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SYNOPSIS: 

This thesis focuses in the design, 
analysis and implementation of a 
predictive current controller for the 
control of a Permanent Magnet 
Synchronous Machine (PMSM). 
This thesis studies the predictive 
controller including the main 
problems presented with its 
implementation. The effect of errors 
in the system parameters is studied 
and different non-linearities are 
analyzed and compensated. Online 
parameter estimations are also 
developed as a way for the 
compensator to adapt to changes 
in them. As a result of the thesis 
the predictive controller is seen as 
a simple controller with excellent 
performance when the different 
disturbances that affect the system 
are accounted for. 



P R E FA C E

This master thesis is written by Carlos Gomez, a 10th master student in the Department
of Energy Technology in Aalborg University. The semester theme is Power Electronics
and Drives.

Reading instructions The denotation of employed equations, figures, tables and codes
trough the thesis is based in the notation (X.Y) which means the Yth item belonging to
the Xth chapter. The units used are placed on the right of the numbers and are usually
SI units.

At the end of the thesis the appendices can be found which supplement the information
provided. Bibliography is placed after them. The references follow [k] where k represents
the k reference in the bibliography list. As a further attachment a CD with simulations is
provided as well as a PDF version of the thesis.

Publication of this thesis is allowed only with reference to and with permission given
by the author.
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A B S T R A C T

This thesis focuses in the design, analysis and implementation of a predictive current
controller for the control of a Permanent Magnet Synchronous Machine (PMSM).

The theory regarding the PMSM and converter system is described mathematically in
order to have models to better understand the different problems. Trough the different
parts of the project several approximations are needed to yield solutions to the problems
presented and trough simulation and experiments the hypothesis taken are validated.

This thesis studies the predictive controller including the main problems presented
with its implementation. The effect of changes in system parameters is studied and differ-
ent non-linearities are analyzed and compensated. Finally online parameter estimations
are also developed as a way for the compensator to adapt to changes in them.

As a result of the thesis the predictive controller is seen as a simple controller with
excellent performance when the different compensations needed are accounted for.
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1
I N T R O D U C T I O N

Development of semiconductor devices and powerful cost efficient Digital Signal Process-
ing (DSP)s give opportunities for applications in different areas including AC-machine
drives.

Permanent Magnet Synchronous Machine (PMSM) drives present several advantages
over other drives due to its high efficiency and high power density capabilities. The
control of this drives can be performed trough vector control which was developed as a
way to get better torque responses trough the decoupling of the system in two different
controls, one for the torque and one for the flux [1]. This is illustrated in Figure 1.1. The
focus of the project consist in the inner loop or current controller.

Speed controller
Mechanical

System
Current

Controller
Electrical
System

w* i*
+

-
+

-

Figure 1.1.: System controllers

The flux, controlled by the field current can be performed trough the conventional use
of PI controllers which offer a simple solution to the problem. However the transient
response can be improved with different techniques which have been studied over the
years from which predictive controller is a promising method.

1.1 predictive control methods

Predictive controllers use models of the system to create predictions of future states
and variables to control. With this information the actuation in the system is obtained
according to the method used. Several classifications can be made as suggested in [2].
The main strategies are: hysteresis based, trajectory based, model predictive control
(MPC) and deadbeat.

Hysteresis based which needs no modulator bounds control variables within a tol-
erance band and calculates the instants at which the switch states must change. This
requires a variable frequency.

Trajectory based calculates different optimum control strategies based in different
states and applies them directly. There is no need for cascade control and speed can
be controlled directly from the speed error without a current controller. The switching
states of the converter are classified into categories such as "increasing torque", "reducing
torque slowly", etc. and the instants to change are also calculated so variable frequency
is needed.

1



introduction 2

Model predictive control can use modulators (and fixed switching frequency) depend-
ing of the implementation or a finite control set where the different switching states are
tried within an horizon. A cost function with the errors between variables is created and
optimized by modifying the different control variables trough an optimization algorithm.
In the case of finite set for example the 8 different switching states can be tested to see
which one produces the best (least error in the optimization function) response in the
next period.

Finally deadbeat controller uses a modulator (and fixed frequency) for the current
controller. Based on system equations the voltage to apply to reach the current reference
is estimated.

Based in the main principles of the controllers and previous work conducted in [3] -
[4] deadbeat controller is chosen. In [4] both MPC and deadbeat are implemented. MPC
is observed to present a much bigger ripple in the current due to the lack of modulator,
simple switching strategy and sampling frequency of 25 kHz imposed as a limit by the
setup. Deadbeat is only worse in steady-state errors due to simulated system parameter
changes. In [3] deadbeat controller presents also good results.

1.2 problem statement

A PMSM can be controlled by means of two different set of controllers as shown in
Figure 1.1. The outside loop regulates the speed by adjusting the current that passes
trough the motor as this modifies the electrical torque which in the end modifies the
speed.

On the other hand, inside a current loop (blue rectangle) regulates the voltage applied
to the motor in order to achieve the desired current. This project is focused in this second
controller. The speed controller used may be a PI while a predictive controller that uses
the machine equations to obtain a better response is studied in this project in contrast to
the classical PI for current control

Predictive
controller

Converter
Machine
(electrical)

Non-linearities
compensator

Parameter
estimator

++
u* u'u

uNL

i

p

i*

Figure 1.2.: Predictive current controller, non-linearity compensation and online parame-
ter estimator represented in blocks
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Further study of the electrical system shows that there are 3 main problems to solve as
shown in Figure 1.2 (pink rectangles) in which the project will have its focus:

• Predictive controller: Using models that predict different states a control can be
made with great performance relying on the predictions of the variables.

• Non-linearity compensation: Since the predictive controller uses models of the
system everything needs to be accounted for in order to compensate for it. When a
voltage command is sent to the converter it is converted from u to u′ as illustrated
in Figure 1.2 and can be compensated by adding an extra voltage uNL to account
for it. The non-linearities studied in this project are the deadtime in the gate signals
and the voltage drop due to snubbers, Insulated-Gate Bipolar Transistors (IGBT)
and diodes.

• Online parameter estimator: In normal operation machine parameters can vary
slowly due to temperature. However inductors which are fundamental for the
stability of the controller can change abruptly due to saturation. Therefore an
online estimator to work with the predictive controller which uses the current
response and voltage command to adapt the parameters is also developed.

1.3 objective

The goals of this project include:

• Implementation of deadbeat controller

• Compensation of the different delays present in the system

• Study of the effect of parameter variations in the algorithm. How do parameter
changes compromise stability? How does the controller behaves with parameters
changed at different states (loads, speeds)? How does the switching frequency
affects the stability and steady-state errors when there are parameter errors?

• Study and compensation of the different non-linearities present in the converter

• As a way to mitigate the errors due to system parameter changes implementation
of different parameter estimation algorithms

1.4 thesis outline

This thesis is structured as follows. After the introduction the description of the system
is done in Chapter 2 where the experimental setup is shown followed by a more in depth
description of the converter and machine.

In Chapter 3 the field-oriented control with PIs is revised and analyzed as it is
commonly used as a way to control this type of machines. The gains are calculated based
on classical control theory and a compromise between speed and stability is done so
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the response can be later compared with the predictive controller which is presented
in Chapter 4 which explains the deduction of the controller equations. The effect of
parameter variations in the controller (stability, steady-state errors, transient response) is
studied in Chapter 5.

The non-linearities in the converter are described in Chapter 6 which begins with the
induced signal delay in the pulses. It continues considering the snubbers and ends up
studying the IGBTs and diodes voltage drops. Compensation for all this components are
calculated and a compensator is proposed.

In Chapter 7 the determination of online parameters is analyzed with two different
algorithms, the most common RLS and also a gradient method. At the end experimental
tests show that the estimators are able to detect the saturation of the inductors.

Lastly, some appendices are included to compliment the reading. In Appendix A the
offline tests performed to obtain the machine and converter parameters are described.
In Appendix B some derivations are presented. The most relevant models used in the
project are shown in Appendix C. Finally in Appendix D the main codes used are
presented both for its Simulink and PLECS implementation.

1.5 limitations and assumptions

PMSM Model

The dq model is used and some assumptions are therefore made. Stator windings are
modeled as a DC offset and a purely sinusoidal varying component. Rotor permanent
magnets are modeled as sinusoidal varying components. Modification of components as
a function of temperature, speed or load are not modeled even though their effect in the
control is studied and online estimations are developed to account for them. Core losses
are neglected. The mechanical model is simplified as a one mass system containing the
PMSM and Induction Machine (IM).

Load control

Different load conditions are tested with an induction IM connected mechanically with
the PMSM of which torque is controlled trough a PI. Any coupling due to this controller
which may produce a small oscillating disturbance in the load is neglected.

Inverter

The modifications done on the inverter ideal model are the inclusion of dead-time (2.5µs),
diode and transistor voltage drop (in ohmic region) and snubbers modeled as capacitors.

Pulse Width Modulation (PWM)

The PWM is modeled either as a Zero-Order Hold (ZOH) or an average in the equations
and thus its pulsated nature is neglected. If the switching frequency is small this can
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cause dissimilarities between model and reality but both simulation and experimental
results show at the frequencies used it can be neglected.

Simulink and DSpace

PWM behavior in DSpace is inferred from experimental results concluding that there
is no period delay in the voltage command. Under this behavior the computational
time could distort the voltage command but as long as it is small enough it can be
neglected due to the symmetric nature of the PWM. Trough the experimental results
since the performance seems adequate and results tend to follow the simulations this
computational time is assumed to be small and possible to be neglected.

From the block descriptions it is understood that adding a period delay block to the
voltage command would not help as it would delay the voltage command one period
(after it is calculated) and would have no effect in removing this computational time
distortion as it would still be presented.

Models are developed in Simulink and blocks are expected to behave as they should but
since the implementation is hidden one must assume they behave as the are advertised.
Since the final code is never checked as it is machine made it is also assumed to reflect
the models originally created.

Information shown in Control Desk is assumed to be an accurate representation of the
variables in real-time.

Measurement devices are assumed to be calibrated and their values provided trusted.
Several identical setups have been tested without any discernible change between them.



2
S Y S T E M D E S C R I P T I O N

This chapter begins with a general description of the system used and follows explaining
more in detail the converter and PMSM.

2.1 system setup

To test the algorithms proposed a PMSM is controlled by means of an inverter that
regulates the 3-phase voltages applied. To simulate different conditions the PMSM
is mechanically connected to an induction machine that is used to simulate different
torques. The schematics are shown in Figure 2.1 where the green lines represent power
and the blue ones signals.

DC/ACDC/AC

PMSMIM

DC-link DC-link

AC/DC AC/DC

dSpace

PWM Duty cycle
PMSM

PWM Duty cycle
IM

Main

Sensors
(Speed, Current)

Figure 2.1.: Experimental system setup

The power from the main is transformed to DC by means of a diode bridge for the
IM and PMSM and thus there is no control on this part. The DC is then transformed
into AC by means of an inverter that is regulated trough DSpace. Different signals from
the sensors are sent to the controller that uses this information and in return calculates

6



system description 7

the duty cycles signals that are sent to the PWM hardware in order to modify the AC
voltage in the machine terminals to achieve the desired references.

The control of the IM is independent of the PMSM and the only objective is to regulate
the torque applied to the later so different conditions can be tested.

The control of both machines is done trough DSpace. The code is written in Simulink
where common blocks are accessible including Matlab functions and finally the model is
compiled to C that is pushed to the DSP. There is an interface with the computer trough
Control Desk where variables can be seen and modified in real-time. Sensors can be
read in Simulink by using the Analog to Digital Conversion (ADC) blocks provided and
the only signals sent to the device are the PWM duty cycles trough the PWM block.

The whole program is executed at a fixed frequency following Figure 2.2. In each new
tick of the clock represented by the green ball the program written in Simulink performs
the calculations needed to modulate the PWM which take some small computation time
represented by the grey square. It will begin reading the information from the sensors
and at the end calculate the PWM duty cycles that will be sent to the PWM hardware
with this small computation delay. This is based on tests performed where if the voltage
command is changed the current is seen modified instantly in the next period.

PWM

Clock and
computation

t

t

k·Ts (k+1)·Ts (k+2)·Ts

Figure 2.2.: Execution sequence of the program

In the bottom graph it can be seen the PWM carriers in red syncrhonized with the tick
and receiving the new duty cycle in blue delayed by the computation time and an even
smaller time due to the hardware. As long as the computation time can be kept small in
comparison with the frequency this delay will not disturb the command in a noticeable
manner. Another option is to force the new PWM to enter in the next period so the delay
can be compensated since it would be constant as shown in Figure 2.3 where the grey
box represents again the computation time but in this case the new duty cycles are sent
in k + 1 instead of k plus the computation delay. This is the most typical way to do the
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control but since DSpace is used it has not been possible to change the PWM behavior.
For this reason two set of controllers are developed, a 1-period controller for the system
implemented in the lab from Figure 2.2 and a 2-period version for the most common
implementation shown in Figure 2.3 that is used is most of the simulations.

k k + 1 k + 2

uk, ik

u∗k+1

uk+1, ik+1

i(t)
i∗ = ik+2

Figure 2.3.: PWM modulation with a period delay in the command

The advantages of the first method is that the current controller can theoretically
achieve the reference using a predictive controller in only one switching period while the
second requires two. On the other hand, the second is more precise since the delay can be
accounted for and fully compensated while in the first it can only be neglected and if the
computation time is considerably big it could make distortions in the voltage command.
However based in the experimental results the controller works adequately and the
more common implementation with the DSP computation delay is also developed in
simulations.

2.2 voltage source inverter

A 2 level-converter is used which is able to modulate the AC voltage in the output at the
desired level and frequency that will drive the machine. A schematic of the converter is
presented in Figure 2.4.

Sa1

Sa2

Sb1

Sb2

Sc1

Sc2

udc

ua

ub

uc

Figure 2.4.: 2-level converter
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The input is the voltage udc which is considered constant and there are three legs for
each AC output. For each leg, either the top or the bottom switch can be closed but
not both as that would short-circuit the source. Because the switches are not ideal they
need a time to commute from one state to another and there is a dead-time forced in the
signals to ensure there is time for the current to commute from one path to the other.

If the reference of the voltages is set in the negative side of the dc-link, when the top
switch of a leg is closed the voltage to neutral seen is udc and when the bottom is closed
there is no voltage. If when the top switch of a leg is closed the state is given by 1 and 0
otherwise the line-line voltages as a function of the switch states can be given simply by
Equation 2.1. uab

ubc
uca

 = udc

 1 −1 0
0 1 −1
−1 0 1

Sa

Sb
Sc

 (2.1)

The machine connected will have a different neutral-point than the converter and so
the actual line-neutral voltages seen by the PMSM will be different. They can be obtained
by assuming that the system is balanced. For such a system Equation 2.2 - 2.5 are true.
One of the first three equations is redundant and is not used. Therefore, the linear system
with 3 unknowns and equations can be solved and the relation between line-neutral and
line-line voltages is given by Equation 2.6 if the third equation is removed. Therefore to
obtain the line-neutral voltages seen by the machine, Equation 2.1 can be multiplied on
the left by Equation 2.6 resulting in Equation 2.7.

uab = uan − ubn (2.2)

ubc = ubn − ucn (2.3)

uca = ucn − ubn (2.4)

uan + ubn + ucn = 0 (2.5)

uan

ubn
ucn

 =
1
3

 2 1 0
1 −1 0
−1 −2 0

uab
ubc
uca

 (2.6)

uan

ubn
ucn

 =
udc

3

 2 −1 −1
−1 2 −1
−1 −1 2

Sa

Sb
Sc

 (2.7)

Finally, the voltages can be transformed into αβ by multiplying by the transformation
matrix Kαβ

abc which is omitted here for brevity. It can be calculated using the projection
method explained in Section B.1. When iterating trough all the possible switching states 8

different vectors in this reference frame can be obtained and they are shown in Figure 2.5.
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2.2.1 Space Vector Modulation (SVM)

SVM is a modulation technique that can be used to achieve the reference vector by
means of alternating between the different possible vectors the converter can generate
for a given time which is function of the reference. Normally the three closest vectors
are chosen and the reference vector can be generated by modulating those vectors in a
switching period such as the average is the reference.

~v∗

~v1 = {1, 0, 0}

~v2 = {1, 1, 0}~v3 = {0, 1, 0}

~v4 = {0, 1, 1}

~v6 = {1, 0, 1}~v5 = {0, 0, 1}

~v0

{0, 0, 0}

~v7

{1, 1, 1}

I

II

III

VI

V

IV

α ~vx

~vy

Figure 2.5.: All the different vectors in αβ for a 2-level converter

Each region limited by 2 vectors in a 2-level SVM is called a sector. Therefore there
are 6 sectors as shown in Figure 2.5 with the roman numerals. The different vectors are
placed in the drawing with the switching state that creates them. Vectors 1-6 are called
active as they contain a value different from zero on contrast with 0 and 7. The reference
vector will always be in a sector and the closest vector to the right can be denoted as vx

while the one on the left as vy.
To determine the sector the angle α can be obtained by Equation 2.8 where vα and vβ

are the α and β components of the reference vector ~v∗ and then the sector is given by
Equation 2.9.

α = tan−1 vβ

vα
, α ∈ [0, 2π) (2.8)

Sector = f loor (3α/π) + 1 (2.9)
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Then using the closest vectors, the times can be obtained by solving dx, dy and d0

where di = Ti/Ts in Equation 2.10 - 2.11.

~v∗ = ~vxdx +~vydy +~v0d0 (2.10)

dx + dy + d0 = 0 (2.11)

The solution is then given by Equation 2.12 - 2.14 where β = α− (Sector− 1)× π/3.

dx =
2√
3

v∗

vx
sin(

π

3
− β) (2.12)

dy =
2√
3

v∗

vy
sin(β) (2.13)

d0 = 1− dx − dy (2.14)

After the duty cycles of the vectors are calculated they can be applied either trough
software with timers by modulating the vectors for a given amount of time or by
transforming the duty cycles in the vectors to duty cycles in legs and using standard
PWM hardware as is done in the experiment.

The transformation from the duty cycles in each vector in xy0 to abc can be made by
summing the result of multiplying each duty cycle by the vector it represents (following
a notation where 1 is up and 0 is down). The result will have three components where
each index represents the leg, that is the first is a, second is b and third us c.

The duty cycle per leg dabc can then be fed to a comparator with a carrier at fsw of
which output will generate the switching state per leg (turning on the top igbt or the
lower). Later it will be explained that this generated signals to the IGBT will be delayed
a constant time (dead-time) to prevent short-circuits due to the finite time it takes for the
current to commute from one path to another.

2.3 permanent magnet synchronous machine

A representation of a PMSM with one pole-pair is depicted in Figure 2.6. When current
passes trough a stator winding it will generate a flux perpendicular to its plane. Therefore
if positive current is applied to phase-a it will produce a flux in the upwards/downwards
direction which is labeled with a-axis in the picture. The magnet in the rotor will then
try to follow the flux and will change its position so its in phase with the flux. The extra
phases are added as with only one phase there are positions in which the rotor would
stay stuck. For example if the rotor flux is perpendicular to the stator it will not rotate. It
can be observed that using thee phases the flux can be made to point in any direction.
If a balanced current is applied trough the stator windings it will point in a rotating
direction and the rotor will follow.

More pole-pairs can be added by maintaining the symmetry. Adding an extra pole-pair
in the rotor would require to set it perpendicular to the old one. Three pole-pairs would
be displaced 120 degrees and so on. For each new pole-pair another set of windings is
also added following the same logic. It can be observed that with this configuration the
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Figure 2.6.: One pole-pair PMSM representation as taken from [5]

effect is equivalent to having one pole-pair but with the current rotating as many times
as number of pole-pairs faster than the mechanical speed. Therefore a machine with
any number of poles can be simplified and studied as a one pole-pair machine taking
into account that the electrical angle will always be θel = Nppθmec and then the electrical
speed ωel = Nppωmec.

2.3.1 Electrical machine model

With reference to the neutral of the machine the voltage equations in abc are given by
Equation 2.15. The equations will be described in abc and later transformed to dq0 since
they become simpler. Most derivations are based in the lectures from [5].ua

ub
uc

 = R

ia

ib
ic

+
d
dt

λa

λb
λc

 (2.15)

The flux has the form shown in Equation 2.16 where Lleakage,abc and Lmain,abc are 3x3
matrices. The components of those matrices are position dependent and can be derived
by using the vector projection method also described in [5] and are omitted here.

λ =

λa

λb
λc

 = Lleakage,abc

ia

ib
ic

+ Lmain,abc

ia

ib
ic

+ λpm,abc (2.16)

λpm,abc = λmpm

 cos(θe)

cos(θe + 2π/3)
cos(θe − 2π/3)

 (2.17)

The inductor values which are present in Lleakage,abc and Lmain,abc and which sum can
be denoted simply as Labc are function of the air-gap and therefore in a fixed reference
frame such as abc the terms of Equation 2.16 will not be constant if the machine is salient.
The term λpm,abc is also position dependent and is given by Equation 2.17. Having this
into account changing the reference frame to one that is fixed in the rotor and therefore
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always points at the same direction will simplify the position-dependent formulas and
make them constant. Some derivations about reference frame theory are added in
Section B.1.

In a qd0 reference frame the d-axis points at the direction of the north of the rotor and
the q-axis is rotated 90 degrees positively as is shown in Figure 2.6. The transformation
matrix from abc to qd0 can be denoted as Kqd0

abc . To transform from abc then to this
coordinate system both sides of Equation 2.15 can be multiplied by this matrix on the
left-side. This will produce Equation 2.18.

Kqd0
abc

ua

ub
uc

 = uqd0 = Kqd0
abc R

ia

ib
ic

+ Kqd0
abc

d
dt

λa

λb
λc

 (2.18)

Since R = R × I the transformation matrix can enter in iabc producing Riqd0. This
cannot be done in the second term which needs a special treatment. Denoting the time
derivative of x(t) as x′(t) it is always true that (a(t)b(t))′ = a′(t)b(t) + a(t)b′(t) and
therefore a(t)b′(t) = (a(t)b(t))′ − a′(t)b(t). In this case a(t) = Kqd0

abc and b(t) = λabc. The
first term produces directly d

dt (λqd0). In the second λabc can be multiplied by Kabc
qd0Kqd0

abc

since is I. This will produce d
dt (K

qd0
abc )K

abc
qd0 which can be operated and is simplified to

−ωeT where T is given by Equation 2.22.
The term λqd0 is calculated as depicted in Equation 2.21. The term Kqd0

abc iabc is simply

iqd0 and Kqd0
abc LabcKabc

qd0 can be denoted as Lqd0 which is shown in Equation 2.20. As for

Kqd0
abc λpm,abc it can be operated to λpm,qd0 which is shown in Equation 2.21.

