
Abstract
This project investigates the development of a BCI system using a consumer grade
EEG headset. This includes signal acquisition, preprocessing, feature extraction
and classification and/or regression. Riemannian geometry is taken advantage of,
because of the natural EEG signals can be directly classified in this space. The Rie-
mannian methods investigated includes Minimum Distance to Riemannian Mean
(MDRM) and Tangent Space LDA (TSLDA). These methods are tested and com-
pared against the well known methods Common Spatial Pattern (CSP), combined
with Linear Discriminant Analysis (LDA), which was investigated in our previous
work. Furthermore it is investigated how it is possible to combine two predictor
tasks, instead of one, e.g. classification. This is done by combining classification
and regression simultaneously, which opens up new ways of how a BCI system can
be used. This report documents the development of a combined two-predictor-task
BCI system, and concludes the found results of said methods.
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CHAPTER 1

INTRODUCTION

Traditionally, computer systems are controlled by using a mouse and keyboard to
navigate and perform tasks. Today, a new way of controlling computer systems is
evolving, namely brain computer interfaces (BCI). A brain computer interface is
a system that use brain activity as input, instead of physically moving a mouse
or pressing buttons on a keyboard. This means that no movement is required to
operate a BCI system, and therefore removes the requirements that are normally
associated with using computer systems. By removing the physical constraints, new
opportunities arises for people with movement impairments, but also affects how
people use computer systems in general.

The way a BCI system works, is by analyzing brain activity signals. These signals
form different patterns based on what the user is doing and thinking. By analyzing
the patterns of a user, a BCI system can learn the characteristics and be able to
recognize known patterns. When a pattern is recognized it can be translated into a
command, just like the input from a mouse or keyboard is translated into commands.
In this way, if a BCI system is trained on a user, and that user starts imagining
movement, e.g. moving the left hand and the system recognizes this pattern, then
the command associated with left hand movement is carried out in the system, e.g.
moving the mouse cursor left.

BCI research is a young field in computer science, which means there is still in-
formation to be discovered. Because of that, it is hard to develop a BCI system
, that is reliable enough to be useful in real world scenarios. There are several
factors that affect the performance of BCI systems, ranging from the user’s ability
to concentrate, to the techniques used for extracting relevant data from the brain
signals. Obviously, the hardware used for recording the brain activity data is also an
important factor. There are several methods to record brain activity data, among
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them are electroencephalography and electrocorticography. Electroencephalogra-
phy records data (EEG), with electrodes placed on the scalp. Electrocorticography
records data (ECoG) with electrodes placed directly on the brain. To record ECoG
data, a surgical incision into the skull is required to place the electrodes. For BCI
systems EEG is widely used, because no surgery is required to use such systems.
Both electroencephalography and electrocorticography are methods that performs
well, when analyzing data in a temporal domain. On the flip side they are not the
most accurate methods spatial-wise. There exist methods, such as Magnetic reso-
nance imaging (MRI), which is often used to diagnose or analyze e.g. the brain. A
MRI scanner takes a high spatial resolution picture of e.g. the brain, but only for
a point in time. This means that the MRI scanner provides highly accurate spatial
data, but only for a single time stamp. Therefore BCI systems often use either EEG
or ECoG data, because of the high temporal resolution.
In this project a consumer grade EEG headset is used, because of the high temporal
resolution. It is an easy convenient way of recording EEG data, as unlike ECoG
data, no surgery is required to record data.
When working with BCI systems, they traditionally have one predictor task, either
classification or regression. The difference between these predictor tasks, is the result
from the analysis. If the predictor task is a classification task, the system’s result
predicts which class the input data belongs to. On the other hand, if the predictor
task is regression, the result is a continuous response from the task such as the
strength of a present signal, e.g. how fast is the left arm moved. Combining these,
resulting in two predictor tasks allows for more advanced BCI systems, because the
system will be able to recognize which class some brain data belongs to, but also
output the strength of the signal. Combining the two predictor tasks in a BCI system
is to our knowledge something that has never been done, or researched before.
This report investigates the development of BCI systems and advanced methods for
feature extraction, classification and regression. The rest of this chapter introduces
basic information about BCI systems. Chapter 2 introduces the problem statement
and therefore also the goal of this project. Chapter 3 explains the theory behind
important methods used in the development of a BCI system. Chapter 4 shows the
implementation of the most interesting parts of the system. Chapter 5 tests the
system and shows the results and reasoning behind them. Chapter 6 concludes the
project based on the problem statement and the given results. Finally Chapter 7
discuss possibly improvements future work.

1.1 Brain Computer Interface Architecture

The execution of a BCI system can be divided into two phases, training time and
runtime. As the brain is different from subject to subject, the system needs to be
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trained to recognize the patterns of the brain for each subject. This is called the
training time or calibration time, and is where the systems receives data, in which
the corresponding result of the prediction task is known. With this labeled data,
the system can extract the necessary information, to train the feature extraction
and classification or regression model, which should be able to predict the result
from new unlabeled data. The training time is illustrated in Figure 1.1 with its
3 stages. When a set of labeled data is received as input, the first stage involves
applying preprocessing. The next stage trains the feature extraction to find the
useful information. Lastly the classification/regression stage is trained with the
extracted information. The methods can then learn the characteristics of the signal.
After the training is done, the system can be used on runtime, tailored to a specific
subject, or general use, depending on whether or not the system is trained on a
single subject or a set of subjects.

Figure 1.1: Classification/Regression BCI Architecture training time

On runtime when data is to be analyzed in a BCI system, it goes through five
stages. The stages are Signal acquisition, Preprocessing, Feature Extraction, Clas-
sification/Regression and Application Interface, as seen in Figure 1.2. at runtime,
both Feature Extraction and Classification/Regression have been trained to a user,
so the signals can be recognized.

