given stress state results in structural collapse.



6.5 Example of Application — Plate with Stress Singularity 61

von Mises Stresses [MPa] (a = 2.3286)

Figure 6.15. von Mises stress of optimized submodel.

The scalar load multiplier « is calculated to 2.32. As the load multiplier is above 1.0, it can
be concluded that the applied force doesn’t result in collapse, even though the elastic anal-
ysis shows critical stresses for the global model.

By plotting the stress states and von Mises yield criterion, as seen in Figure 6.16, it is
seen that an allowable stress field is obtained.

300
200
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-100

-200

von Mises yield curve

®  Principal Stress States )
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-300 -200 -100 0 100 200 30C o ; x0 “ 500

(a) Principal Stresses. (b) Generalized stresses with o, -plane.

Figure 6.16. von Mises yield criterion and principal and generalized stress states of optimized

submodel.

The developed submodel program can also be used for structures with stress concentrations
and singularities regarding concentrated supports and forces, and not only geometrical sin-
gularities as it is the case in this example.






7. Load Optimization of Reinforced
Concrete Plates

A program concerning load and material optimization of reinforced concrete plates has been
developed. The elaboration of the load optimization part is presented in this chapter, while
the material optimization is examined in the subsequent chapter. The intention with the
following chapter is to compare the numerical approach presented in this thesis with well-
known design approaches, such as the stringer method. Furthermore, the capability of the

numerical approach is explained and demonstrated by examples.

The numerical method employed in this thesis is a modification of an earlier presented
approach that is based on the lower bound formulation, see section 2.4. The formulation is
based on a statically admissible solution and a non-violated yield criterion. The formulation
of the elements and the yield criterions, in this approach, can be recalled from chapter 3
and chapter 4. As the optimization involves different element types, a proper interaction
between the elements is validated, and it is presented by examples in Appendix H:. The
approach in this thesis contributes to a nonlinear yield criterion, and likewise, a nonlinear
relation between the moment and normal force in a rebar element, in comparison to the
method presented in [1]. Furthermore, the lower bound problem is solved by second order
cone optimization in Mosek, which is found as a rather unexplored approach regarding

optimization of reinforced concrete plates.

7.1 Problem Formulation

The problem formulation in this chapter is similar to the formulation for steel plates as the
task is to maximize the scalar load multiplier by the restriction of a statically admissible
solution, and a yield criterion. However, the problem is more complex in a numerical point
of view as different element types are considered, and additional constraint equations are
introduced. The lower bound formulation for optimizing reinforced concrete plates is stated

as a summary of the derivation in the previous chapters

maximize

subjected to

HB — oR = R, (7.2)
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(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

In case of higher reinforcement degrees (® > 0,3) a limit is added to the shear stresses at

|7,y <0.50f..

(7.10)

As the problem is solved by cone optimization a reformulation of the yield criterions in Eq.

(7.3), (7.4), (7.5) and (7.6) has been necessary, see Appendix E:.

7.2 Example — End Wall Exposed to Wind Load

In the following example, a load optimization is conducted for an end wall exposed to wind

load, see Figure 7.1. The structure has previously been examined by the stringer method,

see [1], [6] and [25], where a load multiplier of @ = 72.25 was obtained. The aim is to compare

previously obtained results with the numerical solution presented in this thesis.
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Figure 7.1. End wall exposed to wind from left.
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The base of the end wall is considered rigid, and a compressive force is applied at the left
side, while a tensile force acts at the right side of the wall. The thickness of the structure is
200 mm, which is relatively small compared to the width and height. Thus, the wall can be
analysed as a plane structure. The material properties of the reinforced concrete and con-
centrated reinforcement appear in Figure 7.1.

The model is implemented in MATLAB by a discretization as seen in the figure below. The
finite element discretization of the end wall is made by dividing each shear field from the
study in [6] into four triangular elements. This provides a total of 76 triangular elements
and 13 rebar elements. In order to compare with the stringer method, the load is distributed
into the horizontal rebar elements as illustrated in Figure 7.2.

:I Plate elements —C{TINQETS ——= Forces Supports

Figure 7.2. Finite element discretization of plate model in MATLAB.

Two load cases are considered in this example. In the first load case, the forces are applied
in the rebar elements at each side of the structure, while the second load case investigates
the structural response when the forces are applied in the concrete.

7.2.1 Application of Forces in Rebars

By performing a load optimization in the developed program, a load multiplier of « = 107.14
is obtained when the load is applied in the rebar elements. The stress distribution corre-
sponding to the load multiplier is illustrated in Figure 7.3.
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(a) Normal stress in the (b) Normal stress in the (c) Shear stress
a-direction y-direction

Figure 7.3. Stress distribution of the optimized structure.

From the figures above it is clear, that normal stresses are introduced in the concrete plates,
which is not possible in the stringer method. Furthermore, it can be noticed that the stress
capacity is still available in the concrete when considering all three generalized stresses. This
implies that collapse has occurred as a result of failure in a concentrated reinforcement bar.
Both observations are seen in the figures below.

5 x10%

Moment [Nmm]
o

-2 -15 -1 -05 0 0.5 1 1.5 2

Normal force [N] x10°
(a) M.P. Nielsen yield criterion including (b) MN-relation for the reinforcement
optimized stress states. including normal force and moments.

Figure 7.4. Yield criterions for reinforced concrete plates and rebars.

The influence of the nonlinearity in M.P. Nielsen yield criterion is not significant in this
case as the concentrated reinforcements are critical. However, for structures where the con-
crete is having more influence on the load multiplier, the nonlinear yield surface could pro-
vide a larger load multiplier in comparison to the use of a linear yield criterion.

It can be concluded that the presented method provides a load multiplier that is 32.5 %
higher than the obtained by the stringer method.
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7.2.2 Application of Forces in the Concrete

By performing a load optimization in the developed program, a load multiplier of o = 123.8
is obtained when the load is applied in the concrete elements. The stress distribution corre-
sponding to the load multiplier is illustrated in Figure 7.7.

(a) Normal stress in the (b) Normal stress in the (c) Shear stress
x-direction y-direction

Figure 7.5. Stress distribution of the optimized structure.

The corresponding stress states, normal forces, and moments are illustrated in the figure
below.
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(a) M.P. Nielsen yield criterion including (b) MN-relation for the reinforcement
optimized stress states. including normal force and moments.

Figure 7.6. Yield criterions for reinforced concrete plates and rebars.

By applying the external force in the concrete it is seen that the obtained load multiplier is
15.9 % higher in comparison to the approach presented in [1]. The value of the load multi-
plier seems reasonable as nonlinear yield criterions are implemented for both the reinforced
concrete and rebar elements, which is not the case in [1].
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7.3 Example — Plate with Curved Reinforcement

In the following example a u-stirrup casted into a concrete plate is considered, see Figure
7.7. The main purpose is to show the importance and capabilities by giving the concentrated
reinforcement beam properties. The transverse beam forces in the u-stirrup (or rebar ele-
ment) has to be transferred to the neighboring plate elements, which results in compression
in the concrete. It has to be pointed out that the analysis only severs the purpose of showing
the capability by the numerical method as u-stirrups can cause local stresses exceeding the
compressive strength in the concrete. Uncritical analyses of such cases can lead to collapse,
which is described at the end of the example.

150 mm 150 mm

A il = 491 mm*
stirrup
150 mm t = 100 mm
.= 235 MPa
200 mm ¢ 100 mm fl

i f = 30 MPa
! 150 mm f, = 0.01 MPa
I
I

I, T= 100N

T:MNLIHHHT THTIHIL

Figure 7.7. Plate system with U-stirrups.

