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Preface

This master thesis is written by Anders Nikolai Christensen, student at the master program Sound
and Music Computing at Aalborg University (AAU) within Architecture Design & Media Technol-
ogy at AAU. The work has been carried out in corporation with Brüel & Kjær (B&K) Denmark.
B&K has a project running on classification of noise from different sources. This work focus on
classifying aircraft noise within a noisy environment. B&K has provided a database on which the
classification is wanted to be performed. The central aspect of this work was to investigate optimal
features for classification of aircraft noise, where B&K also has provided a baseline for being able
to draw conclusions.

I would like to thank my two supervisors Karim Haddad and Woo-Keun Song from B&K for
providing me with support, guidance and feedback, which indeed has been needed throughout this
work. At my working days at B&K in Nærum both the supervisors always had the time to discuss
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always with a smile, which for me is crucial for making a great working environment where I can
perform maximum.
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to take the step from studying the research professor Mads Grøsbøll Christensen has provided me
as one of his students at the master program Sound & Music Computing, and use these state of the
art methods for solving engineering problems.

Reading Guide
The report is divided into following chapters:

• Introduction
• Physics
• Theory
• Classification Experiments
• Conclusion

In the Introduction chapter a small introduction to the problem is given followed by a section con-
taining related work, from which the proposed improvements are introduced, which lead to the
problem formulation. In the following Physics chapter the signal of interest is introduced, from
which physics can be derived. A trajectory model forms the basis of an later on proposed esti-
mator, which uses the Doppler model derived from same trajectory model. The Theory chapter
describes all the estimation and analysis theory used for answering the problem formulation. Small
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tests are performed where it is meaningful and lastly the used classification theory is introduced.
In the Classification Experiments chapter, the theory from the previous chapter is used for clas-
sifying aircraft within a specific database. The classification is done on 1 seconds blocks for the
baseline and proposal for improvements, but also classification on events has been tested since
this gives new possibilities for estimating unique features in a signal where an aircraft is present.
A directly comparison and discussion ends this chapter. Lastly, the Conclusion chapter provides
the conclusions which can be tracked throughout the report and lastly, proposal for future work is
given.

All implementation and tests in the thesis has been carried out in MATLAB. Since this work
uses a database and some implementations which are covered in a Non-Disclosure Agreement
(NDA) with B&K, it has not been possible to share all work carried out in MATLAB.

Appendices
Appendices are found after the main report and on the attached CD. The appendices contains the
A/V product, report and source code from MATLAB not enclosed by the NDA. A complete list of
the CD content can be found here Appendix D.

All figures, tables and equations are referred to by the number of the chapter they are used in,
followed by a number indicating the number of figure, table or equation in the specific chapter.
Hence, each figure has a unique number, which is also printed at the bottom of the figure along
with a caption. An example is Figure 2.1, which means the first figure in chapter 2. The same
applies to tables and equations, the latter of which have no captions. Appendices are referred to by
capital letters instead of chapter numbers.

Bibliography
At the end of the main report, a Bibliography is listed which contains all sources of information
used in the report. In the Bibliography books are indicated with author, title, publisher and year.
Web pages are indicated with author, title and link. Articles are indicated with author, title, pub-
lisher and year. All information sources are referred to by the number which they feature in the list.
This will look like this: [number].
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Chapter 1

Introduction

In this chapter a motivation for the project is given, followed by a section containing related work.
We believe improvements can be done on existing solutions, which we will introduce and lastly the
problem formulation is presented.

1.1 Motivation
Noise is often unwanted and needed to be hold at a minimum, especially in areas close to where
people are living for example around an airport. For keeping down the noise, authorities can make
rules for the maximum accepted sound pressure level from a noisy source. In this work, the focus
is the maximum accepted sound pressure level from aircraft around an airport. If the maximum
is exceeded, the owner and responsible of the aircraft should have a fine. In that case, it becomes
interesting to make a system for detecting aircraft, from which the sound pressure level can be
measured in the same signal and compared to a maximum allowed level.

In the context of noise impact around airports, noise terminals are distributed in order to esti-
mate the noise from airports. However all kind of acoustic events are possibly recorded together
with the target aircraft noise, and they may lead to a misleading estimate aircraft noise impact. One
way to overcome this issue is to listen to the recordings and select intervals with aircraft noise,
but it is a cumbersome and time-consuming task. Another way consists in setting up a process
that automatically recognize when an aircraft sound is present. This is the purpose of this project,
to investigate features for such a system, which can be used in a machine learning approach for
recognizing an aircraft in signal.

1.2 Related Work
Since this report deals with several approaches for detecting an aircraft, the following will be di-
vided into a number of subsections. First a feature part, which deals with different features possible
to extract from an acoustical signal having a sinusoidal part. The next subsection deals with fea-
ture extraction and classification by the acoustic signature and lastly a subsection describing other
approached for detecting an aircraft for example by using images and RADAR.
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1.2.1 Features from Acoustical Signal
Pitch estimation is a well-known and long time study. One method for doing pitch estimation is the
autocorrelation which is a well-known approach for doing pitch estimation, which easily goes back
to the sixties and seventies as the paper by M. R. Schroeder [30] and by Georgije Lukatela [24]. In
the book by Mads Græsbøll Christensen et al. [7] the authors presents several different approaches
for doing pitch estimation, where the statistical one forms the basis of the pitch estimation in
this report. In the article [17] the Mel Frequency Cepstral Coefficients (MFFC) is used in an
audio search engine, which classifies based on similarity. The authors emphasizes their method’s
simplicity, due to no perceptual measures, like pitch and brightness. Another advantage of their
method, is the low computational cost and therefore believed to be appropriate in case of big audio
database. In each block of samples they calculate 12 MFFC plus one energy term, on which a
supervised, known labels, tree quantizer is used for doing the classification.

1.2.2 Aircraft Feature Extraction and Classification by Acoustic Signature
In the article [25] the authors propose a 1/24 octave analysis and MFFC analysis for doing the
feature extraction on an aircraft signal. The total number of features were 136, 96 for the octave
analysis and 40 for the MFFC analysis. The approach is based on take-off noise from aircraft,
where the classification was done using neural network. The number of classes, and thereby num-
ber of different aircraft, was 13, on which the authors obtained a total efficiency of 83 %. For
improving the results the authors centred the signal, which they did by following the standard in
the International Civil Aviation Organization where it is stated that only the part of the signal,
which is within 10 dB of the maximum sound pressure, should be used.

In the article [32] the authors used a Linear Predictive Coding method on a signal, which had
been segmented into four parts by using an energy and zero-crossing method for detecting the
center of the signal containing the aircraft taking off. The number of features was 140 for each
segment and the number of aircraft classes was 13, on which the authors used a neural network
approach for doing the classification and obtained a minimum efficiency of 85 %

In the article [5] the authors propose what they call an aircraft noise likeness detector, which
is based on the similarity between the observed signal and a generic aircraft sound giving a value
between zero and one. The features that are extracted for doing so are MFFC, where the authors
used 13 coefficients and a bandwidth with the lower limit at 0 Hz due to components in aircraft
noise being low frequency. The authors used a statistical classifier, which uses the Bayes decision
rule for decide the class. The authors ran into problems making generic model for non-aircraft
sound, and decided to use a one-class classifier approach. In the case of Signal-to-Noise-Ratio
(SNR) above 8 dB the correct aircraft sounds detected was 93 %.

One of the approaches we will propose in this report to use along with our proposed pitch
estimator is based on the paper by Brian G. Ferguson et al. [13], where a flight parameter estimator
is given, which uses the Instantaneous Frequency (IF) estimates. The flight parameter estimation
is based on a Non-linear Least Squares (NLS) approach on which the authors of [13] obtains
acceptable Root Mean Square Error (RMSE) values on the flight parameters. The author has written
several other papers like [14], [15] and [12] on the topic of estimating flight parameters from
the Doppler Frequency and the destructive interference frequencies. Observe, we also use the
article [15] for deriving a trajectory model, on which the flight parameters are presented and thereby
a synthetic signal can be produced used for testing the flight parameter estimator.

In the article [20] an approach of event detection is introduced. This is based on the GABOR
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filter-bank, which perform well in noisy environment. The method is based on spectral a temporal
modulation frequency in the signal. The database used for testing contained breaking glass, explo-
sion, gunshot, scream and tube station noise. They compared their results with MFFC, and showed
GABOR can outperform MFFC in noisy environment.

The authors of the article [6] proposed to use Histogram Of Gradients (HOG) on a spectrogram
image together with Sub-band Power Distribution in acoustic scene classification. The classifica-
tion was done with a support vector machine. They described how HOG will capture different
significant parts in a spectrogram image because of differences of aircraft sounds, but when used
together with the Sub-band Power Distribution they obtained an accuracy of 93.4 %.

1.2.3 Other Methods for Classification of Aircraft
Instead of basing the classification or detection of aircraft on the acoustic signature other ap-
proaches are possible. For example in the article [18] where a Very High Resolution image provides
the measurement data. A circle frequency filter is then used to extract candidates of location in the
entire image, which goal is to decrease the complexity of the image. The features for classifica-
tion are extracted with Robust Hue Descriptor and HOG, used to find color and shape information
in image. It is also possible to use infra-red signature from an aircraft for detect and classify an
aircraft. In the article [23] the authors use a low resolution infra-red sensor for constructing an
image for doing aircraft classification and lastly different RADAR approach are used for aircraft
classification like [28] and [33] where both uses the Doppler effect for doing the detection and
classification of aircraft.

1.3 Proposed Improvements
When an aircraft is wanted to be detected or classified within a signal, several approaches exist,
where some has been introduced in Section 1.2. We believe much of the earlier work based on
acoustical signature, can be improved by using the temporal variation that will be present in the
signal when an aircraft is passing by. The temporal variation can both be seen as the time-varying
pitch received at the observer point, but is can also be seen as time-varying amplitude in the ob-
served signal, which in most cases will be a hidden periodicity. By investigate these two different
views of temporal variation we believe the success rate of detection an aircraft can be improved.
We will use MFFC as a baseline where we will extract MFFC features for training and testing a
classifier. What we will contribute with, is an investigation of features on signal blocks of 1 s, where
we will perform a classification for each block. We will also investigate the use of the acoustical
signature in a model for extracting flight parameters. This cannot be done with 1 s blocks of signal,
so in this case we use the event of an aircraft, which is an information provided in the database we
have used, and the basic meaning of an event is simply an interval where an aircraft is present. In
this case, the signal blocks are minimum several seconds.

1.4 Problem Formulation
We have derived the following problem formulation:
Will the utilization of the temporal variation in the feature extracting based on the acoustic signa-
ture in a signal, improve the detection of an aircraft and how to use these features in a optimum
manner for doing detection of an aircraft in signal?
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Chapter 2

Physics

The goal in this chapter is to introduce the physics behind the problem to be solved. First a real
signal is visualized in form of a spectrogram, to visualize the components in the signal. A few
assumptions are introduced on which a geometric model for an aircraft’s trajectory is presented
using flight parameters. Since these flight parameters are believed to be significant and unique, a
synthetic signal based on these flight parameters are produced, which make it possible to later on
test if the flight parameters can be estimated. For making the synthetic more realistic, broadband
noise which creates destructive interferences frequencies will be added to the synthetic signal.

2.1 Source Signal
A true signal can be seen in the spectrogram in Figure 2.1. This signal contains an aircraft passing
by an observer position. In Figure 2.1 two major things can be observed.
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Figure 2.1: Spectrogram of an aircraft passing by.

• Firstly, a pitch, sum of harmonics, is present in the low frequency area. The received pitch is
actually changing with time according to the Doppler Effect.

5



6 CHAPTER 2. PHYSICS

• Next to be observed, is the parabolic patterns which is due to destructive inference of broad-
band noise radiated from the aircraft. The destructive inference happens due to the ground-
reflected signal, which will interfere with the direct signal from source to microphone.

Also, the sound pressure, amplitude of signal, is changing over time due to changing distance be-
tween observer and aircraft; starts low, increases, reaching maximum when closest to microphone
and decreases again. This tells, the waves needs to be modelled as spherical waves.

The goal is now to describe something similar, which means the observed signal x(n) will be

x(n) = s(n) + e(n) + v(n), (2.1)

where s(n) is the sinusoidal part of the observed signal containing the pitch, e(n) is the signal
containing the colored (pink) noise giving the interference frequency curves and lastly v(n) which
is additive white Gaussian noise.

We want to make a parametric model of the signal and from that, an estimator on those pa-
rameters should be possible to construct. Thereby, a number of features can be found in the signal
of interest and hopefully these features are useful for doing classification, where the goal is to
distinguish between non-aircraft sound and aircraft sound.

2.2 Trajectory Model
The basic behind the following from the paper by Brian G. Ferguson et al. [15] is that knowing the
height of the microphone, height of object, speed of object, distance from object to microphone
at the Closest Point of Approach (CPA) and the emission time for it, a model can be made for the
received signal. The model has the following assumptions

• Stationary height.
• Stationary speed.
• Straight trajectory.

The trajectory geometry model seen in Figure 2.2 is not using an image source as usual, but rather
an additional image receiver, which means the model is made by having one emission time and
two reception times. The model is then build from that the reception time at origin in Figure 2.2 is
known. From this, it is possible to derive expressions for the two ranges, Rd(τ) and Rr(τ), from
which their emission times can be found and used for producing a synthetic signal.

2.2.1 Flight Parameter Equations from Trajectory Model
Before deriving the equations for different flight parameters seen in Figure 2.2, equations for the
IF and Instantaneous Phase (IP) are presented here as the authors of the paper [14] have stated. IF
can be written as a function of the reception time t as

f(t) = f0
∂τ(t)

∂t
, (2.2)

and the IP can be expressed as
θ(t) = 2πf0τ(t) + φ, (2.3)

where φ is the initial phase. τ(t) is the time-varying emission time, and is expressed as

τ(t) = t−R(t)/c, (2.4)
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Figure 2.2: Source Geometry used for deriving path equations and expression for emission time

where R(t) is the time varying distance from object to origin (origin can be though as the position
of the microphone, but with a height equal zero, see Figure 2.2). That means the time of emission,
τ(t), is the time of reception, t, minus the time it takes the sound for travelling R(t). The reception
time t is known, so it is the emission time τ(t) that are of interest to be found, which can then be
used to model two sources (one true and one image), from which a synthetic signal be produced.

