
Running head: MULTI-ZONE AUDIO SYSTEM 1

Design and Development of a Multi-Zone Audio
System

Cătălin Bălan, Simon Dibbern

June, 2016

Supervisor: Michael Boelstoft Holte

MULTI-ZONE AUDIO SYSTEM 2

Abstract

Home audio systems are constantly improving and gaining new capabilities with

the advent of the Internet of Things. New Multi-Zone Audio Systems, which allow

users to wirelessly play music anywhere in a house, are becoming common place.

This thesis explores the most commonly available setups and proposes a system de-

signed to empower the user’s control over audio. A prototype for a peer-to-peer audio

signal transfer network, as well as a distributed user interface are presented. The de-

velopment challenges, implementation details as well as performance characteristics

are analysed. Finally, the overall design of the Multi-Zone Audio System is assessed

while establishing the requirements for the next phase in development.

MULTI-ZONE AUDIO SYSTEM 3

Contents

1 Introduction 4
1.1 Target group . 4
1.2 Goals . 4
1.3 Use case scenario . 5
1.4 State of the art . 6
1.5 Theoretical framework . 7

2 Methods 12
2.1 Overall multi-zone system architecture 12
2.2 Relay development . 13
2.3 Interface development . 18
2.4 Validation . 21

3 Results 22

4 Discussion 23
4.1 System design review . 23
4.2 Hardware choice . 25
4.3 Control Interface . 26
4.4 Bias . 27
4.5 Future work . 27

5 Conclusion 28

References 29

Appendices 31

MULTI-ZONE AUDIO SYSTEM 4

1 Introduction

Audio systems have been a part of every day life for decades. They are an indispensable
technology that comes in various shapes, sizes and capabilities, from portable headphones
to high end studio equipment. However, most audio systems act as simple passive com-
ponents that either play or record sound, with little control over any parameters beyond
the quality of the sound. With the advent of the Internet of Things, we believe that sound
systems in consumer households will become increasingly complex, with several inter-
connected speakers and microphones situated around a single home. As complex setups
become more common, it is critical that users are in control and feel empowered to use
them, rather than intimidated.

One main trend in the development of complex audio systems is Multi-Zone setups.
These systems allow users to place speakers in different configurations in different rooms
of a house. This report aims to explore the state of the art of such systems and identify
where improvements can be made. Furthermore, this report presents the development of
one such system designed to overcome the discovered limitations.

1.1 Target group

A multi-zone audio system is designed to fit in large homes and service multiple users
simultaneously. Families are therefore the most appropriate target group. This group
includes a wide range of age groups and cultures, we therefore limit that group for design
purposes to families who wish to have more control over their sonic experiences. This
group would have more demanding requirements when it comes to the features provided
by the system and a higher expectation for quality.

1.2 Goals

A series of goals were established in order to create a feasible prototype and validate
it. These goals were selected based on reviewing the available solutions presented in
Section 1.4 (State of the art) and on a series of open ended interviews conducted with
eight participants. Five of these participants identified as audio enthusiasts and either
produced music in some form or had a good understanding of audio systems in general.
A more detailed description about these interviews can be found in Appendix A. The
results of these interviews presented us with the following set of criteria valuable to our
users about the multi zone audio system:

MULTI-ZONE AUDIO SYSTEM 5

1. It should be easy to configure and set up;

2. It should allow playback from any source (phones, computers, old vinyl players);

3. It should allow playback from multiple sources simultaneously (as a common use
case games and music were mentioned);

4. There should be some form of account management so that people in the house do
not accidentally change someone else’s music;

5. There should be a way to control the quality of the sound, via both equalization and
bass/treble controls;

The literature and product review, however, provided another set technical require-
ments for the system:

6. The audio delay between two different speakers should be maintained within 25ms
at most (Haas, 1972);

7. The audio playback on different speakers will drift over time and should be resyn-
chronised constantly (Sommer & Wattenhofer, 2009; Lamport & Melliar-Smith,
1985);

8. The audio delay between the playback source and speakers should be kept low if
gaming is a requirement;

1.3 Use case scenario

In order to further clarify the intended uses and individual parts that make up such system,
the following use case scenario is described.

The system is set up in a typical home. A 5.1 surround speaker system is located in
the living room and intended to be used with a TV. Furthermore, a set of stereo speakers is
located in the kitchen for playback of music from a mobile device or for listening to radio.
Equally, the children’s bedroom is equipped with a stereo system for a gaming console
and music playback from mobile devices. All speakers are connected to the home LAN
network, either through Ethernet cables or WiFi.

All ten speakers can be assigned to three separate zones representing their physical
position in the house. Now, the user can map the audio output of any capable device to
one or multiple zones. For instance, during the day, the music being played from a mobile
device is routed to both the speakers in the living room and the kitchen simultaneously.
In the evening, the users turn off the music in the living room and use the speakers to
playback audio from the TV. Finally, on special occasions, when children have guests
over, they decide to play music in the entire house.

MULTI-ZONE AUDIO SYSTEM 6

These changes are all performed through a simple control interface on any mobile
device or desktop in the house.

1.4 State of the art

Sound systems which support similar user interactions have been commercially available
for several years now. This section presents a review of some of these systems in order to
understand how they function, what they are capable of as well as their limitations.

1.4.1 Control4

The manufacturer Control4 serves a wide array of home automation products (Control4
Corporation, 2016). Their solutions are cooperating to form a smart home experience.
Products range from home entertainment to security devices. At the core of the system is
a central controller unit. Furthermore, the eco-system consists of Zone-Amplifiers. These
provide a amplified stereo-only audio signal ready to be fed to speakers. These amplifiers
power either 4 or 8 zones at once. Hence, a setup does require a significant amount if
wiring.

Additionally, they provide a Speaker Point. These act as a wireless alternative to the
amplifiers. They have a single output (stereo), but crucially, a analogue stereo input. The
intended use is to feed a audio-signal from a third-party product, such as a vinyl player
or TV, into the system. Similarly, the Wireless Music Bridge allows users to stream audio
into the system using Bluetooth or Airplay. Whilst covering a wide set of features, the
products are designed to be installed by a professional and form a static solution.

Control4 is designed to be a complete smart home solution and despite its impressive
features, it is not an accessible option for people who just wish to enhance their audio
experience. In contrast to this design, audio control can be a stand alone solution and can
be easily integrated with other smart home technologies.