λqd0 = Kqd0
abc λabc = Kqd0

abc LabcKabc
qd0Kqd0

abc iabc + Kqd0
abc λpm,abc = Lqd0iqd0 + λpm,qd0 (2.19)

Lqd0 = Kqd0
abc LabcKabc

qd0 =

Lq 0 0
0 Ld 0
0 0 L0

 (2.20)

λpm,qd0 = Kqd0
abc λpm,abc =

 0
λmpm

0

 (2.21)

T =

 0 1 0
−1 0 0
0 0 0

 (2.22)

For reference the final electrical equations in qd0 of the PMSM are depicted in Equa-
tion 2.23.

uqd0 = Riqd0 +
d
dt

λqd0 + ωeTλqd0 (2.23)

If the flux and inductors are treated as a constant then the differential term in Equa-
tion 2.23 can be further simplified and the final equations are given by Equation 2.24.

uqd0 = Riqd0 + Lqd0
d
dt

iqd0 + ωeTλqd0 (2.24)
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2.3.2 Mechanical machine model

The instantaneous power in the electrical machine can be calculated as in any other
electrical system by multiplying the voltage by the current. In qd0 however this the
power formulas must be derived. The abc variables in the power equation given by
Pabc = iT

abcuabc can be substituted using xabc = Kabc
qd0xqd0 in both current and voltage.

Simplifying terms the power equation is found to be Equation 2.25.

Pqd0 =
3
2
(iquq + idud + 2i0u0) (2.25)

The voltage equation in Equation 2.24 can then be multiplied on the left side by
3/2

[
iq id 2i0

]
to obtain the electrical power. The instantaneous power in the machine

is then given by Equation 2.26 - 2.29.

Pqd0 = Pq + Pd + P0 (2.26)

Pq =
3
2
(Ri2

q + Lqiq
d
dt

iq + ωe(λmpm + Ldid)iq) (2.27)

Pd =
3
2
(Ri2

d + Ldid
d
dt

id −ωeLqiqid) (2.28)

P0 = 3(Ri2
0 + L0i0

d
dt

i0) (2.29)

There will be a heat generated in the machine inside Pqd0 that will travel outside and
will generate no torque. This term can be identified in Equation 2.26 - 2.29 as the resistive
term, Ri2

j . It can also be seen that the term Ljij
d
dt ij is the power stored in the inductor and

therefore cannot produce any real power in a period basis. Based on this it is evident
that the 0 component produces no torque. The terms that produce useful mechanical
power have been added together in Equation 2.30.

Pqd0,use f ul =
3
2

ωeiq(λmpm + id(Ld − Lq)) (2.30)

The power in Equation 2.30 will then be equal to the mechanical power given by
Telωel/Npp. Equating both terms result in the torque equation depicted in Equation 2.31.

Tel =
3
2

Nppiq(λmpm + id(Ld − Lq)) (2.31)

If Lq 6= Ld there are then multiple ways to generate a given torque. In the experimental
setup the machine follows that Lq ≈ Ld and thus the torque may be simplified as
Equation 2.32 where it can be seen that only the q current affects it in this case. Therefore
it seems sensible to set i∗d = 0 as it will only increase copper losses without producing
any real power. There are also some core losses that depend of id and an optimization
may be done to find the optimum i∗d but it is considered outside of the scope of this
project.

Tel =
3
2

Nppλmpmiq (2.32)



system description 15

Finally once the torque is calculated it can be used to obtain the speed by using
Equation 2.33 where it is stated that the total torque is equal to the inertia times the
angular speed plus a term that is speed dependent and J0. Those parameters can be
found in the datasheet.

Tel − Tload = Jm
d
dt

ωmec + Bωmec + J0 (2.33)

2.4 system parameters

The diagram of the experiment setup if shown in Figure 2.7 which follows the diagram
previously illustrated in Figure 2.1. On the left the two converters controlled trough
DSpace are connected to the IM and PMSM mechanically coupled on the right. DSpace
is also connected to the computer and variables can be seen and modified on real-time
trough the Control Desk application.

Figure 2.7.: Experiment setup

The relevant parameters of the different systems used in the experimental setup are
shown below. Fields marked with ∗ were obtained experimentally and the tests are
described in Appendix A. The converter and machine power limits were taken from
previous work from [3].
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Parameter Symbol Value Unit

Rated speed (mechanical) nn 4500 rev/min
Pole pairs Npp 4 −

Rated current In 24.5 A
Rated power Pn 9.42 kW
Rated torque Tn 20 Nm

Machine + wire resistance R 0.25∗ Ω
Inductor q axis Lq 2.15∗ mH
Inductor d axis Ld 2.03∗ mH
Magnetic flux λmpm 0.12∗ Wb

Table 2.1.: Machine electrical parameters

Parameter Symbol Value Unit

Drive shaft inertia Jm 0.113∗ Nms2

Viscous damping B 0.456∗ mNms
Coulomb friction J0 0.194∗ mH

Table 2.2.: Machine mechanical parameters

Parameter Symbol Value Unit

Rated input current Iin 29 A
Rated output current Iout 32 A

Deadtime td 2.5 µs
IGBT/diode on-voltage von 1.2∗ V

IGBT/diode resistive part ron 0.03∗ Ω
Snubber capacitance Cs 1.26 nF
Switching frequency fsw 3000 Hz
Sampling frequency fs 3000 Hz

Table 2.3.: Converter parameters



3
F I E L D O R I E N T E D C O N T R O L

In this chapter the control of the PMSM with means of PI compensators is revised as
they are typically used to control this type of machines. The controllers are explained
and tuned analytically and lastly simulation and experimental results are presented.

3.1 current control

The current control of the system can be made by means of a PI. The blocks of the system
and the controller are presented in Figure 3.1 - 3.2. The current error is fed into the PI
which produces the voltage command that is fed to the SVM. The converter will have
a delay that can be modeled as a first order system with time constant τ = 1.5Tss. The
derivation is explained in several papers and [6] can be cited. There is a one period delay
due to the DSP computation delay. Then the system may be modeled in s but with a
zero order hold and sampler used which can be simplified to a delay of 0.5Tss. Hence
the total delay is given by 1.5Ts. The delay given by e−1.5Ts may then be approximated as
a first order transfer function of 1

1.5Tss+1 so it is easier to handle. To simplify the design
of the controller, the coupling terms are added with contrary sign after the controller so
when they are added back inside the machine they can be considered canceled and the
current control is a Single Input Single Output (SISO).

1
Lqs+R+

+
+ -+ -

ωrLdid + ωrλmpm

i∗q

iq

v∗q vq
MachineConverter

1
τs+1

Figure 3.1.: Inner-loop for iq

1
Lds+R+ - +

+
+ -

ωrLqiq

i∗d

id

v∗d vd

MachineConverter

1
τs+1

Figure 3.2.: Inner-loop for id

With the coupling terms neglected, classical control theory can be used to tune the
parameters of the compensator. A way to tune the inner-loop could be by eliminating the

17
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slow pole due to the RL system and then adjusting the gain for the desired performance.
The PI is described by Equation 3.1 and thus to eliminate the slow pole of the machine
rewritten as Equation 3.2 then Equation 3.3 is imposed.

D(s) = Kp +
Ki

s
= Ki

Kp
Ki s + 1

s
(3.1)

G(s) =
1

Lqs + R
=

1/R
Lq
R s + 1

(3.2)

Kp
Ki

=
Lq

R
(3.3)

With this compensator the whole system is now second order. Another equation can
be imposed referred to the damping coefficient ξ. The term ξ affects mostly the overshoot
and the term ωn mostly the oscillations frequency. Both also affect the time constant.
This is illustrated with step responses as depicted in Figure 3.3. The OL of the system is
given by Equation 3.4 and the CL can be calculated as Equation 3.5.
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Figure 3.3.: Inner-loop for iq

Gol(s) =
Ki

R
1

s (τs + 1)
(3.4)

Gcl(s) =
Ki/(Rτ)

s2 + s/τ + Ki/(Rτ)
(3.5)

By comparing Equation 3.5 with a second order system Ki can be obtained so the
system has a determined damping ξ. The value obtained is given by Equation 3.6.
Therefore the only parameter to choose is ξ and can be made ξ = 0.7 since it provides a
5% overshoot.

Ki =
R

4ξ2τ
(3.6)
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3.2 speed control

To achieve the desired speed the electrical torque can be adjusted by means of iq as is
shown in Equation 2.32 - 2.33. The current command is given by a PI where the speed
error is fed as an input. The blocks are shown in Figure 3.4.

3
2 Nppλmpm

1
Js+B+ - + -

ω∗

ω

i∗q iq Tel

Tload + J0

Inner-loop

1
τis+1

Figure 3.4.: Outer-loop for ω

Classical control theory can be used to tune the parameters of the compensator. To
simplify the design, the inner-loop is simplified as a first order system. This approxima-
tion is valid since the inner-loop (both in the case of the deadbeat or the PI controller)
is designed to have a small overshoot and thus the behavior is similar to one of a
first-order system. The time constant of the inner-loop for the PI can be obtained from
Equation 3.5 since the close-loop transfer function is a second order system and is given
by Equation 3.7.

τi =
1

ξωn
= 2τ (3.7)

The open-loop transfer function of the simplified speed-loop is shown in Equation 3.8
and it is adjusted for the implementation in the experiment where Krpm

rad = 60/(2π) since
the experiment model was later designed with the mechanical speed in rpm as input
of the controller. On the other hand the output of the controller is set as torque and
therefore the constant 3

2 Nppλmpm does not appear in the OL transfer function. It will
appear as a gain later in the implementation to transform to current.

Gspeed(s) = Krpm
rad

(
Kp +

Ki

s

)
1

τis + 1
1

Js + B
(3.8)

The pole/zero placement of Equation 3.8 is depicted in Figure 3.5 for Kp = 0.1 and
Ki = 1. The system has initially a slow pole due to the mechanical nature at B/J and
a fast one due to the current loop at 1/τi. The PI introduces a pole in the origin and a
zero that can be placed anywhere with the correct gains.

Using Sisotool in Matlab it can be seen that there are several solutions that in simu-
lations provide similar results. The speed controller can be set at least 10 times slower
than the current loop so they do not couple and interfere with each other. Going to this
limit however gives high gains that cannot be used experimentally.

One proposed solution is Kp = 0.0725 and Ki = 2.5. The pole/zero placement for
those gains is depicted in Figure 3.6.

The step response with the proposed controller is shown in Figure 3.7.
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Figure 3.5.: Pole/zero placement of speed loop
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Figure 3.7.: Speed step with tuned parameters

If the gains are multiplied by 8 a faster controller with less overshoot is proposed
and the step responses are depicted in Figure 3.8. While it is 10 times faster than the
proposed one it still meets the requirements of being 10 times slower than the current
loop.
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Figure 3.8.: Speed step and noise impulse response for faster solution

This solution however does not work experimentally. Some other controllers have been
tested but it has been impossible to experimentally implement a controller much faster
than the one proposed and it is hypothesized is due to the lack of noise rejection. Also
the parameters used in the mechanical system were obtained in tests and are subject to
errors. Moreover the IM torque controller may couple with the PMSM and influences
the response. If the overshoot is checked in a step response, when the IM is connected it
grows noticeably even when the torque is set to zero. While the controller was tested
with the IM disconnected so the torque controller does not couple, in the real testing it
will affect the performance.
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3.3 anti wind-up

The PIs will give the command to the plant without any constraint. If the error is big
enough the controller may require too much command that would damage the system.
For this purpose based on the limits imposed by the system a saturation block can be
placed at the end of the voltage command. However the integrator in the PI will continue
integrating even though it will have no effect and would take a lot of time to reset after
the error is finally drop. For this reason an anti-windup technique can be implemented
in any of the PI used in the system. The schematics are shown in Figure 3.9.

Kp

Ki 1/s

e
+
+

+

u'

Ka

+
+-

Figure 3.9.: Anti wind-up scheme

When the command is too big and it is saturated the difference is fed to the integrator
to stop it from keeping integrating. When the command given by the controller is below
the limits then the anti wind-up does nothing.

3.4 simulation results

3.4.1 Current loop

The current response for the PI in continuous and discrete time (with forward-euler
discretization) for fs = 3000Hz and ξ = 0.7 using Equation 3.3 - 3.6 is shown in
Figure 3.10. It is also shown the simulated response using Equation 3.5.

The coupling terms have been added as a feed-forward term to the voltage command.
The response in continuous and discrete time (with tustin) is almost the same and
therefore there is no need to design the controller in Z . The response in the q axis is
also very similar to the modeled one and the origins of the errors may be due to the
PWM approximations taken. As for the d axis the changes when iq changes may be to
the coupling terms not being perfectly canceled out in the transient.

3.4.2 Speed loop

The comparison of the proposed controller in the analytical model and simulations is
depicted in Figure 3.11. It can be seen a great concordance between both models. In the
response it is also shown the difference between including or neglecting the first order
approximation of the current loop which can be seen to not be important and could be
neglected.
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Figure 3.10.: PI current response for ξ = 0.7
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Figure 3.11.: Speed loop response comparison simulation vs modeling

3.5 experimental results

3.5.1 Current controller

Different controllers have been tested and the results are shown later in Figure 4.4 with
the predictive controller also.
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3.5.2 Speed controller

The speed controller has been tested in the experiment with the gains proposed. The
results are depicted in Figure 3.12. The settling time follows the theory but the overshoot
is increased almost to double and the shape of the speed is also modified. Since the focus
of the project is the predictive controller a ramp limitation as discussed in [1] has been
added to the speed error with a relative low limit of 2000rpm/s to smooth the response
and is shown in the same graph.
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Figure 3.12.: Speed controller step response in the experiment
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P R E D I C T I V E C U R R E N T C O N T R O L

In this chapter the predictive controller is presented. The controller which uses machine
equations and different estimations of variables is derived. At the end simulation and
experimental results are shown.

4.1 description of the algorithm

Predictive control in a PMSM is theoretically able to produce the desired reference in a
minimum amount of time without compromising the stability or inducing steady-state
errors. However this kind of performance can only be achieved if the model of the
system is good enough and the system parameters are accurately determined. Because
of this, parameter sensibility analysis are performed in Chapter 5. Non-linearities are
compensated in Chapter 6 and an online parameter estimator method is developed in
Chapter 7.

The voltage needed to achieve the current reference is calculated in the deadbeat
controller by using the system equations and calculating it based on the previous current
and speed. Depending of how the PWM is handled the reference may be achieved
either in one or two period but never in less than one. If the PWM signal enters in the
next period the reference can be achieved in 2 since the current will achieve the true
value after the voltage was applied. On the other hand if the PWM enters shortly after
calculation the current reference can be achieved then in only one period as happens in
the experiment. Saturation of voltage commands or the average approximations taken
may make the real controller be slower in certain conditions where a big change is
demanded but otherwise the response can be kept within a minimum time without
compromising the transient stability.

The idea of this type of controller is to use the machine equations to calculate the
voltage needed to achieve the given reference. Since approximations of the means are
used and the PWM effect neglected on reality a value very close to the reference is
usually achieved in the first iteration. In comparison the classical PI is not able to achieve
the reference in such a short time and reducing the time will only produce overshoot [7].

Because the voltage command takes some computation time it is forced to be delayed
strictly one period. In the experiment DSpace passes the command immediately to the
PWM and then two different controllers are developed. A first approach will consider
the common DSP delay and compensate it while the second one designed for this
experimental testing without the delay. Both controllers are based in the same idea of
using averages in both sides of the equations.
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4.1.1 2-period controller

Assuming we are in period k we want to calculate the voltage needed to be applied in
periods k + 1 that will produce the current in k + 2 as represented in Figure 2.3. If that is
the case, the equations of the PMSM can be rewritten using averages for those 2 future
periods. The average of a continuous function is defined as 1

T

∫ T
0 x(t)dt and therefore

when doing it in both sides of the motor equations the substitutions in Equation 4.1 -
Equation 4.3 can be made which are also used in [7].

〈u〉 = 1
2Tsw

∫ 2Tsw

0
u(t)dt =

uk + uk+1

2
(4.1)

〈i〉 = 1
2Tsw

∫ 2Tsw

0
i(t)dt ≈ ik + ik+2

2
(4.2)

〈
di
dt

〉
=

1
2Tsw

∫ 2Tsw

0

di
dt

dt =
1

2Tsw

∫ 2Tsw

0
di =

ik+2 − ik

2Ts
(4.3)

Furthermore, the simplification that ω is constant is done and the value of ω(k) is
taken. To get the desired current, then ik+2 = i∗k . The final result for both the d and q
axes is shown in Equation 4.9 - 4.10. It is important to note that Equation 4.1 and 4.3
are exact calculations while Equation 4.2 is an approximation. It could be improved by
predicting the evolution of the current over the 2 periods. A third point can be added in
the middle between both points at ik+1 that can be calculated from the voltages given in
the previous periods. Then Equation 4.2 may be substituted by Equation 4.4 to have a
better response.

〈i〉 ≈ ik + ik+1 + ik+2

3
(4.4)

The predicted current can be obtained as follow. If there was no saturation in the
voltage ik+1 = z−1i∗. Otherwise it can be estimated. The voltage that is going to be
used in the PWM is the previous one given by the controller, named uqd. Knowing the
sampled current in the period iqd then the predicted current ip

qd may be estimated. The
machine equations can be written with averages as Equation 4.5. Then the current in the
next period which wants to be predicted can be solved as Equation 4.8 where A and B
are given in Equation 4.6 - 4.7.

uqd = Aip
qd + Biqd +

[
λmpmωe

0

]
(4.5)

A =

[
R
2 +

Lq
Ts

ωe
Ld
2

−ωe
Lq
2

R
2 + Ld

Ts

]
(4.6)

B =

[
R
2 −

Lq
Ts

ωe
Ld
2

−ωe
Lq
2

R
2 −

Ld
Ts

]
(4.7)

ip
qd = A−1

(
uqd − Biqd −

[
λmpmωe

0

])
(4.8)
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To save computation time the matrix A can be modified and only contain the dif-
ferential terms and in B remove the 2 in the denominator of the terms divided by
it. This is equivalent to approximating the change using the previous current in the
terms without the differentiator and provides the advantage that the inversion of A is
[Ts/Lq, 0; 0, Ts/Ld] and thus little computation time is needed since a simple equation
can be derived without 2x2 matrices inversions.

uq(k + 1) = 2

(
R

i∗q + iq(k)
2

+ Lq
i∗q − iq(k)

2Ts
+ ω(k)

(
Ld

i∗d + id(k)
2

+ λmpm

))
− uq(k)

(4.9)

ud(k + 1) = 2

(
R

i∗d + id(k)
2

+ Ld
i∗d − id(k)

2Ts
−ω(k)Lq

i∗q + iq(k)
2

)
− ud(k) (4.10)

4.1.2 1-period controller

Based on experiments the way the PWM is handled in DSpace seems a bit different and
the voltage command enters as soon as it is calculated as it was explained before in
Figure 2.2 and therefore the controller can be modified to work in such a system.

The PMSM equations are modified as it was done in the 2-period controller by
calculating averages an in this case the following substitutions can be done as shown in
Equation 4.11 - Equation 4.13.

〈u〉 = 1
Tsw

∫ Tsw

0
u(t)dt = uk (4.11)

〈i〉 = 1
Tsw

∫ Tsw

0
i(t)dt ≈ ik + ik+1

2
(4.12)

〈
di
dt

〉
=

1
Tsw

∫ Tsw

0

di
dt

dt =
1

Tsw

∫ Tsw

0
di =

ik+1 − ik

Ts
(4.13)

Since the current is desired to be the reference in k + 1 then ik+1 = i∗ and the final
controller equations are given by Equation 4.14 - Equation 4.15.

uq(k + 1) = R
i∗q + iq(k)

2
+ Lq

i∗q − iq(k)
Ts

+ ω(k)
(

Ld
i∗d + id(k)

2
+ λmpm

)
(4.14)

ud(k + 1) = R
i∗d + id(k)

2
+ Ld

i∗d − id(k)
Ts

−ω(k)Lq
i∗q + iq(k)

2
(4.15)
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4.2 angle compensation

At high speeds it is important to estimate the angle to use in the dq transformation to αβ

used in the modulator. Since the command is always delayed the angle measured will
not be the same as the angle when the voltage commanded enters the system. This is
represented in Figure 4.1.

dq

ab
C(z) z

-1
Modulator Plant

ZOH
+
+

1.5Ts
ωe

θe
θ'e

udq*

Figure 4.1.: Angle compensation diagram

In the 2-period version the average angle will be close to θ′e = θe + ωe1.5Ts since
the command will enter after Ts and will be until 2Ts. If the speed is constant then
the average angle will be modified by ωe1.5Ts. In the 1-period version it would be
θ′e = θe + ωe0.5Ts.

4.3 simulation results

A simulation response to two steps in q and d of 10A setting the other reference to 10A
is shown in Figure 4.2 for a speed of 2π50 which is 1/6 of nominal. The non-linearities
in the converter are simulated and compensated with the discrete implementation later
presented.

The results in Figure 4.2 show the predictive controller is able to track the reference in
almost the 2 periods needed due to the delay in the voltage command. The small error is
a combination of the the non-linearity compensation as the current changes completely
from one period to another and there may be a small error in the transient and the
average approximation used to deduct the equations. In the same graph the PI tuned
for ξ = 0.7 is also shown. It can be seen the response is slower in the PI which takes
around 4 more periods. It also presents a small overshoot of 5.4% as expected from the
analytical tuning. It can be seen the coupling in the currents is also bigger in the PI.

In Figure 4.3 the same test is repeated for a speed of 2π250 (83% rated). It can be
seen the predictive controller behaves similarly although the coupling errors have been
increased. In the case of the PI the response is worse as the overshoot is increased and
the step would need even more time to reach the steady-state. The coupling errors
have also been increased. The reason of such changes of performance with speed in the
PI may be due to the coupling terms. Even though they have been compensated the
implementation is clearly worse than in the predictive controller where the current is
predicted.
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Figure 4.2.: Step response at 50 Hz
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4.4 experimental results

Results of the comparison between the predictive controller with 1-period delay and
different PIs set for different gains are shown in Figure 4.4. With the machine running
a step is given to i∗d since it is easier than to iq as it does not affect the torque. The
responses in Figure 4.4 show great similarity with Figure 4.2 (apart form the part of the
period difference due to the 1-period implementation).

Period
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i d

0

1

2

3

4

5

Reference
Predictive
PI with ξ = 0.7
PI with ξ = 0.9
PI with ξ = 1.2

Figure 4.4.: Comparaison between response of predictive controller and PIs

The graph shows that as studied the predictive controller is able to achieve the
reference in one period only. This plot also shows that the non-linearites have been
correctly compensated as the SS-error is close to zero. It can also be seen that the
predictive controller reaches the reference in only one period and thus shows that
effectively DSpace does not introduce the delay after the command and that the results
are adequate (voltage distortion due to computational delay can be neglected).

On the other hand the PI for ξ = 0.7 also follow a similar response to the one in
simulations for Figure 3.10 which was tuned the same way.



5
PA R A M E T E R S E N S I T I V I T Y A N A LY S I S

In this chapter the effect of parameter variation in the predictive controller is stud-
ied. Since this compensator does not have adapt mechanisms the performance can be
weakened by errors in the machine parameters.

The system is modeled using Multiple Inputs Multiple Outputs (MIMO) theory as the
dq axes are not decoupled. Then the controller is also realized in matrix form. The whole
system can be represented with linear matrices and the stability assessed with a pole
map. Simulations and experiments are performed to validate the claims.

