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Preface
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ematical Sciences at Aalborg University. The subject of the report is spectral
theory of three-body quantum systems in the mathematical physics framework.

In the report, I construct the Schrödinger Operator corresponding to a three-
body quantum system in one-dimension with Dirac delta interactions. I give an
explicit description of the domain of the operator and prove results regarding
the resolvent operator. The thesis also contains proofs for results regarding the
essential spectrum and perturbation theory.

I have tried to keep the thesis as self-contained as possible, but the reader is
assumed to have basic knowledge of quantum mechanics, functional analysis and
real and complex analysis.

All figures are produced in InkScape unless otherwise stated. Citations are denoted
by square brackets with the authors name and the year of publication, e.g. [Reed
and Simon, 1980]. The complete bibliography is found at the final page of the
report. Vectors are denoted in bold, and the Euclidean norm of a vector x is
denoted |x|. An integral with no limits is, unless otherwise stated, the integral
from −∞ to +∞.

Finally, I want to thank my supervisor Horia Cornean for allowing me to disturb
him numerous times at his office, and his patient and excellent support during the
project.
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Jonas Have
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Danish Summary

I dette speciale er der arbejdet med spektral teori for en-dimensionale kvante syste-
mer bestående af to partikler med endelig masse, og en kerne med uendelig masse.
Altså såkaldte tre-legeme systemer. Emnet er valgt ud fra en generel interesse
i kvantemekanik og matematisk fysik, og på baggrund af tidligere arbejde med
numeriske løsninger af lignende systemer.

I kvantemekanik repræsenteres observable af et system som selv-adjungerede op-
eratorer. Med observable menes der egenskaber af et system som kan måles,
det vil sige energi, position, impuls og så videre. Hamilton operatoren, også
kaldet Schrödinger operatoren, repræsenterer energien af systemet. Spektret af
Schrödinger operatoren består af de mulige energier af systemet. Energierne i det
essetielle spektrum hører til spredningstilstandende, og de diskrete egenværdier
hører til de såkaldte bundne tilstande.

Derfor er det første problem der arbejdes med, at konstruere en Schrödinger op-
erator for systemet bestående af tre partikler der interagerer gennem Dirac delta
distributioner. Af de tre partikler i systemet har to partikler endelig masse, og den
sidste uendelig masse. Schrödinger operatoren, herefter noteret H, konstrueres ud
fra en sesquilinear form. Til dette anvendes en udgave af Lax-Milgrams sætning.
En præcis beskrivelse af domænet af H gives til slut i Kapitel 2. I Kapitel 3 ønskes
det essentielle spektrum af H bestemt. Til dette anvendes Hunziker - van Winter -
Zhislin sætningen, eller HVZ sætningen. En del af arbejdet i Kapitel 3 går med at
bevise at sætningen holder for systemet repræsenteret ved H. Kapitel 4 omhandler
resolventen af H−z og den såkaldte frie resolvent. Der bevises en sætning der kan
anvendes til at bestemme de diskrete egenværdier, men selve bestemmelsen af egen-
værdierne er dog udeladt. Denne del af specialet er udarbejdet med udgangspunkt
i artiklen [Cornean et al., 2006].

Det sidste problem der arbejdes med i specialet omhandler en anden variation af
tre-legeme systemet. I dette system har de to partikler med endelig masse modsat
ladning. Derudover anvendes ikke længere Dirac delta interaktioner, men i stedet
en glat interaktions funktion. Der anvendes perturbations teori på dette prob-
lem, specifikt anvendes Feshbachs formel. Til sidst vises eksistensen af en diskret

v



Danish Summary

egenværdi, og dennes opførsel som funktion af koblings konstanten. Systemet der
arbejdes med i denne del af rapporten har interesse, da det kan anvendes som en
model for excitoner i en-dimensionale halvledere.
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Chapter 1

Introduction

In this chapter, we want to give a short introduction to the problems and theory
which we consider. The thesis is written in the mathematical physics framework.
Mathematical physics is the study of physical theories in a mathematically rigorous
framework.

The mathematical description of quantum mechanics is contained in the axioms
which were formulated by Dirac 1930 and refined by von Neumann in 1932. The
axioms state among other things that the state of a quantum system is represented
by a unit vector ψ ∈ H, where H is a Hilbert space. The axioms also state that
the observables of a quantum system are the set of self-adjoint operators on H,
and finally that the expectation value of an observable A in state ψ is given by
the inner product 〈ψ,Aψ〉. See e.g. [Hall, 2013].

Suppose we want to describe the energy of a non-relativistic particle moving in a
potential described by V . Inspired by the Hamiltonian from classical mechanics
the energy operator has a kinetic energy term and a potential energy term. Using
atomic units the quantum mechanical energy operator can be written as

− 1

2
∆ + V, (1.1)

on the Hilbert space L2, and where ∆ is the Laplacian operator. The energy
operator is usually called the Schrödinger operator in mathematical physics and
the Hamiltonian operator in physics. We will use the mathematical expression and
call it the Schödinger operator.

The systems we consider consist of three spinless nonrelativistic particles in one-
dimension with no external potential. All the systems we study are systems of
nonrelativistic spinless particles, and we will, therefore, refrain from mentioning
that they are nonrelativistic and spinless again. Since the system has no external
potential, the potential is simply due to the interparticle interaction. If vij(xi−xj)
denotes the interaction between particles xi and xj , then the energy operator for
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Chapter 1. Introduction

this type of system must be of the type

H = −1

2

3∑
i=1

∂2

∂x2
i

+
∑

1≤i<j≤3

vij(xi − xj) (1.2)

where x1, x2, x3 denotes the position of the particles. For a given systems, the
first problem that might be encountered is showing that a Schrödinger operator
actually does exist, for that given system, and that it is self-adjoint. When the
existence of the Schrödinger operator H has been shown determining the possible
energies of the system is equivalent to the determination of the spectrum ofH. The
spectrum can be decomposed into a discrete spectrum and the essential spectrum,
which we will define later. The discrete spectrum corresponds to the bound states
of the system, and the essential spectrum corresponds to the scattering states.

At first, the thought of one-dimensional quantum systems might seem like a math-
ematical abstraction with little to no physical meaning and no actual applications.
But as argued in [Pedersen, 2015] the one-dimensional systems appear for instance
in the study of quantum wires and carbon nanotubes. The case of excitons in
carbon nanotubes was treated in the article [Cornean et al., 2004].

1.1 Outline

We give here a short outline of the thesis.

In Chapter 2 we show the existence of a Schrödinger operator for a system with
Dirac delta interactions. Using the Lax-Milgram theorem we can associate a
Schrödinger operator H to a sesquilinear form, and show that the operator is
self-adjoint. The chapter is concluded with a description of the domain of H.

The next chapter addresses the determination of the essential spectrum of H. The
essential spectrum is determined using the HVZ theorem. The bulk of Chapter 3
is proving the HVZ theorem for the actual system we consider. Chapter 4 is about
the resolvent of H and the free resolvent. The main result from Chapter 4 serves
as a starting point for proving the existence of a discrete spectrum of H. We leave
out showing the existence of a discrete spectrum for H. This part of the thesis is
inspired by the work presented in [Cornean et al., 2006].

Chapter 5 deals perturbation theory for a system with interaction v ∈ C∞0 , instead
of the Dirac delta interaction. The Feshbach formula and the Birman-Schwinger
principle is used to show the existence of a discrete eigenvalue. Furthermore,
the leading behavior of the eigenvalue is determined. In addition, an appendix
with miscellaneous results is included at the end of the report. The results are
predominantly from functional analysis and are included simply to keep the thesis
as a self-contained as possible.

2



Chapter 2

Construction of the Schrödinger
Operator

In this chapter, we will construct the Schrödinger operator of a system consisting of
a nucleus with infinite mass and two finite particles with finite mass. The particles
move in one dimension, and the particle interaction is modeled by the Dirac delta
distribution. As mentioned in Chapter 1 the Schrödinger operator of a three-body
system is given by (1.2). If one of the particles have infinite mass there is no kinetic
energy associated with that particle. Consequently, the Schrödinger operator of
the system have the form

H = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ λ1δ(x) + λ2δ(y) + λ3δ(x− y), (2.1)

where x, y are the position of the particles with finite mass and λ1, λ2, λ3 ∈ R.
The coefficients λ1, λ2 and λ3 model the strength of the interparticle interactions,
and whether the interaction is repulsive or attractive.

We define the Schrödinger operator in (2.1) as the self-adjoint operator associated
with the sesquilinear formQ(·, ·) defined onH1(R2), the first Sobolev Space defined
in Definition A.3.2. The sesquilinear form Q is given by

Q(f, g) =
1

2

∫∫
∇f(x, y) ·∇g(x, y) dx dy + λ1

∫
f(x, 0)g(x, 0) dx

+ λ2

∫
f(0, y)g(0, y) dy + λ3

∫
f(x, x)g(x, x) dx, (2.2)

where λ1, λ2, λ3 ∈ R. Note that we use the convention from physics where the
form is anti-linear in the first argument, and linear in the second argument. We
will keep this convention through the whole report.

There are a few formalities which need to be in place before we construct the
operator. First of all, we need to show that functions of the type f(x, 0), f(0, y)
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Chapter 2. Construction of the Schrödinger Operator

and f(x, x) can be properly defined for functions inH1(R2). Next, we need to show
which properties a sesquilinear form should satisfy for us to be able to associate
a unique self-adjoint operator with it. Finally, we need to show that Q indeed
does have these properties. At the end of the chapter, we will have shown that the
operatorH in (2.1) is the self-adjoint operator associated with the sesquilinear form
Q. Additionally, in the final section of the chapter, we give a precise description
of the domain of H.

2.1 Restrictions to hyperplanes

The first thing we need to consider before constructing the Schrödinger operator
is the definition of expressions such as f(x, 0), f(0, y) and f(x, x). We show that
such functions can be properly defined for functions in H1(R2). This discussion
can obviously be generalized to functions f : Rd → R which are restricted to
hyperplanes of Rd. The section is based on results from section IX.9 in [Reed and
Simon, 1975].

Note first that for f ∈ L2(Rd), the restriction of to a hyperplane of Rd does not
have to be defined. This follows since the Lebesgue measure of a hyperplane in
Rd is zero and L2-functions are not necessarily defined on sets with measure zero.
Instead, we show that functions in the Sobolev space H1(Rd) can be restricted to
a hyperplane M of Rd.

We only need the case d = 2. In d = 2 the hyperplane is a line, and without
loss of generality we can assume that the hyperplane is M = {(x, 0) : ∀x ∈
R}. If f ∈ H1(R2), then the direct restriction of f on M might not be well
defined since H1(R2) 6⊂ C0(R2). Sobolev’s lemma, Theorem A.3.4, shows that
Hs(R2) ⊂ C0(R2) for s > 1. But it does not tell us whether H1(R2) ⊂ C0(R2).
Actually it is possible to construct functions f ∈ H1(R2), which are not in C0(R2).
Luckily we can avoid this problem by using Theorem A.3.5, which states that
C∞(R2) ∩H1(R2) is dense in H1(R2).

For f ∈ H1(R2) use Theorem A.3.5 to choose a sequence {fn} ∈ C∞(R2)∩H1(R2)

such that
‖fn − f‖H1 → 0, for n→∞. (2.3)

Since fn ∈ C∞ the restriction f(x, 0) is well defined. Then we define the sequence
{gn}, with gn given by

gn(x) := f(x, 0) =
1

2π

∫
eik1xf̂n(k) dk, (2.4)

where k = (k1, k2) and dk = dk1 dk2. We show that gn ∈ L2(R) for all n, and
that {gn} is a Cauchy sequence. If {gn} is a Cauchy sequence it converges to a
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Lax-Milgram Theorem and Self-Adjoint Operators

unique limit g ∈ L2(R), since L2(R) is a Hilbert space. First consider

|gn(x)| ≤ 1

2π

∫ ∣∣∣∣∫ eik1xf̂n(k) dk1

∣∣∣∣ dk2 (2.5)

=
1

2π

∫
(1 + k2

2)1/2

(1 + k2
2)1/2

∣∣∣∣∫ eik1xf̂n(k) dk1

∣∣∣∣ dk2 (2.6)

≤ 1

2π

(∫
dk2

1 + k2
2

)1/2
(∫

(1 + k2
2)

∣∣∣∣∫ eik1xf̂n(k) dk1

∣∣∣∣2 dk2

)1/2

. (2.7)

The final inequality follows from the Cauchy-Schwarz inequality. Next, we consider∫
|gn(x)|2 dx =

C√
2π

∫∫
(1 + k2

2)

∣∣∣∣∫ eik1xf̂n(k) dk1

∣∣∣∣2 dk2 dx (2.8)

= C

∫∫
(1 + k2

2)|f̂n(k)|2 dk (2.9)

≤ C‖fn‖H1 <∞, (2.10)

for some constant C > 0. The second equality follows from the Plancherel theorem,
Theorem 9.13 in [Rudin, 1987]. We see that gn is indeed in L2(R). Repeating the
calculations for ‖gn − gm‖L2 and applying

‖(1 + |k|2)
1
2 (f̂(k)− f̂n(k))‖L2 → 0, for n→∞, (2.11)

which follows from the definition of Sobolev spaces, we can show that {gn} is a
Cauchy sequence in L2(R). Thus it converges to a unique g ∈ L2(R). We define
f(x, 0) := g(x).

The following theorem follows from the discussion above.

Theorem 2.1.1 Let f ∈ S (R2), where S (R2) is the Schwartz space in Definition
A.3.1. Aditionally, let TMf be the restriction of f to a hyperplane M in R2. Then
TM extends uniquely to a bounded map τ : H1(R2) → L2(R). We call τ the trace
operator.

Using Theorem 2.1.1 it is now possible to restrict functions in H1(R2) to a line,
and the restriction is in L2(R). Thus, the sesquilinear form Q given by (2.2) is
defined on H1(R2).

2.2 Lax-Milgram Theorem and Self-Adjoint Operators

In this section, we introduce the Lax-Milgram theorem and give a method for
associating to sesquilinear forms self-adjoint operators. The proofs in this section
are inspired by proofs in the notes [Helffer, 2010].

Let Q be a sesquilinear form defined on H ×H, where H is a Hilbert space. We
begin by defining a specific property of a sesquilinear form.

5



Chapter 2. Construction of the Schrödinger Operator

Definition 2.2.1
Let Q : H×H → C be a sesquilinear form, and H a Hilbert space. Then Q is said
to be coercive on H if there exists δ > 0 such that

|Q(f, f)| ≥ δ‖f‖2, ∀f ∈ H. (2.12)

Recall, that a sesquilinear form Q on H×H is continuous if and only if there exists
a constant C > 0 such that

|Q(f, g)| ≤ C‖f‖‖g‖, ∀f, g ∈ H. (2.13)

If Q is a continuous sesquilinear form, then Riesz representation theorem, Theorem
A.1.5, gives the existence of a bounded operator T on H such that

Q(f, g) = 〈f, Tg〉, ∀f, g ∈ H. (2.14)

With these properties in place, we are ready to state the Lax-Milgram theorem.

Theorem 2.2.2 (Lax-Milgram Theorem) Let H be a Hilbert space and Q a
continuous and coercive sesquilinear form on H × H. Then the map T , given by
(2.14), is an isomorphism from H onto H.

Proof. Since Q is coercive on H, we have that for some δ > 0

δ‖f‖2 ≤ |Q(f, f)| = |〈f, Tf〉| ≤ ‖Tf‖‖f‖, ∀f ∈ H. (2.15)

This shows that δ‖f‖ ≤ ‖Tf‖. Thus, T the inverse of T exists.

We want to prove that the range of T , denoted by R(T ), is equal to H. Let
{Tfk} ⊂ R(T ) be a convergent sequence with a limit g ∈ H. Then by the coercivity
of Q there exists δ > 0 such that

δ‖fn − fm‖ ≤ ‖Tfn − Tfm‖. (2.16)

Then {fk} is a Cauchy sequence, and hence convergent to a limit f ∈ H. The
continuity of T gives that Tf = g ∈ R(T ). We have showed that R(T ) is a closed
subset ofH. Assume that R(T ) 6= H, then Theorem A.1.2 guarantees the existence
of a nonzero g ∈ H such that

〈g, Tf〉 = 0, ∀f ∈ H. (2.17)

But by coercivity of Q there exists δ > 0 such that δ‖g‖2 ≤ Q(g, g) = 〈g, Tg〉 = 0,
since (2.17) holds for all f ∈ H, including g. But this implies that g = 0, which is
contradiction. So we have that R(T ) = H.