1.4.2 Sonos

Sonos offers a variety of speakers with integrated wireless and multi-zone capabilities
aimed for music listening (SONOS, Inc, 2016). The wireless speakers interconnect to
form a network and can be grouped to form zones. The exact architecture is not transpar-
ent. The system gets audio-input primarily from its dedicated player with an integrated
online streaming service. This allows users to collaboratively decide on exactly what is
being played and, instead of streaming the audio from the device the interface is used on,

MULTI-ZONE AUDIO SYSTEM 7

the speaker itself streams the audio from the online service. Additional products, such as
the Sonos CONNECT do have an audio input, allowing to stream alternative audio signals
into the system.

Sonos is one of the few multi-zone audio systems we had direct access to during
development. In our tests with the Sonos speakers we observed the system locks users
down and forces them to use the Sonos app to play any sound. It is impossible to play a
movie on a laptop and use Sonos speakers for audio. Furthermore, by analysing network
traffic we observed that streamed data is sent to only one of the speakers directly and is
presumably distributed to the other speakers in a later step.

1.4.3 Samsung

The central device in Samsung’s approach to multi-zone audio is their hub.

“The Hub [..] works with the app to allow you to connect multiple speakers
into a multi room system. By simply plugging the hub into your router and
connecting via the app, you can connect, group & control your speakers [..].”
(SAMSUNG, 2013).

The wireless speakers in their product range only work in the traditional paradigm of
a direct connection between the playback device and the speaker. The described hub is
required to form a multi-zone system.

1.5 Theoretical framework

This secion presents the main theoretical framework required for the design and develop-
ment of the prototype.

1.5.1 Audio

“Sampled digital audio (or simply digital audio) consists of streams of audio
data that represent the amplitude of sound waves at discrete moments in time”
(Burg, Romney, & Schwartz, 2012)

The fundamental element of a digital audio stream is a sample. A sample represents
the amplitude of the sound wave at a specific point in time. As this value is stored digitally,
it takes up a certain amount of storage space. This amount is the bit-depth (or simply
depth), how many bits there are per sample. The amount of samples the audio stream

MULTI-ZONE AUDIO SYSTEM 8

puts through over time is measured in Hertz and represents the sample rate, samples per
second. The format for basic, uncompressed audio data is Pulse Code Modulation (PCM).
The audio data is communicated as binary data, representing electronic pulses (Burg et
al., 2012).

1.5.2 Network architecture

A core property of multi-zone audio systems is that they are required to play back (and
optionally record) audio streams in multiple locations on multiple speakers. Handling all
of the necessary mixing on one system and playing back the audio directly in each zone
is not an option for several reasons:

1. It would require a prohibitive number of audio cards as they typically have a limited
number of outputs.

2. It would require connecting wires throughout the entire home back to the centralised
control.

In order to work around these impediments, the multi-zone audio system should be
composed of a network of several nodes designed to play back music in unison. This
section presents the reviewed theory required to design and implement this network.

A distributed system is “a collection of independent computers that appears to users
as a single coherent system” (Tanenbaum & van Steen, 2007, p. 2). There are several
possible architectures to structure such a network.

The simplest form of organizing a network is a layered architecture. A common ex-
ample would consist of a website which has an interface layer, a database layer and a
processing layer that directs business logic in between the other two. These layers can
be split across multiple machines, such that users only have direct access to the interface,
while processing and data access take place on two or more different machines in the
network (Tanenbaum & van Steen, 2007). Furthermore, it is possible to have duplicate
nodes within a layer to service multiple customers, as shown in Figure 1. This type of
architecture organization is known as vertical distribution (Özsu & Valduriez, 1991).

These architectures are simple to understand and implement, and are efficient in re-
gards to data transfer performance. Communication is well defined to only take place
between layers and each node has full authority over its computation. Despite the sim-
plicity, layered structures are typically rigid and difficult to scale for layers which handle
data persistence (Özsu & Valduriez, 1991).

Another common approach is horizontal distribution. In this configuration, nodes are
typically homogeneous and each operates on its own share of the complete data set. The

MULTI-ZONE AUDIO SYSTEM 9

Figure 1: Layered network architecture with multiple nodes within a layer.

largest class of networks that support horizontal distribution are peer-to-peer networks.
These networks build an overlay network which acts as a resource location service where
queries can be made to find any particular node that either stores some data or performs a
certain function (Aberer et al., 2005). This overlay is essentially a routing table.

Two major categories of peer-to-peer networks exist, structured and unstructured ar-
chitectures (Lua, Crowcroft, Pias, Sharma, & Lim, 2005). Structured peer-to-peer designs
construct the overlay network and the possible connections between the nodes following
a deterministic process. This process is predominantly a distributed hash table. This class
of algorithms aims to efficiently map the key of a data item to the identifier based on some
distance metric (Tanenbaum & van Steen, 2007; Balakrishnan, Kaashoek, Karger, Morris,
& Stoica, 2003).

On the other hand, unstructured peer-to-peer designs use randomized algorithms to
produce an overlay network. In this class of networks, each node maintains a list of
neighbours. This list of neighbours is known as a partial view of the system, and nodes
regularly update this view. Locating a data item is done by broadcasting queries through-
out the system (Tanenbaum & van Steen, 2007).

1.5.3 Consensus

Apart from addressing and identifying nodes, peer-to-peer networks present another set
of problems not present in a layered architecture. Data has to be replicated (partially or
fully) across the nodes and during normal operation, no conflicts can occur. This concept
is known as consensus and requires a series of properties (Correia, Neves, & Verı́ssimo,
2006; Hadzilacos & Toueg, 1994).

1. Validity. Any value decided upon, is a value proposed to the system.

2. Agreement. No two processes decide differently.

MULTI-ZONE AUDIO SYSTEM 10

3. Termination. Every correct process eventually decides on a value.

4. Integrity. Every process decides at most once.

A protocol that satisfies consensus will also satisfy the definition of a distributed sys-

tem when communicating with any individual node, as any node would behave like the
entire system. Protocols can achieve consensus by using a fault tolerant algorithm like
Paxos (Lamport et al., 2001) where new values are proposed to other nodes and after a
series of phases of the algorithm, the values get agreed upon by the system. Furthermore,
consensus can only be achieved under at least one of these conditions (Turek & Shasha,
1992):

1. If the nodes within a system are synchronized and messages are delivered within a
predetermined bounded time frame.

2. If messages can be guaranteed to be delivered in order and nodes can broadcast
(send messages to all other nodes within an atomic operation).