Later steady-state errors calculation is shown. Because several factors play a role
on them after the analytical derivation an approximation will be derived to have a
better understanding of the effect of each element in the global error. Simulations are
performed to validate the approximations.

In the last part the transient is analyzed. Since there are several poles and zeros
between system and controller and they are quite close in the pole/zero map it is not
easy to develop intuitions about the effect of each parameter change in the transient so
some approximations are also taken to understand the main factors that play a bigger
role in the transient. At the end simulation for different conditions are shown to validate
the simplifications.

5.1 system model

In this section the analytical model of the system used in stability will be derived. First
the state-space model of the plant is derived. Later the discretization method is shown
and lastly the predictive controller is also derived.

5.1.1 State-space plant

In state-space a system can be represented by Equation 5.1 - 5.2. The block diagram of
such a system is depicted in Figure 5.1 where each state is a vector and each block a
matrix.

The x vector is a state-variable, while u is a vector command. By modifying u the
values of x are changed over time so in the case of the PMSM x can be seen as the current
and u as the voltage. To only obtain the desired state-variables in the final result the
relevant x and u variables can be selected by choosing C and D.

d
dt

x = Ax(t) + Bu(t) (5.1)

y(t) = Cx(t) + Du(t) (5.2)

31
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Figure 5.1.: State-space representation

The machine equations can be written in matrix form as Equation 5.3 where the flux
linkage has been removed. The speed is considered to change much slower than the
current and therefore will be treated as a constant from the mathematical point of view
as otherwise the system would be non-linear and the analysis would be much more
complicated. Under this assumption the flux voltage term can then be considered as a
perturbation to the system that can be later added and considered.

u′qd =

[
R ωeLd

−ωeLq R

]
iqd + s

[
Lq 0
0 Ld

]
iqd (5.3)

By comparing Equation 5.3 with Equation 5.1 - 5.2 A and B can be determined for the
case of x = iqd and u = u′qd. The result is found by solving siqd which respect to iqd and
u′qd. The matrices that multiply those variables are directly A and B and are written in
Equation 5.4 - 5.5.

A =

[
R
Lq

Ld
Lq

ωe

− Lq
Ld

ωe
R
Ld

]
(5.4)

B =

[
1

Lq 0
0 1

Ld

]
(5.5)

As we are interested in knowing the current we can set y = iqd by simply setting C = I
(2x2 unity matrix) and D = 0 (2x2 zero matrix). The block diagram of a state-space
system is depicted in Figure 5.1 and using the cascade and feedback rule for MIMO
systems the transfer function Gpmsm(s) of iqd/u′qd can be calculated as Equation 5.6.

Gpmsm(s) = C (sI − A)−1 B + D (5.6)

5.1.2 Machine discretization

The real machine is a continuous system but is driven by PWM which has a discrete
nature. Taking into account the PWM is complicated and usually averages or other



parameter sensitivity analysis 33

simplifications are done. Simulations can be done in circuit simulators such as PLECS
where those components are considered and will be seen that the PWM effect can be
neglected as long as the switching frequency is fast enough. If it is not the performance of
the controller would otherwise be also affected and to get a solution some simplifications
must be done.

G(s)ZOHC(z)

G(z)

i
qd
*

i
qd

z
u
qd -1

Figure 5.2.: System modeling with ZOH

The proposed technique to have an analytical model is shown in Figure 5.2. The
discrete controller (predictive controller in this case) will give the reference to the PWM
after a delay to simulate the DSP computation time. The reference then is passed
trough a ZOH and therefore the plant may be discretized in Matlab by using the
c2d(G, Ts,′ zoh′) where Ts is the sampling time. This ZOH simulates the PWM behavior
as the voltage reference is obtained in average during the period. Same techniques are
used to model other PWM driven systems. For example in grid connected inverters the
same approximation is taken in [8] which can be cited as a reference.

5.1.3 Predictive controller

The predictive controller can be modeled as the diagram shown in Figure 5.3 for the
2-period version. It can be derived by realizing it is the same as the 1-period controller
formula with 2Ts instead of Ts and by modifying the voltage as u′ = 2u− z−1u′ which is
the 2-period modification to compensate the delay if the predicted current in the average
current is neglected as can be seen in Equation 4.9 - 4.10.

Finally from Figure 5.3 the close-loop transfer function of the controller and plant
can be derived. From before the double sum to uqd the diagram can be simplified as
D(z) = 2 1

1+z−1 z−1. Then plant G(z) and D(Z) can be combined into G′(z) = D(z)G(z).
Finally the close-loop function is given by Equation 5.7.

Gcl(z) = G′(z)
(

I − K2G′(z)
)−1 K1 (5.7)

The matrices K1 and K2 are shown in Equation 5.8 - 5.9 and are the implementation of
Equation 4.9 - 4.10 in matrix form neglecting the predicted current.

K1 =

R′
2 +

L′q
2Ts

ωe
L′d
2

−ωe
L′q
2

R′
2 +

L′d
2Ts

 (5.8)
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Figure 5.3.: Predictive controller 2-period model

K2 =

R′
2 −

L′q
2Ts

ωe
L′d
2

−ωe
L′q
2

R′
2 −

L′d
2Ts

 (5.9)

As for the 1-period version the model is depicted in Figure 5.4 and the matrix gains
are shown in Equation 5.10 - 5.11. It can be seen are the same as Equation 5.8 - 5.9 but
with Ts instead of 2Ts. The close-loop transfer function is equivalent to the 2-period
version but with G′(z) = G(z) in Equation 5.7.

K1

K2

+
+

iqd
*

iqd

G(z)
uqd

Figure 5.4.: Predictive controller 1-period model

The equations of the predictive controller will be rewritten using averages as was
shown in for the 1-period version. The new matrix gains are then given by Equation 5.10

- 5.11.

K1 =

R′
2 +

L′q
Ts

ωe
L′d
2

−ωe
L′q
2

R′
2 +

L′d
Ts

 (5.10)

K2 =

R′
2 −

L′q
Ts

ωe
L′d
2

−ωe
L′q
2

R′
2 −

L′d
Ts

 (5.11)
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5.2 stability

The stability of the controller can be assessed by modifying each system parameter
independently (denoted without an apostrophe) and seeing the limits after where the
system becomes unstable as the controller is not updating the parameters (denoted with
an apostrophe). A simple way to represent the stability would be to perform a DC sweep
in each system parameter and plot the poles position (of each element in the matrix
Gcl(z)) in a pole map. If all the poles are inside the unit circle the system is stable. To
see the data better another graph can be added where the maximum absolute pole value
is plot vs the parameter change proportion. As long as this value is kept below 1 the
system is stable.

The system stability is dependent of the speed and sampling time. Another set
of graphs could be done where those variables are also modified to see the effect in
the system stability. However the result of testing at different speeds and switching
frequencies showed almost no changes in the limits and is omitted for visibility of the
pole map.

5.2.1 Resistor stability

The two graphs proposed are shown for the resistor in Figure 5.5 for both controllers
where the controller parameters are set to the system’s except for the resistor of which
the proportion of the system value over the controller (R/R′) is changed from −1 to 5.
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Figure 5.5.: Resistor error effect in stability in ZOH model
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The blue values represent reductions in R and the red ones increments. It can be seen
on the left the movement of all the system poles over the change in the ratio R/R′. The
start is the green dot (R = R′). For simple results the worst pole location is shown in the
right graph where the limit of stability is found at 0.

Even though the real resistor cannot be negative it is interesting to see there is a
lower limit at 0 for which the system becomes unstable. This limit can be verified in
the analytical model without PWM. There is no upper limit, therefore the results of the
analysis with a ZOH predict that the resistor alone cannot make the system unstable
unless negative (which is not physically possible) and offer perspectives regarding the
fact that this element may not play a big role in stability. It is also interesting to note that
the real resistor will increase in value due to temperature and the graph of the right of
Figure 5.5 shows that as R is increased the system becomes more stable so it is expected
that the resistor does not play a role in stability.

5.2.2 Lq stability

The graph for the analysis done in Lq where the system value is changed over the
controller constant value L′q is shown in Figure 5.6. As it happened with the resistor
there are also zeros placed at almost the same position of the poles and zeros are omitted
in the graph for readability as poles set the stability.
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Figure 5.6.: Lq error effect in stability in ZOH model
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It can be seen on the graph on the right that the limit of stability is almost the one for
when the real inductor drops to half the one used in the controller. This limit makes
sense as later in Equation 5.19 is approximated the overshoot as a function of L/L′ and it
is found that when L = 0.5L′ the overshoot is 100% so if the real inductor L drops more
than that the overshoot is bigger than 100% so it would tend to amplify any error.

5.2.3 Ld stability

The graph for the analysis done in Ld where the system value is changed over the
controller constant value L′d is shown in Figure 5.7.
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Figure 5.7.: Ld error effect in stability in ZOH model

As expected the results seem to be the same as for Lq. The limit is the same for the
1-period version.

5.2.4 Flux stability

The flux has been left out of the equations for simplicity as it can be seen as DC term in
the voltage command from a mathematical point of view and therefore it is treated as a
perturbation. The flux could be considered by adding the term

(
λ′mpm − λmpm

)
ωe to the

voltage q axes. This is represented in Figure 5.8.
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Figure 5.8.: Flux estimation error perturbance

Since the system is linear the response of the system can be seen as the combination of
the controller voltage plus the flux difference due to errors in the parameter estimation
of the flux. If the controller+system is stable the flux then cannot make the response
unstable as it is a constant DC term added to the q voltage.

5.2.5 Conclusion

From the results presented it can be seen only inductors play a role in stability and make
the system unstable when dropped to half. This value changes slightly with speed and
Ts but it is very close to 0.5 always. The resistor on the other hand only makes the system
unstable if negative which could be considered a theoretical limit.

5.2.6 Simulation results

The limits obtained analytically with the ZOH approximation can be validated in simula-
tion where the PWM at fs = 3000Hz is no longer neglected. To sum up the results the
following was found out:

• A negative resistor makes the system unstable.

• A drop in any inductor by half makes the system unstable.

• The flux does not affect stability if the speed is considered to change slowly
compared with the current.

Resistor limits

It has not been possible to simulate a case in which the resistor makes the system
unstable with the predictive controller.
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Inductor stability

With the 2-period controller the system becomes unstable in simulations when any
inductor drops to around 0.47 times its initial value. This value is very close to the one
estimated of 0.5.

Flux stability

As predicted it has been impossible to make the system unstable by modifying the flux.
Different values from up to ±10 times have been tried. What has been found is that as
long as the speed is not changing since its effect is a DC perturbation it does not affect
the transient. If the speed changes considerably it can also affect the transient since it is
no longer a constant DC perturbation but since changes are slow it does not play a big
role in the transient either.

Conclusion

Based on the simulation results it can be concluded that the only elements that seem to
play a role in the stability are the inductors. As long as the speed is not changing the
flux error is only a DC offset. Both resistor and flux cannot make the system unstable
but they can affect the transient response (the flux only when the speed is changing
considerably) and the resistor at low load/speed conditions when it has an important
weight in the voltage equation.

5.2.7 Experimental results

The limits of stability calculated analytically and tested under simulations can be vali-
dated experimentally. It has been found in simulations that the limits estimated analyti-
cally coincide with the ones in simulations except for the resistor which seems to not be
able to induce instabilities contrary with the results obtained from the root-locus plot.
Since the main difference between the analytical model and the simulations is the PWM
it is expected for this to be the reason of discrepancies and therefore in the experimental
results this is expected to happen:

• Resistor will not play a role in stability.

• A drop in any inductor by half makes the system unstable.

• The flux does not affect stability if the speed is considered to change slowly
compared with the current.

To validate all those claims the following tests are proposed. The machine is set
running and the parameters used in the controlled are changed to ensure the same
proportions found in the limits analytically. Then a step in id will be commanded and
the response recorded. For a stable system the controller will be able to settle to a value
and if the system becomes unstable it will start to oscillate with bigger oscillations each
period which will trigger the protections and shut down the system.
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5.2.8 Resistor limits

Different values have been tested from −2R to 2R and the system is always stable. The
only change is a steady-state error and at low speeds the transient is also affected.

5.2.9 Inductor limits

As the value of Ld used in the controller is increased it is seen that around 4.4mH the
system starts presenting big oscillations as depicted in Figure 5.9.
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Figure 5.9.: Response on id as controller inductor is doubled

Moreover a high pitch noise is heard which makes sense as based in the current
response every period the current changes almost 10A so a noise of 2 fsw is expected to
be heard.

5.2.10 Flux limits

Different values have been tested from −2λmpm to 2λmpm and the system stability has
not been compromised.

5.3 steady-state errors

In this section the effect of errors in the parameters will be considered to come up
with an idea of how they affect the steady-state errors. The controller and machine
equations will be rewritten for the steady-state case by removing the differential terms
when appropiate.
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5.3.1 System equations

In steady-state the current can be considered constant within periods and therefore, on
average the differential terms do not appear in the voltage on the system. The current
will change due to the PWM nature but the average will still be close to the value at the
beggining and end of the period (which will be the same).

Under this considerations the steady-state machine equations can be rewritten in
matrix form as Equation 5.12.[

uq

ud

]
= MSS

[
iq

id

]
+ λ =

[
R ωeLd

−ωeLq R

] [
iq

id

]
+ ωe

[
λmpm

0

]
(5.12)

5.3.2 Controller equations

In steady-state the differential terms of the controller will be zero only if there is no
steady-state error. However, if there is some steady-state error this difference will still be
fed to the differential terms and therefore they cannot be removed. There will be two
variables in the controller side, the reference currents and the actual value.

Recalling from before K1 was defined in Equation 5.10 and K2 in Equation 5.11 for the
1-period controller and the controller equations are then given by Equation 5.13 where
the last term will be denoted simply as λ′.[

uq

ud

]′
= K1

[
iq

id

]∗
+ K2

[
iq

id

]
+ ωe

[
λ′mpm

0

]
(5.13)

In this case the results change between 1-period and 2-period version due to the
different gains used. The derivation for the 2-period version is the same but noting the
following changes. In K1 and K2, the term Ts should be changed into 2Ts. On the other
hand in K1 the term 1/2 is changed into 2/3 and the term 1/2 into 1/3 in K2. This is
because the predictive controller estimates the current reference in the average terms,
which without saturation will be the same as the reference. In steady-state the voltage
command will also be the same in every period so uk+uk+1

2 = u = f (i∗qd, iqd, ωe, 2Ts).

5.3.3 Equations of steady-state errors

With the models defined in the two previous subsections the steady-state errors can
be calculated by solving the currents as a function of the reference and the machine
parameters and working condition by imposing that the voltage applied in controller
and machine must be the same. The solution for iqd is then found in Equation 5.14.

i′qd = (MSS − K2)
−1
(

K1i∗qd + λ′ − λ
)

(5.14)

And the error then can be defined as εqd = i′qd − i∗qd. As there is a matrix inversion
with all the elements defined it can be inferred that the analytical solution will not be
simple. Therefore to interpret the results the formulas derived will be used to plot the
errors in different conditions.
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5.3.4 Results

The effect of changing individually any parameter is shown in Figure 5.10 for a reference
of i∗q = 15 and i∗d = 3 as setting i∗d = 0 removes any error due to Ld. The graphs are done
also for 4 different speeds of 0, 33, 67, 100Hz with Ts = 3000Hz and the result plotted is
the absolute error for the q and d current given by iqd − i∗qd.
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Figure 5.10.: Steady-state error due to parameter error one parameter at a time

As it seems logical the absolute error is bigger in the q axes as the reference is set 5
times bigger. It can be seen that Ld does not play a big role as long as id is kept low.
Theoretically if i∗d = 0 errors in Ld do not affect the steady-state errors. However the
transient phenomena will be affected and as was proved before if Ld dropped more than
half the system would become unstable.

5.3.5 Steady-state errors approximation

It can be seen in Figure 5.10 that even though the equation solutions are not linear due
to the matrix inversion the error produced when only one parameter is changed at a
time looks linear. This suggests that to characterize the effect of any combination of
parameters at a time and working condition (load, speed, more than one parameter
change) the equations obtained may be approximated with Taylor expansion in the 4

machine parameters and this way they will be easier to interpret as there are 8 parameters
into play and a plot with every combination is not possible.

Derivations are omitted here and attached in Section B.2 where it is also shown in
Figure B.3 that the approximation tends to produce an error in the error of less than
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5% so it can be considered adequate and used to infer the relations between states and
parameters in the global error. The result of the approximation is that the error can be
estimated as Equation 5.15 where Kss is given by Equation 5.16.

e(iqd) = iqd − i∗qd ≈ Kss


∆R
∆Lq

∆Ld
∆λmpm

 (5.15)

Kss =

− Ts
Lq

i∗q − Ts
2 i∗q ωe

2

2 Lq
− Ts i∗d ωe

Lq
− Ts ωe

Lq

− Ts
Ld

i∗d
Ts i∗q ωe

Ld
− Ts

2 i∗d ωe
2

2 Ld
− Ts

2 ωe
2

2 Ld

 (5.16)

Difference between 1 and 2-period controller consist in the constants that multiply the
coefficients of the Taylor approximation (for example 1/2 may become 2/3 and so on) so
the relations observed inferred from Taylor (what variables affect what) are the same.
From the Taylor approximation the effect of each parameter and state in the global error
can be understood in simple terms and will be discussed in the following sections.

Parameter error analysis

Since the full taylor approximation of first order has been validated to produce an error
moderately low of typically less than 5% it may be considered valid to use as a way to
study the effect of each parameter variation in the steady-state error. Moreover if the
speed is kept below half the nominal Equation B.16 can be used. At higher speeds then
it may be modified by multiplying it by d2

d2+d5
. This comes from the approximation taken

in Equation B.13.
The advantage of this approximation is that it shows that the effect of each parameter to

the error in each axis is independent of each other and is only function of two parameters
only: the speed, and the current reference in one axis only. Because of this a plot for each
parameter can be developed and the total error can be approximated as the sum of each
parameter contribution to the error in each plot. From the taylor approximation of which
formulas were shown in Equation 5.16 the following dependencies in Figure 5.11 between
errors and system states can be inferred with a good approximation. The diagram can
be interpreted as follows. An error in Lq for example produces an error in both the q
and d current, e(iq) and e(id) as a function of i∗q . The reference i∗d does not influence the
error significantly. The errors are speed-dependent (yellow). The resistor for example
produces an error on each axis as function of both i∗q and i∗d , being i∗q the command that
affects the error in q and i∗d the error in d. Because of the green color the speed does not
play a big role. Finally the flux is current independent and produces a constant error that
is greatly influenced by the speed (red). The approximated errors can then be calculated
applying superposition to Figure 5.12 or Figure 5.13 for the system parameters obtained.

If the switching frequency also wants to be taken into account then the speed used to
look in the plot may be modified into ωeT′s/Ts as the speed is always multiplied by Ts

in the taylor approximation except the resistor where the current should be modified
as iT′s/Ts. Results are depicted in Figure 5.12 for the 1-period deadbeat version using
the relations inferred from the Taylor approximation but the exact error as given by
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R Lq Ld

iq* id*

e(iq) e(id)

Lmpm

Figure 5.11.: Error dependencies between system parameters and states

Equation 5.14. The same calculations can be redone for the 2-period version and the
results are depicted in Figure 5.13 since the errors change considerably.

The graphs can be interpreted as follows. The error in the y-axis is the absolute error
produced either in the q (blue) or d axis (red) current due to a change of +10% in the
parameter. The error in this case was defined as iqd − i∗qd so for example a positive value
means the current generated by the controller will be bigger than the reference. Since the
formulas are approximately linear to see the effect of any other change the proportion
which respect to the initial parameter may be multiplied. For example to see the effect of
a 20% drop in Lq the value obtained from the graph may be multiplied by −0.2/0.1 as
the values are done for +10% change.

The error is plotted as a function of current reference and speed as those are the only
two factors that affect it within each parameter without making a significant error. The
change due to current is linear and due to speed is linear in some parameters only. The
speed is varied from 0 to rated speed. The brighter the color the bigger the speed which
goes from 0 to rated 2π300.

To validate the results the parameters in the machine may be changed under sim-
ulations and the error for a given state estimated with Figure 5.13 since the 2-period
controller is implemented in simulations. Let for example R = 1.3R0, Lq = 0.8Lq0, Ld =

0.75Ld0, Lmpm = 0.9Lmpm0 and the states i∗q = 10, i∗d = 6, ωe = 2π100 with fs = 5
Khz. The error can be estimated from Figure 5.13 and the procedure is depicted
in Table 5.1. The values can be read directly from the graph and multiplied by
0.3/0.1,−0.2/0.1,−0.25/0.1,−0.1/0.1 for each parameter as the graph is made for
changes of +10%. To gain precision the values are actually calculated from Equa-
tion 5.14 but maintaining the approximations taken. For example in Lq the error due to
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Figure 5.12.: Error in iqd due to each parameter, i∗qd, and speed for 1-period deadbeat
controller for fs = 5 kHz
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controller for fs = 5 kHz
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i∗d is removed and it will also calculate the error for a 10% positive change in Lq and then
multiply the result by −0.2/0.1.

Parameter e(iq) e(id)

R −0.13 −0.08
Lq 0.08 −0.50
Ld 0.34 0.06

λmpm 1.35 0.23
Total error 1.60 −0.30

Table 5.1.: Random parameters variation for Taylor approximation validation

The errors have been estimated with the approximations presented. Now the machine
is set at the desired speed and the inertia is set high so the speed does not change during
the simulation. The references are set as commented and the parameters in the machine
modified according to the numbers set. The current response is shown in Figure 5.14.
The error may be calculated then from Figure 5.14 as e(iq) = 11.6 − 10 = 1.60 and
e(id) = 5.6− 6 = −0.40. It can be seen good concordance between the approximation
(−1.60, 0.30) and the simulation. If the formula in Equation 5.14 is used directly instead
the error would be estimated as 1.58 and −0.40 showing that Equation 5.14 is valid and
the origin of the errors are attributed to the approximations taken but it can be seen
that they are still kept low and can be used to infer good intuitions about how each
parameter and system state affect the steady-state error.
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Figure 5.14.: Error in iqd with the states set in simulation

Conclusion

The effect of each parameter in the steady-state error can be calculated accurately with
Equation 5.14. Due to the dependency of so many parameters an approximation have
been taken with relatively low errors and the dependency between parameters is shown
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in Figure 5.11. The errors can be estimated with good precission applying superposition
with the graphs from Figure 5.12 - 5.13 which show how each parameter and state affect
the global steady-state error. Both current and speed can change the steady-state errors
dramatically and the worst case is always with the biggest of the two. The error in
the resistor estimate plays a small role in the steady-state error when compared with
the other three parameters. If i∗d = 0 then any error in Ld will not produce an error in
any current. Switching frequency also plays an important role similar to speed in the
steady-state errors since the effect of a different frequency f ′s is equivalent as the error
running the machine at ω′e ≈ ωe

fs
f ′s

in all parameters but the resistor which on the other
hand tends to produce small errors.

5.4 transient response

The effect of the change in any machine parameter in the performance of the controller
is studied in this section.

