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Abstract:

The organisation of neurons in the

human cerebral cortex is a greatly

discussed subject that has been

linked to various neurological dis-

eases. It is generally accepted by bi-

ologists that neurons are organised

in minicolumns, but only few statis-

tical analyses have been conducted

in attempt to verify this. We inves-

tigate this organisation by analysing

a marked point pattern consisting

of pyramidal cells’ three-dimensional

nucleolus locations and orientation.

The thesis has a hierarchical struc-

ture beginning with an introduction

to the minicolumn hypothesis and

the data. This is followed by an anal-

ysis of the ground point pattern in

which we find, that the Strauss hard-

core point process suitably models

the nucleolus locations. To model

the marked point pattern in rela-

tion to the hypothesised minicolumn

structure we introduce a new sum-

mary statistic which accounts for the

points’ orientation. This and other

summary statistics are used to test

for independent marking, which does

not seem to be a suitable model. We

finish the thesis with a discussion.

The content of this report is freely available, but publication (with reference) may only be

pursued due to agreement with the authors.
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Preface

This master’s thesis is an extension of the project Christensen and Christof-

fersen (2015), written by this project group during their 8th semester. Chris-

tensen and Christoffersen (2015) deal with analysing the unmarked points of

a marked point pattern, which describes the nucleolus locations (points) and

the orientations (marks) of pyramidal cells in the human cerebral cortex. This

thesis extends the analysis of the unmarked point pattern in chapter 2 and

analyses the marked point pattern in chapter 3. The treatment of unmarked

point processes in chapter 2 provides a stronger theoretical background than

Christensen and Christoffersen (2015) and focuses on theory that improves the

analysis. Specifically, this involves Palm distributions (section 2.2), Strauss

hardcore point processes (section 2.3.2), the cylindrical K-function (section

2.4.2) and global envelopes (section 2.4.3). In chapter 3 we initially introduce

the most basic definitions, models and properties for marked point processes.

We then generalise Palm distributions to the case of marked point processes,

which in turn works as a solid theoretical foundation to introduce different

functional summary statistics. To investigate the minicolumn hypothesis we

introduce the modified (mark-weighted) cylindrical K-function, which is par-

ticularly useful for detecting columnar structures in the case of directional

marks.

We like to thank our supervisor professor Jesper Møller for his guidance and

exceptional ability to always understand and push our limits. Furthermore,

we are grateful to professor Jens R. Nyengaard and CSGB for supplying the

data.

Aalborg University, June 10, 2016

Heidi Søgaard Christensen

hsch11@student.aau.dk

Andreas Dyreborg Christoffersen
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Danish abstract

Dette speciale er skrevet i forlængelse af projektet Christensen and Christof-

fersen (2015), som blev udarbejdet i forbindelse med vores 8. semester. Chris-

tensen and Christoffersen (2015) analyserer de umærkede punkter fra et mær-

ket punktmønster, som beskriver nukleoleplaceringen samt orienteringen af

pyramideceller i et menneskes hjernebark. I begge projekter undersøges organ-

iseringen af neuroner i menneskets hjerne, som biologer generelt har accepteret

som værende arrangeret i blandt andet minisøjler med en diameter p̊a 35-60µm

best̊aende af 80-100 neuroner. Der er dog kun lavet f̊a statistiske analyser

vedrørende denne organisering. I dette speciale udvider vi analysen for det

umærkede punktmønster præsenteret i Christensen and Christoffersen (2015)

og analyserer yderligere det mærkede punktmønster. Under uafhængighed

mellem punkter og mærker er der en naturlig hierarkisk struktur i analysen,

hvor først punkterne og dernæst mærkerne modelleres. I kapitel 2 præsenterer

vi kort de mest nødvendige definitioner og egenskaber fra Christensen and

Christoffersen (2015). Herudover introducerer vi Palm-fordelinger, Strauss

hardcore punktprocesser, den cylindriske K-funktion samt globale envelopes,

som er inkluderet for at give en stærkere teoretisk baggrund samt forbedre anal-

ysen fra Christensen and Christoffersen (2015). Vi finder at Strauss hardcore

punktprocessen er en passende model til at modellere nukleoleplaceringerne

for pyramidecellerne. I kapitel 3 præsenterer vi basale definitioner, modeller

og egenskaber for mærkede punktprocesser. Særligt interessant er indepen-

dent marking, som er den mest simple model. Herefter generaliserer vi teorien

om Palm-fordelinger til tilfældet med mærkede punktprocesser, hvilket giver en

stærk baggrund for at præsentere mærke-korrelationsfunktionen og det mærke-

vægtede K-mål, som er summary statistics for mærkede punktprocesser. Til at

undersøge minisøjlehypotesen har vi yderligere præsenteret den modificerede

cylindriske K-funktion, som er en modificering af det mærke-vægtede K-mål,

hvor struktur elementet er en cylinder hvis retning varierer over mærkerne. I

dataanalysen for det mærkede punktmønster tilpasser vi en independent mark-

ing model, hvor punkterne modelleres ved Strauss hardcore modellen fra afsnit

2.5.2 og tætheden for mærkerne er bestemt ud fra et kerneestimat. Vi finder at

independent marking ikke er en passende model. Vi afslutter med en diskus-

sion om hvilke fremgangsmåder, der vil være relevante for fremtidige analyser.
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Chapter 1

Introduction

We begin this master’s thesis with an introduction to the problem, data and

previous achievements. This will set the framework and give the reader an

understanding of the goal and leitmotif of the thesis.

The organisation of neurons in the mammalian brain is a widely discussed

subject in neurology and is suspected to be associated with multiple psycho-

logical and neurological diseases, such as schizophrenia, Alzheimer’s disease,

autism and Down’s syndrome (Rafati et al., 2016, and references therein). The

minicolumn hypothesis states that the neurons in the human cerebral cortex

are radially organised in columns perpendicular to the pial surface of the brain.

This hypothesis is generally accepted among neurologists, and each column is

said to have a diameter of 35-60µm and contain 80-100 neurons. However,

only few statistical analyses have been conducted and most of which are based

on two-dimensional unmarked point patterns. Rafati et al. (2016) analyse a

three-dimensional unmarked point pattern describing pyramidal cells’ nucleo-

lus locations and find the existence of minicolumns plausible without a priori

assuming so. They analyse the organisation by fitting a Poisson line clus-

ter point process and applying the cylindrical K-function, both presented by

Møller et al. (2016).

We shall analyse the neural organisation by considering a marked point

pattern supplied by CSGB. The provided data contains three-dimensional co-

ordinates of nucleoli and apexes for pyramidal cells found in a sample from

the third layer of Brodmann area four in the cerebral cortex of a human brain.

We initially treated the marks as the three-dimensional vectors pointing from

the nucleoli to their corresponding apex. However, regular dialogue with pro-

fessor Jens R. Nyengaard, who is a member of CSGB, revealed that the length

between nucleolus and apex had no biological meaning. Hence, the marks

should be treated as directional vectors (i.e. unit vectors) indicating the cells’

orientation. Unfortunately, this misunderstanding was first discovered in May

after multiple analyses had already been conducted. Therefore, parts of the

analysis have been performed under the false presumption that the observed
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apex location in itself has a biological meaning. In chapter 2 we analyse both

the nucleolus and apex locations which is not sensible after the aforementioned

discovery.

In Christensen and Christoffersen (2015) only the unmarked points were

regarded. We found that this was a regular point pattern and, by extension,

three models were proposed: The Matérn hardcore point processes of type I

and II and the Gibbs hardcore point process (described as the Strauss pro-

cess with the interaction parameter fixed as 0). All the models consisted of

two parameters; one being the hardcore distance and the other describing the

intensity. It was shown that both of the parameters in the Gibbs hardcore pro-

cess had a maximum profile pseudolikelihood estimate that could be expressed

in closed form. However, the expression of the intensity parameter could not

be easily evaluated and thus grid approximations was used. Since the Matérn

processes are not described by a density, different methods for minimising the

contrast function based on the summary function, K, were suggested for pa-

rameter estimation. To compare the point pattern to the suggested models,

non-parametric estimates of several functional summary statistics along with

pointwise envelopes were used. Christensen and Christoffersen (2015) found

that neither of the three models suitably described the data.
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Chapter 2

Point processes

In this chapter we introduce basic concepts of unmarked spatial point pro-

cesses and use the theory to analyse the nucleolus and apex locations. Some of

the theory is already introduced in Christensen and Christoffersen (2015), but

is included in this thesis in order to make it more self-contained. In section

2.1 basic definitions and properties of spatial point processes are presented,

and in section 2.2 the reduced Palm distribution is described. The Poisson,

Strauss and Strauss hardcore point processes, which are models for analysing

spatial point patterns, are introduced in section 2.3. Some of the most popu-

lar summary statistics used for preliminary analysis and model validation are

described in section 2.4 along with the cylindrical K-function and the con-

cept of global envelopes. Out of all the theory presented in this chapter the

theory on Palm distributions, Strauss hardcore point processes, the cylindri-

cal K-function and global envelopes have not been treated in Christensen and

Christoffersen (2015). We end this chapter in section 2.5 with an analysis of

the nucleolus and apex locations.

2.1 Basic definitions and properties

A spatial point process is a mathematical model used to describe a random

point pattern. Loosely speaking, a point process is a random countable subset

of some space. In order to give a more precise definition of a (locally finite)

point process we first need to introduce some notation. Let S be a complete

separable metric space equipped with a Borel σ-algebra B. Define n(x) to be

the cardinality of x ⊆ S, letting n(x) =∞ if x is not finite. Let xB denote the

restriction of a point configuration x to some set B ∈ B. Then x is said to be

locally finite if n(xB) < ∞ for all bounded sets B ∈ B. We denote the set of

all locally finite point configurations on S by Np,lf, i.e.

Np,lf = {x ⊆ S : n(xB) <∞ for all bounded B ∈ B}

3



and equip it with the σ-algebra

Np,lf = σ({x ∈ Np,lf : n(xB) = m} : B ∈ B is bounded,m ∈ N0)

for N0 = {0} ∪ N, where N = {1, 2, . . . }. A strict definition of a point process

can then be formulated as follows.

Definition 2.1.1. A locally finite point process X defined on S is a measurable

mapping on a probability space (Ω,F , P ) taking values in (Np,lf,Np,lf). The

distribution PX of X is given by PX(F ) = P ({ω ∈ Ω : X(ω) ∈ F}) = P (X ∈
F ) for F ∈ Np,lf.

Even though a point process can be considered on any complete separable

metric space S, we will restrict ourselves to the case where S ⊆ Rd (i.e. the

d-dimensional Euclidean space) for d ≥ 1, which covers most applications.

Specifically, for the pyramidal cell data d = 3. Furthermore, only simple point

processes will be considered, i.e. point processes that with probability one has

no coinciding points. For treatment of point processes in a more general set-up

we refer to Daley and Vere-Jones (2002).

For ease of readability most measure theoretical wording or notation will be

omitted hereinafter. Particularly, it will not be explicitly written whenever a

subset is an element of a certain σ-algebra, e.g. B ⊆ S will actually mean B ∈
B. Similarly, whenever talking about a function, it is implicitly assumed that

measurability wrt. the appropriate σ-algebra is fulfilled. We shall furthermore

abuse notation and write x\ξ instead of x\{ξ}, x ∪ ξ instead of x ∪ {ξ}, etc.

For a point process X on S define

N(B) = n(XB)

for Borel sets B ⊆ S, where XB denotes the restriction of X to B. That is

N(B) is the random number of points from X falling in B. The void probability

is defined by νp(B) = P (N(B) = 0) for bounded Borel sets B ⊆ S. It

can be shown (under mild conditions) that a simple point process is uniquely

determined by its void probabilities (see page 35 in Daley and Vere-Jones,

2008).

Definition 2.1.2. Define the intensity measure by µp(B) = E [N(B)] for

B ⊆ S Borel. If there exists a function ρ such that

µp(B) =

∫
B

ρ(ξ)dξ

for all Borel sets B ⊆ S, i.e. ρ is the density of µp wrt. Lebesgue measure, then

ρ is called the intensity function.
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It will be assumed that µp is locally finite, that is µp(B) < ∞ for all

bounded Borel sets B ⊆ S. If the intensity function exists this implies that it

is locally integrable, i.e.
∫
B
ρ(ξ)dξ <∞ for all bounded Borel sets B ⊆ S. For

ξ ∈ S, ρ(ξ)dξ can be interpreted as the probability of observing a point from

X in the infinitesimal ball with centre ξ and volume dξ.

For S = Rd, the point process X is said to be stationary (resp. isotropic) if

the distribution of X is invariant under translation (resp. rotation about the

origin). If X is a stationary point process with locally finite intensity measure

µp, then µp is translation invariant and thus proportional to the Lebesgue

measure. Consequently (by definition 2.1.2) the intensity function ρ must be

constant.

Consider two point processes X and Y on S, where X is absolutely con-

tinuous wrt. Y , i.e. P (X ∈ F ) = 0 whenever P (Y ∈ F ) = 0 for all F ⊆ Np,lf.

Then the density of X wrt. Y is defined as the Radon-Nikodym derivative f

that satisfies

P (X ∈ F ) = E[I(Y ∈ F )f(Y )]

for all F ⊆ Np,lf, where I(·) denotes the indicator function.

2.2 Palm theory

One of the most fundamental building blocks of spatial statistics is the so-

called reduced Palm distribution. To define this, we first introduce the reduced

Campbell measure.

Definition 2.2.1. Let X be a point process on S. Then the reduced Campbell

measure is defined as

C !
p(D) = E

[∑
ξ∈X

I ((ξ,X\ξ) ∈ D)

]
(2.1)

for D ⊆ S ×Np,lf.

Clearly the Campbell measure determines the intensity measure since µp(·) =

C !
p(· ×Np,lf). In general, C !

p(· × F ) ≤ µp(·) for all F ⊆ Np,lf. Hence, C !
p(· × F )

is absolutely continuous wrt. µp(·) for any fixed F ⊆ Np,lf (also denoted

C !
p(· × F )� µp(·)), i.e. C !

p(B × F ) = 0 whenever µp(B) = 0 for any Borel set

B ⊆ S. Therefore, there exists a family of Markov kernels P !
ξ(F ) such that

C !
p(B × F ) =

∫
B

P !
ξ(F )dµp(ξ) (2.2)

for all Borel sets B ⊆ S. That is, P !
ξ(F ) is a measurable mapping wrt. ξ for

fixed F and a probability measure on F for fixed ξ. The measurability follows
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from the fact that P !
ξ(F ) is the Radon-Nikodym derivative of C !

p(· × F ) wrt.

µp(·). Note that this also entails that P !
ξ(F ) is uniquely determined µp-almost

every ξ (in short µp-a.e. ξ). If the intensity function ρ exists we can equivalently

say that P !
ξ(F ) is unique Lebesgue-a.e. ξ for ρ(ξ) > 0. Proving that P !

ξ(F ) is a

probability measure on F , for all fixed ξ ∈ S, is done in two steps: (1) P !
ξ(F )

is a probability measure on F , for µp-a.e. ξ ∈ S, since∫
B

P !
ξ(∅)dµp(ξ) = E

[∑
ξ∈X

I (ξ ∈ B,X\ξ ∈ ∅)

]
= 0 =

∫
B

0dµp(ξ),

and for disjoint sets Fi ⊆ Np,lf, i = 1, 2, . . .∫
B

P !
ξ

( ∞
∪
i=1

Fi

)
dµp(ξ) = E

[∑
ξ∈X

I
(
ξ ∈ B,X\ξ ∈

∞
∪
i=1

Fi

)]

=
∞∑
i=1

E

[∑
ξ∈X

I (ξ ∈ B,X\ξ ∈ Fi)

]
=

∫
B

∞∑
i=1

P !
ξ (Fi) dµp(ξ)

and lastly ∫
B

P !
ξ(Np,lf)dµp(ξ) = C !

p(B ×Np,lf) = µp(B) =

∫
B

1dµp(ξ)

for all Borel sets B ⊆ S. (2) for every ξ in a µp-null set, we can choose P !
ξ(F )

to be any probability measure on F . Thus, P !
ξ(F ) can indeed be chosen as a

Markov kernel.

Definition 2.2.2. The probability measure P !
ξ(·) is called the reduced Palm

distribution at ξ.

The (non-reduced) Palm distribution is defined in a similar manner, but

based on the (non-reduced) Campbell measure obtained by substituting X\ξ
with X in (2.1). Results for the reduced Palm distribution can easily be

modified to the (non-reduced) Palm distribution if desired. However, as results

and interpretations of the two distribution only differ slightly we shall just

consider the reduced version in the following.