Finally we show that T−1 is bounded. For all g ∈ H, there exists f ∈ H such that
f = T−1g. Then the coercivity of Q gives that there exists δ > 0 such that

δ‖f‖ = δ‖T−1g‖ ≤ ‖Tf‖ = ‖g‖. (2.18)

Which shows the boundedness of T−1. �
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Lax-Milgram Theorem and Self-Adjoint Operators

We now consider the Hilbert spaces V and H, where V ⊂ H. We assume that
there exists a constant C > 0 such that

‖f‖H≤ C‖f‖V , ∀f ∈ V. (2.19)

Furthermore we assume that V is dense in H. We can then associate to a sesquilin-
ear form Q, which is coercive on V, an unbounded operator S onH. First we define
the domain of S as

D(S) := {g ∈ V : ∃C > 0 s.t. |Q(f, g)| ≤ C‖f‖H‖g‖H, ∀f ∈ V} . (2.20)

Then using Riesz representation, and the assumption that V is dense in H, we can
define Sg ∈ H by

Q(f, g) = 〈f, Sg〉H, ∀f ∈ V. (2.21)

This leads us to the next result.

Theorem 2.2.3 Let V and H be Hilbert spaces satisfying the assumptions men-
tioned previously, and let S be the map defined by (2.21). Then S is bijective from
D(S) onto H and S−1 is a bounded linear map on H. Furthermore, D(S) is dense
in H.

Proof. The proof is quite similar to the proof of Lax-Milgram’s theorem, but with
a few subtle differences. First we prove that S is an injective map from D(S) to
H. Let δ > 0 be given by the coercivity of Q on V and consider

δ‖f‖2H ≤ Cδ‖f‖2V ≤ C|Q(f, f)| = C|〈f, Sf〉H| ≤ C‖Sf‖H‖f‖H, (2.22)

for all f ∈ D(S) and C > 0. Then δ‖f‖H ≤ C‖Sf‖H for all f ∈ D(S), this
proves that S is injective. Next we show that S is a surjective map. If h ∈ H then
〈·, h〉H defines a linear functional on V. Then Riesz representation guarantees the
existence of a unique g ∈ V such that

〈f, h〉H = 〈f, g〉V , ∀f ∈ V. (2.23)

Lax-Milgram’s theorem gives the existence of a map T such that w = T−1g ∈ V,
and which satisfies

Q(f, w) = 〈f, g〉V , ∀f ∈ V. (2.24)

But then w must be in D(S) since

Q(f, w) = 〈f, h〉H, ∀f ∈ V, (2.25)

and Sw = h. It follows that h ∈ R(S) and since h was arbitrary S is surjective on
H. The continuity of S−1 comes from the inequality δ‖f‖H ≤ C‖Sf‖H.

7



Chapter 2. Construction of the Schrödinger Operator

Finally, we need to show that D(S) is dense in H. If D(S) is dense in H, then
D(S) = H and D(S)⊥ = {0}. We take an element in f ∈ H such that

〈g, f〉H = 0, ∀g ∈ D(S). (2.26)

But since S is surjective on H we can find h ∈ D(S) such that f = Sh. Then by
(2.26), we must have that 〈Sh, h〉H = 0. But then the coercitivity of Q implies
that f = 0. This concludes the proof. �

We now introduce a result which shows when the operator associated to a sesquilin-
ear form is self-adjoint.

Theorem 2.2.4 Let Q be the sesquilinear form used to define the operator S in
(2.21). If Q is symmetric, then

1. S is closed

2. S is self-adjoint

3. D(S) is dense in V.

Proof. We begin by proving statement 2. Note that if Q is symmetric, then S is
a symmetric operator. But S symmetric implies that

D(S) ⊆ D(S∗). (2.27)

Take f ∈ D(S∗). By Theorem 2.2.3 we have that S is surjective, then there must
exist a f0 ∈ D(S) such that

Sf0 = S∗f. (2.28)

The symmetry of S and the definition of an adjoint operator gives

〈f0, Sg〉 = 〈Sf0, g〉 = 〈S∗f, g〉 = 〈f, Sg〉, ∀g ∈ D(S). (2.29)

But then 〈Sg, f0 − f〉 = 0 for all g ∈ D(S). Since S is surjective we have that
f0 = f . This implies that D(S) = D(S∗) and Sf = S∗f for all f ∈ D(S). Then
S is self-adjoint. Statement 1. follows from Theorem VIII.1 in [Reed and Simon,
1980] which tells us that S∗ is closed. Thus, S is closed since it is self-adjoint.

Finally, we prove statement 3. Let f ∈ V such that

〈f, g〉V = 0, ∀g ∈ D(S). (2.30)

By Lax-Milgram’s theorem we have a linear map A which is an isomorphism of V
onto V. Then we can write f = Ah for some h ∈ V. Then we have

0 = 〈Ah, g〉V = 〈g,Ah〉V = Q(g, h) = Q(h, g) = 〈h, Sg〉H, ∀g ∈ D(S). (2.31)

But since S is a surjective map we must have h = 0, and consequently f = 0.
Then D(S) is dense in V. �
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Construction of the operator

In this section we have shown how to associate operators to sesquilinear forms,
and what the sesquilinear form needs to satisfy for the operator to be self-adjoint.

2.3 Construction of the operator

We are now ready to show that a self-adjoint operator can be associated to the
sesquilinear form given by (2.2).

We begin by defining another sesquilinear form Q̃ on H1(R2)×H1(R2). We then
show that we can associate a self-adjoint operator to the form Q̃, and afterward
use this to associate a self-adjoint operator to the sesquilinear form in (2.2). Define
Q̃ by

Q̃(f, g) =
1

2

∫∫
∇f(x, y) ·∇g(x, y) dx dy + λ1

∫
f(x, 0)g(x, 0) dx

+ λ2

∫
f(0, y)g(0, y) dy + λ3

∫
f(x, x)g(x, x) dx+ λ〈f, g〉L2 , (2.32)

where λ > 0 and λ1, λ2, λ3 ∈ R.

We want to apply Theorem 2.2.3 and the associated result from Theorem 2.2.4 to
construct a self-adjoint operator. To apply Theorem 2.2.3, we note that H1(R2)

is dense in L2(R2) and that

‖f‖L2 ≤ ‖f‖H1 , ∀f ∈ H1(R2). (2.33)

So we just need to show that Q̃ is coercive and continuous on H1(R2) to apply
Theorem 2.2.3. To show that, we need the following lemma.

Lemma 2.3.1 Let f ∈ H1(R2). Then the following identity holds∫
|f(x, 0)|2 dx ≤ εC‖f‖2H1 +

C

ε
‖f‖2L2 , ∀ε > 0, (2.34)

where C > 0.

Proof. The proof follows from direct calculations similar to those before Theorem
2.1.1 so we skip some of the details. Take M > 0 and write (M + k2

2) in the final
inequality in (2.5), then we have

|f(x, 0)| ≤ 1

2π

(∫
dk2

M + k2
2

)1/2
(∫

(M + k2
2)

∣∣∣∣∫ eik1xf̂(k) dk1

∣∣∣∣2 dk2

)1/2

.

Substituting k2 =
√
Mx, in the first integral we find

|f(x, 0)| ≤ 1

2π

(
C√
M

)1/2
(∫

(M + k2
2)

∣∣∣∣∫ eik1xf̂(k) dk1

∣∣∣∣2 dk2

)1/2

. (2.35)

9



Chapter 2. Construction of the Schrödinger Operator

Using Plancherel’s theorem we find that∫
|f(x, 0)|2 dx ≤ C√

M

∫
(M + |k|2)|f̂(k)|2 dk. (2.36)

=
C√
M

(
(M − 1)

∫
|f̂(k)|2 dk +

∫
(1 + |k|2)|f̂(k)|2 dk

)
≤ C
√
M‖f‖2L2 +

C√
M
‖f‖2H1 .

Since this holds for arbitrary M > 0, we have that (2.34) holds for all ε > 0. �

Note that equivalent results holds for f(x, 0) and f(x, x). From the previous result
it is also obvious that the following inequlity holds for some constant C > 0.(∫

|f(x, 0)|2 dx
)1/2

≤ εC‖f‖H1 +
C

ε
‖f‖L2 , ∀ε > 0. (2.37)

We are now ready to show that Q̃ is continuous and coercive on H1(R2). We begin
by showing continuity, that is |Q̃(f, g)| ≤ C‖f‖H1‖g‖H1 for some constant C > 0

and for all f, g ∈ H1(R2). Using the Cauchy-Schwarz inequality and Lemma 2.3.1
we see that

|Q̃(f, g)| ≤ ‖f‖H1‖g‖H1 + 3C2(ε‖f‖H1 + ε−1‖f‖L2)(ε‖g‖H1 + ε−1‖g‖L2)

+ λ‖f‖L2‖g‖L2

≤ (1 + 3C2(ε2 + ε−2 + 2) + λ)‖f‖H1‖g‖H1 = C̃‖f‖H1‖g‖H1 ,

for some constant C̃ > 0 and for all f, g ∈ H1(R2).

Next we want to show that Q̃ is coercive on H1(R2). We need to show that there
exists δ > 0 such that is |Q̃(f, f)| ≥ δ‖f‖2H1 for all f ∈ H1(R2). By Lemma 2.3.1
we see that for all ε > 0 and f ∈ H1(R2) we have

|Q̃(f, f)| ≥ 1

2
‖f‖2H1 −

1

2
‖f‖2L2 − 3K(ε‖f‖2H1 − ε−1‖f‖2L2) + λ‖f‖2L2 , (2.38)

where K := C ·max{|λ1|, |λ2|, |λ3|} > 0. We can choose λ in the definition of the
sesquilinear form Q̃ to be λ := 1

2 + 3Kε−1 > 0. Then

|Q̃(f, f)| ≥ 1

2
‖f‖2H1 − 3Kε‖f‖2H1 =

(
1

2
− 3Kε

)
‖f‖2H1 , ∀f ∈ H1(R2), (2.39)

which holds for all ε > 0. That is we can choose ε small enough that 1
2 − 3Kε > 0.

Then Q̃(f, g) is coercive on H1(R2).

We can now apply Theorem 2.2.3 to the sesquilinear form Q̃ and obtain an operator
S which is bijective from D(S) onto L2(R2). The operator is given by the relation

Q(f, g) = 〈f, Sg〉L2 , ∀f ∈ H1(R2). (2.40)

10



Domain of the operator

By the properties of the Lebesgue integral we also have that Q is Hermitian, and
then by Theorem 2.2.4 the operator S must be self-adjoint. We represent the
operator S formally by

S = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ λ1δ(x) + λ2δ(y) + λ3δ(x− y) + λ1, (2.41)

where λ1, λ2, λ3 ∈ R, λ > 0 and 1 is the identity operator.

Note that the operator H := S − λ1, for λ ∈ R, is self-adjoint. This is the
operator associated with the sesquilinear form in (2.2), and representing the system
of interest.

2.4 Domain of the operator

In this section we want to give a detailed description of the domain of the oper-
ator H defined in the previous section. For simplicity of notation, it is easier to
determine the domain of the operator H associated to the sesquilinear form given
by

Q(f, g) =

∫∫
∇f(x, y) ·∇g(x, y) dx dy + λ1

∫
f(x, 0)g(x, 0) dx

+ λ2

∫
f(0, y)g(0, y) dy + λ3

∫
f(x, x)g(x, x) dx, (2.42)

where f, g ∈ H1(R2). The domain of the operator associated to (2.42) is the same
as the operator associated to (2.2). We also note that the derivatives of functions
in H1(R2) and H2(R2) should be understood in the distributional sense. More on
the derivatives of distributions is available in [Reed and Simon, 1980].

By (2.20) and Theorem 2.2.3 the domain of H is defined to be

D(H) =
{
g ∈ H1(R2) : ∃C > 0,∀f ∈ H1(R2), s.t. |Q(f, g)| ≤ C‖f‖L2

}
. (2.43)

We want to give a description of the functions which are in this domain. To do
this define the subset Ω ⊂ R2 by

Ω := {(x, 0) ∈ R2 : x ∈ R} ∪ {(0, y) ∈ R2 : y ∈ R} ∪ {(x, x) ∈ R2 : x ∈ R}, (2.44)

and the subset Ωm ⊂ R2 by

Ωm := {(x, y) ∈ R2 : x ∈ [−m,m], y ∈ R} ∪ {(x, y) ∈ R2 : y ∈ [−m,m], x ∈ R}
∪ {(x, y) ∈ R2 : x ∈ R, y ∈ [x−m,x+m]}, (2.45)

where m ≥ 0. Similarly, we have the subset Ωc
m := R2 \ Ωm. This subset is

illustrated in Figure 2.1.

Before we prove the first result regarding the domain we need the following lemma.
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Chapter 2. Construction of the Schrödinger Operator

Figure 2.1: Illustration of Ωc
m

Lemma 2.4.1 Let f ∈ H1(R2) and g ∈ H1(R2) ∩H2(R2 \ Ω). If g satisfies

lim
ε↓0

∫
f(x, 0)

[
∂

∂y
g(x,−ε)− ∂

∂y
g(x, ε)

]
dx = λ1

∫
f(x, 0)g(x, 0) dx (2.46)

lim
ε↓0

∫
f(0, y)

[
∂

∂x
g(−ε, y)− ∂

∂y
g(ε, y)

]
dy = λ2

∫
f(0, y)g(0, y) dy, (2.47)

and

lim
ε↓0

∫
f(x, x) [∇g(x, x− ε) · v −∇g(x, x+ ε) · v] dx = λ3

∫
f(x, x)g(x, x) dx,

(2.48)
where v = 1/

√
2(−i + j) and λ1, λ2, λ3 ∈ R. Then the following identity holds∫

R2\Ω
∇f ·∇g dx dy = −

∫
R2\Ω

f∆g dx dy − λ1

∫
f(x, 0)g(x, 0) dx

− λ2

∫
f(0, y)g(0, y) dy − λ3

∫
f(x, x)g(x, x) dx. (2.49)

Proof. Let f ∈ H1(R2) and g ∈ H2(R2 \ Ω). To prove the lemma we would like
to apply Green’s first identity on the left-hand side of (2.49). Green’s first identity
is given by ∫

U
∇f ·∇g dx dy = −

∫
U
f∆g dx dy +

∮
∂U
f∇g dv, (2.50)

where U ⊂ R2, ∂U is the boundary of U , and v is the unit normal vector of ∂U .
The immediate problem with applying this identity to the left-hand side of (2.49)

12



Domain of the operator

is the restriction of∇g to the boundary of R2\Ω. The boundary of R2\Ω is exactly
the lines in Ω. The restriction of ∇g to these lines is not necessarily defined, since
the partial derivatives of g are in H1(R2 \Ω), and thus we cannot apply Theorem
2.1.1.

Instead, we consider what happens close to the lines in Ω. Let n ∈ N and χn be
the characteristic function given by

χn(x, y) :=

1, if (x, y) ∈ Ωc
1/n

0, if(x, y) ∈ Ω1/n,
(2.51)

where Ω1/n is given by (2.44). By the dominated convergence theorem, p. 26 in
[Rudin, 1987], we have∫

R2\Ω
∇f ·∇g dx dy = lim

n→∞

∫
R2\Ω

χn∇f ·∇g dx dy (2.52)

= lim
n→∞

∫
Ωc

1/n

∇f ·∇g dx dy, (2.53)

for all n ∈ N. We are able to apply Green’s first identity to the integral in (2.53),
since the restriction of ∇g to the boundaries of Ωc

1/n is well defined for all n ∈ N.
Green’s first identity gives∫

Ωc
1/n

∇f ·∇g dx dy = −
∫

Ωc
1/n

f∆g dx dy +

∮
∂Ωc

1/n

f∇g dv, (2.54)

where ∂Ωc
1/n is the boundary of the set Ωc

1/n, and v is the outward pointing unit
normal vector of ∂Ωc

1/n. From the definition of Ωc
1/n we see that the second term

in (2.54) consist of terms of the type

G(x, n) :=

∫ ∞
1/n

[
f(x,−1/n)

∂

∂y
g(x,−1/n)− f(x, 1/n)

∂

∂y
g(x, 1/n)

]
dx. (2.55)

Rewriting (2.55) and taking the limit as n goes to infinity we get

lim
n→∞

G(x, n) = − lim
n→∞

∫ ∞
1/n

f(x, 0)

[
∂

∂y
g(x,−1/n)− ∂

∂y
g(x, 1/n)

]
dx. (2.56)

If we pair all the terms of the final integral on the right-hand side of (2.54) in
suitable pairs and take the limit for n→∞, we can use the dominated convergence
theorem and the assumptions in (2.46), (2.47) and (2.48) to find∫

R2\Ω
∇f ·∇g dx dy = −

∫
R2\Ω

f∆g dx dy − λ1

∫
f(x, 0)g(x, 0) dx

− λ2

∫
f(0, y)g(0, y) dy − λ3

∫
f(x, x)g(x, x) dx.