Starting with the path R(τ) (slant range) which goes from the source to origin. This path is
described as

R(τ) =
√
v2(τ − τc)2 + d2

c + h2
t , (2.5)

where τc is the emission time for CPA. It is clear τ , the emission time, is needed be found or the
expression for R needs to be redefined. By using the relation from eq. 2.4 and substitute eq. 2.5
into that one, the results is

τ(t) = τc +
c2(t− τc)− ψ(t)

c2 − v2
, (2.6)

where it gets clear why τ is a function of time t. The function ψ(t) is derived as:

ψ(t) =
√

(h2
t + d2

c)(c
2 − v2) + v2c2(t− τc)2. (2.7)

Now the path rangeR can be described as a function of reception time t by using eq. 2.4 and eq. 2.6

R(t) =
c

c2 − v2
[ψ(t)− v2(t− τc)]. (2.8)

When the R(t) is found, the emission time τ(t) can be found, with eq.2.4, and from that the two
paths Rd(τ) and Rr(τ) can be found, which are the two time-varying paths, direct and reflected.
Direct path range Rd can be expressed as:

Rd(τ) =
√
v2(τ − τc)2 + d2

c + (ht − hm)2, (2.9)

and reflected is
Rr(τ) =

√
v2(τ − τc)2 + d2

c + (ht + hm)2, (2.10)

where the derivation of these two is clear from the drawing in Figure 2.2.
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The Two Emission Times

When having the Rd and Rr vectors containing all the path distances, one can change to have two
sources, the true and image one, which means having two emission times

τd = t−Rd/c, (2.11)

and
τr = t−Rr/c. (2.12)

2.2.2 Signal Model with Direct and Reflected Path
The sinusoidal Doppler part of the signal s(n) with L harmonics, contains at any given time index
n, the direct and reflected signal

s(n) = sd(n) + sr(n), (2.13)

where sd is the direct signal and sr is the ground-reflected signal. The IF for the two paths are

θdl(n) = ω0lτd(n) + φdl, (2.14)

and
θrl(n) = ω0lτr(n) + φrl, (2.15)

where the two emission times follows

τd(n) = n−Rd(n)/c, (2.16)

and
τr(n) = n−Rr(n)/c, (2.17)

where Rd(n) is the direct path distance at the reception time t indexed by n and Rr(n) is the
reflected path distance at the reception time t indexed by n. The signal s(n) becomes

s(n) =

L∑
l=1

adl(n)ej(ω0lτd(n)) + arl(n)ejl(ω0lτr(n)), (2.18)

where adl(n) = A
rd(n)e

jφdl , having the real part A which is divided by the distance between source
and receiver rd(n), which thereby models the spherical wave. The reflected complex amplitude
arl(n) = A

rr(n)e
jφrl .

2.2.3 Alternative Expression by Reception Time
Instead of using the emission times τd(n) and τr(n), the signal model in eq. 2.18 can be described
with the time of reception t indexes by n as

s(n) =
L∑
l=1

adl(n)ejl(ω0(n−Rd(n)

c
)) + arl(n)ejl(ω0(n−Rr(n)

c
)), (2.19)

where adl(n) = A
rd(n)e

jφdl and arl(n) = A
rr(n)e

jφrl . The two path ranges, Rd(n) and Rr(n) has
been described earlier in respectively eq. 2.9 and eq. 2.10, both are quadratic equations. It is clear
the Rx

c , distance divided by speed of sound, gives a delay in time, which can be seen in Figure 2.3.
In Figure 2.3, it can be seen that the delay can indeed be seen as quadratic equation, which also
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Figure 2.3: Time delay as a function of reception time. Both Direct and Reflected path delay.

gets clear if observing the equation for the delay of the direct path

Rd(n)

c
=

√
v2(τ(n)− τc)2 + d2

c + (ht − hm)2

c
. (2.20)

Since Rd(n)
c gives a time, it might be denoted as

Td(n) =

(
Rd(n)

c

)
, (2.21)

as the delay for the direct path. Applying eq. 2.4 to replace τ(n) in eq. 2.20 and us the new delay
T gives

Td(n) =

√
v2

(
n− R(n)

c

)2

− 2v2τc

(
n− R(n)

c

)
+ d2

c + (ht − hm)2 + v2τ2
c , (2.22)

which is on the form of a 2-order polynomial as can be observed in Figure 2.3. For the reflected
path, the time delay can be expressed:

Tr(n) =

√
v2

(
n− R(n)

c

)2

− 2v2τc

(
n− R(n)

c

)
+ d2

c + (ht + hm)2 + v2τ2
c . (2.23)

Observe, an expression for R(n) has earlier been derived in eq. 2.8. Now, the left side of eq. 2.22
and eq. 2.23 can be inserted into eq. 2.19, which becomes

s(n) =
L∑
l=1

adl(n)ejl(ω0(n−Td(n))) + arl(n)ejl(ω0(n−Tr(n))), (2.24)

and thereby the signal model is described by the reception time and delay on both direct and
reflected paths.
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2.3 Doppler Model
The derivation of the following Doppler model is found in paper [16]. The Doppler effect can be
observed when an object is moving relative to the observer. The distance between the two and the
relative speed will give the change of frequency. The Doppler frequencies can be described with
flight parameters from the aircraft’s trajectory seen in Figure 2.2 in Section 2.2.

If observing from the receiver point of view, then the reception time t is given by the emission
time τ plus the time it takes for the sound to reach the observer due to the distance R

t = τ +R/c, (2.25)

where c is speed of sound and thereby a delay is added to the emission for obtaining the reception
time. Observe that eq 2.25 is a rewritten and simplified version of eq. 2.4 in Section 2.2, where
we here neglected t in both τ and R. The distance R can be found with Pythagoras by using the
Trajectory Model given in Figure 2.2 in Section 2.2 from which the parameters in focus are the
slant range at CPA Rc and the horizontal range r, which is the same as v2(τ − τc)2, where τc is the
emission time for the CPA. Observe, Rc is found by eq. 2.8 at t = τc, and thereby the Rc is found
with the parameters ht, dc and v.

Rc =
c

c2 − v2

√
[(h2

t + d2
c)(c

2 − v2)]. (2.26)

It is now possible to derive R

R = (R2
c + r2)1/2 = (R2

c + v2(t− τc)2)1/2. (2.27)

By substituting eq. 2.27 into eq. 2.25 an expression for τ can be found

τ =
c2t− v2τc − (R2

c(c
2 − v2) + v2c2(t− τc)2)1/2

c2 − v2
. (2.28)

The IF at the reception time t is given by

f(t) = f0
dτ

dt
=

f0c
2

c2 − v2

(
1− v2(t− τc)

(R2
c(c

2 − v2) + v2c2(t− τc)2)1/2

)
(2.29)

The IF in eq. 2.29 can be expressed in a different way following the paper [14]. At the same time
we also change time t by its index n.

f(n) = γ + βp(n; τc, s), (2.30)

where

γ = f0c
2/(c2 − v2) (2.31a)

β = −f0cv/(c
2 − v2) (2.31b)

s =
Rc(c

2 − v2)1/2

vc
(2.31c)

p(n; τc, s) =
n− τc

[s2 + (n− τc)2]1/2
, (2.31d)

where v is velocity of object, c speed of sound, n is time index for reception time, Rc is the slant
range at CPA and τc emission time for the CPA.



2.3. DOPPLER MODEL 11

0 2 4 6 8 10 12 14

Time [s]

55

60

65

70

F
re

q
u
en

cy
 [

H
z]

Doppler Frequency as Function of Time

Figure 2.4: Example of a Doppler Frequency curve with true f0 = 60 Hz.

In Figure 2.4 a Doppler frequency curve following eq.2.30 is seen. The parameter γ given in
eq. 2.31a is the center frequency, which in Figure 2.4 is at 7 s and is slightly above 60 Hz as ex-
pected. The parameter β given in eq. 2.31b is the deviation between the center frequency γ and the
maximum Doppler frequency at infinite time. The maximum Doppler frequency is never possible
to observe, so the maximum observed Doppler frequency is given by scaling β by p(n; τc, s), given
in eq. 2.31d. The p(n; τc, s) is a time varying variable with maximum range−1 to 1 in case of infi-
nite time. It is zero at the center Doppler frequency time and is symmetric around the center time.
That means p(n; τc, s) is a scaled and mirrored form of the Doppler frequency curve. One thing
to observe is, eq. 2.31c will increase as the slant range Rc increases. As Rc gets close to infinite,
the parameter s will be close to infinite which results in a linear or even flat Doppler frequency
curve, since p(n; τc, s) will be very close to zero and thereby the scaling β is almost not added to
γ. Also if the velocity v is low, the Doppler frequency curve will tend to be linear. That means,
when the distance between microphone and aircraft is large or the aircraft has a low ground speed,
the Doppler Frequency curve will tend to be approximately linear or even flat.

It should be stressed that assuming the Doppler frequency curve to be linear is most likely no
good, and the following two approaches are believed to be a better solution in the case of pitch
estimation. The first approach is to describe the curve with a higher order polynomial, which will
make it possible to describe full Doppler directly. However, we will propose to work on the full
signal in smaller segments, where linearity can be assumed. By that, the Harmonic Chirp Model
(HCM) can be applied, on which a pitch estimator is proposed, which is based on the paper [8].
All this is to come in the following chapter.
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Chapter 3

Theory

The baseline in this work is the MFFC, which will be introduced in this chapter. In Section 1.3 we
introduced two approaches for taking the temporal variation into account. Those two approaches
will be described in details in the following. For the (hidden periodic) time-varying amplitude,
cyclic spectral analysis is used. For the time-varying pitch, a chirp pitch estimator, which can be
provide the IF, is proposed. The proposed chirp pitch estimator uses a parametric HCM, which
will be described before the chirp pitch estimator. The proposed chirp pitch estimator is based
firstly on a NLS Estimator working on a plain Harmonic Model (HM), followed by the chirp pitch
estimator working on the HCM. It is well-known in pitch estimation that the order is often the
key to solve the pitch estimation problem, so one approach for estimating the model order is also
described and in addition this approach also serves as a pitch detection. One great advantage of
the proposed chirp pitch estimator is the directly derivation of the IF, which can be used to estimate
flight parameters, based on the Trajectory and Doppler model introduced in Chapter 2. The goal of
this report is to investigate features for detecting aircraft. Therefore, to be able to directly compare
the different features which can be extracted from a signal when an aircraft is present, we perform
classification based on these features. For that, a short description about the used classification
theory is presented as the last part in this chapter.

3.1 Mel-Frequency Cepstral Coefficients
Before looking into the implementation of MFFC, we want to start with a short introduction of
the unit mel. The author of the book [22] describes the pitch having the unit mel, as a perceived
sound produced by frequency, intensity, duration and spectral content. The reference sine wave,
is a 1 kHz, which is defined as the pitch of 1000 mel. The pitch is then measured subjective by
comparing it to this given sine wave. The relation between frequency and pitch is often described
as in the paper [31]:

mel(f) = 2595 log10

(
1 +

f

700

)
, (3.1)

where f is the frequency. Observe in Figure 3.1 a plot is made for frequency range 0 Hz to 10 kHz,
which visualises the non-linear pitch curve. As explained in the article [17] the steps for doing the
MFFC follows:

1. Calculate power spectrum by Discrete Fourier Transform (DFT).

13
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Figure 3.1: Typical pitch curve as a function of frequency. Curve is produced with eq. 3.1. Until
1 kHz one assume linearity and above that logarithm scale is assumed.

2. Divide data into the weighted mel-scale filter banks, which have equally bandwidth sizes
below 1 kHz and logarithm increasing bandwidths above. This is due to the perceptual mel-
frequency curve seen in Figure 3.1 or eq. 3.1

3. Apply logarithm to the signal.
4. Lastly, a discrete cosine transform is added, to obtain the cepstral coefficient. The discrete

cosine transform is here used instead of the inverse DFT, since using the power spectrum
which has absolute (real) values.

It is now clear that the idea behind the MFFC is similar to the (real valued) Cepstrum analysis which
can be found in e.g. the book by Alan V. Oppenheim [27] and Applications Notes by B&K[29].
The Cepstrum equation can be written as

C = |F(log(|F{f(t)}|2)|2, (3.2)

from which similarity between MFFC and Cepstrum analysis can be observed.

3.2 Cyclic Spectral Analysis
The Cyclic Spectral Analysis is a tool for taking the temporal variation into account. In the follow-
ing an introduction to the Cyclic Spectral Analysis is given with the article [19] as source.