3. If messages can be guaranteed to be delivered in order and the nodes are synchro-
nized.

If a system can guarantee to reliably deliver messages in order, then that system sup-
ports atomic broadcasts. Note that to deliver a message means to actually process its
contents, while broadcasting means sending the message to all other nodes. Delivery and
broadcast can be separated in time and, in theory, a broadcast message is not necessarily
also delivered. Formally, atomic broadcasts require the following properties (Hadzilacos
& Toueg, 1994):

1. Validity. If a node broadcasts a message, then it eventually delivers that message.

2. Agreement. If a node delivers a message, then all nodes eventually deliver that
message.

3. Integrity. Each process delivers a message at most once.

4. Total Order All processes deliver all messages in the same order.

Finally, it is proven that consensus and atomic broadcasts are equivalent problems in
distributed systems (Hadzilacos & Toueg, 1994). An algorithm that is designed to solve
one problem can be trivially converted to solve the other. Therefore, atomic broadcasts

require the same conditions that consensus requires in order to be implemented.

MULTI-ZONE AUDIO SYSTEM 11

In a synchronized system, where the clocks of all nodes are guaranteed to be within a
bounded time difference, have a known drift rate and there is a known bounded limit for
the transfer and processing time of a message, timed reliable atomic broadcasts can be
achieved by delivering all messages at a fixed finite time after they are broadcast.

1.5.4 Continuous synchronization

Synchronization is important for both audio processing and consensus within a distributed
systems. It is therefore important to discuss what synchronization is and how it can be
achieved. A network is synchronous if every node has a local clock with a known bounded
rate of drift from real time and there is a known bounded limit required to send, transmit,
receive and process a message (Hadzilacos & Toueg, 1994).

It is important to know that local clocks do not measure real time directly, but still
satisfy monotonicity: they never decrease and they never skip values. Furthermore, the
clocks of two different nodes are known to be logical clocks if for every event e that
causally precedes event f , e takes place at a time before f for each of the clocks (Hadzilacos
& Toueg, 1994). Satisfying these two properties allows for a straight forward implemen-
tation of atomic broadcasts (Hadzilacos & Toueg, 1994).

Two clocks are synchronised if the values of their local clocks differ, in real time,
by a known bounded constant. Many algorithms exist for synchronizing clocks over a
network (Sommer & Wattenhofer, 2009; Lamport & Melliar-Smith, 1985; Mills, 1991,
2006), but they generally do not require to satisfy monotonicity. These algorithms work
in phases to measure the difference between two local clocks and periodically set them to
the same value. In order to achieve monotonicity, one can simply interpolate between the
values set during synchronisation phases such that the local clock never skips (Sommer
& Wattenhofer, 2009).

1.5.5 Distributed User Interfaces

The described system is dependent on some configuration taken care of by the user. Due
to the distributed nature of the system and the multi-user environment, a Distributed User
Interface (DUI) is proposed. DUIs, as described by Villanueva, Tesoriero, and Gallud
(2013), are User Interfaces (UI) that can be shared across different devices.

DUIs can be seen in two broad forms: as multiple instances of UIs on different devices,
each providing a part of the functionality to a single user. Or, alternatively, as multiple
instances of the same UI running on different devices used by different users simultane-
ously. This approach is further described by Melchior, Mejı́as, Jaradin, Van Roy, and

MULTI-ZONE AUDIO SYSTEM 12

Vanderdonckt (2013). Such DUIs allow great amounts of collaboration, but do require
consensus on the state among the different instances. Solving consensus for the other
nodes in the system would satisfy this requirement, if the interface only communicates
with those and not directly to other instances of itself.

2 Methods

This section presents the methodology used to implement the application, as well as the
techniques used to validate whenever the proposed goals were achieved.

2.1 Overall multi-zone system architecture

The final design of the prototype uses a hybrid approach to the network architecture. As
there are expected to be relatively few zones in a single house (limited by the number
of rooms) and relatively few speakers in a single zone (ranging from 2.0 stereo to 7.1
surround) it is feasible to assume that each node would be able to keep track of all other
nodes in a system. It is also easy to observe that the entire system would have low amounts
of persistent data to store (metadata about nearby processing nodes, metadata about play-
back and recording streams and configuration data such as equalizer and volume settings).
We estimate the amount of data required to fully configure and describe a particular setup
of a multi-zone audio system to be within the order of at most tens of kilobytes.

These two observations about distribution scale and storage requirements suggest the
best and simplest approach for the network architecture is a fully replicated, unstructured
and synchronised system where all nodes have complete knowledge about the entire sys-
tem, and where all nodes can communicate to each other. This choice eliminates the
requirement of implementing a DHT to identify each node and simplifies the replication
algorithm. The only major requirement so that the system acts uniformly is to handle
consensus.

Despite the low requirements needed to implement such a small distributed system to
handle its configuration, the prototype is still required to transmit audio data to each node.
At RAW 16bit PCM audio at 44100Hz, this would amount to ' 86.14Kb/s per channel.
Assuming the extreme case of four simultaneous stereo and one 5.1 signal being played
in the same zone, this would amount to a total of ' 1.17Mb/s of uncompressed data to be
distributed through the nodes. We consider this to be an upper bound as the final value can
be brought down by compression (50−60% by using lossless FLAC compression) and as
the original interviews suggest users would play at most three distinct streams within the

MULTI-ZONE AUDIO SYSTEM 13

same zone, only one of which would be more than stereo.

It is not feasible to replicate the audio data fully between all the nodes of the system
the same way configuration data is replicated. Therefore, the prototype would use a cen-
tralized/layered approach to transmitting audio data, as this method has the lowest amount
of data transmission requirements and scales linearly with the number of nodes. Within
each zone, a node would be designated as a leader. This leader would handle mixing of
all inbound signals and then redistribute the needed signals to all the other nodes.

A final problem is providing audio data to the system. By using a centralized ap-
proach, audio sources cannot transmit data directly to any node in a zone, but instead
have to first identify who the leader is and transmit data towards that particular node. This
solution goes against the definition of a distributed system, as the entire network structure
would no longer appear as a single entity to the external world. To solve this issue, we
introduce virtual nodes that receive raw audio data and identify leaders and transmit data
to them. These nodes would be implemented as dedicated audio players or virtual audio
drivers that can interact with the multi-zone audio system.

