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Petri nets are a visual model with places and transitions, which have been extended and
expanded upon ever since their introduction. One of these extensions are modalities, which
allow for a single Petri net specification to model multiple different implementations and
modal refinement which is a gradual process through which a modal Petri net specification is
gradually refined until an implementable Petri net is obtained. A subclass of Petri nets is
the workflow nets, which require the Petri net to have specific places with specific assigned
properties. Workflow nets are great because they can be used to depict any number of
workflows from the real world, and a property known as soundness allows us to be sure that a
sound workflow can always terminate properly, and whenever it terminates it does so properly.
But up until this thesis, which builds upon previous semester work, no one has attempted to
combine the two to create modal workflow nets and get a model which allows a single modal
workflow specification to be refined to a number of workflow implementations. We start out
by introducing these workflows, and then proving that deciding soundness for these modal
workflow nets is a PSPACE-complete problem.
Next, we tackle the state-space explosion problem, a problem which states that as a Petri
net increases in size, the amount of reachable states, the state-space, increases exponentially,
to the point that large Petri nets can take years for a computer to analyse. This is not
ideal, and to combat the state-space explosion problem, we introduce five different structural
reductions; the sequential place, sequential transition, parallel place, parallel transition, and
looping transition reductions, and prove that these reductions, while shrinking the size of
the workflow, and thus shrinking the state-space, ensure the net retains the soundness it had
prior to their application, showing an example of a modal workflow being reduced down to
two places and a transition, allowing the reduced net to be checked for soundness instead of
the unreduced one.
Following the reductions, we introduce the concept of resources to increase the expressive
power of the modal workflow modal. We change the concept of soundness to accommodate
persistent resources and show that for modal workflow nets with resources the concepts of
K-boundedness and soundness are not sufficient when analysing these nets. We thus introduce
stricter versions of both, known as infinitary K-boundedness and infinitary soundness, which
ensure that if a modal workflow net with resources is K-bounded or sound for the initial run,
they will remain so for any subsequent runs. With these stronger definitions of K-boundedness
and soundness, we prove that infinitary soundness for infinitary K-bounded nets is decidable
in PSPACE.



Finally, we conclude upon our work and suggest a number of further extensions to the model
and what their inclusions would mean for the model. We leave the research of these as open
problems.
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Abstract

We study a specification formalism which combines modality, as known from modal
transition systems, with Petri net-based workflows to create a new way of modelling
workflows which we call modal workflow nets, and prove that deciding soundness for these
modal workflow nets is PSPACE-complete. To combat the state-explosion problem in
modal workflow nets we define a set of structural reductions which preserve soundness. We
also extend the model with resources and show that conventional concepts of soundness
and boundedness are insufficient when discussing modal workflows with resources, and
we introduce stricter versions of both which we call infinitary soundness and infinitary
K-boundedness. Finally, we prove that infinitary soundness is decidable in PSPACE for
infinitary K-bounded nets.

1 Introduction

Workflows are used in many practical applications in today’s world. From the smallest of
tasks to the multi-billion dollar enterprises, workflows are used to ensure that everything
being produced/done does so according to set standards or specifications [20]. Whether it is
ensuring that a patient is not waiting hours for life-critical treatment or that each car rolling
off the assembly is exactly the same as the next one, workflows and maintenance of such is an
important factor in anything critical to ensure that nothing adverse can happen during the
course of service or manufacture, this is usually referred to as soundness.

However, workflows themselves are not always enough; often, they need to be extended
to accommodate analytical needs. Modalities are an extension of Petri nets, which allow for
a single specification to model multiple implementations, and as such we initiated the work
on adding modalities to Petri-net based Workflows in [9], in that paper, we also presented a
claim that soundness was PSPACE-complete which we prove it is in this thesis.

A common problem to run into while working with Petri nets is the so-called state-space
explosion problem [14], which states that as the size of a Petri net increases, the number of
reachable markings increases exponentially, which, in turn, time and memory required to
verify any properties of the net. This renders larger-size Petri nets immensely time-consuming
to verify, some taking weeks, months or even years. To combat this for the modal Petri net
model, we suggest a number of structural reductions, drawing inspiration from Tadao Murata’s
work in [13] and adapting his ideas for use in verifying soundness in modal workflows.
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Another common extension to Petri nets are resources, which allow for a Petri net to
consume and create different kinds of resources, and for transitions to be fired only if the
resources are available to it. These resources can be used to model anything from wood at a
lumber mill to the workforce at a company. Workflows with resources introduce new problems;
it is not certain that just because a workflow is sound that it will remain so if run multiple
times. Thus, we introduce the concept of infinitary soundness, where a modal workflow with
resources is infinitary sound only if it can be run an indefinite amount of times and still be
sound the next time it is run as well.

In the present paper, we introduce the modal Petri nets and workflow nets from [9] and the
theorem that soundness is preserved through a special kind of refinement known as the modal
workflow refinement. We will then prove that checking soundness for these nets can be done
in a more memory-efficient way than the standard of depth-first-search, and then suggesting a
way for modal workflows to combat the state-space explosion problem through reductions
which preserve soundness. Finally, we combine modal workflows with resources, show how
conventional concepts of soundness and boundedness are not strict enough when discussing
modal workflow nets with resources, and introduce the concepts of infinitary soundness
and infinitary K-boundedness while showcasing why they are needed when discussing modal
workflows with resources while proving that infinitary soundness is decidable for infinitary
K-bounded modal workflow nets with resources.

1.1 Related Work

Petri nets have been extended in various ways ever since their introduction by Carl Adam
Petri in 1962 [16]; coloured Petri nets [10] are Petri nets which allow one to store information
in the individual tokens which can be investigated and modified, timed-arc Petri nets [11] add
temporal information to Petri nets, and prioritised Petri nets [8] add priorities to transitions.

Another particular extension is the modal Petri net [6], which adds modalities which allow
for a transition to either be required or allowed, known as must and may respectively, in
so-called refinements of the original net. Normally, every required transition is also allowed,
but Mixed transition systems were introduced by Dennis Dams in [4] in the context of abstract
interpretations, and the main aspect of mixed transition systems is that the must and may
relation possibly does not hold, and if we, as such, end up with a transition that is required,
but not allowed, we have a conflict of behaviour.

All of these extensions can be applied to Petri nets and the subset of Petri nets known as
workflows [23], from this subset of Petri nets arise workflows with resources, allowing a workflow
to depict consumption and creation of resources during a single pass of the workflow [22, 21].
Of course, with the creation of resources comes the problem of boundedness, and Natalia
Sidorova and Christian Stahl showed in [19] that soundness for bounded modal workflows
with resources was decidable through reduction to the home-space problem, which states
that certain markings are so-called home markings, the set of which form the home-space,
if for every reachable marking one of the home markings in the home space can always be
reached. Vladimir A. Bashkin and Irina A. Lomazova takes it a step further in [1], proving
that soundness for workflows with a single unbounded resource is decidable while leaving the
question of whether it is decidable for multiple unbounded resources an open question, which
remains unanswered to this day.

Transition Systems with Responses (TSR) is generalisation of Modal Transition Systems.
While retaining the implementation-time refinement, they also introduce a response set instead
of the usual must transitions, such that if an action belongs to the response set of a state,
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it is required before termination is reached unless a state is reached in which the action
no longer belongs to the response set. Thus, they combine elements of modal and mixed
transition systems. They were introduced by Marco Carbone, Thomas Hildebrandt, Gian
Perrone, Andrzej Wasowski in [3].

But as far as we know, while modal Petri net have been studied, and Petri net based
workflows have been studied, no one has attempted to combine the two before us. This also
means that there has been no work done in regards to structural reductions, nor has any
extensions been suggested before.

2 Bibliographical Remarks

Chapter 3 draws heavily upon definitions from [9].

• In section 3.1:

– Definitions 3.1 to 3.4, are identical to Definitions 2.2 to 2.5 in [9], respectively.

• In section 3.2:

– Definition 3.5 draws heavy inspiration from Definition 3.1 in [9],

– Definition 3.6 is almost identical to Definition 2.7 in [9], the only difference being
the change from Petri net to modal Petri net,

– Definition 3.7 and Definition 3.8 are similar to Definition 2.8 and Definition 3.3 in
[9]

– Definitions 3.9 to 3.11 are almost identical to Definitions 2.9 to 2.11 in [9], respec-
tively. The only difference being the change from Petri net to modal Petri net and
minor clarifications and remarks,

– Definition 3.12 and Definition 3.13 are almost identical to Definitions 2.13 and 2.14
in [9], the only difference being the change from Petri net to modal Petri net and
the corresponding may/must split, and

– Definitions 3.15 to 3.17 are identical to Definitions 3.4 to 3.6 in [9], respectively.

• In section 3.3:

– Definition 3.18 is identical to Definition 3.7 in [9] except for the difference discussed
in the following remark.

– Definition 3.19 and Definition 3.20 is identical to to Definition 2.17 and 2.18 in [9],
respectively,

– Definition 3.21 is identical to definition 3.8 in [9],

– the text following Definition 3.21 is identical to definition 3.9 in [9],

– Definition 3.22 is identical to Definition 3.10 in [9], and

– any theorems in this section were proven in [9]
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3 Preliminaries

3.1 Modal Transition Systems

A modal transition system (MTS ) [2] is a formalism which extends the classical notion of
labelled transition systems by introducing transitions of two types: must transitions that have
to be present in any implementation of the MTS and may transitions that are allowed but
not required.