3.2.1 Cyclo-Stationary Signals
Often a stationary signal is assumed in signal processing, which the authors of [2] states, that the
assumption is more of a convenient matter then it is the truth. Often the signal is non-stationary
and random in the waveform, but observing the energy and flow might show hidden periodicity.
This periodicity is what is referred to as a cycle, as introduced in [1]. A typically example of a
cyclo-stationary signal is a mechanically signal from a rotating machine, e.g. from a propeller,
from which is gets clear why the cyclic analysis is of big interest when detecting aircraft. In time
domain, the cyclic analysis provides information about instantaneous auto-correlation function,
instantaneous power and envelope. These together gives the temporal variations. In the frequency
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domain, the spacing between spectral components will give the cyclic frequency. The modelling
of a cyclo-stationary signal, is explained in the article [19] and follows

x(t) = A cos(2παt+ θ), α 6= 0, (3.3)

where α is the frequency of the finite strength additive sine wave. Having the Fourier

Mα
x = {x(t)e−i2παt}, (3.4)

which, when exist, gives Mα
x = 1

2Ae
iθ. In addition, {•} in eq. 3.4 is a time averaging operation

following

{•} 4= lim
T→∞

1

T

∫ T/2

−T/2
(•)dt. (3.5)

Now, if f = α and f = −α are present in the Power Spectral Density (PSD) of x(t) as spectral
lines, that means the PSD contains

|Mα
x |2[δ(f − α) + δ(f + α)], (3.6)

where δ is the Dirac impulse function. A signal with the terms from eq. 3.6 in its PSD, is referred
to as a first-order periodicity signal having frequency α. Now, the signal x(t) is given as

x(t) = A cos(2παt+ θ) + n(t), (3.7)

where n(t) is the remaining part, noise, which is uncorrelated with α. If n(t) is most significant in
the signal x(t), a hidden periodicity is present in the signal since it cannot be observed by visual
inspection of the signal. Still due to spectral lines in the PSD, it is possible to use spectral analysis
for estimating the hidden periodicity. When the hidden periodicity is more complex, a quadratic
transformation can be applied to signal, e.g. squaring the signal, which will convert the hidden
periodicity in the signal to a first-order periodicity, where spectral lines can be found. The squaring
approach will not always work, so a better solution might be to use a quadratic transformation
including delays. The example given in the article [19] is having pulse-amplitude modulated signal

x(t) =
∞∑

n=−∞
a(nT0)p(t− nT0), (3.8)

where a(nT0) is the pulse amplitudes, T0 is the pulse repetition interval and p(t − nT0) is pre-
shaped pulse. Now let all amplitudes be 1, which means having a constant for all t when the
squaring transformation is done. By that, a spectral line is present at the DC, but not at any har-
monics. Therefore, for finding the hidden periodicity the quadratic transform should be done as

y(t) = x(t)x(t−∆t), (3.9)

where ∆t is the delay and spectral lines will be present at m/T0

Mα
y = {y(t)e−i2παt} 6= 0, (3.10)

where α is m/T0 for integer values m. A general time-invariant quadratic transform can be written
as

y(t) =

∫
h(∆t)x(t)x(t−∆t)d∆t, (3.11)
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which is a linear combination of delay products from eq. 3.9 and weighted by h(∆t), which is
like the impulse response function for a linear transformation. The definition of a second-order
periodicity follows that, if the PSD of the signal in eq. 3.9 with some delays ∆t has spectral lines at
none-zero α frequencies, meaning eq. 3.10 is satisfied, then the signal x(t) contains second-order
periodicity. For convenience the symmetric delay products is introduced as

y∆t(t) = x(t+ ∆t/2)x∗(t−∆t/2), (3.12)

where ∗ is the complex conjugated for making the model fit to complex signals. It should be
observed that the author of the used MATLAB implementation [3] of cyclic analysis, recommend
to use complex (analytic) signal, which can be obtained with the Hilbert transform [21]. The next
is that eq. 3.10 can be rewritten to

Rαx
4
= {x(t+ ∆t/2)x∗(t−∆t/2)e−i2παt}, (3.13)

which is the cyclic auto-correlation function, related to the general auto correlation function, but
with the cyclic weighting factor included, e−i2παt. If α = 0 Hz eq. 3.13 becomes the general auto
correlation function. For making the direct link to the general auto correlation function, the eq. 3.13
can be rewritten into

Rαx
4
= {[x(t+ ∆t/2)e−iπα(t+∆t/2)][x(t−∆t/2)e+iπα(t−∆t/2)]∗}, (3.14)

which can be written as the conventional cross correlation function

Ruv(∆t)
4
= {u(t) + ∆t/2)v∗(t−∆t/2)} = Rαx , (3.15)

with u(t) = x(t)e−iπαt and v(t) = x(t)e+iπαt. It can be expressed, that x(t) has second-order pe-
riodicity if v(t) and u(t) are correlated. A signal having this form is referred to as a cyclo-stationary
signal and α is the cyclic frequency, see example of cyclic frequency estimate in Subsection 3.2.2

The Correlation Density (SCD) function in cyclic analysis is of great interest in this work,
since it leads to the (cyclic) Spectral Coherence, on which several approaches can be uses for doing
classification. Still, the article [19] forms the basis of the following. For obtaining the SCD, the
PSD for x(t) is needed, which can be written for any f as

Sx(f)
4
= lim

B→0

1

B
{|hfB(t) ∗ x(t)|2}, (3.16)

where ∗ is convolution, hfB(t) the impulse response of a one-sided bandpass filter, having the
center frequency f and lastly B is the bandwidth. Letting u(t) and v(t) pass through the same sets
of bandpass filters the result is the SCD

Sαx (f) = lim
B→0

1

B
{|hfB(t) ∗ u(t)||hfB(t) ∗ v(t)|∗}. (3.17)

The expression in eq. 3.16 can be obtained as the Fourier transform of the cyclic auto-correlation
written as

Sαx (f) =

∞∫
−∞

Rαx(∆t)e−2πf∆td∆t. (3.18)

The relation seen in eq. 3.18 also leads to that SCD is expressed as the Cyclic Spectral Density
(CSD) function. In addition, the SCD is the Fourier transform of the cross-correlation function of
the two parts v(t) and u(t). Due to that, SCD is equal to the cross-spectral density function

Sαx (f) = Suv(f), (3.19)
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where right hand side of eq. 3.19 is equal to the right hand side of eq. 3.17 and by that the spectral
correlation between v(t) and u(t). The next part is now to do a normalization, which will change
the correlation of spectral components to be equal to the covariance since mean of spectral compo-
nents are zero, when no spectral lines at frequency f are present in the PSD of v(t) and u(t), equal
to no spectral lines at f ± α/2. One normalization is the geometric mean of the variances, Su and
Sv, by which the covariance ends up being the correlation coefficient

Suv(f)√
Su(f)Sv(f)

=
Sαx (f)√

Sx(f + α/2)Sx(f − α/2)

4
= ραx(f), (3.20)

on which absolute value is normally calculated giving a value between 0 and 1. That means eq. 3.20
gives an measure of the spectral redundancy. The author of the article [2] also calls eq. 3.20
for the (Cyclic) Spectral Coherence, where the author points that this relation is only meaningful
when having second-order cyclo-stationary signal in which case a strong linear dependence can be
observed.

3.2.2 Cyclic Spectral Analysis Test
The used MATLAB implementation of Cyclic Spectral analysis [3] is wanted to be tested for ob-
taining the Cyclic Spectral Coherence introduced in eq. 3.20 on which the result can be seen in
Figure 3.2. By observing the Figure 3.2 we can conclude that the signal used in this test has a
hidden periodicity having cyclic frequency α = 87 Hz. The Cyclic Spectral Coherence visualized

Cyclic Spectral Coherence
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Figure 3.2: Cyclic Analysis by Cyclic Spectral Coherence given a Cyclic Frequency α = 87 Hz,
the red dot to the right lower corner.

in Figure 3.2 can be used directly as a feature, which will give a high number of features, on which
Principal Component Analysis (PCA) is needed to be applied, see Subsection 3.6.4. Another solu-
tion for reducing the number of features is to mean the Cyclic Spectral Coherence for constructing
an additional feature, mean envelope. For an easily observed periodicity in a signal, one such mean
envelope will look like the one seen in Figure 3.3, which is not produced with the same signal as
in Figure 3.2. However, if applying the mean to Figure 3.2, the result ends up as can be seen in
Figure 3.4, which is very different in the envelope. It is clear from Figure 3.4 that the mean levels
for the different cyclic frequency are not significant and should be rejected if comparing it to the
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Figure 3.3: Mean of the Cyclic Spectral Coherence when an aircraft is present in the signal. Also,
the 1 % level of significance is shown.
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Figure 3.4: Mean of the Cyclic Spectral Coherence when an aircraft is present in the signal. Also,
the 1 % level of significance is shown.

1 % level of significance line; the red line in Figure 3.4. When no aircraft is present a similar mean
envelope can be observed, see Figure 3.5 It was already clear from the differences of Figure 3.3
and Figure 3.4 and the similarity of Figure 3.5 and Figure 3.4 that a separation between aircraft and
non-aircraft based on the mean envelope alone will be a hard challenge, but still a test was carried
out which can be seen in Section 4.4.

Lastly, the Cyclic Spectral Coherence seen in for example Figure 3.2 can be transformed to an
image, on which image processing tools can be used for extracting features. We did a small test on
such a method, which can be found in Appendix B.



3.3. CHIRP SIGNAL MODEL 19

10 20 30 40 50 60 70 80 90 100

Cyclic Freq α [Hz]

0

0.02

0.04

0.06

0.08

|E
[S

p
ec

tr
al

 C
o

h
er

en
ce

]| Mean Envelope as Funciton of α, with estimated α=10

Envelope

1% level of significance

Figure 3.5: Mean of the Cyclic Spectral Coherence when no aircraft is present in the signal. Also,
the 1 % level of significance is shown.

Cyclic Frequency Estimation on Signal where Aircraft is Passing By

The cyclic frequency estimate can be used as a feature for doing the classification, but is believed
to not be significant by itself. It might however be an alternative to the proposed pitch estimator in
Subsection 3.4.4, even tough it lags the IF information. An example of a cyclic analysis frequency
estimate on a signal with an aircraft present, can be seen in Figure 3.6.
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Figure 3.6: Cyclic Analysis estimating Cyclic Frequency α on a signal having an aircraft present
in the signal, divided into 1 s blocks including 67 % overlap.

3.3 Chirp Signal Model
Before introducing the proposed chirp pitch estimator a signal model is needed to be described.
Starting with the Harmonic Chirp Model (HCM) for Instantaneous Frequency (IF), found in the
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paper [26], where lth fundamental frequency is

ωl(n) = l(ω0 + bn), (3.21)

where ω0 is the fundamental frequency and b is the chirp coefficient. Eq. 3.21 can be seen as a
first-order Taylor approximation [8]. The precision of the model will increase as segments gets
shorter, since the linearity assumption fits better. If looking at the instantaneous Doppler frequency
in eq. 2.30, it can be seen that ω0 should be described as the first observed Doppler frequency,
which can be expressed as

ωDopp,0 = γ + βp(n; τc, s), n = 1. (3.22)

Now the problem of the chirp b. It has already been mentioned that when aircraft is far away from
microphone, nearly infinite distance, one can assume a linear received Doppler frequency curve,
which means the chirp model in eq. 3.21 can be used even for the whole signal. However, if the
distance is not great, this assumption is not valid for bigger segments and another approach is
needed. One is to use a higher order for the Taylor approximation for large segments. If using large
segment, b would be a time varying factor, which is defined as

b(n)
4
= βp(n; τc, s), (3.23)

according to flight parameters. It is clear in eq. 3.23 that the product of β and p(n; τc, s) must be a
time varying scaling factor of the initial ωDopp,0 frequency. The IF model is given as

ωl(n) = l(ωDopp,0 + b(n)). (3.24)

where b(n) needs to be approximated with a higher order Taylor Approximation, e.g. 3rd or 4th
order.

Instead of modelling with a 3rd or 4th order Taylor Approximation, we propose to work on
smaller segments, which is believed to be a better solution due to the knowledge about the Doppler
frequency curve, which will change character, Taylor order, due to distance from aircraft and mi-
crophone and therefore no stationary order is optimal. Therefore we propose to divide data into
smaller segments and apply the 1-order chirp Taylor approximation seen in eq. 3.21. The segments
will have the length M, which typically is 20 ms to 30 ms for speech, but in this case a larger
segment can be used and it is also needed due to a limitation of an approximation done in the pitch
estimation, introduced in Subsection 3.4.2. Observe, we will later on make a test with different
segments length, see Subsection 3.4.6.

Inside this block with n = n0, ...M , one can assume linearity of the fundamental frequency
and thereby the IF, becomes

ωl(n) = l(ωDopp,0 + bn). (3.25)

Observe, that the linear chirp coefficient b will be negative due to Doppler Effect. Now, the IP, is
needed before having a model. That is the integral of IF.

θl(n) = l

(
1

2
bn2 + ωDopp,0n

)
+ φl, (3.26)

from which the signal model for a signal length M can be made

s(n) =

L∑
l=1

al(n)ejl(ωDopp,0n+b/2n2), (3.27)
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where al(n) = Al
r(n)(n)ejφl . Observe the real part of the complex amplitude, Al

r(n) is a function of
time, which is due to the changing distance r(n) between aircraft and microphone and therefore
modelled as a spherical sound wave amplitude.

The signal model in eq. 3.27 can be used to produce a synthetic signal with random ωDopp,0,
b and φl values in a decided range, which will be used for testing the estimator proposed in Sec-
tion 3.4.4. This will prove the performance of the estimator on a 1-order chirp signal model, which
can be assumed on small blocks of the true signal of interest.

3.4 Pitch Estimator
The observed signal x(n) introduced in section 2.1 contains the sinusoidal Doppler frequency part
s(n), a colored noise part e(n) from which the destructive interference frequencies will be made
and a Gaussian noise v(n) part with covariance matrix Q. However, since there is no sinusoidal
part in e(n) we will here treat the observed signal x(n) as a sinusoidal part s(n) and a noise part
v(n) which will be modelled as white Gaussian noise.

x(n) = s(n) + v(n) (3.28)

In the following we will assume complex signal, which gives simpler equations. If having a real
valued signal, the complex signal can be obtained by using the Hilbert Transform [21]. The prob-
lem is at the form of single pitch estimation, which we solve as proposed in the book [7] for the
harmonic case. However, due to the time-varying Doppler frequency, a chirp coefficient is added
to the model, on which an estimator in proposed in the paper [8].

We have already claimed the best solution to describe the observed signal is to divide it into
sub-vectors having length M .

x = [x(n0) x(n0 + 1) ... x(n0 +M − 1)]T (3.29)

where T is the transpose. Observe, since the full signal is divided into segments, the first time index
in the sub-vector, should be denoted n0 and for obtaining minimum estimation error one should
choose n0 = −(M − 1)/2 and M is odd [10]. The lth amplitude will normally be written as

αl = Ale
jφl , (3.30)

where A is the real amplitude, φ is the phase. Observe, we here neglect the spherical wave theory
when deriving the estimator. Next, a frequency matrix representing the signal can be written in
Vandermonde form. The Vandermonde frequency matrix is described by the radian frequency ω0

and the chirp coefficient b

Z = [z(ω0, b) z(2ω0, 2b) ... z(Lω0, Lb)] (3.31)

where z follows

z(lω0, lb) =


ej(

1
2
bln2

0+ω0ln0)

ej(
1
2
bl(n0+1)2+ω0l(n0+1)

...
ej(

1
2
bl(n0+M−1)2+ω0l(n0+M−1)

 (3.32)

The unknown parameters can be written in vector-form as

θ = [ω0 αl φl b ... αL φL]T . (3.33)
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3.4.1 Maximum Likelihood Estimator based on Harmonic Model
It is clear that the Doppler frequencies are not stationary, and thereby a plain Harmonic Model
(HM) will not be sufficient, as described in Section 3.3. However, one suitable solution for esti-
mating a chirp pitch, is actually to do an initial pitch estimate based on the harmonic model and
afterwards using an iterative approach for estimating the true pitch and chirp [8]. Therefore the fol-
lowing is based on the HM statistical pitch estimate approach presented in the book [7]. Observe
the HM is equal to HCM when chirp b = 0.