For clarity, we shall refer to nodes which transmit audio data within the system as
relays and virtual nodes which provide an interface for audio transmission to the system
as emitters. It is important to note that this is a logical separation, not a physical one.
A hardware component within the multi-zone audio system could have both relay and
emitter software and provide both output and input. Figure 2 illustrates the proposed
setup.

Relays are designed to be hardware independent and to support outputting audio on
as many channels as their sound card supports. However, internal testing was carried out
using various versions of Raspberry Pi1. Each of this versions is equipped with a single
3.5mm stereo output port, and thus the hardware design of the system associates one relay
for every one or two physical speakers.

2.2 Relay development

The main focus of development, in terms of making the system functional, was on relays.
They define the communication protocols, handle audio mixing as well as integrate a set
of discovery subsystems that empower the prototype. In contrast to the relays, for testing
purposes only a simple emitter was developed that could read WAV files and transmit
them to a leader relay.

Both the relays and emitters were developed in C++ with strong emphasis on per-

1https://www.raspberrypi.org/products/ “Information about each of the official Raspberry Pi products”.

MULTI-ZONE AUDIO SYSTEM 14

Figure 2: Overal system architecture. Emitters provide different channels of audio streams
to zone leaders directly. Configuration is achieved through a distributed protocol.

formance as the final implementation should run on small computers and/or embedded
systems. The code for both relays and emitters currently only runs on Linux, but the only
platform specific component (audio playback) is well isolated to allow porting later on
if the need arises. Furthermore, the only third party dependencies included in the imple-
mentation are libsndfile2 for reading WAV files, msntp3 for SNTP (Mills, 2006) support,
Alsa4, audio playback on Linux, and mDNS discovery, on Linux this is provided through
Avahi5.

2.2.1 Discovery and relay management

Relays use mDNS, a standard protocol provided by Apple for zeroconf network discovery
on LAN. After the initial discovery, relays exchange information about their local state.
Following this process, replication takes place so that new relays are brought up to date
with the state of the entire system.

As clock synchronisation is important for audio playback and as the entire system is

2https://github.com/erikd/libsndfile “A C library for reading and writing sound files containing sampled
audio data”.

3https://github.com/snarfed/libmsntp “A full-featured, compact, portable SNTP library”.
4http://alsa-project.org “Provides audio and MIDI functionality to the Linux operating system”.
5http://avahi.org “A system which facilitates service discovery on a local network”.

MULTI-ZONE AUDIO SYSTEM 15

designed to run on LAN where upper bounds for delta time for packet transmissions is
low, timed reliable atomic broadcasts are used to solve the problem of consensus through-
out the system. Each message sent is accompanied by an ID and time stamp. All mes-
sages are delivered and processed in order at time stamp + f ixed delay, as described by
Hadzilacos and Toueg (1994).

The configuration of each relay is stored in a series of unordered sets describing relays,
zones, connected emitters and active streams. Each of these four data structures is an
atomic independent unity. Modifying a relay does not directly affect another entity in the
data structure and operations which would be non atomic (such as moving a relay to a
new zone) can be broken up into independent atomic commands which can be directly
decided upon for consensus using atomic broadcasts.

The communication protocol used to achieve configuration and data transfer follows a
custom data layout and is not final. The generic protocol follows a simple structure: 3 byte
header containing command ID (1 byte) and packet size (2 bytes) followed by arbitrary
data to be handled based on the received command ID. The data is serialized as JSON6

for configuration commands exposed to emitters and the distributed user interface or as
a custom opaque binary format when performance is important (transferring stream data,
stream metadata or real time continuous debugging) or when the command is intended to
be used only to transfer data between relays. Internal commands that are transmitted via
atomic broadcasts contain an additional header with a 4 byte sequence ID and an 8 byte
timestamp specified in microseconds.

To achieve synchronization, each relay broadcasts a synchronization phase every few
minutes on its logical clock. During this phase, clock rate offsets are computed using the
SNTP protocol between and all neighbours. The local logical clock of each node is then
updated to match the average value read.

All the communication is implemented over TCP to ensure packets are delivered in
the same order they are sent. The communication protocol that the interface uses is a
connectionless request-response protocol. A request arrives at one of the relays, it is then
broadcast to all other using atomic broadcasts to ensure consensus and after the request
is delivered by the atomic broadcast it is processed and a response is sent back to the
interface and the TCP connection is closed. In contrast, the audio data protocol is a
connected one, where the TCP socket is maintained throughout a session.

A final separate connected command protocol exists for debugging. This is persisted
throughout the applications lifetime and updates the state of each relay and logs to a
debugging user interface at a rate of 20 updates/second. A more in depth description of

6http://json.org “A lightweight data-interchange format”.

MULTI-ZONE AUDIO SYSTEM 16

the debugging interface can be found in Appendix B.

2.2.2 Audio processing loop

The first implementation of the prototype relied heavily on asynchronous threads to han-
dle distinct phases of the audio processing. Playback and mixing would take place on
the main thread, reading input streams would fill in the audio buffers on one thread per
data source, forwarding data would be handled in a separate thread per target relay and
processing configuration commands would be done on their own threads as well. This
implementation proved to be difficult to synchronise and unpredictable. Furthermore, the
testing hardware only has one execution core. As such the parallel threading model fell
apart.

The current implementation does the main processing on the same thread sequentially
and maintains a second thread open for the command protocol. This second thread is
predominantly idle and blocks whilst listening for TCP connections.

The main audio thread runs at a frame rate defined by the size of the hardware audio
buffer. Alsa submits fixed chunks of audio data to the sound card of a predefined size
known as periods. Furthermore, Alsa provides a fixed buffer in software where multiple
frames can be provided ahead of time. The default settings for all tested hardware used a
256 frame period and a 1024 frame buffer. In this setup at 44100Hz, audio would have
a consistent delay of 6ms across all relays and the application would be limited to 172.2
frames/second but could occasionally drop safely to 43 frames/second.

For each audio frame, available stream data must be read into the mixing ring buffers,
stream data must be forwarded to other relays if possible and 256 frames of audio signal
must be produced for mixing. Additionally, this main loop also processed events produced
by the command thread (such as responding to a mute command) or discovery events
produced by the mDNS service. As such, these are the phases of the main loop, in order:
poll and read stream sockets, poll and process events, forward data, mix, wait for buffer
availability, write audio to hardware.