The finite element model is established by applying a load of T =100 N at the two ends of
the u-stirrup, while the plate elements between the stirrup are supported in the vertical
direction, see Figure 7.7. Furthermore, the tensile strength in the concrete is defined as f, =

0.01 MPa due to convergence issues.

Figure 7.8. Finite element discretization of plate model in MATLAB.
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The model is implemented in MATLAB by discretizing the model as seen in Figure 7.8. The
discretized mode consists of 430 reinforced concrete elements and 29 rebar element describ-

ing the u-stirrups.

By performing a load optimization in the developed program, a load multiplier of o = 1152
is obtained. The principal stress distribution corresponding to the load multiplier is illus-
trated in Figure 7.9 and Figure 7.10.
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Figure 7.9. Principal stresses, 0. Figure 7.10. Principal stresses, o,.

The corresponding principal directions are illustrated in Figure 7.11.
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Figure 7.11. Principal directions.

In Figure 7.9 and Figure 7.10 it can be seen that no stresses occur outside the u-stirrup, which
means that the applied tensile forces are carried as pressure in the concrete, solely. Further-
more, it can be seen that the compressive stresses in the concrete is growing towards the
stirrup ends, and that the principal direction is pointing slightly towards the top of the
stirrup. This is as expected since the concrete can carry higher shear stresses under com-
pression, and thereby transfer higher tangential forces from stirrup to the plate element.
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(a) M.P. Nielsen yield criterion including (b) MN-relation for the reinforcement
optimized stress states. including normal force and moments.

Figure 7.12. Yield criterions for reinforced concrete plates and rebars.
The load multiplier corresponds to yielding in the u-stirrup, which is also seen in the figure
above.

T-a 100 N -1152
A 491 mm?2

=235 MPa = f,.
stirrup
Thus, yielding occurs in the stirrup when the tensile force is 115 kN. Additionally, the
moment capacity is reached at multiple points along the u-stirrup due to the transverse
loading of the rebar element.

7.3.1 Analytical Concrete Pressure

The internal concrete pressure can be calculated analytically according to [8] if the projec-
tion perpendicular to the rebar element is assumed equal to the tensile stress in the u-stir-

rup element

2T 2-115-10°N

_ b — 46 MP.
e =D = 25 mm 200 mm — 16 MIa,

where d is the cross-sectional diameter of the u-stirrup, and D is the diameter of the curved
reinforcement. Thus, the concrete pressure is actually higher than the uniaxial compressive
strength in the concrete, which was described in the beginning of this example. More specific,
the limit analysis distributes the pressure along the entire area of the plate instead of the
area acting over the u-stirrup, solely. This can lead to high local stresses and potential

collapse, see Figure 7.13.
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(a) Splitting collapse. (b) Local collapse.

Figure 7.13. Different collapse forms.






8. Reinforced Concrete Plates — Material
Optimization

The optimal cost of structures is found as a combination of several factors that are all
weighted in a total cost function. The purpose of performing material optimization of
reinforced concrete plates is to reduce the material amount as this cost is overriding. A
major component in this regard is the material costs, which is treated in this chapter. Yet,
material optimization has become quite important in other fields, such as production, where
the time costs are highly related to the material design at various fronts. As an example, a
growing problem in the industry is the tendency to oversize reinforcement, which often
causes space and production problems as the reinforced concrete elements are not well-
proportioned in terms of plate thickness and the ammount of reinforcement.

Figure 8.1. Distributed reinforcement in a concrete plate.

The fundamental difference between load and material optimization is that the material
strength is fixed at load optimization, wheras the material strenghts are defined variables
in the material optimization. The material optimization is performed by the lower bound
approach and in overall the aim is to reduce different material variables, e.g.

e minimize the reinforcement in the plate elements
¢ minimize the concentrated reinforcement
e proportion of concrete mixture to meet the applied load configuration and thereby

minimizing the cost of mixture (w/c) ratio
In this thesis it is chosen to demonstrate the main principle of conducting material
optimization. Thus, the optimization solely concerns minimization of the reinforcement.
8.1 Problem Formulation

In order to conduct material optimization of reinforced concrete plates, the problem needs
to be defined by a formulation that satisfies the lower bound approach. The general formu-
lation can be recalled as (see section 2.4)

minimize:

wld . (8.1)
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where d is a vector containing the design variables. The objective function is restricted by
a statically admissible stress field and a yield criterion, respectively. The constraints are

expressed as equality constraints

HB=R (8.2)
_<(I)a:fc_0—m><q)yfc_o—y) +T3y+5:07 (83)
_<fc+o-x)(fc+o-y)+7_§y+5:07 (84)

where s is a non-negative slack variable. Similarly, the d-vector in Eq. (8.1) consists of non-
negative variables since a geometrical parameter by nature can’t be negative. The stress
variables in the yield criterion needs to be located within the following bounds

—fe<o, < ff (8.6)

The concentrated reinforcement is restricted by a linear MN-relation, which is expressed in
Eq. (8.7) and Eq. (8.8).

N.
1<t <1 (8.7)

Af,

M.

—-1l<—<1 (8.8)
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Figure 8.2. Linearized MN-relation.

Hence, the objective is to minimize the d-vector containing the material parameters. It can
be noticed that the material parameters are multiplied with a scalar weight, w, that is
further elaborated with the objective function in the following section.

8.2 Weighted Object Function

As explained in the introduction to this chapter, a cost function is normally used when
conducting material optimization. The principle of a cost function is that each material
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variable can be multiplied with a weighting factor. In that way many aspects can be in-
cluded, and certain variables can be preferred over others by assigning a higher weighting
in comparison to the remaining variables. Thus, the weighting sytem can be chosen in many
different configurations in order to control the design variables. The price and volume are
one of many factors that are typically taken into account.

In this thesis, the aim is to reduce the total reinforcement volume of a given concrete struc-
ture. The total reinforcement volume is a sum of the contribution from the equally spaced
reinforcement in the plate, and the contribution from the concentrated reinforcement. Any
difference in construction cost with regards to the two types of reinforcement isn’t taken
into account. The two types of reinforcement casted into the concrete plate is described in
the object function by the following expression

d=[® A, ..A]T, (8.9)

where the equally space reinforcement is described in terms of the reinforcement degree, @,
and the remaining variables A, are related to the concentrated reinforcement. The
reinforcement degree is assumed to be isotropically distributed in both directions, ¢, = ®,.
The weightning part is formulated so that the object function expresses the total steel
volume in the plate

w = [M-A

Iy plate Ll Ln] . (810)

Thereby, the total volume of the plate is expressed as
wTd = V;fotal' (811)

The weighting sytem can in fact be chosen by many different configurations in order to
optimize the design variables.

8.3 Example — End Wall Exposed to Wind Load

In this section an example of a material optimization is presented by considering the same
structure as it was the case for the load optimization in section 7.2. The considered material
is divided into two different groups, including the rebar elements and the equally spaced
reinforcement in the plate elements. The reinforcement in the plate is considered to be
isotropic, where the reinforcement degree is optimized in the vertical and horizontal
direction in terms of the same reinforcement degree, ®. The rebars are constrained by a
linear MN-relation, which in this example has shown to be a god approximation since the
moments are small, see section 7.2. The load and the initial stress configuration are equal
to the ultimate load bearing capacity from section 7.2. This means that the applied load in
the upcoming example is a product of the optimized load multiplier, @« = 107, and the actual
wind load. The loads are applied as concentrated forces in the rebars.
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Figure 8.3. Illustration of end wall exposed to wind from left.

The structure is discretized as seen in Figure 7.2 by having 76 triangular plate elements and
13 rebar elements.

In order to weight the two different material groups properly, a scalar value is multiplied
with the different material parameters to define the total volume of reinforcement in the
plate. The object function can be formulated by

Ay

wld = [Ly Ly Lyy (L2 A, )] L

fy
LA(I;SJ (8.12)

where A, is the cross-sectional area of the rebars, L, is the length of the continuous rebar
elements, and ® is the reinforcement degree for the isotropic case. By weighting the different
material parameters as shown in Eq. (8.12), the objective function can be understood as a
sum of the total reinforcement volume. Due to the demand for positive material parameters,
the initial values of the reinforcement degree and rebar area are as defined in Figure 8.3.