This concludes the lemma. �
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Chapter 2. Construction of the Schrödinger Operator

This next result shows that the functions which satisfies the previous lemma are
actually in the domain of the operator H.

Theorem 2.4.2 Let H be the self-adjoint operator associated with (2.42) and let
g ∈ H1(R2) ∩H2(R2 \ Ω). Assume furthermore that g satisfies (2.46),(2.47) and
(2.48). Then g ∈ D(H).

Proof. Let f ∈ H1(R2) and let g be as in the theorem. Note that∫
R2

∇f(x, y) ·∇g(x, y) dx dy =

∫
R2\Ω

∇f(x, y) ·∇g(x, y) dx dy, (2.57)

since Ω has Lebesgue measure zero. Applying Lemma 2.4.1, we see that

|Q(f, g)| =

∣∣∣∣∣
∫
R2\Ω

f(x, y)∆g(x, y) dx dy

∣∣∣∣∣ (2.58)

≤ ‖∆g‖L2(R2\Ω)‖f‖L2(R2\Ω) = C‖f‖L2(R2), (2.59)

then g ∈ D(H) by (2.43). �

The inclusion of the functions satisfying Lemma 2.4.1 in D(H) have now been
shown. We want to show that the opposite inclusion holds aswell. Proving this
inclusion is somewhat more difficult. We will define a family of functions φm,M ∈
C∞(R2), where 0 ≤ φm,M (x) ≤ 1 for all x ∈ R2, as

φm,M (x) =

0, x ∈ Ωm

1, x ∈ Ωc
M ,

(2.60)

where 0 ≤ m < M . That such a family of functions actually do exist is something
that should be proven. But we will skip that proof, because it does not fit the
scope of the project.

To prove the opposite inclusion we need the following two lemmas.

Lemma 2.4.3 Let Q be the sesquilinear form given by (2.42), and H be the self-
adjoint operator associated with Q. If f ∈ D(H) and φm,M ∈ C∞(R2), where
0 ≤ m < M . Then fφm,M ∈ H2(R2).

Proof. We denote φm,M by φ. By the definition of Sobolev spaces and Plancherel’s
theorem we just need to show that ∆(fφ) ∈ L2(R2). Let ψ ∈ D(R2), the set of
test-functions defined on p. 148 in [Reed and Simon, 1980]. Then by the definition
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of the distributional derivative, we have

〈ψ,∆(fφ)〉 = −〈∇ψ,∇(fφ)〉 (2.61)

= −〈∇ψ, f∇φ+ φ∇f〉 (2.62)

= −〈∇ψ, f∇φ〉 − 〈∇ψ, φ∇f〉 (2.63)

= −〈∇ψ, f∇φ〉 − 〈φ∇ψ,∇f〉 (2.64)

= −〈∇ψ, f∇φ〉+ 〈ψ∇φ,∇f〉 − 〈∇(ψφ),∇f〉 (2.65)

= 〈ψ,∇ · (f∇φ)〉+ 〈ψ∇φ,∇f〉 − 〈∇(ψφ),∇f〉. (2.66)

But by the definition of φ we have that

λ1

∫
(ψφ)(x, 0)f(x, 0) dx = 0 (2.67)

λ2

∫
(ψφ)(0, y)f(0, y) dy = 0 (2.68)

λ3

∫
(ψφ)(x, x)f(x, x) dx = 0, (2.69)

Then the definition of Q and (2.66) implies that

〈ψ,∆(fφ)〉 = 〈ψ,∇ · (f∇φ)〉+ 〈ψ∇φ,∇f〉 −Q(ψφ, f). (2.70)

Since f ∈ D(H) we find

〈ψ,∆(fφ)〉 = 〈ψ,∇ · (f∇φ)〉+ 〈ψ, (∇φ) · (∇f)〉)− 〈ψ, φHf〉. (2.71)

This holds for all ψ ∈ D(R2), so we must have

∆(fφ) = ∇ · (f∇φ) + (∇φ) · (∇f)− φHf (2.72)

= f∆φ+ 2(∇φ) · (∇f)− φHf. (2.73)

By the definition of φ we know that ∆φ is bounded, which implies that f∆φ ∈
L2(R2). Furthermore ∇φ · ∇f ∈ L2(R2), since f ∈ H1(R2) and the partial
derivatives of φ are bounded. Finally, since f ∈ D(H) and H : D(H) → L2(R2)

we know that Hf ∈ L2(R2) and consequently φHf ∈ L2(R2). This shows that
∆(fφ) ∈ L2(R2). �

Lemma 2.4.4 Let f ∈ H1(R2). Then f ∈ H1(R2)∩H2(R2 \Ω), where Ω is given
by (2.44), if and only if φm,M∆f ∈ L2(R2), and

lim
M↓0

∫
|φm,M∆f(x)|2 dx <∞, (2.74)

for all 0 ≤ m < M .
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Proof. Assume that f ∈ H1(R2) ∩ H2(R2 \ Ω). Then ∆f ∈ L2(R2 \ Ω) by
Plancherel’s theorem and the definition of Sobolev spaces. This implies that
φm,M∆f ∈ L2(R2) for all 0 ≤ m < M . Additionally, we know

|φm,M∆f(x)| ≤ |∆f(x)|, (2.75)

for all 0 ≤ m < M and x ∈ R2 \ Ω. Furthermore, φm,M∆f(x) → ∆f(x) for
M ↘ 0. Then by the dominated convergence theorem

lim
M↓0

∫
R2

|φm,M∆f(x)|2 dx =

∫
R2\Ω

|∆f(x)|2 dx <∞. (2.76)

This concludes the first part of the proof.

Assume conversely that φm,M∆f ∈ L2(R2) and that (2.74) holds for all 0 ≤ m <

M . Then by the dominated convergence theorem∫
R2\Ω

|∆f(x)|2 dx = lim
M↓0

∫
R2

|φm,M∆f(x)|2 dx <∞. (2.77)

Then ∆f ∈ L2(R2 \ Ω), and consequently, f ∈ H1(R2) ∩H2(R2 \ Ω). �

We are now ready to prove the first part of the inclusion. We begin by showing
that if f ∈ D(H), then f ∈ H1(R2) ∩H2(R2 \ Ω).

Theorem 2.4.5 Let Q be the sesquilinear form given by (2.42), and H be the self-
adjoint operator associated with Q. If f ∈ D(H), then f ∈ H1(R2) ∩H2(R2 \ Ω).

Proof. Assume that f ∈ D(H). We then want to show that f satisfies the
conditions in Lemma 2.4.4. Obviously f ∈ H1(R2).

We begin by showing that φm,M∆ ∈ L2(R2) for all 0 ≤ m < M . By Lemma 2.4.3
we know that ∆(φm,Mf) ∈ L2(R2), for all 0 ≤ m < M . Let ψ ∈ D(R2), then

〈ψ,∆(φm,Mf)〉 = 〈ψ, φm,M∆f + 2∇f ·∇φm,M + f∆φm,M 〉. (2.78)

Since ψ was arbitrary we have

∆(φm,Mf) = φm,M∆f + 2∇f ·∇φm,M + f∆φm,M . (2.79)

But ∇f ·∇φm,M ∈ L2(R2) and f∆φm,M ∈ L2(R2). Then φm,M∆f ∈ L2(R2), for
all 0 ≤ m < M . Note also that by (2.79) and (2.73) we have

φm,M∆f = −φm,MHf. (2.80)

We now need to show that (2.74) holds. But using (2.80) we have

lim
M↓0

∫
|φm,M∆f |2 dx = lim

M↓0

∫
|φm,MHf |2 dx (2.81)

≤
∫
|Hf |2 dx <∞, (2.82)
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for all 0 ≤ m < M , since Hf ∈ L2(R2). Applying Lemma 2.4.4 concludes the
proof. �

Finally, it only remains to show that if g ∈ D(H), then (2.46), (2.47) and (2.48)
holds.

Theorem 2.4.6 Let Q be the sesquilinear form given by (2.42), and H be the self-
adjoint operator associated with Q. If g ∈ D(H), then (2.46), (2.47) and (2.48)
holds.

Proof. Let g ∈ D(H) and f ∈ H1(R2). We write Q(f, g) as

Q(f, g) =

∫
R2

∇f ·∇g dx dy + Q̃(f, g), (2.83)

where

Q̃(f, g) =

∫
R
f(x, 0)g(x, 0) dx+

∫
R
f(0, y)g(0, y) dy+

∫
R
f(x, x)g(x, x) dx. (2.84)

We can then split the first integral in (2.83) into two integrals, and write

Q(f, g) =

∫
Ω⊥
M

∇f ·∇g dx dy +

∫
ΩM

∇f ·∇g dx dy + Q̃(f, g), (2.85)

where M > 0 and ΩM is given by (2.45). We use Greens first identity on the first
integral in (2.85) to obtain∫

Ω⊥
M

∇f ·∇g dx dy = −
∫

Ω⊥
M

f∆g dx dy +

∮
∂Ω⊥

M

f∇g · dv. (2.86)

But φm,M is identical one on Ω⊥M by the definition of φm,M , then we can write

−
∫

Ω⊥
M

f∆g dx dy = −
∫

Ω⊥
M

fφm,M∆g dx dy. (2.87)

We also have that −φm,M∆g = φm,MHg by (2.80). If we take the limit when
M → 0 of (2.87) and use the dominated convergence theorem, we find that

lim
M→0

∫
Ω⊥
M

fφm,MHg dx dy = 〈f,Hg〉 = Q(f, g). (2.88)

The equations (2.85), (2.86) and (2.88) imply that

lim
M→0

{
Q̃(f, g) +

∮
∂Ω⊥

M

f∇g · dv +

∫
ΩM

∇f ·∇g dx dy

}
= 0. (2.89)

The limit when M → 0 of the last integral in (2.89) is zero, since it is becomes the
integral over a set of measure zero. Finally we get the relation

lim
M→0

{
Q̃(f, g) +

∮
∂Ω⊥

M

f∇g · dv

}
= 0. (2.90)

Writing the contributions of the integral explicitly we see that the theorem holds.�
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Theorem 2.4.7 Let Q be the sesquilinear form given by (2.42) and H the self-
adjoint operator associated with Q. Then the domain of D(H) given by (2.43) is
equal to

S :=
{
f ∈ H1(R2) : f ∈ H2(R2 \ Ω), and (2.46), (2.47), (2.48) holds.

}
, (2.91)

where Ω is given by (2.44).

Proof. The inclusion D(H) ⊆ S is proven in Theorem 2.4.2. The inclusion S ⊆
D(H) is proved in Theorems 2.4.5 and 2.4.6 �

The precise description of the domain of H is now done, and we can move on to
the spectral analysis of the system.
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Chapter 3

Essential Spectrum of the
Operator

In this chapter, we want to determine the essential spectrum of the operator we
constructed in the previous chapter. The essential spectrum of an operator is
defined in Definition A.2.6. Let us denote H by

Hλ1λ2λ3 = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ λ1δ(x) + λ2δ(y) + λ3δ(x− y). (3.1)

In this chapter we assume that λ1, λ2 < 0, and λ3 > 0. This can be interpreted as
a one-dimensional system consisting of a positively charged nucleus with infinite
mass, and two electrons with mass equal to one.

The main result in this chapter is a special case of the Hunziker - van Winter -
Zhislin theorem, usually called the HVZ theorem. The HVZ theorem will give us
the essential spectrum of Hλ1λ2λ3 . To prove the HVZ theorem we need various
results, which will be presented in the following sections.

3.1 Weyl’s Criterion and Weyl Sequences

In this section, we present Weyl sequences and Weyl’s criterion. Weyl’s criterion
gives a sufficient condition for λ ∈ R to be in the essential spectrum of a self-adjoint
operator. But we begin by defining Weyl sequences.

Definition 3.1.1
Let A be a self-adjoint operator. A sequence {ψn} ⊂ D(A) is called a Weyl sequence
for A and λ ∈ C if it satisfies

1. ‖ψn‖ = 1

2. ‖(A− λ)ψn‖ → 0 for n→∞
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3. ψn converges weakly to zero.

We note that if {ψn} converges weakly to zero, then it is an orthogonal sequence.
Next we state Weyl’s criterion.

Theorem 3.1.2 (Weyl’s Criterion) Let A be a self-adjoint operator. Then λ ∈
σess(A) if and only if there exists a Weyl sequence for A and λ.

Proof. For a proof see Section 7.2 and 7.3 in [Hislop and Sigal, 1996]. �

We want to determine the spectrum and find a Weyl sequences for the operator −∆

on H2(Rd). The construction of the Weyl sequences is contained in the proof of
the next theorem. Note that we have not proved that −∆ is actually a self-adjoint
operator on H2(Rd), but we refer to Example 8.4 in [Hislop and Sigal, 1996] for
the proof.

Theorem 3.1.3 The spectrum of the self-adjoint operator −∆ on H2(Rd) is σ(−∆) =

σess(−∆) = [0,∞).

Proof. For simplicity of notation, we will only prove the theorem for d = 1. Let
ψ ∈ D(−∆) = H2(R), then

〈ψ,−∆ψ〉 =

∫
k2|ψ̂(k)|2 dk ≥ 0. (3.2)

This shows that −∆ is a positive operator on H2(R). Then σ(−∆) ⊆ [0,∞).
We then use Weyl’s criterion to show that if λ > 0 then λ ∈ σess(−∆). That
is, we need to construct a Weyl sequence for λ and −∆. Consider the function
φ ∈ C∞0 (R), with

φ(x) =

1, if |x| ≤ 1/4

0, if |x| ≥ 1/2,
(3.3)

and 0 ≤ φ(x) ≤ 1 for all x ∈ R. Define the sequence {φn} by φn(x) := φ(x/n−n).
Let λ > 0 and let {jn,λ} be the sequence defined by

jn,λ(x) =
φn(x)√
n‖φ‖

ei
√
λx. (3.4)

This sequence is shown to be a Weyl sequence for λ and −∆. It is obviously in
H2(R) since φn ∈ C∞0 (R). It is normalized since

‖jn,λ‖2 =
1

n‖φ‖2

∫
|φ(x/n− n)|2 dx (3.5)

=
1

n‖φ‖2

∫
|φ(x/n)|2 dx (3.6)

=
1

‖φ‖2

∫
|φ(t)|2 dx = 1. (3.7)
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Next we show that the sequence {jn,λ} converges weakly to zero. For ϕ ∈ L2(R)

consider

|〈ϕ, jn,λ〉|2 ≤
1

n‖φ‖2

∫
|ϕ(x)φn(x)|2 dx (3.8)

≤ 1

n‖φ‖2

∫
|ϕ(x)|2 dx (3.9)

≤ C

n
, (3.10)

for some constant C > 0 and n ∈ N. It follows that |〈ϕ,ψn〉|2 → 0 for n → ∞,
and specifically 〈ϕ,ψn〉 → 0 for n→∞. Then {jn,λ} converges weakly to zero on
H2(R). Consider

‖(−∆− λ)jn,λ‖2 ≤
1

n‖φ‖2
(
‖φ′′n‖2 + 2

√
λ‖φ′n‖2

)
(3.11)

≤ C

n2
, (3.12)

for some C > 0. Then ‖(−∆− λ)jn,λ‖ → 0 for n→∞.

We have now shown that (0,∞) ⊆ σess(−∆). Since the spectrum is a closed set
we have that [0,∞) ⊆ σ(−∆), and consequently σ(−∆) = [0,∞). Finally, zero is
not an isolated eigenvalue, and hence σ(−∆) = σess(−∆) = [0,∞). �

We use the constructed Weyl sequence for −∆ on H2(Rd) in the proof of the HVZ
theorem in Section 3.4. Additionally, we use that σ(−∆) = [0,∞) many times in
the later chapters. In the next section we present the Helffer-Sjöstrand formula,
which is another result we use to prove the HVZ theorem.

3.2 The Helffer-Sjöstrand Formula

The main result of this section is Helffer-Sjöstrand’s formula. Before we can prove
the formula, we need to consider a special type of functions called almost analytical
functions. Recall that a function f(z) = u(x, y) + iv(x, y), for z = x + iy is an
analytic function if and only if it satisfies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
, and

∂u

∂y
= −∂v

∂x
. (3.13)

We can define the differential operator ∂ as

∂ :=
1

2

(
∂

∂x
+ i

∂

∂y

)
, (3.14)

and note that for an analytic function f(z), we have ∂f(z) = 0.
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We now introduce the functions called “almost” analytic functions. Let f ∈ C∞0 (R)

where f has support in the interval [a, b], and f(a) = f(b) = 0. Define f̃(z), an
extension of f(x) to the complex plane, as

f̃(z) :=

(
f(x) + f ′(x)iy +

f ′′(x)

2!
(iy)2 + · · ·+ f (n)(x)

n!
(iy)n

)
g(y) (3.15)

= g(y)
n∑
j=0

f (j)(x)

j!
(iy)j , (3.16)

where z = x + iy, and n is some integer satisfying n ≥ 1, and g(y) ∈ C∞0 is a
function satisfying g

g(y) =

1, |y| ≤ 1
4 ,

0, |y| > 1
2 .