The resistor effect in the transient is neglected as it only affects at lower loads and
speeds since its voltage contribution is usually low compared to the inductors and flux
parts. On the other hand from Figure 5.8 it can be seen that errors in the flux linkage
can be understood as a DC perturbation to the voltage command since changes in the
speed are slow compared to changes in the current. This does not necessarily means
that they will not affect the transient as the controller will work differently when trying
to compensate them (the differential terms for example will never be zero as there
will always be an error under changes in the flux) it was seen under simulations and
experiments that the effect to the transient when it is wrongly estimated is usually small.

For this reason the transient response will only take into account the effect of changes
in the inductors as they are the main contributors to it. Later the DC claim will be
validated under some approximations.

5.4.1 Overshoot

If the resistor and flux terms are neglected in the transient they can be removed from
the system and controller equations as they are considered compensated. Then, the
following relations can be derived in Equation 5.17 - 5.18 to estimate what happens when
a step is sent to the controller in the 1-period version.

Lq

Ts
∆q + ωeLd < id >=

L′q
Ts

∆q∗ + ωeL′d < id >∗ (5.17)

Ld

Ts
∆d−ωeLq < iq >=

L′d
Ts

∆d∗ −ωeL′q < iq >
∗ (5.18)

The inductor Lx (where x is any axis, q or d) is the real inductor in the machine but
the controller has the estimate L′x. The value of < ix >∗= i∗x+ix

2 is the average current in
the period as estimated by the controller where i∗x is the current command and ix the
current at the beginning of the period. The real one will be < ix >= i′x+ix

2 where i′x is the
actual current at the end of the period. The value of ∆i∗x is the commanded change given
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by i∗x − ix that can be understood as the step in the x axis. The actual step however will
be ∆ix = i′x − ix.

At low speeds the coupling terms are not significant either in comparison with the
differential part and may also be neglected and since then the steady-state error will be
small as is the speed then the overshoot can be approximated as Equation 5.19. Under
those approximations the overshoot in the 2-period version must be the same also as Ts is
removed from the equations. Negative values indicate the system is over-damped. This
approximation is at first sight only valid when steady-state errors are small but gives an
idea about the evolution of the overshoot. When the coupling terms are considered they
will modify the steady-state error and also the transient response making the overshoot
speed dependent also. Moreover since the equations are coupled errors in Lq will affect
the overshoot in Ld and the other way around. However it has been seen that as long as
the errors are constant (for example flux errors, or the current reference is set constant in
the other axis and does barely change so introduces a constant error) then the equation
Equation 5.19 seems to be quite accurate understanding ∆x∗ as yss− y0 and ∆x as yp− y0

based on simulations. Those variables are shown in Figure 5.16. A simple proof of why
Equation 5.19 works for cases with constant steady-state errors and dc perturbations is
conducted in Section B.3.

ov = Φ ≈ ∆x
∆x∗
− 1 =

L′x
Lx
− 1 (5.19)

To validate the claims as only 2 parameters are the main responsible of the overshoot
(inductor error and speed) then the following procedure can be done. A model in PLECS
can be developed where those parameters are varied and a step in the q axis is given and
the overshoot calculated from a script. It has been seen that the overshoot is not affected
in great value by errors in the other parameters, current references or previous current
states in d, and step size in q based on simulations as they produce dc perturbations.
Same happens for d. As predicted the overshoot is speed dependent but the relation is
not that important either. The speed ωe and the coefficient between the real inductor
and controller, Lq/L′q, may be varied in the model run from a Matlab script trough two
loops. The results are depicted in Figure 5.15. Additionally, in red the approximation
from Equation 5.19 has been plotted.

The speeds used have been 2π[0, 75, 150, 225, 300] where 2π300 is the rated speed. It
can be seen that the speed does not play such a significant role in the overshoot. The
errors at high speeds when the parameters are correct are due to the coupling effects
influencing the results due to the discretization of the controller and having a continuous
plant. An step in one axis changes the other current slightly which is not predicted by
the controller. This is due to the average approximation used which is worse as the speed
increases. Increasing fs removes any coupling effect. Therefore this current that appears
in the other axis that is not accounted for modifies slightly the initial step making a small
overshoot.

It can also be seen that the approximation from Equation 5.19 is quite accurate
and as expected tends to be better as the error in the inductor is increased and the
speed is decreased as that increases the weight of the differential term in the overshoot
contribution.
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Figure 5.15.: Overshoot in iq as a function of inductor error and speed

5.4.2 Settling time

The settling time defined as the time it takes for a signal to stabilize within a tolerance
band can be estimated under some approximations in the 1-period controller. The
overshoot, Φ, is mostly function of the speed ωe and more importantly the relation L/L′.
Therefore, since the 1-period deadbeat controller has no delays there is no reason to
think the proportion Φ will change in any period after the first step. Then it must be
true that the response of the system must follow with good approximation Figure 5.16.

When a step is given the signal will go to (1+ Φ)s where s is the real step of the signal
as given by s = yss − y0 and Φ the real overshoot as yp−yss

yss−y0
. This means the error with

respect to the steady-state value is given by (1 + Φ)s− 1 = Φs. In the next period the
controller will try to compensate and the signal will go below the steady-state value a
proportion lower than the original overshoot. In absolute value since the step now is Φs
then the signal will go to (1 + Φ)(Φs) so the signal will have now an error with respect
to Φs as given by (1 + Φ)(Φs)−Φs = Φ2s. This may be generalized for any period k as
Φn × (−1)(2k+2)s. The term −12k+2 may be removed as it only gives information about
the side of the error which is not needed for the settling time. On the other hand it seems
sensible to use settling time in an relative sense, therefore the value may be scaled by the
original step size s. The final formula is then simply Φn. The settling time then may be
calculated as the time it takes to reach a relative tolerance of p. The number of periods it
takes to settle, nss, may then be solved from Φnss = p and it is given by Equation 5.20.
The value of Φ may be estimated from Equation 5.19 or taken from Figure 5.15. If the
real inductor increases and there is an over damping response then Φ may be replaced
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Figure 5.16.: Settling time with approximation taken for 1-period controller

by −Φ in Equation 5.20 as the same behavior as with overshoot is expected. Therefore to
generalize Φ may be replaced by abs(Φ) in Equation 5.20 to account for both cases.

nss(1) = 1 +
log p
log Φ

(5.20)

As a way to validate the simplifications taken a step response in the q axis at ωe = 2π50
and with Lq/L′q = 0.7 is performed and the results are depicted in Figure 5.17. It can be
seen great concordance with the approximation from Figure 5.16.

For the 2-period controller since there is a delay present the approximation of constant
overshoot and Φn is not valid anymore as the previous state influences the next overshoot.

The response to a step in q in both axis for Lq/L′q = 0.7 and two speeds, ωe = 2π20
and ωe = 2π200 is depicted in Figure 5.18. The error in the inductor yields an overshoot
following the same derivations as in 1-period.

It can be seen from Figure 5.18 at low speeds the oscillations tend to be at 2Ts while at
higher speeds they are faster at Ts. The settling time takes also more duration that in the
1-period version due to the delay in the command. As a rule of thumb from simulation
results the algorithm seems twice as slow as the 1-period version, so the settling time
may be approximated as nss(2− period) ≈ 2nss(1− period) where nss(1− period) was
approximated in Equation 5.20. So the settling time for the 2-period version may be
approximated as Equation 5.21.

nss(2) = 2
(

1 +
log p

log abs(Φ)

)
(5.21)
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Finally the settling time may be calculated from simulations with two nested for loops
varying Lq/L′q and ωe. The model is set running for different combinations and the
settling time it is estimated as the time it takes for the signal to settle within 5% of the
final value. The results are depicted in Figure 5.19 for the 1-period controller and in
Figure 5.20 for the 2-period version. In dashed red the approximation from Equation 5.20

and Equation 5.21 is shown. It can be seen good concordance between the approximation
and the simulation results.
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Figure 5.19.: Settling time (5%) for different Lq/L′q and ωe at fs = 5 kHz for 1-period
controller
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Figure 5.20.: Settling time (5%) for different Lq/L′q and ωe at fs = 5 kHz for 2-period
controller

5.4.3 Conclusion

The transient response evolution due to parameter errors in the estimates has been
studied. The resistor effect is neglected due to the typically small contribution to the
voltage equations. It has been found that with good approximation the overshoot and
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settling time is mostly function of only the inductor error as DC perturbations do not
influence the overshoot greatly and settling time is dependent of overshoot mostly.

The speed also influences the overshoot and settling time and helps the transient
response in certain conditions as evidenced by the graphs. Overshoot and settling time
are asymmetrical with respect to the inductor error as can be seen by the approximation
in the formulas derived in and also in the simulation results presented. Increases in
the real inductors make the system slower and more robust and decreases also produce
slower responses with oscillations. Both the settling time and overshoot/overdamping
is more affected when the inductors drop. For example a drop of the inductor by half
produces an overshoot of 100% and a marginally stable system but an increase of the
inductor to double produces an initial error in the over-damping system of 50% and a
settling time around 5 times slower than having no error.



6
N O N - L I N E A R I T I E S C O M P E N S AT I O N

In this chapter different non-linearities that affect the converter are presented and
compensated as they affect the voltage command given by the controller and decrease
performance and can make machine parameter estimations difficult at certain conditions.
Each non-linearity is studied independently and at the end simulation and experimental
results are presented. Apart from the main discrete method a resonant compensator
implementation is also analyzed with experimental validation which provide good
results at low speeds.

6.1 deadtime

The converter IGBTs need some time to commute from one state to another. This time
has some variations depending of the temperature and other factors. Because of this
another time td bigger than those two is added to guaranty enough time for the current
to change paths. Each time the PWM pulse change it is delayed by td as explained in [9].

Vdc

Sup

Slow
i > 0

i < 0

Figure 6.1.: Converter leg with the current paths

On this period of transition no pulses are given and the effect in the voltage change
depends on the current sign as can be seen in the circuit in Figure 6.1 for one leg for one
period of the triangular. If no pulses are given depending of the current sign it will flow
one way or another inducing either vdc or 0. The effect in the other legs is the same and
independent.

The effect on the signals is shown in Figure 6.2. When the current is positive and
no pulses are given the lower part will conduct as the current can flow trough the

54
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Figure 6.2.: Deadtime effect in the voltage command

bottom diode. After the delayed td and tON it will switch to the igbt that is commanded.
Therefore there will be a voltage drop in the transition from down to top igbt. On the
contrary, when it switches from the lower igbt it will do so almost instantly at the time
tOFF which induces a small voltage gain. When the current is negative something similar
happen. On the switch from the top part to the bottom it will be delayed by td and tON
as the current can travel freely trough the top diode and the delay will be tOFF only
when it goes back to the positive state and thus induces a voltage gain.

Moreover the voltage drop in the components of the converter will produce more
changes in the voltage command. All those modifications can be predicted and compen-
sated.

During the development of the compensator several simplifications will be done
in order to be able to develop a compromise with simple analytical solutions and
good performance. The results of the simulations will show that the simplifications are
adequate and the results of the experiments will evidence that the modeled non-linearities
have been done correctly.

To compensate for this time delay td one can calculate the voltage difference that is
produced and add it directly to the reference. This can be done due to the linearity of
the system and the independence of the time delays of the input as will be explained. If
the voltage drop given by the time delays was a function also of the reference then the
voltage drop could not be directly added to the reference and more calculations may be
done to get a better result.

On a fundamental level, the converter voltage (which respect to its neutral placed in the
negative side of udc) can be written as Equation 6.1 where the duty times can be rewritten
as Equation 6.2, that is the reference duty time d∗ coming from the modulator (which
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receives the original voltage command from the controller) followed by the undesired
dead time duty cycle dd. uan

ubn
ucn

 = udc

da

db
dc

 (6.1)

di = d∗i + dd (6.2)

Because dd is only a function of the current direction as explained before it is indepen-
dent of the reference d∗ and therefore if d∗ is transformed in d∗ − dd the final result will
not have the deadtime. So to compensate the deadtime this dd can be calculated at any
moment and added directly to the duty cycle that is given to the PWM hardware. The
value of di is on average (−tON − td + tOFF)/Ts when ii > 0 and (tON + td − tOFF)/Ts

when ii < 0. The values of tON and tOFF will be neglected.
To see the effect of the deadtime in dq as the control is done in this reference frame the

duty cycles can be transformed into Line-Line voltages in the converter and this to line-
neutral machine voltages using Equation 2.6. For a balanced system, for a fundamental
period, the injected voltage vd is calculated and shown in Figure 6.3 for the values of
Table 6.1. For reference the distortion in phase-a voltage is also presented.

Name Value

udc(V) 325

fsw(Hz) 5000

td(µs) 4

Table 6.1.: Parameters for the deadtime voltages

This voltage can be transformed to dq0 and is shown on the right. It can be seen that
the effect in q is a DC offset and a sinusoidal and in d there is not such offset but rather
a triangular shape.
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Figure 6.3.: Voltage injected due to the deadtime in abc for one phase and dq respectively

If this voltage distorsion is then injected as duty cycles to the PWM with reverse
sign the deadtime can be considered to be compensated. Therefore the voltage of the
controller is still being used directly in the equations to predict parameters. The flowchart
describing the algorithm for one leg is shown in Figure 6.4.
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Figure 6.4.: Steps performed in one leg to compensate deadtime

6.2 snubber compensation

Some converters have snubbers in parallel with the diodes to try to minimize the effect of
the dead-time in the voltage change. As explained in [10] the snubbers may be modeled
as just capacitors. Under this assumption a compensator that has into consideration the
change in the voltage due to these capacitors can be added to the dead-time.

The effect in the signals is shown in Figure 6.5. When the current is positive and needs
to change from the top to the bottom part it is delayed td and on this case due to the
snubbers it will have two paths to follow trough both capacitors. The capacitor on the
top is discharged as the top part was conducting and the voltage on it is the same as in
the transistor that can be neglected. On the bottom, on the other hand the capacitor is
charged to Vdc as when the top transistor was on it was directly connected to the source.
In this transition, half the current will go trough the top capacitor and half trough the
bottom as both capacitors must discharge at the same rate and are considered to have
the same capacitance. Therefore it can be seen that the voltage in the terminal will not
be zero instantly but will have a slope due to the voltage in the capacitors. This will
produce a voltage gain that can be calculated.

On the other hand, when the current is positive and switches back to the top part, it is
delayed td but during this part it can continue to flow freely trough the bottom diode as
that capacitor is not charged. Therefore, there will be the same voltage drop as there
was with the dead-time described before. The same can be done for the case when the
current is negative. There will be a slope that produces a voltage drop in the transition
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Figure 6.5.: Deadtime effect in the voltage command

to the bottom to the top part and the same voltage gain as in the previous dead-time in
the transition to the bottom part again.

With this considerations an extra voltage change due to the capacitors can be calculated.
Depending of the slope, the voltage may go to zero before or at td or after. There are
therefore two equations depending on the case. The time it takes to go to zero can be
calculated as shown in Equation 6.3 as the absolute slope is the same independent of the
current sign and state.

t =
C
|i|Vdc (6.3)

This time t can be compared with td. When it is lower, it means the voltage will drop
to zero before td and therefore the formula used to calculate the average voltage is given
by Equation 6.4.

v =
1
2

Vdct (6.4)

It will depend of the sign of the current. When it is positive it induces a voltage gain
and when it is negative a drop so this voltage can be multiplied by the negative value of
the sign of the current to compensate for it correctly. In the case that t is bigger than td
then the voltage will not drop to zero and the formula used to calculate the average is
given by Equation 6.5 where v2 is the voltage at the end of td and can be calculated as
shown in Equation 6.6 independent of the current sign.

vch =
1
2
(Vdc + v2) td (6.5)
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v2 = Vdc − |i|
td

C
(6.6)

To generalize for any current sign, this expression can again be multiplied by the
negative value of the sign of the current. All this considerations can be taken into account
by creating a function that calculates this voltage as duty cycles that can be added directly
to PWM. The diagram of the implementation is depicted in Figure 6.6.
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dSnubber(i) dSnubber(i)

Figure 6.6.: Snubber voltage drop compensation for one leg

The implementation of dSnubber(i) is shown in Figure 6.7 where the functions used
are the ones mentioned in Equation 6.4-6.6.
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Figure 6.7.: Implementation of dSnubber(i) function

From all this analysis it can be seen that the voltage compensation induced by the
capacitors is load dependent as it is function of the current. When the current is small the
capacitors have more time to discharge and therefore the voltage change is bigger. When
the current is zero the voltage change due to the snubbers is the maximum and is the
same as the voltage induced by the dead-time but with different sign so the dead-time is
completely compensated on its own.

6.3 compensating diode and igbt voltage drop

Apart from the snubbers there are more voltage changes in the output due to the voltage
drop in the diodes and IGBTs. In this section a method will be deducted to compensate
for it.

One can compensate with good precession the IGBT voltage drop easily by neglecting
the effect of Td and the snubber change in the voltage signal. As it will be explained
the IGBTs and diodes induce a voltage difference during the on or o f f state which in
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proportion of time is much smaller than Td/Ts so this seems like a sensible approximation.
For Td = 2.5µs and fs = 3000, the proportion is 0.0125. In contrast the on and o f f varies
but on average it will be close to 0.5. Under this approximation the leg j will have a duty
cycle dj and the voltage signal will be perfectly rectangular. The problem that the diode
and the IGBT induces is that the upper and lower limit of the voltage will change from
VDC and 0 (using as reference the neutral of the converter) to a different value. If the
new values are calculated the compensation is then trivial by subtracting the changes.
The analysis can be done independently from IGBT and diode and then added together
to the final result.

6.3.1 Diode compensation

It can be considered the voltage drop in the diode as an always positive function that
takes the current in the leg as the only argument in absolute value (the sign can be
added later by hand in the derivation). The voltage drop then can be approximated by
Equation 6.7.
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Figure 6.8.: Deadtime effect in the voltage command when considering the diode

f (ij) = Vd
on + Rd

on × |ij| (6.7)

One can infer by solving the circuit that there will be 4 different modifications in the
voltage in the leg j depending if the upper or lower diode is conducting (positive or
negative voltage) and if the current is positive or negative. When the current is positive
the voltages at the output will be depending if the + or − is conducting as Equation 6.8
- 6.9 as the IGBT is not considered the drop is only produced when the current travels
trough the diode.

v+(ij > 0) = Vdc (6.8)

v−(ij > 0) = 0− f (ij) (6.9)
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For a negative current the voltage is transformed into Equation 6.10 - 6.11.

v+(ij < 0) = Vdc + f (ij) (6.10)

v−(ij0) = 0 (6.11)

The expected voltage without the diode effect is the same value as in Equation 6.8 -
6.11 by setting f (ij) = 0 and is illustrated under the simplified square voltage wave in
Figure 6.8. Therefore the compensation can be done by adding the difference between
the expected voltage and the actual one. The steps performed are shown in Figure 6.9.

Ij(k+1) Ij(k+2)

>0

(1-d)/
vdc

<0

-d/vdc

Leg j

Predicted currents
for when v* is

applied

To pwm
(delayed if
needed)

Igbt voltage
drop

compensation

+ +

Δdj

+ +

1/2

f(iav)

iav

Averaged current
when v* is

applied

d(k+1)

Duty cycle
when v* is

applied

Estimated voltage
drop in diode

Proportion of time
drop is applied, sign 

of it and
transformation to

duty cycle

Figure 6.9.: Steps performed in one leg to compensate diode voltage drop

6.3.2 IGBT compensation

It can be considered the voltage drop in the IGBT as in the diode as an always positive
function that takes the current in the leg as the only argument in absolute value. The
voltage drop then can be approximated by Equation 6.12.
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Figure 6.10.: Deadtime effect in the voltage command when considering the IGBT

g(ij) = Vi
on + Ri

on × |ij| (6.12)

One can again infer by solving the circuit that there will be 4 different modifications
in the voltage in the leg j depending if the upper or lower part is conducting (positive or
negative voltage) and if the current is positive or negative. When the current is positive
the voltages at the output will be depending if the + or − is conducting as Equation 6.13

- 6.14 as the diode now is not considered in the drop and is only produced when the
current travels trough the IGBT.

v+(ij > 0) = Vdc − g(ij) (6.13)

v−(ij > 0) = 0 (6.14)

For a negative current the voltage is transformed now into Equation 6.15 - 6.16.

v+(ij < 0) = Vdc (6.15)

v−(ij0) = 0 + g(ij) (6.16)

The expected voltage without the IGBT effect is the same value as in Equation 6.13 -
6.16 by setting g(ij) = 0 and is illustrated under the simplified square voltage wave in
Figure 6.10. Therefore the compensation can be done by adding the difference between
the expected voltage and the actual one. The steps performed are presented in Figure 6.11

which is very similar to the ones for the diode.

6.4 final compensator

The final code for the compensator proposed is presented in Code D.7. As was previously
stated each consideration is simply added as another extra time to the total time to add
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and finally transformed into duty cycles to add to the PWM. Some small modifications
have been done for better testing of the algorithm in the experiment such as the possibility
of changing the deadtime parameters and the type of compensation as inputs to the
deadtime compensator function. It has also been tested to neglect the zero component
and add the voltage to the dq reference directly. The result changes slightly.

6.5 resonant controller compensation

It can be seen in Figure 6.3 that the voltage error due to the deadtime presents a periodic
waveform. From the image it can be seen that in abc there is a main component at the
electrical speed and harmonics since the shape is not purely sinusoidal. Further analysis
of the effect of the other non-linearities present similar results as they are all affected by
the sign of the current. The current magnitude is also present in the snubber however
which may affect the overall voltage error shape slightly. In the IGBT and diode the
resistor part is typically small and therefore the shape is similar to Figure 6.3 also. Testing
with different load conditions and typical IGBT/diode voltage drops values suggest
the shape is simiar. This suggests that the total effect of the non-linearities present a
period waveform that has the same shape (and therefore same harmonics) and a resonant
controller may be used to compensate the non-linearities.

The current error in the predictive-controller of 1-period delay can be calculated as
the current reference delayed one period minus the actual current, that is z−1i∗abc − iabc
if there is no saturation. For the 2-period version it would be z−2i∗abc − iabc. With a PI
instead of the deadbeat or if saturation is met the current may be predicted based on
Equation 4.4 with the machine equations and voltage used. If the machine parameters are
properly adjusted and the non-linearities not compensated it is expected that this error
will also present a main component in the electrical speed and harmonics as suggested
by Figure 6.3. Therefore this error can be used in a PR controller to compensate the
non-linearities by placing a set of PR in parallel for all the harmonics. The diagram for
the incorporation of the resonant controller for all the harmonics in cooperation with
deadbeat is shown in Figure 6.12.
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ω e
θ e
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++
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Figure 6.12.: Resonant controller with predictive-controller
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The resonant controller for the compensation of the h harmonic in the error function
of the i coordinate is depicted in Figure 6.13. The error fed is the current error for each
coordinate in a, b, c and the resonant controller is the blue box in the diagram where
outside Kr is the resonant gain to be tuned.