Since focus is the estimation of the time-varying Doppler frequency, the signal in eq. 3.28 can
be written as

x(n) = s(n) + v(n) = Z ◦α+ v(n), (3.34)

where α is a matrix with the L columns, each being [Al(n0)ejφl Al(n0 + 1)ejφl ... Al(n0 +M −
1)ejφl ]T and the product Z ◦ α is a element-wise multiplication (Hadamard product). The noise
part v(n) is Gaussian noise having the covariance matrix Q. However, in this work the pitch is
the main feature to be estimated and we will not focus on time-varying amplitude and thereby the
Hadamard product is neglected and eq. 3.34 becomes

x(n) = s(n) + v(n) = Zα+ v(n), (3.35)

where α is a vector with length L due to the number of harmonics.

The estimator proposed here is a Maximum Likelihood (ML) estimator which work on a signal
sub-vector, as introduced in eq. 3.29. Now the vector is given at time index n instead of n0, since
we here do not focus on which time indexes to use.

x(n) = [x(n) · · ·x(n+M − 1)]T (3.36)

The likelihood function is expressed as a function of the unknown parameters θ introduced in
eq. 3.33

p(x(n);θ) =
1

πM det (Q)
e−v

H(n)Q−1v(n). (3.37)

Having sub-vectors with the lengthM , and a full signal lengthN , thenG = N−M+1 sub-vectors
are needed to describe the full signal {x(n)}G−1

n=0 . Now, an assumption is introduced, which is only
valid for the HM and not the HCM. If s(n) is stationary and v(n) is independent and equally
distributed over n, then the likelihood for all sub-vectors can be written

p({x(n)};θ) =
G−1∏
n=0

p(x(n);θ)

=
1

πMG det (Q)G
e−

∑G−1
n=0 vH(n)Q−1v(n),

(3.38)

which can be simplified by apply the logarithm of the likelihood.

L(θ) = −GM lnπ −G ln det (Q)−
G−1∑
n=0

vH(n)Q−1v(n). (3.39)

The unknown, but deterministic parameters can now be estimated by maximizing the log-likelihood
as

θ̂ = arg maxL(θ) (3.40)
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which becomes the ML estimator.

It might be needed to estimate the noise v̂(n) which is constructed from the estimated parame-
ters

v̂(n) = x(n)− ŝ(n). (3.41)

How to estimate the noise covariance matrix is shown in the book [7], but for now a white signal
model is believed to be sufficient.

3.4.2 Estimator in White Noise
For white noise, the noise covariance matrix is known, and it is reduced to the scaled diagonal
matrix Q = σ2I. Furthermore, there is no need for sub-vectors, which means M = N and also
thereby G = 1, observe again this is not true for HCM. As a result of that the log-likelihood is now
on a simpler form

L(θ) = −N ln(π)−N ln(σ2)− 1

σ2
||v̂||22. (3.42)

This method shown in eq. 3.42 where the goal is to minimize 2-norm is referred to as being the
NLS Method. It should be noted that the estimate depends on the order L. For at given L the noise
is a variance, estimated as

σ̂2 =
1

N
||x−ΠZx||22, (3.43)

where ΠZ is defined as
ΠZ = Z(ZHZ)−1ZH . (3.44)

which means ΠZx is the projection of x onto the range of Z. In fact, the ΠZ can be approximated
due to the fact that complex sinusoids are asymptotically orthogonal. The approximation gives

lim
N→∞

NΠZ = lim
N→∞

NZ(ZHZ)−1ZH = ZZH . (3.45)

Observe for a given N , the approximation gets worse as ω0 gets smaller, and might end up being a
poor approximation when having very low ω0.

By using the approximation in eq. 3.45, the variance estimate is now an approximately Non-
linear Least Squares (aNLS) and is written as

σ̂2 =
1

N
||x− 1

N
ZZHx||22. (3.46)

The aNLS in eq. 3.46 also simplifies the log-likelihood function in eq. 3.42, since it only depends
on ω0 now, to

L(ω0) ≈ −N ln(π)−N ln(σ̂2)−N. (3.47)

Finally, the pitch estimator for ω̂ is now an aNLS and described by

ω̂0 = arg max
ω0

xHΠZx

≈ arg max
ω0

xHZZHx

= arg max
ω0

||ZHx||22.

(3.48)
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3.4.3 Implementing the aNLS as Harmonic Summation
Now the aNLS pitch estimator given in eq. 3.48 is wanted to be implemented. For doing so, the Z
frequency matrix is convenient since it can be implemented in a computational efficient matter, by
only using one Fast Fourier Transform (FFT).

||ZHx||22 =
L∑
l=1

|
N−1∑
n=0

x(n)e−jω0ln|2

=

L∑
l=1

|X(ω0l)|2.
(3.49)

The pitch estimate ω̂0 is then found by

ω̂0 = arg max
ω0

L∑
l=1

|X(ω0l)|2, (3.50)

where L is a fixed number of harmonics and X is the FFT the x. Observe, the implementation will
zero-pad the data to obtaining a wanted number of FFT points, N length of Fast Fourier Transform
(NFFT).

3.4.4 Chirp Pitch Estimator
The aNLS estimator is only valid for a stationary pitch, which is almost never the case and indeed
not when observing a Doppler changing pitch as in this study. One part of the solution is to take
non-stationary pitch into account, by using the HCM in eq. 3.27 seen in Section 3.3. The proposed
estimator, working on a such signal, follows the one in the paper [8].

HCM Pitch Estimator

Again a ML estimator is wanted in the assumption of white noise. The estimation of the parameters
thereby follow a NLS estimator

{â, b̂, ω̂0} = arg min
a,b,ω0

||x− Za||2. (3.51)

If neglecting the time-varying amplitudes and say that the amplitudes are of no interest, these can
be substituted by a least square fit, which changes the estimator in eq. 3.51 to

{b̂, ω̂0} = arg min
b,ω0

||x− Z(ZHZ)−1ZHx||2, (3.52)

which results in a 2-D optimization problem for the non-linear parameters, b̂, ω̂0. One way to
overcome the computational problem in the estimator in eq. 3.52 is to first introduce the orthogonal
projection matrix

Π(ω0, b) = Z(ZHZ)−1ZH , (3.53)

and the orthogonal complement one

Π⊥(ω0, b) = I−Π(ω0, b), (3.54)

from which a simple iterative method for doing the 2-D optimization problem can be introduced

b̂(i) = arg min
b

= xHΠ⊥(ω̂
(i−1)
0 , b)x (3.55a)

ω̂
(i)
0 = arg min

ω0

= xHΠ⊥(ω0, b̂
(i))x (3.55b)
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The iterations in eq. 3.55a and eq. 3.55b are repeated until convergence, which in practice will be a
value defined from the cost function. Observe, that in eq. 3.55a an initial pitch estimate is needed,
which is where the aNLS pitch estimator will be used. By testing on synthetic signals with known
parameters, the improvement of the proposed HCM pitch estimator can easily be shown, since
both estimates are done in the process here. The chirp factor b can be assumed to be zero as a start
value. The grid area for eq. 3.55a and eq. 3.55b should start with a rough precision. Around the
previous estimate a search area is used, in which the minimum is wanted to be found. Afterwards
a dichotomous search is used, which has the constrain that it can only work in the convex region
around the minimum of the cost function.

Dichotomous Search

The dichotomous search method is described in the book [4]. The general problem to solve is

minF = f(x), (3.56)

which means having a function of one variable; the goal is to find the variable that minimizes the
function. For finding one such minimum, the function needs to be unimodal, which means only one
minimum is present in a given area. Having a search area expressed as an interval, [xLower, xUpper]
or in short [xL, xU ] in which a minimizer x∗ is present. The search method approach for finding
a minimum is to reduce this search area, until having a very narrow search area, in which the
minimum is assumed to be located in the middle of the minimized search area. One such method
for solving a minimization problem, is the dichotomous search approach. The interval [xL, xU ] is
the range of uncertainty and the minimizer x∗ can be found by reducing the range of uncertainty
until a small range is left. The approach uses a number of values of the function f(x). If the
function value is known at one point, xa, inside the range [xL, xU ] then the minimizer x∗ will most
likely be in the area xL to xa or in the area xa to xU . It is clear this is not sufficient information for
doing any reduction of the range. For doing any reduction, two values made from two points, xa
and xb in the function, are needed. This can be done due to the following

f(xa) < f(xb) (3.57a)

f(xa) > f(xb) (3.57b)

f(xa) = f(xb). (3.57c)

If having the case seen in eq. 3.57a, the minimizer x∗ might be located in range xL < x∗ < xa or
xa < x∗ < xb, which means xL < x∗ < xb. Since the function only has one minimum, the range
xb < x∗ < xU can be neglected. For the case in eq. 3.57b the opposite of the just described can be
used. If having the case seen in eq. 3.57c, xa < x∗ < xb, which means both xL < x∗ < xb and
xa < x∗ < xU needs to be satisfied. For reducing the range, the dichotomous search evaluates a
function a two points xa = x1 − ε/2 and xb = x1 + ε/2, where ε is a small (positive) value, for
example 0.01. If having the case seen in eq. 3.57a the range xL to x1 + ε/2 is selected or if having
the case seen in eq. 3.57b, the range x1− ε/2 to xU is selected. If having the case seen in eq. 3.57c
any of the range can be used. One example of the the reduction this approach can perform is that if
x1 − xL = xU − x1. Then this means x1 = (xL + xU )/2 and the range is already half the starting
range. At the next iteration the function will be evaluated at x2− ε/2 and x2 + ε/2, where again x2

is located at the center of the range. For each iteration the range of uncertainty is reduced by half,
which reduces the uncertainty to

Ik = (
1

2
)2I0, (3.58)
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where I0 is xU − xL. By using the dichotomous search along with the iteration steps in eq. 3.55a
and eq. 3.55b, we have our proposed HCM pitch estimator.

3.4.5 Maximum A Posteriori (MAP)
Order selection is often seen to be the key of solving estimation problems. One method for over-
come this issue, is to apply the Maximum A Posteriori (MAP), which is here introduced as it is in
the book [7]. The following is based on a single pitch source.

Starting with the model candidate vector Zq = 0, 1, ..q − 1, indexed by Mm. Now the goal is
to maximize the a posteriori probability, when having the observed signal x:

M̂ = arg max
Mm,m∈Zq

p(Mm|x), (3.59)

which can be rewritten with Bayes rule

M̂ = arg max
Mm,m∈Zq

p(x|Mm)p(Mm)

p(x)
. (3.60)

Assume an uniform prior for all models, meaning p(xk) becomes a constant when x is observed.
By that, the Maximum A Posteriori (MAP) model reduces to the following likelihood function seen
as a function of Mm

M̂ = arg max
Mm,m∈Zq

p(x|Mm). (3.61)

The next step is to integrate out the unknown parameters θ, which in fact is depending on Mm but
fore simplification here neglected. The integration becomes

p(x|Mm) =

∫
Θ
p(x|θ,Mm)p(θ|Mm)dθ (3.62)

No analytic solution can be given for eq. 3.62, which is why in [7] a Laplace integration is proposed
to be used with the assumption that it will give the most significant peak in the likelihood function
around the maximum likelihood estimated θ̂ whenN is high. By that, eq. 3.62 can now be rewritten
to be equal to

(2π)D/2 det
(
Ĥ
)−1/2

p(x|θ̂,Mm)p(θ̂|Mm), (3.63)

where D is the number of parameters and Ĥ is the Hessian of the log-likelihood function which is
evaluated at the θ̂. The Ĥ is given by

Ĥ = −∂
2ln(p(x|θ,Mm)

∂θ∂θT

∣∣∣∣∣
θ=θ̂

(3.64)

Next, the logarithm is taken of eq. 3.63. Also, the two terms O(1) and D
2 ln(2π) are ignored when

N is large. All that gives

M̂ = arg max
Mm,m∈Zq

− lnp(x|θ̂,Mm) +
1

2
ln det(Ĥ) (3.65)

where the first term in eq. 3.65 is the log-likelihood, on which a penalty term is needed to be added,
which is the last part. By using eq. 3.65 it is possible to select between various models and orders.
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What is now needed is a criterion for selecting the model order for the signal introduced in
eq. 3.27 in Section 3.3. Furthermore, a pitch detection criterion is shown. Starting by observing
eq. 3.64, which is related to the Fisher matrix

Ĥ ≈ −E

{
∂2ln(p(x|θ)

∂θ∂θT

}∣∣∣∣∣
θ=θ̂

(3.66)

where the diagonal terms can be found by using the normalized matrix:

KN =

[
N−3/2 0

O N−1/2I

]
(3.67)

where I is a 2L × 2L identity matrix. The information given in the matrix in eq. 3.67 is on the
first diagonal entry due to the fundamental frequency and the remaining is due to L amplitudes and
phases. Now the determinant of the Hessian in eq. 3.65 is calculated as

det(Ĥ) = det(K−2
N ) det(KN ĤKN ). (3.68)

A simplification can be done, since the last term in eq. 3.68 is equal to O(1). Now taking the
logarithm, the result is

ln det(Ĥ) = ln det(K−2
N ) ln det(KN ĤKN ) (3.69)

= ln det(K−2
N ) + O(1) (3.70)

= 3 ln N + 2L lnN + O(1) (3.71)

When having additive white complex Gaussian noise, the log-likelihood in eq. 3.65 is N ln σ2
k.

Next, σ2 needs to be replaced by the estimate for each candidate order L, which is denoted as
σ̂2(L). By substitute eq. 3.71 into eq. 3.65 the selecting order criteria is

L̂ = arg max
L

N lnσ̂2(L) +
3

2
lnN + L̂ lnN (3.72)

where the first term is the log-likelihood and the last two terms are the penalty terms.

As a pitch detection control, which means a check for if a harmonic is present in the signal,
eq. 3.72 should be compared to log-likelihood of a zero order model

N ln σ̂2(0) < N lnσ̂2(L) +
3

2
lnN + L̂ lnN (3.73)

where σ̂2(0) is the variance of the observed signal.