By performing a material optimization in the developed program, a cross-sectional area
distribtion of the rebars is obtained as seen in the figure below.
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Figure 8.4. Optimized rebar cross-sectional area.

The total volume of the rebar reinforcement is V, = 2.55 - 107mm?, which is a reduction of
36% in comparison to the original concentrated reinforcement. The optimized isotropic
reinforcement degree is found to ® = 0.033, which gives a tensile strength for the reinforced
concrete plate of f, = 0.49 MPa, and a total reinforcement volume in the plate of V,, = 1,96 -
10”mm3. The isotropic reinforcement is reduced by 22%, and summarized with the reduction
of the rebar volume, a total reinforcement reduction of 30% is achieved. The resulting
normal stress distribution in the rebar is as seen in Figure 8.5.
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e
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o

Figure 8.5. Normal stress variation in the rebars.

If a more representative material optimization should be performed, multiple load cases
should be included in the algorithm. In order to achieve a further reinforcement reduction,
the model could be divided into subareas with inclusion of anisotropic reinforcement.






9. Conclusion

An efficient program for verification of critical stress spots in steel plates has successfully
been developed. The program is based on a submodeling principle and the lower bound limit
analysis. In the lower bound limit analysis, stress-based elements are used to calculate the
scalar load multiplier « in order to specify whether a stress state leads to structural collapse.
The program appears to be very efficient since only a submodel is considered and only few
steps are needed in the overall process. Furthermore, the results are always on the safe side
as the lower bound method is implemented, and only a submodel is considered.

By implementing the efficient self-developed script in ANSYS, it is possible to export all
the needed finite element information to set up the lower bound problem for the submodel.
The maximization of the lower bound problem is solved by means of nonlinear programming
theory using interior point solvers in MATLAB and Mosek. Especially the second order cone
programming in Mosek has proven to be very efficient in optimizing large scale problems.

The efficiency of the program has been presented by an example of a plate subjected to
a geometrical stress singularity. The developed submodel program is versatile since it can
be used for structures subjected to both stress concentrations, and stress singularities re-
garding concentrated supports and forces, and not only geometrical singularities as it is the
case in the example.

A finite element program capable of conducting limit state analyses of reinforced concrete
plates is likewise developed. The program is based on the lower bound theorem where bar
and beam elements have been introduced. A load optimization example has been presented
in terms of an end wall, and the efficiency of the load optimization program has been shown
as the method provides a load multiplier that is 32.5 % higher in comparison to the stringer
method when the force is applied in the rebar elements. When the load is applied in the
concrete a 15.9 % higher load multiplier is obtained in comparison to the approach presented
in [1], which is seen as a result of the implementation of nonlinear yield criterions.

Furthermore, the beam properties of a rebar element are demonstrated by means of an
example where a u-stirrup is considered. The example shows the transfer of beam forces in
the u-stirrup to the neighbouring plate elements. It is also seen that the moments aren’t
violating the nonlinear MN-relation.

The material optimization in the developed program is based on a weighting system with
the purpose of reducing the total amount of reinforcement when considering both the dis-
tributed reinforcement and concentrated reinforcement, respectively. Finally, the program
is used to conduct a material optimization of the end wall, which resulted in a total rein-
forcement reduction of 30 %. The material reduction was obtained on behalves of the limit
load from the previous, structure, which illustrates principle and potential of the numerical
approach.
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Appendix A: Upper and Lower Bound
Solution of a Statically Indeterminate

Beam

In this appendix a one-time indeterminate beam system is considered. The purpose is to
show how a coincided solution can be found regarding the upper and lower bound theorem.
The considered system is clamped in the left end and simple supported in the right end.
The system is exposed to two vertical forces P, each acting %L from the middle of the span.

As seen in the figure, the system is discretized by four nodes.

Tege—
QQeE——

%

1/3 L . 1/3 L . 1/3 L

Figure 9.1. one-time indeterminate beam system.

Upper Bound solution
The upper bound solutions are found by considering all possible collapse mechanisms be-
tween the nodes A, B, C, and D. The collapse mechanisms are sketched in the figure below.

Figure 9.2. Collapse mechanisms for the indeterminate beam.
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From this simple discretized system three collapse mechanisms must be investigated, and
the most critical collapse mode is to be compared with the optimum solution in the lower
bound solution. The upper bound solution is based on the following consideration from
which the critical load can be found by solving.

Winternal = Wouter
B C
}1 - , . - D
sl A,
™ | P g
-~ _ - 0L/3
20L/3 Sl *

Figure 9.3. Collapse mechanism.

Collapse between node A and B.

1 1 M
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3 3 L
Collapse between node B and C.
1 M
O-Mp+20-Mp=-pl-0 — 9L
3 L
Collapse between node A and C.
1 1 M
H-MP—|—39-MP:§pZ-9+§pl-20 — P:4TP

The most critical collapse form is therefore between node A and C, which will be compared
with the optimal lower bound solution.

Lower Bound Solution
The optimum lower bound solution is found by the force method. Thus the so-called M,
and M,; moment diagram are found and used to find the optimal stress field.

M, - Diagram
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Figure 9.4. M, and M, diagram.
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The highest load the system can obtain by the lower bound method is now found by plotting
the above p and z; values.

M,/L
A
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P
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Feasible __|
Region B
2

Y

Figure 9.5. Search for lower bound optimum solution.

From Figure 9.5 it is seen that the optimum load is p = 4%, which corresponds to the load

of the most critical collapse mechanism found by the upper bound method.
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Appendix B: Primal-dual Formulation for

Load Optimization

Duality Theory

The duality theorem is a mathematical optimization theory that makes it possible to con-
sider an optimization problem from two perspectives, either the primal problem or the dual
problem. The duality theorem is useful with respect to the accuracy when calculating the
scalar load multiplier. A duality theory between the lower and upper bound methods can
be expressed just as it is the case with the duality in the field of linear programming.

In order to formulate the dual problem, the primal problem in Eq. (2.7) has to be linearized,
which is done by use of the first-order Taylor expansion of the nonlinear yield criterion

around points f* lying on the yield surface

f(B) = f(58) +Vf(B—8) . (B.1)

On the yield surface f(/5*) = 0 and hereby the linearized yield criterion can be expressed as
VfB+s=Vfp. (B.2)

The linearized lower bound load optimization problem is expressed as

maximize: o

subject to: Hf =aR+ R,
VST +s = VITH,
s> 0,

(B.3)

By performing several mathematical operations, it is possible to express the dual to the
problem in Eq. (B.3) [18§]

minimize: (V787X — RTv
subject to: VA — HTv =0
Rlv=1
A>0,

(B.4)

where A is a vector containing the magnitude or strain rate of each plastic strain, and
therefore it is associated with the yield criterion. The number of plastic strains corresponds
to the number of nonlinear constraints. The plastic strain rate is expressed by the normality
rule
of
P
€= A )

ij 9B, (B.5)
In the dual problem in Eq. (B.4) v denotes the displacements, or velocities, when the struc-
ture collapses. The displacements, v, are i.e. associated with the upper bound formulation
of the load optimization for the discrete problem.
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The external and internal work have to be in equilibrium and each of these are given by
We = (aRT + RT)v, Wi = (V)T (B.6)

By setting the internal work equal to the external work and solving with respect to «, it is
possible to obtain the scalar collapse load factor «

(T8 )

Q= min
v,
The displacements v, that are calculated based on the dual formulation, can have different
interpretations depending on the finite element discretization. In the mixed finite element
formulation, the interpretation of the displacements v is straightforward as they define the
displacements in the nodes of the assembled mesh [18]. In this project a finite element
discretization with rigorous equilibrium elements is formulated such that stress discontinu-
ities are permitted as long as normal and tangential stresses across element interfaces are
continuous in the lower bound solution. The permission of stress discontinuities in the lower
bound solution means that velocity discontinuities are kinematically admissible in the upper
bound method [18]. In the mixed finite element formulation, the stresses and displacements
are therefore obtained directly in each node of the assembled mesh, whereas in the rigorous
finite element formulation the allowance of stress discontinuity is compensated by a set of
inter-element conditions and a number of overall equilibrium conditions. This means that
the displacement field should be made with certain reservations.