Definition 3.1 (Modal Transition System). A Modal transition system over an action
alphabet A is a triple T = (S, 99K,→) where

• S is the set of states,

• 99K⊆ S ×A× S is the set of may transitions, and

• →⊆99K is the set of must transitions.

We write s
a→ if there exists some s′ such that s

a→ s′ and s 6 a→ if no such s′ exists, similarilly
for 99K.

An example of this can be seen in Figure 1a.

3.1.1 Refinement and Implementation

A specification of an MTS includes possible may arcs, this allows a specification of an MTS
to be implemented in many different ways as any number of may arcs may be included in the
implementation.

Definition 3.2 (Implementation). An MTS is an implementation if 99K=→.

However, implementation only represents the end product of so-called refinement, which
allows gradual transformation of an MTS specification to implementation.

Definition 3.3 (Modal Refinement relation). Let T1 = (S1, 99K1,→1) and T2 = (S2, 99K2,→2)
be modal transition systems. A relation R ⊆ S1 × S2 is a modal refinement relation if for all
(s1, s2) ∈ R

a) if s1
a
99K1 s′1 then there is a transition s2

a
99K2 s′2 such that (s′1, s

′
2) ∈ R and

b) if s2
a→2 s

′
2 then there is a transition s1

a→1 s
′
1 such that (s′1, s

′
2) ∈ R.

Definition 3.4 (Modal Refinement). Let T1 and T2 be MTS over the same action alphabet.
We say that a state s1 from T1 modally refines a state s2 from T2, written as s1 ≤m s2 if there
is a modal refinement relation R such that (s1, s2) ∈ R.

An example of a refinement of Figure 1a can be seen in Figure 1b, and this figure can be
further refined to an implementation as seen in Figure 1c.
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Orderedstart Making Hot

Done

Add salad

Add cheese

Add meat

Heat

Serve Cold
Serve Hot

(a) A modal transition system specification of making a sandwich.

Orderedstart Making Making Making Hot

Done

Add salad Add cheese Add meat

Add cheese

Add meat

Heat

Serve Cold Serve Hot

(b) A modal transition system refinement of Figure 1a.

Orderedstart Making Making Making Hot

Done

Add salad Add cheese Add meat Heat

Serve Cold Serve Hot

(c) A modal transition system implementation of Figure 1a.

Figure 1: Gradual refinement of Figure 1a untill we reach an implementation allowing for the
creation of a cheese-and-meat sandwich that can be served either hot or cold.
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3.2 Modal Petri Net

Just as Petri nets are a graphical language which bases itself upon labelled transition systems,
modal Petri nets base themselves upon Modal transition systems.

Definition 3.5 (Modal Petri Net [6]). Let A be an action alphabet. A modal Petri net
(MPN) N over A is is a tuple N = (P, T�, T�, F,W,L) where

• P is a set of places

• T� is the set of may transitions

• T� ⊆ T� is the set of must transitions.

• F ⊆ (P × T�) ∪ (T� × P ) is a set of arcs

• W : F → N is a weight function, and

• L : T� → A is a labelling function.

We depict the transitions in T� as solid black rectangles, and transitions t ∈ T� − T� as
black-edged, white rectangles. Note that every must transition is also a may transition, but
unless otherwise stated, the must attribute takes precedence when visualizing the transitions.
An example of a modal Petri net which generates Figure 1a can be seen in Figure 2.

As with any Petri net, modal Petri nets have markings, and we introduce the notion of
pre- and postsets for places in modal Petri nets.

Definition 3.6 (Marking). A marking on a modal Petri net is a function M : P → N0 that
assigns a number of tokens to places. A modal Petri net without a specific initial marking is
denoted by N , and a modal Petri net with some initial marking M is called a marked modal
Petri net and denoted by (N ,M). We denote the set of all markings of a Petri net N as
M(N ).

Definition 3.7 (Pre- and postsets for places in a modal Petri net). The preset of input may
transitions of a place p ∈ P is defined as �p = {t ∈ T� | (t, p) ∈ F}, and p� = {t ∈ T� |
(p, t) ∈ F} for the postset of may transitions. The pre- and postsets of must transitions of a
place p ∈ P is defined in the same way, with any � substituted with �.

Definition 3.8 (Pre- and postsets for transitions in a modal Petri net). The preset of input
places of a transition t ∈ T� is defined as •t = {p ∈ P | (p, t) ∈ F}, and t• = {p ∈ P | (t, p) ∈
F}.

With markings and pre/postsets defined, we now define enabledness and firing of transi-
tions.

Definition 3.9 (Enabledness). A transition t ∈ T� is enabled in M if for all p ∈ �t we have
M(p) ≥W (p, t).

Definition 3.10 (Firing). A transition t ∈ T� that is enabled may be fired, if so, the marking
M changes to M ′ such that for all p ∈ P we have M ′(p) = M(p)−W (p, t) + W (t, p) where

we assume W (p, t) = 0 if (p, t) 6∈ F and W (t, p) = 0 if (t, p) 6∈ F . We write this as M
t→M ′

if t ∈ T� and M
t
99KM ′ if t ∈ T�.
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Remark. Although it is true that every
t→ is also a

t
99K, the must transition firing takes

priority in the notation unless otherwise noted.

Definition 3.11 (Firing Sequence). A firing sequence M
w
99KM ′ where w = t1 . . . tn ∈ T�

∗

is a sequence of transition firings such that M
t1
99KM1

t2
99KM2 . . .

tn
99KM ′ where each marking

enables the following transition firing.

We write M 99K∗ M ′ if we do not care which transitions are fired and whether they are may
or must transitions, only that it is possible to fire some sequence of transitions from marking
M to reach marking M ′, likewise, we write M →∗ M ′ if all transitions in this sequence are
must transitions but we otherwise do not care about which transitions are fired. Now that we
know what it means to fire a transition, we can define the concept of reachabillity, deadness
and boundedness.

Definition 3.12 (Reachability). We denote the set of reachable markings in N from a
marking M as Reach(N ,M) = {M ′ |M 99K∗ M ′}.

Definition 3.13 (Deadness). A place p ∈ P is dead in a marked modal Petri net (N ,M)
if M ′(p) = 0 for all M ′ ∈ Reach(N ,M). A transition t ∈ T� in a marked modal Petri net

(N ,M) is dead if there is no M ′,M ′′ ∈ Reach(N ,M) such that M ′
t
99KM ′′.

Definition 3.14 (K-boundedness). A modal Petri net N = (P, T�, T�, F,W,L) with a start
marking M0 is K-bounded, where K ∈ N, if for every reachable marking M ∈ Reach(N ,M0),
M(p) ≤ K for all p ∈ P and K is the lowest natural number that allows this.

And just as a Petri net generates an LTS, so does a modal Petri net generate an MTS.

Definition 3.15 (Semantics for Modal Petri Nets). A modal Petri netN = (P, T�, T�, F,W,L)
generates an MTS T (N ) = (M(N ), 99K,→) where

• states are markings,

• whenever a transition t ∈ T� can fire from a marking M in N and reach M ′ then T (N )

can also do M
L(t)−−→M ′, and

• whenever a transition t ∈ T� can fire from a marking M in N and reach M ′ then T (N )

can also do M
L(t)
99KM ′.

Just like MTS, Modal Petri nets can be gradually refined into implementations.

Definition 3.16 (Modal Petri Net Refinement). Let N1 = (P1, T
�
1 , T�1 , F1,W1, L1,M1) and

N2 = (P2, T
�
2 , T�2 , F2,W2, L2,M2) be marked modal Petri nets. We say that N2 modally

refines N1, denoted as N2 ≤m N1 if M2 ≤m M1 in MTSs T (N2) and T (N1), respectively.

We also define modal implementation for Petri nets.

Definition 3.17 (Modal Petri Net Implementation). A MPN N = (P, T�, T�, F,W,L) is
an implementation if T� = T�.
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Ordered
Add salad

Making

Add cheese

Add meat

Heat
Hot

Done

Serve hot
Serve cold

Figure 2: The modal Petri net which generates Figure 1a

3.3 Modal Workflow nets

Workflow nets are a subset of Petri nets, useful, as their name implies, for modelling workflows
and procedures. The main result of [9] was the introduction of modal Workflow nets, proving
that soundness for these modal workflow nets is decidable, and proving that a special refinement
ensures soundness of the refined net.

Definition 3.18 (Modal Workflow Net). A modal Petri net N = (P, T�, T�, F,W,L) is a
modal workflow net (MWFN) if N has two special places, the source place i ∈ P and the sink
place o ∈ P such that �i = o� = ∅, and �p 6= ∅ and p� 6= ∅ for all other p ∈ P .

Remark. In other works one might find the definition of a workflow net having been appended
by a second requirement, that of strong connectivity if a transition from o to i has been added.
We leave this out as Theorem 3.3 presented in [9] are rendered untrue with it.

Definition 3.19 (Start marking). A marking M in is the start marking where M in(p) = 1 if
p = i and M in(p) = 0 otherwise.

Definition 3.20 (Finish marking). A marking Mout is the finish marking where Mout(p) = 1
if p = o and Mout(p) = 0 otherwise.

Definition 3.21 ([9] Soundness for MWFN). A modal workflow net is sound if:

a) whenever M in 99K∗ M then there exists a firing sequence M →∗ Mout, and

b) if M in 99K∗ M such that M(o) ≥ 1, then M = Mout.