Preprocessing, Feature Extraction and Classification/Regression are commonly grouped
together as one part called Signal Processing, as this is where the primary data
analysis is executed. Below, each stage is briefly explained, for a more detailed
explanation see [16].
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Figure 1.2: Classification/Regression BCI Architecture runtime

Signal Acquisition

Signal acquisition regards to how the data is read from the hardware, and formatted
so it can be analyzed. At runtime, the system reads the data as a series of times-
tamp with each channel represented as the voltage difference from the base value.
These are then analyzed and predicted by either classification or regression. When
training these predictors, additional information is required. As such the signal
acquisition keeps track of which additional value corresponds to the timestamps.
For classification, the additional information is regarding which class is active at
each timestamp, or when a class is activated or deactivated. For regression, the
additional information is not regarding a class, as that is assumed to be the same
for all timestamps. Instead a magnitude for the class is known for each timestamp.
The hardware used for signal acquisition is often a headset with electrodes attached,
which are placed on the scalp (EEG) or directly on the brain (ECoG).

Preprocessing

Preprocessing is the process of removing noise and irrelevant information from the
signal, thus making the signal easier to analyze. The process involves smoothing
the data by applying temporal filters, smoothing the channels by spatial filters and
subsampling the data to remove specific timestamps. It can also involve selecting
channels for processing, to focus the analysis to a specific area of the brain.
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Feature Extraction

Feature extraction is, as the name implies, the process of selecting features of the
signal. Commonly this means weighing or combining the channels, in ways that best
reveal variations. The goal of the feature extraction stage is to select features, that
are characteristic for the target classes.

Classification/Regression

The stage of classification/regression is to predict a class or a continuous value,
based on brain signals. When using a classification method, e.g. Linear Discriminant
Analysis (LDA), the system is trained using labeled data in order to predict new
unlabeled data during runtime. When using regression, a model is trained, so it fits
the labeled data. During runtime, this model can predict a continuous value, e.g.
the strength of the signal, based on new data.

Application Interface

The last part, the application interface, is where the result of the classification is
used. This is usually how the systems reacts to the signal, and how it processes
feedback. The process of feedback can be separated into two types of systems,
passive and active.
In a passive system, the user is not actively trying to control the application using
the BCI system, instead the BCI system is used to enrich the user experience. An
example of this could be an application, where the feedback is the selection of music
that plays in the background based on the users emotional state.
In an active system, the user actively tries to control the application using the BCI
system. An example could be an application, where the control of the mouse cursor
is based on the imagined hand movement of the user.
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1.2 Hardware Description

The hardware used in this project to read EEG data is the Emotiv EPOC EEG
Reader [12]. The headset is equipped with 14 electrodes placed according to the
international 10-20 system [1], which will be explained further in Section 3.1. The
placement of the 14 electrodes of the headset can be seen in Figure 1.3, where the
electrodes of the headset are marked with an orange outline.

Figure 1.3: Emotiv EPOC EEG Reader electrode placement

The headset has a sampling rate of 128Hz for each electrode, and a bandwidth of
0.2 - 45Hz. To remove AC noise from the signal, the headset also comes with notch
filters integrated at 50 and 60Hz, as they are the standards used depending on the
user’s geographical location, e.g. in Denmark the AC outputs 230V at 50Hz. For a
list of the headsets full specifications see Appendix A.
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CHAPTER 2

PROBLEM STATEMENT

Traditionally when developing Brain-Computer Interfaces (BCIs) one predictor task
is used, either classification or regression. The difference between classification and
regression is their output format. Classification predicts data to belong to a specific
class among a set of two or more. Regression on the other hand is a continuous
output.
It is clear that these two different predictor task are used for different purposes. A
classification predictor task can be used in a scenario to determine whether left or
right hand is moved. A regression predictor task can be used in a scenario where
we are interested in the speed of hand movements instead.
Combining the aforementioned predictor tasks to open up for new ways to use them,
could yield interesting opportunities. For instance, classifying whether the left or
right hand is moved, followed by using regression to determine the speed of the hand
movement.
To record brain activity we have a consumer grade Emotiv EPOC EEG Reader avail-
able, which means the recordings can be questionable. Due to low spatial resolution
and low sampling rate in the recording hardware, effective software methods and
implementations are important to get a usable result. In later research, methods
employing Riemannian geometry has been shown to improve the prediction results.
Based on the above observations it leads us to the following problem statement

Is it possible, using a consumer grade EEG reader, to combine two predic-
tor tasks in order to simultaneously determine both class and magnitude
of a signal?
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CHAPTER 3

THEORY

This chapter describes the theory of the different algorithms and methods used in
this project. Some of the algorithms have been explained in our previous work [16],
and will therefore only be shortly introduced and then referenced.

3.1 Brain Basics

This section describes basic information about the brain, including brain areas,
frequency ranges, and the international 10-20 system.

Brain Areas

To narrow the analysis of the signals, selecting specific channels to be analyzed can
be useful, as this will narrow the brain areas analyzed and thus filter the noisy
channels. To accomplish this task, knowledge of which areas of the brain represent
which functions is useful. The cerebrum, which is the large part of the brain can be
divided up into four sections, as shown in Figure 3.1.
The sections known as brain lobes are named:

� The frontal lobe (Blue area)

� The parietal lobe (Yellow area)

� The temporal lobe (Green area)

� The occipital Lobe (Red area)

Each of these lobes are associated with different functions, each of which will be
given a brief description below [19].
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Figure 3.1: The cerebrum lobes

The frontal lobe

The frontal lobe in essence holds what makes up each individuals personality. The
frontal lobe controls emotions, problem solving, memory, language, judgment as well
as social and sexual behavior. It is also in the frontal lobe where the primary motor
is located, as well as some of the key areas related to speech are stored.