3.4.6 Chirp Pitch Estimator Test
In the following we will perform a two tests for proving the improvements the HCM chirp pitch
estimator adds compared to the aNLS, when estimating pitch in a chirp signal. The results for
each test will presented as a RMSE for each estimator; the aNLS and the HCM. In both tests the
signal used for testing is produced with eq. 3.27. The tests are performed using a Monte Carlo
approach, which means a test is repeated many times and each time randomly parameter values are
used. In the following test these random parameter values are f0, b and φl within a decided range
of f0 ε [50, 100] Hz, b ε [−200, 200] Hz2 and φl ε [0, 2π].
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Test 1 - RMSE as Function of SNR

The purpose of this test is to obtain the RMSE for each estimator, where RMSE will be a function
of SNR. Synthetic test signal is produced with eq. 3.27, on which additive white Gaussian noise is
added. The following parameters gives the entire signal used in the test:

• Sample frequency = 8 kHz.
• L = 10.
• NFFT = 220 for aNLS including zero-padding.
• Duration = 50 ms.
• Number of Monte Carlo iterations = 100.
• SNR in the range: [−10 : 100] dB, with steps of 10 dB.
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Figure 3.7: RMSE as function of SNR in the range [−10 : 100] dB on a chirp signal.

It is clear from Figure 3.7, that the HCM chirp pitch estimator outperforms the aNLS pitch
estimator based on HM, when it comes to RMSE value on a chirp signal.

Test 2 - RMSE as Function of N

The purpose of this test is to obtain the RMSE for each estimator, where RMSE will be a function
of N. Synthetic test signal is produced with eq. 3.27, on which additive white Gaussian noise is
added. The following parameters gives the entire signal used in the test:

• Sample frequency = 8 kHz.
• L = 10.
• NFFT = 220 for aNLS including zero-padding.
• Number of samples N in the range [100 : 500].
• Number of Monte Carlo iterations = 100.
• SNR =100 dB.

Again, it is clear from Figure 3.8, that the HCM chirp pitch estimator outperforms the aNLS
pitch estimator based on HM when it comes to RMSE value on a chirp signal.
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Figure 3.8: RMSE as function of N in the range [100 : 500] on a chirp signal.

3.5 Flight Parameter Estimation
If having an estimator which can estimate the IFs in a signal on the model in eq. 3.27, the next is
to use all the IFs to fit the model in eq. 2.30, from which the flight parameter can be estimated.
These parameters are: The true f0 from the source, velocity v, emission time of CPA, τc, and slant
range for that time, Rc. The three first parameters in [f0, v, Rc, τc, ] are also equal to γ,β and s
introduced in Section 2.3. Brian G. Ferguson in [13] proposes a NLS between the model eq. 2.30
in Section 2.3 and the IFs, f̂ , which we will estimate with the proposed HCM chirp pitch estimator
in Subsection 3.4.4.

3.5.1 Flight Parameter Estimator
The proposed NLS estimator minimizes the sum of the squared errors between the IF estimates
and the predicted values according to the model in eq. 2.30. The estimator ends up the following 4
dimensional minimization problem

{γ̂, β̂, τ̂c, ŝ} = arg min
γ′,β′,τ ′c,s

′

K∑
k=1

(
γ′ + β′p(nk; τ

′
c, s
′)− f̂(nk)

)2
, (3.74)

where K is the number of IF estimates, denoted as f̂(nk) and nk is the indexing of IF estimates.
This 4 dimensional maximization problem in eq. 3.74 can be reduced to a 2 dimensional maxi-
mization problem

{τ̂c, ŝ} = arg min
τ ′c,s
′

|∑K
k=1

(
f̂(nk)− f̂

)
p(nk)|2∑K

k=1

(
p(nk)− p

)2 (3.75a)

β̂ =

|∑K
k=1

(
f̂(nk)− f̂

)
p̂(nk)|2∑K

k=1

(
p̂(nk)− p̂

)2 (3.75b)

γ̂ = f̂ − β̂p̂, (3.75c)
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where f̂ is the mean of IF f̂ estimates, p(nk) is p(nk; τ ′c, s
′) given in eq. 2.31d in Section 2.3, p is

the mean of all p(nk), p̂(nk) is p(nk; τ̂c, ŝ) and p̂ is the mean of p̂(nk). When the four estimates
in eqs. (3.75a) to (3.75c) are found, the estimated flight parameters can be found with

v̂ = −(β̂/γ̂)c (3.76a)

f̂0 = γ̂(1− v̂2/c2) (3.76b)

R̂c = ŝv̂c/(c2 − v̂2)1/2, (3.76c)

which are all derived from the Doppler eqs. (2.31a) to (2.31d) in Section 2.3. Next, we want to test
this flight parameter estimator on a synthetic produced signal with known parameter values.

3.5.2 Synthetic Signal based on Flight Parameters
Using eq. 2.24 or eq. 2.18 a synthetic signal can be made of an aircraft passing by. A spectrogram of
one such signal can be seen in Figure 3.9. Observe the Doppler Effect is easily seen. In Figure 3.9,
the following parameter values where used

• v = 40 m
s

• c = 340 m
s

• ht = 200 m

• hm = 1.5 m

• Starting horizontal distance to CPA = 280 m

• Stop horizontal distance to CPA = 280 m

• fs = 16 kHz

• Reception time is: t = 0 : 1
fs

: (280+280)
v

• dc = 10 m

• τc = t(end)
2 , where t(end) is basically the time from start to stop horizontal position.

• L = 5
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Figure 3.9: Spectrogram based on the signal model in eq. 2.18. The Doppler Effect is easily seen
in the Spectrogram after a down sampling with a factor of 6.
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3.5.3 Model The Destructive Interference Frequencies in the Noise Radiated from
Aircraft

The signal model seen in eq. 2.18 clearly only contains the s(n) part of the observed signal x(n).
In the visualization of the signal in Figure 3.9, it becomes clear that Figure 2.1 and Figure 3.9 are
not fully similar, yet. The next step is therefore to model the destructive inference due to ground-
reflection. The good news, is that no new parameters are needed to be found, since all that is needed
here is the time difference between emission time for the direct path and reflected path, which gives
the time-varying delay D(n).

D(n) = τd(n)− τr(n) (3.77)

Observe, the emission time of the direct path will be larger value than emission time of the reflected
path. The delay seen in eq. 3.77 will end up being a fractional delay, which gives the following
issues:

1. Making the signal e(n) online is not as straight forward as for the source signal s(n).
2. The delay in time ends up being a fractional sample delay due to sample frequency, which

means one need to do time domain fractional delay e.g. interpolation or going to the fre-
quency domain. In the frequency domain one could make a fractional delay by multiplying
a response equal to a linear phase filter onto the signal. The linear phase needs a gradient
equal to the wanted delay.

Instead of trying to making the signal online, we propose to do a noisy signal, ecolor(n), offline and
then afterwards apply the fractional delay in the frequency domain. Based on visible observations
of spectrograms, we will use pink noise.

We also propose a simple approach for doing the fractional delay in frequency domain. If
having fractional sample 45.3, then take sample 45 and add a phase change, equal to 0.3 samples.
Implementation in MATLAB will be to do a FFT on a small part of the signal, calculate absolute
value and angle of the FFT and then add the phase change to the angle of the FFT signal. See
Algorithm 1 for the implementation.

Before starting on the fractional delay, we delay the wanted observed noise signal e(n), equal
to the amount of the delay for the first received wave. This is simply done by ceiling the time delay
to an index idx0, and start to construct the wanted signal, e(n), with idx0 of zeros. Now the rest of
the signal is needed to be done as described in the Algorithm 1

3.5.4 Destructive Interference Frequency Signal Model
The total noise signal will be

e(n) = e(n)/rd(n) + e(n−D(n))/rr(n), (3.78)

where D(n) is added as described in Algorithm 1.

3.5.5 Realistic Synthetic Signal
In Section 2.1 we introduced the observed signal as

x(n) = s(n) + e(n) + v(n), (3.79)

where the part s(n) has been derived with the HCM described in segments of length M in Sec-
tion 3.3.
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Algorithm 1 Implement D(n) as a fractional delay in the frequency domain
1. Floor the delay-time of the index n, e.g. index 45.3 = 45, call it idx.
2. A small range of samples are needed, so at index n, idx is subtracted giving the lower index.

Add 2 to that index and the range is now 3 samples. The fractional delay that is wanted is in
between index 1 and 2.

3. Y = FFT (ecolor(range))

4. Apply the fractional delay as a phase. |Y |eφ+φdelay

5. y = iFFT (Y )

6. Construct the signal e(n) at n, by using first sample in y, the n sample of noise signal ecolor,
and divide respectively with rr(n) and rd(n).

7. Continue until all delays have been applied

The total observed signal x(n) is now possible to construct, and if using the same parameter
values as earlier on and do at down-sample with a factor of 6, the resulting spectrogram will look
like:
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Figure 3.10: The synthetic observed signal x(n) including additive white Gaussian noise with
SNR = 100 has been added.

3.5.6 Flight Parameters Estimation in Synthetic Signal
The produced signal seen in Figure 3.10 has known parameter values and we now use the flight
parameters estimator described in eqs. (3.75a) to (3.75c) and eqs. (3.76a) to (3.76c). Observe, the
key in the flight parameter estimation is to obtain the IF estimates, which is given directly from the
model in 3.21. We want to stress this great advantage of the used HCM chirp pitch estimator. See
Figure 3.11 for a comparison of true and estimated IF. Observe, in the HCM chirp pitch estimation
the signal has been down sampled with a Q factor at 6, the signal was buffered into blocks of 50 ms,
the order was not found with MAP but directly taken from the producing of the synthetic signal. In
Table 3.1 the true and estimated flight parameters are shown Table 3.1, where the first 4 parameters
are the flight parameters and the last three are parameters from the Doppler model in Section 2.3,
which are used for estimate the 4 flight parameters. Observe τc and s has been estimated with
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Figure 3.11: IF estimates compared to frequencies from Doppler Model in eq. 2.30.

a rough search, therefore no decimals. It is clear from Table 3.1, that the proposed HCM chirp

True Value Estimated Value
f0 60 Hz 60.0136 Hz

v 40 m/s 40.0459 m/s

Rc 201.6505 m 201.6329 m

τC 7 s 7 s

γ 60.8421 Hz 60.8578 Hz

β −7.1579 Hz −7.1680 Hz

s 5.0063 s 5 s

Table 3.1: True flight parameters versus estimated parameters.

pitch estimator together with the flight parameter estimator seems to be able to estimate useful
parameters, but a better test is to observe the RMSE, which now follows.

3.5.7 RMSE on Flight Parameters
We have made a small Monte Carlo test for obtaining RMSE values on the estimated flight param-
eters. The following parameters and intervals are used for testing

• Sample frequency = 16 kHz.
• L = 5.
• Down sampled signal with factor 6.
• Buffered Signal into 50 ms segments with 67 % overlap.
• Number of Monte Carlo iterations = 50.
• SNR 200 dB.
• Random aircraft speed in the range : 40 m

s to 60 m
s .

• Random f0 in the range : 55 Hz to 65 Hz.
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• Random aircraft height in the range : 100 m to 300 m.
• Other constant parameters: height of microphone hm = 1.5 m, horizontal range 400 m,

depth distance dc = 10 m,
• HCM chirp pitch estimation has maximum 20 iterations.
• s has a rough search, 1 to 10 with step size 0.1.
• τc search from 1 to half the total signal length, plus one.

Results

In Table 3.2 the result of the test can be seen. It is clear from Table 3.2, except for R̂c which needs

RMSE
f0 0.2149

v 0.9142

Rc 9.4100

τC 0.1345

γ 0.2028

β 0.1619

s 0.0989

Table 3.2: RMSE on flight parameters.

a very precise s, that all RMSE values are acceptable low, and we can conclude our HCM chirp
pitch estimator together with the flight parameter estimator performs in an acceptable manner on
estimating the flight parameters and we believe it can be used for a classification problem on real
signal.

3.6 Classification
The machine learning methods used in this report is described in the book [11], where the authors
have made a MATLAB toolbox, PRTools, which is directly used in this report. In Appendix A a
small introduction on how to use PRTools in MATLAB is given. The used classifiers are

1. Quadratic Distance Classifier (QDC), Bayes Normal 2
2. K Nearest Neighbour Classifier (KNNC)

where the first one can be referred to as a parametric learning approach and the second one a
non-parametric learning approach.

The QDC is based on the basic Bayes decision function with a uniform cost function. It is a
MAP probability classifier but in fully terms it is described by the conditional probability densities
and prior probabilities

ω̂MAP (z) = arg max
ω∈Ω

{p(z|ω)P (ω)}. (3.80)

The Bayes normal quadratic classifier is based on having measurement vectors with class ωk which
is normally distributed with the expectation vector µk and aCk covariance matrix, which gives the
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following conditional probability densities

p(z|ωk) =
1√

(2π)N |Ck|
exp

(
−(z − µk)TC−1

k (z − µk)
2

)
. (3.81)

3.6.1 Quadratic Distance Classifier
The quadratic classifier, can also be thought as the full Bayes normal classifier, since no assump-
tions are made and thereby substitute eq. 3.81 into eq. 3.80, the result is the following minimum
error rate classification:

i = argmax

 1√
(2π)N |Ck|

exp

(
−(z − µk)TC−1

k (z − µk)
2

)
P (ωk)

 . (3.82)

Now the terms containing k are irrelevant and can be neglected. Also the logarithm is applied

i = argmax
{
− log |Ck|+ 2 logP (ωk)− µTkC−1

k µk + 2zTC−1
k µk − zTC−1

k z
}

(3.83)

i = argmax
{
ωk + zTwk + zTWkz

}
, (3.84)

where the last term reveals why the classifier is a quadratic one.