LetM(N ) ⊆M(N ) be the set of well-formed markingsM(N )
def
= {M ∈M(N ) |M(o) >

0 implies that M(p) = 0 for all p ∈ P \ {o} and M(o) = 1}.

Definition 3.22 (Modal workflow refinement). Let N1 = (P1, T
�
1 , T�1 , F1,W1, L1) and

N2 = (P2, T
�
2 , T�2 , F2,W2, L2) be modal workflow nets with initial markings M in

1 and M in
2

respectively. We say that N2 modally workflow refines N1, written N2 ≤w N1 if there is a
relation R ⊆ (M(N1)×M(N2)) such that:

a) R is modal refinement and

8



i a o
2

i a o

≤m

6≤w

a) Unsound workflow net b) Sound workflow net

Figure 3: A workflow net in modal refinement with another workflow net, where the refined
net is not sound

b) for all (M1,M2) ∈ R we have M1(o) = M2(o), and

c) (M in
1 ,M in

2 ) ∈ R.

An example of the difference between modal refinement and modal workflow refinement
can be seen in Figure 3, while Figure 3a might be a modal refinement of Figure 3b, it does
not uphold the definition of having well-formed markings and is thus not a modal workflow
refinement

Theorem 3.1 (Soundness through workflow refinement [9]). Let N1 = (P1, T
�
1 , T�1 , F1,W1, L1)

and N2 = (P2, T
�
2 , T�2 , F2,W2, L2) be modal workflow nets. If N1 is sound, and N2 ≤w N1,

then N2 is sound.

Theorem 3.2. [9] Modal workflow refinement is undecidable.

Theorem 3.3. [9] If N1 = (P1, T
�
1 , T�1 , F1,W1, L1) and N2 = (P2, T

�
2 , T�2 , F2,W2, L2) are

bounded modal workflow nets then modal workflow refinement is EXPTIME-complete.

Theorem 3.4. [9] Soundness is decideable for modal workflow nets in EXPSPACE.

Theorem 3.5. [9] Soundness for bounded modal workflow nets is decidable in EXPTIME.

An example of a bounded Modal Workflow net representing a simplified car wash can
be seen in Figure 4. Once activated, this modal workflow accepts a car inside, and then a
terminal accepts a card detailing the kind of wash the car is to undergo. The modal workflow
then contains a sequence detailing a standard wash of foaming, brush wash, and drying,
modalities extend from this sequence to also allow for more foam, for a more thorough drying,
and for an entire sequence of accessorial to the wash, such as lacquer sealing. At the end of
the day, the car wash can be deactivated only if the wash is empty.
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i

activate

empty

deactivate

o

Drive Car Inside

Full

Drive Car Out

Insert Card Starting Foam

Foamed

Foam Again

Start rotary brushes

Top brush started

Left brush started Right brush started

Top Brushing

Top Finished
Left Finished

Right Finished

Left Brushing Right Brushing

Finish brush wash

Ready to Dry

Dry

Deluxe Dry

Begin Accessorial Treatments

begin drying

Drying

Drying Done

lacquer Sealing

Sealing done

lacquer Sealing

Figure 4: Modal Workflow net of a simplified car wash
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4 Soundness for bounded modal workflow nets

Theorem 3.5 from [9] states that soundness for bounded modal workflow nets is decidable in
EXPTIME, and in that paper, the claim that the problem is PSPACE-complete was left as
an open problem, in this section we prove this claim.

Theorem 4.1. Soundness for bounded modal workflow nets is PSPACE-complete.

This claim is proven in two parts, that soundness for bounded modal workflow nets is
decidable in PSPACE, and that we can reduce a PSPACE-complete problem to the soundness
problem.

Lemma 4.1. Soundness for bounded modal workflow nets is decidable in PSPACE.

Proof. We know that PSPACE = NPSPACE from Savitch’s theorem [18]. Soundness consists
of two parts; the knowledge that any given reachable marking can reach termination, and
that whenever termination occurs, it does so without residual tokens.

• Reachable Termination: Consider a k-bounded modal workflow net. The list of all mark-
ings is exponential sized for a k-bounded net, and thus cannot be directly enumerated
as the list would use exponential space. Instead, we run through each marking with
at most k tokens in sequence, resetting any space used after each marking in has been
tested. For this marking, M , we nondeterministically ’guess’ a path to reach M from
M in, which can be done in NPSPACE. If our guess does not bring us to M , then M is
not reachable and we move on to the next marking in the ordered list, erase any data
in the space used and repeat using the now-clean space. If our guess does bring us to
the marking M , then, because reachability is decidable in PSPACE, we run reachability
from M with the goal of reaching Mout. If we find that Mout is not reachable, then we
know at least one of the net’s reachable markings can not reach Mout, and the net is
thus unsound, if our guess does bring us to Mout, then we generate the next marking in
the k-bounded net, reset any space used, and repeat the procedure, reusing the same
space.

• Terminating Correctly: Assume we have a bounded modal workflow net N . We take
nondeterministic guesses with the goal of ending up in a marking where M(o) > 0
yet M 6= Mout. If we end up in a marking where this is true, then the net is not
sound, otherwise, we know that the net always terminates properly, and this is doable
in NPSPACE.

This gives us the algorithm seen in Algorithm 1, which is runnable in NPSPACE, as
described above.

Lemma 4.2. Deciding soundness is PSPACE-hard for 1-safe modal workflow nets.

Proof. We prove this by reducing reachability for one-safe nets to soundness, as we know that
reachability for 1-safe Petri Nets is PSPACE-complete as was proven by Esparza et. al. in [7].
Given a 1-safe net where we assume without loss of generalityN = (P, T�, T�, F,W,L,M0,Mt)
where M0 is the initial marking, Mt is the target marking, and where we assume without
loss of generality that P = {p1, p2, p3, . . . , pq} and T� = {t1, t2, t3, . . . , tm} (example can be
seen in Figure 5a), construct a workflow net N ′ = (P ′, T�′, T�′, F ′,W,L,M0,Mt) as seen in
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p1
t1

p2

p3

(a) Example net for Lemma 4.2

p1

p2

p3i
Initialize

p1′

p2′

p3′

Run

t1

(b) First half of N ′

Run checkp
1

succ

StartCheck
checkp

2

succ

p1′

p1emptsucc

checkp
2

fail

p1

p1nonemptsucc

p2emptsucc

p2′

checkp
3

succ

p3

p3nonemptsucc

checkp
3

fail

p2′

p2emptfail

p2

p2nonemptfail

p2

p2nonemptsucc

o

p3′
p3emptsuccp3emptfail

p3

p3nonemptfail

(c) The second part of the extension made to Figure 5a. If any transitions or places share a name
in the figure, or with Figure 5b, they are the same transition or place. This is done for the sake of
readability, as the net would be cluttered otherwise.

Figure 5: Lemma 4.2 visualized.
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Algorithm 1 Checking termination

1: function Termination check(K-bounded net)
2: for all markings M with at most K tokens do
3: if M in →∗ M and M 6→∗ Mout then return ’Not Sound’
4: end if
5: if M in →∗ M and M(o) ≥ 1 and M 6= Mout then return ’Not Sound’
6: end if
7: Clean Space
8: end for
9: return ’Sound’

10: end function

Figure 5c by adding place i and Initialize transitions, which adds tokens to recreate the
tokens in Figure 5a’s start marking and the added Run place, which only allows the original
net’s transitions to be fired if there is a token in it, we also add complementary places which
have a token when their complementary place do not, and vice versa, and added arcs to
obtain this effect, and follow this up by the second of N ′ as seen in Figure 5b which contains
transitions that check whether or not Mt is reached. Thus we get that:

1. P ′ = P∪{i}∪{o}∪{p′ | p ∈ P}∪{Run}∪{checkp
i

succ | p ∈ P}∪{checkp
i

fail | p ∈ P \{p1}}

2. T�′ = T� ∪ {initialize} ∪ {StartCheck} ∪ {piemptsucc | p ∈ P} ∪ {pinonemptsucc | p ∈
P} ∪ {piemptfail

| p ∈ P \ {p1}} ∪ {pinonemptfail
| p ∈ P \ {p1}}

3. F ′ = F ∪ {(i, initialize)} ∪ {(initialize, p) |M0(p) = 1} ∪ {(initialize,Run} ∪
{(initialize, p′) |M0(p) = 0} ∪ {(p′, t) | (t, p) ∈ F} ∪ {(t, p′) | (p, t) ∈ F} ∪
{(Run, StartCheck)} ∪ {(StartCheck, checkp1succ)} ∪
{(checkp

i

succ, piemptsucc) | p
i ∈ P} ∪ {(checkp

i

succ, pinonemptsucc) | p
i ∈ P} ∪

{(checkp
i

fail, p
i
emptfail

) | pi ∈ P \ {p1}} ∪ {(checkp
i

fail, p
i
nonemptfail

) | pi ∈ P \ {p1}} ∪
{(p, pinonemptsucc) | p

i ∈ P} ∪ {(p′, piemptsucc) | p
i ∈ P} ∪

{(p, pinonemptfail
) | pi ∈ P \ {p1}} ∪ {(p′, piemptfail

) | pi ∈ P \ {p1}} ∪
{(piemptsucc , check

pi+1

succ | pi ∈ P if Mt(p) = 0 and pi 6= pm} ∪
{(pnonemptsucc , checkp

i+1

succ | pi ∈ P if Mt(p) = 1 and pi 6= pm} ∪
{(pinonemptsucc , check

pi+1

fail | p
i ∈ P if Mt(p) = 0 and pi 6= pm} ∪

{(pemptsucc , checkp
i+1

fail | p
i ∈ P if Mt(p) = 1 and pi 6= pm} ∪

{(pimemptfail
, o)} ∪ {(pimnonemptfail

,o)} ∪ {(p
i
memptsucc

, o) | if Mt(p
m) = 1} ∪

{(pimnonemptsucc
, o) | if Mt(p

m) = 0}

Now we need to prove 3 things about N ′:

• N ′ is a workflow net: This is easy to prove as N ′ fulfils the condition for workflow nets.