The parietal lobe

The parietal lobe located just behind the frontal lobe near the center of the brain.
This is the area in which sensory information gets interpreted such as hot and cold.
The parietal lobe is also where spatial information gets interpreted thus allowing
one to estimate distance, size etc.

The temporal lobe

The temporal lobe is responsible for interpreting auditory information as well as the
interpretation of information gathered through smell. The Wernicke area that is
part of the temporal lobe allows us to recognize speech and understand the meaning
of the words.

The occipital Lobe

The occipital Lobe located at the back of the skull holds the visual cortex, this cortex
receives information from the retina of the eye, it is here that the interpretation of
color and important parts of the vision is handled.
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Frequency Ranges

As with brain areas being affected by different functions, the frequencies of the signal
is affected as well, and a reduction of the analyzed frequencies can thus narrow the
analysis. According to [5], the frequencies extracted from a signal, can be grouped
in five types of waves; Delta, Theta, Alpha, Beta and Gamma. These waves are
comprised of different frequencies and different states of consciousness can make a
wave more pronounced than the others.

� Delta waves are in the 0.5-4Hz range. They are primarily associated with
deep sleep, and can be confused with muscle artifacts from neck and jaw.

� Theta waves lie in the range 4-7Hz. Theta waves increases with stress or
frustration and have been seen with deep meditation as well.

� Alpha waves have frequencies in the 8-13Hz range and are associated with a
mindless state. The waves are prominent with eyes closed.

� Beta waves are loosely defined as being comprised of frequencies between
13-30Hz. Beta waves are usually associated with active thinking.

� Gamma waves lie in the range 35Hz and up. The gamma waves are the most
recent wave type to be discovered, and the functions associated with them are
mostly unknown.

In addition there is Mu waves as well. These waves are in the same frequency band
as alpha waves, namely 8-12Hz, but are recorded over the occipital cortex. They
diminish with movement or the intention to move.

International 10-20 System

The international 10-20 system is a common method to describe positions of elec-
trodes on the scalp during the recording of EEG data. The name 10-20 refers to
the distance between the electrodes, by separating the electrodes with a distance of
either 10 or 20 percent of the total distance from the back to the front of the skull,
or from the left to the right side of the skull. Depending on the number of electrodes
that are available, a fitting percentage is chosen. The reason why the international
10-20 system is used, is to ensure a standardized way to place electrodes on the
scalp. Figure 3.2 shows an example of how the electrodes are placed according to
the international 10-20 system. As can be seen, the electrode placements are labeled
with a letter followed by a number. The letter represents which lobe it is placed on,
where the lobes are frontal (F), temporal (T), central (C), parietal (P), and occipital
(O) as described in Section 3.1. It should be noted that the central lobe does not
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exist, the term is used purely for the identification of electrodes in the international
10-20 system. The numbers represents the location on the hemisphere, where even
numbers are electrodes on the right hemisphere and odd number on the left. The
numbers starts from the center and increment when moving away from the center
of the skull.

Figure 3.2: Example of electrodes placed according to the international 10-20 system.

3.2 Notation

This section outline the notation used throughout this report. EEG data is rep-
resented as a matrix X as seen in Equation 3.1, where xc(t) represents the EEG
data for channel c at sample point t. Xc represents one row in X for channel
c ∈ 1, . . . , C, for all time points i.e. Xc = (xc(1), . . . , xc(T )), where C is the total
number of channels and T is the last time point in X. X(t) refers to the elements
across all electrodes, at a given time point t ∈ 1, . . . , T , i.e., X(t) refers to the vector
elements in the t’th column of X, X(t) = (x1(t), x2(t), . . . , xC(t))>.

X =


x1(1) x1(2) · · · x1(T )
x2(1) x2(2) · · · x2(T )

...
...

. . .
...

xC(1) xC(2) · · · xC(T )

 (3.1)
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Covariance Matrix

A covariance matrix (see e.g. [10]), often also called a variance-covariance matrix,
is used for two different measures. The variance is the measure of how much a
distribution varies from its mean, while the covariance is the measure of similarities
between two variables.

Given the observations across time for two electrodes X1 and X2 the sample covari-
ance is defined as:

Cov(X1, X2) =
(X1 − µ1)(X2 − µ2)>

T
(3.2)

The variable µ1 in Equation 3.2 refers to the mean for X1 while µ2 is the mean for
X2. The formula for calculating the mean can be seen in Equation 3.3.

µc =

∑T
t=1 xc(t)

T
(3.3)

In the case where X1 = X2 the covariance reduces to the variance shown in Equa-
tion 3.4.

Cov(X1, X1) =
(X1 − µ1)(X1 − µ1)>

T
(3.4)

A covariance matrix provides the covariance between all variable pairs. Equation 3.5
shows the covariance matrix Σ, where the i, jth entry in the matrix is the covariance
between Xi and Xj. In the cases where i = j, meaning the diagonal of the matrix,
it is the variance of variable Xi.

Σ =
(X − µ)(X − µ)>

T
=


σ1,1 σ1,2 · · · σ1,C

σ2,1 σ2,2 · · · σ2,C
...

...
. . .

...
σC,1 σC,2 · · · σC,C

 (3.5)

Equation 3.5 can be simplified into the expression in Equation 3.6 if the matrix X
is a mean corrected matrix.