(3.17)

We see that ∂f̃ is given by

∂f̃ = g(y)

 n∑
j=0

f (j+1)(x)

j!
(iy)j

+ i

g′(y)
f̃(z)

g(y)
+ ig(y)

n∑
j=1

f (j)(x)

(j − 1)!
(iy)j−1


= ig′(y)

f̃(z)

g(y)
+ g(y)

f (n+1)(x)

n!
(iy)n. (3.18)

For y → 0, the behavior of |∂f̃(z)| is O(|y|n). Additionally, ∂f̃(z) = 0 holds for
z ∈ R, which is why f̃ is called an almost analytic function. We use this type of
function to prove the Helffer-Sjöstrand formula.

Theorem 3.2.1 (Helffer-Sjöstrand Formula) Let A be a self-adjoint operator
on a Hilbert space A. Suppose f ∈ C∞0 (R) with support in [a, b] and f(a) = f(b) =

0. Let f̃(z) be the almost analytic extension defined by (3.15). Then we can write

f(A) = − 1

π

∫
Ω
∂f̃(z)(A− z)−1 dy dx, (3.19)

where Ω = [a, b]× [−1, 1].

Proof. Let f ∈ C∞0 (R) be as in the theorem. By the special case of Stone’s
formula in (A.18) we can write f(A) as

f(A) =
1

2πi
s-lim
ε↓0

∫ b

a
f(x) [RA(x− iε)−RA(x+ iε)] dx. (3.20)

So we need to show that (3.20) and (3.19) are equal. To show this, we evaluate
the integrand in (3.19). Consider

∂
(
f̃(z)(A− z)−1

)
= (A− z)−1∂f̃(z) + f̃(z)∂(A− z)−1. (3.21)
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From the first resolvent equation, (A.6), it is possible to show that (A − z)−1 is
analytic on the resolvent set. Consequently,

∂
(
f̃(z)(A− z)−1

)
= (A− z)−1∂f̃(z), (3.22)

by the Cauchy-Riemann equations. Let F (x, y) := f̃(z)(A−z)−1, where z = x+iy,
then (3.19) can be written as

f(A) = − 1

π
s-lim
ε↓0

(∫ b

a

∫ −ε
−1

∂F (x, y) dy dx+

∫ b

a

∫ 1

ε
∂F (x, y) dy dx

)
. (3.23)

We consider the first term. By the fundamental theorem of calculus, and the fact
that f(a) = f(b) = 0 and g(1) = g(−1) = 0, we can write the first term of (3.23)
as ∫ b

a

∫ −ε
−1

∂F (x, y) dy dx =
1

2

∫ b

a

∫ −ε
−1

(
∂

∂x
F (x, y) + i

∂

∂y
F (x, y)

)
dy dx

=
i

2

∫ b

a
F (x,−ε) dx. (3.24)

Similar calculations can be done for the second term of (3.23). We get that

f(A) = − i

2π
s-lim
ε↓0

∫ b

a
(F (x,−ε)− F (x, ε)) dx (3.25)

=
1

2πi
s-lim
ε↓0

∫ b

a

(
f̃(x− iε)RA(x− iε)− f̃(x+ iε)RA(x+ iε)

)
dx.

To finish the proof, we examine what happens when ε→ 0. By Theorem A.2.3 we
have

‖RA(x+ iε)‖ ≤ |ε|−1, and ‖RA(x− iε)‖ ≤ |ε|−1. (3.26)

The singularity which arises by (3.26) is cancelled for the terms of f̃(z), which are
proportional to at least |y|2. By the definition of f̃(z) in (3.15) only the first and
the second terms survive. We get that

f(A) = − 1

2πi
s-lim
ε↓0

[∫ b

a
f(x) [RA(x− iε)−RA(x+ iε)] dx

+ iε

∫ b

a
f ′(x) [RA(x− iε) +RA(x+ iε)] dx

]
. (3.27)

To finish the proof we just need to show that the second term in (3.27) goes to
zero when ε goes to zero. To see this, note that by the Spectral Theorem we can
write

g(A) =

∫
g(λ) dPA(λ). (3.28)

Let g(A) be given by

g(A) := ε

∫ b

a
f ′(x) [RA(x− iε) +RA(x+ iε)] dx. (3.29)
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Integration by parts gives

g(A) = ε

∫∫ b

a
f ′(x)

[
1

λ− x+ iε
+

1

λ− x− iε

]
dx dPA(λ) (3.30)

= ε

∫∫ b

a

2f ′(x)(λ− x)

(λ− x)2 + ε2
dx dPA(λ) (3.31)

= −2ε

∫∫ b

a
(f ′′(x)(λ− x)− f ′(x)) log[(λ− x)2 + ε2] dx dPA(λ)

By the dominated convergence theorem, and since the logarithm is integrable over
a singularity, we have that g(A) goes to zero for ε→ 0. �

3.3 The operators f(−i∆) and g(·)f(−i∆)

In this section we present two lemmas which are needed to prove the HVZ theorem.
In this section we will sometimes use F and F−1 for the Fourier transform and
the inverse Fourier transform, since it is a useful notation for this section. More
information on the type of operators we work with in this section is available in
[Simon, 2005].

Recall that if ∆ is the Laplacian, we can write

−∆ = F−1k2F . (3.32)

Similarly if f : Rd → R is a bounded an measurable function, we can write

f(−∆) = F−1f(k2)F . (3.33)

This motivates us to define the operator f(−i∇), for f ∈ L∞(Rd), on ψ ∈ L2(Rd)
as

[f(−i∇)ψ](x) := f(k)ψ̂(k)

∧

(x) =
1

(2π)d/2

∫
f̌(x− y)ψ(y) dy. (3.34)

Similarly, let g ∈ L2(Rd) ∩ L∞(Rd). Then the operator g(·)f(−i∇) is defined as
the integral operator with kernel given by

[g(·)f(−i∇)](x,y) =
1

(2π)d/2
g(x)f̌(x− y). (3.35)

In the next result we show that for f belonging to a certain class of functions this
operator is compact.

Lemma 3.3.1 Let g ∈ L2(Rd) ∩ L∞(Rd) and f ∈ L∞(Rd). If f(k) → 0 for
|k| → ∞, then the operator g(·)f(−i∇) is compact.
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Proof. We prove the lemma by constructing a sequence of Hilbert-Schmidt op-
erators which is norm convergent to g(·)f(−i∇). Let φ ∈ C∞0 (Rd) be a function
which satisfies 0 ≤ φ(k) ≤ 1 for all k ∈ Rd, and

φ(k) =

1, if |k| ≤ 1,

0, if |k| ≥ 2.
(3.36)

Define φn(k) := φ(k/n), where n ∈ N. Then a sequence of operators can be
defined by

Tn := g(·)[φnf ](−i∇). (3.37)

We show that Tn is Hilbert-Schmidt for all n ∈ N. The Hilbert-Schmidt norm of
Tn is

‖Tn‖2HS =
1

(2π)d

∫∫
|g(x)|2|φnf

∧

(y − x)|2 dx dy (3.38)

=
1

(2π)d

∫
|g(x)|2

(∫
|φnf

∧

(y − x)|2 dy
)

dx. (3.39)

The final equality is due to Fubini’s theorem. Since φnf is a bounded function
with compact support we have φnf ∈ L2(Rd) for all n ∈ N. Then by Plancherel’s
theorem we have

‖Tn‖2HS =
1

(2π)d
‖φnf‖2L2‖g‖2L2 <∞. (3.40)

Consequently, {Tn} is a sequence of Hilbert-Schmidt operators and thus compact.
To show that the sequence converges to g(·)f(−i∇) in norm, we take ψ ∈ L2(Rd)
and see that

(f(−i∇)− φnf(−i∇))ψ = fψ̂

∧

− φnfψ̂

∧

(3.41)

= fψ̂ − φnfψ̂

∧

(3.42)

= f [1− φn]ψ̂

∧

, (3.43)

due to the linearity of the Fourier transform. We note that for large n the function
[1−φn(k)] is nonzero only for large |k|. But then the assumption lim|k|→∞ f(k) = 0

implies that ∀ε > 0,∃Nε ∈ N such that∫
|f(k)[1− φn(k)]|2 dk < ε, ∀n ≥ Nε. (3.44)

Then by Plancherel’s formula and (3.43), ∀ε > 0 we can choose Nε ∈ N such that

‖g(·) (f(−i∇)− φnf(−i∇))ψ‖2L2 < ε‖g‖2L∞‖ψ‖2L2 , n ≥ Nε. (3.45)

But as g ∈ L∞(Rd) we have that {Tn} converges in norm to g(·)f(−i∇). �
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Sometimes we will denote the operators g(·)f(−i∇) and f(−i∇) as g(·)f(p) and
f(p) respectively. This is the case in the next lemma, which is needed to prove
the HVZ theorem.

Lemma 3.3.2 Let A be a self-adjoint operator with domain D(A) ⊆ H1(Rd). If
Ω ⊂ Rd is a bounded subset, and χΩ the characteristic function of Ω given by

χΩ(x) :=

1, if x ∈ Ω,

0, if x /∈ Ω.
(3.46)

Then χΩ(A− i)−1 is compact.

Proof. To prove the theorem we make use of the relation

χΩ(A− i)−1 = χΩ(1 + |p|2)−
1
2 (1 + |p|2)

1
2 (A− i)−1. (3.47)

The theorem can then be proven by showing that (1 + |p|2)
1
2 (A− i)−1 is bounded

on L2(Rd), and that χΩ(1 + |p|2)−
1
2 is compact, since the product of a bounded

operator and a compact operator is compact. Let φ ∈ L2(Rd) then

‖(1 + |p|2)
1
2 (A− i)−1φ‖L2 = ‖(A− i)−1φ‖H1 , (3.48)

by the definition of the Sobolev spaces. The inverse of A− i exists and is bounded,
since i ∈ ρ(A). It is defined on all of L2(Rd), by the closed graph theorem, and
maps to D(A) ⊂ H1(Rd). This implies that

‖(1 + |p|2)
1
2 (A− i)−1φ‖L2 <∞, (3.49)

for all φ ∈ L2(Rd). This shows boundedness. It remains to show that the operator
χΩ(1+ |p|2)−

1
2 is compact. But χΩ ∈ L2(Rd) for a bounded Ω ⊂ Rd. Additionally,

(1 + |p|2)−
1
2 is bounded for all p ∈ Rd and lim|p|→∞(1 + |p|2)−

1
2 = 0, we can apply

Lemma 3.3.1 to see that χΩ(1 + |p|2)−
1
2 is compact. This concludes the proof. �

With this lemma proven, we are finally ready to prove the HVZ theorem. This is
done in the next section.

3.4 HVZ Theorem

In Chapter 2 we associated an operator to the sesquilinear form of the system
consisting of three interacting particles. As mentioned in the beginning of this
chapter, we will determine the essential spectrum of that operator now. Recall
that the operator is given by

Hλ1λ2λ3 = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ λ1δ(x) + λ2δ(y) + λ3δ(x− y), (3.50)
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and we assumed that λ1, λ2 < 0 and λ3 > 0.

The general idea behind the HVZ theorem is to consider subsystems, where at
least one of the particles does not interact with the rest of the system. Then the
energy of the subsystems is simply given by the kinetic energy of these specific
particles, and the remaining system. As an example, the subsystem where one of
the negatively charged particles does not interact with the rest of the system can
be represented by the operator

Hλ100 = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ λ1δ(x), (3.51)

where λ1 < 0. Similar systems are represented by the operators H0λ20 and H00λ3 .
The HVZ theorem tells us that the infimum of the spectrums of these subsystems is
the bottom of the essential spectrum ofHλ1,λ2,λ3 . Due to the assumption λ1, λ2 < 0

and λ3 ≥ 0, we know

inf σ(Hλ100), inf σ(H0λ20) ≤ inf σ(H00λ3). (3.52)

The operator Hλ100 is the sum of the commuting self-adjoint operators

hx := −1

2

∂2

∂x2
+ λ1δ(x), and hy := −1

2

∂2

∂y2
. (3.53)

By the results in Section XIII of [Reed and Simon, 1978] the spectrum of Hλ100 is

σ(Hλ100) = σ(hx) + σ(hy). (3.54)

It is a standard result from physics, e.g. [Postma, 1984], that the operator hx has
a single discrete negative eigenvalue, which we denote −Eλ1 , given by

− Eλ1 = −λ
2
1

2
. (3.55)

By (3.54) and Theorem 3.1.3 we have that σ(Hλ100) = [−Eλ1 ,∞). Similar results
hold for H0λ20 which has the spectrum σ(H0λ20) = [−Eλ2 ,∞). We assume without
loss of generality that λ1 ≤ λ2, then −Eλ1 ≤ −Eλ2 . We will show that −Eλ1 is
the bottom of the essential spectrum. For the more general case of a N -particle
system we refer to [Cycon et al., 1987].

Theorem 3.4.1 (HVZ Theorem) Let Hλ1λ2λ3 be the operator given by (3.50),
with λ1 ≤ λ2 < 0 and λ3 ≥ 0. If −E1 is infimum of the spectrum of Hλ100, then

σess(Hλ1λ2λ3) = [−Eλ1 ,∞). (3.56)

Proof. The proof is split into two cases. First it is shown that [−Eλ1 ,∞) ⊆
σess(Hλ1λ2λ3), and afterwards that σess(Hλ1λ2λ3) ⊆ [−Eλ1 ,∞). The first part is
somewhat easier than the second part.
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Let E ∈ [−Eλ1 ,∞). Then a Weyl sequence for E and Hλ1λ2λ3 is constructed,
which shows that E is in the essential spectrum of Hλ1λ2λ3 . Since −Eλ1 is an
eigenvalue of Hλ100 there exists φλ1 ∈ H1(R), such that we can write{

−1

2

d2

dx2
− λ1δ(x)

}
φλ1(x) = −Eλ1φλ1(x). (3.57)

Define λ := E +Eλ1 > 0. Then λ ∈ σess(−∆) by Theorem 3.1.3. Weyl’s criterion
gives the existence of a Weyl sequence for −∆ on H2(R) and λ. Let {jn,λ} be such
a Weyl sequence, the actual definition of jn,λ is contained in the proof of Theorem
3.1.3. By the definition of Weyl sequences∥∥∥∥(−1

2

d2

dy2
− λ

)
jn,λ(y)

∥∥∥∥→ 0 for n→∞. (3.58)

Define the sequence {Ψn} ⊂ H1(R2) by

Ψn(x, y) := φλ1(x)jn,λ(y). (3.59)

We show that {Ψn} is a Weyl sequence for Hλ1λ2λ3 and E. The normalization of
{Ψn} follows from the fact that jn,λ and φλ1 are normalized. Let Φ ∈ L2(R2), and
consider

〈Φ,Ψn〉 =

∫∫
Φ(x, y)Ψn(x, y) dx dy (3.60)

=

∫
jn,λ(y)

∫
Φ(x, y)φλ1(x) dx dy. (3.61)

The integral over x defines a function in y, and the weak convergence of of {jn,λ}
implies that (3.61) goes to zero for n→∞. Thus {Ψn} converges weakly to zero.
It remains to show that

‖(Hλ1λ2λ3 − E) Ψn‖ → 0 for n→∞. (3.62)

The properties of the functions φλ1 and jn,λ gives that

‖(Hλ1λ2λ3 + Eλ1 − λ) Ψn‖2 ≤
{
‖[λ2δ(y)Ψn‖2 + ‖λ3δ(x− y)Ψn‖2

}
, (3.63)

with some abuse of notation. The right-hand side of (3.63) is to be understood as

‖[λ2δ(y)Ψn‖2 + ‖λ3δ(x− y)Ψn‖2 = λ2
2

∫
|Ψn(x, 0)|2 dx+ λ2

3

∫
|Ψn(x, x)|2 dx.

(3.64)
The first term on the right-hand side of (3.64) is proportional to∫

|Ψn(x, 0)|2 dx = |jn,λ(0)|2‖φλ1‖2, (3.65)
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which goes to zero for n → ∞, since φλ1 ∈ L2(R) and the definition of jn,λ in
(3.4). Similarly, we see that the second term on the right-hand side of (3.64) is
proportional to ∫

R
|Ψn(x, x)|2 dx =

1

n‖ϕ‖
‖ϕnφλ1‖2, (3.66)

which also goes to zero for n→∞. Thus (3.62) holds, and {Ψn} is a Weyl sequence
for E and Hλ1λ2λ3 . This concludes shows the first inclusion.