Consider a ball B = b(ξ, ε) centered at ξ ∈ S and with a sufficiently small

radius ε > 0 such that the event N(B) > 1 is unlikely. Then, for all F ⊆ Np,lf,

µp(B) ≈ P (N(B) > 0) and C !
p(B × F ) ≈ P (N(B) > 0, X\ξ ∈ F ) and thus

P !
ξ(F ) ≈

C !
p(B × F )

µp(B)
≈ P (X\ξ ∈ F | N(B) > 0) .

Hence, the reduced Palm distribution may be interpreted as the conditional

distribution of X\ξ given that ξ ∈ X.

6



It follows from the definition of the reduced Campbell measure and the

reduced Palm distribution as well as the standard proof that

E

[∑
ξ∈X

h (ξ,X\ξ)

]
=

∫ ∫
h (ξ, x) dP !

ξ(x)dµp(ξ) (2.3)

for any function h : S × Np,lf → [0,∞). This formula is referred to as the

Campbell-Mecke theorem.

For a stationary point process X on Rd with intensity 0 < ρ < ∞, the

reduced Palm distribution at origo, P !
0, is of special interest. We will also refer

to P !
0 as the reduced Palm distribution at a typical point. For ξ ∈ S, X ∼ P !

0

if and only if X + ξ ∼ P !
ξ, where X + ξ denotes the point process translated

by ξ. Using this notation, the Campbell-Mecke theorem can be expressed as

E

[∑
ξ∈X

h (ξ,X\ξ)

]
= ρ

∫ ∫
h (ξ, x) dP !

ξ(x)dξ = ρ

∫ ∫
h (ξ, x+ ξ) dP !

0(x)dξ

(2.4)

for any function h : S×Np,lf → [0,∞). Let h (ξ,X\ξ) = I (ξ ∈ B,X\ξ − ξ ∈ F )

for any Borel set B ⊆ Rd and F ⊆ Np,lf, then

E

[∑
ξ∈XB

I (X\ξ − ξ ∈ F )

]
= ρ

∫
B

∫
I (x ∈ F ) dP !

0(x)dξ = ρ|B|P !
0(F ),

where |B| denotes the Lebesgue measure of B. Note that the left hand side is a

translation invariant measure and is consequently proportional to the Lebesgue

measure. Hence,

P !
0(F ) =

1

ρ|B|
E

[∑
ξ∈XB

I (X\ξ − ξ ∈ F )

]
does not depend on the choice of B.

2.3 Models

The Poisson point process is one of the most fundamental models for unmarked

point processes. Due to its simple and independent nature it is often used as a

null model and to define point processes specified by a density function. The

Strauss and Strauss hardcore point processes are examples of point processes

specified by a density wrt. the Poisson point process.

2.3.1 Poisson point process

For a Poisson point process there is no interaction between points and therefore

complete spatial randomness (CSR) is often used as a synonym. Let Poi (λ)

7



denote the Poisson distribution with mean λ > 0, then the Poisson point

process is defined as follows.

Definition 2.3.1. Consider a point process X on S with intensity function ρ.

Then X is said to be a Poisson point process on S with intensity ρ, if

1. N(B) ∼ Poi (µp(B)) for any Borel set B ⊆ S satisfying µp(B) <∞.

2. N(B1), . . . , N(Bn) are independent for any pairwise disjoint Borel sets

B1, . . . , Bn ⊆ S, n ≥ 2, with µp(Bi) <∞, i = 1, . . . , n.

This is denoted by X ∼ Poisson (S, ρ).

Alternatively, a Poisson point process on S can be defined by void proba-

bilities as a point process X fulfilling

νp(B) = exp (−µp(B)) (2.5)

for all bounded Borel sets B ⊆ S. Yet another characterization of the Pois-

son point process is the so-called Poisson process expansion presented in the

following theorem.

Theorem 2.3.2. Consider a point process X with intensity measure µp(B) =∫
B
ρ(ξ)dξ for Borel sets B ⊆ S. Then X ∼ Poisson (S, ρ) if and only if

P (XB ∈ F ) =
∞∑
n=0

exp (−µp(B))

n!

∫
B

· · ·
∫
B

I ({ξ1, . . . , ξn} ∈ F )
n∏
i=1

ρ(ξi)dξ1 · · · dξn

(2.6)

for all Borel sets B ⊆ S with µp(B) <∞ and all F ⊆ Np,lf.

Proof for the above theorem can e.g. be found in Christensen and Christof-

fersen (2015). For X ∼ Poisson (S, ρ), the Poisson expansion can be extended

by applying the standard proof to (2.6), yielding

E [h(XB)] =
∞∑
n=0

exp (−µp(B))

n!

∫
B

· · ·
∫
B

h ({ξ1, . . . , ξn})
n∏
i=1

ρ(ξi)dξ1 · · · dξn

(2.7)

for any function h : Np,lf → [0,∞) and any Borel set B ⊆ S with µp(B) <∞.

Theorem 2.3.3. If X ∼ Poisson (S, ρ), then for any function h : Sn×Np,lf →
[0,∞) with n ∈ N,

E

[ 6=∑
ξ1,...,ξn∈X

h (ξ1, . . . , ξn, X\ {ξ1, . . . , ξn})

]

=

∫
S

· · ·
∫
S

E [h (ξ1, . . . , ξn, X)]
n∏
i=1

ρ(ξi)dξ1 . . . dξn,

where
6=∑

is the sum over pairwise distinct points.
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For proof see e.g. Møller and Waagepetersen (2004). The above theorem

is generally referred to as the extended Slivnyak-Mecke theorem, while the

case where n = 1 simply is called the Slivnyak-Mecke theorem. One use of

the Slivnyak-Mecke theorem is to formally prove the following intuitive result

regarding the reduced Palm distribution for a Poisson point process.

Theorem 2.3.4. For a point process X ∼ Poisson(S, ρ), the reduced Palm

distribution at ξ can be chosen as P !
ξ = Poisson(S, ρ) for all ξ ∈ S.

Proof. The Slivnyak-Mecke and Campbell-Mecke theorems found in theorem

2.3.3 and equation (2.3), respectively, give∫
E [h(ξ,X)] dµp(ξ) =

∫ ∫
h(ξ, x)dP !

ξ(x)dµp(ξ) =

∫
E
[
h(ξ,X !

ξ)
]
dµp(ξ),

where h : S ×Np,lf → [0,∞) and X !
ξ ∼ P !

ξ for ξ ∈ S. Therefore, E [h(ξ,X)] =

E
[
h(ξ,X !

ξ)
]
µp-a.e. ξ and thus P !

ξ = Poisson(S, ρ) µp-a.e. ξ. For any ξ in a

µp-null set, we can choose P !
ξ = Poisson(S, ρ), finishing the proof.

2.3.2 Strauss and Strauss hardcore point processes

In Christensen and Christoffersen (2015) general theory of finite Markov point

processes and particularly pairwise interaction processes were treated. The

Strauss and Strauss hardcore point processes are examples of pairwise interac-

tion processes. In the following we outline the most central theory necessary

for estimation and simulation under these two models.

Throughout this section we consider a point process X on S ⊂ Rd with

|S| <∞, where X has a density f wrt. Poisson(S, 1). That is,

P (X ∈ F ) = E [I(Y ∈ F )f(Y )]

for Y ∼ Poisson(S, 1) and F ⊆ Np,f, where Np,f = {x ⊆ S : n(x) <∞}. Often

the density is only specified up to proportionality, i.e. f = 1
c
h for a known

function h : Np,f → [0,∞) and a normalising constant c given by

c = E [h(Y )] =
∞∑
n=0

exp(−|S|)
n!

∫
S

. . .

∫
S

h({ξ1, . . . , ξn})dξ1 . . . ξn.

The above expression for c is found by considering equation (2.7) for 1 =

P (X ∈ Np,f) = 1
c
E [h(Y )]. Typically, c is unknown except in the special case

of a Poisson process (see e.g. proposition 3.8 in Møller and Waagepetersen,

2004).

Definition 2.3.5. Consider a function h : Np,f → [0,∞). Then h is said to be

hereditary if

h(x) > 0⇒ h(y) > 0

9



for y ⊂ x. If there exists a function φ∗ : S → [0,∞) with
∫
S
φ∗(ξ)dξ <∞ and

a constant 0 < α <∞ such that

h(x) ≤ α
∏
ξ∈x

φ∗(ξ)

for all x ∈ Np,f, then h is said to be Ruelle stable.

The Strauss point process is defined by the density

f(x) =
1

c(β, γ, R)
βn(x)γsR(x)

for β > 0, R > 0, 0 ≤ γ ≤ 1 and a normalising constant c(β, γ, R). Here sR(x)

denotes the number of R-close neighbours in x, i.e. sR(x) =
∑
{ξ,η}⊆x I(‖η−ξ‖≤

R). Furthermore, we let 00 = 1. Note that the density is hereditary. For

γ = 0 the Strauss process is a hardcore point process with hardcore R, while

γ = 1 results in a homogeneous Poisson process with intensity β as shown

in Christensen and Christoffersen (2015). In Christensen and Christoffersen

(2015) we furthermore show that for γ > 1 the density is not integrable, and

that the restriction γ ≤ 1 implies Ruelle stability and thus integrability of the

density (that Ruelle stability implies integrability is also proved in Christensen

and Christoffersen, 2015). Introducing a hardcore condition to the Strauss

density removes the need of requiring γ ≤ 1 in order to get an integrable

density. That is, we define the Strauss hardcore point process by the density

f(β,γ,R,h)(x) =
1

c(β, γ, R, h)
βn(x)γsR(x)I(‖η − ξ‖> h,∀η, ξ ∈ x) (2.8)

for β, γ, h > 0, R > h and a normalising constant c(β, γ, R, h). Again, the

density is easily seen to be hereditary. The following argument for Ruelle

stability of this density is inspired by Baddeley et al. (2013). Let h(x) =

h1(x)h2(x) denote the unnormalised density for the Strauss hardcore point

process, where h1(x) = βn(x)γsR(x) and h2(x) = I(‖η − ξ‖> h,∀η, ξ ∈ x) for

β, γ, h > 0, R > h and x ∈ Np,f. The assumption |S| < ∞ ensures that there

is a finite number M of non-overlapping spheres with centres inside S and

diameter h which can fit into S. Consequently, any realisation of the process

has at most M points, i.e. h2(x) > 0 implies that n(x) ≤ M . Furthermore,

the number of R-close neighbours has a finite upper bound:

0 ≤ sR(x) ≤ n(x)(n(x)− 1).

Let K(n) = max(1, β)n max(1, γ)n(n−1). Then h1(x) ≤ K(n(x)), and since

h(x) = 0, whenever n(x) > M , this implies that h(x) ≤ K(M) < ∞. Then

per definition 2.3.5 with α = K(M) and φ∗ = 1, the density is Ruelle stable

and hence integrable wrt. Poisson(S, 1).
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Estimation

Let x denote a point pattern on an observation window W ⊆ S. According to

the following theorem, the MLE of the hardcore in the Strauss hardcore model

can be found on closed form and has a very simple expression.

Theorem 2.3.6. The MLE of h in the Strauss hardcore model is the minimum

distance between all pair of points in x.

Proof. Clearly, we need h ≤ min
{ξ,η}⊆x

(‖ξ− η‖) in order to get a non-zero density.

The inverse normalising constant

c(β, γ, R, h)−1 =

(
∞∑
n=0

exp(−|S|)
n!

∫
S

. . .

∫
S

βn({ξ1,...,ξn})γSR({ξ1,...,ξn})

· I(‖η − ξ‖> h,∀η, ξ ∈ {ξ1, . . . , ξn})dξ1 . . . dξn

)−1

increases as h decreases. Hence the MLE of h is min
{ξ,η}⊆x

(‖ξ − η‖).

In order to estimate the remaining parameters in the Strauss hardcore

model we numerically optimise an approximation of the profile pseudolikeli-

hood. Consider a general point process on S specified by a hereditary and

Ruelle stable density in the parametric family {fθ : θ ∈ Θ}, where each fθ is

a density wrt. Poisson(S, 1), Θ ⊆ Rp and p ≥ 1. Then the pseudolikelihood

function can be expressed as

PLA (θ;x) = exp

(
−
∫
A

λ∗θ (x, ξ) dξ

)∏
ξ∈x

λ∗θ (x\ξ, ξ) (2.9)

for any A ⊆ S due to Jensen and Møller (1991). Here λ∗θ denotes the Papan-

gelou conditional intensity defined by

λ∗θ(x, ξ) =
fθ(x ∪ ξ)
fθ(x)

for x ∈ Np,f and ξ ∈ S\x. If S = W we usually choose A = W in (2.9). On the

other hand, if W ⊂ S different methods for handling edge effects are available

(see e.g. Baddeley and Turner, 2000). We will in the following ignore edge

effects and consider A = W . Note that the pseudolikelihood function does not

depend on the normalising constant, which makes optimisation easier. For the

Strauss hardcore model, we consider the profile pseudolikelihood with hardcore

ĥ = min{ξ,η}⊆x(‖ξ − η‖) and θ = (β, γ, R). Then the Papangelou conditional

intensities in (2.9) are

λ∗(β,γ,R) (x, ξ) = βγn(x∩b(ξ,R))I(||ξ − η|| > ĥ,∀η ∈ x)

λ∗(β,γ,R) (x\ξ, ξ) = βγn((x\ξ)∩b(ξ,R)).
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These give the profile pseudolikelihood

PLW (β, γ, R;x)

= exp

(
−β
∫
W

γn(x∩b(ξ,R))I(||ξ − η|| > ĥ,∀η ∈ x)dξ

)∏
ξ∈x

βγn((x\ξ)∩b(ξ,R)).

The integral on the right hand side can be estimated in several ways. One

approach is to write the integral as an expected value under a uniform distri-

bution and then estimate this expected value using simulations. That is∫
W

γn(x∩b(ξ,R))I(||ξ − η|| > ĥ,∀η ∈ x)dξ

= |W |
∫
W

1

|W |
γn(x∩b(ξ,R))I(||ξ − η|| > ĥ,∀η ∈ x)dξ

= |W |E
[
γn(x∩b(Y,R))I(||Y − η|| > ĥ,∀η ∈ x)

]
≈ |W |

N

N∑
i=1

γn(x∩b(yi,R))I(||yi − η|| > ĥ,∀η ∈ x),

where Y is a stochastic variable uniformly distributed on W and yi is a re-

alisation of Y for i = 1, . . . , N for large N ∈ N. All in all this gives an

approximation of the profile pseudolikelihood,

PLW (β, γ, R;x)

≈ βn(x) exp

(
−β |W |

N

N∑
i=1

γn(x∩b(yi,R))I(||yi − η|| > ĥ, η ∈ x)

)∏
ξ∈x

γn((x\ξ)∩b(ξ,R)).

In our application the exponent is strongly negative and we rather maximize

the log-profile pseudolikelihood,

logPLW (β, γ, R;x) ≈− β |W |
N

N∑
i=1

γn(x∩b(yi,R))I
(
||yi − η|| > ĥ, η ∈ x

)
+ n(x) log (β) + log (γ)

∑
ξ∈x

n((x\ξ) ∩ b(ξ, R))

for β, γ > 0 and R > ĥ. For the Strauss model a similar approximation of the

pseudolikelihood can be obtained:

PLW (β, γ, R;x) ≈ βn(x) exp

(
−β |W |

N

N∑
i=1

γn(x∩b(yi,R))

)∏
ξ∈x

γn((x\ξ)∩b(ξ,R))

for β,R > 0 and 0 ≤ γ ≤ 1.
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Simulation

The birth-death Metropolis-Hastings algorithm, which is an example of a Markov

chain Monte Carlo algorithm, will be used for simulating under the Strauss

and Strauss hardcore model. It is an iterative algorithm that for each step

attempts to remove or add a point to the current point pattern. Here the

algorithm is presented in a practical manner and we refer to Baddeley et al.

(2000) and the references therein for details of the underlying theory.

Consider a point process specified by an unnormalised density h with re-

spect to Poisson(B, 1), where B ⊆ S Borel. For x ∈ Np,f, let p(x) be a

probability that determines whether to try to add (birth proposal) or remove

(death proposal) a point to/from x. Furthermore, let qb(x, ·) be a density func-

tion on B used for generating a point location in a birth proposal. Similarly,

let qd(x, ·) be a discrete density on x used for selecting a point from x in a

death proposal. Then for ξ ∈ B and η ∈ x, the Hastings ratios are defined by

rb(x, ξ) =
h(x ∪ ξ)(1− p(x ∪ ξ))qd(x ∪ ξ, ξ)

h(x)p(x)qb(x, ξ)

rd(x, η) =
h(x\η)p(x\η)qb(x\η)

h(x)(1− p(x))qd(x, η)
,

taking a/0 = 1 for a ≥ 0. The acceptance probability for a birth proposal that

updates the point pattern from x to x ∪ ξ is then taken as min{1, rb(x, ξ)},
while the acceptance probability of a death proposal updating x to x\η is

min{1, rd(x, η)}. The algorithm requires an initial choice of point pattern Y0,

e.g. the empty point pattern or a realisation of a Poisson point process. Then

the birth-death Metropolis-Hastings algorithm proceeds as follows.