Σ =
(X)(X)>

T
=


σ1,1 σ1,2 · · · σ1,C

σ2,1 σ2,2 · · · σ2,C
...

...
. . .

...
σC,1 σC,2 · · · σC,C

 (3.6)

12



Matrix definitions

This section describes some of the notation used in Riemannian Geometry [4]. The
space of all real square matrices is defined as M(n), where n denotes the dimension
of a given matrix e.g. M(4) denotes the space of real square matrices of dimension
4× 4. The space of all symmetric matrices in M(n) is defined as in Equation 3.7.

S(n) = {S ∈M(n), S> = S} (3.7)

The space of all symmetric positive-definite matrices in S(n) also known as SPD
matrices is given by P (n), formally defined as seen in Equation 3.8.

P (n) = {P ∈ S(n), uTPu > 0,∀u ∈ Rn} (3.8)

A matrix is said to be positive-definite if it is diagonalizable with all real posi-
tive eigenvalues [2][4]. A matrix A is diagonalizable if there exists a matrix U of
eigenvectors and a diagonal matrix Λ of eigenvalues so that Equation 3.9 is true.

A = UΛU−1 (3.9)

Finally the set of all invertible matrices in M(n) is defined as Gl(n).

Upper function

The upper() operation is used to convert an n × n symmetrical matrix into an m-

dimensional vector, where m = n(n+1)
2

[23][4]. The upper() operation keeps the
upper triangular part of a symmetrical matrix by vectorizing it. The vectorization
is done by applying a unity weight to the diagonal part and a weight of

√
2 to the off

diagonal part of the symmetrical matrix, as the values in the off diagonal appears
twice in a symmetrical matrix.
Given the symmetrical matrix A seen in Equation 3.10 the the upper() operation
gives the vector seen in Equation 3.11.

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

 (3.10)

upper(A) = [a1,1,
√

2a1,2, · · · ,
√

2a1,n, a2,2, · · · ,
√

2a2,n, · · · , an,n]> (3.11)

Norms

For this project, two different norms will be used, the L2 norm ||a||2 and the Frobe-
nius norm ||A||F , where a denotes a vector and A denotes a matrix
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L2 Norm

The L2 norm is a vector norm defined as ||a||2 =

√
n∑
i=1

|ai|2

The result of the L2 norm yields the length of the vector a.

Frobenius Norm

The Frobenius norm is a matrix norm defined as seen in Equation 3.12, where A is
a matrix.

||A||F =

√√√√ m∑
i=1

n∑
j=1

|ai,j|2 (3.12)

An example of the Frobenius norm calculated on the matrix A from Equation 3.10.

||A||F =
√
|a1,1|2 + |a1,2|2 + · · ·+ |a1,n|2 + · · ·+ |an,1|2 + · · ·+ |an,n|2 (3.13)

Exponential and Logarithmic matrix

For an SPD matrix the exponential matrix is calculated using the eigenvalue de-
composition of the matrix as seen in Equation 3.14.

exp(P ) = Udiag(exp(λ1), · · · , exp(λn))U> (3.14)

While its inverse the logarithm of an SPD matrix is given by Equation 3.15.

log(P ) = Udiag(log(λ1), · · · , log(λn))U> (3.15)

Where U is the eigenvectors and λ1, · · · , λn the eigenvalues of P . The operation
’diag’ reinserts the eigenvalues λ1, · · · , λn into a new diagonal matrix where the off
diagonal contains 0’s.

3.3 Preprocessing

Because the raw signal can contain noise, which can corrupt the data and influence
the analysis negatively, steps will have to be taken to preprocess the data to reduce
the noise. Preprocessing consist of several steps including temporal filters, frequency
filters, and spatial filters.
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Figure 3.3: Window functions: Cosine & Hanning

Temporal Filters

When using temporal filters, the analysis is performed over a sequence of times-
tamps. The goal of using temporal filters is to focus on specific parts of a signal.
To this end, a window function is applied, which emphasizes the signal variations at
a specific point and deemphasizes the rest. The temporal filter smooths the signal
using this window function as a weighted average at each timestamp, so that for
each timestamp, the adjacent timestamps affects the magnitude. Depending on the
goal of the filtering, different window functions can be uses, for example, as seen in
Figure 3.3, either a Cosine window or a Hann window can be used. Many others
exist with a couple described in [16], and are all interchangeable.

Fourier Transform

The brain emits several different wave lengths each associated with different me-
chanics or mental activities [24]. It can be useful to discard or deemphasize some
of these wavelengths depending on what brain functions are being analyzed. The
brain waves can be divided into frequency bands as described in Section 3.1. Using
a Fourier transform, the frequencies can be extrapolated from the signal, in other
words the Fourier transform can take the signal from the temporal domain, P(t) in
Figure 3.4, and convert it to the frequency domain, P(v) in Figure 3.4.

When the operations, which should be applied on the frequency domain, have been
applied, the data needs to be transformed back. This is called an inverse Fourier
transform, which takes the extrapolated frequencies and combines them into the
now filtered signal, i.e. from P(v) to P(t) in Figure 3.4.
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Figure 3.4: Example of frequency range, taken from [18]

Subsampling

Subsampling can be used to counter act the reaction time of the subject, as when
a test is performed, the subject is shown an indication of what to do, but as the
subject first have to interpret the indication and then execute the task, there can
be some delay, which can be removed by using sumsampling to remove the delay.