2.2.3 Mixing

Each relay implements a single mixer that stores and processes all audio data. Most other
elements of the relay are build around the mixer.

The mixer contains a collection of data queues, implemented as ring buffers, to store
all input streams arriving to the relay. Each ring buffer contains PCM data for a single
mono channel, along with metadata about what that channel represents. This design was

MULTI-ZONE AUDIO SYSTEM 17

chosen as it can handle audio data being delivered at different rates and caches up to 2
seconds of audio ahead of playback if possible. This allows both real time streams and
cached streams to coexist, and can play individual streams at different delays. Further-
more, each stream to be played at the best possible latency and packet loss within a stream
to not affect other signals. The final benefit of storing mono channels separately is that it
allows mixed signals to be easily rerouted.

Three handles are used to manipulate the data for each ring buffer. The buffer, along
with these handles are illustrated in Figure 3.

1. The playback handle. For every audio frame the mixer provides a fixed amount
of samples for playback and advances the playback handle.

2. The forward handle. Every audio frame, the mixer provides as many samples as
possible for each channel, starting from the forward handle.
These samples are rerouted by the leader relay to other relays in the same
zone.
The forward handle is ignored for non-leader relays.

3. The write handle. Incoming audio data from a stream is written to this handle.

Figure 3: A typical buffer layout. Red: audio data needed for the next frame; yellow: data
forwarded to other relays; green: data that cannot be mixed and forwarded yet.

The current version of the mixer only supports a single mixing pass, which is designed
to be an equalization step. For testing purposes, the mixer only does signal amplification.
Full equalization support is to be implemented at a later stage.

MULTI-ZONE AUDIO SYSTEM 18

2.3 Interface development

Whilst some parts of the system are configured programmatically, the user has to be able
to adjust certain properties in parallel. These could be properties that, by their nature, can
not be estimated by the system or properties that the user might want to overwrite. Such
distributed environment brings its own set of specific challenges and opportunities to any
control interface:

1. The interface can not expect its local copy of the state to be valid. Consensus with
the rest of the nodes in the system is required for any change to persist.

2. The interface is by nature a DUI. Any change to the properties of the system made
by either an other instance of the control interface or programmatically by the other
nodes should be reflected in the interface in a timely manner.

2.3.1 Actions

The interface empowers the user to manipulate the system to some degree. The primary
actions a user can perform using the interface are:

Assign Emitters to Zones Each zone can play back one or multiple sources. The user is
able to see and select these for each zone known to the system, as shown in Figure 4. This
action is likely to be performed frequently and is therefore a central part of the interface.

Assign Relays to Zones This action is only required when setting up the system or
physically relocating the speakers. The user is able to change which zone a relay and its
speakers are assigned to, as show in Figure 5.

Map Speakers This covers mapping the speakers in a zone to the channels of the source
signal as shown in Figure 6. Changing the physical location of the speakers might require
the user to set which speaker is supposed to play which channel of the source signal. In
the simplest case the user might want to swap left and right speakers in a stereo setup.
However, in order to support more complex setups such as 5.1 surround, the interface
visually models the physical setup, from where he can assign the individual speakers.

Other Furthermore, the interface provides the opportunity to alter settings such a vol-
ume and some metadata, such as names and description of the zones and speakers.

MULTI-ZONE AUDIO SYSTEM 19

Figure 4: The user selects a zone from the left panel and is subsequently presented with a
list of available emitters. He can select one or multiple.

Figure 5: The user entered edit mode, where he can alter the zone configuration. He adds
a relay with its two speakers to the zone Kitchen. It was previously assigned to the zone
Kids Bedroom .

MULTI-ZONE AUDIO SYSTEM 20

Figure 6: From the top panel the user chooses this zone to be a 5.1 surround setup. Notice
that this zone has multiple relays. All unassigned speakers are listed in the top, from
where they can be dragged into the configuration view and assigned a channel. Also,
notice that the grey relay has 3 speakers, a rare, but supported case.

2.3.2 Implementation

The configuration interface is implemented using Electron7, a framework for building
cross platform desktop GUI applications. In its basic form, it provides a window in
which the developer can implement a traditional web application using HTML, CSS and
JavaScript on top of Node.js8. Furthermore Angular.js9 is used to simplify the develop-
ment. It provides some tools to extend the HTML vocabulary, primarily through data
binding, for taking care of most DOM manipulations. Finally, in order to further sim-
plify the implementation and in order to achieve a consistent design language throughout
the application, Angular Material10 is utilised. Angular Material is a implementation of
Google’s Material Design Specification11 and provides us with a set of UI components.

The application follows the Model–View–ViewModel (MVVM) architectural pattern
(Smith, 2009), as shown in Figure 7.

7http://electron.atom.io A framework for developing desktop applications.
8https://nodejs.org A JavaScript runtime, originally server-side only.
9https://angularjs.org A web application framework by Google.

10https://material.angularjs.org A UI framework.
11https://design.google.com A design language by Google.

MULTI-ZONE AUDIO SYSTEM 21

Figure 7: The Model–view–viewmodel. Angular.js provides the data-binding between
the DOM and presentation logic.

Data Access Layer (DAL) All data comes from either a locally stored JSON12 file or
is received from the other nodes of the system. The JSON file stores a representation of
the entire system and guarantees a complete global state and maps directly to the model,
whilst the communication with the other nodes in the system only provides local states
from the respective node or a complete state in a different representation. The data re-
ceived from the other nodes always overwrites the data in the JSON file. Changes in the
model are broadcast to other nodes. The DAL hides the complexity of discovery, net-
work communication, file I/O and conflict solving to the rest of the modules, allowing for
easy getting and setting of the system’s properties. Network sockets are provided by the
Node.js net module and for discovery Bonjour13 is used.