1/s2hω hω 

1/s hω 

+
-

Kr
e(i) u  (i)h

PR for the  h  component

...
...

i = {a,b,c}

Figure 6.13.: Resonant controller for h component compensator of coordinate i

Common used PI controllers follow the form Kp + Ki/s and the integral term Ki/s
presents infinite gain at zero frequency. This can be interpreted as that any DC error
will be compensated if enough time is left as the bode at this frequency is infinite. In
the case of the resonant controller the same idea is used but the gain is made infinite
at the desired frequency to compensate, that is ω′ = hω. The formulas can be derived
by creating a transfer function of which the gain is infinite at the positive and negative
ω′ = hω and it is shown in Equation 6.17.

Res(s) =
1

s + jω′
+

1
s− jω′

=
2s

s2 + ω′2
(6.17)

If this transfer function Res(s) is used any component at ±ω′ will be eventually
compensated as the error produced will be integrated continuously until it is completely
removed. This can be seen as this. The close-loop transfer function of a system plant and
controller has the shape Gc(s)G(s)

1+Gc(s)G(s) where Gc(s) is the controller and G(s) the plant. If
a reference is given in AC at ω′ and Gc(s) has a generalized integrator as presented in
Equation 6.17 the system will present a bode close to 0db at ω′ and 0 degrees phase-lag
as Gc(s) as an input is a sinusoidal at ω′ tends to infinite and the limits yields one. This
means from the bode in steady-state the reference will be followed. The term Res(s)
is the blue square in Figure 6.13 as can be validated by operating the blocks. In the
experimental implementation the first integrator may be discretized as forward-euler
and the second as backward-euler as explained in [11].

This non-linearity compensator has the advantage of the simplicity and the adaptive
process that adjusts itself without the need of knowing any non-linearity parameter
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beforehand. As a disadvantage when used with the predictive controller is that it can be
argued that it will couple with the machine prediction algorithm. For example since the
non-linearities present a component in the fundamental it may affect the resistor and
coupling terms as this component can be compensated by a virtual resistor and inductor
that varies with the load used. Also there will always be one period delay due to the
error used in the compensation.

6.5.1 Main components involved in the non-linearities

A fourier transform of the non-linearities compensator provided before in this chapter can
be done to detect the main harmonics content and it is found that the main components
are the 1, 5 and 7th harmonic. Also a experimental test can be performed to obtain them
and validate the analytical result. The machine can be set running in steady-sate with
the predictive-controller. If the machine parameters are determined beforehand offline
then any error in the current is due to the non-linearities.
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Figure 6.14.: iabc error without non-linearity compensation

The current error z−1i∗abc − iabc is recorded for several seconds and is plotted in
Figure 6.14 for 400 rpm. Since the current follows the voltage it is interesting to see that
the shape is similar to Figure 6.3. With this data a fourier analysis can be performed
and the results are depicted in Figure 6.15. It can be seen in Figure 6.15 that the main
components are placed at 1, 5 and 7 times the electrical speed. Therefore the PR can be
used at those frequencies that can be updated in real-time in the PR.
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Figure 6.15.: Fourier analysis of error in iabc at 400 rpm

6.6 simulation results

In this part simulation results for each compensator are shown to show the validity
of the simplification formulas derived. The parameters used in the non-linearities are
either from the experiment or educated guesses since the point is to show the validity
of the formulas. Since the predictive controller is used without estimating the machine
parameters it cannot adapt itself and any error in the compensation will be apparent as
a current error so if the compensation is adequate the error should be close to zero.

6.6.1 Blanking time

Simulation results for the blanking time alone are depicted in Figure 6.16 for one period
of operation where both the current with and without the compensation is shown.

The figure shows that the compensation is almost perfect. The only origin of error is
the current zero crossings. Since the blanking time changes with the current sigh each
time there is a current sign change if it is not estimated correctly there will be an error in
the compensation. Moreover due to the use of PWM the current that needs to be taken
into account is not the current at the begging nor end of the period but rather the one
where the PWM changes its state. Estimating correctly this value would require to take
into consideration the load connected to the converter and while it is possible it would
make the solution presented more complicated and less general.

6.6.2 IGBT and diode compensation

Simulation results for the IGBT and diode voltage drop alone are depicted in Figure 6.17

for one period of operation.
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Figure 6.16.: Blanking time compensation results
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Figure 6.17.: IGBT voltage drop compensation results
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It can be seen that the compensation is almost perfect and there are only problems in
the current zero crossings. The blanking time has been removed from the simulation to
see the compensation of IGBT/diode voltage drop alone. However the compensation
of these elements is still dependent of the current sign and now also absolute value.
Therefore when the zero changes signs there will be an error in the estimation similar to
the one in the blanking time case.

6.6.3 Altogether results

The compensation in the simulations can be used to show the validity of the simplifica-
tions and formulas derived. Each compensator has been derived separately and tested
on its own to ensure each component is working. After that all the parts have been
combined and the total results are presented here.

In this section the response will be compared with and without compensations.
Because of the formulas derived it can be inferred that the dead-time and non-linearities
effect is function of the current and the components used (delay signal, snubber capacitor,
voltage drop in igbts/diodes). While the speed does not play a role at first glance as
the number of zero crossing is increased which are not easy to compensate it produces
errors in forms of spikes. Therefore the following procedure is proposed. Non-linearity
parameters are set from Table 2.3. Three different speeds will be used to see the effect
due to zero-crossing errors. The reference for id is set to zero and i∗q is changed in a dc
sweep. The THD levels are recorded in continuous time including the switching.

To analyze the compensator the following will be recorded:

• SS-error of the currents in dq: The predictive controller will not eliminate SS-
errors unless the system parameters are correct. In the event of non-linearities the
controller will not be able to correct the SS-error, therefore a graph showing the
SS-error can be used to assure the validity of the compensation.

• THD of the current (abc): Non-linearities will produce errors in the currents
that are not constant and therefore the THD of the currents will increase as the
non-linearities effect is increased. A lower value means a better compensation.

Steady-state error

The results for the steady-state error simulations without compensation (red) and with
compensation (blue) are presented for the q axis (solid line) and d axis (dashed line) in
Figure 6.18 - 6.21. For the uncompensated system it can be seen that the steady-state
errors tend to saturate without compensation as i∗q is increased. On the other hand as
the speed is increased the steady-state errors decrease.

For the compensated response it can be seen that at lower i∗q the errors produced are
bigger but apart from Figure 6.20 they are always kept below the uncompensated system.
At speeds close to rated as in Figure 6.20 the performance of the compensator decreases.
This can be attributed to the fact that fs = 3 kHz may be a small frequency. At fe = 250
Hz, fs is only 12 times bigger than fe. If the same test is repeated at fs = 5 kHz as in
Figure 6.21 it can be seen a great improvement with the error always smaller in the
compensated system.
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Figure 6.18.: Steady-state error at fe = 20 Hz
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Figure 6.19.: Steady-state error at fe = 100 Hz
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Figure 6.20.: Steady-state error at fe = 250 at fs = 3 kHz
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Figure 6.21.: Steady-state error at fe = 250 at fs = 5 kHz

THD

The THD levels before (red) and after the discrete compensation (blue) are shown in
Figure 6.23 - 6.26. For reference the THD levels for an ideal converter (due to current
ripple) at 3 kHz are depicted in Figure 6.22.
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Figure 6.22.: THD for ideal converter at the same tests performed

It can be seen in Figure 6.23 - 6.26 that THD levels are always better in the compensated
case than it is when compared to the uncompensated response. The effect of the
compensation is more important at lower loads. However one may be cautious with
the results at lower i∗q that evidence better THD levels in the compensated system with
non-linearities than in the ideal case. It was shown before the steady-state errors in the
compensated systems and they are typically bigger at lower loads. If they increase the
current then the THD levels will drop as the ripple is smaller in comparison with the
fundamental. Comparing with Figure 6.22 it can be seen the THD levels are close to the
ones from the ideal case so according to the modeled cases from a distortion point of
view the compensation can be considered adequate.
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Figure 6.23.: THD at fe = 20 Hz
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Figure 6.24.: THD at fe = 100 Hz
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Figure 6.26.: THD at fe = 250 at fs = 3 kHz

6.7 experimental results

Experimental results of the discrete non-linearity compensation and the resonant con-
troller are shown here. The parameters used in the compensations in the discrete solution
have been the ones from Appendix A but have been slightly modified to improve the
response based on the ones that provided better experimental results at different working
conditions.

The current error in abc before the compensation, with the discrete proposed compen-
sation and the resonant controller is depicted in Figure 6.27. The speed used is 150 rpm.
As for the currents i∗d = 4 and i∗q = 5. It can be seen how the error is decreased in both
compensators.

While the resonant controller seems to have a better response its effect is worse as the
speed of the machine is increased and may only be used at lower speeds. As the zero
crossings which are the main responsible of the errors are more present and the sampling
frequency is constant so as the speed is increased the proportion of zero crossings is
increased. This produces a big distortion in the current error due to the relative low fs.
The discrete compensator becomes also worse at higher speeds. However when used
the error is still decreased. The resonant controller on the other has been observed to
unstabilize the system at higher speeds so as the speed is increased it is proposed to use
only the discrete solution.

The effect of the speed is explored in different experiments with and without the
proposed discrete compensation at 100, 500 and 1000 rpm. In Figure 6.28 - 6.30 the
current response during two periods are depicted for those speeds with i∗d = 0 and a
constant torque with the speed controller setting i∗q .

It can be seen an almost perfect compensation at 100 rpm in Figure 6.28. As the
speed is increased the compensation is worse. At 500 rpm as shown in Figure 6.29 it is
still quite adequate but there is a small steady-state error in id and the spikes are more
present and iq is still ok. This evidences a problem in the compensation that is closely
related with the zero crossings as they introduce a high uncertainty. Finally at 1000 rpm
the error becomes even worse as shown in Figure 6.30. The error in iq is much worse
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Figure 6.27.: iabc error before and after PR compensation
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Figure 6.29.: Non-linearities before and after compensation effect in current error at 500
rpm
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and in id the spikes worse. There is a clear improvement with the compensation at any
speed but the effect can be seen worse as the speed is increased.

Even without compensation the peaks grow and so they cannot be attributed to errors
in the compensation. Use of PI controller instead of deadbeat present similar problems
with the spikes (the DC offset however is compensated). It may be concluded that as the
speed is increased and fs is kept constant there are too many zero-crossing which are
not correctly compensated as the current is estimated at the beginning and end of the
period and not when the PWM is changed.



7
PA R A M E T E R D E T E R M I N AT I O N

As machine parameters can change they can affect the performance of the predictive
algorithm. The effect of the different parameters variations was previously discussed in
Chapter 5. In this chapter different parameter estimation algorithms are presented. After
each method both simulation and experimental results are provided.

7.1 introduction

As it has been commented before in Section 1.2 and Chapter 4 the machine parameters
may need to be estimated online if a predictive controller is used. In Figure 7.1 the
machine parameters are shown with the main component that affects the change as
taken from [12].

R λmpm Lq Ld

Temperature (slow)

iq id

Currents saturation
(fast)

Figure 7.1.: Machine parameters and changes nature

It can be seen from [12] that all the parameters are affected by the temperature that
changes their values slowly in comparison with the current loop. The value of the resistor
can change +40% (copper, 100 degrees change). Depending of the flux material the
change may be as low as −3% for a 100 degree change for SmCo or −11.1% in NdFeB.
As for the inductors the effect of the temperature in their value can make then drop 25%
for 80 degrees change.

Magnetic saturation is much faster and affects mostly the inductors [12] as a function
of the current decreasing their value past some limit. Changes in the values due to this
phenomena are hard to model and depend of several parameters. Some experimental

78
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tests have been performed in the machine in the lab and assuming the online parameters
later described are accurate it was shown almost constant Lq for 0− 15 A range and a
change in Ld past 10 A of −1% per amp as depicted in Figure 7.6.

As it has been described before in Chapter 5 inductors are the only component
compromising stability of the predictive controller. From the values read in [12] the
system would continue being stable due to temperature as the value does not drop to
half or less. However at 25% the overshoot will be close to 33.3% from Equation 5.19 and
the settling time at 5% would increase from 1 to 3 periods in the 1-period controller and
from 2 to 6 in the 2-period version. If a similar behavior due to saturation happens in Lq

and if the almost linear tendency is kept then it is also unlikely that the saturation will
make the system unstable from the values read.

From the steady-state error in Figure 5.13, in the 2-period version the resistor will
introduce at 100 degrees temperature change around 0.02 A/A∗ (current error per
commanded current). As for the inductor, for a value of 30% change it would be as
big as 0.16 A/A∗ in one axis and 0.06 A/A∗ in the other at rated speed. The flux in
comparison would be at rated speed 1.65/3.3 A/A∗ in each axis if it is made of SmCo.
For NdFeB, this number would be 0.45/0.9 A/A∗ at rated speed. Those are values at
fs = 5 kHz as they vary with fs. For example running at fs = 10 kHz would decrease an
error of 1.65/3.3 A/A∗ due to the flux to around 0.45/1.6 A/A∗. Errors in inductors are
also expected to drop and the resistor will error will almost not be affected. While the
global error will be approximately (as from Taylor approximation) the sum of all of them
and some of it may be canceled out it can be seen the effect in the steady-state error can
be important.

From those quick calculations it can be seen that from a stability point of view it is
unlikely the predictive controller will become unstable. Its transient however will be
affected making it around 3 times slower and the steady-state errors depend of many
conditions but can be seen to be important. In definitive it seems that online parameter
determination can be an important step needed in the implementation of a reliable
predictive controller algorithm.

The following algorithms have been tested to estimate the parameters online:

• Recursive Least Square

• Gradient descent method

7.2 recursive least square (rls)

The motor equations can be rewritten in matrix form as Equation 7.1 - 7.4. With this
notation it can be seen the system is linear in the parameters and a linear regression
method may be applied.

~y = H~θ (7.1)
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~θ =


R
Lq

Ld
λmpm

 (7.2)

~y =

[
uq
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]
(7.3)
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1
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1
2 (i
′
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1
Ts (i

′
d − id) 0

]
(7.4)

Since the system is linear the parameters could be obtained by measuring 4 different
points and inverting H. However in the real experiment noises my affect the measure-
ments and this may not be such a good idea. Therefore a linear regression with more
points may be done so even though there are noises in the measurements on average
things will tend to go on the right direction. For more measurements that number of
parameters, the parameters may then be estimated as Equation 7.5.

θ =
(

H′H
)−1 H′Y (7.5)

The problem with this method arises in that usually micro controllers cannot perform
big matrix inversions at a reasonable speed and the algorithm may not be implemented
in such small devices. Another more common solution is to use a recursive least square
solution. As parameters can change over time a forgetting factor λ may be added. The
forgetting factor λ between 0 and 1 gives λk weight to the error in the k past measurement.
Previous work from [12] - [13] show the approach is feasible and discuss the method
in detail for the use with both equations. While the q equation is enough to determine
machine parameters as it contains all the parameters it seems more sensible to use both
axis. Otherwise errors in the d axis would not affect parameter determination. The
formulas for this algorithm are shown in Equation 7.6 - 7.9.

~e = ~y− H~θ (7.6)

K = PH′
(
λ + HPH′

)−1 (7.7)

~θ = ~θ + K~e (7.8)

P =
P− KHP

λ
(7.9)

The value of λ can be chosen to regulate how fast predictions change. A lower value
will give more importance to new values but will also be less immune to noise. On the
other hand an initial value of P must be set and is usually done to kI where I is the
unity matrix and k a small value. Setting k high will mean less confidence in the initial
estimations and faster initial change while setting it low does the opposite.
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7.2.1 Simulation results

The initial machine parameters are set the same as in the experiment but the initial
values in the parameter estimator are modified to see the response when the parameters
differ.

Depending of the working condition some parameters can play a small role and the
determination cannot be made precisely. Typically in low speeds the resistor is more
dominant and the flux may be hard to estimate while at high speeds it is the other way
around. In simulations however if there is no added noise in the measurements any
parameter may be determined correctly at any working condition.

Presented in Figure 7.2 is the evolution of the parameter estimations over time for
different values of λ to see the effect where P0 = 10−4 I has been chosen and no noise is
added.
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Figure 7.2.: RLS algorithm with different λ

The algorithm can be made much faster decreasing the value of λ but when the noise
is considered small values of lambda produce oscillating results. Since the resistor plays
a smaller role it is typically estimated slower. The current is perturbed randomly to
generate new independent point as in steady-state with 2 equations and 4 parameters
they cannot be estimated. Changing the amplitude of this perturbation changes the
weight of the inductors in the error and thus increasing the amplitude makes the
inductors be estimated faster at the expense of bigger errors in the other parameters
(when noise is considered) or slower convergence of the later as has been seen from both
simulation and experiments.

As for the initial value of P some considerations can be made. A bigger P means low
confidence in the initial estimations and the opposite is also true. However as this matrix
will adapt itself it seems sensible to use a relative small initial value and let the algorithm
find the best value adaptively. Setting it too high may cause instabilities at first or even
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divergence. Following the recommendation of setting it to kI seen in previous work
different values of k have been tested experimentally and it has been concluded that
k = 10−4 seems like a good initial value. After the algorithm has been launched and has
found the parameters the initial value of P is not relevant.
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Figure 7.3.: RLS algorithm with different λ for a random noise between -0.2 and 0.2A

It is depicted in Figure 7.3 the same results done with an added random noise between
−0.2 and 0.2A. The current sensors in the lab have a smaller error but the effect of
not fully compensating the non-linearities can be seen as an added noise (not random)
which at high speeds can be as high as 1A (with spikes around the zero crossing and
otherwise close to zero) and is not symmetrical. This is the reason why estimating
machine parameters at high speeds is complicated. However as long as the disturbance
is kept within reasonable limits it can be seen in Figure 7.3 that the machine parameters
can still be estimated. In this case with the considered noise it does not seem sensible to
use a value of λ as low as 0.9 and 0.99 or even 0.999 seem a better choice.

Another way to minimize the noise issue in predictions can be to use bigger perturba-
tions in the current so the differential terms have a big weight and inductors can still be
predicted. This has the disadvantage of making flux estimation harder and after some
point it may require too big pulses. Setting perturbations in the reference in estimation
too big has the drawback of maximizing the weight of the inductors and in different
conditions parameters such as the resistor and flux may be hard to be estimated correctly
due to the low weight in the voltage equation.
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7.2.2 Experimental results

The algorithm has been split in different parts in the experimental implementation since
some parameters can only be estimated at certain conditions due to their variable weight
in the voltage. The code used is given in Code D.8

At low speeds the resistor and inductors can be estimated and the flux considered
constant with the previous value used. The results for w = 100rpm are presented in
Figure 7.4.
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Figure 7.4.: RLS algorithm with different λ for RL estimation

The results seem adequate and are similar to the ones obtained offline in Figure A.4.
Even though the non-linearity compensation is not perfect it helps in machine parameter
determination. Failing to compensate the non-linearities at low speed tend to produce
big errors in the resistor estimation mainly.
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Figure 7.5.: RLS algorithm with different λ for LF estimation

Finally at higher speeds the flux is more dominant and the resistor stops playing a big
role so another estimation considering the resistor constant is done to estimate the flux
and inductors. Results are shown in Figure 7.5.
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The algorithm seems to be able to estimate the machine parameters with good accuracy.
Another test can be performed to see if the algorithm is able to estimate inductor values
under saturation. For this purpose iq has been increased (by increasing the load) and
has been seen that the estimation of Lq is more or less constant. This however can be
attributed to the fact that the maximum current that can be provided due to the torque
limits is around 15A. At this level the value of Lq seems not to drop. With higher
currents it would be expected to drop after saturation were found.

In the d axes however the current can be increased much more as the limit now is
the converter of 32A from Table 2.3. For this purpose several steps of 1A have been
performed in id from 0 to up to 28A every second which is enough time for the algorithm
to settle. Then the result of the RLS estimation at the end of each step plus some
previous points is used to create an average of the prediction (to remove ripple as much
as possible) where Ld = f (id) can be found. The results for Lq and Ld estimation as
function of id are shown in Figure 7.6.

i
d
 [A]

0 5 10 15 20 25 30

In
du

ct
or

 e
st

im
at

io
n 

[m
H

]

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

L
q

L
d

Figure 7.6.: RLS algorithm predicting inductor saturation

It can be seen in Figure 7.6 that the value of Lq can be considered constant as id
is increased while the value of Ld is constant up to about 10A. After that point the
estimation drops so it can be inferred that saturation in the d axis occurs after 10A.

7.3 gradient descent method

Inspired by the gradient descent algorithm the parameters can be modified in the
direction given by the opposite of the gradient of an error function over parameter
change. A model can be run in parallel that tries to predict either the current or voltage
by using the machine parameters and measured currents and voltage commands. An
error function can then be created as Equation 7.10 by comparing for example the
applied voltage (as given by the controller) to the voltage that is expected to have been
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applied using measurements and the estimated machine parameters. There are more
choices for the cost functions and the currents could also be used instead of voltages as a
measurement of the error. The choice of the voltage is made because using the current as
a measurement of the error would require to perform matrix inversions. For the choice
of the cost function it can be proved its global convergence in Section B.4.

e(uq, ud) = |uq(command)− uq(model)|+ |ud(command)− ud(model)| (7.10)

The gradient of the error to respect to the parameters can be either calculated an-
alytically or more easily estimated with small perturbations in the parameters in the
running models. Once the gradient is obtained the parameters, ~p, can be updated by
using Equation 7.11 where they are moved in the contrary direction to a normalized
vector gradient (each component measures the error difference which respect to each
parameter) that is multiplied by λ.

~p = ~p− λ
~grad√

∑ ~grad(j)
2

(7.11)

As there are more equations than parameters with only one point it is impossible to
predict the parameters. However, if the current reference is perturbated with random
values (to ensure new points) and λ is small, on average the algorithm will converge to
the true value of the parameters without oscillations and small ripples.

A compromise for λ can be made between speed and ripple in the estimations and
its effect is similar to λ in the RLS method. Smaller values of λ will filter noise in the
measurements better but will yield slower convergence. Bigger values means faster
convergence but more noises in the predictions. Alternatively a low pass filter could be
applied to the estimation to smooth the ripple but this will also make the predictions
slower. However a compromise between λ and the filter may give better results than
using λ alone. It may also be studied the use of a variable λ as a function of the error.

The code implemented in the lab is presented in Code D.9. The parameters are scaled
by the initial values and some modifications are done for simplicity of the testing. The
gradient is estimated with a small perturbation over the model.

7.3.1 Simulation results

The results for the estimation of the resistor and inductors at a lower speed of 50rpm is
depicted in Figure 7.7 for different values of λ.

The algorithm is also tested for the estimation of the flux and inductors at a higher
speed of 400rpm and is depicted in for different value of λ in Figure 7.8.

It can be seen that in both cases the algorithm performs worse than the RLS method.
The time to settle tends to be longer for the similar degrees of noise in the predictions.
The results could be improved by either using a variable λ that changes as a function
of the error or by making a compromise between λ and the use of a low-pass filter to
smooth the predictions.

It is concluded that while the results of this algorithm could be further improved the
RLS method is more suitable as the system is linear and the gradient method is a general
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Figure 7.7.: Gradient-based method RF estimation under simulations
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purpose algorithm. The use of the later may then be left for non-linear systems where
the RLS method cannot be applied.