Optimality Conditions

The optimality conditions for the lower bound formulation are explained in the following
section. It includes a derivation and a physical interpretation of the optimization problem.
The optimality conditions are expressed by the duality theorem by considering both the
upper and lower bound formulation.

From mechanics of constitutive modelling it is known that an exact solution to the limit
analysis is reached when the kinematical solution is equal to the statically solution.

Recalling that the dual feasibility conditions for the linearized lower bound problem are

given by
HB =R+ R, (B.8)
VITB+s=VfTp, (B.9)
§>0. (B.10)

The corresponding primal feasibilities are
VIA-—HTv=0 (B.11)
RTv=1 (B.12)

X >0, (B.13)



Appendix B: Primal-dual Formulation for Load Optimization 85

The difference between the primal and dual solution is expressed by a duality gap, v
v=(VfB)TA-—RIv—a=0 (B.14)

The zero duality gap from Eq. (B.14) is rewritten by the feasibility conditions in Eq. (B.8)
and (B.9)

v= (VB +38)TA—(HB—aR)Tv—a
=sTA+ BT (VfA— H™v) + a(RTv — 1)

=sTA

(B.15)

The last expression in Eq. (B.15) has to be equal to zero, which leads to

where A and s both have to be greater than or equal to zero. The condition in Eq. (B.16) is
also known as the complementary slackness. If a stress state on the yield surface is consid-
ered, the value for the slackness s will be equal to zero (sj = 0), whereas the strain rate A
is positive (A > 0) and Eq. (B.16) is thereby fulfilled. An opposite effect is seen when a
stress state within the yield surface is considered.

In matrix notation Eq. (B.16) is stated as
SA=0, (B.17)
where S = diag(s).

Thus, the full set of optimality constraints is expresses as

HB=aR+ R, (B.18)
f(B)+s=0 (B.19)
VIA—HTv=0 (B.20)
RTv=1 (B.21)
SA=0 (B.22)

From the optimality conditions it is seen that Eq. (B.18) and (B.19) correspond to the
constraints from the original optimization problem in Eq. (2.7) with a nonlinear yield crite-
rion. The optimality conditions in Eq. (B.20) and (B.21) correspond to the constraints in
the dual problem for the linearized lower bound formulation in Eq. (B.4). The constraints
in the optimality conditions are supplemented with the condition that the product of s and
A has to be equal to zero as seen in Eq. (B.22). When considered in a mathematical per-
spective, the optimality conditions are known as the first-order Kuhn-Tucker optimality
conditions.
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Appendix C: Example of Path Following
Interior Point Method

In this appendix, an example of the path following interior point method is to be shown in
order to illustrate the principles behind the method. The path following method is based on
the primal and dual linear programming formulation. [15]

An example of a primal dual problem is formulated in Table C.1 where z; denotes the slack
variables for the dual problem. z; are the variables for the primal solution and 7; are the

variables for the dual solution.

Table C.1. Primal dual formulation.

Primal model Dual model
Maximize z, = 2x; + 31, Minimize zp = 8m, + 6m,
Subject to 22+ 2y + 23 =38 Subject to 2y + My — 2y = 2
$1+2$2+$4:6 7[-1"_2772_22:3
SL‘jZO,jZI,...A 7r1—z3:()
2;20,j7=1,...4

The primal formulation from Table C.1 is rewritten to a dual formulation based on the
principle in Table C.2.

Table C.2. Formulas for rewriting a primal formulation to a dual formulation.

Primal Dual
Maximize Zp = CX Minimize zp =mb
Subject to Az =1b Subject to TA—z=c
x>0 T+ 2Ty — 29 = 3

The primal formulation consists of m equations and n variables, which are all expressed as
equality constraints. Since the problem is an equality problem, there is no restriction in the
sign of the dual variables .

The iterations of the primal and dual solutions are shown in Figure 9.6, where #1 denotes
the first iteration step that lies within the feasible region. The solution converges towards
the extremum point for each iteration as seen in the figure. This is due to that the primal
and dual solution variables (z ; and zj) are modified for each iteration until primal feasibility,
dual feasibility and complementary slackness are satisfied to a certain degree [15]. Tt is
possible to determine the degree of satisfaction by a gap that expresses the difference in the
object function for the primal and dual solution, respectively.
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a) Progress of primal solution. b) Progress of dual solution.

Figure 9.6. Progress of primal and dual solutions.

From the figure it can be seen that the primal solution corresponds to a maximization
problem, whereas the dual problem corresponds to a minimization problem.
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Appendix D: Steel Plate Optimization —
fmincon Study

The appendix investigates the different fmincon options in order to conclude at which set-

ting the interior point algorithm optimizes most efficiently.

The study is based on a global plate model as seen in Figure 9.7. The plate is subjected to
a tensional force of 4 kN at both the left and the right edge. The plate is constrained from
moving in both the vertical and horizontal direction at the bottom edge. The plate has a
thickness of 1 mm and is made of steel with a yield strength of 235 MPa.

40 40 40
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4kN i 4kN
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i
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(a) Global model. (b) Triangluar mesh with 640 element.

Figure 9.7. Free body diagram and mesh of considered plate model.

In all of the analyses, the mesh is assigned as seen in Figure 9.7 with 640 elements and the

load multiplier « is used as the representative value for comparison.

For all the upcoming comparisons the interior point algorithm is chosen in fmincon since
large scale problems are considered. In the interior point algorithm, it is possible to choose
between different Hessian approximations or to implement a user-supplied. The following
five different ways of optimizing are investigated in fmincon when the interior point algo-

rithm is chosen:

Hessian approach Subalgorithm
1. lfbgs (large-scale), ldl-factorization
2. lfbgs (large-scale), cg (conjugate-gradient-dense hessian)
3. Fin-diff-grads cg (conjugate-gradient-dense hessian)
4. User-supplied ldI-factorization
5. User-supplied cg (conjugate-gradient-dense hessian)

For each of the Hessian approaches a subalgorithm has to be chosen, which has the function
of determining how the iteration step is calculated. In fmincon two different subalgorithms
can be chosen; namely, ldl and cg. Both of the algorithms are to be investigated for the

hessian approximations and the user-supplied hessian matrix.
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It also has to be mentioned that the Hessian user-supplied approaches highly depend on the
self-developed script, and it can be optimized more than how it is now. This could make the
approach faster.

In the following analyses, the stopping criteria is chosen to 100 iterations, which means that
the iterations stop when the 100" iteration is reached. The gradients are also user-supplied,
both for the hessian approximation methods and for the user-supplied hessian.

Both the number of iterations to reach the converged value and the calculation time is
considered in the analyses. This is because some methods may use a lower number of itera-
tions to converge, but the calculation time may be higher. All of the analyses are calculated
on a laptop with the following operating system and hardware specifications:

MacBookPro8,1

Windows 7 Ultimate 64-bit

Intel® Core™ i5-2415M CPU @2.30 GHz
4.00 GB RAM

Intel(R) HD Graphics 3000

The convergence of the object function « for each of the five approaches is seen in Figure

9.8.

——o— |fbgs Id| —o— Ifbgs cg User-Supplied IdI —o— User-Supplied cg fin-diff-grads cg
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Figure 9.8 Convergence of the object function.