Presentation Logic The presentation logic is divided into scopes. The major visual
elements in the interface, the zone view, the emitter view and the surround view each
represent a scope with its own controller. This pattern is provided by Angular.js, which
takes care of the underlying logic. The logic for these scopes consist of:

1. Declaring the structures for data binding and getting data from the DAL.

2. Reacting on UI events and altered data from the binding.

3. Persist changes through the DAL.

2.4 Validation

The performance of the system was often measured during development to identify pain
points within the system and to validate the choice of hardware. As such, reading the data
stream, forwarding the data stream, mixing and playback of the data stream is measured,
as well as overall time spent per frame and time spent waiting for hardware sound buffers
to become available. These time measurements are made manually in code. All collected
measurements are expressed in microseconds and have a granularity dependent on the
hardware clock (in our observations, this granularity was under 3 microseconds for all

12http://json.org “A lightweight data-interchange format”.
13https://github.com/watson/bonjour “A Bonjour/Zeroconf protocol implementation in JavaScript”

MULTI-ZONE AUDIO SYSTEM 22

hardware used). Furthermore, the real time difference between local clocks on the relays
is measured as part of the implemented synchronization algorithm.

The performance data is streamed from each relay to a debug interface using a sec-
ondary debugging protocol to along with other diagnostics. The data was then saved for
further analysis.

Apart from performance metrics, sound quality was also relevant in order to evaluate
the hardware. Although no formal measurement or analysis of this factor was made, our
continuous use of the relays permits us to discuss this aspect.

3 Results

The collected profiling data shows promising results for the current version of the proto-
type. Presented here is a summary of the performance statistics collected from a Rasp-

berry Pi 1 B rev 2, the lowest specification hardware available for testing. A Raspberry

Pi 2 B and a Linux distribution running on a virtual machine were also used and show
similar or better statistics, but the choice to focus on the lowest grade hardware is more
representative for determining both minimum system requirements and optimization re-
quirements.

Table 1 illustrates the measurements of a leader in a system configuration with one
zone containing a total of two relays. As the main audio loop is determined by the hard-
ware audio buffer, its duration can vary from platform to platform. The metrics presented
in Table 1 are expressed in percentages of the duration of a frame.

Table 1: Average time spent per frame

Measurement Time (mean) Time (max spike)
Reading stream input 1.4% 5.5%
Forwarding stream 3.5% 12.9%
Playback 0.2% 0.3%
Other (config, clock sync...) 0.2% 0.5%
Idle 94.7% N/A

The only measurement which differs for non-leader relays is the time spent forwarding
stream data, which drops to 0 when no data needs to be forwarded (the buffer handle for
forwarding is just moved forward). In larger configurations, again, forwarding is the only
measurement that changes, increasing linearly with the number of nodes.

MULTI-ZONE AUDIO SYSTEM 23

Moreover, we have encountered occasional spikes in data forward time which extend
well beyond the duration of a single frame. These outliers have been excluded from the
statistics presented above.

In terms of memory use the relay application used under 8 MB of RAM with input
buffers preallocated for 32 distinct channels of audio input.

Finally, clock synchronisation was accurate to within 6ms and no audible difference
between audio streams was perceived.

4 Discussion

This section presents our final assessment of the prototype and of the proposed goals.

4.1 System design review

Overall, the design of the hardware architecture was flexible enough during development
to simulate any reasonable speaker configuration or use case. The model supports broad-
casting multiple streams within a same zone, as well as broadcasting the same stream
within multiple zones by temporarily linking zones together. The protocol can be further
extended such that zone leaders forward only individual streams to other zones to avoid
linking the zones together. This flexibility allows us to achieve goals 2 and 3 regarding
playback from multiple sources and and simultaneous playback.

We have learned during development that this design is not only flexible in terms of
what it allows users to do, but it is also versatile in terms of empowering the interface
design. The model does not enforce any particular work flow in terms of defining how
users configure the system, and this decision can be left entirely to the interface.

The current version of the network architecture stores individual relays in separate
data structures from zones, where relays store the IDs of zones, but not the other way
around as described in Section 2.2.1 (Discovery and relay management). Originally this
was not the case, a tree structure was maintained storing a root node with the entire sys-
tem with zone children and further down relay children. The original system, although
holding the same information turned out to be more difficult to synchronise as commands
that would modify zones were not atomic and caused relays to be changed. Transitioning
to a linear data storage, where there is no dependency from zones to relays allowed all op-
erations on the database to be atomic and made satisfying consensus and data replication
an easier task.

The chosen design does have one major drawback, it requires a non-standard com-

MULTI-ZONE AUDIO SYSTEM 24

ponent be implemented in order to communicate with the audio system. Emitters are
required as an entry point for audio data. Admittedly, emitters can themselves provide a
standard interface and they can be implemented as audio drivers for all platforms that need
to use the system. Furthermore, hardware implementations of emitters can be provided
to allow input from closed platforms (such as vinyl players or TVs). This drawback re-
quires that users install additional software to playback audio and that development effort
must be allocated further on to support a wide variety of platforms, unlike systems like
Bluetooth which can provide an audio output via a standardised protocol. It is believed
that users are willing to install these drivers as they also would be required to install the
configuration interface in some form to be able to prepare the system for use. Regardless,
this drawback is a problem that affects goal 1 in regards to ease of setting up.

The performance measurements taken indicate no immediate changes need to be done
to the architectures, but they do show some concern in regards to the time it takes for a
relay to forward audio data to its neighbours. The time spent writing data is very high,
especially considering it more than doubles reading data from the same network. To solve
this concern, the system could benefit from an optimization pass over data forwarding, as
well as additional testing.

On certain occasions data forwarding can spike for almost half a second, much longer
than the duration of a single frame. This known bug may be the cause of longer writes,
and there is a high chance fixing it will bring the write time in line with the reads. If that
assumption is wrong, the topology of data transmission can be restructured to have two
layers of redirection of audio data. This would increase total delay but solve forwarding
time for large zones.

The difference between logical clocks measured in real time was always under 6ms
and thus achieved goal 6 by hitting our upper threshold of 25ms. Furthermore, the contin-
uous resynchronisation achieved by repeating synchronisation phases and interpolating
between the average clock rates worked as expected to achieve goal 7 and compensate
for drift (Mills, 2006; Sommer & Wattenhofer, 2009). The synchronised logical clock
worked correctly with atomic broadcasts and no problems in regards to consensus were
observed (Hadzilacos & Toueg, 1994).

The ultimate goal of a complete multi-zone audio system is to manage all audio trans-
mission requirements of a house. That includes input and recording sound, not just output.
Although this report focuses almost exclusively on the playback of sound, it is trivial to
model audio recordings such that the system does not need to be modified. An emitter
would be placed at the entry point of the recording source and the data would be sent to
a relay connected to an arbitrary audio processing unit, instead of a speaker. As this pro-

MULTI-ZONE AUDIO SYSTEM 25

cess is modelled using the same components used for playback, all the findings regarding
audio playback should also apply for recording.