Birth-death Metropolis-Hastings algorithm:

Given Ym = x ∈ Np,f for m = 0, 1, . . . we generate Ym+1 by:

1) Simulate R′m ∼ unif (0, 1) and R′′m ∼ unif (0, 1), where unif(0, 1) denotes

the standard uniform distribution.

2) If R′m ≤ p(x): Simulate ξm ∼ qb (x, ·) and set

Ym+1 =

{
x ∪ ξm if R′′m ≤ rb (x, ξm)

x otherwise
.

3) If R′m > p(x):

i. If x = ∅: Set Ym+1 = x.
ii. If x 6= ∅: Draw ηm ∼ qd(x, ·) and set

Ym+1 =

{
x\ηm if R′′m ≤ rd (x, ηm)

x otherwise
.

13



For our application B = W and we choose p(x) = 1/2, qb(x, ξ) = 1
|W | and

qd(x, η) = 1
n(x)

. That is, we propose birth and death with equal probability,

choose a new point uniformly on W in case of a birth proposal and select an

existing point uniformly from x in case of a death proposal. For the Strauss

hardcore model specified by the unnormalised density

h(β,γ,R,h)(x) = βn(x)γSR(x)I(‖η − ξ‖> h,∀η, ξ ∈ x),

the Hastings ratios are

rb(x, ξ) =
βγn(x∩b(ξ,R))|W |

n(x ∪ ξ)
I(‖η1 − η2‖> h,∀η1, η2 ∈ x ∪ ξ)
I(‖η1 − η2‖> h,∀η1, η2 ∈ x)

rd(x, η) =
n(x)

βγn((x\η)∩b(η,R))|W |
I(‖ξ1 − ξ2‖> h,∀ξ1, ξ2 ∈ x\η)

I(‖ξ1 − ξ2‖> h,∀ξ1, ξ2 ∈ x)

=
n(x)

βγn((x\η)∩b(η,R))|W |
.

In order to get the last equality consider the ratio of the two indicator functions

in rd(x, η). Note that if the hardcore is fulfilled for x, then it will also be fulfilled

for x\η and thus 0
1

will never occur. This implies that the ratio will always

equal 1, giving the simpler expression for rd(x, η).

For the Strauss model the Hastings ratios are

rb(x, ξ) =
βγn(x∩b(ξ,R))|W |

n(x ∪ ξ)
, rd(x, η) =

n(x)

βγn((x\η)∩b(η,R))|W |
.

2.4 Summary statistics

In this section we give an introduction to the usual moment measures for

point processes. Furthermore, some of the more popular functional summary

statistics that typically are used for model checking will be presented and,

when possible, related to the reduced Palm distribution. After a short note on

estimation of summary statistics, the concept of global rank envelopes will be

presented.

2.4.1 Moment measures

The nth-order moments of the count function N(B) for Borel sets B ⊆ S,

where especially the first- and second-order moments are of interest, is defined

as follows.

Definition 2.4.1. For a point process X on S and a Borel set D ⊆ Sn with

n ∈ N, the nth order moment measure and the nth order factorial moment
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measure are defined by

µ(n)
p (D) = E

[ ∑
ξ1,...,ξn∈X

I ((ξ1, . . . , ξn) ∈ D)

]

respectively

α(n)
p (D) = E

[ 6=∑
ξ1,...,ξn∈X

I ((ξ1, . . . , ξn) ∈ D)

]
.

Applying the standard proof on the above definitions immediately yield the

following useful results

E

[ ∑
ξ1,...,ξn∈X

h(ξ1, . . . , ξn)

]
=

∫
h(ξ1, . . . , ξn)dµ(n)

p (ξ1, . . . , ξn) (2.10)

and

E

[ 6=∑
ξ1,...,ξn∈X

h(ξ1, . . . , ξn)

]
=

∫
h(ξ1, . . . , ξn)dα(n)

p (ξ1, . . . , ξn). (2.11)

Note that µp = µ
(1)
p = α

(1)
p . As stated in the following theorem the intensity

measure for a Poisson point process is closely related to all of its nth order

factorial moment measures.

Theorem 2.4.2. If X ∼ Poisson (S, ρ), then α
(n)
p = µnp for any n ∈ N.

Proof. This result follows from Slivnyak-Meckes theorem stated in theorem

2.3.3, as ∫
B1×···×Bn

dα(n)
p (ξ1, . . . , ξn) =

∫
B1

· · ·
∫
Bn

n∏
i=1

ρ(ξi)dξ1 . . . dξn

=

∫
B1

· · ·
∫
Bn

dµp(ξ1) · · · dµp(ξn)

for all Borel sets B1 × · · · ×Bn ⊆ Sn. Therefore, α
(n)
p = µnp .

For this thesis the intensity measure µp and the second-order factorial mo-

ment measure α
(2)
p will be the most relevant moments of the count function,

and thus we shall only consider these onwards.

The relation between the Campbell measure and the intensity measure was

discussed in section 2.2, but as it turns out the second order factorial moment

measure can also be expressed in terms of the Campbell measure. Using the
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standard proof on the definition of the Campbell measure (definition 2.2.1)

gives

E

[∑
ξ∈X

h (ξ,X\ξ)

]
=

∫
h (ξ, x) dC !

p(ξ, x),

for any function h : S ×Np,lf → [0,∞). Therefore,

α(2)
p (A×B) = E

∑
ξ∈X

I (ξ ∈ A)
∑
η∈X\ξ

I (η ∈ B)

 =

∫
A

n (xB) dC !
p(ξ, x)

for all Borel sets A×B ⊆ R2d.

Definition 2.4.3. If there exists a non-negative function ρ(2) such that the

second order factorial moment measure can be written as

α(2)
p (A×B) =

∫
A

∫
B

ρ(2)(ξ, η)dξdη

for all Borel sets A,B ⊆ S, then ρ(2) is called the second-order intensity func-

tion.

For ξ, η ∈ S, we can interpret ρ2(ξ, η)dξdη as the joint probability of observ-

ing two points from X in two infinitesimal balls with centres ξ and η and with

volumes dξ and dη. For a Poisson point process, ρ(2)(ξ, η) = ρ(ξ)ρ(η) Lebesgue

a.e. ξ, η due to theorem 2.4.2. In fact, the relation between the intensity and

the second-order intensity is widely used to measure repulsion/aggregation of

a point pattern, and since the Poisson point process is equivalent with CSR it

is natural to define the following function.

Definition 2.4.4. If ρ and ρ(2) exist, then the pair correlation function is

defined by

g(ξ, η) =
ρ(2)(ξ, η)

ρ(ξ)ρ(η)

with ξ, η ∈ S and a/0 = 0 for a ≥ 0.

Clearly, g(ξ, η) ≡ 1 for a Poisson process. Due to the interpretation of

ρ(2)(ξ, η) as a joint probability, g(ξ, η) > 1 indicates that two points are more

likely to occur simultaneously in the locations ξ and η under the point process

of interest than for a Poisson process with the same intensity.
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2.4.2 Functional summary statistics

To investigate how well a certain model describes an observed point pattern,

different characteristics of the data should be assessed and compared to those

of the model. For these types of assessments functional summary statistics

are very useful tools. One of the more commonly used summary statistics is

the so-called K-function, which is based on the second-order reduced moment

measure.

Definition 2.4.5. Let ρ be the intensity function of X and define the measure

K(B) =
1

|A|
E

[ 6=∑
ξ,η∈X

I(ξ ∈ A, η − ξ ∈ B)

ρ(ξ)ρ(η)

]

for Borel sets A,B ⊆ S with 0 < |A| < ∞ and taking a/0 = 0 for a ≥
0. If K does not depend on the choice of A, then X is said to be second-

order intensity reweighted stationary and K is called the second-order reduced

moment measure.

Suppose that the pair correlation function exists and is invariant under

translation. With some abuse of notation we write g(ξ − η) = g(ξ, η). It can

then be shown (see e.g. details in Christensen and Christoffersen, 2015) that

the point process is second-order intensity reweighted stationary and that

K(B) =

∫
B

g(ξ)dξ (2.12)

for any B ⊆ S Borel.

Considering K with a d-dimensional ball as the structuring element we

obtain the K-function. This extends Ripley’s K-function for stationary point

processes to the case of second-order intensity reweighted stationarity and is

due to Baddeley et al. (2000).

Definition 2.4.6. For a second-order intensity reweighted stationary point

process, the K- and L- functions are defined by

K(r) = K (b(0, r)) , L(r) =

(
K(r)

ωd

)1/d

for r > 0 and where ωd = πd/2/Γ(1 + d/2) denotes the volume of the d-

dimensional unit ball.

Møller et al. (2016) propose to use a cylinder as the structuring element in

K as a tool to detect anisotropy arising from columnar structures, i.e. point

patterns where the points tend to lie around straight lines. Let Sd−1 = {u ∈
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Rd : ‖u‖≤ 1} denote the unit sphere in Rd and let ed = (0, . . . , 0, 1) ∈ Rd.

Then

C(r, h) = {(x1, . . . , xd) ∈ Rd : x2
1 + · · ·+ x2

d−1 ≤ r, |xd| ≤ h}

is the d-dimension cylinder with midpoint at the origin of Rd, radius r > 0,

height 2h > 0 and direction ed. To obtain a cylinder with direction determined

by u ∈ Sd−1, consider a d × d rotation matrix Ou satisfying u = Oued. Then

the d-dimensional cylinder with direction u, midpoint at the origin, radius r

and height 2h is determined by Cu(r, h) = OuC(r, h).

Definition 2.4.7. For a second-order intensity reweighted stationary point

process the cylindrical K-function in the direction u is defined as

Ku(r, h) = K (Cu(r, h))

for u ∈ Sd−1, r > 0 and h > 0.

Consider a second-order intensity reweighted stationary point process X.

Then, per definition of K and equation (2.11), it follows that∫ ∫
I(ξ ∈ A, η ∈ B)dK(η)dξ = E

[ 6=∑
ξ,η∈X

I(ξ ∈ A, η − ξ ∈ B)

ρ(ξ)ρ(η)

]

=

∫
I(ξ ∈ A, η − ξ ∈ B)

ρ(ξ)ρ(η)
dα(2)

p (ξ, η)

for all Borel sets A,B ⊆ S. Using the standard proof, we can then relate K,

α
(2)
p and ρ by ∫ ∫

h(ξ, η)dK(η)dξ =

∫
h(ξ, η − ξ)
ρ(ξ)ρ(η)

dα(2)
p (ξ, η)

for functions h : S × S → [0,∞). The second-order reduced moment measure

also has an interpretation as an expectation under the reduced Palm distribu-

tion in form of

K(B) = E

∑
η∈X!

ξ

I(η − ξ ∈ B)

ρ(η)


for Lebesgue-a.e. ξ ∈ S. This follows by Campbell-Meckes theorem stated in

equation (2.3),

|A|K(B) = E

∑
ξ∈X

∑
η∈X\ξ

I(ξ ∈ A, η − ξ ∈ B)

ρ(ξ)ρ(η)


=

∫
I(ξ ∈ A)

∫ ∑
η∈x

I(η − ξ ∈ B)

ρ(η)
dP !

ξ(x)dξ

(2.13)
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for all Borel sets A,B ⊆ S with 0 < |A| <∞ .

Consider now a stationary point process X on Rd. Imitating the steps in

(2.13) for a constant intensity 0 < ρ <∞ and switching to the reduced Palm

distribution at a typical point, we get

K(B) =
1

ρ|A|

∫
I(ξ ∈ A)

∫ ∑
η∈x

I(η ∈ B)dP !
0(x)dξ = E[n(X !

0 ∩B)]/ρ,

where X !
0 ∼ P !

0 and A,B ⊆ Rd are Borel sets. Specifically, for B = b(0, r) for

r > 0, we have ρK(r) = E[n(X !
0 ∩ b(0, r))], i.e. ρK(r) can be interpreted as

the expected number of further points within distance r of the typical point.

For the cylindrical K-function, we interpret ρKu(r, h) as the mean number of

further points within a cylinder ξ0 +Cu(r, h) with midpoint in a typical point,

ξ0.

Consider a Poisson point process X on S. Since the pair correlation func-

tion is always 1 for the Poisson process, it follows from equation (2.12) that

K(B) = |B| for all Borel sets B ⊆ S. Thus, K(r) = ωdr
d and L(r) = r for all

r > 0. Therefore, for a general point process, L(r)− r > 0 (resp. L(r)− r < 0)

indicates aggregation (resp. repulsion) within distance r > 0. Furthermore, for

the Poisson process, Ku(r, h) = 2ωd−1r
d−1h for all u ∈ Sd−1, r > 0 and h > 0.

Hence, for a general point process Ku(r, h) > 2ωd−1r
d−1h indicates columnar

clustering.

Definition 2.4.8. Suppose that X is a stationary point process on Rd with

intensity 0 < ρ < ∞. For r > 0 the empty space function, or simply the

F -function, is defined by

F (r) = P (X ∩ b(0, r) 6= ∅),

and the nearest neighbour function, or simply the G-function, is defined by

G(r) =
1

ρ|A|
E

[∑
ξ∈XA

I((X\ξ) ∩ b(ξ, r) 6= ∅)

]

for any Borel set A ⊂ Rd with 0 < |A| < ∞. On this basis, the J-function is

defined by

J(r) =
1−G(r)

1− F (r)

for F (r) < 1.

If X is a stationary Poisson point proces with intensity ρ, it follows from

equation (2.5) that

F (r) = 1− P (N(b(0, r)) = 0) = 1− exp(−ρωdrd)
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for r > 0. Furthermore, due to the extended Slivnyak-Mecke theorem (found

in theorem 2.3.3) and equation (2.5),

G(r) =
1

|A|

∫
E[I(ξ ∈ A,X ∩ b(ξ, r) 6= ∅)]dξ

=
1

|A|

∫
A

(1− P (X ∩ b(ξ, r) = ∅)) dξ

= 1− exp(−ρωdrd) (2.14)

for r > 0. Thus, J(r) = 1 for all r > 0.

For any stationary point process X, the G-function has an interpretation

as a probability under the reduced Palm distribution at a typical point. This

follows from equation (2.4), since

G(r) =
1

|A|

∫ ∫
I(ξ ∈ A, (x+ ξ) ∩ b(ξ, r) 6= ∅)dP !

0(x)dξ =

∫
I(x ∩ b(0, r) 6= ∅)dP !

0(x)

= P
(
X !

0 ∩ b(0, r) 6= ∅
)

for r > 0. The G-function can thus be interpreted as the probability that the

point process has any further points within a certain distance of the typical

point. Note that this result gives an alternative way of deriving expression

(2.14) by using theorem (2.3.4) and void probabilities.

For r > 0, F (r) < G(r) (equivalently J(r) < 1) indicates aggregation,

while F (r) > G(r) (equivalently J(r) > 1) indicates regularity.

Estimation

Estimation for the presented summary statistics (except for the cylindrical

K-function) were discussed in Christensen and Christoffersen (2015) and thus

will only be described very briefly. Several nonparametric estimates for the

various summary statistics have been given in the literature, see e.g. Møller

and Waagepetersen (2004) for an overview of estimates and relevant references.

Most of the estimates take into account the edge effect that arise when observ-

ing the point patterns on a window W ⊂ S. Different choices of edge correc-

tions are available. A popular choice of edge correction factor, which will also

be used throughout this thesis, is 1/|W ∩Wη−ξ|, where Wξ = {η + ξ : η ∈ W}
for ξ ∈ S. This factor appears for example in the unbiased estimate of K(B)

(see e.g. Møller and Waagepetersen, 2004) given by

K̂(B) =

6=∑
ξ,η∈x

I(η − ξ ∈ B)

ρ(ξ)ρ(η)|W ∩Wη−ξ|
,

where B ⊆ S is Borel and x is an observed point pattern on a bounded window

W ⊆ S. Furthermore, it is assumed that |W ∩Wξ| > 0 for all ξ ∈ B. The
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estimate of the cylindrical K-function is found in Møller et al. (2016) and

simply corresponds to the above estimate of K(B) with B as the directional

cylinder.