It remains to prove the inclusion σess(Hλ1λ2λ3) ⊆ [−Eλ1 ,∞). To do this it is
enough to show that σess(Hλ1λ2λ3) ∩ (−∞,−Eλ1) = ∅. Let f ∈ C∞0 (R) be a
function with support in (a, b), where b ≤ −Eλ1 . If f(Hλ1λ2λ3) is a compact
operator, it follows that there is only discrete eigenvalues of Hλ1λ2λ3 in the interval
(a, b). To show that f(Hλ1λ2λ3) is compact, we want to construct a sequence of
compact operators which converges to f(Hλ1λ2λ3) in norm.

The Helffer-Sjöstrand formula, Theorem 3.2.1, gives

f(Hλ1λ2λ3) = − 1

π

∫
Ω
∂f̃N (z)(Hλ1λ2λ3 − z)−1 dy dx, (3.67)

where f̃N (z) is the almost analytical extension of f with N terms, and Ω =

[a, b] × [−1, 1]. The idea is to construct a sequence of operators approximating
the resolvent operator in Hellfer-Sjöstrands formula.

Let φ(x) ∈ C∞0 (R) be a function satisfying 0 ≤ φ(x) ≤ 1 and

φ(x) =

1, if |x| ≤ 1,

0, if |x| ≥ 2.
(3.68)

We use φ to define a sequence of functions {φn} by φn(x) := φ(x/n). Then

φn(x) =

1, if |x| ≤ n,
0, if |x| ≥ 2n.

(3.69)

Note that the derivatives of φn(x) satisfy∣∣∣∣ dα

dxα
φn(x)

∣∣∣∣ ≤ Cα
nα

, (3.70)

where α ∈ N0 and Cα > 0. We then use φn to write

1 = (1 + φn(x)− φn(x))(1 + φn(y)− φn(y)) (3.71)

= (1− φn(x))φn(y) + (1− φn(y))φn(x)

+ φn(x)φn(y) + (1− φn(x))(1− φn(y)). (3.72)
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Note that the term (1− φn(x))φn(y) is only nonzero, when y is close to zero and
x is away from zero, and similarly for the rest of the terms. This motivates a
definition of the sequence of functions {Sn(z)} given by

Sn(z) := (1− φn(x))φn(y)(H0λ2λ3 − z)−1 + (1− φn(y))φn(x)(Hλ10λ3 − z)−1

+ φn(x)φn(y)(Hλ1λ2λ3 − z)−1 + (1− φn(x))(1− φn(y))(H00λ3 − z)−1.

We want to use Sn(z) to approximate (Hλ1λ2λ3 − z)−1. To do this we need the
following relation

(A− z)ϕ(A− z)−1 = [A,ϕ](A− z)−1 + ϕ(A− z)(A− z)−1, (3.73)

where [·, ·] is the commutator relation. Equation (3.73) and the fact that the terms
of the type δ(x)(1− φn(x)) are zero, gives that

(Hλ1λ2λ3 − z)Sn(z) = I + Tn(z), (3.74)

where Tn(z) is given by

Tn(z) := [H0λ2λ3 , (1− φn(x))φn(y)] (H0λ2λ3 − z)−1

+ [Hλ10λ3 , (1− φn(y))φn(x)] (Hλ10λ3 − z)−1

+ [Hλ1λ2λ3 , φn(y)φn(x)] (Hλ1λ2λ3 − z)−1

+ [H00λ3 , (1− φn(x))(1− φn(y))] (H00λ3 − z)−1. (3.75)

If the resolvent exists, we write

Sn(z) = (Hλ1λ2λ3 − z)−1 + (Hλ1λ2λ3 − z)−1Tn(z). (3.76)

Isolating the resolvent operator in (3.76), we get

(Hλ1λ2λ3 − z)−1 = Sn(z)− (Hλ1λ2λ3 − z)−1Tn(z). (3.77)

This expression for the resolvent is inserted in Helffer-Sjöstrand’s formula (3.67),
to get

f(Hλ1λ2λ3) = − 1

π

∫
Ω
∂f̃N (z)

[
Sn(z)− (Hλ1λ2λ3 − z)−1Tn(z)

]
dy dx. (3.78)

Inserting the expression for Sn(z) in (3.78) gives

f(Hλ1λ2λ3) = (1− φn(x))φn(y)f(H0λ2λ3) + (1− φn(y))φn(x)f(Hλ10λ3)

+ (1− φn(x))(1− φn(y))f(H00λ3) + φn(x)φn(y)f(Hλ1λ2λ3)

+
1

π

∫
Ω
∂f̃N (z)(Hλ1λ2λ3 − z)−1Tn(z) dy dx. (3.79)

The terms with f(H0λ2λ3), f(Hλ10λ3) and f(H00λ3) are zero. To see this consider
Stone’s formula, (A.18), and note that

σ(Hλ10λ3) ∩ (a, b) = ∅, and σ(H0λ2λ3) ∩ (a, b) = ∅, (3.80)
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since λ3 ≥ 0. The expression for f(Hλ1λ2λ3) is then reduced to

f(Hλ1λ2λ3) = φn(x)φn(y)f(Hλ1λ2λ3) +
1

π

∫
Ω
∂f̃N (z)RHλ1λ2λ3 (z)Tn(z) dz, (3.81)

where RHλ1λ2λ3 (z) = (Hλ1λ2λ3 − z)−1. The first term in (3.81) is compact. To see
this consider

φn(x)φn(y)f(Hλ1λ2λ3) = φn(x)φn(y)(H + i)−1(H + i)f(Hλ1λ2λ3), (3.82)

but φn(x)φn(y)(H + i)−1 is compact by Lemma 3.3.2, and (H + i)f(Hλ1λ2λ3) is
bounded, since f has compact support. The product of a compact and a bounded
operator, is a compact operator. It remains to show that the last term in (3.82)
goes to zero in norm for n→∞. Consider the commutator terms in Tn(x) of the
type

[H0λ2λ3 , (1− φn(x))φn(y)] = φn(y)

[
− d2

dx2
, φn(x)

]
+ (1− φn(x))

[
− d2

dy2
, φn(y)

]
.

(3.83)

Similar results hold for the other terms in Tn(z). The commutators are calculated[
− d2

dx2
, φn(x)

]
=

(
−φ′′n(x)− φ′n(x)

d
dx

)
, (3.84)

where primes denote the derivative with respect to x. Using (3.83), (3.84), (3.70)
and (A.16) it follows that

‖(Hλ1λ2λ3 − z)−1Tn(z)Ψ‖ ≤ C

n| Im z|2
‖Ψ‖, (3.85)

where C > 0 and Ψ ∈ L2(R2). But ∂fN (z) is proportional to | Im z|N for small
Im z. If N ≥ 3 the integral in (3.81) defines a bounded operator, with operator
norm proportional to n−1, which goes to zero for n → ∞. Thus we have a se-
quence of compact operators which converge to f(Hλ1λ2λ3) in norm. This implies
that f(Hλ1λ2λ3) is a compact operator, and have only discrete eigenvalues. This
concludes the proof of the HVZ theorem. �

We have now proven the HVZ theorem, which gives the essential spectrum of
the operator Hλ1,λ2,λ3 . We can use this information to determine the discrete
eigenvalues, since they are in R \ σess(Hλ1λ2λ3). In the next chapter, we prove a
theorem which is central to determining the discrete eigenvalues of Hλ1λ2λ3 .
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Chapter 4

The Resolvent Operator

In this chapter, we want to describe some results regarding the resolvent operator
of the self-adjoint operator we constructed in chapter 2.

The resolvent operator of contains all information about the spectrum of the op-
erator and is thus interesting to study when one wants to determine the spectrum.
In the previous chapter, we determined the essential spectrum of the operator H
given by (3.1). The discrete spectrum of H consist of the points z ∈ R \ σess(H)

where H − z is singular.

We want to give a description of the resolvent operator of H using the resolvent
of the free Hamiltonian. So we devote the next section to the resolvent of the free
Hamiltonian.

4.1 Resolvent of the free Hamiltonian

In this section, we examine the resolvent of −∆ on H2(R2). We sometimes call
−∆ for the free Hamiltonian, and the resolvent of −∆ for the free resolvent.

Let λ ∈ C, where Imλ > 0 and Reλ = 0. By Theorem 3.1.3 we know that
λ2 ∈ ρ(−∆), since λ2 < 0. Then (−∆− λ2)−1 is a bounded linear operator on all
of L2(R2). To see how (−∆− λ2)−1 acts on ψ ∈ L2(R2), note that

[
(−∆− λ2)−1ψ

]
(x) = (|k|2 − λ2)−1ψ̂(k)

∧

(x) (4.1)

=
1

4π2

∫
ψ(y)

∫
eik·(x−y)

|k|2 − λ2
dk dy. (4.2)

The operator (−∆ − λ2) is a case of the operator f(i∇) which was defined in
Section 3.3. We would like to determine the integral kernel of the free resolvent.
We will denote the kernel by R0(x,y, λ2). By Equation (4.2) the kernel is given
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Chapter 4. The Resolvent Operator

by

R0(x,y, λ2) =
1

4π2

∫
eik·(x−y)

|k|2 − λ2
dk. (4.3)

The integral in (4.3) does not have a nice closed form solution, but can be written
using Bessel functions. From [Hislop and Sigal, 1996] or [Reed and Simon, 1975]
we get the representation of the integral kernel of the free resolvent

R0(x,y, λ2) =
i

4
H

(1)
0 (λ|x− y|), (4.4)

where H(1)
0 is the Bessel function of the third kind. The function H(1)

0 is also called
a Hankel function of first order. We will use the following upper bound for the
resolvent kernel, which holds when Imλ > 0 and x 6= y,

|R0(x,y, λ2)| ≤ e− Imλ|x−y|(|λ||x− y|)−
1
2 . (4.5)

This bound follow from the properties of the Hankel function of first order, as
described in [Galkowski and Smith, 2014] and [Abramowitz and Stegun, 1972],
Chapter 9. In the next section we use this bound for the integral kernel to give an
upper bound of the operator norm of the free resolvent. To do this we use Schur’s
test, which is stated in the following theorem.

Theorem 4.1.1 (Schur’s Test) Let A : D(A)→ L2(Rn), where D(A) ⊂ L2(Rn),
be an integral operator with integral kernel A(x, y). Then the operator norm of A
is bounded by

‖A‖ ≤ max

{
sup
y∈Rn

∫
|A(x,y)| dy, sup

x∈Rn

∫
|A(x,y)| dx

}
. (4.6)

Proof. Let f ∈ D(A), and consider

|(Af)(x)| ≤
∫
|A(x,y)||f(y)| dy =

∫
|A(x,y)|

1
2 |A(x,y)|

1
2 |f(y)| dy. (4.7)

Applying Cauchy-Schwarz’s inequality we get that

|(Af)(x)| ≤

√∫
|A(x,y)| dy

√∫
|A(x,y)||f(y)|2 dy. (4.8)

Squaring (4.8) we get that

|(Af)(x)|2 ≤
(∫
|A(x,y)| dy

)(∫
|A(x,y)||f(y)|2 dy

)
(4.9)

≤ C1

∫
|A(x,y)||f(y)|2 dy, (4.10)

where
C1 := sup

x∈Rn

∫
|A(x,y)| dy. (4.11)
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Using (4.10) and Fubini’s Theorem we get that

‖Af‖2L2 ≤ C1

∫∫
|A(x,y)| dx|f(y)|2 dy ≤ C1C2‖f‖2L2 , (4.12)

where
C2 := sup

y∈Rn

∫
|A(x,y)| dx. (4.13)

Choose C := max{C1, C2} and we see that

‖Af‖L2 ≤ C‖f‖L2 , (4.14)

this concludes the proof of Schur’s test. �

This concludes the section on the free resolvent. We use the bound for the integral
kernel and Schur’s test in the next section.

4.2 Resolvent of the Operator

In this section, we examine the resolvent of H, where H is the operator associated
to the sesquilinear form Q given by (2.42). The section concludes with a result
which can be used to determine the discrete eigenvalues of H.

By Theorem 2.1.1 there exists a bounded trace operator τ : H1(R2)→ L2(R). Let
ψ ∈ H1(R2), then we define the operators τ1, τ2 and τ3 by

[τ1ψ](x, y) := ψ(x, 0) (4.15)

[τ2ψ](x, y) := ψ(0, y) (4.16)

[τ3ψ](x, y) := ψ(x, x). (4.17)

Then we can define an operator τ : H1(R2) →
⊕3

i=1 L
2(R) as τ := (τ1, τ2, τ3).

Using τ we write the operator H as

H = H0 + τ∗gτ, (4.18)

where H0 = −1
2
∂2

∂x2
− 1

2
∂2

∂x2
, and g is the 3× 3 matrix defined by

g :=

 λ1 0 0

0 λ2 0

0 0 λ3

 . (4.19)

We want to use the expression in (4.18) to express the resolvent of H. Let λ ∈ C
with Imλ > 0 and Reλ = 0. Define −M := λ2 < 0, and let us write H +M as

H +M = (H0 +M)
1
2 (1 + (H0 +M)−

1
2 τ∗gτ(H0 +M)−

1
2 )(H0 +M)

1
2 . (4.20)

We will use this expression to express the resolvent. To do this we need the next
lemma.

35



Chapter 4. The Resolvent Operator

Lemma 4.2.1 Let H0 be the free Hamiltonian and −M = λ2, where λ ∈ C with
Imλ > 0 and Reλ = 0. Then the operator

(H0 +M)−
1
2 τ∗gτ(H0 +M)−

1
2 (4.21)

in (4.20) is bounded on L2(R2).

Proof. Ignoring the constants λα ∈ R, the operator in (4.21) consists of three
terms of the type

(H0 +M)−
1
2 τ∗ατα(H0 +M)−

1
2 , (4.22)

where α ∈ {1, 2, 3}. We show that each term is bounded. Let Φ,Ψ ∈ L2(R2), then
the operator in (4.22) is defined by the sesquilinear form

〈Φ, (H0+M)−
1
2 τ∗ατα(H0+M)−

1
2 Ψ〉 = 〈τα(H0+M)−

1
2 Φ, τα(H0+M)−

1
2 Ψ〉. (4.23)

To see that this is bounded on L2(R2), note that (H0 + M)−
1
2 Ψ ∈ H1(R2) for

all Ψ ∈ L2(R2), since D(H0) ⊂ H1(R2). The operator τα is defined on H1(R2)

and bounded by Theorem 2.1.1. This implies that the sesquilinear form in (4.23)
is bounded. Riesz representation gives that the operator in (4.22) is bounded.
Similar considerations hold for the remaining terms in (4.21). �

We want to expand the operator

1 + (H0 +M)−
1
2 τ∗gτ(H0 +M)−

1
2 (4.24)

in a Neumann series. The next result guarantees that we can always choose M
sufficiently large to do that.

Theorem 4.2.2 There exists λ ∈ C, with Imλ > 0 and Reλ = 0, such that

‖(H0 +M)−
1
2 τ∗gτ(H0 +M)−

1
2 ‖ < 1, (4.25)

where −M = λ2.

Proof. By Lemma 4.2.1 the operator in (4.25) is bounded. Then Riesz represen-
tation guarantees

‖(H0 +M)−
1
2 τ∗ατα(H0 +M)−

1
2 ‖ = sup

‖Φ‖=1
‖Ψ‖=1

|〈τα(H0 +M)−
1
2 Φ, τα(H0 +M)−

1
2 Ψ〉|,

for α ∈ {1, 2, 3}. Using the Cauchy-Schwarz inequality on the right-hand side we
see that

‖(H0 +M)−
1
2 τ∗ατα(H0 +M)−

1
2 ‖ ≤ ‖τα(H0 +M)−

1
2 ‖2. (4.26)
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We let Ψ ∈ L2(R2), and use that τ is bounded and Plancherel’s theorem to find

‖τα(H0 +M)−
1
2 Ψ‖2 ≤ C‖(H0 +M)−

1
2 Ψ‖2 = C‖(|k|2 +M)−

1
2 Ψ̂‖2, (4.27)

for some constant C > 0. We can then write

‖τα(H0 +M)−
1
2 Ψ‖2 ≤ C

∫
R2

|Ψ̂(k)|2

|k|2 +M
dk. (4.28)

But M > 0, so (|k|2 +M)−1 ≤M−1 for all k ∈ R2. Finally we find that

‖τα(H0 +M)−
1
2 ‖2 ≤ C

M
. (4.29)

Then (4.29) combined with (4.26) shows that we can always choose M such that
(4.25) holds. �

If the inverse of (4.20) exists, we see that the following identity must hold.