4.2 Hardware choice

The performance measurements indicate that relays running on the lowest grade Rasp-
berry Pi are capable of powering the network in regards to both processing and and play-
ing back audio data transmitted over the network. As the system was idle 94% of the time,
this further suggests the power requirements of relays are low and the main factor deter-
mining energy use would be audio playback itself. These findings suggest tests should be
carried out with the relays running on less powerful embedded systems in order to drive
down the cost of a finished product.

There is no reason to believe at this point that the forwarding audio issues are caused
by the limitations of the tested hardware, as the same behaviour was observed during de-
velopment when testing from a virtual machine with two 2.4 GHz cores and 2 gigabytes
of RAM. Furthermore, we know it is possible for relays themselves to transmit the au-
dio data across the network even in scenarios where more relays are used (SONOS, Inc,
2016). As a contingency plan, developing a hub dedicated to audio forwarding would be
a solution to this problem (SAMSUNG, 2013; Control4 Corporation, 2016), yet it does
not seem required.

A major concern with the tested hardware is the audio quality. Although not mea-
sured, a clearly audible noise floor was always present in the playback signal while the
overall amplitude was also low. We were unable to find any software solutions to elimi-
nate the noise floor (using different audio drivers and different playback techniques with
those drivers in regards to buffering, interleaving data, sample rates, dithering. . .). The
final hardware choice should be influenced primarily by the digital to analogue converter

(DAC) as other performance criteria would be easy to satisfy.

A final consideration in regards to the hardware observed during testing was our re-
liance on 3.5mm audio jacks for output. We have encountered various TV sets or home
cinema systems that use optical cables or custom connectors instead and could not be
used directly with our prototyping hardware. This implies that either multiple types of
hardware relays need to be developed to accommodate for different audio connections, or
that relays would need to incorporate more ports.

MULTI-ZONE AUDIO SYSTEM 26

4.3 Control Interface

Tesoriero, Lozano, Vanderdonckt, Gallud, and Konstan (2012) discuss the potential of
DUI-specific features “polluting” the interface. A designer should ask the question of
which elements in the interface are required to be seen by all users. Not in all cases it
makes sense to let the other instances of the interface be barely a mirror image. The
interface presented in this report circumvents such issues mostly by only synchronising
the state of the underlying model, not the state of the view.

4.3.1 Collaboration

Whilst the interface manages to synchronise with all running instances of itself in the
network, it fails to communicate any changes made explicitly to the user. According
to Tesoriero et al. (2012), a change in the state of the system should have the interface
attempt to inform the user about it, so he does not “miss it”. This is to prevent a conflict
between the actual state of the system and the perceived state. Possible ways to achieve
this would be through visual animations or notification messages in the interface.

4.3.2 User Account Management

The interface allows any instance to change any parameter of the state. This amount of
control comes at a cost. Users might be interested in not having others be able to control
or even see the settings of a specific zone or emitter. For this to be an option, the system
lacks two key attributes, as initially described in goal 4 (account management).

Firstly, it can not identify users. An account management system would have to be in-
tegrated. A hierarchy of users would be required in order to administrate the permissions,
allowing some users to have control over the whole system including the permissions it-
self. Secondly, there is no concept of “ownership” in the current model. Assigning a set
of users to each zone and emitter would be required in order to implement such feature.

Nevertheless, as development of the prototype advances, we are reevaluating the goals.
Multiple users have specifically asked for this feature during the formative interviews, but
we have seen no need for it during development. Account management clashed with the
idea that users can configure the system from any device capable to run the interface and
introduced extra steps in our UX design. Further UX testing should verify this require-
ment.

MULTI-ZONE AUDIO SYSTEM 27

4.4 Bias

Unfortunately, this project only partially achieved its established goals. One of the goals
have not yet been implemented: 5 (control over equalization). In this scenario, equaliza-
tion settings are currently ignored. Furthermore, there is a high degree of uncertainty in
regards to goal 8 (supporting gaming scenarios). Although the playback latency is low, it
has not yet been measured in a gaming scenario. Playback of game audio is impossible
in the system until an emitter that emulates a virtual audio output on a desktop computer
is implemented. The fact that these three goals were not completed means some of the
results will likely change in the future. For example, the performance metric regarding
audio mixing should increase after EQ is implemented, as that step would then require
computing a couple extra Fast Fourier Transforms for mixing.

The chosen performance metrics do not offer a complete picture of the quality of the
system. They do not describe the user experience in a direct way. They were chosen as
a main data point as most identified goals are either binary and can be verified easily if
the implementation was successful or not, or they are expressed by a clear metric, such
as delay. Additional validation techniques should complement these metrics in order to
verify and validate the interpretations made based on performance data.

The tests were all carried out in an uncontrolled network with varying traffic condi-
tions. Although this may be representative of a home network, it means that irregularities
in transfer speeds could be caused by third parties on LAN. This situation may have in-
fluenced the obtained results.

4.5 Future work

The relays, emitters and control interface are still in active development. The prototype
presented here shows that the architectural model is viable and provides the necessary
groundwork for the next phase of development. To complete our analysis of the prototype,
we must establish which goals need to be carried over to this next phase and what changes
in the development approach must be made based on the knowledge gained from this
prototype:

1. Emitters as audio drivers for desktop are a high priority as they inhibit testing testing
with a class of applications.

2. Improve upon data forwarding.

3. Verify and iterate upon the interface.

4. Implement and test audio recordings within the system.

MULTI-ZONE AUDIO SYSTEM 28

5. Add EQ support in the mixer.

The current basis for the software architecture will continue to be used, and achiev-
ing these goals should allow users to use a prototype running on Raspberry Pis without
experimenter supervision.

4.5.1 Interface Verification

At the current state, the interface’s primary goal is to exemplify the idea behind it and to
allow some degree of control over the system apart for the debugging interface. Further
work on accessing its quality as a User Interface in terms of usability contains performing
user studies. These should be focused around the aspect of usability through the System
Usability Scale (Brooke et al., 1996). This would add value to the discussion of goal 1
(ease of use and setup) and be a requirement for starting any further iteration.