• If M in →∗ Mt then N ′ is not sound: This is true as if we reach Mt, then once we do
the StartCheck transition, there exists a transition firing sequence which consumes the
tokens from both the standard and negated places, which ends ends in a transition
consuming the last tokens in the net with no output, rendering us deadlocked in a
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marking Mdead where Mdead(p) = 0 for all p ∈ P . This is depicted in Figure 5c as being
the upper row of transitions.

• If M in 6→∗ Mt then N ′ is sound: This is true as if the marking reached is not Mt, then
once StartCheck is fired, the only sequence of transitions that can be fired to clean out
the net of any residual tokens will invariably end up in Mout.

Because reachability can be done in PSPACE, the class PSPACE is closed under negation, and
we have just proven that the workflow net in Figure 5c is sound only if the target marking M
is not reachable, and because reachability for one-safe nets is PSPACE-hard, then soundness
for 1-safe workflow nets is PSPACE-hard.

Thus we have proven that soundness can be done in PSPACE, and we have proven through
reduction from reachability that it is also PSPACE-hard, which means soundness for bounded
modal workflow nets is PSPACE-complete.

5 Structural Reductions

Structural reductions are a way to eliminate unneeded complexity by reducing the state space
without affecting the results a given net provides. In his paper, Tadao Murata [13] describes a
few such structural reductions for Petri nets, and we have used his ideas before in a previous
work to make and prove structural reductions for timed-arc Petri nets [12]. We now wish
to make structural reductions for modal workflow nets and prove these will preserve the
soundness of the unreduced net.

For the use in this section, we will introduce a mayst transition, as seen in Figure 6. This
transition is a visual shorthand for saying ’This transition can be either may or must for the
purposes of the depicted reduction.’

5.1 Sequential place merger

Definition 5.1 (Sequential place merger). Given a modal workflow netN = (P, T�, T�, F,W,L)
with a transition t ∈ T� and p, p′ ∈ P \ {i, o} such that

• p 6= p′

• •t = {p}

• t• = {p′}

• p� = {t}

• t ∈ T�

• W (p, t) = W (t, p′) = 1

then we can reduce the net by

Figure 6: A mayst transition
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t

p

p′

(a) Before

p′′

(b) After

Figure 7: Definition 5.1 visualised: Place p and p′ can be combined without impacting the
soundness of the net.

• removing t, p, and p′ and any connected arcs

• adding new place p′′ where:

– �p′′ = �p ∪ (�p′ \ {t}),
– p′′� = p′�,

– W (t′, p′′) := W (t, p) + W (t′, p′). for all t′ ∈ �p′′, and

– W (p′′, t′) := W (p′, t′). for all t′ ∈ p′′�.

An example can be seen in Figure 7.
For the rest of Section 5.1 let N = (P, T�, T�, F,W,L) be a modal workflow net and N ′

the modal workflow net obtained by performing the reduction from Definition 5.1 once on N .

Definition 5.2 (Marking equivalence for sequential place merger). Let M be a marking in a
modal workflow net N and let M ′ be a marking in the modal workflow net N ′. We say that
marking M is equivalent to M ′, written M ≡M ′, if M(q) = M ′(q) for all q ∈ P \ {p, p′} and
M(p) + M(p′) = M ′(p′′).

Lemma 5.1. If M in 99K∗ M in N , then M in 99K∗ M ′ in N ′ such that M ≡M ′.

Proof. We prove this by induction on the number of transition firings. Let M in 99Km M in
N where m ≥ 0, then we want to do M in 99K∗ M ′ in N such that M ≡M ′.

• m = 0 case: trivial. Because doing no transition firing from M in leaves us at M in in N ,
we do nothing in N ′ as well. This leaves us with M in ≡M in, which is obviously true.
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tp p′i o

(a) May transition t, net unsound

p′′ oi

(b) Attempted Definition 5.1 on a), net is now sound

Figure 8: Why t of Definition 5.1 has to be a must transition

• m + 1 case: assume the lemma holds for m steps, this means that M in 99Km M1 and

thus M in 99K∗ M ′1 such that M1 ≡M ′1, we now do one more step such that M1
t1
99KM .

– if t1 6= t, this is trivial, as M ′1 can also fire t1, thus M ′1
t1
99KM ′ and clearly M ≡M ′.

– if t1 = t, then we simply do nothing in N ′, thus M ≡M ′1.

Lemma 5.2. If M in 99K∗ M ′ in N ′, then M in 99K∗ M in N such that M ≡M ′.

Proof. We prove this by induction on the number of transition firings. Let M in 99Km M ′ in
N ′ where m ≥ 0, then M in 99K∗ M such that M ≡M ′

• m = 0 case: like in Lemma 5.1.

• m + 1 case: assume the lemma holds for m steps, this means that M in 99Km M ′1 and

thus M in 99K∗ M1 such that M1 ≡M ′1, we now do one more step such that M ′1
t1
99KM ′.

– if t1 6∈ p′′�, it is trivial; we fire the same transition in N such that M1
t1
99KM and

M ′ ≡M .

– if t1 ∈ p′′�, it is possible we cannot fire the same transition right away in N because
the tokens required to do so might not be available in p′, we thus fire t as many times

as possible to move all tokens from p to p′ such that M1
t→M2

t→M3
t→ . . .Mm

where Mm ≡M ′1. We can now do the transition firing Mm
t1
99KM , and from this

we get that M ≡M ′.

Theorem 5.1. The modal workflow net N is sound if and only if N ′ is sound.

Proof. We will split this proof up in two; the ’if’ and the ’only if’ halves.

⇒ Assume that N is sound, for N ′ to be sound, it has to fullfill the two conditions of
Definition 3.21.
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tp p′

3

3

i o

(a) Net is not sound.

p′′ oi

(b) Attempted Definition 5.1 on a), net is now sound

Figure 9: Why we must ensure the weights connecting to t is equal 1 for Theorem 5.1 to hold.

Condition a) Let M ′ be a reachable marking in N ′. For N ′ to fulfill this case, it must be possible
to reach Mout. Because of Lemma 5.2, this means that an equivalent marking M
is reachable in N . Since N is sound, this means a transition firing sequence exists
such that M →∗ Mout. Because of Lemma 5.1, this means an equivalent transition
firing sequence exists in N ′ such that M ′ →Mout′ and since Mout ≡Mout′, this
implies Mout = Mout′.

Condition b) Let M ′ be a reachable marking in N ′. We know from Lemma 5.2 that any reachable
marking M ′ in N ′ can be matched by an equivalent marking M in N . As N is
sound, this means that if M(o) ≥ 1 then M = Mout, thus M ′ ≡M and this implies
M ′ = Mout .

⇐ Assume that N ′ is sound, for N to be sound, it has to fullfill the two conditions of
Definition 3.21.

Condition a) In much the same way as before, Lemma 5.1 proves that any marking in the
unreduced net can be matched by an equivalent marking in the reduced net,
because N ′ is sound, we know that from any reachable marking, N ′ can reach Mout

by firing a sequence of transitions. Following Lemma 5.2 we will thus naturally
reach Mout in N also.

Condition b) Let M be a reachable marking in N . As Lemma 5.1 proves any reachable marking
M in N can be matched by an equivalent marking M ′ in N ′. As N ′ is sound, this
means that if M ′(o) ≥ 1 then M ′ = Mout, thus M ≡M ′ = Mout, hence M = Mout

Thus we have proven that N is sound if and only if N ′ is sound.

Remark. It is important that the transition t in Definition 5.1 is a must transition, as if it
is not, the unreduced net gains soundness as defined in Definition 3.21 through the refinement,
an example of which can be seen in Figure 8. Likewise, it is important that the weights of the
arcs connecting t to p and p′ are equal to 1, as otherwise we cannot prove that an unsound
net stays unsound, as seen in Figure 9.

5.2 Sequential transition merger

Definition 5.3 (Sequential transitions merger). Given a modal Petri netN = (P, T�, T�, F,W,L)
with two transitions t, t′ and a place p, such that
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• t 6= t′

• •t′ = {p}

• �p = {t}

• p� = {t′}

• W (t, p) = W (p, t′)

• t′ ∈ T�

then

a) if t ∈ T�, we can remove t, p, and t′, and replace them with t′′ ∈ T� where

• t′′• = t• ∪ t′• \ {p},
• •t′′ = •t ∪ •t′ \ {p},
• W (p′, t′′) = W (p′, t) for all p′ ∈ •t′′, and

• W (t′′, p′) = W (t, p′) + W (t′, p′) for all p′ ∈ t•.

b) if t ∈ T� \ T� we can remove t, p, and t′, and replace them with t′′ ∈ T� \ T� where

• t′′• = t• ∪ t′• \ {p},
• •t′′ = •t ∪ •t′ \ {p},
• W (p′, t′′) = W (p′, t) for all p′ ∈ •t′′, and

• W (t′′, p′) = W (t, p′) + W (t′, p′) for all p′ ∈ t•.