(H+M)−1 = (H0+M)−
1
2 (1+(H0+M)−

1
2 τ∗gτ(H0+M)−

1
2 )−1(H0+M)−

1
2 . (4.30)

By Theorem 4.2.2 and Theorem A.1.6 we can choose M > 0 such that we can
expand the operator in (4.24) in a Neumanns series given by

(I+(H0+M)−
1
2 τ∗gτ(H0+M)−

1
2 )−1 =

∞∑
j=0

(−1)j
[
(H0 +M)−

1
2 τ∗gτ(H0 +M)−

1
2

]j
.

Inserting this in (4.30) we find that

(H +M)−1 = (H0 +M)−
1
2 (4.31)

×
∞∑
j=0

(−1)j
[
(H0 +M)−

1
2 τ∗gτ(H0 +M)−

1
2

]j
(H0 +M)−

1
2 .

Writing the terms of the sum, we get that

(H +M)−1 = (H0 +M)−1 − (H0 +M)−1τ∗gτ(H0 +M)−1

+ (H0 +M)−1τ∗gτ(H0 +M)−1τ∗gτ(H0 +M)−1 − · · · .
(4.32)

We want to use the Neumann expansion to rearrange the terms again. To do this
we need the next result.

Theorem 4.2.3 There exists M > 0 such that

‖τ(H0 +M)−1τ∗g‖ < 1, (4.33)

where H0 is the free resolvent and g is given by (4.19).
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Proof. Let us define −M := λ2, where Imλ > 0 and Reλ = 0. The operator
τ(H0 +M)−1τ∗g is a 3× 3 matrix consisting of elements of the type

λβτα(H0 +M)−1τ∗β , (4.34)

where α, β ∈ {1, 2, 3}. But the operator τα is simply a restriction to a line in R2.
By (4.4), we have that the operator τα(H0 +M)−1τ∗β must have the integral kernel

R0(xα,yβ, λ
2) =

i

4
H

(1)
0 (λ|xα − yβ|), (4.35)

where xα and yβ are points on the lines corresponding to the operators τα and τβ
respectively. If we apply Schur’s test, Theorem 4.1.1, we see that

‖τα(H0 +M)−1τ∗β‖ ≤ sup
xα

1

4

∫
β
|H(1)

0 (λ|xα − yβ|)| dyβ (4.36)

=
1

4

∫
β
|H(1)

0 (λ|yβ|)| dyβ, (4.37)

where we integrate over the line corresponding to τβ . If we use the upper bound
from (4.5) we can write

‖τα(H0 +M)−1τ∗β‖ ≤
∫ ∞

0
e−|λ|y(|λ|y)−

1
2 dy =

√
π

|λ|
. (4.38)

This shows that we can always choose λ and thusM large enough such that (4.33)
holds. �

By Theorem 4.2.3, we can choose M > 0 such that the following identity holds

g

∞∑
j=0

(−1)j
[
τ(H0 +M)−1τ∗g

]j
= (g−1 + τ(H0 +M)−1τ∗)−1. (4.39)

Inserting this in (4.32) we find

(H +M)−1 = (H0 +M)−1 − (H0 +M)−1[g−1 + τ(H0 +M)−1τ∗]−1(H0 +M)−1.

(4.40)
Using analytic continuation we see that (H − z)−1 exists for all z ∈ C where

[g−1 + τ(H0 − z)−1τ∗]−1 (4.41)

exists. Writing R0(z) for the free resolvent and R(z) for the resolvent of H we
finally get that

R(z) = R0(z)−R0(z)[g−1 + τR0(z)τ∗]−1R0(z). (4.42)

The final result of this chapter follows from the Theorem 3.4.1, the HVZ theorem,
and the identity in (4.42). The result gives a condition for identifying points in
the discrete spectrum of H.
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Resolvent of the Operator

Theorem 4.2.4 Let H be the operator given by (4.18), and let −Eλ1 = inf σess(H).
Then E < −Eλ1 is a discrete eigenvalue of H if and only if

ker(g−1 + τR0(E)τ∗) 6= {0}. (4.43)

Theorem 4.2.4 is the foundation for determining the existence of discrete eigen-
values of the system with Dirac delta interactions. We will not determine the
existence of any actual eigenvalues in this project, but instead, consider another
case of the three-body quantum system in one-dimension. The actual work of
determining the eigenvalues of the system with Dirac delta interactions is carried
out in the article [Cornean et al., 2006] and is done using a string of symmetry
arguments. It was also done numerically in the article [Rosenthal, 1971].
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Chapter 5

Perturbation Theory and the
Feshbach Formula

In this chapter, we study another case of the three-body system in one-dimension.
The system is formally described by the Schrödinger operator

Hκ = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
− v(x− y) + κv(x)− κv(y), (5.1)

where v ∈ C∞0 (R). Furthermore we assume that v is even, non-negative and
satisfies ∫ ∞

−∞
v(x) dx = 1. (5.2)

This is a bit different from the system considered in the previous chapters, where
the interaction v was a Dirac delta distribution. Similarly to what was done in
Chapter 2, we could define Hκ from a sesquilinear form, show that it was a self-
adjoint operator and give a specific description of the domain. We will skip the
mathematical rigors and simply state that the domain of Hκ is H2(R2).

The physical interpretation of the system is that it consists of a nucleus with infinite
mass and positive charge, and two particles with mass one. The two particles
with finite mass have opposite charges. Since the nucleus has infinite mass there
is no kinetic energy associated with the nucleus. The two particles with finite
mass interact with the nucleus, the strength of the interaction is controlled by
the coupling constant κ. This system can be used as a model for excitons in a
one-dimensional semi-conductor. An exciton is the bound state of a hole and an
electron.

We can write the Schrödinger operator of the system as

Hκ = H0 − κV. (5.3)

We assume that the spectrum of H0 is known and that κV is a small perturbation,
specifically that 0 ≤ κ � 1. We want to apply perturbation theory to determine
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the spectrum of Hκ from the spectrum of H0. Specifically, we want to use the
Feshbach formula to study the eigenvalues of Hκ.

5.1 The Feshbach Formula

In this section, we will briefly introduce the Feshbach formula. For more infor-
mation on and proofs of the Feshbach formula we refer to [Howland, 1975] and
[Cornean, 2008].

We consider a self-adjoint operator H, with domain D(H) ⊂ H, where H is a
Hilbert space. We assume that H can be written as

H = H0 − V, (5.4)

where H0 is the operator of a solvable model, and V is a perturbation. If Πeff is
an orthogonal projection, we define Π⊥ := 1 − Πeff. Then the decomposition of
H in Heff ⊕H⊥ is allowed.

Let us denote by Heff := ΠeffHΠeff, Veff,⊥ := ΠeffVΠ⊥ and H⊥ := Π⊥HΠ⊥. If
Πeff commutes with H, we can write H as the following 2× 2 matrix

H =

[
Heff −Veff,⊥
−V⊥,eff H⊥

]
. (5.5)

The Feshbach formula gives that if the resolvent exists for z ∈ C, then it can be
written as the 2× 2 matrix of operators

(H − z)−1 =

[
SW −SWV R

−RV SW R+RV SWV R

]
, (5.6)

where

R(z) := [Π⊥(H − z)Π⊥]−1 (5.7)

W (z) := −ΠeffV R(z)VΠeff (5.8)

SW (z) := (Heff +W (z)− z)−1. (5.9)

Consequently the eigenvalues ofH is exactly the points where either R(z) or SW (z)

is singular.

5.2 Application of the Feshbach Formula to Hκ

In this section, we want to use Feshbach’s formula on the operator Hκ given by
(5.1), with domain H2(R2). Before we do that, we have some general considera-
tions regarding the operator Hκ.
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It can be shown that the HVZ theorem holds for Hκ. Recall from Section 3.4 that
the HVZ theorem relates the essential spectrum of a system with infimum of the
spectrum of subsystems, where at least one particle does not interact with the rest
of the system. The possible subsystems can be represented by the operators:

H0 =− 1

2

∂2

∂x2
− 1

2

∂2

∂y2
− v(x− y)

H1 =− 1

2

∂2

∂x2
− 1

2

∂2

∂y2
− κv(y)

H2 =− 1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ κv(x)

If κ is small enough, then σess(Hκ) = [minσ(H0),∞) where minσ(H0) < 0.

We perform a change of coordinates to a center of mass frame, where the coordi-
nates are given by s = x− y and t = 1

2(x + y). The operator in (5.1) is unitarily
equivalent to the operator

Hκ = −1

4

∂2

∂t2
− ∂2

∂s2
− v(s) + κv

(
t+

1

2
s

)
− κv

(
t− 1

2
s

)
. (5.10)

Write Hκ = H0 − κV , where

H0 = −1

4

∂2

∂t2
− ∂2

∂s2
− v(s), V = v

(
t− 1

2
s

)
− v

(
t+

1

2
s

)
. (5.11)

The operator H0 is the sum of two operators with distinct variables. Then we can
write H0 as an operator on L2(R) ⊗ L2(R), where ⊗ denotes the tensor product.
We get

H0 = ht ⊗ 1 + 1⊗ hs, (5.12)

where ht = −1
4
∂2

∂t2
and hs = − ∂2

∂s2
− v(s). It can be shown that both ht and hs are

self-adjoint operators. By Theorem 3.1.3 we know that σ(ht) = [0,∞). Assume
that hs have a negative non-degenerate discrete eigenvalue denoted by −E0, with
corresponding eigenstate Ψ ∈ H2(R). The eigenstate Ψ is even, have exponential
decay and can be chosen to be strictly positive and normalized. By results in
Section XIII.9 of [Reed and Simon, 1978], we know that

σ(1⊗ hs) = σ(hs), and σ(ht ⊗ 1) = σ(ht), (5.13)

and
σ(H0) = σ(hs) + σ(ht). (5.14)

Consequently, the spectrum of H0 must be σ(H0) = [−E0,∞) and by the previous
discussion about the essential spectrum we know that σess(Hκ) = [−E0,∞).

To apply the Feshbach formula we need an orthogonal projection, which maps the
domain of Hκ to itself. Let us define the rank 1 projector on L2(R) by

P := |Ψ〉〈Ψ|, (5.15)
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Chapter 5. Perturbation Theory and the Feshbach Formula

using Dirac bracket notation. Similarly we define the projector Π := 1 ⊗ P on
L2(R)⊗ L2(R). Let Φ ∈ L2(R2), then Π acts on Φ by

[ΠΦ](s, t) = Ψ(s)

∫
Ψ(s′)Φ(s′, t) ds′. (5.16)

We prove that Π maps the domain ofHκ to itself, that Π is an orthogonal projection
and that Π commutes with H0.

Theorem 5.2.1 The projector Π = 1⊗ P maps H2(R2) to H2(R2).

Proof. Let Φ ∈ H2(R2). By the definition of Sobolev spaces in Definition A.3.2
and Plancherel’s theorem, it is enough to show that ΠΦ ∈ L2(R2) and ∆(ΠΦ) ∈
L2(R2). Applying Fubini’s theorem and the Cauchy-Schwarz inequality we get

‖ΠΦ‖2L2 =

∫∫ ∣∣∣∣Ψ(s)

∫
Ψ(s′)Φ(s′, t) ds′

∣∣∣∣2 ds dt (5.17)

≤
∫∫
|Ψ(s)|2

∣∣∣∣∫ Ψ(s′)Φ(s′, t) ds′
∣∣∣∣2 ds dt (5.18)

≤
∫ (∫

|Ψ(s′)|2 ds′
)(∫

|Φ(s′, t)|2 ds′
)

dt (5.19)

= ‖Φ‖2L2 <∞. (5.20)

Since Φ ∈ H2(R2) ⊂ L2(R2). Similarly we show that ∆(ΠΦ) ∈ L2(R2),

‖∆(ΠΦ)‖2L2 =

∫∫ ∣∣∣∣( ∂2

∂t2
+

∂2

∂s2

)
Ψ(s)

∫
Ψ(s′)Φ(s′, t) ds′

∣∣∣∣2 ds dt (5.21)

≤
∥∥Ψ′′

∥∥2

L2 ‖Φ‖2L2 +

∥∥∥∥ ∂2

∂t2
Φ(s, t)

∥∥∥∥2

L2

<∞. (5.22)

It is finite, since Φ ∈ H2(R2) and Ψ ∈ H2(R). Thus Π maps H2(R2) to H2(R2).�

Theorem 5.2.2 The operator Π = 1⊗ P is an orthogonal projection L2(R2).

Proof. We begin by showing that Π2 = Π. Let Φ ∈ L2(R2), then

[Π2Φ](s, t) = Ψ(s)

∫
Ψ(s′′)Ψ(s′′)

∫
Ψ(s′)Φ(s′, t) ds′ ds′′ (5.23)

= Ψ(s)

∫
Ψ(s′′)|2 ds′′

∫
Ψ(s′)Φ(s′, t) ds′ = [ΠΨ](s, t), (5.24)

since Ψ is normalized. It remains to show that Π is self-adjoint. Consider the
product

〈Φ,ΠΦ〉 =

∫∫
Φ(s, t)Ψ(s)

∫
Ψ(s′)Φ(s′, t) ds′ ds dt (5.25)

=

∫ (∫
Φ(s, t)Ψ(s) ds

)(∫
Ψ(s′)Φ(s′, t) ds′

)
dt = 〈ΠΦ,Φ〉, (5.26)

and we see that Π is self-adjoint, and thus an orthogonal projection. �
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Theorem 5.2.3 The operator Π commutes with H0.

Proof. Let Φ ∈ D(H0) = H2(R2). By Theorem 5.2.1 we have that Π maps D(H0)

to D(H0), and thus H0Π is an operator on D(H0). Consider

[ΠH0Φ](s, t) = Ψ(s)

∫
Ψ(s′)

(
−1

4

∂2

∂t2
− ∂2

∂s′2
− v(s′)

)
Φ(s′, t) ds′. (5.27)

We can write

Ψ(s)

∫
Ψ(s′)

(
−1

4

∂2

∂t2

)
Φ(s′, t) ds′ = −1

4

∂2

∂t2
Ψ(s)

∫
Ψ(s′)Φ(s′, t) ds′. (5.28)

Similarly, because hs = − ∂2

∂s2
− v(s) is self-adjoint and Ψ is an eigenstate of hs

belonging to the eigenvalue −E0 we get

Ψ(s)

∫
Ψ(s′)

(
− ∂2

∂s′2
− v(s′)

)
Φ(s′, t) ds′ = −E0Ψ(s)

∫
Ψ(s′)Φ(s′, t) ds′. (5.29)

From (5.27), (5.28) and (5.29) we conclude that

[ΠH0Φ](s, t) =

(
−1

4

∂2

∂t2
− E0

)
Ψ(s)

∫
Ψ(s′)Φ(s′, t) ds′ = [H0ΠΦ](s, t), (5.30)

and thus Π and H0 commutes. �

We would like to use the Feshbach formula, in Equation (5.5), to determine eigen-
values of Hκ near −E0. We let the operator Π correspond to Πeff in the Feshbach
formula, and define the operator Π⊥ := 1⊗ P⊥. It can be shown that Π⊥ is also
an orthogonal projection and commutes with H0. First we determine an inter-
val around −E0 where R(z) = [Π⊥(Hκ − z)Π⊥]−1 exists. For that we need the
following lemma.

Lemma 5.2.4 Let −E0 = minσ(hs). Then there exists z0 > 0 such that

[Π⊥(H0 − z)Π⊥]−1, (5.31)

exists and is bounded for |z + E0| < z0.

Proof. We show that there exists a z0 > 0, for which |z + E0| < z0 implies that
Π⊥(H0 − z)Π⊥ > 0. Recall that we write H0 = ht ⊗ 1 + 1 ⊗ hs. Let Φ ∈ D(H0)

and consider the product

〈Φ,Π⊥(ht ⊗ 1)Π⊥Φ〉 = 〈Π⊥Φ, (ht ⊗ 1)Π⊥Φ〉 ≥ 0. (5.32)

The first equality follows since Π⊥ is an orthogonal projection. The inequality
holds because ht ⊗ 1 is a positive operator. Similarly, we get that

〈Φ,Π⊥(1⊗ hs)Π⊥Φ〉 = 〈Π⊥Φ, (1⊗ hs)Π⊥Φ〉. (5.33)
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Chapter 5. Perturbation Theory and the Feshbach Formula

Since 1⊗ hs is a self-adjoint operator, we can use the spectral theorem to write

〈Φ, [1⊗ (hs − z)]Φ〉 =

∫
σ(hs)

(λ− z) dµΦ(λ). (5.34)

Similarly, we get that

〈Π⊥Φ,1⊗ [(hs − z)]Π⊥Φ〉 =

∫
σ(hs)

(λ− z) dµΠ⊥Φ(λ) (5.35)

=

∫
σ(hs)\{−E0}

(λ− z) dµΦ(λ), (5.36)

since Π⊥ is a projection on the orthogonal complement of the eigenspace belonging
to −E0. Define E1 := min{σ(hs) \ {−E0}}, and note that E1 ≤ 0, then

〈Π⊥Φ, [1⊗ (hs− z)]Π⊥Φ〉 ≥ (E1− z)
∫
σ(hs)\{−E0}

1dµΦ(λ) = (E1− z)‖Π⊥Φ‖ > 0,

(5.37)
for z satisfying |z + E0| < |E1+E0|

2 . Thus Π⊥(H0 − z)Π⊥ is invertible for all such
z.