Frequency Filters

After having converted the signals to the frequency domain, specific frequencies can
now be discarded with the help of frequency filters. There exists several different
types of frequency filters, though only High-Pass and Low-Pass filters will be used
in this project. These, as the name implies, lets either high or low frequencies
through the filter, and the rest are deemphasized, as seen in Figure 3.5. We will use
the Butterworth implementation, as explained in [21]. According to the hardware
specifications for the Emotiv EPOC EEG Reader as explained in Section 1.2, the
bandwidth for the reported signal is between 0.2Hz and 45Hz. Furthermore as
explained in Section 3.1, certain ranges within the bandwidth are more important
than others, when specific brain functions are active. The Low-Pass filter is applied
with 30Hz as the restriction, and the High-Pass with 8Hz as the restriction. The
brainwaves covered by the frequencies within the range of 8 and 30Hz are the Alpha,
Beta and Mu waves, which as described in Section 3.1 are the active and mindless
states of brain activity.

The signal seen in Figure 3.6 have a lot of small frequencies. When frequency filters
are applied with the above settings, the resulting signal can be seen in Figure 3.7,
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Figure 3.5: Illustration of High-Pass filter & Low-Pass filter

Figure 3.6: Illustration of signal before frequency filters

Figure 3.7: Illustration of signal after frequency filters

with the signal significantly smoothed.

3.4 Feature Extraction

Feature extraction is the process of reducing the number of channels to improve
the analysis using the information from Section 3.1. As such the process of feature
extraction includes selecting the channels with the highest variance and transforming
the data to feature vectors for the classification. The process of selecting channels
is not done explicitly though, but implicitly by feature extraction methods, which
will be explained in this section.
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Common Spatial Pattern

Common Spatial Pattern (CSP) [15][8], is a spatial filter method and one of the
most used methods in BCI systems. CSP is used to improve the distinction between
two classes, such that the classification can better distinguish between these two in
a new signal.
For the increase in distinction, CSP needs to be trained, which is done using two
sets of trials, representing the two classes. Using features created from the data,
the training creates a set of weights, which can be sorted by how well each of the
features distinguish between the two classes. The training can be done in Matlab
using the eig command to solve the eigenvalue problem in Equation 3.16, which
implements simultaneous diagonalization of the covariance matrices Σ1 and Σ2. The
simultaneous diagonalization is visualized in Figure 3.8 and Figure 3.9, where the
red points being class 1 and the blue class 2. The first image in Figure 3.8 displays
the variance of the two classes before the eig command and Figure 3.9 displays the
points after the eig command where the simultaneous diagonalization have been
performed, which aligns and rotates the coordinate system such that large variances
are axis-aligned.

[V D] = eig(Σ1,Σ1 + Σ2) (3.16)

The resulting matrices V and D are the eigenvectors and corresponding eigenvalues
respectively. The eigenvectors in V chosen to construct the weight matrix, are those
with the highest and lowest variance found in matrix D. Normally one choose 2m
eigenvectors for the weight matrix, where m is the number of eigenvectors chosen
from each end, with m typically being between 1 and 3.

Y = WX (3.17)

When this weight is used on a new set of data using Equation 3.17, where W is the
weight and X the signal data, the variance for one class will be maximized, while
minimizing it for the other. CSP can then select the features or channels that best
distinguish the classes, and extract them.

3.5 Euclidean Classification

Classification is the task of classifying observations to specific classes e.g. is the
signal a left or right hand movement signal. In our previous work [16] two linear
classification methods were studied, namely linear discriminant analysis (LDA) and
support vector machines (SVM). The performance of the two classifiers yielded re-
sults that were similar, and therefore in this project we will limit our attention to
LDA. This section gives a brief introduction to LDA and the theory.
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Figure 3.8: Before CSP [8] Figure 3.9: After CSP [8]

Linear Discriminant Analysis

Linear discriminant analysis [11] is, as the name suggests, a linear classifier. A
linear classifier is a classifier, which divide the data, by separating it with a linear
hyper-plane. Figure 3.10 illustrates an example of a binary classification problem.
The blue and green dots represent the training data for each class, and the black
bar the hyperplane seperating the data.

The process of evaluating data according to a hyper-plane, is done using a number
of equations, one for each class. These equations evaluates how a new data point’s
location compares to the trained classes. An equation will result in a higher value,
if the point is closer to the center of the trained classes points. Equation 3.18 is the
function used, with µi as the mean for class i, ΣΣ−1 as the inverse pooled covariance
matrix, pi as the influence of the class and Y as the data to be classified.

The class function which evaluates to the greater value, is the predicted class for
the new data point.

f(i) = µi × ΣΣ−1 × Y > − 0.5× µi × ΣΣ−1 × µ>i + ln(pi) (3.18)

3.6 Euclidean Regression

In our previous work [16], classification theory have been studied and used to develop
a BCI system for simple binary classification tasks. In this section we will extend
the study further, by looking at another way to output results from a BCI system,
namely regression.
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Figure 3.10: Example of binary separation

The difference between classification and regression is the predicted result. A classi-
fication method returns a prediction of which class the data belongs to. Regression,
on the other hand, is used to predict a continuous value such as the magnitude
of some data, with the class already being known, e.g. how fast the right hand is
moving.
It is clear that these two different ways of evaluating a signal are used for two
different scenarios. Given the problem statement in Chapter 2, we are interested in
knowing how fast a user moves his arm, which means regression is a relevant topic
to investigate.
Just as classification, regression is used to estimate the relationship between vari-
ables, to predict data.

Linear Regression

In linear regression the goal is to find a linear equation of the form seen in Equa-
tion 3.19 which models the relationship between the dependent variable and a vector
of explanatory variables.

y = β0 + β1x1 + β2x2 + · · ·+ βPxP (3.19)

In Equation 3.19 the dependent variable is y, which is the output and the p explana-
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tory variables are x1, x2, . . . , xP , which is the input. The remaining variables β0 is
the intercept and β1, β2, . . . , βP are the regression coefficients.