An example of case a) can be seen in Figure 10a and Figure 10b, and likewise with case b)
in Figure 10c and Figure 10d.

For the rest of Section 5.2 let N = (P, T�, T�, F,W,L) be a modal workflow net. Then
N ′ is the modal workflow net obtained by performing the reduction from Definition 5.3 once
on N

Definition 5.4 (Marking equivalence for sequential transition merger). Let M be a marking
in a modal workflow net N and let M ′ be a marking in the modal workflow net N ′. We say
that marking M is equivalent to M ′, written M ≡ M ′, if M(q) = M ′(q) for all q ∈ P \ {p}
and M(p) = 0 .

Lemma 5.3. If M in 99K∗ M in N such that M(p) = 0, then M in 99K∗ M ′ in N ′ such that
M ≡M ′.

Proof. We prove this by induction on the number of transition firings. Let M in 99Km M in
N where m ≥ 0, then M in 99K∗ M ′ in N such that M ≡M ′.

• m = 0 case: trivial. Because doing no transition firing from M in leaves us at M in in N ,
we do nothing in N ′ as well. This leaves us with M in ≡M in, which is obviously true.

• m + 1 case: assume the lemma holds for m steps such that M in 99Km M1 in N . There
will be two possible cases depending on the marking M1

1. Assume that M1(p) = 0, this means that M in 99K∗ M ′1 in N ′ such that M1 ≡M ′1,

we now do one more step such that M1
t1
99KM .
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(a) Before

t′′

(b) After

t

p

t′

(c) Before

t′′

(d) After

Figure 10: Definition 5.3 visualised: transition t and t′ can be combined without impacting
the soundness of the net.
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– if t1 6= t, this is trivial, as M ′1 can also fire t1, thus M ′1
t1
99K M ′ and clearly

M ≡M ′.

– if t1 = t, then we immediately see that M is not equivalent with any other
marking in N ′ as M(p) 6= 0, and the lemma thus holds as it only accounts for
markings where M(p) = 0.

– Note that it is impossible for t1 = t′ in this case, as t′ is not enabled from the
marking where M1(p) = 0

2. Assume that M1(p) 6= 0. This means there is no equivalent marking in N ′. We
solve this problem is five steps:

(a) First, we revert all the transition firings that has come before in both nets

untill we reach a reverted marking Mr1 where Mr1

t
99KMr2 was fired in N and

Mr1 ≡M ′r1 .

(b) We know the transition firing Mr1

t
99K Mr2 has taken place as t is the only

transition that has p in its postset.

(c) From this reverted marking Mr1 we fire t, and from the following marking Mr2

we immediately fire Mr2
t′→ Mr3 which we know we can because W (t, p) =

W (p, t′).

(d) We thus ensure that t is immediately followed by t′, and we match this by

firing the merged transition M ′r1
t′′
99KM ′r2 in N ′ such that Mr3 ≡M ′r2

(e) We then retrace the steps that led us to M1, but now M1(p) = 0 and we can
use the above case.

Lemma 5.4. If M in 99K∗ M ′ in N ′, then M in 99K∗ M in N such that M ≡M ′.

Proof. We prove this by induction on the number of transition firings. Let M in 99Km M ′ in
N ′ where m ≥ 0, then M in 99K∗ M such that M ≡M ′.

• m = 0 case: trivial for the same reason that the same case in Lemma 5.1 is trivial.

• m + 1 case: assume the lemma holds for m steps, this means that M in 99Km M ′1 and

thus M in 99K∗ M1 such that M1 ≡M ′1, we now do one more step such that M ′1
t1
99KM ′.

– if t1 6= t′′, it is trivial; we fire the same transition in N such that M1
t1
99KM and

M ′ ≡M .

– if t1 = t′′, we know that �t′′ =� t and t′′� = t� ∪ t′� \ {p}, as such, we know that
t is enabled in M1, and firing it will bring us to a marking where t′ is enabled. By
firing t′ immediately afterward, we thus end up in a marking that has consumed
all tokens from p and has outputted tokens in the same places as t′′, thus by doing

the transition firing M1
t
99KM2

t′→M , we have ensured that M ≡M ′.

Theorem 5.2. The modal workflow net N is sound if and only if N ′ is sound.

Proof. As with Theorem 5.1

20



⇒ Assume that N is sound, for N ′ to be sound, it has to fullfill the two conditions of
Definition 3.21.

Condition a) Let M ′ be a reachable marking in N ′. For N ′ to fulfill this condition, it must be
possible to perform a transition firing sequence such that M ′ →∗ Mout. We know
from Lemma 5.4 that any reachable marking in N ′ has a corresponding marking
in N . Since we know N is sound, this means that N can always reach Mout, and
because of Lemma 5.3 we know that even though not every marking in N has an
equivalent marking in N ′, we can always manipulate the transition firings such
that whenever t is fired, t′ is fired immediately afterward which is matched by
firing t′′ in N ′. Thus N ′ always able to end up in Mout′, and since Mout ≡Mout′

this implies that Mout = Mout′.

Condition b) Let M ′ be a reachable marking in N ′ where M ′(o) ≥ 1. Because M ′ is reachable,
this means it has an equivalent marking M in N because of Lemma 5.4, such that
M ≡M ′, because N is sound, this means M = Mout, and thus Mout ≡M ′, which
implies M ′ = Mout.

⇐ Assume that N ′ is sound, for N to be sound, it has to fullfill the two conditions of
Definition 3.21.

Condition a) Let M be a reachable marking in N , for N to fulfill this condition, it must be
possible to perform a transition firing sequence such that M →∗ Mout. We know
from Lemma 5.3 that any reachable marking in N has a corresponding marking in
N ′. Since we know N ′ is sound, this means that N ′ can always reach Mout, and
because of Lemma 5.4, we know that N can do an equivalent transition firing and
end up in Mout.

Condition b) Let M be a reachable marking in N where M(o) ≥ 1. Because M is reachable, this
means if M(p) = 0 it has an equivalent marking M ′ in N ′ because of Lemma 5.3,
such that M ≡ M ′, because N ′ is sound, this means M ′ = Mout, and thus
Mout ≡ M , which implies M = Mout. if M(p) 6= 0 then Lemma 5.3 still shows
a way to work around this by reverting transition firings untill t was fired an
immediately firing t′ afterward, such that a firing of t is always succeeded by a
firing of t′ to reach a marking where M(p) = 0 and the lemma, as such, holds.

Thus we have proven that N is sound if and only if N ′ is sound.

Remark. It is important that t′ is not a may transition, as this renders us unable to prove
soundness is preserved, a counterexample is given in Figure 11.

5.3 Parallel place merger

Definition 5.5 (Parallel place merger). Given a modal Petri net N = (P, T�, T�, F,W,L),
if for two places p and p′ ∈ P \ {i, o}

• p 6= p′

• �p =� p′

• p� = p′�
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t′p oti

(a) May transition t′, net unsound.

ot′′i

(b) Attempted Definition 5.3 on a), net is now sound

Figure 11: Why t′ of Definition 5.3 has to be a must transition

• for all t ∈ �p,W (t, p) = W (t, p′), and

• for all t ∈ p�W (p, t) = W (p′, t)

then one of the two places, and any arcs connected to it, can be removed without affecting
the soundness of the net, as seen in Figure 12.

For the rest of Section 5.3 let N = (P, T�, T�, F,W,L) be a modal workflow net. Then
N ′ is the modal workflow net obtained by performing the reduction from Definition 5.5 once
on N

Definition 5.6 (Marking equivalence for parallel place merger). Let M be a marking in a
modal workflow net N and let M ′ be a marking in the modal workflow net N ′. We say that
marking M is equivalent to M ′, written M ≡ M ′ if M(q) = M ′(q) for all q ∈ P \ {p′} and
M(p′) = M(p) .

Lemma 5.5. If M in 99K∗ M in N , then M in 99K∗ M ′ in N ′ such that M ≡M ′.

Proof. We prove this by induction on the number of transition firings. Let M in 99Km M in
N where m ≥ 0, then M in 99K∗ M ′ in N such that M ≡M ′.

• m = 0 case: Trivial. Because doing no transition firing from M in leaves us at M in in N ,
we do nothing in N ′ as well. This leaves us with M in ≡M in, which is obviously true.

• m + 1 case: Assume the lemma holds for m steps, this means that M in 99Km M1 and

thus M in 99K∗ M ′1 such that M1 ≡M ′1, we now do one more step such that M1
t1
99KM .

– if t1 6∈� p, this is trivial, as M ′1 can also fire t1, thus M ′1
t1
99K M ′ and clearly

M ≡M ′.

22



p p′

t1

2
2

t2

t3

2 2

t4

(a) Before

p

t1

2

t2

t3

2

t4

(b) After

Figure 12: Definition 5.5 visualized: one place can be combined without impacting the
computations of the net.

– if t1 ∈� p, we fire the same transition in N ′ and note that from this new marking
M ′ in N ′ we can fire the same transitions we can in N , and as M(p′) = M(p),
then M ≡M ′.

Lemma 5.6. If M in 99K∗ M ′ in N ′, then M in 99K∗ M in N such that M ≡M ′.