We now show that the inverse is bounded aswell. Let σ(Π⊥H0Π⊥) := σ(ht) +

σ(hs)\{−E0}, and note that E1 ≤ minσ(Π⊥H0Π⊥). Then by the spectral theorem
we can write

〈Φ,Π⊥(H0 − z)Π⊥Φ〉 =

∫
σ(Π⊥H0Π⊥)

(λ− z) dµΦ(λ). (5.38)

The norm of the inverse can be calculated by

‖(Π⊥(H0 − z)Π⊥)−1Φ‖2 = 〈(Π⊥(H0 − z)Π⊥)−1Φ, (Π⊥(H0 − z)Π⊥)−1Φ〉 (5.39)

=

∫
σ(Π⊥H0Π⊥)

1

|λ− z|2
dµΦ(λ) (5.40)

≤ 1

|E1 − z|2
‖Φ‖2. (5.41)

For |z + E0| < |E1+E0|
2 we get that

‖(Π⊥(H0 − z)Π⊥)−1‖ =
1

|E1 − z|
<

2

|E1 + E0|
. (5.42)

This concludes the proof. �

We use the lemma to prove the following result.

Theorem 5.2.5 Let E1 := minσ(hs)\{−E0}, and let z satisfy |z+E0| < |E1+E0|
2 .

Then there exists C > 0 such that

[Π⊥(Hκ − z)Π⊥]−1 (5.43)

exists and is an analytic function of κ when |κ| < C.
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Proof. To simplify notation we denote by H⊥,z = Π⊥(H0 − z)Π⊥. Then we can
write

Π⊥(Hκ − z)Π⊥ = (1 + κΠ⊥VΠ⊥H
−1
⊥,z)H⊥,z. (5.44)

Taking the inverse of (5.44) we get

[Π⊥(Hκ − z)Π⊥]−1 = H−1
⊥,z(1 + κΠ⊥VΠ⊥H

−1
⊥,z)

−1. (5.45)

Equation (5.45) shows that the inverse of Π⊥(Hκ− z)Π⊥ exists if and only if H−1
⊥,z

and (1+κΠ⊥VΠ⊥H
−1
⊥,z)

−1 exists. By Lemma 5.2.4, we know that H−1
⊥,z exists and

is bounded when z satisfies |z+E0| < |E1+E0|
2 . We want to apply Theorem A.1.6,

to do that we need to show that there exists κ > 0 such that

‖κΠ⊥VΠ⊥H
−1
⊥,z‖ < 1. (5.46)

By Equation (5.42) we see that the norm

‖κΠ⊥VΠ⊥H
−1
⊥,z‖ <

|κ|2‖V ‖
|E1 + E0|

. (5.47)

The type of interactions we have chosen implies that ‖V ‖ <∞. Then we get that
(5.46) holds when

|κ| ≤ |E1 + E0|
2‖V ‖

. (5.48)

Since |E1 +E0| > 0 and ‖V ‖ <∞, we know that there exists such a κ > 0. Then
the inverse of 1 + κΠ⊥VΠ⊥H

−1
⊥,z exists and we can write it as a Neumann series

(1 + κΠ⊥VΠ⊥H
−1
⊥,z)

−1 =
∞∑
n=0

(−1)nκn(Π⊥VΠ⊥H
−1
⊥,z)

n. (5.49)

For κ satisfying (5.48), we have that

[Π⊥(Hκ − z)Π⊥]−1 =
∞∑
n=0

κnAn(z), (5.50)

where
An(z) := (−1)nH−1

⊥,z(Π⊥VΠ⊥H
−1
⊥,z)

n. (5.51)

Since we can write [Π⊥(Hκ − z)Π⊥]−1 as a power series in κ it must be analytic
in κ. �

If |z + E0| < |E1+E0|
2 and κ ≤ |E1+E0|

2‖V ‖ , then Theorem 5.2.5 and the Feshbach
formula gives that the resolvent of Hκ exists if and only if the inverse of

Π(Hκ − z)Π−ΠHκΠ⊥(Π⊥(Hκ − z)Π⊥)−1Π⊥HκΠ (5.52)

exists as an operator on ΠL2(R2).
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We will simplify or rewrite (5.52) a bit. By direct calculation, we see that

ΠVΠ = |Ψ〉
(∫

v

(
t− s′

2

)
Ψ(s′) ds′ −

∫
v

(
t+

s′

2

)
Ψ(s′) ds′

)
〈Ψ| = 0, (5.53)

since the eigenstate Ψ is even. Then we have Π(Hκ − z)Π = Π(H0 − z)Π. Ad-
ditionally, we know that Π⊥HκΠ = −κΠ⊥VΠ and ΠHκΠ⊥ = −κΠVΠ⊥, since Π

and Π⊥ commutes with H0. Using this the operator in (5.52) simplifies to

Π(H0 − z)Π− κ2ΠVΠ⊥

( ∞∑
n=0

κnAn(z)

)
Π⊥VΠ, (5.54)

where An(z) is given by (5.51). By direct calculations we can also see that

Π(H0 − z)Π = (ht − E0 − z)⊗ P. (5.55)

The operator in (5.52) can then be written as

(ht − E0 − z)⊗ P − κ2ΠVΠ⊥

( ∞∑
n=0

κnAn(z)

)
Π⊥VΠ, (5.56)

on ΠL2(R2). Thus, the only dependence on the variable s is from the eigenfunction
Ψ(s). Consequently, we can think of the operator (5.52) as a operator depending
only on the variable t.

Let z and κ be as in Theorem 5.2.5, and assume that |z + E0| > Cκ2 for some
C > 0. We want to show that the inverse of the operator in (5.56) exists for all
such z. By Theorem 3.1.3, we know that (z + E0) ∈ ρ(ht). Theorem A.2.2 gives

‖(ht − E0 − z)−1‖ ≤ 1

|E0 + z|
<

1

Cκ2
. (5.57)

Let A := (ht − E0 − z), and define

B := −ΠVΠ⊥

( ∞∑
n=0

κnAn(z)

)
Π⊥VΠ. (5.58)

Then the operator is A+ κ2B, and the inverse can be written as

(A+ κ2B)−1 = A−1(1 + κ2BA−1)−1. (5.59)

Since A−1 exists, (A + κ2B)−1 exists if ‖κ2BA−1‖ < 1. But ‖B‖ ≤ K for some
constant K > 0, and by Equation (5.57) the norm is

‖κ2BA−1‖ ≤ K

C
. (5.60)

Choosing C > K, we find that the inverse of the operator in (5.56) exists. By the
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Figure 5.1: Illustration of the area in which we look for eigenvalues

discussion above, we know a priori to look for eigenvalues of Hκ in

|z + E0| ≤ Cκ2, (5.61)

for some C > 0. The situtation is illustrated in Figure 5.1. We can write the
operator in (5.56) as

− 1

4

∂2

∂t2
− E0 − z − κ2ΠVΠ⊥A0(−E0)Π⊥VΠ +O(κ4), (5.62)

since the error we get by using −E0 instead of z in the sum (5.49) is of order κ2.
Finally, by using the definition of An(z) we see that the operator in (5.52) can be
expressed as

− 1

4

∂2

∂t2
− E0 − z − κ2ΠVΠ⊥[Π⊥(H0 + E0)Π⊥]−1Π⊥VΠ +O(κ4). (5.63)

Let us define by B0 := −1
4
∂2

∂t2
− E0 and

B1 := ΠVΠ⊥[Π⊥(H0 + E0)Π⊥]−1Π⊥VΠ. (5.64)

Then the operator in (5.63) is B0 − κ2B1 + O(κ4). We can consider the term
O(κ4) as a perturbation of the operator B0 − κ2B1. In the next section we use
the Birman-Schwinger principle to show that B0 − κ2B1 has an eigenvalue in the
interval [−E0 − Cκ2,−E0).

5.3 Eigenvalues of B0 − κ2B1 in [−E0 − Cκ2,−E0)

In this section, we use something called the Birman-Schwinger principle to show
that the operator B0 − κ2B1 has an eigenvalue in the interval [−E0 − Cκ2,−E0).
Furthermore, we show that the leading behavior of the eigenvalue is κ4. For
information on the Birman-Schwinger principle, we refer to [Simon, 1971]. The
approach we take in this section is quite similar to that of Section 4.2.
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Note that the operator B1 in (5.64) can be written as B1 = W ∗W , where

W = [Π⊥(H0 + E0)Π⊥]−
1
2 Π⊥VΠ. (5.65)

This leads to the first result of this section.

Theorem 5.3.1 Let B0 − κ2B1 be the operator defined in the Section 5.2, and
write B1 = W ∗W , where W is given by (5.65). Then E ∈ [−E0 − Cκ2,−E0) is
an eigenvalue of B0 + κ2B1 if and only if

1− κ2W (B0 − E)−1W ∗ (5.66)

is singular.

Proof. Let E ∈ [−E0 − Cκ2,−E0), and write

B0 − κ2B1 − E = (1− κ2B1(B0 − E)−1)(B0 − E). (5.67)

The operator (B0 − E)−1 exists, since E ∈ ρ(B0). Then

(B0 − κ2B1 − E)−1 = (B0 − E)−1(1− κ2B1(B0 − E)−1)−1. (5.68)

Thus E is an eigenvalue of B0−κ2B1 if and only if 1−κ2B1(B0−E)−1 is singular.
Using similar calculations as in the previous section, we could show that κ can be
choosen sufficiently small, such that

κ2‖B1(B0 − E)−1‖ < 1. (5.69)

Then we expand in a Neumann series and find

1− κ2B1(B0 − E)−1 =
∞∑
n=0

(−1)n[κ2B1(B0 − E)−1]n. (5.70)

Inserting (5.70) in (5.68) and using that B1 = W ∗W , we rewrite (5.68) in a similar
fashion to what we did in Section 4.2 to get

(B0 − κ2B1 − E)−1 = (B0 − E)−1 − κ2(B0 − E)−1W ∗

×
[
1− κ2W (B0 − E)−1W ∗

]−1
W (B0 − E)−1. (5.71)

Consequently, we know that E ∈ [−E0−Cκ2,−E0) is an eigenvalue of B0 +κ2B1,
if and only if

1− κ2W (B0 − E)−1W ∗ (5.72)

is singular. �

The relation between the singularity of (5.66) and the eigenvalues of B0− κ2B1 is
what is typically called the Birman-Schwinger principle. In the next result we use
the Birman-Schwinger principle and Feshbachs formula to determine the eigenvalue
of B0 − κ2B1.
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Theorem 5.3.2 Let B0−κ2B1 be the operator defined in the Section 5.2 and write
B1 = W ∗W , where W is given by (5.65). Assume that the integral kernel of W
satisfies

W (t, t′) ≤ C0e
−|t|e−|t

′|, C0 > 0. (5.73)

Then B0 − κ2B1 has an eigenvalue E ∈ [−E0 − Cκ2,−E0).

Proof. By Theorem 5.3.1, we can determine the eigenvalues E of B0 − κ2B1 in
[−E0 − Cκ2,−E0) by considering when the operator in (5.66) is singular.

Define E′ := E0 + E < 0, then there exists λ ∈ C with Imλ > 0 and Reλ = 0

such that E′ = λ2. Then we cam write (5.66) as

1− 4κ2W

(
− ∂2

∂t2
− 4λ2

)−1

W ∗. (5.74)

The integral kernel of the free resolvent in one-dimension is given by

G0(x, y, λ) =
1

2|λ|
e−|λ||x−y|. (5.75)

From similar considerations as in the proof of Theorem 4.2.3, we can show that
the operator in (5.74) has an integral kernel given by

1− κ2

|λ|

∫∫
W (t, x)e−2|λ||x−y|W (y, t′) dx dy. (5.76)

We want to determine the values, for which the integral kernel is zero. To do this,
we use the following identity to rewrite the integral kernel

e−s = 1− s
∫ s

0
e−t dt. (5.77)

Inserting (5.77) in (5.76) we get

1− κ2

|λ|

∫∫
W (t, x)W (y, t′) dx dy + κ2B3(|λ|, t, t′), (5.78)

where

B3(|λ|, t, t′) := 2

∫∫
W (t, x)

∫ |x−y|
0

e−2|λ|sW (y, t′) ds dy dx. (5.79)

We would like to apply Feshbachs formula to (5.78). To do this, we need an
orthogonal projection operator. We define the rank-1 projection P , which acts on
φ ∈ L2(R) by

1

K

∫
W (t, x) dx

∫ (∫
W (y, t′) dy

)
φ(t′) dt′, (5.80)

where K is the constant given by

K :=

∫ (∫
W (t, x) dx

)(∫
W (y, t) dy

)
dt. (5.81)
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Then the integral kernel in (5.78) is

1− κ2K

|λ|
P + κ2B3(|λ|, t, t′). (5.82)

It is easy to show that P is actually an orthogonal projection, and so it can be
used with Feshbachs formula. Defining P⊥ := 1− P , we see that

P⊥

(
1− κ2K

|λ|
P + κ2B3(|λ|, t, t′)

)
P⊥ = P⊥(1 + κ2B3(|λ|, t, t′))P⊥ (5.83)

We show that the right-hand side is invertible. By the Schur test in Theorem 4.1.1,
we have

‖κ2B3(|λ|, t, t′)‖ ≤ 2κ2 sup
t′∈R

∫
B3(|λ|, t, t′) dt (5.84)

≤ 2κ2 sup
t′∈R

∫∫∫ ∣∣∣∣∣W (t, x)

∫ |x−y|
0

e−2|λ|sW (y, t′) ds

∣∣∣∣∣ dx dy dt.

We use the following identity to rewrite (5.84),∫ x

0
e−s ds = 1− e−x ≤ x. (5.85)

Applying the identity to (5.84), we find

‖κ2B3(|λ|, t, t′)‖ ≤ 2κ2 sup
t′∈R

∫∫∫
W (t, x)(|x|+ |y|)W (y, t′) dx dy dt. (5.86)

Using the assumption about the behavior of W (t, t′) from (5.73), we get

‖κ2B3(|λ|, t, t′)‖ ≤ 2κ2C2

∫∫∫
e−|t|e−|x|(|x|+ |y|)e−|y| dx dy dt (5.87)

= 32κ2C2, C > 0. (5.88)

Consequently, we can choose κ such that the right-hand side of (5.83) is invertible.
Then Feshbachs formula gives that the values for which (5.74) is singular, is the
E′ = λ2 which satisfies

1− κ2K

|λ|
+ κ2B3(|λ|, t, t′) +O(κ4) = 0, (5.89)

where the term O(κ4) term corresponds to W (z) defined in (5.8). Multiplying by
|λ| we find

|λ| − κ2K + κ2|λ|B3(|λ|, t, t′) +O(κ4, |λ|) = 0. (5.90)

Let us define the function

F
(
λ, κ2

)
:= λ− κ2K + κ2λB3(λ, t, t′) +O(κ4, λ). (5.91)
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We want to use the implicit function theorem, Theorem 9.28 in [Rudin, 1976], on
F(λ, κ2). Note that F(0, 0) = 0. To apply the implicit function theorem we need
to show that F ∈ C1, and that

∂F(λ, κ2)

∂λ

∣∣∣∣
κ2=0,λ=0

6= 0, and
∂F(λ, κ2)

∂κ2

∣∣∣∣
κ2=0,λ=0

6= 0. (5.92)

It is obvious that the first order partial derivatives exists, and that (5.92) holds.
By considering B3(λ, t, t′) and the remainder term O(κ4, λ), we could show that
the second order partial derivatives exists, and thus F ∈ C1. The implicit function
theorem implies that there exists an open subset about (0, 0), where

λ = κ2K − κ2λB3(λ, t, t′)−O(κ4, λ). (5.93)

Squaring both sides, and taking λ2 = E′ shows that (5.74) is singular for an
E′ ∈ [−Cκ2, 0), and thus there exist an eigenvalue E ∈ [−E0 − Cκ2,−E0) of
B0 − κ2B1. �

We have a few remarks to the previous theorem and proof.