Figure 3.11: Linear Regression

An example of a linear regression model can be seen in Figure 3.11. The blue dots
in the figure indicate the actual points of the data and the red line is the linear
equation found to estimate the data.

A common method for fitting a regression line is least-squares.

Least-Squares regression

Least-squares is a method for estimating a solution. The idea is to minimize the
sum of squared errors in the results of every equation.

The sum of squared errors is the measure of discrepancy there exists between a value
estimated by the model and the observed value in the data.

The goal is to minimize the sum of squared error, denoted SSE. This can be achieved
by solving the minimization problem in Equation 3.20, where there are P explana-
tory variables.

SSE = arg min
β0,...,βP

n∑
i=1

(yi − β0 − β1x1i − · · · − βPxPi)2 (3.20)

Basis Function

One thing to note is that the linear regression does not have to be linear in the
explanatory variables, but instead must be it in the parameters β defined as (β =
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(β0, ..., βP )). This means that a basis function φ() can be employed on the explana-
tory variables in order to constrain complex and powerful regression models which
are still linear. This gives the linear equation in Equation 3.21, where M denotes
the number of parameters.

y = β0 +
M−1∑
m=1

βmφm(x) (3.21)

The basis function φm(), where m denotes the index of the parameter, where x
is being transformed, e.g. given the 3 parameters(β1, β2, β3) the following basis
functions can be used.

� φ1(x) = x

� φ2(x) = x2

� φ3(x) = x3

Using these feature representations gives the linear equation in Equation 3.22.

y = β0 + β1x+ β2x
2β3x

3 (3.22)

For convenience it can be practical to define the basis function φ0(x) = 1 to simplify
Equation 3.21 into Equation 3.23.

y =
M−1∑
m=0

βmφm(x) (3.23)

Over- and under-fitting

Even though the goal is to find a line fitting the training data, the training data can
also be fitted too well causing overfitting of the data. The example in Figure 3.12
shows how the linear regression line goes through all the points of the training
example, depicted by the dark blue dots. However, even though the estimated
regression line fits the data perfectly, it has large errors on new trials, as depicted
by the light blue dots.
The opposite of overfitting is underfitting. Underfitting happens when a model is
too simple. Thus the goal of finding a regression line for a set of data, should not
be to just have a small sum of squared error on the training data, but also to have
a small sum of squared error on the unseen data.
To help ensure a regression line is not overfitted given a complex linear function,
cross-validation is used. Cross-validation also ensures that the regression line found
using the training data, also yield the best predictive result on new data. If a
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Figure 3.12: Overfitted linear regression

regression line instead is underfitted, it can be beneficial to add more complexity to
the model e.g. by using the basis functions described previously.

Regularization

Regularization is another method that can be used to help prevent overfitting. The
most commonly used regularization methods are known as L1 and L2 regularization.
L1 regularization also called Lasso, is a method that try to sparsify the solution
by pushing parameters to 0, which can also effectively be seen as feature selection
and is useful in situations where many features are used but only a few are rele-
vant. In L1 regularization each of the parameters βp in the calculation of the SSE
in Equation 3.20 where p > 0 is subject to the constraint in Equation 3.24, where∑P

p=1 |βp| is the L1 norm of the vector [β1, · · · , βP ]>, where t ≥ 0 is a tuning param-
eter. The learning algorithm for L1 regularization will equal Equation 3.25, where
the β̂ = (β1, · · · , βP ), and λ ≥ 0 [22].

P∑
p=1

|βp| ≤ t (3.24)

SSE = arg min
β0,...,βp

n∑
i=1

(yi − β0 − β1x1i − · · · − βPxPi)2 + λ||β̂||1 (3.25)

L2 regularization does not sparsify the solution like L1 regularization and is thus
more useful in situations where most features are considered relevant. The definition
of L2 regularization adds a penalty term like L1 regularization, but does not add
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any constraints, meaning none of the features or variables will be pushed to 0. The
L2 regularization method simply adds the L2 norm as described in Section 3.2 to
the learning algorithm in Equation 3.20, giving the new minimization problem in
Equation 3.26, where β̂ = (β1, · · · , βP ), and λ ≥ 0.

SSE = arg min
β0,...,βp

n∑
i=1

(yi − β0 − β1x1i − · · · − βPxPi)2 + λ||β̂||22 (3.26)

3.7 Riemannian Classification

This section describes multi-class classification utilizing Riemannian geometry. In [4]
it is explained, how Riemannian geometry can be used in a multi-class BCI system.
The paper introduces two different methods to achieve this classification. One is
the Minimum Distance to Riemannian Mean (MDRM) method and the other is the
Tangent Space LDA (TSLDA), both of which will be described in this section.
The most common way to use a BCI system, is to have the user record EEG data for
the calibration phase. The EEG data is then used to construct spatial filters using
e.g. CSP. Finally the spatial filters are used to construct feature vectors that are
given to a classifier e.g. LDA. The idea of Riemannian classification is to merge the
spatial filtering and classification into one step by exploiting the covariance structure
of the data.