2.4.3 Global envelopes

In Christensen and Christoffersen (2015) pointwise envelopes were used to

make inference based on the summary statistics introduced in section 2.4.2

that depends on some distance r. The pointwise envelopes can be used to

make inference based on a fixed distance, but most often we are interested

in making inference based on an interval of distances. Using the pointwise

envelopes for this kind of multiple testing leads to a greatly underestimated

type I error, as pointed out and discussed by several authors (e.g. Ripley (1977)

and later Loosmore and Ford (2006) and Baddeley et al. (2014)). This pitfall

has led to the use of global envelopes that allow simultaneous inference to be

made in a way that controls the type I error rate.

The pointwise envelopes are briefly described as follows. Let X1 denote an

observed point pattern and let X2, . . . , Xs+1 denote s point patterns simulated

under a null hypothesis. Furthermore, for r > 0 and i = 1, . . . , s+ 1, let T̂i(r)

denote the estimator of some summary statistic (e.g. the K- or J- function)

for Xi. Let also T̂
(k)
low(r) and T̂

(k)
upp(r) denote the kth smallest and largest values

among T̂1(r), . . . , T̂s+1(r) for some choice of k ∈ {1, 2, . . . , b(s + 1)/2c} and

r. With this set-up T̂
(k)
low(r) and T̂

(k)
upp(r) are the boundaries of the pointwise

envelopes . If there are no ties in the ordering of T̂i(r), we have that T̂1(r) lies

outside the pointwise envelopes with probability α = 2k/(s+ 1) for a fixed r.

As alternatives to pointwise envelopes, Myllymäki et al. (2015) suggest

approaches to construct a global envelope test on an interval I. Of these we

will only consider the rank envelope test, where the envelope boundaries are

directly based on T̂i, i = 1, . . . , s + 1. To each T̂i we assign an extreme rank

Ri, defined by

Ri = max{k : T̂
(k)
low(r) ≤ T̂i(r) ≤ T̂ (k)

upp(r) for all r ∈ I}

for i = 1, . . . , s + 1. The extreme ranks only give a weak ordering of T̂i (as

maxRi < s + 1), and therefore do not lead directly to an exact test. Even

though Myllymäki et al. (2015) introduces a way of constructing an exact test,

we will only present the more simple approach, where a conservative and liberal

p-value is constructed directly from the position of T̂1 among the estimated

summary statistics. More precisely, define

p− =
1

s+ 1

s+1∑
i=1

I(Ri < R1) and p+ =
1

s+ 1

s+1∑
i=1

I(Ri ≤ R1).
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Then p− and p+ forms the lower and upper bounds for the p-value of the global

test concerning the null hypothesis. For a chosen significance level α, the test

obtained by rejecting the null hypothesis when p− ≤ α is liberal, while rejecting

when p+ ≤ α leads to a conservative test, cf. Myllymäki et al. (2015). That

is, compared to an exact p-value the liberal p− tends to overstate the evidence

against the null hypothesis, while the conservative p+ tends to understate it.

We can however at significance level α safely reject the null hypothesis if p+ ≤ α

or infer that there is no evidence against the null hypothesis if p− > α. To

get a graphical interpretation, Myllymäki et al. (2015) define the 100(1−α)%

global rank envelope by the bounds T̂
(kα)
low (r) and T̂

(kα)
upp (r) for r ∈ I, where

kα = max

{
k :

s+1∑
i=1

I(Ri < k) ≤ α(s+ 1)

}
.

They then show that T̂1(r) lies strictly outside the 100(1 − α)% global rank

envelope for at least one r ∈ I if and only if p+ ≤ α, which leads to a rejection

of the null hypothesis. Furthermore, if there are no pointwise ties in T̂i(r) for

i = 1, . . . , s + 1 with probability 1, then T̂1(r) lies strictly inside the global

rank envelopes for all r ∈ I if and only if p− > α. Lastly, T̂1(r) does not fall

outside the envelopes, but coincides with T̂
(kα)
low (r) or T̂

(kα)
upp (r) for at least one

r ∈ I if and only if p− ≤ α < p+. According to Myllymäki et al. (2015) the

width of the p-interval, (p−, p+), depends on the number of simulations s, the

smoothness of the functional summary statistic and the value of R1. In this

thesis we follow their general recommendation of using s = 2499 for α = 0.05.

2.5 Analysis of pyramidal cells’ nucleolus and

apex locations

In this section the locations of the nucleoli and apexes are analysed as two

separate point patterns. In Christensen and Christoffersen (2015) we found

that the nucleolus point pattern posses a higher degree of regularity than the

proposed models. Even though this conclusion could change when considering

global rather than pointwise envelopes, we will here propose a new model: the

Strauss hardcore model presented in section 2.3.2, that besides the hardcore

also allows for further interaction between pairs of points.

In this thesis and in Christensen and Christoffersen (2015) the pair correla-

tion function as well as the K- and J-functions are used for preliminary anal-

ysis and model check. However, these summary statistics or their presented

estimates require stationarity, which does not apply to the Strauss hardcore

(and Strauss) point process (or generally a finite Markov point process) as

it is defined on a bounded space. Strictly, we could extend the definition of
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Markov point processes to cover the case on Rd, for example by doing a lo-

cal specification (for details see e.g. Møller and Waagepetersen (2004) and the

references therein). We will however not do this as the empirical estimates of

the summary statistics still make sense, even though they not necessarily have

the same interpretation.

The analysis was performed using R version 3.2.1. The R-package spatstat

was used for estimating the pair correlation function and the K-function as well

as for simulating under Poisson. The approximate (profile) pseudo-likelihood

was optimised using the optim-function from the stats-package. Estimation of

the J-function and the cylindrical K-function for three-dimensional point pat-

terns and simulation under the Strauss and Strauss hardcore models using the

Metropolis-Hastings algorithm were implemented by the project group, par-

tially using Rcpp. Global rank envelopes were computed using the R-packages

spptest and spatstat.

2.5.1 Preliminary plots

The nucleolus and apex point patterns are both located on a three-dimensional

box with dimension [0, 1382]× [0, 145]× [0, 505]µm3, each containing 2085 nu-

cleoli/apexes. Figure 2.1 and 2.3 show projections of the nucleolus and apex

locations onto the xy-, xz- and yz-plane. Considering the projections onto the

xz- and yz-plane there is an absence of nucleoli at the top and some in the

bottom, while the absence of apexes is mostly seen at the bottom. The non-

parametric kernel estimate of the inhomogeneous intensity function plotted in

figure 2.2 and 2.4 also illustrate these bare areas. This may indicate that the

apex tend to lie closer to the pile surface than its related nucleolus, i.e. the

pyramidal cells tend to have a common direction. We shall discuss this further

in section 3.7. In order to eliminate this source of inhomogeneity each window

was eroded. The eroded window for the nucleolus point pattern is chosen as

[0, 1382]× [0, 145]× [10, 485]µm3, resulting in a loss of 25 points. For the apex

point pattern the eroded window is chosen as [0, 1382]× [0, 145]× [20, 505]µm3,

resulting in a loss of 7 points. Figure 2.5 - 2.8 display the projected apex and

nucleolus locations and their corresponding kernel estimates of the inhomoge-

neous intensity function for the eroded window. Even though these plots still

may indicate slight inhomogeneity, it will in the following be assumed that

the underlying point processes are homogeneous. The intensity can therefore

be estimated by dividing the observed number of points with the size of the

observation window, resulting in the estimates

ρ̂nucl = 2.16 ∗ 10−5 and ρ̂apex = 2.14 ∗ 10−5.

In figure 2.1 and more clearly in figure 2.3 thick, empty, parallel lines traverse

the window in the xz-plane. This tendency is more evident in figure 2.9, where
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the z-axis has been stretched. Consultation with Jens R. Nyengaard revealed

that this most likely is an artefact originating from the data collection. Data

was collected using a counting frame, quadratic in the xz-plane. Presumably,

the step length in the z-direction was longer than the counting frame leading

to areas, where the cells was not counted. The data should most likely be

recollected in order to perform a meaningful analysis. We will however continue

to analyse these data in order to demonstrate some of the presented theory.

Figure 2.1: Projection of nucleolus locations onto the xy-plane (top, window:

[0, 1382]×[0, 145] µm2), xz-plane (bottom left, window: [0, 1382]×[0, 505] µm2)

and yz-plane (bottom right, window: [0, 145]× [0, 505] µm2).

Figure 2.2: Non-parametric kernel estimate of the inhomogeneous intensity

function for the projected nucleolus locations from figure 2.1. The plot for the

yz-plane has been scaled, so proportions between plots are physically incorrect.

Estimates of the pair correlation function as well as the J- and K-function

for both point patterns are shown in figure 2.10 and 2.11 along with 95%-global
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Figure 2.3: Projection of apex locations onto the xy-plane (top, window:

[0, 1382]×[0, 145] µm2), xz-plane (bottom left, window: [0, 1382]×[0, 505] µm2)

and yz-plane (bottom right, window: [0, 145]× [0, 505] µm2).

Figure 2.4: Non-parametric kernel estimate of the inhomogeneous intensity

function for the projected apex locations from figure 2.3. The plot for the yz-

plane has been scaled, so proportions between plots are physically incorrect.

rank envelopes under the homogeneous Poisson point processes with intensity

ρ̂nucl and ρ̂apex, respectively. In this type of plots, involving envelopes, red

marks indicate values of the estimated test function that falls strictly outside

the envelopes. The p-interval for the rank envelope test is also displayed in

these plots. As p+ < 0.05 for all of the considered summary statistics, we can

safely reject the Poisson models at significance level 0.05. The envelopes reveal

that both point patterns inherit regularity (mostly for distances less than 25

µm). In figure 2.12 and 2.13 K̂u(r, t)− 2πhr2 is plotted for u equal to each of

the three main axes and h = 40, 60 and 80 µm for respectively the nucleolus

25



Figure 2.5: After erosion of the window. Projection of nucleolus locations

onto the xy-plane (top, window: [0, 1382] × [0, 145] µm2), xz-plane (bottom

left, window: [0, 1382] × [10, 485] µm2) and yz-plane (bottom right, window:

[0, 145]× [10, 485] µm2).

Figure 2.6: Non-parametric kernel estimate of the inhomogeneous intensity

function for the projected nucleolus locations on the eroded window, from

figure 2.5. The plot for the yz-plane has been scaled, so proportions between

plots are physically incorrect.

and apex point pattern along with envelopes under Poisson. Note that 2πhr2

is the theoretical value of Ku(r, t) for any Poisson process. For the nucleolus

point pattern, the null hypothesis, that the point pattern is Poisson, is rejected

when h = 40 µm or h = 60 µm and u is either in the x- or y-direction. The

null hypothesis is however accepted for the remaining combination of cylinder

heights and directions. When the estimated cylindrical K-function lies above

the Poisson envelopes, it indicates columnar structures, but here the estimate
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Figure 2.7: After erosion of the window. Projection of apex locations onto

the xy-plane (top, window: [0, 1382] × [0, 145] µm2), xz-plane (bottom left,

window: [0, 1382] × [20, 505] µm2) and yz-plane (bottom right, window:

[0, 145]× [20, 505] µm2).

Figure 2.8: Non-parametric kernel estimate of the inhomogeneous intensity

function for the projected apex locations on the eroded window, from figure

2.7. The plot for the yz-plane has been scaled, so proportions between plots

are physically incorrect.

lies either within or below the envelopes. This could possibly be due to the

empty belts seen in figure 2.9. Furthermore, there is no evidence supporting

the minicolumn hypothesis, as the estimated cylindrical K-function in the z-

direction lies inside the Poisson envelopes for all three values of h. Again,

this conclusion may be affected by the flaws in the data collection. For the

apex point pattern the hypothesis of a Poisson process is rejected for all the

considered combinations of h and u, except for h = 40 and u = (1, 0, 0). The
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Figure 2.9: Nucleolus (left) and apex (right) locations projected onto the xz-

plane with the z-axis is stretched in order to make the empty belts more

visible.

results are somewhat diffuse and no clear indication of minicolumns are seen.

Besides flaws in the data collection the results may also reflect that the apex

locations not are meaningful. In figure 2.14 estimates of the pair correlation

function as well as the K- and J-functions for the nucleolus and apex point

patterns are plotted in order to compare the two. Each summary statistic

leads to the same conclusion, that the apex point pattern is not as regular as

the nucleolus point pattern.

2.5.2 Fitting a Strauss hardcore model

In section 2.3.2 we found that the MLE of the hardcore, h, in the Strauss hard-

core model is the minimum distance between a pair of point in the observed

point pattern, giving the estimates

ĥnucl = 2.36 and ĥapex = 1.62

for the nucleolus and apex point patterns, respectively. The remaining param-

eters, β, γ and R, are estimated by numerical optimisation of the approximate

log profile pseudolikelihood derived in section 2.3.2. A choice of four different

starting values for the optimisation give somewhat different estimates (see ta-

ble 2.1). The start value of β is chosen as the homogeneous estimate of the
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Figure 2.10: 95%-global rank envelopes under Poisson together with the es-

timate for the nucleolus point pattern of the pair correlation function (left),

K-function (middle) and J-function (right) for 0 < r ≤ 35.

Figure 2.11: 95%-global rank envelopes under Poisson together with the es-

timate for the apex point pattern of the pair correlation function (left), K-

function (middle) and J-function (right) for 0 < r ≤ 35.
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Figure 2.12: 95%-global rank envelopes under Poisson for the cylindrical K-

function minus the theoretical value for Poisson concerning the nucleolus point

pattern. Computed for the three main directions (x, y and z from top to

bottom), h = 40, 60 and 80 µm (from left to right) and 0 < r ≤ 35.
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Figure 2.13: 95%-global rank envelopes under Poisson for the cylindrical K-

function minus the theoretical value for Poisson concerning the apex point

pattern. Computed for the three main directions (x, y and z from top to

bottom), h = 40, 60 and 80 µm (from left to right) and 0 < r ≤ 35.
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Figure 2.14: Estimated summary statistics for the nucleolus (solid) and apex

(dashed) point pattern along with the theoretical value for the Poisson pro-

cess (dotted), with 0 < r ≤ 35. Pair correlation function (left), K-function

(middle) and J-function (right).

Data β0 γ0 R0 β̂ γ̂ R̂ LPPL

nucleolus 2.16 ∗ 10−5 0.5 10 2.97 ∗ 10−5 0.29 15.37 −23976

nucleolus 2.16 ∗ 10−5 0.5 20 2.52 ∗ 10−5 0.71 20.00 −24089

nucleolus 2.16 ∗ 10−5 1 10 2.42 ∗ 10−5 0.22 10.92 −24060

nucleolus 2.16 ∗ 10−5 0.5 30 2.60 ∗ 10−5 0.92 30.74 −24163

apex 2.14 ∗ 10−5 0.5 10 2.42 ∗ 10−5 0.57 15.64 −24312

apex 2.14 ∗ 10−5 0.5 20 2.58 ∗ 10−5 0.76 20.75 −24362

apex 2.14 ∗ 10−5 1 10 2.32 ∗ 10−5 0.47 10.86 −24367

apex 2.14 ∗ 10−5 0.5 30 2.34 ∗ 10−5 0.96 30.60 −24413

Table 2.1: Results for each optimisation with start values (β0, γ0, R0). LPPL is

the value of the maximised log profile pseudolikelihood for the Strauss hardcore

model.

intensity, while the start values of γ and R are chosen as 0.5 or 1 respectively

10, 20 or 30. Not all combinations are pursued. For the nucleolus point pattern

the estimates

β̂nucl = 2.97 ∗ 10−5, γ̂nucl = 0.29, R̂nucl = 15.37

yield the largest value of the pseudolikelihood. For the apex point pattern the

pseudolikelihood is largest for the estimates

β̂apex = 2.42 ∗ 10−5, γ̂apex = 0.57 R̂apex = 15.64.

Model check

For simulation of 2499 point patterns under the two fitted Strauss hardcore

models, the Metropolis-Hastings algorithm was applied in accordance with the
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Figure 2.15: Number of points in the first 200,000 simulated point patterns

from the fitted Strauss hardcore models for the nucleolus (left) and apex (right)

point patterns.

Figure 2.16: 95%-global rank envelopes under fitted Strauss hardcore model to-

gether with the estimate for the nucleolus point pattern of the pair correlation

function (left), K-function (middle) and J-function (right) for 0 < r ≤ 35.

description in section 2.3.2. In order to ensure the hardcore condition Y0 = ∅
was chosen. A total of 2.6 million iterations for each model were performed.

Burn-in was chosen to be 20,000 iterations as the number of points in the

simulated point patterns seem to have stabilised at this stage (see figure 2.15).

Every thousand of the remaining simulations were extracted, and of these

2499 point patterns were sampled and used for creating global rank envelopes.

The resulting envelopes and the associated p-intervals for the pair correlation

function and for the K- and J-functions are shown in figure 2.16 and 2.17. For

the nucleolus point pattern, p− > 0.05 for the three p-intervals, i.e. there is no

evidence against the fitted Strauss hardcore model at significance level 0.05.