7.3.2 Experimental results

The results of the algorithm are presented in Figure 7.9. The code used is given in
Code D.9. In the figure, the parameters are estimated from the initial value used at the
beginning of the graph 2 times. The blue lines are the estimations and the red expected
values as given in the datasheet. First the estimation is done with λ = 0.001 and secondly
with λ = 0.01. As expected the first gives slower results but less oscillations in contrary
to the second. For the estimation both iq and id were randomly perturbated with values
between ±2.5A. In the experiment, the speed was 200rpm and the torque 4Nm with the
average iq = 6 and the average value of id = 5. At this speed the estimation of the resistor
may not be accurate and this is the reason why its value is wrongly overestimated. The
same procedure as with the RLS method may be done then and two separate estimations
developed, one for the resistor and inductors at lower speed and one for the flux and
inductors at higher ones.
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Figure 7.9.: Evolution of parameters estimations using far initial values in gradient-
method in the experiment

As expected the algorithm prioritizes changes in the parameters that affect most the
system. In this respect it tends to find the true value of the inductors much faster than
the resistor and flux linkage. This is adequate since this goes in concordance to what it
is expected as inductors are more crucial for stability and performance and also vary
much faster than the other two parameters. The estimations shown in Figure 7.9 seem
adequate and the bigger difference in R may be due to the fact that at that condition it
may play a small role and may be better to leave out of the estimations.
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7.3.3 Experimental results for saturation

By increasing id the machine can be saturated and this would be seen as smaller values
in Ld. The algorithm can also be tested by forcing a saturation on Ld and seeing if it
shows the decrease of it as id is increased. Results are presented in Figure 7.10.
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Figure 7.10.: Evolution of estimated Lq and Ld as id increases

The test has been performed as follows. The current in id has been increased in steps of
1A. To make the predictions both iq and id references have been perturbed with random
values bewteen ±2.5A. To save time in the data process two lower pass filters have been
applied to both the inductors and id resulting in Figure 7.10. This can be considered
adequate as the graph point is to show the tendencies and that the algorithm is able to
predict the saturated inductors and the filter will remove the transient in the estimations
and the perturbations added to the currents presenting still a good accuracy as the steps
have been small.



8
C O N C L U S I O N S

The objective of the project was to design a predictive controller, analyze and solve the
different problems present with its implementation.

The classical FOC with PIs was revised in Chapter 3 as it is a widely used method to
control this type of machines. It was found possible under simulations and experiments
to design current controllers with settling times of 6 - 8 times the sampling time, little to
no overshoot and no steady-state errors when the feed-forward terms are added and
ideal converters are considered or non-linearities compensated. It was found that at
higher speeds the transient response is weakened due to the simplified coupling terms
used.

In Chapter 4 the predictive controller was introduced. Due to limitations in DSpace
two versions were developed. The most widely used version where the command
is delayed one period due to the DSP computation delay was implemented with the
different compensations added. It was found under simulations to match the 2 sampling
time settling time with little to no overshoot when all the delays are compensated, ideal
converters are used (or non-linearities compensated) and machine parameters are known.
In the experiment implementation the 1-period version without the added delay in the
voltage command was developed as it was not found possible to ensure the voltage
command to enter the PWM in the next period. As the experimental results show with
the non-linearity compensations it was possible to reach a settling time of 1-period.

In Chapter 5 the effect of changes in machine parameters were analyzed. First the
stability limits were studied based on MIMO analysis with a pole map. It was found
that only the inductors compromise the system stability when their value drop by half
or less. The limit was validated under simulation and experiments. The steady-state
errors were calculated and later approximated with a first-order Taylor series which
showed the main effect of each parameter in the error. It was possible to match each state
and parameter to the error in a simplified form. It was found as the speed is increased
inductors and flux are the main responsible to the error. Finally the effect of parameter
changes in the transient were also analyzed under some approximations validated under
simulations which showed the inductors as the components with the biggest role in
it. The results presented in this chapter can be used to analyze the need for an online
parameter estimation algorithm.

The non-linearities in the converter were studied in Chapter 6. Deadtime, snubbers,
igbt and diode voltage drops were considered. For each one of them some approx-
imations were taken to yield solutions that were validated under simulations and
experiments. It was found that the difficulty of a non-linearity compensation lies in
the zero-crossing of the currents as they introduce a high uncertainty and error in the
compensation. For this reason it was found that for a given load as the speed is increased
the steady-state errors and spikes in the currents increase with the compensation. This
was found both under simulation and experiments.
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Finally in Chapter 7 two online-parameter estimations, RLS and a gradient method
were implemented in simulations and experiments. Both of them were tested and showed
good accordance with the offline parameters determined. Moreover it was possible to
see the drop in Ld as id was increased. The results show the approach is feasible if
non-linearities are correctly compensated.

8.1 future work

From the results of this project it can be seen that the predictive deadbeat controller is a
simple and effective solution with great transient performance when the different delays
and system disturbances are compensated.

Online parameter estimations were developed and implemented successfully to ac-
count for parameter modifications. They are affected by the non-linearities that were
compensated in Chapter 6. However at higher speeds as the number of zero-crossing
increases non-linearity compensations become worse and parameter determination can
become difficult. A proposal for future work could be to develop better compensations.
One solution proposed would be to predict the currents at the instants in which the
PWM changes its state (not at the beginning/end of the period) as this may play a bit
role as a source of the errors. A better non-linearity compensator would improve the
overall performance and also make online parameter identification easier.
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A
O F F L I N E PA R A M E T E R D E T E R M I N AT I O N

In this appendix it is described the methods used to determine different system parame-
ters offline.

a.1 resistor estimation

The machine resistor plus all the parasitic resistors present in the wires connecting it to
the converter can be estimated with a DC test. By inspecting Equation 2.24 it can be seen
that if the machine is still and the dq0 current is constant the machine equations reduce
to Equation A.1.

uqd0 = Riqd0 (A.1)

On the other hand from Equation 2.31 it can be seen that if iq = 0 there will be no
electrical torque and therefore if no other external torque is applied the machine will
remain still. Therefore iq can be set to zero and id to an arbitrary value and the resistor
can be estimated as vd/id. To eliminate non-linearity effects from the converter two
points can be used and the two equations subtracted to remove them and therefore the
resistor can be estimated using Equation A.2.

R =
vd(2)− vd(1)
id(2)− id(1)

(A.2)

If the current does not change the sign most of the non-linearities will remain the
same and will be canceled out. In this test the PI is used since the predictive-controller
requires to know the machine parameters beforehand. With the PI then the average vd
and id is recorded and the data is shown in Table A.1 also for different temperatures as
given by the sensor placed in the setup.

< vd > (V) < id > (A) T (deg)

10.80 15 24

14.45 30 24

10.84 15 30

14.58 30 30

Table A.1.: Voltage needed in d axis for given id and no iq with no speed

The resistor is estimated as R(24deg) = 0.2433Ω and R(30deg) = 0.2493Ω. As pre-
dicted the resistor increases with temperature but it can be seen that the change is
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quite small. On the other hand the resistor change as a function of temperature can be
approximated as Equation A.3.

R(T) = R(T0) (1 + α(T − T0)) (A.3)

The value of α for copper is 3.9e− 3 and placing T0 = 24deg and R(T0) = R(24deg)
the value for 30 degrees is estimated as 0.2510Ω. It must be noted that the temperature
sensor has an uncertainty of +− 1deg however. It must also be noted that part of the
resistor is inside the machine and another part is outside so only the inside one will be
heated and a more valid formula would be Equation A.4.

R(T) = Rwire + Rmachine(T0) (1 + α(T − T0)) (A.4)

a.2 electrical machine parameters and non-linearities

The electrical machine parameters R, Lq, Ld, λmpm can be determined offline with a fitting
application developed for a student job called MBPI which can be found in [14]. The idea
is that if a set of experiments are performed and are replicated under simulation then the
parameters of a system can be estimated by modifying them with a tool that minimizes
the error between the simulation and the experiments as is illustrated in Figure A.1.
Ideally, if the model is good in the true parameters there will be a global minimum. On
reality the global minimum may be shifted slightly if the model is not accurate.

Models

Experiments

+
-

Inputs

Voltages, previous
states, speed, ...

MBPI 
(Optimization tool)

Initial parameters

Parameters(k)

Experiments 
models

Models 
outputs Error

Figure A.1.: Offline parameter determination with MBPI optimization tool

Another consideration to be made about this method is that depending of the algorithm
used global convergence is not guaranteed. This means that the tool may find a set
of parameters that minimize the error between experiment and simulation but to a
minimum which is not the smallest one. There is a trade-off between optimization speed
and accuracy of the methods and while there are some methods that can guarantee global
convergence from a theoretical point of view the time needed for the convergence would
probably make them not feasible. For this reason in this solution fmincon which uses
gradient methods is used which will typically converge to the closest local minimum.
If the results obtained however seem adequate (the final error is small) they can be
considered valid.

The method proposed is as follows. The resistor has been estimated in Section A.1 by
canceling out most of the non-linearities so the result can be considered adequate but
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can be refined with this method by only allowing a small change. Then there are three
extra machine parameters to determine. At any speed the currents can be perturbed
randomly to obtain different points to use in predictions. The following variables are
recorded in the experiment: uq, ud, iq, id, ωe as those 5 are all the variables that play a role
in the electrical part. Then the current in the next period can be predicted using a model
where the parameters are modified with MBPI.

Those recorded variables are placed into the model using repeating sequence stair
block in Simulink and the simulation is set to fixed-time with the same step, Ts, used
in the experiment. If the simulation is run then those variables are updated each Ts

providing the value recorded in the experiment. Using Equation 4.14 - 4.15 the predicted
current can be solved which is equivalent to the reference on those formulas. The
previous current, voltage and speed are the ones from the experiment given by the
repeating sequence stair block. This is illustrated in Figure A.2. This predicted current in
the next period can then be compared with the measured one to create an error function
to minimize. The comparison between simulation and experiment data as well as the
parameter variation following an optimization method is done automatically in MBPI.
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Figure A.2.: Machine side model used in MBPI for parameter estimation

Since the non-linearities may influence the result the compensator proposed is also
added to the offline model and the non-linearities parameters are also estimated with
MBPI. This part of the model is depicted in Figure A.3. The non-linearity block contains
the code in Code D.5.

As a gradient method is used a set of initial parameters is needed. The initial values
used in the estimations for the machine parameters are close to the ones seen in previous
work in the same machine but still far away to show the validity of the solution. As
for the non-linearities educated guesses about the diode and igbt voltage and resistive
part can be made. From the datasheet in [15] which corresponds to the module used
in the setup, for the igbt vON is around 0.5− 1V and RON lies around 0.02Ω as can be
estimated from the IC = f (VCE) graph. As for the snubber the initial value used in [16]
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Figure A.3.: Non-linearity side model used in MBPI for parameter estimation

has been used. For that value the effect in the voltage drop can be neglected as it can be
estimated in the mV range using Equation 6.6 with the currents used in the experiment
so it will not play a role in the results. Finally Td is known and it is 2.5µs.

Parameter Initial Value Final value

R(Ω) 0.24 0.258
Lq(mH) 1 2.151
Ld(mH) 1 2.033

λmpm(Wb) 0.1 0.1204
Cs(nF) 1 1.267

Von(IGBT)(V) 0.5 1.241
Ron(IGBT)(Ω) 0.01 0.0336
Von(Diode)(V) 0.5 1.239
Ron(Diode)(Ω) 0.01 0.0336

Table A.2.: Initial and final parameters as estimated by MBPI

The results of the iterative process are depicted in Table A.2 and the error has dropped
from 46% to 3.3%. The evolution of the parameters as well as the error function is shown
in Figure A.4. If those parameters are used in the setup in the predictive controller and
the proposed non-linearity compensator the average error in the current is then expected
to be similar and therefore the values obtained can be considered valid.

Finally even though not much can be seen in the graph the estimation of the currents
vs the real one over time is presented in Figure A.5. It can be seen great concordance
between experiment and prediction. The point by point error is also added in the lower
part of the graph.
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a.3 mechanical parameters

The mechanical parameters J, J0 and B can be determined with the following procedure
which was also conducted in [3]. The PMSM is set running in steady-state without load
(induction machine is plugged off) and then the voltage applied is stopped. The machine
will stop on its own and the evolution of speed vs time can be used to determine those
parameters since it follows Equation A.5.

−J0 = J
d
dt

ωmec(t) + Bωmec(t) (A.5)

If the equation is solved for a given initial speed ωmec(0) the evolution of speed over
time ωmec(t) is given by Equation A.6.

ωmec(t) = −
J0

B
+

(
J0

B
+ ωmec(0)

)
e−

B
Jm t (A.6)

It can be seen that using this technique only two parameters can be obtained since
there are infinite combination of parameters that yield the same response. As only
two different coefficients between parameters appear in the solution and there are
three parameters setting one parameter arbitrary will always produce a valid solution.
Therefore another equation needs to be added.

In steady-state, without load the equation governing the speed is Equation A.7. The
value of Tel can be calculated using the formula given in Equation 2.31. Therefore
the value of iq and id can be recorded when the speed is set constant at two different
references and using the machine parameters estimated the torque can be calculated and
J0 and B solved.

Tel − J0 = Bωmec(t) (A.7)

The parameters J0 and B can then be calculated by solving Equation A.7 using 2 points
and the solution is given by Equation A.8 - A.9.

J0 =
Tel(1)ωmec(2)− Tel(2)ωmec(1)

ωmec(2)−ωmec(1)
(A.8)

B =
Tel(1)− Tel(2)

ωmec(1)−ωmec(2)
(A.9)

Two tests at 500 and 1000 rpm have been conducted. The machine is set running in
steady-state for a few seconds and then the average value of id and iq is calculated. The
results are depicted in Table A.3 and using those points in Equation A.8 - A.9 it is found
J = 0.1941 Nm and B = 4.56e− 4 Nms.

< ωmec > (rpm) < iq > (A) < id > (A) Tel (Nm)

500 0.310 0.056 0.218

1000 0.344 0.139 0.242

Table A.3.: Steady-state currents and estimated torque at different speeds
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Finally the value of Jm can be estimated using Equation A.6 in a fitting application as
J0 and B are now known and it can be solved. For simplicity MBPI has been used again
since it makes easy to extract parameters by providing a toolbox which uses experimental
data to tune parameters in simulations and both continuous and discrete models can
be used with experiment data. The Simulink model provided to MBPI is shown in
Figure A.6.

362.2

w1(0)

J0

simout

To Workspace

t

2*pi/60

rpm -> rad/s

B

1/Jm
1
s

762.9

w2(0)

1238

w3(0)

60/(2*pi)

rad/s -> rpm

Figure A.6.: Simulink model of mechanical behavior without load for MBPI

The model has the parameter Jm as a variable parameter that MBPI can vary. By
running the simulation with different Jm the speed over time can be estimated and saved
in the workpsace with the simout block. Then it is compared with the experimental
data. The tool will modify the parameter(s) and find a minimum. Convergence to global
minimum is not guaranteed but as long as the results are adequate it can be concluded
that the value estimated is valid. The fmincon function is used to estimate Jm in MBPI
since it provides the fastest convergence.

It is important to synchronize times and initial speeds with experimental data. The
times of each experiment are shifted so the initial time is always zero and this speed
is used in the initial speed in the Simulink model. Once this is carefully done the
parameter Jm can be determined automatically in MBPI by setting it running until it
stops automatically the iterative process.

Three experiments have been performed starting at 500, 1000 and 1500 rpm. Only the
first two are used and MBPI finds Jm = 0.1128Nms2 and the final error is 2.8% showing
a good concordance between model and experiment. The third result can be used then
with the parameters obtained to validate them. The error for the new curve starting at
1500rpm that has not been used in the fitting is 1.9% showing the validity of the results
obtained. The comparison between experiment and simulation is depicted in Figure A.7.
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Figure A.7.: Comparison between speed change in experiment and model using the
estimated mechanical parameters



B
D E R I VAT I O N S

In this appendix some derivations are attached to some of the calculations or approxima-
tions done.

b.1 reference frame derivation

Equations of the PMSM were rewritten in a qd0 reference frame since they become
simpler. On one hand the position-variant inductor and permanent-magnet is made
constant and on the other the AC control used is transformed into DC simplifying the
control. A basic derivation of the formulas used to transform coordinates is presented
here based on the projection method used in [17].

In many power electronics applications there are three phases that are typically
balanced. In a PMSM this three phases combined produce a rotating flux that moves
the machine. If the three phases are sinusoidal and separated 120 degrees then they
will produce a constant flux that rotates at the speed of the sinusoidal (in one pole-pair
machine and a multiple of Npp with more pair-poles). If the system is balanced then
there are only two independent variables as one of the phases can always be obtained
with the other two. Under this condition then it is possible to create a new coordinate
system that rotates with the flux and only uses two variables (the flux projections)
and is able to represent the 3 phases without any loss of information. If the phases
are not balanced then a third coordinate will be needed as will be evidenced in the
derivation. The advantage of a rotating coordinate system fixed in the flux is that any
pure sinusoidal variable that rotates in the same direction and speed of the coordinate
system (independent of the dephase) will be transformed into DC and this can simplify
the equations and control.

The reference frame theory is based in the projection of one coordinate system into
another. A complex vector can be rotated by multiplying it by eiθ which will rotate it θ.
This is based in Euler’s formula ejθ = cos θ + i sin θ which can be obtained by derivating
f (θ) = e−iθ(cos t + i sin t) and showing f ′(θ) is 0 for all θ as the terms are identical.
Therefore the original f (θ) must be a constant. Placing θ = 0 for example in f (θ) yields
1 and Euler’s formula is derived by solving eiθ . With this formula a vector represented
in complex notation can be transformed into an exponential with jθ as the argument.
Based on exponential rules multiplying two exponentials yields a new one with the sum
of the arguments and this is equivalent to rotating the vector as when Euler’s formula is
used in the result it can be seen that the vector has been rotated.

The projection of a 2D vector represented with imaginary coordinates ~u into ~v can
be done as follows. From the image in Figure B.1 it can be seen that the projection of a
vector into another will not change if both vectors are rotated the same angle. Then both
vectors can be rotated −θv so ~v is placed in the real axis. Then it can be seen that the

102
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Figure B.1.: Real part as projection of u in v

real component of ~u is the projection as the real axis is place in ~v. Mathematically this is
shown in Equation B.1.

proj(~u)~v = Real
(
~ue−iθuv

)
(B.1)

Real
(
~ue−iθv

)
=

1
2

(
~ue−iθv + ~u∗eiθv

)
= proj(~u)~v (B.2)

f

fa0

fb0

fc0

-f in
fc0

-f in 
fb0

f in
fa0

Figure B.2.: Projection of f in the fa0, fb0, fc0 axis

It may be seen the relation Equation B.2. Based on those projections formulas a new
rotating vector can be created and later used to project into the new reference frame qd0.
Let fa0, fb0, fc0 be three variables of a balanced system of which axes are represented in
Figure B.2, then each component in each phase fa0, fb0, fc0 can be obtained by projecting
the new rotating vector f into each axes. This is shown in Equation B.3 - B.5. Each
equation can be multiplied in both sides by e−iθ being θ the angle of each phase. Then
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both three equations can be summed and simplified to obtain the special vector ~f in
Equation B.6.

fa0 =
1
2

(
~f e−i0 + ~f ∗ei0

)
(B.3)

fb =
1
2

(
~f e−i2π/3 + ~f ∗ei2π/3

)
(B.4)

fc =
1
2

(
~f ei2π/3 + ~f ∗e−i2π/3

)
(B.5)

~f =
2
3

(
fa0ej0 + fb0ej2π/3 + fc0e−j2π/3

)
(B.6)

It is important to note that fa0, fb0, fc0 must be balanced, that is fa0 + fb0 + fc0 = 0. If
not this derivation is not valid as if the equations Equation B.3 - B.5 are summed on
the left side zero is obtained and on the right it is fa0 + fb0 + fc0 which then must be
zero meaning fa0, fb0, fc0 must be balanced. This is logical as it is impossible to use a 2
independent variables to represent 3 independent variables. If the system is not balanced
with fa, fb, fc then the zero component f0 = 1/3( fa + fb + fc) can be removed from each
phase creating fi0 = f i− f0. When this is done the sum of Equation B.3 - B.5 produces
zero in both sides so it is valid and the new component f0 is created as the third variable
needed.

~f = f ejωt (B.7)

Three cosines inputs displaced 2π/3 can be placed as fa0, fb0, fc0 in Equation B.6. The
formula for fk0 can be 1/2(ei(θ−2π/3(k−1)) + e−i(θ−2π/3(k−1))). This can be operated and
the result is given by Equation B.7. This results shows that if three sinusoidal phases
delayed 2π/3 are applied then ~f is a rotating vector. Therefore a new coordinate system
can be created following ~f which will transform it to a constant value.

b.1.1 Abc to qd0

Once the vector in Equation B.6 is obtained the transformation from abc to qd0 can be
made by projecting ~f into the new coordinate system rotating in the same speed and
direction of abc. The q axis can be placed π/2 before d and the angle between the real
axis and q denoted by θq. Then in complex form the position of the q axis is given by ejθq

and the position of the d by ej(θq−π/2). Then to obtain the qd components from ~f it can
be projected into those axis using Equation B.2 and the result is given in Equation B.8
and B.9 where θd = θq − π/2 and cos(x− π/2) = sin(x) and the zero component f0 is
the same in every coordinate system.

fq = Real(~f e−jθq) =
2
3

(
fa0ej(0−θq) + fb0ej(2π/3−θq) + fc0ej(−2π/3−θq)

)
=

2
3

(
cos(θq) + cos(θq −

2π

3
) + cos(θq +

2π

3
)

)
(B.8)
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fd = Real(~f e−jθd) =
2
3

(
fa0ej(0−θd) + fb0ej(2π/3−θd) + fc0ej(−2π/3−θd)

)
=

2
3

(
sin(θq) + sin(θq −

2π

3
) + sin(θq +

2π

3
)

)
(B.9)

This can be represented by a matrix as Kqd0
abc and the transformation matrix from qd0 to

abc can be done by using the projection method again or by operating Kabc
qd0 = (Kqd0

abc )
−1

as since fqd0 = Kqd0
abc fabc it can be seen then fabc = (Kqd0

abc )
−1 fqd0 = Kabc

qd0 fqd0.

b.2 taylor derivation to approximate steady-state errors

The graph in Figure 5.10 offers some information for a typical point but results may
change abruptly at any other. The first terms of the Taylor expansion of a function
f (x1, x2, ..., xn) is given by Equation B.10.

f (x = x1, x2, ..., xn) ≡ f (x(0)) +
n

∑
i=1

d
dxi

f (x(0))∆xi (B.10)

In this problem there are two functions, the prediction of the final value of the current
in the q axis and in the d denoted as i′q and i′d. The variables are four, each parameter.
For each function a taylor expansion can be done. For the q axis the Taylor series will
look like Equation B.11 and for the d as Equation B.12.

i′q ≈ i∗q +
4

∑
i=1

d
dpi

i′q(p(0))∆pi (B.11)

i′d ≈ i∗d +
4

∑
i=1

d
dpi

i′d(p(0))∆pi (B.12)

The coefficients of the derivatives can be calculated analytically be differentiating
Equation 5.14 which respect to each parameter and evaluating at the point where the
controller and system parameters are the same. The initial Taylor expansion is still too
complicated and may be reduced even more by removing terms with a small weight in
the equation.