Proof. We prove this by induction on the number of transition firings. Let M in 99Km M ′ in
N ′ where m ≥ 0, then M in 99K∗ M such that M ≡M ′

• m = 0 case: trivial. Because doing no transition firing from M in leaves us at M in in N ,
we do nothing in N ′ as well. This leaves us with M in ≡M in, which is obviously true.

• m + 1 case: assume the lemma holds for m steps, this means that M in 99Km M ′1 and

thus M in 99K∗ M1 such that M1 ≡M ′1, we now do one more step such that M ′1
t1→M ′.

– if t1 6∈� p, this is trivial, as M1 can also fire t1, thus M1
t1
99K M and clearly

M ≡M ′.

– if t1 ∈� p, we fire the same transition in N and note that from this new marking
M in N we can fire the same transitions we can in N ′, and as M(p′) = M(p), then
M ≡M ′.

Theorem 5.3. The modal workflow net N is sound if and only if N ′ is sound.

Proof. As Lemma 5.5 and Lemma 5.6 prove, N can fire a transition if and only if N ′ can fire
the same transition. It is thus impossible for the two nets to end up in markings that are not
equivalent, and hence N is sound if and only if N ′ is sound.
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5.4 Parallel transition merger

Definition 5.7 (Parallel transition merger). Given a modal Petri netN = (P, T�, T�, F,W,L)
with two transitions t, t′, such that

• t 6= t′

• •t = •t′

• t• = t′•

• W (p, t) = W (p, t′) for all p ∈ P , and

• W (t, p) = W (t′, p) for all p ∈ P

then:

a) if t ∈ T� and t′ ∈ T�, or t, t′ ∈ T� then we can remove t′ and any arcs connected to t′

without affecting soundness as seen in Figure 13a and Figure 13b, or

b) if t, t′ ∈ T� \ T� then we can remove either t or t′ (but not both) and any arcs connected
to it without affecting soundness as seen in Figure 13c and Figure 13d.

For the rest of Section 5.4 let N = (P, T�, T�, F,W,L) be a modal workflow net. Then
N ′ is the modal workflow net obtained by performing the reduction from Definition 5.7 once
on N .

Theorem 5.4. The modal workflow net N is sound if and only if N ′ is sound.

Proof. Observe that any marking M which allows the transition firing M
t
99KM1 also allows

the transition firing M
t′
99KM2 , and observe that M1 = M2. Thus one transition is redundant

and can be removed without impacting the soundness of the net as long as we always
preserve a must transition if available, as otherwise we could reach a marking which violates
Definition 3.21 Item a by being reachable, yet unable to reach Mout by only firing must
transitions.

5.5 Transition loop

Definition 5.8 (Looping transition removal). Given a modal Petri netN = (P, T�, T�, F,W,L)
with a transition t, such that

• t� = �t, and

• W (p, t) = W (t, p) for all p ∈ t�

then remove t and any arcs connected to it as seen in Figure 14.

For the rest of Section 5.5 let N = (P, T�, T�, F,W,L) be a modal workflow net. Then
N ′ is the modal workflow net obtained by performing the reduction from Definition 5.8 once
on N .

Theorem 5.5. The modal workflow net N is sound if and only if N ′ is sound.
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Figure 13: Definition 5.7 visualized: One transition is superflous and can be removed.
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Figure 14: Definition 5.8 visualized: The transition changes nothing when fired, it can thus
be removed.
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Proof. ⇒ Observe two markings in N , M and M ′ such that M
t
99K M ′ is a possible

transition firing. We now observe that M = M ′ in every aspect. Thus firing the
transition t changes nothing about the marking, and thus N ′ is sound if N is sound.

⇐ Observe a marking M in N . If this marking is sound, then adding a transition which
can be fired to reach it, again and again, does not alter the soundness. Thus N is sound
if N ′ is sound.

5.6 Reduction example

Recall Figure 4. Through repeated applications of the reductions introduced in this chapter,
we can reduce it down to a much simpler and easy to analyse net:

1. Observe that the entire chain of transitions starting with Begin Accessorial Treatments
and ending in the place Full is a series of transitions and places, and can as such
be reduced to a single may transition through repeated applications of the sequential
transition and place reductions.

2. This, in turn, leaves three parallel transitions from Ready to Dry to Full, which can be
reduced to a single must transition through repeated applications of parallel transition
merger.

3. Now Observe the parallel tasks of the rotary brushes can be reduced to singular places
through sequential place reductions, and then these singular places can be reduced to a
single place through repeated applications of the parallel place reduction rule.

4. Next, the Foam Again transition is a looping transition, and can be removed per
Definition 5.8

5. This leaves us with a sequence of must transitions and places starting at Full and ending
at Full. Through repeated applications of the sequential place and transition reductions,
we can reduce this sequence down to a single looping must transition with input and
output to Full, we name this transition Wash Car.

Through repeated applications of the reductions introduced in this paper, we have reduced
away the entire wash part of the net, to only a single transition as seen in Figure 15a. A
quick look at the figure will reveal that this net is obviously sound, but even if it was not
immediately apparent, our reductions allow us to continue reducing this particular net until
there is nothing left except for the places i and o, and a transition connecting them:

1. Wash Car is a looping transition, and can be removed.

2. We can then use the sequential transition merger case a) on the transitions Drive Car
Inside and Drive Car Out, along with the place Full.

3. This leaves us with a looping transition originating from Empty, and we can remove it
just the same as we have done with other looping transitions.

4. Finally, we are left with a sequence of three places and two transitions. We do a final
sequential transition merger the transitions Activate and Deactivate and name the
resultant transition Operate Car Wash.
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i

Activate

Empty

Deactivate

o

Drive Car Inside

Full

Drive Car Out

Wash Car

(a) The partway reduced Figure 4.

i

Operate Car Wash

o

(b) The fully reduced Figure 4, ob-
viously sound.

Figure 15: The reduction of Figure 4.

This leaves us with Figure 15b and because this reduced net is sound obviously sound, we
know from the main result given in this section that the unreduced net in Figure 4 is sound
as well.

Remark. Not every net can be reduced down to just i, o, and the transition connecting them.
An example of an unreducible, yet sound, net can be seen in Figure 16.
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i

2

o

Figure 16: Example of a sound workflow unreducible by the reductions given in sections
5.1-5.5.

6 Modal workflow nets with resources

Sometimes having a modal Petri net with tokens is not enough, we also need to consider a
finite amount of different resources; for instance, the amount of wood at a lumber mill, or
the amount of foam/soap in a carwash. In this case, resources can be added to a Petri net,
allowing for the creation and consumption of resources during the course of the Petri net [1].

Definition 6.1 (Modal Petri net with resources). A Modal Petri net with resources is a tuple
R = (P, Pc, Pr, T

�, T�, F,W,L) where.

• (P, F, T�, T�, W , L) is modal Petri net,

• Pc is the set of control places,

• Pr is the set of resource places such that Pc ∩ Pr = ∅ and Pc ∪ Pr = P , and

• for every transition t ∈ T� we require that t� ∪ �t ∩ Pc 6= ∅.

We depict any p ∈ Pr as diamonds while retaining the circular shape for control places,
see Figure 17 for an example. As before, we define the workflow as follows:

Definition 6.2 (Modal workflow net with resources). A modal Petri net with resources
R = (P, Pc, Pr, T

�, T�, F,W,L) is a modal workflow net with resources (MWFNR) if

• R has two special places, the source place i ∈ Pc and the sink place o ∈ Pc such that�i = o� = ∅, �p 6= ∅, and p� 6= ∅ for all other p ∈ Pc.

We also redefine what M in and Mout means for MWFNR.

Definition 6.3 (Start marking). A marking M in is a start marking if M in(p) = 1 if p = i
and M in(p) = 0 for all other p ∈ Pc. The set of all M in is denoted by Min.

Definition 6.4 (Finish marking). A marking Mout is a finish marking if Mout(p) = 1 if p = o
and Mout(p) = 0 for all other p ∈ Pc. The set of all Mout is denoted by Mout.

Remark. Note we do not care about the amount of resources at point of initialisation or
termination.

An example of a MWFNR in one of many possible M in markings can be seen in Figure 17.

Because soundness prior to this chapter was determined from a single, static M in and
Mout, we cannot merely say that a given MWFNR is sound without providing an explicit
M in for which is it sound. Hence, we redefine what soundness means for MWFNR.
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Working

Make furniture

2

Amount of furniture

o

Figure 17: A modal workflow with resources.

Definition 6.5 (Sound for a given M in). A MWFNR is sound for a given M in ∈Min if:

a) whenever M in 99K∗ M then there exists a firing sequence M →∗ Mout for some Mout ∈
Mout.

b) if M in 99K∗ M such that M(o) ≥ 1, then M ∈Mout.

But by redefining soundness for modal workflow nets with resources, we now run into a
different problem, that of repeatability. Imagine the MWFNR seen in Figure 17 as being a
real world workflow that is done once each day; a worker signs in, takes two pieces of wood
from the storage and makes a piece of furniture. As it is, while the workflow may be sound
now, it will not continue to be so; lumber will be used each day and there are no means
depicted by which we can restock the supply of lumber. In the case of Figure 17, this means
that by the third day there will be insufficient lumber to make furniture, and the workflow
thus enters a deadlocked state. Thus, standard soundness is no longer sufficient, and we need
a stricter version that ensures a net is both sound now and sound no matter how many times
we run it without adjusting resources left over from a previous run. We call this Infinitary
soundness

Definition 6.6 (Infinitary soundness for a given M in). A modal workflow net with resources
R = (P, Pc, Pr, T

�, T�, F,W,L) is infinitary sound for a given M in ∈Min if

a) R is sound for the given M in, and

b) for every Mout ∈ Mout such that M in 99K∗ Mout, R is infinitary sound for the marking
M ′ where M ′(p) = M(p) for all p ∈ Pc ∪ Pr \ {i, o}, M ′(i) = 1, and M ′(o) = 0 .