Riemannian Geometry

In contrast to Euclidean geometry, the Riemannian geometry studies curved spaces.
The spatial brain signals are represented as points on the manifold, where each point
is a covariance matrix, which also means it is a SPD matrix.
where each covariance matrix is a SPD matrix. The space of SPD matrices is a
differentiable Riemannian manifold, which is different but still similar enough to a
linear space to be able to do calculus. The derivatives at a matrix on the manifold
lies in a vector space, which is the tangent space at that point [4]. For each point
on the manifold a corresponding tangent space exists. All the tangent spaces of a
manifold have the same dimension, which is equal to the dimension of the manifold.
The Riemannian manifold and tangent space are m = n(n+1)

2
dimensional, where n

represents the number of electrodes, because the covariance matrix is mirrored on
the diagonal, which means the duplicated data can be removed.
In Figure 3.13, a manifoldM and point P ′s tangent space TP is illustrated. As can
be seen, the vector Si, is a vector corresponding to the distance from point P to
Si, where Si is the point Pi on M, mapped onto the tangent space. Because the
tangent space is a standard Euclidean space, Euclidean distances can be calculated.
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Figure 3.13: Tangent space at point P , Si a tangent vector at P and Γi(t) the
geodesic between p and Pi [4]

As such a standard classification method can be used as well. To be able to go from
the manifold to the tangent space, or vice versa, mapping functions are used, which
is explained later.

Riemannian Geodesic Distance

As seen in Figure 3.13, the path between two point on the Riemannian manifold,
is not a straight line, and the distance can therefore not be calculated as such.
Instead, the path between two points P1 and P2 is defined as Γ(t) : [0, 1] → P (n)
where Γ(0) = P1 and Γ(1) = P2. The length of the path Γ(t) is then defined as
Equation 3.27.

L(Γ(t)) =

∫ 1

0

||Γ̇(t)||Γ(t)dt. (3.27)

The Riemannian geodesic distance between two points, is defined as the minimum
length curve that connects the two points on the manifold, with the simplified length
calculation of the curve defined as Equation 3.28.

δR(P1, P2) = || log(P−1
1 P2)||F =

(
I∑
i=1

log2 λi

)1/2

(3.28)

With the real eigenvalues of the term P−1
i P2 being λi where i = 1...n.

It should be noted, that Equation 3.28 avoids the necessity of find the path Γ and
thus simplifies Equation 3.27.
More information on Riemannian geodesic distance can be found in [4][17].

Exponential Map

A tangent map can be defined for each point P ∈ P (n) as the set of tangent vectors
S. A tangent vector Si can be seen as the derivative at t = 0 of Γi(t) between the
point P and the exponential mapping of Pi as defined in Equation 3.29.
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expP (Si) = Pi = P
1
2 exp(P−

1
2SiP

− 1
2 )P

1
2 (3.29)

The exponential function is used to map a point S1 from the tangent space into a
point on the Riemannian manifold, using the point P as the center of the tangent
space. The pseudocode in Algorithm 1 shows an implementation of the Riemannian
exponential mapping function [13].

Algorithm 1 Riemannian exponential mapping

Input: Initial point P ∈ P (n)
Input: Tangent point S1 ∈ S(n)
Output: expP (S1)

1: Let P = U1Λ1U
>
1 , where U1 and Λ1 is eigenvectors and eigenvalues of P

2: G = U1

√
Λ1

3: Y = G−1S1(G−1)>

4: Let Y = U2Λ2U
>
2 , where U2 and Λ2 is eigenvectors and eigenvalues of Y

5: expP (S1) = (GU2) exp(V2)(GU2)>

The logarithmic mapping defined in Equation 3.30 is the inverse of the exponential
mapping. The logarithmic function is used to map the point P1 from the Riemannian
manifold into a point in the tangent space, using the point P as the center of the
tangent space. The pseudocode in Algorithm 2 shows the implementation [13].

logP (Pi) = Si = P
1
2 log(P−

1
2PiP

− 1
2 )P

1
2 (3.30)

Algorithm 2 Riemannian logarithmic mapping

Input: Initial point P ∈ P (n)
Input: End point P1 ∈ P (n)
Output: logp(P1)

1: Let P = U1Λ1U
>
1 , where U1 and Λ1 is eigenvectors and eigenvalues of P

2: G = U1

√
Λ1

3: Y = G−1P1(G−1)>

4: Let Y = U2Λ2U
>
2 , where U2 and V Λ2 is eigenvectors and eigenvalues of Y

5: logP (P1) = (GU2) log(V2)(GU2)>

As it is not possible to take square root of a matrix, the operation have to be
done on the eigenvalues, similar to the ’exp’ and ’log’ operation. Thus Algorithm
1 and Algorithm 2 is used to describe the actual calculation of Equation 3.29 and
Equation 3.30.
A visual illustration of the mapping can be seen in Figure 3.13, a red and blue
indicator is used for ’Expp(Si)’ and ’Logp(Pi)’ respectively.
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Riemannian Mean

When working in the Riemannian space it is not as straightforward as in the Eu-
clidean space, to find the mean of a set of points. The problem occurs because the
Riemannian space is curved, which complicates the computation.
According to [4] the mean is given by Equation 3.31.

G(P1, ...., Pl) = min
µ∈P (n)

I∑
i=1

δ2
R(µ, Pi) (3.31)

which uses the geodesic distance explained in the subsection Riemannian Geodesic
Distance. The equation finds the µ ∈ P (n) which results in the smallest sum of the
distances between each SPD matrix given to µ. As µ can be any SPD matrix in the
space of SPD matrices, an optimization algorithm must be employed to calculate
the mean.
Such an algorithm is defined in [13] and given as Algorithm 3.