It can be seen that the denominator is common in all the derivatives, both in the q and
d axis and looks like Equation B.13.

dent = d1 + d2 + d3 + d4 + d5 = R2T2
s + 4LdLq + 2LdRTs + 2LqRTs + LdLqT2

s ω2
e (B.13)

If the values from Section 2.4 are substituted it can be seen that d1 is less than 1000
times than d2. For d3 and d4 this number is close to 100 times less. Finally d5 varies
with speed and at nominal speed is about 10 times less than d2. For this reason the
denominator may be simplified as d2 alone although at high speeds d5 may be taken into
account.
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The numerator of each derivative may also be simplified by removing the term RTs

present in the resistor, flux and coupling terms as it is about 10 times less than the other
term 2Li. Moreover the resistive term due to iq in the d axis and due to q in the d axis
may also be removed. It is speed dependent but less than 10 times less at nominal speed.
Under this 2 assumptions the final equations can be reduced as shown in Equation B.14

in matrix form:

i′qd ≈ i∗qd + Kss


∆R
∆Lq

∆Ld
∆λmpm

 (B.14)

The matrix Kss takes the expression depicted in Equation B.15 under the simplifica-
tions stated. Under the parameters stated in Section 2.4 then Kss may be evaluated as
Equation B.16.

Kss =

− Ts
Lq

i∗q − Ts
2 i∗q ωe

2

2 Lq
− Ts i∗d ωe

Lq
− Ts ωe

Lq

− Ts
Ld

i∗d
Ts i∗q ωe

Ld
− Ts

2 i∗d ωe
2

2 Ld
− Ts

2 ωe
2

2 Ld

 (B.15)

Kss =

[
−0.155i∗q −2.58× 10−5ω2

e i∗q −0.155ωei∗d −0.155ωe

−0.1642i∗d 0.1642ωei∗q −2.75× 10−5ω2
e i∗d −2.75× 10−5ω2

e

]
(B.16)

The matrix Kss evaluated may also be scaled by each parameter it is affected by as
K′ss = Kss/[p0; p0] where po = [R0, Lq0, Ld0, λmpm0] are the initial estimated values from
Section 2.4. The new values are shown in Equation B.17. This way the contribution of
each element to the global error can be seen better as the difference in the parameters is
now in relative terms and K′ss may be interpreted as the current error due to a change in
each parameter relative to the initial estimation.

K′ss =

[
−0.039i∗q −5.55× 10−8ω2

e i∗q −3.15× 1−4ωei∗d −0.0186ωe

−0.041i∗d 3.53× 10−4ωei∗q −5.58× 10−8ω2
e i∗d −3.30× 10−6ω2

e

]
(B.17)

The approximation derived can be validated as follows. Assuming the derivation in
Equation 5.14 is correct then a set of working conditions can be generated at random for
cases that could happen in the experiment. Also the frequency fs is varied to show the
validity of the formulas if different switching frequencies are used. Then both formulas
are used and the error estimated by both compared. A total of 1000 random points are
generated following an uniform distribution with the values in Table B.1.

The results for the approximation used are depicted in Figure B.3. On blue it is
presented the equations as shown in Equation B.15. Because some terms presenting
the speed are only important at speeds close to nominal for this machine in red it is
shown the approximation where d5 in Equation B.13 is considered by multiplying Kss by

d2
d2+d5

. On the left the speed has been randomized up to half the nominal speed so the
approximation without this term is still good and on the right it can be seen the error may
become important at certain conditions (with high speed and small parameter changes).
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Parameter Min value Max value

R R0 1.5R0

Lq(mH) 0.5Lq0 Lq0

Ld(mH) 0.5Ld0 Lq0

λmpm(Wb) 0.85λmpm0 1.15λmpm0

fs 0.5 fs0 2 fs0

i∗q(A) 5 15
i∗d(A) −5 5

Table B.1.: Random parameters variation for Taylor approximation validation

It can be seen that in general the results of the approximation can be considered an
adequate way to show and understand the importance of each term in the steady-state
error in any condition as the error is usually kept below 5%.
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Figure B.3.: Taylor approximation vs real formulas error for different random points

As the errors due to big changes in the parameters are produced the error due to the
taylor expansion is increased but the proportion seems constant so the approximation
may be used to understand the contribution of each parameter to the steady-state error
in the predictive controller.

b.3 dc perturbations independence in the overshoot

An interesting observation seen in simulations is that DC perturbations (understanding
the steady-state error before and after is constant and their voltage contribution also) did
not seem to affect the overshoot. Moreover the formula Equation 5.19 initially derived
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to estimate the overshoot when only one inductor is varied seemed to work in many
more conditions such as when there is high speeds, with errors in the flux and also with
errors in the other inductor axis with good accuracy if the DC condition is met. This two
phenomenas can be proved. They will be proved in the q axis as it will be evident the
same can be conducted without any change in the d.

The machine equation in the q axis equating controller and system in the transient
with some modifications is shown in Equation B.18. This formula is valid for the 1-period
controller at any state and for the 2-period controller if the system was in steady-state
prior to the step. The value Lq is the real inductor and L′q the estimate from the controller.
The term δv represents the voltage-error due to the DC terms. The current in the next
period is i′q and the reference i∗q while iq is the current at the begging of the period.

Lq

Ts
(i′q − iq) =

L′q
Ts

(i∗q − iq) + δv (B.18)

From Figure 5.12 the following can be observed. If i∗d is not changed the current error
due to Ld in the q axis will be constant before and after the step. If id does not change
then the voltage error will also be constant. Since the speed changes slowly compared
with the current, flux errors will also produce constant current and voltage errors in iq

before and after the step. Finally errors due to Lq in the steady-state current in iq are
typically small and will be also speed-dependent. The resistor is neglected.

From simulations and experiments it can be seen there is a coupling effect between
axes. When i∗q is changed then id changes but the changes are much smaller than the
changes in iq which is the current of which the reference is modified. If there are errors
in Lq then the steady-state value of id will change when i∗q is changed too. The changes
are speed dependent.

Therefore it can be seen that if the resistor contribution is neglected when i∗q is changed
in the q axis voltage equation, Equation B.18 is quite accurate. The only source of the
error are the changes in d due to coupling effects. Let δi be the current error in the q axis.
The value of δi is approximately constant for the steady-state before and after the step
as taken from Figure 5.12 since the speed is approximately the same, i∗d has not been
changed and Lq errors do not affect that much the steady-state errors in iq.

The step response of the system can be described in Figure B.4 with the approximations
described. The overshoot of the system is given by yp−y f

y f−y0
. Based on the graph in Figure B.4

some substitutions can be placed in Equation B.18. The objective is to remove the currents
iq, i∗q , i′q and use the variables yp, y f , y0 so the overshoot can be estimated. The formula
may be rewritten as Equation B.19 where i′q = yp, iq = y0 = y f − s and i∗q = y′f ≈ y f + δ′i .
It must be noted from the previous paragraphs that δ′i ≈ δi and s ≈ s′. Then Equation B.18

may be rewritten following:

Lq

Ts
(yp − y0) =

L′q
Ts

(y′f − y0) + δv (B.19)

Lq

Ts
(yp − (y f − s)) =

L′q
Ts

((y f + δi)− y0) + δv (B.20)
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Figure B.4.: Overshoot variables and approximations

Lq

Ts
(yp − y f + s) =

L′q
Ts

(y f − y0 + δi) + δv (B.21)

Lq

Ts

(
(yp − y f ) + (y f − y0)

)
=

L′q
Ts

(
(y f − y0) + δi

)
+ δv (B.22)

Lq

Ts

(
yp − y f

y f − y0
+ 1
)
=

L′q
Ts

(
1 +

δi

y f − y0

)
+

δv

y f − y0
(B.23)

Φ =
yp − y f

y f − y0
=

L′q
Lq

(
1 +

δi

s

)
+

(
Tsδv

Lq(y f − y0)
− 1
)

(B.24)

Φ =
L′q
Lq
− 1 +

1
s

(
δi

L′q
Lq

+
Tsδv

Lq

)
(B.25)

It can be seen that if there are no steady-state errors then the formula derived in
Equation B.25 is directly Equation 5.19. The formula may be rewritten as Equation B.26.

Φ =
L′q
Lq
− 1 +

Ts

sLq

(
δiL′q
Ts

+ δv

)
(B.26)

It may be observed that if the DC perturbations are constant then it must be true

that
δi L′q
Ts

+ δv = 0 since δi ≈ δ′i and δv is also constant. In steady-state the system does
not have the differential term unlike the controller. In δv it is recorded the voltage
difference between system and controller without the differential term of the controller.
In steady-state the differential term of the controller before was given by L′q/Tsδ

′
i as

δ′i = i∗q − iq. Therefore it can be concluded that any dc error does not influence the
overshoot and the overshoot (neglecting coupling errors in the transient which make it
speed-dependent) is function of Lq/L′q.
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b.4 proof of convergence of gradient method in pmsm

The cost function used in this solution is the sum of the absolute value of the error
between applied voltage and estimated voltage using the model. Others choice could
be taken. For instance another common cost function is the square error. Alternatively
instead of using the voltage error the current could be predicted and this be used as a
way to estimate the machine parameters.

When using a gradient method the algorithm will converge typically to the closest
minimum. Depending of the system and cost function chosen there may be more
than one and this could be a problem as the algorithm could find different estimates
depending of the starting point.

With the cost function defined in Equation 7.10 the gradient can be calculated. For
simplicity of the solution the following definitions are made in Equation B.27 - B.28 for
the error in the voltage in q and d where the current has two states. At the beginning of
the period it appears alone and at the end of it is denoted with an apostrophe.

εq = uq −
(

R
2
(i′q + iq) +

Lq

Ts
(i′q − iq) + ωe

(
λmpm +

Ld

2
(i′d + id)

))
(B.27)

εd = ud −
(

R
2
(i′d + id) +

Ld

Ts
(i′d − id)−ωe

Lq

2
(i′q + iq)

)
(B.28)

The gradient for each parameter can then be written as Equation B.29 - B.32 by
differentiating Equation 7.10 to respect to each parameter. The σ represents the sign
function which is defined as 1 when the input is positive, 0 when it is zero and −1 when
it is negative.

∇ε

∇R
= −σ(εq)

i′q + iq

2
− σ(εd)

i′d + id

2
(B.29)

∇ε

∇Lq
= −σ(εq)

i′q − iq

Ts
+ σ(εd)

ωe(i′q + iq)

2
(B.30)

∇ε

∇Ld
= −σ(εq)

ωe(i′d + id)

2
− σ(εd)

i′d − id

Ts
(B.31)

∇ε

∇Lmpm
= −ωeσ(εq) (B.32)

What the gradient equations show is that there is only one minimum when the voltage
is used as an estimator and the cost function is the sum of the absolute values of the
errors. This minimum is taken when the voltage error in both axes is zero and can only
be achieved for the true parameters as the model cannot be simplified more. Similar
derivation can be made with the square cost function and while the different would
change the same principle is conserved.

The gradient equations also tell us more information. If the system is in steady-state as
it has been said before that it is impossible to estimate the parameters as there are more
unknowns than equations. This is also shown in the gradient as in steady-state there will
be infinite values that make εq and εd equal to zero. As we are perturbing the current
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randomly it is expected however that there will only be one set of values that ensure
this as the model cannot be further simplified. Moreover there may be (although very
much may not) combinations of currents and speeds that create additional minimums
(by setting to zero all the gradient equations) without making ε zero but if the current is
perturbed randomly on average this will not matter.

The gradient equations are also logical. For instance in Equation B.29 the resistor
will be decreased when the error in the q equation is negative and iq is also positive
(remember we move in the direction contrary to the gradient). If all the other parameters
are correctly estimated a higher estimated voltage means effectively that the resistor
estimation is too big and should be decreased. The same happens in the d equation. The
same can be seen in the rest of the equations. Further inspection shows that the gradient
is just the sign scaled for how much the parameter contributes to the voltage error so it
prioritizes changes over the parameters that affect the error the most.

Finally what it cannot be studied in the gradient equations is the effect of λ or errors
in the sensors or model. However if λ is not chosen too big the algorithm is expected to
converge and the ripple on the estimations can be minimized at the expense of slower
responses. As for errors in the sensors or the models both simulations and experiments
results show that the effect is a bigger ripple in the estimation without affecting the
convergence as long as they are random and λ is small enough.



C
M O D E L’ S D I A G R A M S

In this appendix different models schematics used are shown.

c.1 system model

The system is modeled as depicted in Figure C.1 as a DC source connected to a 2-level
conveter that feeds the PMSM. The torque can be modified by connecting a controlled
torque source to the mechanical port of the PMSM model.

Figure C.1.: System model in PLECS

The converter in Figure C.1 is the IGBT Conveter (3ph) from PLECs modified into a
configurable system to test the effect of the non-linearities. The snubbers are modeled as
capacitors in parallel with the converter’s diodes. The IGBT and diode voltage drops are
implemented as a constant voltage Von and a resistor Ron.

c.2 control scheme

The main parts of the inner-loop control scheme are shown in Figure C.2. The controller
receives the reference i∗dq and generates the voltage command. The non-linearities are
compensated with the compensator block below the controller. The final voltage is
passed to the modular which generates the switches states. Those states are passed to
the configurable deadtime that if chosen adds the signal delay td to the switches states.

112
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Figure C.2.: Inner-loop control scheme

c.2.1 Controller

The controller is a configurable system with the deadbeat and continuous and discrete
PIs. The deadbeat implementation is shown in Figure C.3. The controller is implemented
in a C-script using Code D.2.

Figure C.3.: Deadbeat controller

The PI is shown for the continuous case in Figure C.4. The discrete case is the same
but with a integrator using Tustin. The controller presents the decoupling down and the
anti-windup after the voltage command.

c.2.2 Non-linearity compensation

The discrete non-linearity compensation with the code from Code D.7 is shown in
Figure C.5.

The resonant version is shown in Figure C.6 with the resonants in parallel to compen-
sate each harmonic.

c.2.3 Modulator

The modulator block is shown in Figure C.7. It uses the Space Vector Modulation block
from PLECS modified to output the duty cycles which are then generated trough a
comparaison with a carrier. The voltage command is delayed one sample to simulate the
DSP computation delay.
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Figure C.4.: PI current controller

Figure C.5.: Discrete non-linearity compensation
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Figure C.6.: PR non-linearity compensator

Figure C.7.: Modulator

c.3 deadtime

The deadtime is implemented as a configurable system to be able to see the effect with
and without it. The deadtime implementation uses the blanking time from PLECS as
depiceted in Figure C.8.

Figure C.8.: Deadtime model

c.4 parameter estimation

Most simulations have been conducted in PLECS standalone for speed. There is also a
Simulink model that runs the model presented in Figure C.1 with some of the blocks used
in the experiment. For the parameter estimation the model is presented in Figure C.9.
The codes used are Code D.8 for the RLS method and Code D.9 for the gradient one.
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Figure C.9.: Parameter estimation model



D
L I S T O F C O D E S

In this appendix the different set of codes provided are listed.

d.1 predictive controller

d.1.1 1-period version

1 func t ion [ uqc , udc ] = deadbeat ( iqr , idr , iq , id ,w, dataIn , pred )
2 %O f f l i n e data
3 Ts = 1/3000 ;
4 Ld = 2 . 2 e−3;
5 Lq = 2e−3;
6 R = 0 . 2 4 ;
7 Lmpm = 0 . 1 1 7 5 ;
8

9 %I f use onl ine data i s s e t
10 i f ( pred == 1 )
11 R = dataIn ( 1 ) ;
12 Lq = dataIn ( 2 ) ;
13 Ld = dataIn ( 3 ) ;
14 Lmpm = dataIn ( 4 ) ;
15 end
16

17 %Estimating d i f f e r e n c e s and averages
18 i q d i f f = ( iqr−iq ) /Ts ;
19 i d d i f f = ( idr−id ) /Ts ;
20 iqav = ( i q r +iq ) /2 ;
21 idav = ( i d r+id ) /2 ;
22

23 %Ca lc u la t i ng vol tage commands
24 uqc = (R∗ iqav+Lq∗ i q d i f f + w∗ (Ld∗ idav+Lmpm) ) ;
25 udc = (R∗ idav+Ld∗ i d d i f f − w∗ ( Lq∗ iqav ) ) ;
26 end

Code D.1: 1-period predictive controller Simulink code

d.1.2 2-period

1 func t ion [ uqc , udc ] = deadbeat ( iqr , idr , iq , id , iqr0 , idr0 , uq0 , ud0 ,w, dataIn , pred )
2 %O f f l i n e data
3 Ts = 1/3000 ;
4 Ld = 2 . 2 e−3;
5 Lq = 2e−3;
6 R = 0 . 2 4 ;
7 Lmpm = 0 . 1 1 7 5 ;
8

9 %I f use onl ine data i s s e t

117
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10 i f ( pred == 1 )
11 R = dataIn ( 1 ) ;
12 Lq = dataIn ( 2 ) ;
13 Ld = dataIn ( 3 ) ;
14 Lmpm = dataIn ( 4 ) ;
15 end
16

17 %Estimating d i f f e r e n c e s and averages
18 i q d i f f = ( iqr−iq ) /(2∗Ts ) ;
19 i d d i f f = ( idr−id ) /(2∗Ts ) ;
20 iqav = ( i q r + i q r 0 +iq ) /3 ;
21 idav = ( i d r+idr0+id ) /3 ;
22

23 %Ca lc u la t i ng vol tage commands
24 uqc = 2∗ (R∗ iqav+Lq∗ i q d i f f + w∗ (Ld∗ idav+Lmpm) )−uq0 ;
25 udc = 2∗ (R∗ idav+Ld∗ i d d i f f − w∗ ( Lq∗ iqav ) )−ud0 ;
26 end

Code D.2: 2-period predictive controller Simulink code

1 # def ine i dr Input ( 0 )
2 # def ine i q r Input ( 1 )
3 # def ine id Input ( 2 )
4 # def ine iq Input ( 3 )
5 # def ine w Input ( 4 )
6 # def ine vd0 Input ( 5 )
7 # def ine vq0 Input ( 6 )
8 # def ine iq1 Input ( 7 )
9 # def ine id1 Input ( 8 )

10

11 # def ine vd Output ( 0 )
12 # def ine vq Output ( 1 )
13

14 f l o a t R = 0 . 1 9 ;
15 f l o a t Lq = 2 . 2 e−3;
16 f l o a t Ld = 2 . 2 e−3;
17 f l o a t Lmpm = 0 . 1 2 ;
18 f l o a t Ts ;

Code D.3: 2-period predictive controller PLECS C code (Code declarations)

1 Ts = ParamRealData ( 0 , 0 ) ;
2 f l o a t iqp = −(R∗Ts∗ iq − Ts∗vq0 − Lq∗ iq + Lmpm∗Ts∗w + Ld∗Ts∗ id∗w) /Lq ;
3 f l o a t idp = ( Ld∗ id + Ts∗vd0 − R∗Ts∗ id + Lq∗Ts∗ iq ∗w) /Ld ;
4

5 f l o a t iqav = ( i q r +iq+iqp ) / 3 . 0 ;
6 f l o a t idav = ( i d r+id+idp ) / 3 . 0 ;
7 f l o a t i q d i f f = ( iqr−iq ) /(2∗Ts ) ;
8 f l o a t i d d i f f = ( idr−id ) /(2∗Ts ) ;
9

10 f l o a t uqc = 2∗ (R∗ iqav+Lq∗ i q d i f f + w∗ (Ld∗ idav+Lmpm) )−vq0 ;
11 f l o a t udc = 2∗ (R∗ idav+Ld∗ i d d i f f − w∗ ( Lq∗ iqav ) )−vd0 ;
12

13 vd = udc ;
14 vq = uqc ;

Code D.4: 2-period predictive controller PLECS C code (Output function code)
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d.2 non-linearity compensation (analytical)

1 func t ion [ Vabc , dabcC ] = fcn ( u , params , comp)
2 %Returns a vol tage compensation in abc coordinates f o r the deadtime of
3 %a system with a conver ter t h a t i s assumed to have the fol lowing
4 %condi t ions :
5 % − S i g n a l s are delayed Td to avoid s h o r t c i r c u i t s
6 % − There are c a p a c i t o r s in p a r a l e l l with the diodes
7 % − Diodes and IGBTs have a Von and Ron
8 %
9 % comp :

10 % 0 − Td
11 % 1 − Td zero c r o s s i n g f i x
12 % 2 − Cs compensation
13 % 3 − Diode and IGBT compensation
14

15

16 %Input data
17 i a = u ( 1 ) ;
18 ib = u ( 2 ) ;
19 i c = u ( 3 ) ;
20 i a 1 = u ( 4 ) ;
21 ib1 = u ( 5 ) ;
22 i c 1 = u ( 6 ) ;
23 ta0 = u ( 7 ) ;
24 tb0 = u ( 8 ) ;
25 t c 0 = u ( 9 ) ;
26

27 %System data
28 Td = params ( 6 ) ;
29 Ts = 1/3000 ;
30 Vdc = 5 2 0 ;
31 Cs = params ( 1 ) ;
32 VonDiode = params ( 2 ) ;
33 RonDiode = params ( 3 ) ;
34 VonIgbt = params ( 4 ) ;
35 RonIgbt = params ( 5 ) ;
36

37 t a = 0 ; tb = 0 ; t c = 0 ;
38 Vabc = [0 0 0 ] ;
39 %Time compensation ( normal one )
40 i f ( comp >= 0 )
41 i f ( ia > 0 . 0 )
42 t a = Td ;
43 e l s e
44 t a = −Td ;
45 end
46 i f ( ib > 0 . 0 )
47 tb = Td ;
48 e l s e
49 tb = −Td ;
50 end
51 i f ( i c > 0 . 0 )
52 t c = Td ;
53 e l s e
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54 t c = −Td ;
55 end
56 end
57

58 %Improving of zero c r o s s i n g s
59 i f ( comp >= 1 )
60 i f ( i a 1 ∗ i a < 0 . 0 )
61 t a = 0 . 0 ;
62 end
63

64 i f ( ib1 ∗ ib < 0 . 0 )
65 tb = 0 . 0 ;
66 end
67

68 i f ( i c 1 ∗ i c < 0 . 0 )
69 t c = 0 . 0 ;
70 end
71 end
72

73 i f ( comp >= 2 )
74 %Snubber compensation
75 i f ( i a < 0 . 0 )
76 t a = ta + timeSnubber ( i a / 2 . 0 , Cs , Vdc , Td) ;
77 end
78 i f ( ib < 0 . 0 )
79 tb = tb + timeSnubber ( ib / 2 . 0 , Cs , Vdc , Td) ;
80 end
81 i f ( i c < 0 . 0 )
82 t c = t c + timeSnubber ( i c / 2 . 0 , Cs , Vdc , Td) ;
83 end
84