3.6.2 K Nearest Neighbour Classifier (KNNC)
A Nearest Neighbour Classifier is a method for having high resolution in the regions of dense
training set, and otherwise low resolution. Having a hypersphere R(z) ⊂ RN with volume V ,
centred around z and a training set Tk withNk number of samples, then it is a binomial distribution
describing the probability of having n samples within R(z). The expectation is

E[n] = Nk

∫
y∈R(z)

p(y|ωk)dy ≈ NkV p(z|ωk). (3.85)

The size of the sphere, still around z, is selected so having exactly K samples inside the sphere.
The position of z will be directly related to the volume, and thereby volume is written V (z), on
which the density is given

p̂(z|ωk) =
K

NkV (z)
, (3.86)

which tells that when p(z|ωk) is large, the volume is most likely small. That means in some cases
the sphere needs to grow, which is controlled with K, which again controls balance between bias
and variance. Another option is to use the KNNC, where the volume of the sphere is optimized to
have exactly K number of samples inside. Letting Kk denote number of neighbours found for a
class ωk, then an estimate of the conditional density can be done

p̂(z|ωk) ≈
Kk

NkV (z)
, (3.87)
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on which the sub-optimal classifier is made again as Bayes Classification

ω̂(z) = ωk (3.88a)

k = arg max
i=1,...,K

{
p̂(z|ωi)P̂ (ωi)

}
(3.88b)

k = arg max
i=1,...,K

{
ki

NiV (z)

Ni

Ns

}
(3.88c)

= arg max
i=1,...,K

{ki}, (3.88d)

where the class of z is simply decided based on which class has the maximum number of votes
from K samples best fitted to z. One problem with the KNNC is that, due to it is non-parametric it
is computational heavy compared to the QDC.

3.6.3 Detection
Since there is only two classes, aircraft and non-aircraft, then the classification problem is a de-
tection problem. Having two classes, ω1 and ω2 and each having a prior probabilities P (ω1) and
P (ω2) the simplified Bayes decision rule becomes:

p(z|ω1)P (ω1) > p(z|ω2)P (ω2) (3.89)

If test is passed, it is decided for ω1, otherwise ω2. When having a detection problems, two different
errors can be made:

• Type I: Estimated non-Aircraft – Aircraft present
• Type II: Estimated Aircraft – NO aircraft present

3.6.4 Principal Component Analysis
If having a large number of features, it might be useful to do feature reduction, both because
of the computational complexity, but also to try to highlight specific characteristic within a data
set. One such method is the linear method, Principal Component Analysis (PCA). Having a high
dimensional measurement vector z, the goal is now to construct a lower dimensional feature vector
y. That can be done with transform matrix WD, so that

y = WDz. (3.90)

The transformation matrix WD has the dimensions D×N , so that it transform from N -dimension
space to a D-dimension space. The optimal transformation, will make y a perfect representation
of z. The selection of WD can be described with a linear Minimum Mean Square Error (MMSE)
estimator

WD = arg min
w

{
E
[
||ẑlMMSE(y)− z||2

]}
, (3.91)

where y = Wz. Observe that eq. 3.91 does not give a unique solution for WD since any invertible
matrix A multiplied onto WD will give the same minimum. If a unique solution is requested a few
requirements are needed. First requirements is an adding requirement, which states that elements
of y needs to add up in a way, that if y has the dimension D, then the dimension D-1 is obtained by
simply neglecting the least informative element. If y is ordered so this least informative element
is placed at the last element, then WD−1 can be obtained by removing the last element of WD.
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Observe, columns of y needs to be uncorrelated for this to be possible. That means the covariance
matrix Cy of y needs to be a diagonal matrix Λ, which gives

Cy = WDCzW
T
D = ΛD. (3.92)

When D = N , then CzW
T
N = WT

NΛN , since WN is an invertible orthogonal matrix and
WT

NWN is a diagonal matrix. Since ΛN is diagonal, then the columns in WT
N needs to be eigen-

vectors of Cz and thereby the diagonal elements of ΛN are the eigenvalues. A second requirement
is needed for obtaining a unique solution, which is that columns of WT

N has unit length. The eigen-
vectors are orthogonal and unit length is obtained when WT

NWN = I, where I is a N × N unit
matrix. The rows, eigenvectors, in WN needs to be sorted so eigenvalues forms a non-ascending
sequence. Thereby, WD can be constructed by deleting N −D rows from WN . In words, WN

performs a rotation on z, which will make the orthonormal basis align with the principal axes of the
ellipsoid which is connected to the covariance matrix of z. The coefficients of the representation
of z are referred to as principal components. The MMSE approximation of z is obtained by

ẑIMMSE(y) = WT
Dy = WT

DWDz. (3.93)
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Chapter 4

Classification Experiments

In the following the different features proposed in Chapter 3 are used for classification of aircraft
versus non-aircraft, which means it is essentially a detection problem. First a section describing
the used signal, how the testing was done and how the result is evaluated. Then the baseline results
are presented, since these will be important in the discussion of the performance of the proposed
features in this report. The baseline is important for providing information about the hypothesis
given in this report, that taking temporal variation into account when extraction features, will
outperform the more well-known approaches for doing the detection and classification of aircraft
sound. In the following sections all classifications results will be presented, followed up by a
directly comparison on which a discussion follows. We have used blocks of 1 s in which we want to
label the class, aircraft or non-aircraft.

The IF in a signal has also been of great interest, since it can be used for estimating flight
parameters on an event. An event is a signal, where an aircraft is passing by the observer, micro-
phone. We have proposed an estimator for obtaining the flight parameter and in this chapter, the
parameters obtained from the estimator is used for classification on events. The flight parameter
estimator uses the HCM chirp pitch estimator, but the HCM chirp pitch estimator also gives other
features, which might be useful for classification, and for that reason, we have made classification
test with these features, which can be found in Appendix C.

4.1 General in Experiments
The goal is to test the different approaches for extracting features introduced in Chapter 3. We
have decided on a specific database to train and test a classifier, which will be introduced in the
following.

4.1.1 Classification by PRTools
As described in Section 3.6 we used PRTools for doing classification and we wanted to test both
a parametric classifier and a non-parametric classifier. When training a classifier we used 80 %
percent of the total training data for training and 20 % for directly testing the classifier. Observe,
testing the classifier in that respect, is not the same as our experiment test since this is on a different
test data set. For the cyclic analysis we needed to do feature reduction, where we used PCA. The
measurement experiment test data is restricted to never be used for any training of a classifier
including cross validation. Therefore, we have a separate data set referred to as testing data, which

39
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is only used for testing and obtaining classification results. PRTools provides a brilliant function
for present the results of a detection problem, which is a confusion matrix. Please see Appendix A
for a basic introduction on how to use the toolbox.

4.1.2 Training and Testing Data
The training and testing data has been provided by B&K. All data are recorded with a sample
frequency of 16 kHz. The database is huge, so earlier on has B&K decided on specific test data.
Based on earlier work B&K has performed and preliminary investigation of the problem, we found
that three different sets of training was of great interest. The three training sets are

• Training data with high similarity of the testing data.
• Training data based on high SNR between noise and aircraft sound within a signal. Observe,

SNR has not been measured, and the used signals are based on a basic listening test.
• Training data constructed as a mix of the two above.

We decided to have these three different training data, since it was of interest to observe if clean
aircraft signal having high SNR would outperform the intuitive selection of training data based
on high similarity of the testing data, and lastly a mixture of the two was of interest since both
mentioned argument for training data could be valid and in that case the mixed training data was
believed to be usable.

The original data are recordings done over several days. Based on audible and maybe visible
detection, the data contains an information called event. An event means an aircraft is present in
the signal and an interval is given for when the aircraft is present in the signal. In some models for
extracting features and classification, for example the used flight parameter estimation model, it is
an advantage to use these given intervals within a signal where an aircraft is present and extract
flight parameters based on several seconds of recording. This give the problem of doing the event
detection automatically and that classification cannot be done second for second. If this, classifying
second by second, is the goal the investigated signal should be divided into blocks containing 1 s,
in which some features can be extracted, for example MFFC. Since MFFC is the baseline, and
we were more interested in the features than the problem of classifying, we decided to base the
direct comparison between features extracting methods on the latter approach, where we buffered
the signal of interest into 1 s blocks having 67 % overlap and did classification for each block.
However, for the flight parameter estimation case, we used events with known larger intervals for
testing and training a classifier and for doing the experiment.

Aircraft Training and Test Set

The mentioned events have in earlier work carried out by B&K lead to a number of signals on
which the goal is to classify. It is based on 200 events. We aggregated the data and did some
cleaning, meaning we removed non-aircraft in aircraft signal, of the signal and ended up having
one large signal containing 1244 seconds, which we buffered into 1 second intervals having 67 %
overlap, which gave 3770 blocks of 1 second. As earlier stated we also wanted to train on similar
data to the test data in focus. The size of the training data, was decided to be 946 blocks of 1 sec-
ond, since this was the maximum blocks to get from the clean and high SNR data and we wanted
to have the same amount of blocks for the three training sets. Therefore a randomly selecting of
946 blocks of the 3770 blocks in test data were done, which then became the training set, called
noisyAirCraftSignal_for_training. The remaining became the test data called noisyAirCraftSig-
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nal_for_testing having 2824 blocks. Please observe, no same intervals are present in training and
test data, since this would bias the results.

Earlier work carried out by B&K has lead to 20 intervals with clean and significant aircraft
within a signal. These 20 intervals was aggregated into one signal, containing 312 seconds, which
gave 946 blocks of 1 s, when the buffering with 67 % overlap was perform. As already mentioned,
this amount of blocks, decided the amount of training data in the two other training set cases. These
946 blocks of clean aircraft sound, will from now be denoted as cleanAirCraftSignal_for_training.

The last training set, the mixed one, was constructed by randomly selecting 473 blocks in
noisyAirCraftSignal_for_training and cleanAirCraftSignal_for_training. The results was 946 blocks,
and this training set will be referred to as mixedAirCraftSignal_for_training

Non-Aircraft Training and Test Set

The last data set to be constructed is the non-aircraft data and then divide this into a training part and
a testing part. A large aggregated signal containing background noise, containing 1677 seconds,
gave a total of 5082 blocks when the 67 % overlap was used. The signal contains speech, trucks
passing by, wind, birds etc. Next, the 5082 blocks were needed to be divided into a training and
testing part, having the two names noiseSignal_for_training and noiseSignal_for_testing. For the
training 946 blocks were randomly selected, and these blocks were at the same time deleted from
the testing part, to ensure no biasing. Furthermore for having same amount of blocks in both test
data set, the non-aircraft testing set was shorten to 2824 blocks in a randomly process.

Overview of used Data Sets

To give a short overview of the different signal, and number of 1 seconds intervals in each signal
please see Table 4.1.

Names Number of 1 s Intervals
cleanAirCraftSignal_for_training 946
noisyAirCraftSignal_for_training 946
mixedAirCraftSignal_for_training 946

noiseSignal_for_training 946
noisyAirCraftSignal_for_testing 2824

noiseSignal_for_testing 2824

Table 4.1: Overview of testing and training data, and the number of 1 s intervals in each.

4.1.3 Event Training and Test Data for Flight Parameters
As earlier described, the flight parameters cannot be extracted from a signal of 1 s, and therefore
a larger signal length is needed. We used the same database of signals for finding training and
test data. The aircraft test data are original produced from 100 events, only used half the events
here, where observers have observed an aircraft and written that into the database as an event. As
earlier mentioned we did a manually cleaning of the data, to get free from too much non-aircraft
sound in aircraft label sound. We used 40 events for training a classifier, including calculating
cross validation and preserved 10 events for the experiment test. Observe, it is of no interest to
test different training set for doing flight parameter estimation, since we assume a signal with an
aircraft passing by, which is crucial for the estimator to work.
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Overview of used Data Sets For Flight Parameter Estimation

To give a short overview of the different events see Table 4.2.

Names Number of Events
noisyAirCraftSignal_for_training 40

noiseSignal_for_training 40
noisyAirCraftSignal_for_testing 10

noiseSignal_for_testing 10

Table 4.2: Overview of testing and training data, and the number of events in each.

4.2 Classification by Baseline
The baseline is Mel Frequency Cepstral Coefficients (MFFC), which is used as features for the
recognition of aircraft. The baseline is essentially an earlier project carried out by B&K, who
provided an implementation of MFFC in MATLAB. We then simply applied that to our training
and test data.

4.2.1 MFCC Results with Clean Aircraft Signal for Training
The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 10.65 %

KNNC Cross Validation Error = 7.88 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.3.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1806 1018 2824
non-Aircraft 347 2477 2824

Totals 2153 3495 5648

Table 4.3: Confusion matrix on MFFC by QDC trained on Clean Aircraft Signal, having error rate
24.17 %

And the KNNC returns the confusion matrix seen in Table 4.4.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1459 1365 2824
non-Aircraft 315 2509 2824

Totals 1774 3874 5648

Table 4.4: Confusion matrix on MFFC by KNNC trained on Clean Aircraft Signal, having error
rate 29.75 %
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MFCC Results with Noisy Aircraft Signal for Training

The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 18.28 %

KNNC Cross Validation Error = 17.75 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.5.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 2233 591 2824
non-Aircraft 423 2401 2824

Totals 2656 2992 5648

Table 4.5: Confusion matrix on MFFC by QDC trained on Noisy Aircraft Signal, having error rate
17.95 %

And the KNNC returns the confusion matrix seen in Table 4.6.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 2356 468 2824
non-Aircraft 467 2357 2824

Totals 2823 2825 5648

Table 4.6: Confusion matrix on MFFC by KNNC trained on Noisy Aircraft Signal, having error
rate 16.55 %

MFCC Results with Mixed Aircraft Signal for Training

The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 15.13 %

KNNC Cross Validation Error = 15.64 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.7.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 2206 618 2824
non-Aircraft 488 2336 2824

Totals 2694 2954 5648

Table 4.7: Confusion matrix on MFFC by QDC trained on Mixed Aircraft Signal, having error
rate 19.58 %

And the KNNC returns the confusion matrix seen in Table 4.8.



44 CHAPTER 4. CLASSIFICATION EXPERIMENTS

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 2084 740 2824
non-Aircraft 392 2432 2824

Totals 2476 3172 5648

Table 4.8: Confusion matrix on MFFC by KNNC trained on Mixed Aircraft Signal, having error
rate 20.04 %

4.2.2 Conclusion of MFCC Classification
The best performing training data when it comes to the cross validation error rate, was the clean
aircraft data, where the cross validation error rate was 10.65 % for the QDC and 7.88 % for the
KNNC. However, when the trained classifier was applied to the test data, the error rate became
much higher, respectively 24.17 % for QDC and 29.75 % for KNNC. Next, we trained a classifier
on a more similar data set in relation to the test data. The trained classifier had a higher cross
validation error rate compared to the trained classifier on clean aircraft sound, but the difference
in this case was that the error rate, when applied the trained classifier to the test data, did not
change significant from the cross validation error rate. The error rates results in this case were
respectively 17.95 % for QDC and 16.55 % for the KNNC. This result was not improved when
the mixed training data, was used for training classifier and thereby the conclusion, at least when
extracting MFFC, is that one should use training data with the highest similarity to the test data
and we saw the lowest error rate was 16.55 % for KNNC, but the faster parametric QDC performed
almost as good, with error rate of 17.95 %.