For the apex point pattern, the K-function provide slight evidence against

the Strauss hardcore model with p− = 0.046. However, this is not a strong

evidence against the model, especially as the two other summary statistics

gives p-intervals with p− > 0.05.

In order to investigate whether the apex and nucleolus point patterns can be
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Figure 2.17: 95%-global rank envelopes under fitted Strauss hardcore model

together with the estimate for the apex point pattern of the pair correlation

function (left), K-function (middle) and J-function (right) for 0 < r ≤ 35.

Figure 2.18: Left (respectively right): 95%-global rank envelopes based on the

fitted Strauss model for the apex (respectively nucleoli) point pattern together

with the estimated pair correlation for the nucleoli (respectively apex) point

pattern.

described by the same model, the pair correlation function of one point pattern

is compared to the envelopes of the model based on the other point pattern

(see figure 2.18). We only consider the pair correlation function here, but both

the K- and J-functions result in the same conclusion. As both p-intervals has

p+ < 0.05 there is evidence against the hypothesis that the nucleolus and apex

point patterns can be described by the same model.

2.5.3 Fitting a Strauss model

The pair correlation function for the apex point pattern indicates that the un-

derlying process may not be a hardcore process. This is also consistent with the

small hardcore estimate. In this section Strauss models are fitted to both the
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Data β0 γ0 R0 β̂ γ̂ R̂ LPPL

nucleolus 2.16 ∗ 10−5 0.5 10 2.25 ∗ 10−5 0.20 10.56 −24067

nucleolus 2.16 ∗ 10−5 0.5 20 2.54 ∗ 10−5 0.69 20.27 −24090

nucleolus 2.16 ∗ 10−5 1 10 2.44 ∗ 10−5 0.21 11.26 −24064

nucleolus 2.16 ∗ 10−5 0.5 30 2.55 ∗ 10−5 0.94 31.78 −24169

apex 2.14 ∗ 10−5 0.5 10 2.42 ∗ 10−5 0.51 15.62 −24305

apex 2.14 ∗ 10−5 0.5 20 2.68 ∗ 10−5 0.74 20.80 −24367

apex 2.14 ∗ 10−5 1 10 2.27 ∗ 10−5 0.50 10.89 −24369

apex 2.14 ∗ 10−5 0.5 30 4.65 ∗ 10−5 0.76 30.51 −24546

Table 2.2: Results for each optimisation with start values (β0, γ0, R0). LPPL is

the value of the maximised log profile pseudolikelihood for the Strauss model.

nucleolus and apex point patterns in order to investigate whether a hardcore

is necessary. The parameter estimation is done in a similar fashion to what

we did for the Strauss hardcore model, and in accordance with section 2.3.2.

Results for the optimisation of the (approximate) log profile pseudolikelihood

is shown in table 2.2. Note that we used the same for four combinations of

start values as earlier. For the nucleolus point pattern the estimates

β̂nucl = 2.44 ∗ 10−5, γ̂nucl = 0.21, R̂nucl = 11.26

optimise the pseudolikelihood, and for the apex point pattern we get

β̂apex = 2.42 ∗ 10−5, γ̂apex = 0.51, R̂apex = 15.62.

Model check

Simulations used for the envelopes under the fitted Strauss models are con-

structed in a similar manner as for the Strauss hardcore model. Figure 2.19

and 2.20 display global rank envelopes for the pair correlation function and for

the K- and J-functions along with the associated p-intervals. For the nucleo-

lus point pattern, each rank envelope test rejects the hypothesis of a Strauss

model, since p+ < 0.05, indicating that the hardcore is necessary. However,

for the apex point pattern, no evidence is found against the Strauss model,

since p− > 0.05, confirming our suspicion that the apexes do not come from

a hardcore process. This is consistent with the fact that an apex location in

itself does not correspond to a biological point, but only can be viewed relative

to the nucleolus location as an indicator of the pyramidal cell’s orientation.
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Figure 2.19: 95%-global rank envelopes under fitted Strauss model together

with the estimate for the nucleolus point pattern of the pair correlation function

(left), K-function (middle) and J-function (right) for 0 < r ≤ 35.

Figure 2.20: 95%-global rank envelopes under fitted Strauss model together

with the estimate for the apex point pattern of the pair correlation function

(left), K-function (middle) and J-function (right) for 0 < r ≤ 35.
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Chapter 3

Marked point processes

In this chapter we describe theory involving marked point processes and anal-

yse the pyramidal cell data, taking into account the cells’ orientation. Most

literature focus on real or discrete marks, when handling marked point pro-

cesses, and often assumptions of stationarity and isotropy are made for the sake

of simplicity. For our application these are unjust restrictions and more gen-

eral theory is needed. We will therefore extend some of the theory, described

in the literature, to cover a wider range of applications; especially applications

with multidimensional marks.

The theory presented in the following includes an introduction to marked

point processes in section 3.1 and a description of the most common marked

point process models in section 3.2. These models are independent marking,

the marked Poisson process, the random field model and constructed marks.

In section 3.3 moment measures for marked point processes are defined and in

turn used for defining the mark and two-point mark distributions. We then

extend the concept of Palm distributions from section 2.2 to cover marked

point processes. The theory of Palm distributions for marked point processes

is vaguely described by Illian et al. (2008) in the stationary case, while the

treatment by Daley and Vere-Jones (2008) is more general and mathematically

precise but also cumbersome. We aim in between to give a simple but precise

presentation.

In section 3.5 and 3.6 we present the mark correlation function and the

mark-weighted K-measure, which are summary statistics for marked point

processes, and their estimates. Here we also propose the modified cylindrical

K-function, that is specifically used to detect columnar structures in marked

point patterns with directional marks. Lastly, we analyse the pyramidal cell

data and discuss possible extensions of the analysis.
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3.1 Basic definitions

Point patterns emerge in a wide variety of applications for some of which ad-

ditional information associated with each point is available. This information

can be handled simultaneously with the point pattern by using the theory of

marked point processes. Let X be a point process on S ⊆ Rd with d ≥ 1, and,

for some space M , let mξ ∈M be a stochastic variable that describes the addi-

tional information of the point ξ ∈ X. Then mξ is said to be the mark attached

to ξ and Φ = {(ξ,mξ) : ξ ∈ X}, defined on S ×M , is called a marked point

process with points in S and mark space M . We call X the ground process of

Φ. Marked point processes can more generally be defined when S and M are

complete separable metric spaces, but this is beyond the scope of this thesis

(for details see e.g. Daley and Vere-Jones, 2002). The marks are often either

continuous or discrete variables on Rk, k ≥ 1. Specifically, for our application

marks and point are continuous variables on S2 and R3, respectively.

Formally, S and M are both equipped with a Borel σ-algebra, but as men-

tioned in section 2.1 the use of measure theoretical wording will be kept to a

minimum, and thus we shall not introduce these σ-algebras.

The pyramidal cell data can be viewed as a marked point pattern, where the

points describe the nucleolus locations, while the marks describe the directional

(unit) vectors between nucleolus and apex. Hence, these data form a marked

point pattern on R3 × S2. Other examples of marked point processes are

the location of different tree sorts, where the marks describe the species (e.g.

maple, pine, oak, ect.), hinting that the mark space need not be Euclidean.

Discrete cases like this are however generally coded with numbers and are

referred to as multitype point processes.

The definitions of stationarity and isotropy for marked point processes are

analogous to those of unmarked point processes. However, the marks need

not belong to the same space as the points. Translation or rotation of a

marked point process is therefore defined as an operation on the points only

and leave the marks unchanged. A marked point process is then said to be

stationary (resp. isotropic) if its distribution is invariant under translation

(resp. rotation).

Throughout this thesis we consider a marked point process, Φ = {(ξ,mξ) :

ξ ∈ X}, on S ×M , where the ground process, X, constitutes a locally finite

point process with a locally finite intensity measure, µp. We denote by Nlf the

space of locally finite marked point configurations on S ×M , i.e. Nlf consists

of marked point configurations in which the points constitute a locally finite

point configuration on S.
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3.2 Models

Depending on the nature of the marks, different models are used to analyse

marked point patterns. In our application the marks are directional vectors,

and thus multitype point processes will not be useful models. A general point

of interest, regardless of the marks’ nature, is whether the marks and points

are independent. If this is the case we can separately build a model for our

points and marks, otherwise interactions have to be accounted for.

3.2.1 Independent and conditional independent mark-

ing

Daley and Vere-Jones (2002) define independent marking as a model, where

the marks are assumed to be pairwise independent given the ground process X

such that the conditional distribution of a mark mξ given the ground process

does not depend on X\ξ. Hence this model describes a conditional indepen-

dence and not a pure independence as implied by its name. We will refer

to this model as conditional independent marking . Illian et al. (2008) give a

different and less precise definition of independent marking, where the marks

at least are assumed to be iid. (independent and identically distributed). We

will define independent marking as a model with iid. marks independent of the

ground process. Note that conditional independent marking is a broader class

of models containing the independent marking. Due to the two models’ in-

dependent nature, they are natural null models when analysing marked point

patterns.

Simulation under conditional independent marking can be done hierarchi-

cally: First, simulate points from some appropriate model. Then, given the

points, independently simulate each mark from a distribution that may de-

pend on its corresponding point. Simulation under independent marking is

done similarly, but the marks are simulated from the same distribution that is

independent of the points.

For the pyramidal cell data, the conditional independent marking or in-

dependent marking model seem appropriate if the direction of a cell does

not depend on the other cells and their direction. There is however physi-

cal restrictions, as the cells cannot overlap, which may affect the orientations,

introducing some interaction between marks and other marks/points.

3.2.2 Marked Poisson process

The marked Poisson process with conditional independent marks is another

model that can be used for marks of various types.
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Definition 3.2.1. LetX ∼ Poisson(S, ρ) and assume that the marks {mξ : ξ ∈
X} are mutually independent conditional on X. Then Φ = {(ξ,mξ) : ξ ∈ X}
is called a marked Poisson process with conditional independent marks.

If the distribution of a mark in the above definition depends only on its

corresponding point, then the resulting marked point process is a case of con-

ditional independent marking. As stated by the following theorem a marked

Poisson process and its marks are Poisson point processes under certain con-

ditions.

Theorem 3.2.2. Let Φ be a marked Poisson process satisfying conditional

independent marking with marks in M ⊆ Rk, k ≥ 1, and assume that mξ|ξ
has density pξ wrt. the Lebesgue measure on Rk. Then

1. Φ ∼ Poisson(S ×M,λ), where λ(ξ,m) = ρ(ξ)pξ(m).

2. if the function κ on M , defined by κ(m) =
∫
S
λ(ξ,m)dξ, is locally inte-

grable, then the point process {mξ : ξ ∈ S} ∼ Poisson(M,κ).

Proof. Let B ⊆ S ×M be any bounded Borel set and let µp(A) =
∫
A
ρ(ξ)dξ,

A ⊆ S Borel, be the intensity measure for X. For ξ ∈ S, define Bξ
M = {m ∈

M : (ξ,m) ∈ B} and BS = {ξ ∈ S : ∃m ∈ M such that (ξ,m) ∈ B}. Note

that BS is a bounded Borel subset of S. The void probability for Φ in B can

then be written as

P (Φ ∩B = ∅) = E [P (Φ ∩B = ∅|XBS)]

=
∞∑
n=0

exp(−µp(BS))

n!

∫
BS

· · ·
∫
BS

P (mi /∈ Bξi
M , i = 1, . . . , n|{ξ1, . . . , ξn})

n∏
i=1

ρ(ξi)dξ1 . . . dξn

=
∞∑
n=0

exp(−µp(BS))

n!

∫
BS

· · ·
∫
BS

n∏
i=1

(
1−

∫
B
ξi
M

pξi(m)dm

)
ρ(ξi)dξ1 . . . dξn

= exp(−µp(BS))
∞∑
n=0

1

n!

(∫
BS

(
1−

∫
BξM

pξ(m)dm

)
ρ(ξ)dξ

)n

= exp(−µp(BS)) exp

(∫
BS

(
1−

∫
BξM

pξ(m)dm

)
ρ(ξ)dξ

)

= exp

(
−
∫
BS

∫
BξM

ρ(ξ)pξ(m)dmdξ

)

= exp

(
−
∫
B

λ(ξ,m)d(ξ,m)

)
,
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where the first equality follows from the law of iterated expectation and the

second equality from equation (2.7). Since this is the void probability under

Poisson(S ×M,λ), first part of the proposition is proved.

Let now B ⊆ M be a bounded Borel set. Then it follows from part 1 in

the proposition that

P ({mξ : (ξ,mξ) ∈ Φ} ∩B = ∅) = P (Φ ∩ (S ×B) = ∅)

= exp

(
−
∫
B

∫
S

λ(x,m)dxdm

)
,

which is the void probability under Poisson(M,κ) with κ(m) =
∫
S
λ(ξ,m)dξ.

The marked Poisson process does not seem relevant in our analysis of the

pyramidal cell data, as we in section 2.5 found that the Poisson process was

not a suitable model for the nucleolus locations.

3.2.3 Random field model

In order to define random field models we first introduce the concept of random

fields.

Briefly described, a random field {Z(ξ) : ξ ∈ I}, also denoted {Z(ξ)}, is

a generalisation of a stochastic process, where the index set I no longer is

required to be real, but can e.g. be multidimensional. For the random field

models, we consider I = S. That is, the random field is a collection of random

variables indexed by elements of S. This enables us to define random field

models that based on a point process allocate marks by a random field {Z(ξ)}
that is independent of the points. More precisely, the mark attached to a point

ξ is generated by mξ = Z(ξ). Due to the construction of this model, two points

in close vicinity typically have similar marks.

In relation to the pyramidal cell data this means that nucleoli that are

close to each other are prone to have similar orientations, which may seem

reasonable. On the other hand the random field model does not allow for

interaction between a cell’s direction and nearby nucleoli An interaction that

could be relevant as the cells cannot overlap.

3.2.4 Constructed marks

Constructed marks reflect some characteristic of the neighbourhood of their

related point, e.g. the local intensity around the point. Examples of such

constructed marks are the points’ distance to their nearest neighbour or the

number of further points within a certain distance of the mark’s point. Con-

structed marks can in many instances give an indication of a suitable marked
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point process model for an observed marked point pattern. Consider for exam-

ple a point pattern with real marks. If the observed marks tend to stimulate

(resp. weaken) each other when their points are close, the correlation between

the observed marks and constructed marks, increasing with the local intensi-

ties, will be positive (resp. negative).

We will use constructed marks as a tool to investigate whether the pyra-

midal cells’ orientation is affected by nearby nucleoli, but we will not pursue

it as a model.

3.3 Moment measures

To describe the first- as well as second-order properties of a marked point pro-

cess more summary characteristics, than those presented for unmarked point

processes, are necessary, since the marks too need consideration.

3.3.1 First-order properties

The first-order properties of marked point processes are their intensity measure

and mark distribution. The intensity measure for a marked point proces Φ is

defined by

µ(A×B) = E

 ∑
(ξ,mξ)∈Φ

I(ξ ∈ A,mξ ∈ B)

 (3.1)

for Borel sets A ⊆ S and B ⊆ M . Note that µ(· ×M) = µp(·) and, for any

Borel set B ⊆ M , µ(· × B) ≤ µp(·). Then, for a fixed Borel set B ⊆ M ,

µ(· ×B) is easily seen to be a measure on S that is absolutely continuous wrt.

µp. Therefore, there exists a Radon-Nikodym derivative, Qξ(B), such that

µ(A×B) =

∫
A

Qξ(B)dµp(ξ), (3.2)

for all Borel sets A ⊆ S and B ⊆M . Note that Qξ(B) is uniquely determined

µp-almost every ξ. If the intensity function ρ exists we can equivalently say

that Qξ(B) is unique Lebesgue-a.e. ξ for ρ(ξ) > 0. Furthermore, if Qξ has a

density, qξ, wrt. the Lebesgue measure then

µ(A×B) =

∫
A

∫
B

qξ(m)ρ(ξ)dmdξ

for all Borel sets A ⊆ S and B ⊆ M . We can choose Qξ(B) such that it is a

Markov kernel: Per definition, Qξ(B) is a Radon Nikodym derivative and thus

a measurable mapping wrt. ξ for fixed B ⊆ M Borel. Furthermore, Qξ is a

measure µp-a.e. ξ, since equation (3.2) yields that, for B = ∅,∫
A

Qξ(∅)dµp(ξ) = µ(A× ∅) = 0 =

∫
A

0dµp(ξ),
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and, for disjoint Bi ⊆M , i = 1, 2, . . . ,

∫
A

Qξ

( ∞
∪
i=1

Bi

)
dµp(ξ) = E

 ∑
(ξ,mξ)∈Φ

I
(
ξ ∈ A,mξ ∈

∞
∪
i=1

Bi

)

= E

 ∑
(ξ,mξ)∈Φ

∞∑
i=1

I (ξ ∈ A,mξ ∈ Bi)


=

∫
A

∞∑
i=1

Qξ(Bi)dµp(ξ),

for every Borel set A ⊆ S. In addition, since µ(A × M) = µp(A) for any

Borel set A ⊆ S, it follows from (3.2) that Qξ(M) = 1 µp-a.e. ξ. Thus Qξ is

a probability measure for µp-a.e. ξ. Lastly, since Qξ(B) only is unique µp-a.e.