5 Conclusion

As this thesis shows, most of the identified goals were achieved. A prototype of a multi-
zone audio system architecture was shown to be a viable solution to accomplish these
goals. The system was able to run on the designated testing hardware as well as it was
shown that lower performance hardware with a higher quality sound card would be pre-
ferred for future iterations. Finally, this thesis establishes the goals required for the next
iteration of development.

MULTI-ZONE AUDIO SYSTEM 29

References

Aberer, K., Alima, L. O., Ghodsi, A., Girdzijauskas, S., Haridi, S., & Hauswirth, M.
(2005). The essence of p2p: a reference architecture for overlay networks. In Peer-to-

peer computing, 2005. p2p 2005. fifth ieee international conference on (pp. 11–20).

Balakrishnan, H., Kaashoek, M. F., Karger, D., Morris, R., & Stoica, I. (2003). Looking
up data in p2p systems. Communications of the ACM, 46(2), 43–48.

Brooke, J., et al. (1996). Sus-a quick and dirty usability scale. Usability evaluation in

industry, 189(194), 4–7.

Burg, J., Romney, J., & Schwartz, E. (2012). Digital sound and music - concepts ap-

plications and science. Retrieved 2016-06-07, from http://digitalsoundandmusic
.com/curriculum/

Control4 Corporation. (2016). Catalog. Retrieved 2016-06-07, from http://www
.control4.com/solutions/catalog/multi-room-audio

Correia, M., Neves, N. F., & Verı́ssimo, P. (2006). From consensus to atomic broad-
cast: Time-free byzantine-resistant protocols without signatures. The Computer Journal,
49(1), 82–96.

Haas, H. (1972). The influence of a single echo on the audibility of speech. Journal of

the Audio Engineering Society, 20(2), 146–159.

Hadzilacos, V., & Toueg, S. (1994). A modular approach to fault-tolerant broadcasts

and related problems (Tech. Rep.). Cornell University.

Lamport, L., & Melliar-Smith, P. M. (1985). Synchronizing clocks in the presence of
faults. Journal of the ACM (JACM), 32(1), 52–78.

Lamport, L., et al. (2001). Paxos made simple. ACM Sigact News, 32(4), 18–25.

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A survey and com-
parison of peer-to-peer overlay network schemes. Communications Surveys & Tutorials,

IEEE, 7(2), 72–93.

Melchior, J., Mejı́as, B., Jaradin, Y., Van Roy, P., & Vanderdonckt, J. (2013). Improving
duis with a decentralized approach with transactions and feedbacks. In Distributed user

interfaces: Usability and collaboration (pp. 17–25). Springer.

http://digitalsoundandmusic.com/curriculum/
http://digitalsoundandmusic.com/curriculum/
http://www.control4.com/solutions/catalog/multi-room-audio
http://www.control4.com/solutions/catalog/multi-room-audio

MULTI-ZONE AUDIO SYSTEM 30

Mills, D. L. (1991). Internet time synchronization: the network time protocol. Commu-

nications, IEEE Transactions on, 39(10), 1482–1493.

Mills, D. L. (2006). Simple network time protocol (sntp) version 4 for ipv4, ipv6 and
osi.

Özsu, M., & Valduriez, P. (1991). Principles of distributed database systems. Prentice
Hall.

SAMSUNG. (2013). Samsung wireless multiroom audio system hub. Samsung Elec-
tronics America. Retrieved 2016-06-07, from http://www.samsung.com/us/video/
home-audio/WAM250/ZA

Smith, J. (2009). Patterns-wpf apps with the model-view-viewmodel design pattern.
MSDN magazine, 72.

Sommer, P., & Wattenhofer, R. (2009). Gradient clock synchronization in wireless
sensor networks. In Proceedings of the 2009 international conference on information

processing in sensor networks (pp. 37–48).

SONOS, Inc. (2016). Sonos hifi wireless speakers and home audio systems. Retrieved
2016-06-07, from http://sonos.com/

Tanenbaum, A., & van Steen, M. (2007). Distributed systems: Principles and

paradigms. Pearson Prentice Hall.

Tesoriero, R., Lozano, M., Vanderdonckt, J., Gallud, J. A., & Konstan, J. A. (2012).
distributed user interfaces. , 2719–2722.

Turek, J., & Shasha, D. (1992). The many faces of consensus in distributed systems.
Computer, 25(6), 8–17.

Villanueva, P. G., Tesoriero, R., & Gallud, J. A. (2013). Revisiting the concept of
distributed user interfaces. In Distributed user interfaces: Usability and collaboration

(pp. 1–15). Springer.

http://www.samsung.com/us/video/home-audio/WAM250/ZA
http://www.samsung.com/us/video/home-audio/WAM250/ZA
http://sonos.com/

MULTI-ZONE AUDIO SYSTEM 31

Appendices

A Formative interviews

This section describes an open ended interview carried out in order to define the require-
ments of a multi-zone audio system. The interview focused on establishing the required
features of the system and identifying the usage patterns that needed to be supported. The
following questions were used as guidelines:

• Where and how do you listen to music?

• What services do you use for music? (What about physical sources? CDs?)

• What else do you listen to (apart from music)?

• What devices capable of playing sound do you use? (both input and output)

• (The concept of multi-zone audio should be introduced here)

• What would you like to control about this? Most common interactions with the
system.

• Is there something you wish your audio system did, but it doesn’t do?

• What concerns do you have about such a system?

B Debugging interface

A low level debugging interface was created to monitor multiple relays across a network.
This was distinct from the final user interface as it needed to be modified quickly whenever
relay code changes took place. This debug interface is written in C++ using IMGUI14 and
reuses most of the relay code base for communication. The interface can show several
relays side by side simultaneously along with their status and a set of periodically updated
properties. Only a single instance of the debug interface could be open on the same
network where relays were active.

Figure 8 shows the interface and the type of data it collected. Both the last sent value
and the average of the last 10 entries are shown in the interface. Furthermore, certain logs
are transmitted from all relays to the application and preserved.

14https://github.com/ocornut/imgui “Bloat-free Immediate Mode Graphical User interface for C++ with
minimal dependencies.”

MULTI-ZONE AUDIO SYSTEM 32

Figure 8: Debug interface. Shows major configuration properties of a relay. Allows
the manipulation of these basic properties. Shows performance and debugging statistics.
Shows mixing handles (green playback, blue write, red forward). Here red is not visible
as the entire buffer was forwarded. Shows a subset of the logs produced by the relay.