4.3 Classification by Cyclic Spectral Coherence
The author of the article [1] has developed an estimator for doing Cyclic Spectral Analysis on the
basis of the same article. The MATLAB implementation is available at MATLAB’s file exchange
web-page [3]. We use the estimator as-it-is and only changed parameters for doing the Cyclic
Analysis on the provided sound files from B&K. We only searched for cyclic frequency in the
range of 50 Hz to 110 Hz in which range the cyclic spectral coherence is calculated, giving a matrix
N ×M where N is spectral frequency and M cyclic frequency. This matrix was rearranged to a
vector with size MN = G and this vector became the measurement vector with very high number
of features. For that reason, it was needed to reduce the number of features by doing feature
reduction with PCA.

4.3.1 Cyclic Analysis Results with Clean Aircraft Signal for Training
In the following the PCA has reduced the features matrix dimension to 500. The 5-fold, 100
iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 9.85 %

KNNC Cross Validation Error = 2.79 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.9.

And the KNNC returns the confusion matrix seen in Table 4.10.
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True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1439 1385 2824
non-Aircraft 194 2630 2824

Totals 1633 4015 5648

Table 4.9: Confusion matrix on Cyclic Analysis Features by QDC trained on Clean Aircraft Signal,
having error rate 27.96 %

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 385 2439 2824
non-Aircraft 52 2772 2824

Totals 437 5211 5648

Table 4.10: Confusion matrix on Cyclic Analysis Features by KNNC trained on Clean Aircraft
Signal, having error rate 44.10 %

Cyclic Analysis Results with Noisy Aircraft Signal for Training

In the following the PCA has reduced the features matrix dimension to 500. The 5-fold, 100
iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 27.48 %

KNNC Cross Validation Error = 19.32 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.11.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 2429 395 2824
non-Aircraft 540 2284 2824

Totals 2969 2679 5648

Table 4.11: Confusion matrix on Cyclic Analysis Features by QDC trained on Noisy Aircraft
Signal, having error rate 16.55 %

And the KNNC returns the confusion matrix seen in Table 4.12.
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True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1813 1011 2824
non-Aircraft 180 2644 2824

Totals 1993 3655 5648

Table 4.12: Confusion matrix on Cyclic Analysis Features by KNNC trained on Noisy Aircraft
Signal, having error rate 21.09 %

Cyclic Analysis Results with Mixed Aircraft Signal for Training

In the following the PCA has reduced the features matrix dimension to 500. The 5-fold, 100
iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 26.85 %

KNNC Cross Validation Error = 16.91 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.13.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 2161 663 2824
non-Aircraft 519 2305 2824

Totals 2680 2968 5648

Table 4.13: Confusion matrix on Cyclic Analysis Features by QDC trained on Mixed Aircraft
Signal, having error rate 20.93 %

And the KNNC returns the confusion matrix seen in Table 4.14.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1470 1354 2824
non-Aircraft 195 2629 2824

Totals 1665 3983 5648

Table 4.14: Confusion matrix on Cyclic Analysis Features by KNNC trained on Mixed Aircraft
Signal, having error rate 27.43 %

4.3.2 Conclusion of Cyclic Spectral Coherence Classification
In this classification experiment the cross validation error rate was minimum when using clean
aircraft data, as it was observed in Section 4.2, but in this case the cross validation was even lower.
It was respectively 9.85 % for the QDC and 2.79 % for KNNC. However, as it has been seen so
far, the error rate on the test data was much higher and it ended up being 27.96 % for the QDC
and 44.10 % for KNNC. For the next training data, noisy aircraft, the cross validation errors were
respectively 27.48 % for the QDC and 19.32 % for the KNNC, but when the classifier was applied
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to data the error rates became 16.55 % for the QDC and 21.09 % for the KNNC. In the mixed
training data, the cross validation became a bit lower again, but the error rate on test data, was not
as good as the noisy aircraft training data. The conclusion in this case, is that the training data
should be the data with highest similarity of the test data, and in that case the best result was an
error rate of 16.55 % obtained with the QDC.

4.4 Classification by Cyclic Spectral Coherence Mean Envelope
We use the same estimator as in Section 4.3. We searched for cyclic frequency in the range of 50 Hz
to 110 Hz in which range the cyclic spectral coherence is calculated and afterwards we calculated
the mean across the cyclic frequency range. This gave a vector, which became the measurement
feature vector.

4.4.1 Mean Envelope Results with Clean Aircraft Signal for Training
The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 16.16 %

KNNC Cross Validation Error = 23.84 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.15.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1682 1142 2824
non-Aircraft 458 2366 2824

Totals 2140 3508 5648

Table 4.15: Confusion matrix on Mean Envelope from Cyclic Analysis by QDC trained on Clean
Aircraft Signal, having error rate 28.33 %

And the KNNC returns the confusion matrix seen in Table 4.16.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1442 1382 2824
non-Aircraft 351 2473 2824

Totals 1793 3855 5648

Table 4.16: Confusion matrix on Mean Envelope from Cyclic Analysis by KNNC trained on Clean
Aircraft Signal, having error rate 30.68 %

4.4.2 Mean Envelope Results with Noisy Aircraft Signal for Training
The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 26.16 %

KNNC Cross Validation Error = 29.42 %



48 CHAPTER 4. CLASSIFICATION EXPERIMENTS

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.17.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1745 1079 2824
non-Aircraft 519 2305 2824

Totals 2264 3384 5648

Table 4.17: Confusion matrix on Mean Envelope from Cyclic Analysis by QDC trained on Noisy
Aircraft Signal, having error rate 28.29 %

And the KNNC returns the confusion matrix seen in Table 4.18.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1531 1293 2824
non-Aircraft 442 2382 2824

Totals 1973 3675 5648

Table 4.18: Confusion matrix on Mean Envelope from Cyclic Analysis by KNNC trained on Noisy
Aircraft Signal, having error rate 30.72 %

4.4.3 Mean Envelope Results with Mixed Aircraft Signal for Training
The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 20.85 %

KNNC Cross Validation Error = 26.67 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.19.

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1712 112 2824
non-Aircraft 491 2333 2824

Totals 2203 3445 5648

Table 4.19: Confusion matrix on Mean Envelope from Cyclic Analysis by QDC trained on Mixed
Aircraft Signal, having error rate 28.38 %

And the KNNC returns the confusion matrix seen in Table 4.20.
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True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1677 1147 2824
non-Aircraft 505 2319 2824

Totals 2182 3466 5648

Table 4.20: Confusion matrix on Mean Envelope from Cyclic Analysis by KNNC trained on Mixed
Aircraft Signal, having error rate 29.25 %

4.4.4 Conclusion of Cyclic Spectral Coherence Mean Envelope Classification
Again in this classification experiment the cross validation error rate was minimum when using
clean aircraft data, as it was observed in Section 4.2. The cross validation error rate was 16.16 %
for the QDC and 23.84 % for KNNC. However, when the trained classifier was applied to the test
data, the error rates were respectively 28.33 % for QDC and 30.68 % for KNNC. The next training
data was the noisy aircraft, the one with higher similarity of the test data, and in this case the cross
validation error rate on training data and error rates on test data were approximately equal. In this
case the error rates on the test data were respectively 28.29 % for QDC and 30.72 %. Thereby the
QDC performed slightly better when trained on noisy aircraft data, but with almost lowest possible
margin, so the improvement is not valid. Lastly, the mixed data set was used for training a classifier,
where the cross validation error rates were respectively 20.85 % for QDC and 26.67 % and the error
rates when classifiers applied to test data, respectively 28.38 % for QDC and 29.25 % for KNNC.
The conclusion in this experiments is that no training data perform better than another training
data, and the minimum error rate, 28.29 %, was not as good as in Section 4.2 and in Section 4.3.

4.5 Classification on Flight Parameters by IF Estimates
Instead of classifying segment by segment with a specific length, we here proposed to work on
events, where segment length can vary. One such event should be an aircraft passing by, which will
give a time varying frequency. We use the flight parameter estimator as in Section 3.5 for extracting
7 features, which are all used for the classification problem. Observe, the flight parameter estimator
uses the IF estimated from the proposed HCM chirp pitch estimator, which is a crucial key for
estimating the flight parameter.

Flight Parameters Results with Noisy Aircraft Signal for Training

The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 10.51 %

KNNC Cross Validation Error = 19.00 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table 4.21 And the KNNC returns the confusion matrix seen in Table 4.22

4.5.1 Conclusion of Flight Parameters Classification
The cross validation error rate is small both for QDC and KNNC, respectively 10.51 % for QDC
and 19.00 % for KNNC. When the trained classifier is applied to the test data, the error rates
becomes 5 % for QDC and 5.00 % where the QDC is closest to its cross validation. We have earlier
shown, how the flight parameter estimator can gives useful estimates, which we tested on synthetic
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True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 9 1 10
non-Aircraft 0 10 10

Totals 9 11 20

Table 4.21: Confusion matrix on Flight Parameters by QDC trained on Noisy Aircraft Signal,
having error rate 5 %

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 10 0 10
non-Aircraft 1 9 10

Totals 11 9 10

Table 4.22: Confusion matrix on Flight Parameters Features by KNNC trained on Noisy Aircraft
Signal, having error rate 5.00 %

signal. When applied to a few real events, we cannot say if the parameters are estimated well, but
we can conclude the estimates can be used for classification indicating this approach is very useful
and that the QDC is the preferred classifier in this case due to the lower computational complexity
compared to the KNNC.

4.6 Comparison and Discussion on Classification Experiments
Firstly, the classification experiments based on 1 s segments will be compared. The best classifica-
tion results from Section 4.2, Section 4.3 and Section 4.4 are shown in Table 4.23 It is clear from

Best Cross Validation Best Error Rate
Baseline 7.88 % 16.55 %

Cyclic Coherence 2.79 % 16.55 %

Mean Cyclic Coherence 16.16 % 28.29 %

Table 4.23: Comparison of Classification Results on 1 seconds blocks.

Table 4.23 that the Cyclic Coherence by Cyclic Analysis did not performed better than MFFC on
test data, but gave exactly the same error rate. However, the Cyclic Coherence obtained the re-
sult with QDC where the MFFC obtained the results with KNNC, where we believe the QDC is
preferable due to lower computational time. We also claim that Cyclic Coherence contains other
possibilities for outperforming the MFFC, which we argue by the lower cross validation error rate
compared to MFFC.

All best cross validation error rates were observed when training a classifier on the clean aircraft
data set, but all the best experiment test error rates were observed when classifier was trained on
highly similar training data compared to test data. We also want to point that possibilities of
optimizing in the Cyclic Analysis is possible, like segments length, filtering, cyclic frequency
range, but also how to use the features from the analysis, where we have shortly looked into an
image processing approach, see Appendix B.
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In Section 4.5, the goal was not to classify 1 s segments, but rather classifying events. This,
we have done as a prove of concept, and for showing the advantages the proposed HCM pitch
estimator gives, since this estimator directly gives the IF. In earlier work a Short Time Fourier
Transform and interpolation was used for obtaining the IF [13], where we believe our method is
superior to that. We estimated 4 flight parameters, plus 3 Doppler parameters. We used 50 events
in total, 40 for training and test classifier and 10 for experiment. The cross validation error rate was
as best 10.51 % and the error rates on experiment test data was 5 % both for QDC and for KNNC,
which is very promising. We have assumed in this study, that events and segments are known, but
it real world applications it will be needed to investigated how to detect events. It might be possible
to simply detect by maximum sound pressure level and use the part of the signal, which obey the
International Civil Aviation Organization standard which states that the part of the signal, which is
within 10 dB of the maximum sound pressure should be used [25]. Other methods to consider for
finding the center are GABOR [20] or zero-crossing method [32]. Lastly, it might also be possible
to use some of the proposed theory in this report by simply investigate a larger block, for example
6 seconds, do pitch detection, model order estimation and flight parameter estimation on which a
threshold for the NLS of the flight parameter is used to detect an event of an aircraft passing by.
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Chapter 5

Conclusion

We have by studying the physics of an aircraft passing by, obtained an understanding of the problem
to solve. It was clear that temporal variations was present in one such signal, which we believed
could improve aircraft detection compared to the baseline feature in this work, Mel Frequency
Cepstral Coefficients (MFFC). We have shown by using Cyclic Analysis, how a cyclo-stationary
signal can be analysed with Cyclic Spectral Coherence, on which a classifier can be trained. This
approach showed to have equally good classification results as the baseline, on signal-segments
of 1 s but the results was obtained by using a parametric classifier, where for the baseline a non-
parametric classifier gave the best result. If limiting the time consuming is an issue, the cyclic
analysis therefore outperforms the baseline, MFFC. Furthermore, the Cyclic Analysis is capable of
finding a hidden periodicity, which makes it very usable in noisy environment.

A cyclic frequency was also possible to estimate where a Doppler frequency was clearly present.
However, we proposed a Harmonic Chirp Model (HCM) chirp pitch estimator for estimating the
Instantaneous Frequency (IF), from which flight parameters could be estimated on the basis of the
physics when an aircraft is passing by, its trajectory. The HCM chirp pitch estimator was tested
and compared to a normal Harmonic Model (HM) approximately Non-linear Least Squares (aNLS)
pitch estimator, which lag the incorporation of time varying pitch and thereby gets higher RMSE
values on a chirp signal, and it does not directly gives the IF. We have shown the IF estimate from
the HCM chirp pitch estimator can be used in a proposed flight parameter estimator, from which
unique and significant features could be found with acceptable precession in a synthetic produced
signal having two time-varying phenomena, Doppler frequencies and destructive interference fre-
quencies, where only the first one has been of interest in the study. We also tested the flight
parameter estimation on real signals, where we obtained promising results for one such method.