All of the five methods converges towards the proper o-value. The 1fbgs (1dl) method uses
the fewest number of iterations to obtain the converged a-value, but this doesn’t necessarily
make it the fastest approach. It can also be seen that the fin-diff-grad (cg) method converges
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slowly in the beginning but it obtains the optimized value at a lower iteration value than
the 1fbgs (cg) method.

The first study investigates the elapsed time to complete 100 iterations of each approach.

This study only says something about the elapsed time and not the accuracy.
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Figure 9.9. Study of elapsed time.

From the study it can be seen that the lfbgs (cg) method is the fastest to reach 100 iterations
followed by the lfbgs (1dl). Even though lfbgs (cg) is fastest it isn’t the most accurate method
as seen in Figure 9.10 and Figure 9.8. However, 1fbgs (I1dl) is very effective since it doesn’t

take long time and since the accuracy is very high as seen in the following graph.
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Figure 9.10. Accuracy Study.
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The lfbgs (cg) method should be used with precaution since an accurate result takes many
iterations. An explanation of the efficiency of lfbgs (1dl) is seen in Figure 9.11 and Figure
9.12.

——Ifbgs ldl —e—Ibfgs cg User-Supplied Idl —e— User-Supplied cg —— Fin-Diff-Grad cg
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Figure 9.11. Maximum constraint violation at different iterations.

The ldl-method violates the constraints the most and that is why it is so effective. The
largest violation takes place in the preliminary iterations for lfbgs and the violation is often
negligible since the violation at the last step of the iteration is almost zero.
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Figure 9.12. Mazimum Constraint Violation and a-value for iteration with lbfgs and ldl-solver.

It is also seen in Figure 9.12 that the increment in the object function o is largest at the
iterations where the violation is highest.
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Figure 9.13. Maximum Constraint Violation for each solver.

As illustrated in Figure 9.13, the LDL-factorization method should be used with precaution
and the constraint violation should be checked at the last iteration step.

Another measure of convergence is the first-order optimality conditions (KKT-Conditions).
The optimality conditions should be fulfilled such that it equals to zero when the result has
converged.

——o— |bfgs Id| Ibfgscg ~ —e— User-Supplied Id| User-Supplied cg ~ —e— Fin-Diff-Grad cg
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Figure 9.14. First Order Optimality Constraint.

From Figure 9.14 it can be seen that once again the lfbgs (ldl)-solver is the most effective,
and it should also be noted that a relatively high first order optimality value is obtained for
the user-supplied (1dl) method at the iteration where the constraint is violated the most.
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Figure 9.15. Cumulated Function Evaluations.

At each iteration the objective function has to be evaluated at least once. From the figure
above it can be seen that the fin-diff-grads (cg) method takes many function evaluation, but
it doesn’t necessarily make it a slow approach. It can also be seen from Figure 9.15 that the
number of function evaluations is lower for the lfbgs method than for the user-supplied
hessian approach.

Conclusion

Based on the study it can be concluded that the lfbgs is the fastest method. From the study
it can also be concluded that the most effective method is the 1fbgs method with 1dl-factor-
ization, even though it should be used with precaution since it can violate the constraint by
a relatively high value. The ldl-factorization is effective since it violates the constraints and
thereby reaches the optimal result fastest.
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Appendix E: Reformulation of Yield
Criterions to Second-Order Cones

This appendix concerns reformulation of yield criterions to second-order cones with the
purpose of implementing the constraints in Mosek. von Mises yield criterion has to be ex-
pressed in terms of a quadratic cone (QC), whereas M.P. Nielsen’s yield criterion and the
MN-relation for reinforcement has to be expressed as rotated quadratic cones (RQC).

E.1 Reformulation of von Mises Yield Criterion

Von Mises yield criterion is for general plane stress defined as

\/03; +o02—o0,0,+372,— k<0, (E.23)
where k is a strength parameter defining the yield stress.

Eq. (E.23) is rewritten such that Eq. (E.24) is obtained.

1
\/5((ox—oy)2+oz+o§) +372,— k<0 (E.24)

It is more convenient to rename the stress parameters in Eq. (E.24) such that

and thereby Eq. (E.24) equals to the following expression

1
\/5 (22 + 22 +22)+ 322 <k, (E.26)

which is expanded to

1 1 1
kz\/§x§+§x§+5:vi+3x§ (E.27)

New parameters x5, x4, -, Tg and x4 are defined by taking the square root in order to obtain
the yield criterion on the form expressed in Eq. (5.18)

1 1 1
Ty =—=T, Tg=—==Ty, Ty=—=T
R A Y, R Y,
1 E.28
ZL‘8:\/§-CL‘3 — T3 — §$8:O ( )

Von Mises criterion is expressed by the following quadratic cone constraint

vy 2 2} +af +ai+af. (E.29)
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By implementing the above formulated expression in Mosek, the lower bound problem can
be solved and a scalar load multiplier can be obtained.

E.2 Reformulation of M.P. Nielsen’s Yield Criterion
M.P. Nielsen’s yield criterion for reinforced concrete plates is recalled as

—(ff—o)(f —0o,)+72,<0 (E.30)
_(fc + Uz)(fc + Uy) + TaZUy < 0. (ES]-)

In order to reformulate the expression for Nielsen’s yield criterion, four new variables
oy, 04, a3 and ay are introduced

o) = % (fta: - Ja:) (E32)

5

ay = % (fty — Uy) (E.33)

-5

az =—=(fc+0,) (E.34)

-5

a,=—(f. + O'y) (E.35)

S

a; and o, are related to Eq. (E.30), while o3 and «, decribes the cone in Eq. (E.31). The
expression for the rotated quadratic cone (RQC) becomes

2009 > T2, 7 Q05 >0 (E.36)
2053044 > Ta2jy ; Az, Oy >0. (E37)

From the above two equations it is possible to optimize the lower bound concrete formula-
tion by the use of second-order cone programming in Mosek.

E.3 Reformulation of the Nonlinear M N-relation

The MN-relation for reinforcement is recalled as

(%) + (%)2 —1<0 (E.38)
(%) - (J\%)Z +1<0. (E.39)

The expression in Eq. (E.38) is reformulated to a rotated quadratic (RQC) cone by the
following procedure

(%) = ()
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M oi_(M
N2=" "\

p p
MN?
s (4
M
wos (1)
p

Thereby the first rotated cone is derived.

The second cone is a reformulation of the expression in Eq. (E.39)

(-3 e

(3r) 122
M) TNy

M
<ﬁ+ 1) Nj > N2,

p

Thereby the second cone is derived.

Four new parameters o, a,, as and o, have to be introduced in order to obtain the form
for the second-order cone in Eq. (5.19). The first two parameters «;and a, are related to

the first cone, whereas a5 and o, are related to the second cone.

1 M 1
20,060 > N2, a :—<1——>, ay =—=N? E.40
1%2 = 1 \/5 Mp 2 \/5 p ( )
1 M 1
20504 > N?, « :—<1+—), a, =—=N? E.41
344 3 \/§ Mp 4 \/i p ( )

Based on the above two expressions it is possible to optimize the lower bound formulation

in terms of second-order cones in Mosek.
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Appendix F: Program for GGlobal Steel
Plate Optimization

F.1 Full Plate Model Optimization

In the developed program it is possible to optimize a full/global model as long as the global
model in ANSYS is meshed with CST elements. This is because the nodal stresses can be
imported directly to the MATLAB program since CST elements and the used triangular

stress-based elements have the same geometry.

The procedure for optimizing a global steel plate model is illustrated in the figure below.
Solve global model

® 2

P ]

Displacement-based
2d elements

Exporting global
model to MATLAB

Stress-based
2d elements

Optimized
Model

o

\

Interior Point Algorithm

Figure 9.16. Overall process of the model approach.