The first remark is that the assumption in (5.77) is stronger than necessary. What
is actually needed, is simply that the decay of W (t, t′) allows choosing a κ such
that

‖κ2B3(
√
E′, t, t′)‖ < 1. (5.94)

Additionally, we have not actually shown that such a decay property hold for the
integral kernel of W , where W is given by (5.65). But we expect that this indeed
is the case.

The second remark is that Equation (5.93) implies that the eigenvalue E of B0 −
κ2B1 behaves like O(κ4). Unfortunately this has the consequence that we cannot
be sure the operator B0 − κ2B1 + O(κ4) has an eigenvalue with behavior O(κ4),
since the error term is O(κ4) aswell. To solve this problem we return to the
operator in (5.56), recall that it is given by

B0 − z − κ2ΠVΠ⊥

( ∞∑
n=0

κnAn(z)

)
Π⊥VΠ, (5.95)

where B0 = −1
4
∂2

∂t2
−E0. We still know that any eigenvalue E of Hκ must atleast

satisfy −E0 − Cκ2 ≤ E < −E0, for some constant C > 0. So we write

B0 − z − κ2ΠVΠ⊥ (A0(z)) Π⊥VΠ +O(κ5). (5.96)

Writing
A0(z) = A0(−E0) + (z + E0)Ã0(−E0, z), (5.97)
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where Ã0(−E0, z) is an operator determined by expanding A0(z) around z = −E0.
The operator in (5.96) is

B0 − z − κ2B1 +O(κ2(z + E0)) +O(κ5). (5.98)

But we have already determined that the eigenvalue E of B0 − κ2B1 behaves like
O(κ4). Thus, for z = E in (5.98), we find

B0 − z − κ2B1 +O(κ6) +O(κ5) = B0 − z − κ2B1 +O(κ5). (5.99)

Now the eigenvalue cannot be cancelled by the error term, since that term now
behaves like O(κ5). Finally, we conclude that the original system represented
by Hκ in (5.1) has a discrete eigenvalue in the interval [−E0 − Cκκ

4,−E0) for
sufficiently small κ and a constant Cκ > 0.
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Chapter 6

Recapitulation

The thesis is concluded by a short recapitulation of the work done during the
project and some suggestions for future work.

In Chapter 2 a Schrödinger operator describing the systems consisting of three
particles with Dirac delta interactions was constructed, and the domain of the
operator was described in detail. This served as the foundation for a study of the
essential spectrum of the operator, which was determined using the HVZ theorem
in Chapter 3. In Chapter 4 preliminary results for the determination of the exis-
tence of discrete eigenvalues of the system was shown. The actual determination of
any discrete eigenvalues was abandoned after it was suggested we consider pertur-
bation theory for the system in Chapter 5 instead. In Chapter 5 a system, which
might be interpreted as an exciton in the vicinity of a positively charged nucleus
in a one-dimensional semi-conductor, was considered. The existence of a discrete
eigenvalue of the perturbed system was shown. Furthermore, the behavior of the
eigenvalue as a function of the coupling constant κ was shown to be O(κ4). The
existence and the behavior of the eigenvalue were shown under the assumption of
certain decay properties, as mentioned at the end of Section 5.3.

6.1 Future Work

Due to the time constraint it was not possible to adress all the problems that was
encountered in the project. These problems could be addressed in future work.
The first obvious problem would be to show whether the integral kernel of (5.65)
actually does satisfy the decay conditions that was assumed. And if it does not
satisfy these decay conditions, then decide whether another type of interaction v
could be chosen such that integral kernel does satisfy the decay conditions. It would
also be interesting to try and show the existence and the behavior of a discrete
eigenvalue in the case where the system has Dirac delta particle interactions.
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Appendix A

Miscellaneous Results

In this appendix we have collected results and definitions, which are used through-
out the report. The results are mainly included to keep the report as self-contained
as possible. Some of the results are stated without proof, but references to books or
papers containing proofs will be supplied. Most of the results are from [Kreyszig,
1978], [Reed and Simon, 1980] and [Reed and Simon, 1975].

A.1 Operator on Hilbert Spaces

In this section we present relevant results about unbounded operators on Hilbert
spaces, and argue why they are to be defined on dense subspaces. We begin by
defining the adjoint of a possible unbounded operator.

Definition A.1.1
Let T be an operator in H, where H is a complex Hilbert space, with D(T ) dense
in H. Let D(T ∗) be the set of y ∈ H such that there exists y∗ ∈ H which satisfies

〈y, Tx〉 = 〈y∗, x〉, ∀x ∈ D(T ). (A.1)

Then T ∗, the adjoint operator of T , is the operator which satisfies T ∗y = y∗ for
y ∈ D(T ∗).

We state the following theorem.

Theorem A.1.2 Let H be a Hilbert space, and Y a closed subspace of H. Then

H = Y ⊕X, (A.2)

where X = Y ⊥.

Proof. A proof is available in Theorem 3.3-4 in [Kreyszig, 1978]. �
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Note, that the adjoint operator is only defined for operators which are densely
defined in H, there is an important reason for this choice of definition. For T ∗ to
be a well defined operator we must have that y∗ is unique for each y ∈ D(T ∗).

Theorem A.1.3 Let T be an unbounded operator, and let T ∗ be the adjoint of T .
Then T ∗ is a well defined operator, if and only if D(T ) is dense in H.

Proof. Assume that D(T ) is not dense in H. Then D(T ) 6= H, and by Theorem
A.1.2 there exists a nonzero element y0 ∈ H such that 〈y0, x〉 = 0 for all x ∈ D(T ).
But then

〈y∗, x〉 = 〈y∗, x〉+ 〈y0, x〉 = 〈y∗ + y0, x〉, (A.3)

and T ∗ is not well defined.

Conversely assume that D(T ) is dense in H. Then 〈x, y0〉 = 0 for all x ∈ D(T )

implies that y0 = 0, and we have that y∗ is unique and T ∗ is well defined. �

We now give the definition of a densely defined self-adjoint operator.

Definition A.1.4
Let T : D(T ) → H be a linear operator, and let D(T ) be dense in H. Then T is
said to be self-adjoint if D(T ) = D(T ∗) and Ty = T ∗y for all y ∈ D(T ).

Now follows a few results regarding bounded operators. The first of these results is
Riesz representation theorem. The Riesz representation theorem is used especially
in Chapter 2.

Theorem A.1.5 (Riesz Representation) Let H1 and H2 be Hilbert spaces, and
Q : H1 ×H2 → C a bounded sesquilinear form. Then Q has a representation as

Q(x, y) = 〈x, Sy〉, (A.4)

where S : H2 → H1. The operator S is uniquely defined by Q, and has norm
‖S‖ = ‖Q‖.

Proof. A proof is available in Theorem 3.8-4 in [Kreyszig, 1978]. �

The next result regards the inverse of a bounded operator.

Theorem A.1.6 Let T : H → H, where H is a Banach space. Assume that T is
bounded. If ‖T‖ < 1, then (1 − T )−1 as a bounded operator on all of H, and can
be expanded in a Neumann series, as

(1− T ) =
∞∑
j=0

T j . (A.5)

Proof. A proof is available in Theorem 7.3-1 in [Kreyszig, 1978]. �
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A.2 Spectrum, Spectral Theorem and Resolvent
Properties

In this section we present various results regarding the spectrum, the spectral
theorem and the resolvent operator.

The following equation is called the first resolvent equation. Let A be a linear
operator, and let z, w ∈ ρ(A). Then the first resolvent equation is

RA(z)−RA(w) = (z − w)RA(z)RA(w), (A.6)

where RA(z) is the resolvent of A.

Theorem A.2.1 (Spectral Theorem) Let A be a self-adjoint operator. Then
there exists a unique projection-valued measure PA such that

A =

∫
R
λ dPA(λ). (A.7)

If f(·) is a real-valued measurable function on R, then f(A) defined by

f(A) =

∫ ∞
−∞

f(λ) dPA(λ), (A.8)

is a self-adjoint operator on

Df =

{
φ :

∫ ∞
−∞
|f(λ)|2 d(φ, PA(λ)φ) <∞

}
. (A.9)

Proof. A thorough proof of the spectral theorem is given in Chapter VII and in
Section VIII.3 in [Reed and Simon, 1980]. �

Equation (A.8) is to be understood as the operator defined by the form

〈φ, f(A)φ〉 =

∫
σ(A)

f(λ) d(φ, PA(λ)φ). (A.10)

We will sometimes write d(φ, PA(λ)φ) = dµφ(λ) for the spectral measure. From
the spectral theorem we can get a bound for the operator norm of the resolvent.

Theorem A.2.2 Let A be a self-adjoint operator on a Hilbert space H, and let
z ∈ ρ(A). Then

‖(A− z)−1‖ ≤ 1

dist(z, σ(A))
, (A.11)

where dist(z, σ(A)) = infx∈σ(A) |z − x|.
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Proof. Consider a self-adjoint operator A on H, and let z ∈ ρ(A). If ψ ∈ H, then

‖(A− z)−1ψ‖2 = 〈(A− z)−1ψ, (A− z)−1ψ〉 = 〈ψ, (A− z)−2ψ〉, (A.12)

since the resolvent operator of a self-adjoint operator is self-adjoint. The spectral
theorem gives

〈ψ, (A− z)−2ψ〉 =

∫
σ(A)

1

|λ− z|2
dµψ(λ) (A.13)

≤ sup
λ∈σ(A)

1

|λ− z|2

∫
dµψ(λ) (A.14)

= sup
λ∈σ(A)

1

|λ− z|2
‖ψ‖2. (A.15)

Consequently ‖(A− z)−1‖2 ≤ supλ∈σ(A)
1

|λ−z|2 . Which concludes the proof. �

An obvious corollary to the previous theorem is

Theorem A.2.3 Let A be a self-adjoint operator on a Hilbert space H, and let
z = x+ iy ∈ C. If y 6= 0 then

‖(A− z)−1‖ ≤ 1

|y|
(A.16)

We now state Stone’s formula which we will use to prove the HVZ theorem and
the Helffer-Sjöstrand formula.

Theorem A.2.4 (Stone’s Formula) Let A be a self-adjoint operator on a Hilbert
space H. Then

1

2
(PA([a, b]) + PA((a, b))) = s-lim

ε↓0

1

2πi

∫ b

a
[RA(λ− iε)−RA(λ+ iε)] dλ. (A.17)

Proof. A proof is available in Theorem VII.13 in [Reed and Simon, 1980]. �

By the Spectral theorem and Stone’s formula we can write

f(A) = s-lim
ε↓0

1

2πi

∫ b

a
f(λ) [RA(λ− iε)−RA(λ+ iε)] dλ, (A.18)

for a real measurable function on [a, b].

Theorem A.2.5 Let A be a self-adjoint operator on a Hilbert space H, and let
PA be the corresponding projection-valued measure given by the spectral theorem.
Then the spectrum of A is given by

σ(A) = {λ ∈ R : PA((λ− ε, λ+ ε) 6= 0), ∀ε > 0}. (A.19)
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The previous theorem motivates the decomposition of the spectrum into a discrete
spectrum and an essential spectrum, which are defined in the following definition.

Definition A.2.6
Let A be a self-adjoint operator. The discrete spectrum σd(A) is the set

σd(A) = {λ ∈ σ(A) : ∃ε > 0, s.t. rankPA((λ− ε, λ+ ε)) <∞} . (A.20)

By rank we mean the dimension of the range. The essential spectrum is defined to
be σess(A) = σ(A) \ σd(A).

By the definition of the discrete spectrum, it is obvious that the essential spectrum
must be equal to the set

σess(A) = {λ ∈ σ(A) : rankPA((λ− ε, λ+ ε)) =∞, ∀ε > 0} . (A.21)

A.3 Function Spaces

In this section multi-index notation is used. Multi-index notation is described on
p. 133 in [Reed and Simon, 1980]. We introduce the Schwartz space and the space
of tempered distributions.

Definition A.3.1
Let f : Rn → C and f ∈ C∞. Define the seminorm

‖f‖α,β ≡ sup
x∈Rn

|xαDβf(x)|. (A.22)

The Schwartz space on Rn is the space of functions

S (Rn) =
{
f ∈ C∞ : ‖f‖α,β <∞ ∀α, β ∈ In+

}
, (A.23)

where In+ is the set of n-tuples of nonnegative integers. The Schwartz space is also
called the space of rapidly decreasing functions.

The dual space of S (Rn), which is denoted by S ′(Rn), is called the space of
tempered distributions.

Next we introduce Sobolev spaces and the Sobolev embedding theorem. The
Sobolev spaces are introduced since the domain of the Schrödinger operators we
consider are Sobolev spaces.

Definition A.3.2
Let f ∈ S ′(Rn). Then f is said to be in the m’th Sobolev space if f̂ is measurable
and

‖f‖2Hm =

∫
Rn

(1 + |k|2)m|f̂(k)|2 dk <∞. (A.24)

The m’th Sobolev space on Rn is denoted by Hm(Rn).
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Note that f ∈ Hm(Rn) is equivalent to (1 + |k|2)m/2f̂ ∈ L2(Rn). The following
theorem gives an alternative definition of the Sobolev spaces.

Theorem A.3.3 Let m ∈ N, then f ∈ Hm(Rn) if and only if Dα(f) ∈ L2(Rn)

for all |α| ≤ m.

Proof. Assume that f ∈ Hm(Rn) for some m ∈ N. We have that Dα(f) = (ik)αf̂

for all f ∈ S ′(Rn). If |α| ≤ m then (ik)αf̂ ∈ L2(Rn) by the definition of the
Sobolev spaces. By Plancherel’s theorem we have that Dα(f) ∈ L2(Rn) for all
|α| ≤ m.

Conversely, assume that Dα(f) ∈ L2(Rn) for all |α| ≤ m. Then (ik)αf̂ ∈ L2(Rn)

by Plancherel’s theorem. But then f ∈ Hm(Rn). �

Note that Dα(f) is in the sense of distributions.

The next result regarding Sobolev spaces is called Sobolev’s Lemma and is a special
case of Sobolev’s embedding theorem.

Theorem A.3.4 (Sobolev’s Lemma) Let f ∈ Hm(Rn), where m > n/2. Also
let l ∈ N0 satisfy l < m− n/2. Then f ∈ C l(Rn).

Proof. We prove the theorem for n = 1 to simplify notation, then m > 1/2. Since
f ∈ Hm(R) we have that

(1 + |k|2)m/2f̂(k) ∈ L2(R). (A.25)

We also know that (1 + |k|2)−1/4−ε ∈ L2(R) for all ε > 0. Thus from the Hölder
inequality we have that

(1 + |k|2)m/2−1/4−εf̂(k) ∈ L1(R). (A.26)

This implies that for all 0 ≤ α ≤ l we have the inequality

|kαf̂(k)| ≤ |k|l(1 + |k|)−m/2+1/4+εG(k), (A.27)

for some g(k) ∈ L1(R). Actually g(k) = (1 + |k|2)m/2−1/4−εf̂(k). Since we can
choose ε > 0 such that l < m− 1/2− 2ε we see that

|k|l(1 + |k|2)−m/2+1/4+ε ≤ C, (A.28)

for some constant C > 0. Then kαf̂(k) ∈ L1(R) for all 0 ≤ α ≤ l.

Suppose that l = 0, then we just have to show that f is continuous. But

f(x) =
1√
2π

∫
eikxf̂(k) dk, (A.29)
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and it follows from Lebesgue’s dominated convergence theorem that

f(x+ h)− f(x) =
1√
2π

∫
eikx(eikh − 1)f̂(k) dk (A.30)

goes toward zero for h→ 0.

Suppose instead that l ≥ 1. Then

f(x+ h)− f(x)

h
=

1√
2π

∫
eikx

h
(eikh − 1)f̂(k) dk (A.31)

=
1√
2π

∫
eikx

h
(eikh − 1 + ikh− ikh)f̂(k) dk

=
1√
2π

∫
eikx

h
(eikh − 1− ikh)f̂(k) dk +

1√
2π

∫
eikxikf̂(k) dk

But by Lebesgue’s dominated convergence theorem we have that the first term in
the final equality goes to zero. We see that f ∈ C1. To show that f ∈ C l we
note that (1 + |k|l)|f̂(k)| ∈ L1(R) and we can repeat the process of showing the
existence of a derivative l times. �

We also have a need for the next result in Chapter 2.

Theorem A.3.5 Let Ω be an arbitrary open subset of Rd. Then C∞(Ω) ∩Hs(Ω)

is dense in Hs(Ω).

Proof. We refer to the proof of proposition 2.12 in [Demengel and Demengel,
2007]. �
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