Remark. Note that Definition 6.6 is a recursive definition. A net is infinitary sound if it
can be run an unbounded number of times without adjusting the number of resources left over
from the preceding run.

Let us return to the example seen in Figure 17 - this net is sound as defined in Definition 6.5,
but it is not infinitary sound as we have just defined; eventually the net will reach a point
where insufficient lumber is available to produce a piece of furniture and will thus be stuck.
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Adding a transition like in Figure 18 will make the net infinitary sound, but it will also make
it unbounded for the given M in.

Definition 6.7 (K-bounded for the given M in). A modal workflow net with resources
R = (P, Pc, Pr, T

�, T�, F,W,L) is K-bounded for the given M in ∈ Min if there exists a
K ∈ N such that for every reachable marking M in R, M(p) ≤ K for all p ∈ P .

A way to make Figure 18 K-bounded could be to make an alteration to the net as seen
in Figure 19, but in doing this, we are merely postponing the problem; while Figure 19 may
be infinitary sound and K-bounded, if one was to run this net an unbounded number of
times as described in Definition 6.6b), one would see that the amount of furniture would
become unbounded in the process, our definition of boundedness for MWFNR is inadequate
when discussing these infinitary sound nets, and thus we introduce the concept of Infinitary
K-Boundedness.

Definition 6.8 (infinitary K-boundedness for the given M in). A modal workflow net with
resources R = (P, Pc, Pr, T

�, T�, F,W,L) is infinitary bounded for a given M in if

• R is K-bounded for the given M in, and

• for every Mout ∈ Mout such that M in 99K∗ Mout, R is infinitary K-bounded for the
marking M ′ where M ′(p) = M(p) for all p ∈ Pc ∪ Pr \ {i, o}, M ′(i) = 1, and M ′(o) = 0.

This infinitary K-boundedness definition is reduceable to K-boundedness through the
algorithm seen in Algorithm 2.

Algorithm 2 Reducing infinitary K-boundedness to K-boundedness

A modal workflow net with resources R = (P, Pc, Pr, T
�, T�, F,W,L) is infinitary bounded

for a given M in if the modal Petri net with resources R′ = (P ′, P ′c, P
′
r, T

�′, T�′, F ′,W ′, L′)
where:

• P ′ = P

• P ′c = Pc

• P ′r = Pr

• T�′ = T� ∪ {again}

• T�′ = T� ∪ {again}
• F ′ = F ∪ {(o, again)} ∪ {(again, i)}

• W ′(o, again) = 1,W ′(again, i) = 1, W ′(p, t) = W (p, t) for all (p, t) ∈ F , and W ′(t, p) =
W (t, p) for all (t, p) ∈ F

• L′ = L

is K-bounded for the given M in.

An example of Algorithm 2 performed on Figure 19 can be seen in Figure 20, and as we
can now see, Figure 19 may be infinitary sound and bounded for the given M in, but it is not
infinitary bounded for the given M in. A net which is both infinitary sound and infinitary
bounded for the M in depicted can be seen in Figure 21.
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Figure 18: An infinitary sound, unbounded modal workflow with resources.

i

Amount of lumber

Start work

Take stock

Working

Buy lumber

2

Make furniture

2
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o

Figure 19: An infinitary sound, 7-bounded modal workflow with resources.

31



i

Amount of lumber

Start work

Take stock

Working

Buy lumber

2

Make furniture

2

Amount of furniture

o

again

Figure 20: Algorithm 2 applied to Figure 19. As we can see, this Petri net is not bounded,
and therefore Figure 19 is not infinitary bounded.
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Make furniture
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Figure 21: An infinitary sound, infinitary 7-bounded modal workflow with resources.
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end/module pri

Start module pri
Cleaning pri

Clean pri

Clean p′ri
Cleaned pri + p′ri tokens

Finish module pri

K

Module next pri+1/o

pri
p′ri

Figure 22: An example of a cleanup module for a K-bounded net.

6.1 Results

Lemma 6.1. Infinitary soundness for infinitary bounded modal workflow nets with resources
is reducable to standard soundness for bounded modal workflow nets in polynomial time.

Proof. Given an infinitary K-bounded modal workflow net with resources
R = (P, Pc, Pr, T

�, T�, F,W,L) where, without loss of generality we assume
Pr = {pr1 , pr2 . . . prm} we construct the modal workflow net N = (P, T�′, T�′, F ′,W ′, L′)
such that R is infinitary sound if and only if N is sound. We do this by renaming the original
i and o place to start and end respectively, changing every resource place to a standard place,
adding complementary places to every former resource place, adding new i and o places,
adding a number of ’clean up modules’, each connecting to a specific former resource place
and said former resource place’s complementary place as seen in Figure 22, and, finally, adding
two new transitions, Initialize and Again. Initialize takes a token from i and outputs a token
to start and to every former resource place such that they have the same amount of tokens as
they had in M in, it then adds tokens to their complementary places such that the original
place’s tokens in addition to the complementary place’s tokens equals the K-bound. Again
takes a token from end and outputs a token in start, allowing the part of N which that
corresponds to R to be run again. Thus we get:

• P = Pc ∪ Pr ∪ {Start} ∪ {End} ∪ {p′ | pri ∈ Pr} ∪ {Cleaning pri | pri ∈ Pr} ∪ {Cleaned
pri + p′ri tokens | pri ∈ Pr} ∪ {module pri | pri ∈ Pr \ {pr1}}

• T�′ = T� ∪ {again} ∪ {Start module pri | pri ∈ Pr} ∪ {Finish module pri | pri ∈
Pr} ∪ {Clean pri | pri ∈ Pr} ∪ {Clean p′ri | pri ∈ Pr}

• T�′ = T� ∪ {again} ∪ {Start module pri | pri ∈ Pr} ∪ {Finish module pri | pri ∈
Pr} ∪ {Clean pri | pri ∈ Pr} ∪ {Clean p′ri | pri ∈ Pr}

• F ′ = F +{(End,Again)}∪{(Again, Start)}∪{(Initialize, Start)}∪{(Initialize, pri) |
pri ∈ Pr}∪{(Initialize, p′ri) | pri ∈ Pr}∪{(p′ri , t) | pri ∈ Pr where (t, pri) ∈ F}∪{(t, p′ri) |
pri ∈ Pr where (pri , t) ∈ F} ∪ {(End,Start module pr1)} ∪ {(module pri , Start module
pri) | pri ∈ Pr \ {pr1}} ∪ {(Start module pri , Cleaning pri) | pri ∈ Pr} ∪ {(Cleaning
pri ,Finish module pri) | pri ∈ Pr}∪{(Finish module pri ,module pri+1) | pri ∈ Pr \ prm}∪
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{(Finish module prm , o)} ∪ {(pri , clean pri) | pri ∈ Pr} ∪ {(p′ri , clean p′ri) | pri ∈ Pr} ∪
{(cleaning pri , clean pri) | pri ∈ Pr} ∪ {(clean pri ,cleaning pri) | pri ∈ Pr} ∪ {(cleaning
pri , clean p′ri | pri ∈ Pr} ∪ {(clean p′ri ,cleaning pri) | pri ∈ Pr} ∪ {(clean pri ,cleaned pri
tokens) | pri ∈ Pr} ∪ {(clean p′ri ,cleaned pri tokens) | pri ∈ Pr}

• W ′(Initialize, pri) = M in(pri) ∀pri ∈ Pr, W
′(Initialize, p′ri) = K−M in(pri) ∀pri ∈ Pri ,

W ′(t, p′ri) = W (pri , t) ∀pri ∈ Pr, W
′(p′ri , t) = W (t, pri) ∀pri ∈ Pr, W

′(cleaned pri , finish
module pri) = K ∀pri ∈ Pri , W ′(p, t) = W (p, t) ∀(p, t) ∈ F , W ′(t, p) = W ′(t, p)
∀(t, p) ∈ F and every single other new arc has a weight of 1.

An example of this performed on Figure 21 can be seen in Figure 23, which is sound if
Figure 21 is infinitary sound. As this transformation creates four new places and four new
transitions per resource place, this means it can be done in polynomial space. With this
transformation done, we now wish to prove that R is infinitary sound if and only if N is
sound. This will be done in two parts

⇒ If R is infinitary sound, this means it fulfils the soundness criteria of Definition 6.5 and,
and from the marking described in Definition 6.6b) it remains infinitary sound. For N
to be sound, it must fulfil the soundness criteria of Definition 3.21:

a) Let M be a reachable marking in N . For N to fulfil this case, it must be possible
to reach Mout from this marking.

– Once Initialize is fired, N will be in a marking corresponding to the given
M in ∈ Min of R, from this marking N can fire any transition that R can
fire, and any marking that requires R to be ’reset’ per Definition 6.6b) can be
reached by firing Again. Thus, any marking in R can be reached in N . We
know that R can always reach a Mout ∈Mout, and thus since we renamed o to
end in N , the only markings reachable in N where M(end) ≥ 1 are markings
where M(end) = 1, from any of these markings, we can initiate a cleanup of
the net that allows us to reach N ’s Mout. Thus N can always reach Mout

from any reachable marking.

b) Let M be a reachable marking in N where M(o) ≥ 1, we need to show that
M = Mout.