F.2 Convergence Study of a Global Model

A convergence study has been conducted for a global model in order to validate the devel-
oped MATLAB optimization program. In the study, a full plate model is investigated since
the optimization algorithm is the same whether considering submodels or global models.

The convergence study for the global model is based on two different approaches

e Displacement based nonlinear analysis in ANSYS Workbench
e Stress-based analysis in MATLAB based on the lower bound limit formulation
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A full nonlinear displacement-based analysis in ANSYS is to be compared with a stress-
based analysis in the developed MATLAB program. By comparing a displacement-based
nonlinear analysis in ANSYS with the stress-based analysis in the MATLAB program, it is
possible to see whether the load multiplier converges towards the same value. Thereby, it
is possible to validate the developed MATLAB program.

The considered model is shown in the figure below. The plate is subjected to a tensional
pressure of 30 MPa at the left edge. The plate is constrained in the vertical direction at the
bottom edge, whereas the right edge is constrained in the horizontal direction. The plate
has a thickness of 1 mm and is made of steel with a yield strength of 235 MPa.

40 40

30 MPa

40

Figure 9.17. Considered global model

In the nonlinear analysis in ANSYS a perfect plastic material behaviour has been assigned
by choosing a bilinear material model with a tangent modulus of zero. The nonlinear analysis
in ANSYS calculates an exact solution for the critical load, corresponding to the assigned

mesh.

Four different convergence studies have been conducted and has to be compared. This in-
cludes two analyses in ANSYS and two in MATLAB.

MATLAB with export of loads and geometry from ANSYS
MATLAB with export of geometry from ANSYS only
ANSYS nonlinear analysis with CST elements

ANSYS nonlinear analysis with LST elements

i

The first analysis in MATLAB is made by solving a global model in ANSYS and thereby
exporting the boundary conditions and geometry to the MATLAB program. The second
analysis in MATLAB is conducted by exporting only the topology from ANSYS, while the
boundary conditions are assigned manually, and not by importing from ANSYS.

In the ANSYS studies two different elements are used; CST and LST elements, respectively.
CST elements are used to directly compare with the MATLAB program since the MATLAB
results are based on the exported stresses from a global CST model. A convergence study is
also conducted for a global model with LST elements since it produces more accurate results.
The plate model from Figure 9.17 is meshed by assigning a triangular mapped mesh that is
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based on the chosen element size. Four different meshes are considered as shown in Figure
9.18. When the element size halves, the total number of elements quadruples, whereas the
calculation time more than quadruples. This is why the limit in the study is 1536 elements.

(a) 24 elements (b) 96 elements

(c) 384 elements (d) 1536 elements
Figure 9.18. Mesh types.

Boundary conditions have been assigned in the optimization program corresponding to the
model in Figure 9.17. This is done by eliminating equilibrium equations corresponding to
the constrained nodes. Loads have been assigned as stresses on the boundary. The boundary
conditions that are applied for the four different convergence study models are seen in the
figure below, where the red nodes illustrate the loads, whereas the blue nodes show the

support.

Full Model - No of Elements = 24 Full Model - No of Elements = 96
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(a) 24 elements (b) 96 elements

Full Model - No of Elements = 384 Full Model - No of Elements = 1536
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(c) 384 elements (d) 1536 elements

Figure 9.19. Boundary conditions as applied in the MATLAB program.
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The results from the convergence studies are presented in Table F.3.

Table F.3. Results from the convergence study.

Element Size No of a a a a
[mm] Elements CST/LST ANSYS CST ANSYS LST | MATLAB (Ibfgs) | MATLAB Manual
20 24 3.787 3.073 * *
10 96 3.250 2.773 2.393 2.033
5 384 2.820 2.653 2.641 2.437
2.5 1536 2.740 2.613 2.588 2.450

* value not possible to obtain

The critical load multipliers « from the above table is shown on the graph in Figure 9.20.

ANSYS CST ANSYS LST MATLAB  —@— MATLAB Manual
4.00
3.50
3.00
o]
2.50 / L
2.00
1.50
0 200 400 600 800 1000 1200 1400 1600

No of Elements

Figure 9.20. Convergence study results for ANSYS and MATLAB analyses.

From the study it can be seen that all four cases converge towards the same value. The
MATLAB results converges by having the lowest a-value for the lowest number of elements
and increases as the number of elements increases. This is not the case with the nonlinear
analysis in ANSYS, which makes the result on the insecure side, unless a very fine mesh is
assigned. This makes the MATLAB analysis preferable compared to the nonlinear analysis
in ANSYS.

From the analysis it can also be seen that the MATLAB analysis with manually selected
stresses of 30 MPa gives a lower load multiplier than the MATLAB analysis with imported
boundary stresses. For the particular case a global model meshed with CST elements gives
a result on the insecure side.
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Appendix G: Verification of Critical
Stress Spots in Steel Plates — Studies

G.1 Study of Submodel Size

In the study, the influence of the submodel size on the load multiplier is investigated. The
considered model is shown in Figure 9.21. The plate is subjected to a tensional pressure of
25 MPa at the left edge. The plate is constrained in the vertical direction at the bottom
edge, whereas the right edge is constrained in the horizontal direction. The plate has a
thickness of 1 mm and is made of steel with a yield strength of 235 MPa.

40 40

40 M i.\(ﬁlf‘“
25 MPa msw
h ® ::‘:;‘
- wan
N | 40 e
a e
: 0015

LIXX XXX XXXEXXXX

Vs 7
80
—-— e
(a) Global model (b) Solution to the global model

Figure 9.21. Considered global model
As seen in Figure 9.21 (b) the maximum von Mises stress is approximately 224 MPa.

In the investigation a square submodel is considered around the critical spot at the concave
sharp edge. The global model is meshed with Q8 elements as seen in the above figure. The
mesh for the upcoming submodels is more or less the same since the number of edge divisions
is the same. The size of the square submodel varies in order to investigate whether a larger
submodel leads to a higher load multiplier.

The study investigates submodels with lengths/widths from 10 to 35 mm.
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Table G.4. Submodel size and optimized submodels.
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Table G.5. Load multipliers for different submodel sizes.

Length/Width | No of a
[mm] Elements | MATLAB MOSEK
10 336 1.3524
15 362 1.5280
20 364 1.8642
25 316 2.0502
30 374 2.2558
35 360 2.4246

It is seen that the load mulitplier @ increases as the submodel area increases. In order to
understand the tendency, the normal stress in the z-direction on the cut boundary is plotted
as illustrated in Figure 9.23. The stresses are exported by defining the same number of
sample points for each submodel cut boundary and in this case 124 sample points are
considered overall. The distance between two sample points for two different submodels
isn’t the same since the submodel size varies, but the distance between two sampling points

in the same submodel is the same. Thereby, it is possible to compare stresses on the cut

boundary between different submodels.
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) Global model with the sixz different (b) Direction of considered stress path
submodel areas

Figure 9.22. Submodel areas and stress path direction.

The boundary stresses for the six different models is illustrated in the figure below. It is
seen that the cut boundary stresses increase as the submodel size decreases. The stress
distribution also changes as the submodel boundary moves towards the singularity spot.

35 mm =———30mm =—25mm 20mm =———15mm =——10mm

120
100
80
60

40

Stress [mm)]

20

140

Sampling Points

Figure 9.23. Normal stress distribution in the z-direction along the cut boundary.

An example of the normal stress distribution in the x-direction along the cut boundary for
a submodel size of 10mm is shown in the figure below.
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LN T | i

Figure 9.24. Normal Stress distribution in the x-direction along the cut boundary for the submodel
of 10 mm.

From the study it can be concluded that a larger submodel area leads to a higher load
multiplier «. This is due to the fact that the boundary condition stresses changes as the

submodel size increases or decreases.
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G.2 Study of Submodel Mesh Refinement

In the study, the influence of the submodel mesh on the load multiplier is investigated. The
considered model is shown in Figure 9.25. The plate is subjected to a tensional pressure of
150 MPa at the right edge, whereas the left edge is constrained in both the horizontal and
vertical direction. The plate has a thickness of 1 mm and is made of steel with a yield
strength of 235 MPa.