85 i f ( i a 1 > 0 . 0 )
86 t a = ta + timeSnubber ( i a 1 / 2 . 0 , Cs , Vdc , Td) ;
87 end
88 i f ( ib1 > 0 . 0 )
89 tb = tb + timeSnubber ( ib1 / 2 . 0 , Cs , Vdc , Td) ;
90 end
91 i f ( i c 1 > 0 . 0 )
92 t c = t c + timeSnubber ( i c 1 / 2 . 0 , Cs , Vdc , Td) ;
93 end
94 end
95

96 i f ( comp >= 3 )
97 %Diode Von and Ron compensation
98 t a = ta + timeDiode ( ( i a + i a 1 ) / 2 . 0 , VonDiode , RonDiode , Vdc , Ts , ta0 ) ;
99 tb = tb + timeDiode ( ( ib+ib1 ) / 2 . 0 , VonDiode , RonDiode , Vdc , Ts , tb0 ) ;

100 t c = t c + timeDiode ( ( i c + i c 1 ) / 2 . 0 , VonDiode , RonDiode , Vdc , Ts , t c 0 ) ;
101

102 %Ig bt Von and Ron compensation
103 t a = ta + t imeIgbt ( ( i a + i a 1 ) / 2 . 0 , VonIgbt , RonIgbt , Vdc , Ts , ta0 ) ;
104 tb = tb + t imeIgbt ( ( ib+ib1 ) / 2 . 0 , VonIgbt , RonIgbt , Vdc , Ts , tb0 ) ;
105 t c = t c + t imeIgbt ( ( i c + i c 1 ) / 2 . 0 , VonIgbt , RonIgbt , Vdc , Ts , t c 0 ) ;
106 end
107

108 %Transformation Time −> Voltage
109 vab = ( ta−tb ) ∗Vdc/Ts ;
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110 vbc = ( tb−t c ) ∗Vdc/Ts ;
111 vca = ( tc−t a ) ∗Vdc/Ts ;
112

113 dabcC = [ ta tb t c ]∗1/ Ts ;
114

115 %Transformation LL−LN( motor s ide ) vo l tages
116 va = 1/3 .0∗ ( vab−vca ) ;
117 vb = 1/3 .0∗(−vab+vbc ) ;
118 vc = 1/3 .0∗(−vbc+vca ) ;
119

120 Vabc = [ va vb vc ] ;
121 end
122

123 func t ion t c = timeSnubber ( i , C, Vdc , Td)
124 t = C/abs ( i ) ∗Vdc ;
125 v2 = Vdc−abs ( i ) ∗Td/C;
126

127 i f ( t <Td )
128 t c = −s ign ( i ) ∗1/2 .0∗Vdc∗ t ;
129 e l s e
130 t c = −s ign ( i ) ∗1/2 .0∗ ( Vdc+v2 ) ∗Td ;
131 end
132 t c = t c /Vdc ;
133 end
134

135 func t ion t c = timeDiode ( i , Von , Ron , Vdc , Ts , t )
136 vDiode = Von+Ron∗abs ( i ) ;
137

138 i f ( i <0)
139 t c = vDiode∗ t ;
140 e l s e
141 t c = −vDiode∗(1− t ) ;
142 end
143 t c = −t c /Vdc∗Ts ;
144 end
145

146 func t ion t c = t imeIgbt ( i , Von , Ron , Vdc , Ts , t )
147 vIgbt = Von+Ron∗abs ( i ) ;
148

149 i f ( i <0)
150 t c = −vIgbt∗(1− t ) ;
151 e l s e
152 t c = vIgbt∗ t ;
153 end
154 t c = t c /Vdc∗Ts ;
155 end

Code D.5: Discrete non-linearity compensation Simulink code (the duty cycles, dabcC,
are added to the PWM block directly)

1 # def ine ich (−0 .5∗0 )
2 # def ine Ia ( Input ( 0 ) )
3 # def ine Ib ( Input ( 1 ) )
4 # def ine I c ( Input ( 2 ) )
5 # def ine Ia1 ( Input ( 3 ) )
6 # def ine Ib1 ( Input ( 4 ) )
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7 # def ine I c 1 ( Input ( 5 ) )
8 # def ine ta0 Input ( 6 )
9 # def ine tb0 Input ( 7 )

10 # def ine t c 0 Input ( 8 )
11 # def ine compTd Input ( 9 )
12 # def ine compCs Input ( 1 0 )
13 # def ine compIgbt Input ( 1 1 )
14 # def ine compDiode Input ( 1 2 )
15

16 # def ine Va Output ( 0 )
17 # def ine Vb Output ( 1 )
18 # def ine Vc Output ( 2 )
19 # def ine Da Output ( 3 )
20 # def ine Db Output ( 4 )
21 # def ine Dc Output ( 5 )
22

23 # def ine Td Input ( 1 3 )
24 # def ine Ts Input ( 1 4 )
25 # def ine Vdc Input ( 1 5 )
26 # def ine Cs Input ( 1 6 )
27 # def ine VonDiode Input ( 1 7 )
28 # def ine RonDiode Input ( 1 8 )
29 # def ine VonIgbt Input ( 1 9 )
30 # def ine RonIgbt Input ( 2 0 )
31

32 f l o a t abs ( f l o a t val ) {
33 i f ( val > 0 . 0 )
34 re turn val ;
35 re turn −val ;
36 }
37

38 f l o a t s ign ( f l o a t val ) {
39 i f ( val >= 0 . 0 )
40 re turn 1 . 0 ;
41 re turn −1 .0 ;
42 }
43

44 f l o a t timeSnubber ( f l o a t i , f l o a t C, f l o a t vdc , f l o a t td ) {
45 f l o a t t = C/abs ( i ) ∗vdc ;
46 f l o a t v2 = vdc−abs ( i ) ∗ td/C;
47 f l o a t t c = 0 . 0 ;
48

49 i f ( t <td )
50 t c = −s ign ( i ) ∗1/2 .0∗vdc∗ t ;
51 e l s e
52 t c = −s ign ( i ) ∗1/2 .0∗ ( vdc+v2 ) ∗ td ;
53

54 re turn t c /vdc ;
55 }
56

57 f l o a t timeDiode ( f l o a t i , f l o a t Von , f l o a t Ron , f l o a t vdc , f l o a t td , f l o a t t ,
f l o a t t s ) {

58 f l o a t vDiode = Von+Ron∗abs ( i ) ;
59 f l o a t t c = 0 ;
60

61 i f ( i <0)
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62 t c = vDiode∗ t ;
63 e l s e
64 t c = −vDiode∗(1− t ) ;
65 re turn −t c /vdc∗ t s ;
66 }
67

68 f l o a t t imeIgbt ( f l o a t i , f l o a t Von , f l o a t Ron , f l o a t vdc , f l o a t td , f l o a t t ,
f l o a t t s ) {

69 f l o a t vIgbt = Von+Ron∗abs ( i ) ;
70 f l o a t t c = 0 ;
71 i f ( i <0)
72 t c = −vIgbt∗(1− t ) ;
73 e l s e
74 t c = vIgbt ∗ ( t ) ;
75 re turn t c /vdc∗ t s ;
76 }

Code D.6: Discrete non-linearity compensation Plecs C code (Code declarations)

1 f l o a t ta = 0 ;
2 f l o a t tb = 0 ;
3 f l o a t t c = 0 ;
4

5 f l o a t i a = Ia ;
6 f l o a t ib = Ib ;
7 f l o a t i c = I c ;
8 f l o a t i a 1 = Ia1 ;
9 f l o a t ib1 = Ib1 ;

10 f l o a t i c 1 = I c 1 ;
11

12 //Time compensation
13 i f ( compTd == 1 ) {
14 i f ( ia > 0 . 0 )
15 t a = Td ;
16 e l s e
17 t a = −Td ;
18 i f ( ib > 0 . 0 )
19 tb = Td ;
20 e l s e
21 tb = −Td ;
22 i f ( i c > 0 . 0 )
23 t c = Td ;
24 e l s e
25 t c = −Td ;
26

27 //Zero f i x
28 i f ( i a 1 ∗ i a < 0 . 0 )
29 t a = 0 . 0 ;
30 i f ( ib1 ∗ ib < 0 . 0 )
31 tb = 0 . 0 ;
32 i f ( i c 1 ∗ i c < 0 . 0 )
33 t c = 0 . 0 ;
34 }
35

36 i f ( compCs == 1 ) {
37 i f ( i a < 0 . 0 )
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38 t a += timeSnubber ( i a / 2 . 0 , Cs , Vdc , Td) ;
39 i f ( ib < 0 . 0 )
40 tb += timeSnubber ( ib / 2 . 0 , Cs , Vdc , Td) ;
41 i f ( i c < 0 . 0 )
42 t c += timeSnubber ( i c / 2 . 0 , Cs , Vdc , Td) ;
43

44 i f ( i a 1 > 0 . 0 )
45 t a += timeSnubber ( i a 1 / 2 . 0 , Cs , Vdc , Td) ;
46 i f ( ib1 > 0 . 0 )
47 tb += timeSnubber ( ib1 / 2 . 0 , Cs , Vdc , Td) ;
48 i f ( i c 1 > 0 . 0 )
49 t c += timeSnubber ( i c 1 / 2 . 0 , Cs , Vdc , Td) ;
50 }
51

52 i f ( compDiode ) {
53 t a += timeDiode ( ( i a + i a 1 ) / 2 . 0 , VonDiode , 1∗RonDiode , Vdc , Td , ta0 , Ts ) ;
54 tb += timeDiode ( ( ib+ib1 ) / 2 . 0 , VonDiode , 1∗RonDiode , Vdc , Td , tb0 , Ts ) ;
55 t c += timeDiode ( ( i c + i c 1 ) / 2 . 0 , VonDiode , 1∗RonDiode , Vdc , Td , tc0 , Ts ) ;
56 }
57

58 i f ( compIgbt ) {
59 t a += t imeIgbt ( ( i a + i a 1 ) / 2 . 0 , VonIgbt , 1∗RonIgbt , Vdc , Td , ta0 , Ts ) ;
60 tb += t imeIgbt ( ( ib+ib1 ) / 2 . 0 , VonIgbt , 1∗RonIgbt , Vdc , Td , tb0 , Ts ) ;
61 t c += t imeIgbt ( ( i c + i c 1 ) / 2 . 0 , VonIgbt , 1∗RonIgbt , Vdc , Td , tc0 , Ts ) ;
62 }
63

64 //Transformation of frames
65 f l o a t vab = ( ta−tb ) ∗Vdc/Ts ;
66 f l o a t vbc = ( tb−t c ) ∗Vdc/Ts ;
67 f l o a t vca = ( tc−t a ) ∗Vdc/Ts ;
68

69 f l o a t va = 1/3 .0∗ ( vab−vca ) ;
70 f l o a t vb = 1/3 .0∗(−vab+vbc ) ;
71 f l o a t vc = 1/3 .0∗(−vbc+vca ) ;
72

73 Va = va ;
74 Vb = vb ;
75 Vc = vc ;
76

77 Da = ta/Ts ;
78 Db = tb/Ts ;
79 Dc = t c /Ts ;

Code D.7: Discrete non-linearity compensation Plecs C code (Output function code)

d.3 parameter determination

d.3.1 RLS

1 func t ion pOut = r l s e ( u , i , i0 , we , r s t , lg , pStar t , forceMode )
2 p e r s i s t e n t pp mode ;
3

4 uq = u ( 1 ) ;
5 ud = u ( 2 ) ;
6 iq1 = i ( 1 ) ;
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7 id1 = i ( 2 ) ;
8 iq = i 0 ( 1 ) ;
9 id = i 0 ( 2 ) ;

10 Ts = 1/3000 ;
11

12 oS = pStar t ’ ;
13 rstCh = r s t ;
14

15 i f ( isempty ( pp ) || r s t == 1 )
16 pp = p S t a r t ;
17 mode = 0 ;
18 end
19

20 i f ( forceMode ~= mode)
21 rstCh = 1 ;
22 mode = forceMode ;
23 end
24

25 l = 1− lg ;
26 newP = [0 0 0 0 ] ;
27 switch (mode)
28 case 1

29 newP = rleRLF ( uq , ud , iq , id , iq1 , id1 , we , Ts , l , pp , rstCh , oS ) ;
30 case 2

31 newP = rleRL ( uq , ud , iq , id , iq1 , id1 , we , Ts , l , pp , rstCh , oS ( 1 : ( end−1) ) ) ;
32 case 3

33 newP = rleLF ( uq , ud , iq , id , iq1 , id1 , we , Ts , l , pp , rstCh , oS ( 2 : end ) ) ;
34 case 4

35 newP = r leL ( uq , ud , iq , id , iq1 , id1 , we , Ts , l , pp , rstCh , oS ( 2 : ( end−1) ) ) ;
36 end
37 pp = newP ;
38 pOut = pp ;
39 end
40

41 func t ion pOut = rleRLF ( uq , ud , iq , id , iq1 , id1 , we , Ts , l , pp , r s t , oS )
42 p e r s i s t e n t o P ;
43 o0 = pp ’ ;
44 newP = pp ;
45

46 I = eye ( 4 ) ;
47 Xt = [ ( iq1+iq ) /2 ( iq1−iq ) /Ts we∗ ( id1+id ) /2 we ; ( id1+id ) /2 −we∗ ( iq1+iq ) /2 (

id1−id ) /Ts 0 ] . ∗ [ oS ’ ; oS ’ ] ;
48 y = [ uq ; ud ] ;
49

50 i f ( isempty ( o ) || r s t == 1 )
51 p = o0 ’ ;
52 o = p ’ . / oS ;
53 P = 1e−4∗ I ;
54 end
55

56 i f ( r s t == 0 )
57 k = ( l ^−1∗P∗Xt ’ ) /(1+ l ^−1∗sum(sum( Xt∗P .∗ Xt ) ) ) ;
58 e = y−Xt∗o ;
59 o = o+k∗e ;
60 P = l ^−1∗(P−k∗Xt∗P ) ;
61
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62 Rest = o ( 1 ) ∗oS ( 1 ) ;
63 Lqest = o ( 2 ) ∗oS ( 2 ) ;
64 Ldest = o ( 3 ) ∗oS ( 3 ) ;
65 Lmpmest = o ( 4 ) ∗oS ( 4 ) ;
66

67 newP = [ Rest Lqest Ldest Lmpmest ] ;
68 end
69

70 pOut = newP ;
71 end
72

73 func t ion pOut = rleLF ( uq , ud , iq , id , iq1 , id1 , we , Ts , l , pp , r s t , oS )
74 p e r s i s t e n t o P ;
75 o0 = pp ( 2 : end ) ’ ;
76 newP = pp ;
77

78 I = eye ( 3 ) ;
79 Xt = [ ( iq1−iq ) /Ts we∗ ( id1+id ) /2 we;−we∗ ( iq1+iq ) /2 ( id1−id ) /Ts 0 ] . ∗ [ oS ’ ; oS

’ ] ;
80 y = [ uq−( iq1+iq ) /2∗pp ( 1 ) ; ud−( id1+id ) /2∗pp ( 1 ) ] ;
81

82 i f ( isempty ( o ) || r s t == 1 )
83 p = pp ( 2 : end ) ;
84 o = p ’ . / oS ;
85 P = 1e−4∗ I ;
86 end
87

88 i f ( r s t == 0 )
89 k = ( l ^−1∗P∗Xt ’ ) /(1+ l ^−1∗sum(sum( Xt∗P .∗ Xt ) ) ) ;
90 e = y−Xt∗o ;
91 o = o+k∗e ;
92 P = l ^−1∗(P−k∗Xt∗P ) ;
93

94 Lqest = o ( 1 ) ∗oS ( 1 ) ;
95 Ldest = o ( 2 ) ∗oS ( 2 ) ;
96 Lmpmest = o ( 3 ) ∗oS ( 3 ) ;
97

98 newP = [ pp ( 1 ) Lqest Ldest Lmpmest ] ;
99 end

100

101 pOut = newP ;
102 end
103

104 func t ion pOut = rleRL ( uq , ud , iq , id , iq1 , id1 , we , Ts , l , pp , r s t , oS )
105 p e r s i s t e n t o P ;
106 o0 = pp ( 1 : ( end−1) ) ’ ;
107 newP = pp ;
108

109 I = eye ( 3 ) ;
110 Xt = [ ( iq1+iq ) /2 ( iq1−iq ) /Ts we∗ ( id1+id ) / 2 ; ( id1+id ) /2 −we∗ ( iq1+iq ) /2 ( id1−

id ) /Ts ] . ∗ [ oS ’ ; oS ’ ] ;
111 y = [ uq−we∗pp ( 4 ) ; ud ] ;
112

113 i f ( isempty ( o ) || r s t == 1 )
114 p = pp ( 1 : ( end−1) ) ;
115 o = p ’ . / oS ;
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116 P = 1e−4∗ I ;
117 end
118

119 i f ( r s t == 0 )
120 k = ( l ^−1∗P∗Xt ’ ) /(1+ l ^−1∗sum(sum( Xt∗P .∗ Xt ) ) ) ;
121 e = y−Xt∗o ;
122 o = o+k∗e ;
123 P = l ^−1∗(P−k∗Xt∗P ) ;
124

125 Rest = o ( 1 ) ∗oS ( 1 ) ;
126 Lqest = o ( 2 ) ∗oS ( 2 ) ;
127 Ldest = o ( 3 ) ∗oS ( 3 ) ;
128

129 newP = [ Rest Lqest Ldest pp ( 4 ) ] ;
130 end
131

132 pOut = newP ;
133 end
134

135 func t ion pOut = r leL ( uq , ud , iq , id , iq1 , id1 , we , Ts , l , pp , r s t , oS )
136 p e r s i s t e n t o P ;
137 o0 = pp ( 2 : ( end−1) ) ’ ;
138 newP = pp ;
139

140 I = eye ( 2 ) ;
141 Xt = [ ( iq1−iq ) /Ts we∗ ( id1+id ) /2;−we∗ ( iq1+iq ) /2 ( id1−id ) /Ts ] . ∗ [ oS ’ ; oS ’ ] ;
142 y = [ uq−( iq1+iq ) /2∗pp ( 1 )−we∗pp ( 4 ) ; ud−( id1+id ) /2∗pp ( 1 ) ] ;
143

144 i f ( isempty ( o ) || r s t == 1 )
145 p = pp ( 2 : ( end−1) ) ;
146 o = p ’ . / oS ;
147 P = 1e−4∗ I ;
148 end
149

150 i f ( r s t == 0 )
151 k = ( l ^−1∗P∗Xt ’ ) /(1+ l ^−1∗sum(sum( Xt∗P .∗ Xt ) ) ) ;
152 e = y−Xt∗o ;
153 o = o+k∗e ;
154 P = l ^−1∗(P−k∗Xt∗P ) ;
155

156 Lqest = o ( 1 ) ∗oS ( 1 ) ;
157 Ldest = o ( 2 ) ∗oS ( 2 ) ;
158

159 newP = [ pp ( 1 ) Lqest Ldest pp ( 4 ) ] ;
160 end
161

162 pOut = newP ;
163 end

Code D.8: RLS method with mode selector (what parameters to estimate) for Simulink

d.3.2 Gradient method

1 func t ion pOut = mca ( u , i , i0 , we , r s t , eqsel , lambda , p s t a r t ,N, forceMode )
2 uq = u ( 1 ) ;
3 ud = u ( 2 ) ;
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4 iq1 = i ( 1 ) ;
5 id1 = i ( 2 ) ;
6 iq = i 0 ( 1 ) ;
7 id = i 0 ( 2 ) ;
8 p0R = p s t a r t ;
9 p0 = [ 1 ; 1 ; 1 ; 1 ] ;

10 n = length ( p0 ) ;
11 l = lambda ;
12

13 p e r s i s t e n t p j grad ;
14 i f ( isempty ( p ) || r s t == 1 )
15 p = p0 ;
16 j = 0 ;
17 grad = zeros ( n , 1 ) ;
18 end
19

20 i f ( r s t == 0 )
21 j = j + 1 ;
22

23 H = [1/2∗ ( iq1+iq ) ,1/ Ts ∗ ( iq1−iq ) ,we/2∗( id1+id ) ,we ;
24 1/2∗( id1+id ) ,−we/2∗( iq1+iq ) ,1/ Ts ∗ ( id1−id ) , 0 ] ;
25 y = u ;
26

27 %Ca l c u l a te e r r o r
28 e = e r r o r ( y ,H, p .∗p0R , e q s e l ) ;
29 gradk = zeros ( n , 1 ) ;
30

31 %Ca l c u l a te gradient
32 change = 0 . 0 2 5 ;
33 f o r ( k =1 :n )
34 pkp = p ; pkp ( k ) = (1+ change ) ∗p ( k ) ;
35 pkm = p ; pkm( k ) = (1−change ) ∗p ( k ) ;
36 ep = e r r o r ( y ,H, pkp .∗p0R , e q s e l ) ;
37 em = e r r o r ( y ,H,pkm.∗p0R , e q s e l ) ;
38

39 gradk ( k ) = ( ep−e ) /( change ) + (em−e ) /(−change ) ;
40 end
41 %Ca l c u l a te average gradient with N points , N can be 1 f o r no
42 %average
43 grad = grad+gradk ;
44 i f ( j >= N)
45 grad = l ∗ ( grad ./sum( s q r t ( grad . ^ 2 ) ) ) ;
46 switch ( forceMode )
47 case 2

48 grad ( 4 ) = 0 ;
49 case 3

50 grad ( 1 ) = 0 ;
51 end
52 p = p − grad ;
53 grad = zeros ( n , 1 ) ;
54 j = 0 ;
55 end
56 end
57 pOut = p .∗p0R ;
58 end
59
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60 func t ion e = e r r o r ( y ,H, p , e q s e l )
61 %Const ra in t s ( min , max values parameters can take )
62 pmin = [ 0 . 1 5 ; 0 . 5 e−3 ;0 .5 e− 3 ; 0 . 0 3 ] ;
63 pmax = [ 0 . 3 0 ; 3 . 5 e−3 ;3 .5 e− 3 ; 0 . 2 5 ] ;
64

65 %Const ra in t s f u n c t i o n s
66 bmax = (pmax−p ) ./ abs (pmax) ;
67 bmin = ( p−pmin ) ./ abs ( pmin ) ;
68

69 bmax = (bmax<0) .∗ ( ( 1 0 0∗bmax) . ^ 2 ) ;
70 bmax = sum(bmax) ;
71

72 bmin = ( bmin<0) .∗ ( ( 1 0 0∗ bmin ) . ^ 2 ) ;
73 bmin = sum( bmin ) ;
74

75 e0 = y−H∗p ;
76

77 %1 : q , 2 : d , e l s e : a l l
78 i f ( e q s e l == 1 )
79 e = e0 ( 1 ) ;
80 e l s e i f ( e q s e l == 2 )
81 e = e0 ( 2 ) ;
82 e l s e
83 e = e0 ;
84 end
85

86 %Error funct ion , inc luding c o n s t r a i n t s
87 e = sum( e .^2+(bmax+bmin ) ) ;
88 end

Code D.9: Gradient method with parameter constraints and mode selector (what
parameters to estimate) for Simulink
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