ξ, we can choose Qξ to be any probability measure on M whenever ξ lies in

a µp-null set. All in all, this proves that Qξ(B) can be chosen as a Markov

kernel.

Definition 3.3.1. The probability measure Qξ is called the mark distribution

at ξ.

If Qξ = Q does not depend on ξ ∈ S, Q is simply called the mark distri-

bution. In that case equation (3.2) reduces to µ(A× B) = Q(B)µp(A) for all

Borel sets A ⊆ S and B ⊆ M , and Q may be interpreted as the distribution

of a typical mark. In general, if the intensity function, ρ, exists then

µ(A×B) =

∫
A

1

ρ(ξ)|A|
µ(A×B)dµp(ξ)

for all Borel sets B ⊆ M and A ⊆ S satisfying 0 < |A| < ∞. Hence, we can

take

Qξ(B) =
µ(A×B)

ρ(ξ)|A|
(3.3)

for all ξ ∈ S, entailing that Qξ(B) can be interpreted as the conditional prob-

ability of mξ ∈ B given ξ. In case of stationarity equation (3.3) implies that

Qξ = Q for all ξ ∈ S.

By combining equation (3.1) and (3.2) with the standard proof, the so-

called Campbell theorem is immediately obtained,

E

 ∑
(ξ,mξ)∈Φ

h(ξ,mξ)

 =

∫ ∫
h(ξ,m)dQξ(m)dµp(ξ),

for any function h : S ×M → [0,∞).
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Theorem 3.3.2. For a marked point process, where the distribution of each

mark mξ, conditional on the ground process X, only depends on ξ, we can

take Qξ(B) = P (mξ ∈ B|ξ) for all ξ ∈ S and any Borel set B ⊆M .

Proof. From equation (3.1) and (3.2) and the law of iterated expectation we

get that ∫
A

Qξ(B)dµp(ξ) = E

[∑
ξ∈X

I(ξ ∈ A)E [I(mξ ∈ B)|X]

]

= E

[∑
ξ∈X

I(ξ ∈ A)P (mξ ∈ B|ξ)

]

=

∫
A

P (mξ ∈ B|ξ)dµp(ξ)

for all Borel sets A ⊆ S and B ⊆M . Note that the last equality follows from

equation (2.10) and the fact that I(ξ ∈ A)P (mξ ∈ B|ξ) is a function of ξ only.

Thus, we can choose Qξ(B) = P (mξ ∈ B|ξ) for all ξ ∈ S.

Note that the above theorem holds under the assumption of conditional in-

dependent marking or independent marking. In the particular case of indepen-

dent marking, or simply the case where the marks are identically distributed

and independent of the ground process, Qξ(B) = P (m ∈ B). That is, Qξ = Q

is the distribution of a single mark.

3.3.2 Second-order properties

In this section we describe the second-order factorial moment measure and

the two-point mark distribution. Furthermore, a weighted analogue to the

second-order factorial moment measure is introduced.

Definition 3.3.3. For Borel sets A1, A2 ⊆ S and B1, B2 ⊆ M , the second-

order factorial moment measure is defined as

α(2)(A1 ×B1 × A2 ×B2)

= E

 6=∑
(ξ,mξ),(η,mη)∈Φ

I (ξ ∈ A1,mξ ∈ B1, η ∈ A2,mη ∈ B2)

 , (3.4)

where
6=∑

is the sum over all pairs of different marked points, i.e. ξ 6= η.

For fixed B1, B2 ⊆M Borel, α(2)(·×B1×·×B2) is a measure on S×S. Note

also that α(2)(·×M ×·×M) = α
(2)
p (·× ·) is the second-order factorial moment
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measure of the ground process. Moreover, α(2)(· × B1 × · × B2) ≤ α
(2)
p (· × ·)

for all Borel sets B1, B2 ⊆ M , i.e. α(2)(· × B1 × · × B2) � α
(2)
p (· × ·). Hence,

there exists a Radon-Nikodym derivative, Qξ,η(B1 ×B2), such that

α(2)(A1 ×B1 × A2 ×B2) =

∫
A1×A2

Qξ,η (B1 ×B2) dα(2)
p (ξ, η). (3.5)

It can be shown, analogously to the proof concerning the mark distribution

Qξ, that Qξ,η can be chosen as a Markov kernel.

Definition 3.3.4. The probability measure Qξ,η is called the two-point mark

distribution at ξ and η.

If the second-order intensity function exists, i.e. dα
(2)
p (ξ, η) = ρ(2)(ξ, η)dξdη,

we have that

α(2)(A1 ×B1 × A2 ×B2) =

∫
A1×A2

α(2)(A1 ×B1 × A2 ×B2)

ρ(2)(ξ, η)|A1||A2|
dα(2)

p (ξ, η)

for all Borel sets B1, B2 ⊆ M and A1, A2 ⊆ S satisfying 0 < |A1|, |A2| < ∞.

Therefore, we can take

Qξ,η (B1 ×B2) =
α(2)(A1 ×B1 × A2 ×B2)

ρ(2)(ξ, η)|A1||A2|
(3.6)

for all ξ, η ∈ S. Hence, Qξ,η may be interpreted as the joint, conditional

probability of mξ ∈ B1 and mη ∈ B2 given ξ and η. For a stationary marked

point process, equation (3.6) implies that (with a slight abuse of notation)

Qξ,η = Qη−ξ for all ξ, η ∈ S. If the marked point process additionally is

isotropic, then (again abusing notation) Qξ,η = Q‖ξ−η‖ for all ξ, η ∈ S.

Using equation (3.4) and (3.5) as well as the standard proof it follows that

E

 6=∑
(ξ,mξ),(η,mη)∈Φ

h (ξ,mξ, η,mη)

 =

∫ ∫
h (ξ,m, η, l) dQξ,η (m, l) dα(2)

p (ξ, η)

(3.7)

for any function h : S×M ×S×M → [0,∞). This result is referred to as the

two-point Campbell theorem.

Theorem 3.3.5. For a marked point process, where the joint distribution of

each pair of marks mξ and mη, conditional on the ground process X, only

depends on ξ and η, we can take Qξ,η = P (mξ ∈ B1,mη ∈ B2|ξ, η) for all

ξ, η ∈ S and any Borel sets B1, B2 ⊆M .
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Proof. This prove is analogous to that of theorem 3.3.2. Using equation (2.11)

and the law of iterated expectation on the definition of Qξ,η yields that∫
A1×A2

Qξ,η (B1 ×B2) dα(2)
p (ξ, η)

= E

[ 6=∑
ξ,η∈X

I (ξ ∈ A1, η ∈ A2) E [I (mξ ∈ B1,mη ∈ B2) |X]

]

=

∫
A1×A2

P (mξ ∈ B1,mη ∈ B2|ξ, η)dα(2)
p (ξ, η)

for all Borel sets A1, A2 ⊆ S and B1, B2 ⊆ M . That is, we can choose Qξ,η =

P (mξ ∈ B1,mη ∈ B2|ξ, η) for all ξ, η ∈ S and any Borel sets B1, B2 ⊆M .

Note that the above theorem holds in the case of conditional independent

marking, under which,

Qξ,η(B1 ×B2) = P (mξ ∈ B1,mη ∈ B2|ξ, η) = P (mξ ∈ B1|ξ)P (mη ∈ B2|η)

= Qξ(B1)Qη(B2)

for all ξ, η ∈ S and Borel sets B1, B2 ⊆ M , where the last equality follows

from theorem 3.3.2. Furthermore, for a marked point process with identically

distributed marks independent of the ground process, theorem 3.3.5 yields

that Qξ,η(B1 × B2) = P (m ∈ B1, l ∈ B2) for all ξ, η ∈ S, all Borel sets

B1, B2 ⊆ M and marks m and l. Hence, Qξ,η does not depend on ξ or η

and is the joint distribution of any two marks. If the marks in addition are

mutually independent, i.e. under independent marking, Qξ,η(B1×B2) = P (m ∈
B1)P (m ∈ B2) = Q(B1)Q(B2) for all ξ, η ∈ S and Borel sets B1, B2 ⊆M .

Analogously to α(2), we define the measure α
(2)
t

Definition 3.3.6. For Borel sets A1, A2 ⊆ S and any function t : M ×M →
[0,∞), we define the measure

α
(2)
t (A1 × A2) = E

 6=∑
(ξ,mξ),(η,mη)∈Φ

I (ξ ∈ A1, η ∈ A2) t(mξ,mη)

 .
If there exists a non-negative function ρ

(2)
t such that, for all Borel sets A1, A2 ⊆

S,

α
(2)
t (A1 × A2) =

∫
A1

∫
A2

ρ
(2)
t (ξ, η)dξdη,

then ρ
(2)
t is called the second-order t-intensity function.
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Note that α
(2)
t (A1×A2) = α(2)(A1×B1×A2×B2) for t(m1,m2) = I(m1 ∈

B1,m2 ∈ B2), in which instance we shall denote ρ
(2)
t by ρ

(2)
B1,B2

. Per definition

of α
(2)
t and α(2) it follows from the standard proof that

∫
h(ξ, η)dα

(2)
t (ξ, η) = E

 6=∑
(ξ,mξ),(η,mη)∈Φ

h(ξ, η)t(mξ,mη)


=

∫
h(ξ, η)t(mξ,mη)dα

(2)(ξ,mξ, η,mη)

(3.8)

for any function h : S × S → [0,∞). Provided that the second-order intensity

and the second-order t-intensity functions exists it follows as a consequence of

equation (3.8) that∫
A1

∫
A2

ρ
(2)
t (ξ, η)dξdη =

∫
A1

∫
A2

∫
t(m1,m2)ρ(2)(ξ, η)dQξ,η(m1,m2)dξdη

for all Borel sets A1, A2 ⊆ S. Therefore,

ρ
(2)
t (ξ, η)

ρ(2)(ξ, η)
=

∫
t(m1,m2)dQξ,η(m1,m2) (3.9)

for ρ(2)(ξ, η) > 0 and Lebesgue a.e. ξ, η, which in turn implies that

ρ
(2)
B1,B2

(ξ, η) = ρ(2)(ξ, η)Qξ,η(B1 ×B2)

for all Borel sets B1, B2 ⊆M Lebesgue a.e. ξ, η. This implies that ρ
(2)
M,M(ξ, η) =

ρ(2)(ξ, η) for Lebesgue-a.e. ξ, η.

3.4 Palm theory

In this section we introduce the theory of reduced Palm distributions for

marked point processes. Most of the concepts are similar to those presented

for unmarked point processes in section 2.2. Therefore, some of the results and

their proofs immediately extend from the unmarked to the marked case and

will not be discussed in details.

Definition 3.4.1. The reduced Campbell measure of a marked point process

Φ on S ×M is defined by

C !(D × F ) = E

 ∑
(ξ,mξ)∈Φ

I((ξ,mξ) ∈ D,Φ\(ξ,mξ) ∈ F )

 , (3.10)

for D ⊆ S ×M Borel and F ⊆ Nlf.
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Note that C !(· × Nlf) = µ(·). Performing a similar argument as in section

2.2 for the relation between αp and C !
p, we can relate α(2) and C ! by

α(2)(A1 ×B1 × A2 ×B2)

=

∫
I(ξ ∈ A1,m ∈ B1)

∑
(η,mη)∈φ

I(η ∈ A2,mη ∈ B2)dC !(ξ,m, φ)

for all Borel sets A1, A2 ⊆ S and B1, B2 ⊆M .

For fixed F ⊆ Nlf, C
!(· × F ) is clearly absolutely continuous wrt. the

intensity measure µ. Hence, there exists a Radon-Nikodym derivative P !
(ξ,m)(F )

such that

C !(D × F ) =

∫
D

P !
(ξ,m)(F )dµ(ξ,m) (3.11)

for all Borel sets D ⊆ S ×M and all F ⊆ Nlf. Note that P !
(ξ,m)(F ) is uniquely

determined µ-a.e. (ξ,m). If qξ and ρ exist, we can equivalently say, due to

equation (3.2), that P !
(ξ,m)(F ) is unique Lebesgue a.e. ξ,m for qξ(m)ρ(ξ) > 0.

By carrying out an argument similar to that for P !
ξ(F ) in section 2.2, we can

show that P !
(ξ,m)(F ) can be chosen as a Markov kernel.

Definition 3.4.2. The probability measure P !
(ξ,m) is called the reduced Palm

distribution at point ξ with mark m.

We can consider a non-reduced version of the Palm distribution by specify-

ing the Campbell measure with Φ\(ξ,mξ) substituted by Φ in (3.10). However,

the reduced Palm distribution is the one of interest and the results can eas-

ily be modified to the non-reduced Palm distribution, and hence will not be

covered.

The marked reduced Palm distribution, P !
(ξ,m), also has an interpretation as

a conditional distribution. Assume that Φ has continuous marks, and let A =

b(ξ, εξ) and B = b(m, εm) denote balls with sufficiently small radii εξ, εm > 0,

where ξ ∈ S and m ∈ M . Heuristically it is unlikely that
∑

(ξ,mξ)∈Φ I(ξ ∈
A,mξ ∈ B) > 1, i.e.

µ(A×B) ≈ P

 ∑
(η,mη)∈Φ

I(η ∈ A,mη ∈ B) > 0


and

C !(A×B × F ) ≈ P

 ∑
(η,mη)∈Φ

I(η ∈ A,mη ∈ B) > 0,Φ\(ξ,m) ∈ F


for all F ⊆ Nlf. Furthermore, since A and B are sufficiently small balls,

C !(A×B × F ) ≈ P !
(ξ,m)(F )µ(A×B), and thus

P !
(ξ,m)(F ) ≈ P

Φ\(ξ,m) ∈ F
∣∣∣ ∑

(η,mη)∈Φ

I(η ∈ b(ξ, εξ),mη ∈ b(m, εm)) > 0


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for all F ⊆ Nlf. That is, the reduced Palm distribution P !
(ξ,m) can be interpreted

as the conditional distribution of Φ\(ξ,m) given that (ξ,m) ∈ Φ.

It follows from equation (3.2) and (3.11) that

C !(D × F ) =

∫
I((ξ,m) ∈ D)P !

(ξ,m)(F )dµ(ξ,m)

=

∫ ∫ ∫
I((ξ,m) ∈ D,φ ∈ F )dP !

(ξ,m)(φ)dQξ(m)dµp(ξ) (3.12)

for all Borel sets D ⊆ S ×M and all F ⊆ Nlf. Applying the standard proof

we get the Campbell-Mecke theorem for marked point processes, stating that

E

 ∑
(ξ,mξ)∈Φ

h(ξ,mξ,Φ\(ξ,mξ))

 =

∫ ∫ ∫
h(ξ,m, φ)dP !

(ξ,m)(φ)dQξ(m)dµp(ξ)

(3.13)

for any function h : S ×M ×Nlf → [0,∞).

The following theorem give a more concrete understanding of the reduced

Palm distribution for marked point process under certain independence as-

sumption. That is, under independent marking, the marked reduced Palm

distribution marginalises into a ground process distributed with the unmarked

reduced Palm distribution and iid. marks that are independent of the ground

process. Let
d
= denote equality in distribution, then the result can more for-

mally be stated as follows .

Theorem 3.4.3. Consider a marked point process Φ = {(ξ,mξ) : ξ ∈ X} with

ground process X and consider for any ξ ∈ S and m ∈M the related reduced

Palm marked point process Φ!
(ξ,m) =

{
(η, lη) : η ∈ Y(ξ,m)

}
with ground process

Y(ξ,m). If Φ is under independent marking, then {lη : η ∈ Y(ξ,m)}
d
= {mξ : ξ ∈

X} is independent of Y(ξ,m)
d
=X !

ξ, i.e. the distribution of Y(ξ,m) does not depend

on m.

Proof. To prove this theorem, the left and then the right hand side (abbre-

viated LHS and RHS) of the Campbell-Mecke theorem for marked point pro-

cesses, stated in equation (3.13), are considered for a specific choice of h.