100 100

D

t=1mm

150 MPa

T

(a) Global model (b) Solution to the global model

Figure 9.25. Considered global model

The global model is solved using Q8-elements and the maximum von Mises stress is approx-
imately 250 MPa as seen in Figure 9.25 (b).

In the investigation a rectangular submodel is considered around the critical spot at the
upper concave sharp edge. Different mesh refinements are investigated for the upcoming
submodels. The size of the square submodel equals to 25x25 mm for all the submodels in
order to investigate the mesh influence on the scalar load multiplier.

Figure 9.26. Global model with submodel selection.

The results from the different analyses are seen in the following table.

Submodel Mesh Optimized Submodel Solution

Submodel - No of Elements = 32 von Mises Stresses [MPa] (« = 0.84337)
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Submodel - No of Elements = 818 von Mises Stresses [MPa] (o = 1.2618)
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The results are scheduled in the following table

Table G.6. Load multipliers for different submodel mesh.

Number of Division No of «
Elements | MATLAB MOSEK
4 32 0.8434
6 122 1.2635
8 208 1.2499
10 364 1.2867
12 496 1.2726
14 656 1.2716
16 818 1.2618
18 1118 1.2716
20 1330 1.2767

The results from the above table is sketched in the following graph.
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Figure 9.27. Load multiplier corresponding to varying number of elements of the submodel

The graph in Figure 9.27 shows that the load multiplier converges as a higher number of
elements is assigned to the submodel. It should be mentioned that the analyses are associ-
ated with minimal uncertainties in the value for the load multiplier since the submodel is
supported at different locations at each analysis. Another reason for the slightly variation
is that the outer stresses are interpolated at different locations on the cut boundary which
results in minimal deviations in the stress values and thereby the load multiplier.

From the study it can be concluded that a fine meshed submodel leads to the most accurate
load multiplier, but the difference in multiplier between having a coarse submodel and fine
submodel mesh isn’t that significant.
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G.3 Study of Boundary Stresses in ANSYS

In the following ANSYS Workbench study, the boundary stresses are investigated when the
mesh is refined. This is done in order to compare the deviation from the exact value, which
in this case corresponds to the applied pressure. This study will therefore give a better
understanding of the submodel cut boundary stresses.

The considered plate model is shown in Figure 9.28. The plate is subjected to a tensional
pressure of 1 MPa at the left edge. The plate is constrained in the vertical direction at the
bottom edge, whereas the right edge is constrained in the horizontal direction. The plate
has a thickness of 1 mm and is made of steel with a yield strength of 235 MPa.

40 40 40 40
R e
40 40
1 MPa 1 MPa
o\ ON
P4 4
. 40 . 40
:\ :\
- -
90000000000000. 9 0000000000000
80 80
.
(a) Global model (b) Considered Boundary

Figure 9.28. Free body diagram considered global model.

In the investigation, stresses at the considered boundary, illustrated in Figure 9.28 (b), are
to be compared for six different Q8-based meshes. The square element size varies from 10
mm to 0.3125 mm, which corresponds to that the global model have meshes from 48 ele-
ments to 49152 elements as seen in Figure 9.29. This makes it possible to investigate the

mesh importance with respect to the stresses.

48 elements 192 elements 768 elements

3072 elements 12288 elements 49152 elements
Figure 9.29. Six different meshes for the global model.
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In the analysis, the left boundary edge is divided into 49 segments, which means that there
are 50 sampling points. Both normal and shear stresses are compared. The normal stresses
in the a-direction should be corresponding to the applied pressure on the considered edge.
Any deviation from the applied pressure is considered as an uncertainty as a result of nu-
merical errors.

Oy

—(0.3125mm  e=—0.625mm  =——1.25mm 2.5mm 5mm 10 mm
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0.98

0.97
0 10 20 30 40 50 60 70 80

Length [mm]

Figure 9.30. Normal stresses in the x-direction.

From the above graph it is seen that the results are more equally distributed towards the
applied pressure of 1 MPa when the mesh becomes finer. For the global model with an
element size of 10 mm, the deviation from the exact value goes up to almost 4 % at some
points.

Oy

—0.3125mm ——0.625mm ——1.25mm 2.5 mm 5mm 10 mm
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Figure 9.31. Normal stresses in the y-direction.
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The normal stresses in the y-direction aren’t deviating much when the mesh becomes finer.

The shear stress at the considered edge should be equal to zero and this is more or less the
case when the mesh is really fine as illustrated in the figure below. For the mesh with an
element size of 10 mm, the deviation from the exact value is more than 4 % at certain

locations as seen in the graph below.

T
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Figure 9.32. Shear stress distribution.

From the study it can be concluded that a finer mesh results in more accurate stress values,
which can also be related to the submodeling approach in the MATLAB program. Therefore,
the mesh of the global model has to be as fine as possible in the submodel approach.
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G.4 Study of Cut Boundary Stresses for different (Global
Meshes

In the study, the influence of the global model mesh on the submodel load multiplier « is
investigated. This is done by considering two different models. The first model is character-
ized by having a stress singularity spot, whereas the second model has a stress concentration
spot.

Non-filleted model (Stress Singularities)

The considered two-dimensional structure is shown in Figure 9.33. The plate is subjected to
a tensional pressure of 25 MPa at the left edge, whereas the right edge is constrained in the
horizontal direction and the bottom edge is constrained in the vertical direction. The plate
has a thickness of 1 mm and is made of steel with a yield strength of 235 MPa.

40 40

40
25 MPa

40

PIIIIIIIIIIII77

80

Figure 9.33. Free body diagram of global model.

In the investigation a rectangular submodel is considered around the critical spot at the
concave corner as seen in Figure 9.34. The rectangular submodel measures 20x20mm.

(a) Global model with CST or LST elements (b) Global model with Q4 or Q8 elements
Figure 9.34. Considered global model
Different element types are investigated when solving the global plate model. Q4, Q8, CST

and LST elements are used respectively as indicated in Figure 9.34. This is done in order to
illustrate the difference in the load multiplier when different global meshes are assigned.
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The global model that is meshed with triangular elements in Figure 9.34 (a) has 384 ele-
ments, whereas the global model meshed with square elements in Figure 9.34 (b) has a total

of 192 elements.

The mesh of the submodel for each analysis contains 818 triangular stress-based elements.

By having the same submodel mesh a true comparison can be conducted.

Submodel - No of Elements = 818

Figure 9.35. Submodel mesh
The results from the four analyses is seen in the table below.

Table G.7. Global model solutions and optimized submodel solutions for different element types.

Element Type of | Global Model Solution —

Global Model von Mises Stress Optimized Submodel Solution

von Mises Stresses [MPa] (o = 1.7469)
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The results from the analyses are listed in the table below.

Table 9.8. Mazimum von Mises stress and load multiplier for the global model with different mesh

elements
Element Type | Maximum von Mises «
[MPa] MATLAB MOSEK
Q4 148.82 1.7469
Q8 223.67 1.8235
CST 117.25 1.7874
LST 187.51 1.8116

The results are also illustrated in the following two graphs.
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Figure 9.36. Maximum von Mises Stress for the global model with different mesh



116 Appendix G: Verification of Critical Stress Spots in Steel Plates — Studies

1.83 Q8, 1.8235

182 LST, 1.8116

1.81

1.8
CST, 1.7874

1.79

1.78

Load Multiplier, a

1.77

1.76

4, 1.7469
1.75 Q

1.74

Figure 9.37. Load multiplier for global model with different mesh

From the above graphs it can be seen that the global model that is meshed with Q8 elements
results in the highest load multiplier in the load optimization. When considering the maxi-
mum von Mises stress it is seen that the Q8 elements results in the highest value followed
by LST, Q4 and CST elements.