– We know from the above case that if R is infinitary sound, the only markings
where M(end) ≥ 1 are markings where M(end) = 1. Since the cleanup of N
can only be initiated from end, and the entire sequence of clean-up modules
clean up every token in the net before outputting a token in o, this means that
since the only markings where M(end) ≥ 1 are markings where M(end) = 1,
the only marking where M(o) ≥ 1 is Mout

⇐ If N is sound, this means it fulfils the soundness criteria of Definition 3.21. To prove R
is infinitary sound, we need to show it fulfils the criteria of Definition 6.6:

1. R is sound. This means it must fulfil the two criteria of Definition 3.21

(a) Let M be a reachable marking in R. We can reach an equivalent marking in N
by firing the initialize transition followed by the same transitions used to reach
M . Because we know N is sound, this means that any marking reached in N
can reach Mout, and any transition firing sequence M in → Mout in N must
go through a marking M ′ where M ′(end) = 1. Because end is the sink place o
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in R, we thus know that any marking reached in R can reach a marking Mf

where Mf (o) = 1, and we know that any other p ∈ P where M ′(p) ≥ 1 in N
have been converted to resource places, as otherwise N would not be sound.
But soundness for MWFNR does not care about tokens in resource places, and
thus Mf = Mout

(b) Let M be a reachable marking in R where M(o) ≥ 1, we know from the above
that the only such markings are markings where M(o) = 1 and M(pc) = 0 for
all pc ∈ Pc. this means M = Mout.

2. R is infinitary sound

– We can see that N has a transition Again which allows it to mimic the marking
of Definition 6.6b). Thus, if N is sound, it can do the part of the net that
R embodies an unbounded number of times and remain sound. Thus R is
infinitary sound as R does not need to clean up the tokens in the resource
places to retain this property.

Thus R is infinitary sound if and only if N is sound.

Remark. It is important to find the infinitary K-bound for the MWFNR before performing
this transformation, as it is required to know the weights of some of the arcs.

Theorem 6.1. Infinitary soundness for infinitary bounded modal workflow nets with resources
is decidable in PSPACE.

Proof. Through Lemma 6.1, we know that infinitary soundness for infinitary bounded modal
workflow nets with resources can be reduced to soundness for bounded modal workflow
nets. Since we in Theorem 4.1 proved that soundness for bounded modal workflow nets is
PSPACE-complete, and because our reduction in Lemma 6.1 is done in polynomial time, this
means infinitary soundness for bounded modal workflow nets with resources is decidable in
PSPACE.

Remark. We have shown that infinitary soundness for infinitary bounded modal workflow
nets with resources is decidable in PSPACE, but whether or not infinitary soundness for
standard bounded modal workflow nets with resources is decidable at all will be left as an
open problem for the reader to research. Our approach will not work to this problem as the
reduction to standard soundness is dependent on knowing the infinitary K-bound beforehand.

7 Conclusion

Throughout this paper, we have reintroduced the modal workflow formula, and answered
an open problem leftover from [9], proving that deciding soundness for bounded modal
workflow nets is PSPACE-complete. To combat the state-explosion problem in order to ease
the verifiability of soundness, we have introduced five different reductions and proven they
preserve the soundness of any net upon which they are performed. Realising that the modal
workflow model is not the end-all-be-all, we have introduced resources to the model to create
modal workflow nets with resources, we have shown that the standard concepts of soundness
and K-boundedness are not strict enough to be useful when considering modal workflow nets
with resources. To alleviate this, we have introduced the concepts of infinitary soundness
and infinitary K-boundedness which ensure that no matter how many times a net is run, it
remains sound or bounded, respectively. We have then proven that for infinitary K-bounded
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nets with resources infinitary soundness is decidable in PSPACE.
In summary the modal workflow net model allows for a model that is much easier to change
and adapt according to the demands of the real world because of our result from [9] that if
the specification of a net is sound, then as long as the specification is modal workflow refined,
any refinement will also be sound, and with the structural reductions presented in this paper
proven to preserve soundness, along with a more memory-efficient way of deciding soundness,
it should theoretically be relatively easy to decide if a given specification is sound, even if it
is large. Finally, The addition of resources allows the model to depict the consumption and
creation of resources, opening it up to being more easily used for production-line workflows,
which are widely used across the globe.

7.1 Future Work

Resources are but one extension of the modal workflow model. Drawing inspiration from
non-modal Petri nets, we can find a number of additional extensions which would prove
interesting to research.

7.1.1 Inhibitor Arcs

Inhibitor arcs [13] are a kind of arcs, usually depicted by a line with a circular tip, which
prevents the enabling, and thus firing, of any transition if a place connected to the transition
by an inhibitor arc is non-empty. Inhibitor arcs do not affect the marking reached by firing
a transition to which they are connected. This means inhibitor arcs increase the modelling
power of a Petri net to Turing completeness by adding the ability to test for zero in any place
[15].

7.1.2 Reset Arcs

A reset arc [5] is a type of arc which connects a place to a transition, but which has no influence
on the enabledness of the transition in question. When the transition is fired, the place(s)
connected to the transition by reset arcs immediately have all their tokens, if any, consumed.
If the places in question have no tokens, no change occurs in them and the transition fires as
normal. This allows a Petri net with reset arcs to have ’localised’ unboundedness in otherwise
bounded nets which normal modal Petri nets do not. Reset arcs are, per definition, syntactic
sugar - they do not add anything in terms of computability power that inhibitor arcs do not
already add to an unextended net, and can be simulated by inhibitor arcs.

7.1.3 Asynchrony

Asynchronous systems are systems which model asynchrony, which means the system has no
global clock [17]. One might conclude that standard, untimed, Petri Nets fit this mold, but
there is still an inferred clock in the sequencing of transition firings. To model concurrency, a
Petri net thus allows for a splitting of tasks and transitions. The difference between concurrent
and serial tasks can be seen in Figure 24a and Figure 24c respective, but this is still just
a visual shorthand, if one is to look at the generated LTS, in Figure 24b and Figure 24d
respectively, one would see that the two only differ in the names of the states. Asynchronous
systems avoid this by depicting the concurrency in the generated LTS, and this could maybe
be expanded upon further to allow for asynchronous modal refinement.
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(a) How Petri nets model concurrency. a and b can
be fired in whatever order desired, giving us the
Petri net start, a | b, end
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(b) The LTS generated by Figure 24a, concurrency
is lost and this LTS is the one for start, ab+ba, end
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(c) How Petri nets model choice. This net allows
for a to be followed by b or vice-versa, giving us
the Petri net start, ab + ba, end
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(d) The LTS generated by Figure 24c, note how
the actions are identical to Figure 24a

Figure 24: Two Petri nets modelling concurrency and choice, and the two generated LTS.
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[2] Nikola Beneš, Jan Křet́ınskỳ, Kim Guldstrand Larsen, and Jiri Srba. On determinism in
modal transition systems. Theoretical Computer Science, 410(41):4026–4043, 2009. 4

[3] Marco Carbone, Thomas Hildebrandt, Gian Perrone, and Andrzej Wasowski. Refinement
for transition systems with responses. arXiv preprint arXiv:1207.4270, 2012. 3

[4] Dennis Dams. abstract interpretation and partition refinement for model checking. 1996.
URL http://alexandria.tue.nl/extra3/proefschrift/PRF12B/9602314.pdf. 2

[5] Catherine Dufourd, Alain Finkel, and Ph Schnoebelen. Reset nets between decidability
and undecidability. In Automata, Languages and Programming, pages 103–115. Springer,
1998. 37

39

http://alexandria.tue.nl/extra3/proefschrift/PRF12B/9602314.pdf


[6] Dorsaf Elhog-Benzina, Serge Haddad, and Rolf Hennicker. Refinement and asynchronous
composition of modal petri nets. In Transactions on Petri Nets and Other Models of
Concurrency V, pages 96–120. Springer, 2012. 2, 6

[7] Javier Esparza and Mogens Nielsen. Decidability issues for petri nets. BRICS Report
Series, 1(8), 1994. 11

[8] Sheng-Uei Guan, Hsiao-Yeh Yu, and Jen-Shun Yang. A prioritized petri net model and
its application in distributed multimedia systems. Computers, IEEE Transactions on, 47
(4):477–481, 1998. 2

[9] Jacob Buchreitz Harbo. Modal reasoning in petri net based workflows. 2016. URL
http://projekter.aau.dk/projekter/files/225447316/Afl.pdf. 1, 2, 3, 8, 9, 11,
36, 37

[10] Kurt Jensen. Coloured Petri nets. Springer, 1987. 2

[11] J.A. Mateo, J. Srba, and M.G. Sørensen. Soundness of timed-arc workflow nets in discrete
and continuous-time semantics. Fundamenta Informaticae, 140(1):89–121, 2015. doi:
10.3233/FI-2015-1246. 2

[12] Nichlas Korgaard Møller, Jacob Buchreitz Harbo, and Martin Christensen. Work smarter,
not harder — basic structural reductions for timed-arc petri nets. 2014. URL http:

//projekter.aau.dk/projekter/files/198206191/D603f14_Paper.pdf. 14

[13] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989. 1, 14, 37
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