That is, h(ξ,m, φ) = h1(ξ)h2(m)h3(φ) = h1(ξ)h2(m)h31(x)h32({m1,m2, . . . }),
where φ is a marked point configuration with points x = {ξ1, ξ2, . . . } and

marks {mξ1 ,mξ2 , . . . }. Note that since the marks are identically distributed

and independent of X, the mark distribution Qξ = Q and mξ ∼ Q for all ξ ∈ S
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as derived in section 3.3.1. Then, by iterated expectations,

LHS = E

 ∑
(ξ,mξ)∈Φ

h1(ξ)h2(mξ)h31(X\ξ)h32({mη : η ∈ X}\mξ)



= E

E

 ∑
(ξ,mξ)∈Φ

h1(ξ)h2(mξ)h31(X\ξ)h32({mη : η ∈ X}\mξ)

∣∣∣∣X


= E

 ∑
(ξ,mξ)∈Φ

h1(ξ)h31(X\ξ)

E [h2(mξ)] E [h32({mη : η ∈ X}\mξ)]

=

∫ ∫
h1(ξ)h31(x)dP !

ξ(x)dµp(ξ)

∫
h2(m)dQ(m)E [h32({mη : η ∈ X}\mξ)] ,

where the third equality follows from the assumption that {mη : η ∈ X} are iid.

and independent of X and the last equality follows from the Campbell-Mecke

theorem for unmarked point processes stated in equation (2.3).

Consider now the right hand side,

RHS =

∫ ∫ ∫
h1(ξ)h2(m)h3(φ)dP !

(ξ,m)(φ)dQ(m)dµp(ξ)

=

∫ ∫
h1(ξ)h2(m)E

[
h3

(
Φ!

(ξ,m)

)]
dQ(m)dµp(ξ)

=

∫ ∫
h1(ξ)h2(m)E

[
h31(Y(ξ,m))h32({lη : η ∈ Y(ξ,m)})

]
dQ(m)dµp(ξ).

By proposing Y(ξ,m) ∼ P !
ξ and {lη : η ∈ Y(ξ,m)}

d
={mη : η ∈ X} independent of

Y(ξ,m), we can show that

RHS =

∫ ∫
h1(ξ)h2(m)E

[
h31(Y(ξ,m))

]
E [h32({l1, l2, . . . })] dQ(m)dµp(ξ)

=

∫
h1(ξ)E

[
h31(Y(ξ,m))

]
dµp(ξ)

∫
h2(m)dQ(m)E [h32({l1, l2, . . . })]

= LHS.

This satisfies the Campbell-Mecke theorem and thus ends the proof.

For a fixed Borel set B ⊆ S and a fixed F ⊆ Nlf, clearly C !(· × B × F )�
µp(·). Thus there exists a Radon Nikodym derivative, P ∗!ξ (B × F ), such that

C !(A×B × F ) =

∫
A

P ∗!ξ (B × F )dµp(ξ) (3.14)
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for all Borel sets A ⊆ S and B ⊆M and all F ⊆ Nlf. Per equation (3.12),

P ∗!ξ (B × F ) =

∫
B

P !
(ξ,m)(F )dQξ(m)

for µp-a.e. ξ, and thus P !
(ξ,m) is the Radon-Nikodym derivative of P ∗!ξ with

respect to Qξ. It then follows from proposition A1.5.II in Daley and Vere-

Jones (2002) that P ∗!ξ is a probability measure on M×Nlf, where the condition

that P !
(ξ,·)(F ) is measurable as a function of m is satisfied, since P !

(·,·)(F ) is

measurable on S ×M for fixed F .

Definition 3.4.4. The probability measure P ∗!ξ is called the reduced Palm

distribution at point ξ for its mark and the rest of the marked point process.

Note that, if (m∗!ξ ,Φ
∗!
ξ ) ∼ P ∗!ξ , then

P (m∗!ξ ∈ B) = P ∗!ξ (B ×Nlf) = Qξ(B)

for all Borel sets B ⊆M and

P (Φ∗!ξ ∈ F ) = P ∗!ξ (M × F ) =

∫
M

P !
(ξ,m)(F )dQξ(m)

for all F ⊆ Nlf. That is, m∗!ξ ∼ Qξ and (Φ∗!ξ |m∗!ξ = m) ∼ P !
(ξ,m). We may

interpret P ∗!ξ as the joint distribution of the mark mξ and Φ\(ξ,mξ) conditional

on ξ ∈ X.

Let Φ be a stationary marked point process with intensity ρ, i.e. Qξ = Q

and dµp(ξ) = ρdξ for all ξ ∈ S. It then follows from the Campbell-Mecke

theorem, stated in equation (3.13), that

E

 ∑
(ξ,mξ)∈Φ

h(ξ,mξ,Φ\(ξ,mξ))

 = ρ

∫ ∫ ∫
h(ξ,m, φ)dP !

(ξ,m)(φ)dQ(m)dξ

= ρ

∫ ∫ ∫
h(ξ,m, φ+ ξ)dP !

(0,m)(φ)dQ(m)dξ.

(3.15)

For ξ ∈ S and m ∈ M , Φ!
(0,m) ∼ P !

(0,m) if and only if Φ!
(0,m) + ξ ∼ P !

(ξ,m).

We say that P !
(0,m) is the reduced Palm distribution in a typical point with

mark m for the rest of the marked point process. Furthermore, P ∗!0 (B × F ) =∫
B
P !

(0,m)(F )dQ(m) and equation (3.15) can be written as

E

 ∑
(ξ,mξ)∈Φ

h(ξ,mξ,Φ\(ξ,mξ)− ξ)

 = ρ

∫ ∫
h(ξ,m, φ)dP ∗!0 (φ,m)dξ

for any function h : S ×M ×Nlf → [0,∞). Specifically, for h(ξ,m, φ) = I(ξ ∈
A,m ∈ B, φ ∈ F ), where A ⊆ S Borel, B ⊆M Borel and F ⊆ Nlf,

E

 ∑
(ξ,mξ)∈Φ

I(ξ ∈ A,mξ ∈ B, (Φ\(ξ,mξ)− ξ) ∈ F )

 = ρ|A|P ∗!0 (B × F ).
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Thus, for any function h : M × Nlf → [0,∞) and any Borel set A ⊆ S with

0 < |A| <∞,

E
[
h
(
m∗!0 ,Φ

∗!
0

)]
=

1

ρ|A|
E

 ∑
(ξ,mξ)∈Φ

I (ξ ∈ A)h (mξ, (Φ\(ξ,mξ))− ξ)

 , (3.16)

where (m∗!0 ,Φ
∗!
0 ) ∼ P ∗!0 . We say that P ∗!0 is the reduced Palm distribution in a

typical point for its mark and the rest of the marked point process.

3.5 Functional summary statistics

Several functional summary statistics have been proposed in the literature in

order to investigate relations between marks and points. One example is the

mark correlation function e.g. described in Illian et al. (2008), Stoyan and

Stoyan (1994) and Penttinen and Stoyan (1989). These sources however limit

themselves to stationary and isotropic processes with either discrete or real

marks. In our application the marks are two-dimensional, and thus we extend

the definitions to the case where the marks are in Rk, k ≥ 1. We also present

a new summary statistic for detecting columnar structures.

3.5.1 Mark correlation functions

We define the non-normalised mark correlation function by

ct(ξ, η) =

∫
t(m, l)dQξ,η(m, l),

for some test function t : M ×M → [0,∞). Due to the interpretation of Qξ,η,

we can interpret ct(ξ, η) as the mean of t(mξ,mη) conditional on ξ, η ∈ X.

Note that

ct(ξ, η) =
ρ

(2)
t (ξ, η)

ρ(2)(ξ, η)
(3.17)

for Lebesgue-a.e. ξ, η as per equation (3.9).

It can be an interpretational advantage to normalise ct by c∗t , which is

defined similar to ct but under the assumption of independent marking, i.e.

c∗t =

∫ ∫
t(m, l)dQ(m)dQ(l). (3.18)

Due to theorem 3.3.2, c∗t = E [t(m, l)] for m, l ∼ Q independent. This normal-

isation yields the mark correlation function.

Definition 3.5.1. The mark correlation function is defined as

kt(ξ, η) =
ct(ξ, η)

c∗t
, (3.19)

where we take a/0 = 1 for a ≥ 0.
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For a stationary marked point process, kt(ξ, η) = kt(ξ − η) (abusing nota-

tion), since Qξ,η = Qξ−η for all ξ, η ∈ Rd as discussed in section 3.3.2. If in

addition the marked point process is isotropic, then (again abusing notation)

kt(ξ, η) = kt(‖ξ − η‖), since Qξ,η = Q‖ξ−η‖ for all ξ, η ∈ Rd, also noted in

section 3.3.2.

The mark correlation function is obviously defined in such a way that under

independent marking,

kt(ξ, η) = 1

for any ξ, η ∈ S. If kt(ξ, η) > 1 (resp. kt(ξ, η) < 1) it indicates that the test

function evaluated in mξ and mη is greater (resp. smaller) than under inde-

pendent marking. The interpretation naturally depends on the choice of test

function. Consider a test function that decreases as the marks become more

alike, e.g. the angle between two vectors. Then kt(ξ, η) < 1 (resp. kt(ξ, η) > 1)

indicates that mξ and mη tend to be more alike (resp. different) for the speci-

fied point process than under independent marking. On the other hand, if the

test function increases as the marks become more alike, the interpretation is

the other way around.

3.5.2 Mark-weighted K-measure

The so-called mark-weighted K-function is discussed in Illian et al. (2008),

Stoyan and Stoyan (1994) and Penttinen and Stoyan (1989) for real marks

under the assumption of stationarity and isotropy. In this section we gener-

alise these results by considering a mark-weighted version of the K-measure,

introduced in definition 2.4.5, that allows for multidimensional (Euclidean)

marks.

Definition 3.5.2. Assume that the intensity function, ρ, exists and that

Kt(B) =
1

|A|
E

 6=∑
(ξ,mξ),(η,mη)∈Φ

I(ξ ∈ A)I(η − ξ ∈ B)t(mξ,mη)

ρ(ξ)ρ(η)c∗t

 (3.20)

does not depend on the choice of A ⊆ S Borel with 0 < |A| <∞, where a
0

= 0

for a ≥ 0, B ⊆ S Borel and t : M ×M → [0,∞) is some test function. Then

Kt is called the mark-weighted K-measure.

Note that, when t = 1, Kt(B) = K(B) for all Borel sets B ⊆ S.

Assume that Kt exists for some choice of test function t. By applying

the Campbell-Mecke theorem for marked point processes, stated in equation
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(3.13), we see that Kt has a Palm interpretation. That is,

Kt(B)|A|

=

∫ ∫ ∫ ∑
(η,mη)∈φ

I(ξ ∈ A)I(η − ξ ∈ B)t(m,mη)

ρ(ξ)ρ(η)c∗t
dP !

(ξ,m)(φ)dQξ(m)dµp(ξ)

=

∫
I(ξ ∈ A)

∫ ∑
(η,mη)∈φ

I(η − ξ ∈ B)t(m,mη)

ρ(η)c∗t
dP ∗!ξ (m,φ)dξ.

Therefore,

Kt(B) = E

 ∑
(η,mη)∈Φ∗!

ξ

I(η − ξ ∈ B)t(m∗!ξ ,mη)

ρ(η)c∗t

 (3.21)

for Lebesgue a.e ξ, where (m∗!ξ ,Φ
∗!
ξ ) ∼ P ∗!ξ . In the stationary case

Kt(B) =
1

ρc∗t
E

 ∑
(η,mη)∈Φ∗!

0

I(η ∈ B)t(m∗!0 ,mη)

 (3.22)

for all Borel sets B ⊆ S.

Consider a marked point process with translation invariant pair and mark

correlation functions. Then by the two-point Campbell theorem, found in

(3.7), the right hand side of equation (3.20) can be written as

1

|A|

∫ ∫
I(ξ ∈ A)I(η − ξ ∈ B)t(mξ,mη)

ρ(ξ)ρ(η)c∗t
dQξ,η(mξ,mη)dα

(2)
p (ξ, η)

=
1

|A|

∫ ∫
I(ξ ∈ A)I(η − ξ ∈ B)ρ(2)(ξ, η)ct(ξ, η)

ρ(ξ)ρ(η)c∗t
dξdη

=
1

|A|

∫ ∫
I(ξ ∈ A)I(η − ξ ∈ B)g(η − ξ)kt(η − ξ)dξdη

=
1

|A|

∫ ∫
I(ξ ∈ A)I(ω ∈ B)g(ω)kt(ω)dξdω =

∫
B

g(ω)kt(ω)dω

with ω = η − ξ. This expression does not depend on A, and hence translation

invariance of g and kt entail the existence of Kt for any test function t :

M ×M → [0,∞). Due to equation (2.12) this furthermore yields that

Kt(B) =

∫
B

kt(ξ)dK(ξ)

for all Borel sets B ⊆ S. I Φ is stationary, both g and kt are translation

invariant and thus Kt exists for any test function t : M ×M → [0,∞).
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It follows from definition 3.5.2 and equation (3.8) that∫ ∫
I(ξ ∈ A, η ∈ B)dKt(η)dξ =

∫
I(ξ ∈ A, η − ξ ∈ B)

ρ(ξ)ρ(η)c∗t
dα

(2)
t (ξ, η), (3.23)

which under stationarity entails

α
(2)
t (A×B) = ρ2c∗t

∫
A

Kt(B − ξ)dξ

for any Borel sets A,B ⊆ S.

Theorem 3.5.3. Under independent marking Kt(B) = K(B).

Proof. Consider a marked point process Φ with ground process X. Then, by

iterated expectation and the definition of c∗t in equation (3.18),

Kt(B) =
1

|A|
E

E

 6=∑
(ξ,mξ),(η,mη)∈Φ

I(ξ ∈ A)I(η − ξ ∈ B)t(mξ,mη)

ρ(ξ)ρ(η)c∗t

∣∣∣∣∣ X


=
1

|A|
E

[ 6=∑
ξ,η∈X

I(ξ ∈ A)I(η − ξ ∈ B)

ρ(ξ)ρ(η)c∗t
E [t(m, l)]

]
= K(B),

where m, l ∼ Q are independent.

Based on the mark-weighted K-measure we define the following generalisa-

tions of the K-function and the associated L-function.

Definition 3.5.4. If Kt exists, we define the mark-weighted K-function and

the mark-weighted L-function by

Kt(r) = Kt(b(0, r)) and Lt(r) = (Kt(r)/ωd)
1/d

for r > 0.

Theorem 3.5.3 can then be used to check for independent marking by plot-

ting Kt(r) against K(r), or equivalently Kt(r)−K(r) against r for r > 0.

3.5.3 Modified cylindrical K-function

In this section we introduce a new summary statistic for marked point patterns

with marks describing the direction of the points; as for the pyramidal cell data.

This new summary statistic is strongly inspired by the cylindrical K-function

and the mark-weighted K-measure. Specifically, the new summary statistic

is similar to the mark-weighted K-measure with the cylinder as structuring

element, but where the cylinder’s direction varies across points.
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In the following, for u ∈ Sd−1, d ≥ 2, let C2
u(r, h) = Cu(r, h) and C1

u(r, h) =

OuC̃(r, h) where

C̃(r, h) = {(x1, . . . , xd) ∈ Rd : x2
1 + · · ·+ x2

d−1 ≤ r, 0 ≤ xd ≤ h}

and Ou is the rotation matrix described in section 2.4.2. Note that C1
u(r, h)

and C2
u(r, h) both are cylinders with direction u and radius r, but C1

u(r, h) has

height h, while C2
u(r, h) has height 2h.

Definition 3.5.5. Consider a marked point process with mark space M ⊆
Sd−1, d ≥ 2. Assume that the intensity function, ρ, exists and that, for i = 1

or i = 2,

K◦it (r, h) =
1

|A|
E

 6=∑
(ξ,mξ),(η,mη)∈Φ

I
(
ξ ∈ A, η − ξ ∈ Ci

mξ
(r, h)

)
t(mξ,mη)

ρ(ξ)ρ(η)c∗t


does not depend on the choice of A ⊆ S with 0 < |A| < ∞, where r > 0,

h > 0, t : M ×M → [0,∞) is some test function and a
0

= 0 for a ≥ 0. Then

K◦it is called the modified (mark-weighted) cylindrical K-function.

In a similar manner to the derivation of equation (3.21), we can show that

K◦it has a Palm interpretation. That is,

K◦it (r, h) = E

 ∑
(η,mη)∈Φ∗!

ξ

I
(
η − ξ ∈ Ci

m∗!
ξ

(r, h)
)
t(m∗!ξ ,mη)

ρ(η)c∗t


for Lebesgue-a.e. ξ and (m∗!ξ ,Φ

∗!
ξ ) ∼ P ∗!ξ . This implies in the stationary case

that

ρc∗tK
◦i
t (r, h) = E

 ∑
(η,mη)∈Φ∗!