In order to understand why the results are as they are, the three stress component at the
cut boundary has to be evaluated. In the following figures a comparison of the two normal
stresses and the shear stress has been investigated.
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Figure 9.38. Normal stress distribution in the x-direction at the cut boundary
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Figure 9.39. Normal stress distribution in the y-direction at the cut boundary
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Figure 9.40. Shear stress distribution at the cut boundary

In the comparison it is seen that the cut boundary stresses don’t have the same value.
Especially CST elements have a large deviation compared to the other elements. The higher
order elements produce the most similar stress components.

From the analysis of the model with stress singularity spot it can be concluded that the
difference in the stress distribution is leading to the difference in the load multiplier. It is
recommended to use Q8 or LST elements in the global mesh since they produce the most

accurate stress values.
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Filleted Model (Stress Concentrations)

The considered model is shown in Figure 9.41. The only difference is the filleted edge. The
plate is subjected to a tensional pressure of 25 MPa at the right edge, whereas the left edge
is constrained in both the horizontal and vertical direction. The plate has a thickness of 1
mm and is made of steel with a yield strength of 235 MPa.

40 40

g
25 MPa QQS’
h N,

(=]

-

(l()()()()()(}()()()(")
80

Figure 9.41. Free body diagram of global model

In the investigation a rectangular submodel is considered around the critical spot at the
concave corner as seen in Figure 9.42. The rectangular submodel measures 20x20mm.

(a) Global model with CST or LST elements (b) Global model with Q4 or Q8 elements

Figure 9.42 Considered global model

Different element types are investigated when solving the global plate model. Q4, Q8, CST
and LST elements are used, respectively, as indicated in Figure 9.42. It is not possible to
assign two similar meshes when using square and triangle elements, respectively. The two
different global meshes are shown in Figure 9.42. The triangular (CST and LST) mesh
model contains 440 elements, whereas the square mesh (Q4 and Q8) model contains 233
elements.

The mesh of the submodel for each analysis contains 494 triangular stress-based elements.
By having the same submodel mesh a true comparison can be conducted.
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Figure 9.43. Submodel mesh

The conducted analyses for the four elements is shown in the table below.
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The results are listed in the table below.

Table 9.9. Mazimum von Mises stress and load multiplier for a global model with different mesh

elements
Element Type Maximum von Mises a
[MPa] MATLAB MOSEK
Q4 181.05 1.8902
Q8 188.60 1.8922
CST 157.71 1.9437
LST 188.14 1.8766

The results are also illustrated in the following two graphs.
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Figure 9.44. Mazimum von Mises Stress for the global model with different mesh.
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Figure 9.45. Load multiplier for the global model with different mesh.

It can be seen that the order of highest von Mises stresses is the same as in the example
with the nonfilleted plate. The order of the load multiplier is in return completely different.
A global model with CST elements gives by far the highest load multiplier.

In order to understand why the results are as they are, the three stress component at the
cut boundary has to be evaluated. In the following figures a comparison of the two normal

stresses and the shear stress has been investigated.
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Figure 9.46. Normal stress distribution in the z-direction at the cut boundary.
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Figure 9.47. Normal stress distribution in the y-direction at the cut boundary.
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Figure 9.48. Shear stress distribution at the cut boundary.

When comparing the three stress components for the different meshes it can be seen that
the stress distribution is very similar for the two normal stresses whereas the shear stress
deviates much more. The higher order elements have very similar distribution in all three
cases and that is why the load multiplier is almost identical. Once again it is not recom-
mended to use CST elements in the analysis since it gives a poor stress distribution and can
lead to that the load multiplier is higher than it really is even though it is a lower bound
analysis. Therefore, higher order elements are recommended to obtain an accurate solution,

and especially Q8 elements.
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Appendix H: Interaction of Elements

The upcoming appendix is used to demonstrate a correct interaction between the elements
used for the optimization of reinforced concrete plates. The elements are recalled as a stress-
based triangular element describing the behaviour of concrete, and a rebar element describ-
ing the concentrated reinforcement. Fundamental load cases are considered in order to
demonstrate the interaction, which implies a load case resulting in pure shear stress states,
and an example with compression. The material properties do not reflect realistic plate

systems as the purpose is to solely validate a proper interaction.

H.1 Example with Pure Shear Stress States

The example investigates a reinforced concrete plate with concentrated reinforcement along
all edges as illustrated in the figure below. The idea is to load a rebar element such that a
state of pure shear is obtained when assigning equal compressive and tensile strengths. The
reinforcement properties are assigned such that collapse is not caused by failure in the rebar
elements firstly, and thus collapse must occur in the concrete by a state of pure shear if the
interaction between the elements are defined properly. The geometry, material properties,
and boundary conditions can be seen in the figure below.

1000 N

d = 40 mm
t = 200 mm
2 =fv =2875 MPa
400 mm [ ¥ f ¥
f. =10 MPa

f, =10 MPa

7/%7 77 ’ 4 77
s
400 mm

Figure 9.49. lllustration of plate model.

The model is implemented in MATLAB by discretizing the model as seen in the figure

below.
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[ Plate elements
—— Stringers

—— Forces

. Supports

Figure 9.50. Finite element discretization of plate model in MATLAB.

When optimizing the structure, the load multiplier « is found to 400, and the concrete is
thereby exposed to a state of pure shear as illustrated below.

[ Plate elements

Figure 9.51. Shear plot from MATLAB

The normal force distribution is as seen in the figure below.
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Figure 9.52. Normal forces in MATLAB

125

If integrating above the normal forces a shear stress corresponding to 5 MPa is likewise

obtained.
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H.2 Compressive Stress State

The second example examines a reinforced concrete plate with concentrated reinforcement
located at the lower boundary of the plate. The plate is fixed at the bottom edge in the
concrete, and forces are applied at the top of the structure as seen in the figure below.

100 N 100 N 100 N 100 N 100 N

S R SRR S

t = 100 mm
fy = £, = 235 MPa
2000 mm =25 MPa

[, =0.1 MPa

1000 mm 1000 mm 1000 mm 1000 mm

Figure 9.53. Free body diagram of the considered

The model is discretised in MATLAB by assigning 16 elements with the topology as seen in

T
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9 1 1 1 3 1 5 Supports

©
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@
Figure 9.54. Discretization of the reinforced concrete model.

The forces and supports have to be assigned corresponding to the exact generalized forces.
The numbering of the respective generalized forces for the plate elements is as seen in the

figure below.
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Figure 9.55. Equation numbers of the generalized forces for the triangular plate elements.

The forces are applied at equations: 79, 81, 93, 95, 105, 107, 117, 119, as seen in the figure
above. The structure is supported by removing the following equilibrium equation: 3, 4, 5,
6, 23, 24, 25, 26, 39, 40, 41, 42, 55, 56, 57, 58.

By optimizing the structure in terms of second order cones in Mosek or by the nonlinear
interior point optimizer in fmincon, a stress distributions field is obtained as seen in the

figures below.

Shear Stress 1

1
[ Piate elements

05

0

-05

A

Normal Stress o,

1
[ Plate elements

05

0

-0.5

-1




128 Appendix H: Interaction of Elements
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Figure 9.56. Stress distributions in the reinforced concrete plate.

From the stress plots it can be seen that only normal stresses in the y-direction appears as
expected. The stress value for the normal stress is furthermore equal to 25 MPa, which is
also defined as the compressive strength of the structures. This can also be seen in the figure
below.

10

-10

Figure 9.57. Stress states in the M.P. Nielsen yield criterion.

The value of the normal forces and moments in the reinforced bar in the bottom of the

structure is zero as expected.

Thereby, a proper interaction between the reinforced bar element and the concrete elements
is illustr