Even though we have utilized and shown some of the advantages the temporal variation gives
when incorporated into models and estimators, we still believe a lot of work and optimization can
be done. The Cyclic Analysis provides different measurements, where we mainly focused on the
Cyclic Spectral Coherence but others are available, like the cyclic spectral density. It could also be
beneficial to do an investigation for an optimal method on how to use the cyclic frequency. We also
did a short investigation on image processing from Cyclic Spectral Coherence image, but also here
we believe a dedicated investigation is needed for being able to answer if this approach is useful
or not. We do believe the HCM chirp pitch estimator together with the flight parameter estimator
is very useful. In our experiment we did not focus on how to find the event, intervals of signal to
work on, but we believe that using the proposed methods in this report like pitch detection, model
order estimation and comparing the NLS from the flight parameter estimator to a specific threshold,

53



54 CHAPTER 5. CONCLUSION

it will be possible to do the event detection and thereby having a signal on which the parameters
should be used in a machine learning approach. In addition, for getting more features we also
believe the destructive interference frequencies is useful and can be used for extracting more flight
parameters.

All in all, we believe we have shown the benefits of investigating temporal variation in a signal
when the purpose is to detect an aircraft within a signal. We believe we have proposed useful
methods for doing so, both for smaller segments and on larger segments, which we argue by our
experiments, where both the Cyclic Spectral Coherence and the flight parameter estimation showed
promising results.
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Appendix A

PRTools in MATLAB

The MATLAB Toolbox PRTools is a simple toolbox to use and the authors have also written a book
about the function and the use of these [11]. Here we will give a short introduction the basic use of
the toolbox in a detection problem.

Train Data, Error and Confusion Tables
By using one of the two classifiers, from now referred to as Quadratic Distance Classifier (QDC)
and K Nearest Neighbour Classifier (KNNC), the features can be used for doing classification of
aircraft. Firstly, the estimated features are needed to be divided into training and test part. We
decided to split data into 80 % training and 20 % test data. The procedure for dividing data, set
labels, set prior probability etc., all follows the procedure given in [11].

• Full data set : z
• Training data set : x
• Test data set : y

Now, the a classifier can be trained, tested and the result of each classification can be presented in
a confusion matrix as seen in Listing A.1

1 trainedClassifier = qdc(x);
2 errorRateQDC = testc(y*trainedClassifier);
3 labelTraining = getlabels(y);
4 labelClassification = y*trainedClassifier*labeld;
5 confmat(labelTraining,labelClassification);

Listing A.1: Training and testing QDC-Classifier and present result in a confusion matrix.
Observe the highlighted words are function in PRTools Toolbox

Cross Validation

When testing a classifier a cross validation is an optimal test, since it will show the expected error
rate when training a classifier on same data. The cross validation provided in PRTools is a k-
fold cross validation where the full data z is randomly partitioned into k number of equally sized
blocks. The blocks are then divided into training and test. The training number of blocks will be
k − 1, which gives one block left for testing. Observe, this gives 80 % and 20 %. When blocks
are divided into training and test, basically the classifier is trained and thereafter tested. This is
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repeated i number of times, e.g. 100 or 1000. See Listing A.2 for the MATLAB code for doing
cross validation with PRTools:

1 i=100; kFolding=5;
2 classifier=qdc([]);
3 crossvalidationerror=prcrossval(z,classifier,kFolding,i);

Listing A.2: MATLAB code for doing cross validation using PRTools Toolbox

Principal Component Analysis

When having a very large number of features, a principal component analysis can be used for doing
feature reduction. In PRTools this is done as

1 dimensions=500; %The wanted dimension after PCA map
2 pca_map = pcam(z,dimensions);% the PCA map, which data will be mapped to
3 new_z = z*pca_map; %new data, which has been mapped to pca_map

Listing A.3: MATLAB code for doing PCA using PRTools Toolbox



Appendix B

Image Processing Approach - HOG

In the article [9] the authors propose the use of Histogram Of Gradients (HOG) as features for
doing human detection in an images. The contour of the human will end up being the boundaries,
and we wanted to investigate if significant contours can be found in the Cyclic Spectral Coherence,
when this is transformed to an image. This of course assume great similarity in Cyclic Spectral
Coherence across all signals when any aircraft is present is the signal.

The HOG method is made from the idea that local objects and shapes is often possible to
describe by the distribution of local intensity gradients. The image is divided into a number of
regions referred to as cells. This region size should be set so one have the wanted amount of
details, which means if the aim is small details, the region size should also be small. For each
region a HOG directions is made. The features can be extracted in MATLAB, by using the function
extractHOGFeatures, which is part of the vision toolbox. In this case, the images processed are the
Cyclic Spectral Coherence image introduced in Section 3.2

One drawback in this approach is the large number of features, which meant it was needed to
do features reduction on data when training and testing a classifier, which we did as described in
Section 3.6. In Figure B.1 an images of the Cyclic Spectral Coherence, when an aircraft is strongly
represented in a signal, can be seen. Observe, we did a visible inspection of a few images, and even
when having a significant clean aircraft signal, the images does not have this nice clear vertical
line at cyclic frequency α = 77 Hz, since frequency will be changing, both due to Doppler both
also aircraft type. Thereby, the assumption about high similarity of Cyclic Spectral Coherence for
any aircraft signal is not obeyed, but since we only could inspect a few images, because it is very
time demanding to observe several thousand Cyclic Spectral Coherence images, we did not knew
if the HOG features would still be able to outperform the MFFC approach for classifying aircraft in
signal. In Figure B.2 an image of the cyclic spectral coherence, when only noise is present, can be
seen. Please observe, that when extracting HOG features, all labels, axis values etc. are neglected
in the producing of the image on which the HOG feature extraction is applied.
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Figure B.1: Example of an images produced by Cyclic Spectral Coherence on Clean Aircraft
signal. Observe, y-axis is spectral frequency and x-axis, is cyclic frequency, but these information
are not wanted in the image for the HOG extracting. Observe, this images represent closely to
a perfect image, when there is an aircraft present. Many images extracted, even from the clean
aircraft signal, does not have this nice clear vertical line.
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Figure B.2: Example of an images produced by Cyclic Spectral Coherence on noise signal. Ob-
serve, y-axis is spectral frequency and x-axis, is cyclic frequency, but these information are not
wanted in the image for the HOG extracting. No significant cyclic frequencies are present, since
the image represent a noise.

Classification by HOG
We wanted to investigate if the HOG can be used on the Cyclic Spectral Coherence, when trans-
formed to an image, so for blocks in training and test data, we extracted the cyclic spectral coher-
ence transformed all does figures to images, so the HOG features could be extracted.
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HOG Results with Clean Aircraft Signal for Training
In the following the PCA has reduced the features matrix dimension to 50. The 5-fold, 100 itera-
tions cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 17.50 %

KNNC Cross Validation Error = 21.59 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table B.1 And the KNNC returns the confusion matrix seen in Table B.2

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 955 1869 2824
non-Aircraft 61 2763 2824

Totals 1016 4632 5648

Table B.1: Confusion matrix on HOG features by Quadratic Distance Classifier trained on Clean
Aircraft Signal, having error rate 34.17 %

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 950 1874 2824
non-Aircraft 333 2491 2824

Totals 1283 4365 5648

Table B.2: Confusion matrix on HOG features by K nearest neighbour classifier trained on Clean
Aircraft Signal, having error rate 39.08 %

HOG Results with Noisy Aircraft Signal for Training

In the following the PCA has reduced the features matrix dimension to 50. The 5-fold, 100 itera-
tions cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 29.46 %

KNNC Cross Validation Error = 35.98 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table B.3 And the KNNC returns the confusion matrix seen in Table B.4

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1013 1811 2824
non-Aircraft 74 2750 2824

Totals 1087 4561 5648

Table B.3: Confusion matrix on HOG features by Quadratic Distance Classifier trained on Noisy
Aircraft Signal, having error rate 33.37 %
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True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1322 1502 2824
non-Aircraft 551 2273 2824

Totals 1873 3775 5648

Table B.4: Confusion matrix on HOG features by K nearest neighbour classifier trained on Noisy
Aircraft Signal, having error rate 36.35 %

HOG Results with Mixed Aircraft Signal for Training

In the following the PCA has reduced the features matrix dimension to 50. The 5-fold, 100 itera-
tions cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 23.12 %

KNNC Cross Validation Error = 27.95 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table B.5 And the KNNC returns the confusion matrix seen in Table B.6

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1004 1820 2824
non-Aircraft 102 2722 2824

Totals 1106 4542 5648

Table B.5: Confusion matrix on HOG features by Quadratic Distance Classifier trained on Mixed
Aircraft Signal, having error rate 34.03 %

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 1090 1734 2824
non-Aircraft 450 2374 2824

Totals 1540 4108 5648

Table B.6: Confusion matrix on HOG features by K nearest neighbour classifier trained on Mixed
Aircraft Signal, having error rate 38.67 %

Conclusion of HOG Classification
Starting with the first trained classifier, the cross validation error rate was 17.50 % for the QDC and
21.59 % for the KNNC and with that trained classifier, the error rates on test data became 34.17 %
for QDC and 39.08 %, which is very poor results. It did improve with noise aircraft training data,
but not much. The error rate on test data was 33.37 % for QDC and 36.35 % for the KNNC. For
the mixed training data, the error rates did not improve, and the conclusion which can be done in
the experiment is that, the best training data for HOG is the noisy aircraft data highly similar to
test data, but the assumption about high similarity of any aircraft was not obeyed, and therefore the
error rates became poor.



Appendix C

Classification by Pitch and Related
Features

We use the estimator proposed in as in Subsection 3.4.4 with the initial frequency range 50 Hz
to 120 Hz. We high pass the input signal, so frequencies below 50 Hz are removed. We also
down sample by a factor of 6, which means going from 16 kHz to 2.67 kHz. The upper limit of
harmonics for the MAP order estimation is 10, the maximum iterations in the HCM iterative chirp
pitch estimator is 10 and convergence criteria 2e-3. The features used for classification was

• f0

• b, the chirp rate
• L̂, from MAP-order
• Stationary number of complex harmonics, 4, normalized, in range 0 to 1.
• Stationary number of complex harmonics, 4, normalized and summed giving one value.

Which in total gives 8 features.

Training and Test Data
The HCM pitch estimator will be extreme time consuming if using a signal with length 1 second,
equal 2667 samples after down-sampling. Therefore, for this test, we have buffered the original
aggregated signals into blocks of 100 ms with 67 % overlap. The test and training data can be
seen in Table C.1 It is clear that, the measurement features matrix is huge, not because the number

Names Number of 100 ms Intervals
cleanAirCraftSignal_for_training 9454
noisyAirCraftSignal_for_training 9454
mixedAirCraftSignal_for_training 9454

noiseSignal_for_training 9454
noisyAirCraftSignal_for_testing 28243

noiseSignal_for_testing 28243

Table C.1: Overview of testing and training data, and the number of 100 ms intervals in each.
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of features, but because of the number of measurements and it was a problem to apply the non-
parametric KNNC, which is the reason why only QDC will be shown in this Appendix.

Pitch and Related Features Results with Clean Aircraft Signal for Train-
ing
The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 25.27 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table C.2

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 12185 16058 28243
non-Aircraft 3915 24328 28243

Totals 16100 40386 56486

Table C.2: Confusion matrix on Pitch and Related Features by Quadratic Distance Classifier
trained on Clean Aircraft Signal, having error rate 35.36 %

Pitch and Related Features with Noisy Aircraft Signal for Training
The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 35.10 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table C.3

True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 13008 15235 28243
non-Aircraft 4562 23681 28243

Totals 17570 38916 56486

Table C.3: Confusion matrix on Pitch and Related Features by Quadratic Distance Classifier
trained on Noisy Aircraft Signal, having error rate 35.05 %

Pitch and Related Features with Mixed Aircraft Signal for Training
The 5-fold, 100 iterations cross validation errors for the two trained classifiers are

QDC Cross Validation Error = 30.52 %

When applying the two trained classifier on the test data, the QDC returns the confusion matrix
seen in Table C.4
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True Labels Estimated Labels
Aircraft non-Aircraft Totals

Aircraft 12703 15540 28243
non-Aircraft 4302 23941 28243

Totals 17005 39481 56486

Table C.4: Confusion matrix on Pitch and Related Features by Quadratic Distance Classifier
trained on Mixed Aircraft Signal, having error rate 35.13 %

Conclusion of Pitch and Related Features
It is clear both from cross validation error rates and the error rates on experiment test data, that this
approach, is not superior compared to MFFC from experiment in Section 4.2 or Cyclic Analysis
from experiment in Section 4.3. In this experiment the best cross validation error rate was 25.27 %,
obtained from clean data set. The best error rate on experiment test data was 35.05 %, obtained
when classifier was trained on noisy aircraft signal and tested on similar data. However, observing
the error rates from the two other trained classifier, they were within 0.36 %, which indicates the
training does not changes the performance of a classifier based on chirp pitch and related features.
If the features in this experiments should be working directly, further investigation are needed on
how to use them directly. It might be sufficient to detect the center of a signal where the sound
pressure level is at it maximum and within a small time window around this position, the features
can be estimated and might give a better results. This gives all kinds of problem like how to find
the center, how often to find center, threshold for maximum sound pressure level and lastly a truck
passing by are believed to give very similar pitch, chirp and amplitudes.

We believe the features cannot stand alone and they are needed to be used in a model, where
they can be used for estimating significant unique features. This is exactly the reason why, we found
the flight parameter estimation interesting, see experiment in Section 4.5, since the HCM chirp
pitch estimator in this case could provide the IF directly, which is crucial for the flight parameters
estimator to work.
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Appendix D

CD Content

Observe, it has not been possible to share audio files and the used MFCC implementation, due to
the NDA with Brüel and Kjær. Neither has it been possible to share saved -mat files, for the same
reason, and because of the size of these.

The CD contains

• A/V - Product "video-final.mp4"

– It is a movie made with "Gource" which is visualization tools used in this case for
visualizing my Git repository

• Report "master.pdf" - report in digital form
• MATLAB - Used MATLAB scripts and functions in report.

– anc_lib : it is a library, which here is cleaned and only shared the functions used in the
report

– RMSE_test : The HCM chirp pitch estimator RMSE test and the flight parameter
RMSE test. All done on synthetic signal

– non_executable : It contains scripts, which cannot be ran without the audio data base
protected by the NDA with Brüel and Kjær

– signalModelVer1.m : a script for producing a synthetic signal when an aircraft is pass-
ing by

– HCM_IF_verus_Doppler_model_Flight_Parm_estimation_test.m : It will produce a
synthetic signal, using HCM chirp pitch estimator for estimating IF and it uses the
flight parameter estimator to estimate the flight parameters, which are all known val-
ues. Lastly, the Doppler IF model will be compared with the estimated IF
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