0

I
(
η ∈ Ci

m∗!
0

(r, h)
)
t(m∗!0 ,mη)

 .
Hence, for t = 1 we can interpret ρK◦it (r, h) as the expected number of further

points in the cylinder with direction of the typical mark.

3.6 Estimation

In this section we describe how to estimate the summary statistics presented

in section 3.5. Throughout the section we consider a realisation φ of a marked

point process Φ, where the points of φ lie in a bounded window W ⊆ S.
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3.6.1 Estimating mark correlation functions

In order to estimate the mark correlation function it is convenient to assume

that ρ(2)(ξ, η) = ρ(2)(‖ξ − η‖) and ρ
(2)
t (ξ, η) = ρ

(2)
t (‖ξ − η‖). Note that sta-

tionary and isotropic marked point processes naturally meet these assump-

tions, since by equation (3.9), ρ(2)(ξ, η) = ρ(2)(‖ξ − η‖) implies ρ
(2)
t (ξ, η) =

ρ
(2)
t (‖ξ − η‖).

Due to equation (3.17) and (3.19),

kt(r) =
1

c∗t

ρ
(2)
t (r)

ρ(2)(r)

for r > 0, and kt(r) can thus be estimated by separately estimating ρ(2)(r),

ρ
(2)
t (r) and c∗t . A general kernel estimate of the second-order intensity function

(see e.g. Stoyan and Stoyan, 1994) is given by

ρ̂(2)(r) =
1

σdrd−1

6=∑
(ξ,mξ),(η,mη)∈φ

k(h)(r − ‖η − ξ‖)
|W ∩Wη−ξ|

for r > 0, where σd is the surface area of the d-dimensional unit ball and it is

assumed that |W ∩Wη−ξ| > 0. Furthermore, for u ∈ R, k(h)(u) = k(u/h)/h

for a kernel k(·) and bandwidth h > 0. Similarly, the second-order t-intensity

function can be estimated by

ρ̂
(2)
t (r) =

1

σdrd−1

6=∑
(ξ,mξ),(η,mη)∈φ

k(h)(r − ‖η − ξ‖)t(mξ,mη)

|W ∩Wη−ξ|
.

For the kernel estimates, Illian et al. (2008) recommend to use the uniform

kernel given by k(u) = 1
2
I(|u| ≤ 1) and as general rule of thumb to choose a

bandwidth of order h ≈ 0.1/
√
ρ for d = 2 and h ≈ 0.05/ 3

√
ρ for d = 3. These

recommendations have been followed in our application.

Finally, c∗t may be estimated by

ĉ∗t =
1

n(φ)2

∑
(ξ,mξ),(η,mη)∈φ

t(mξ,mη), (3.24)

where n(φ) is the number of points in φ, which is seen to be an unbiased

estimate under independent marking, since

E [ĉ∗t ] = E

 1

n(ΦW )2

∑
(ξ,mξ),(η,mη)∈ΦW

t(mξ,mη)



= E

 1

n(ΦW )2

∑
(ξ,mξ),(η,mη)∈XW

E [t(mξ,mη)|X]


= E

[
n(ΦW )2

n(ΦW )2
c∗t

]
= c∗t .
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3.6.2 Estimating the mark-weighted K-measure

The mark-weighted K-measure introduced in section 3.5.2 can be estimated

in a similar fashion as the second-order reduced moment measure, K (see e.g.

Møller and Waagepetersen, 2004).

Theorem 3.6.1. Assume that Kt exists for the function t : M ×M → [0,∞)

and |W ∩Wη| > 0 for all ξ ∈ B, where B ⊆ S Borel. Then

K̂t(B) =

6=∑
(ξ,mξ),(η,mη)∈φ

I(η − ξ ∈ B)t(mξ,mη)

ρ(ξ)ρ(η)c∗t |W ∩Wη−ξ|

is an unbiased estimate of Kt(B).

Proof. Let ΦW = {(ξ,mξ) ∈ Φ : ξ ∈ XW}. Applying equation (3.8) and a more

general version of (3.23) (obtained from using the standard proof) gives

E
[
K̂t(B)

]
= E

 6=∑
(ξ,mξ),(η,mη)∈ΦW

I(η − ξ ∈ B)t(mξ,mη)

ρ(ξ)ρ(η)c∗t |W ∩Wη−ξ|


=

∫
I(ξ ∈ W, η ∈ W, η − ξ ∈ B)

ρ(ξ)ρ(η)c∗t |W ∩Wη−ξ|
dαt(ξ, η)

=

∫
I(ξ ∈ W ∩Wξ−η, η − ξ ∈ B)

ρ(ξ)ρ(η)c∗t |W ∩Wη−ξ|
dαt(ξ, η)

=

∫
B

∫
I(ξ ∈ W ∩W−η)
|W ∩Wη|

dξdKt(η) = Kt(B),

where the last equality follows from the fact that |W ∩ Wη| = |W ∩ W−η|
(derived in Christensen and Christoffersen, 2015).

Hence, in case of stationarity an unbiased estimate of the mark weighted

K-function is

K̂t(r) =
1

ρ2c∗t

6=∑
(ξ,mξ),(η,mη)∈φ

I(‖η − ξ‖≤ r)t(mξ,mη)

|W ∩Wη−ξ|

for r > 0. In practice, ρ2 and c∗t need to be estimated, which introduces some

bias. We will estimate c∗t by (3.24) and ρ2 by n(φ)(n(φ)− 1)/|W |2, the latter

being an unbiased estimate for a Poisson process.

3.6.3 Estimating the modified cylindrical K-function

The definition of the modified cylindrical K-function was strongly inspired by

the cylindrical K-function and the mark-weighted K-measure, and so is its
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estimate. That is,

K̂◦it (r, h) =

6=∑
(ξ,mξ),(η,mξ)∈φ

I(η − ξ ∈ Ci
mξ

(r, h))t(mξ,mη)

ρ(ξ)ρ(η)c∗t |W ∩Wη−ξ|

where i is either 1 or 2, r > 0 and h > 0. Again, c∗t will be estimated by (3.24)

and, assuming stationarity, ρ2 is estimated by n(φ)(n(φ)− 1)/|W |2.

3.7 Analysis of pyramidal cells’ location and

orientation

In this section we will apply the theory presented in this chapter to the pyra-

midal cell data. As mentioned earlier, the points describe are the three-

dimensional coordinates of the pyramidal cells’ nucleoli, and the marks are

unit vectors describing their orientation First, a number of plots will be pre-

sented and used in a discussion of the data. This will include considerations of

the marks’ distribution and their relation to the nucleolus locations. We then

test for independent marking and finish with a discussion of possible extensions

of the analysis.

3.7.1 Investigate data

In section 2.5.1 we chose an eroded observation window for the nucleolus loca-

tions. In this marked point pattern analysis we shall use the same observation

window, that is [0, 1382] × [0, 145] × [10, 485] µm3, which contains a total of

2060 pyramidal cells.

Figure 3.1 displays the marks as three-dimensional unit vectors and gives

an indication of the distribution of the marks. A great part of the marks point

in the (approximate) positive z-direction, i.e. directed towards the pile surface

of the brain. In fact, only 87 of the 2060 marks have a negative z-coordinate.

Figure 3.2 confirms that the marks tend to point upwards and also shows

that most have a negative x-coordinate. Furthermore, not much variation

is found in the y-direction, i.e. the mark’s y-coordinate tend to be closer to

zero than the x- and z-coordinate. To explore the cell directions further we

consider the mark as spherical angles, denoted φ and θ. Here φ ∈ [0, π] is

the polar angle between the positive z-axis and the mark, while θ ∈ (−π, π]

is the azimuth angle between the positive x-axis and the projection of the

mark onto the xy-plane. Figure 3.3 displays a kernel density estimate of the

joint distribution of the spherical angles along with marginal histograms. Here

we used the three-dimensional normal kernel and a small bandwidth. This

provides evidence that there is an absence of marks in an area roughly defined

by θ ∈ (−2.5,−0.5) ∪ (0.5, 2.5) and φ ∈ (0.75, 2.75). There is furthermore a
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Figure 3.1: Plot of the marks as unit vectors.

high concentration of marks with polar angle φ ∈ (0, 0.75), especially for an

azimuth angle θ ∈ (1, π). This is consistent with what we saw in figure 3.2.

Figure 3.4 and 3.5, that display plots of the polar (resp. azimuth) angle versus

the x-, y- and z-coordinate of the nucleolus, give no apparent indication of

dependency between marks and nucleolus locations. As discussed in section

3.2.4, correlation between constructed marks describing the local intensity and

the observed marks can help to identify a suitable model for the marks. In

figure 3.6 the nearest neighbour distances are therefore plotted against the

spherical angles, but no correlation is revealed.

3.7.2 Test for independent marking

Under independent marking the nucleolus locations and the marks are simu-

lated separately. For this analysis we simulate the nucleolus locations from the

Strauss hardcore model fitted in section 2.5.2 since we found this an appropri-

ate model.

Fisher et al. (1987) describes several distributions for modelling spherical

data. By considering figure 3.1, 3.2 and 3.3 it becomes apparent that the marks

has a girdle form distribution, which excludes many spherical distributions.

The girdle seems to be concentrated around the great circle in the plane which

is approximately normal to the vector (0, 1, 0). The intensity of the marks

is however not constant on this girdle, as the marks are highly concentrated

around the (approximate) positive z-axis. Except for the high concentration

of polar angles between 0 and 1 radians the marks’ intensity appears rather
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Figure 3.2: Projection of the marks onto the xy-plane (top left), the xz-plane

(top right) and the yz-plane (bottom). Colours indicate the sign of the ex-

cluded coordinate (z, y and x, respectively).

Figure 3.3: Non-parametric kernel density estimate of the marks’ spherical

angles together with marginal histograms.
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Figure 3.4: The marks’ polar angles plotted against the x- (left), y- (right)

and z-coordinate (left) of the nucleoli.

Figure 3.5: The marks’ azimuth angles plotted against the x- (left), y- (right)

and z-coordinate (left) of the nucleoli.

Figure 3.6: The nearest neighbour distance of the nucleolus against the mark’s

polar (left) and azimuth (right) angle.
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constant on the girdle. These characteristics are not mimicked by the spherical

distributions described by Fisher et al. (1987). The marks will therefore be

simulated from a kernel density estimate for spherical data proposed by Bai

and Zhao (1988). For observed marks m1, . . . ,mn ∈ Sk−1 ⊂ Rk, k ≥ 2 The

kernel estimate is given by

f̂h(m) =
ch,k(L)

n

n∑
i=1

L

(
1−mTmi

h2

)
, (3.25)

where h > 0 is the bandwidth, ch,k(L) is a normalising constant and L(·) is the

directional kernel, which is a non-negative function defined on [0,∞). For a

more detailed treatment see Garćıa-Portugués et al. (2014), references therein

and Bai and Zhao (1988). For the von Mises-Fisher kernel, given by L(r) =

exp(−r), the kernel density estimate (3.25) can be interpreted as a mixture

of von Mises-Fisher distributions with directional means mi, i = 1, . . . , n and

concentration parameter 1/h2 (for proof see Garćıa-Portugués et al., 2014, and

references therein). That is,

f̂h(m) =
1

n

n∑
i=1

fvMF (m;mi, 1/h
2) =

1

n

n∑
i=1

Ck(1/h
2) exp

(
mTmi

h2

)
A description of the von Mises-Fisher distribution is given by Fisher et al.

(1987). Specifically, for our case with k = 3,

C3(1/h2) =
1/h2

2π (exp(1/h2)− exp(−1/h2))
.

Each mark can then be simulated from a von Mises-Fisher distribution with

directional mean chosen uniformly from the observed marks and concentration

1/h2. Based on figure 3.7 we have chosen h = 0.1, which corresponds to a

concentration parameter of 100.

Simulation under the von Mises-Fisher distribution was done using the

rmovMF function from the package movMF in R. The nucleolus locations was sim-

ulated using the Metropolis-Hastings algorithm as described in section 2.3.2.

In total 2499 marked point patterns were simulated in the above described

manner and used for constructing global rank envelopes (as described in sec-

tion 2.4.3) for k̂t1 , K̂t1 , K̂t1 − K̂ (figure 3.8), K̂◦1t1 , K̂◦2t1 (figure 3.9), K̂◦1t2 and

K̂◦2t2 (figure 3.10) with

t1(m1,m2) = arccos (m1 ·m2)

t2(m1,m2) = 1.

For K̂◦1t1 , K̂◦2t1 , K̂◦1t2 and K̂◦2t2 we considered three different values of h, specifi-

cally h = 40, 60 and 80 µm, and let r vary from 0 to 35 µm. This yields a total

of 15 summary statistics, of which 10 (including k̂t1 , K̂t1 and K̂t1 − K̂) have a
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Figure 3.7: Directional kernel density estimates of the marks’ spherical angles

with bandwidth 0.15 (top left), 0.1 (top right) and 0.05 (bottom).

conservative p-value, p+, smaller than 0.05. Furthermore, two of the tests has

a p-interval containing 0.05, and thus we reject the hypothesis of independent

marking.

For the mark-weighted K-function with test function t1, that describes the

angle between pair of marks, the estimate falls below the envelopes for several

values of r ≤ 10 (see figure 3.8). This may indicate that marks with points lying

closer than 10 µm tend to have more similar directions than under independent

marking, indicating some interaction between points and marks. For the mark

correlation function, in figure 3.8, the estimate only falls below and not above

the envelopes, indicating that the marks are more alike than expected under

independent marking. However, the estimate mostly falls outside the envelopes

for r ≥ 20 µm, which is not in agreement with Kt1 . Kt1 − K also rejects

independent marking for r ≥ 25 µm.

The main purpose of the modified cylindrical K-function is not to test for

independent marking, but rather columnar structures. When t = t2, we simply

test for columnar structures with direction as the typical mark. For t = t1,

we have a weight that is small when the points in the cylinder have similar

direction as the typical mark. We do not get a clear indication of minicolumns
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Figure 3.8: Estimates of kt1 (left), Kt1 (middle) and Kt1 − K (right) along

with 95% global rank envelopes under independent marking. Test function is

t1 = the angle between two marks.

from either figure 3.10 or 3.9. However, the estimate of the modified cylindrical

K-function tends to fall below the envelopes more for t = t1 than for t = t2.

This may be an indication that marks, whose points lie in the same cylinder,

tend to be more similar than under independent marking.

In conclusion, independent marking (with a Strauss hardcore ground pro-

cess) does not seem to be an adequate model for the pyramidal cell data.

Figure 3.9: Estimates of K◦1t1 (top) and K◦2t1 (bottom) with h = 40, 60 and 80

µm from left to right along with 95% global rank envelopes under independent

marking. Test function is t1 = the angle between two marks.
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Figure 3.10: Estimates of K◦1t2 (top) and K◦2t2 (bottom) with h = 40, 60 and 80

µm from left to right along with 95% global rank envelopes under independent

marking. Test function is t2 = 1.

3.7.3 Discussion

The conclusion from the previous section may depend on several factors, e.g.

the bandwidth for the kernel density estimate of the mark distribution. It

would be preferable to investigate how a different (sensible) choice of band-

width value would affect the outcome of the analysis, specifically whether a

new bandwidth would lead to rejection of independent marking. The per-

formed tests of independent marking not only depends on the estimated mark

density, but also on the chosen model for the ground process. Even though

the Strauss hardcore point process was accepted as a suitable model for the

points it may influence the results regarding independent marking. A more

thorough examination of how well the Strauss hardcore model describes differ-

ent aspects of the point pattern would possibly be desired. Another possible

direction to pursue in a further analysis is to model the data with marks, that

are no longer required to be mutually independent, but still independent of the

points. However, we saw some indication that the marks actually do depend

on nearby points. Another option would thus be to build a hierarchical model,

where the marks are described by some distribution conditional on the points

x = {ξ1, ξ2, . . . , ξn}. One possibility is to consider a Markov random field

model with the joint mark density for unit vectors m1, . . . ,mn (conditional on
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X) given by

f(m1, . . . ,mn|X = x) ∝ exp

β ∑
i,j:‖ξi−ξj‖≤r

mi ·mj

 ,

where β > 0 is a concentration parameter and r > 0 determines the radius of

the neighbourhood that affects the mark of a point. Since m1, . . . ,mn are unit

vectors,

exp(βmi ·mj) ≤ exp(β)

for i, j = 1, . . . n. That is, the density is bounded by

f(m1, . . . ,mn|X = x) ≤ exp(βn) <∞

and thus Ruelle stable, which implies integrability. Hence, the density is indeed

well-defined. Note that the density function increases as more marks in the

neighbourhoods have similar directions. That is, a mark tend to be similar to

the marks in its point’s neighbourhood.
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