Algorithm 3 Iterative calculation of Riemannian mean

Input: p1, . . . , pN ∈ P (n)
Output: µ ∈ P (n)

1: µ0 = I
2: repeat

3: Xi = 1
N

N∑
k=1

Logµi(Pk)

4: µi+1 = Expµi(Xi)
5: until ||Xi|| <= ε

The algorithm takes a set of SPD matrices as input, and returns an SPD matrix of
same dimensions, which is the estimated mean SPD matrix of the input set in the
algorithm. An initial mean is created, namely an identity matrix. The algorithm
then calculates an arithmetic mean, in line 3, using the logarithmic mapping func-
tion, which can be seen in Equation 3.30. The mapping function uses the currently
calculated Riemannian mean µi as center for a tangent space. The newly calculated
arithmetic mean is then used, using the same tangent space, to find a new Rieman-
nian mean, as seen in line 4. The process of creating new arithmetic means and
moving them to the Riemannian manifold, continues until the norm of the matrix
Xi is below ε, as seen in line 5. This condition is a comparison of the largest singular
value of the distance matrix Xi, and the preset ε. When this condition is met, the
loop exits and the algorithm returns the current Riemannian mean.
The idea of the process of the algorithm can be illustrated as seen in Figure 3.14.
Here the X axis is the norm of the distance matrix and the Y axis is a multi dimen-
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sional axis of all the available features. The goal is then to get ||Xi|| below the line
of epsilon.

Figure 3.14

The value ε is what affects the runtime and the precision of the algorithm. The closer
towards 0 the value is, the closer to the true mean of the matrices the estimated
mean is, but this will result in extended amounts of iterations of the loop as well.
Therefore ε should be tested, to find an optimal value depending on the precision
desired and the time available for the training session.

Classification on the Riemannian Manifold

One simple way to classify on the Riemannian manifold is by using the method
MDRM [4], which can be seen in Algorithm 4. This method works directly on the
Riemannian manifold, and yields results with an accuracy comparable to a CSP
LDA combination [4].

The MDRM method works by comparing the Riemannian geodesic distance, from
the data in question, to the trained means of the available classes. The pseudo code
for this method can be seen in Algorithm 4.

The algorithm works by computing the Riemannian mean, as seen on line 3-5, of
the set of sample covariance matrices (SCM), which is calculated on line 1, of each
class that were given for training.

The computed means are then used on runtime, as a comparison to the SCM of new
data, which is calculated on line 2, in order to predict the class it belongs to. This
prediction is based of the distance from the SCM to the different class means. The
label returned as the prediction of the new data, belongs to the class of the mean
with the minimum distance to the SCM being classified, as per line 6 and line 7.
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Algorithm 4 Minimum Distance to Riemannian Mean

Input: a set of trials Xi of K different known classes
Input: X an EEG trial of unknown class
Input: J(k) the set of indices of the trials corresponding to the k-th condition
Output: k̂ the estimated class of test trial X

1: Compute SCMs of Xi to obtain Pi (see Equation 3.6)
2: Compute SCM of X to obtain P
3: for k = 1 to K do
4: P

(k)
G = G(Pi, i ∈ J(k)) (see Equation 3.31)

5: end for
6: k̂ = argminkδR(P, P k

G)

7: return k̂

Classification in the Riemannian Tangent Space

An alternative to MDRM, is to use recognized classification methods such as LDA.
The problem is that these methods requires the vectors used, to be in Euclidean
space and therefore does not work with the current points, which are in Rieman-
nian space. As explained above, the logarithmic mapping, is a method to create a
Euclidean plane from a point in Riemannian space. Using this method, the points
in Riemannian space can get transfered to a shared Euclidean plane, and thus used
with the Euclidean methods.

Algorithm 5 is the pseudo code for creating tangent vectors for a set of points in
the Riemannian space, which works by first computing the Riemannian mean PG

on line 1.

The mean is used to get the best possible plane for the classification methods.
Because the points needs to be on the same plane, i.e. a tangent space created
with the same center point, using the mean will result in the least distance from the
points to the plane.

On line 3 the logarithmic mapping is used, with the mean as center, to create a
tangent vector for each point given as input.

The vectors returned from the algorithm are then used to train the classifier, e.g.
LDA. The mean created is saved, and used to create new vectors of a new data set,
as it represents the point of which the tangent space is created.

When new data should be classified, a SPD matrix is first created. This matrix is
used in collaboration with the previously calculated Riemannian mean, to create a
new vector, using the same calculation as in line 3 in Algorithm 5. This vector is
then classified as usual, using the trained LDA classifier.
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Algorithm 5 Labeled vectors creation

Input: a set of I SPD matrices Pi ∈ P (n)
Output: a set of I vectors Si

1: PG = G(Pi, i = 1 . . . I)
2: for i = 1 to I do
3: si = upper(P

− 1
2

G LogPG
(Pi)P

− 1
2

G )
4: end for
5: return Si

3.8 Preparing the data for LDA

As explained in Section 3.2, the dimension of the vector, created from Algorithm
5 in Section 3.7, is m = n(n+1)

2
. Because not all the dimensions contribute, or

have varying degrees of contribution to the analysis, reducing the dimensionality,
improves the analysis.

This reduction is done, using a method called principal component analysis (PCA)
[9]. As the name implies, the method finds the principal components, i.e. the
dimensions which best separates the data.

To compare the vectors returned from Algorithm 5, they are combined into a matrix
S = [s1, · · · , sI ], where I denotes the number of si vectors created in Algorithm 5.
Similar to CSP as explained in Section 3.4, the variance of a square data matrix can
be found using eigen decomposition. The matrix S is not guaranteed to be square
though, so instead a method called singular value decomposition (SVD) is used.

The formula for SVD can be seen in Equation 3.32, where U is a m × m matrix
of left singular-vectors, V a I × I matrix of right singular-vectors and Λ a m × I
diagonal matrix containing, the singular values of the matrix S.

S = UΛV (3.32)

With the matrix U , found using Equation 3.32, the singular value decomposition
can be used to create an orthogonalized tangent space, where the variables are
uncorrelated using Equation 3.33.

S0 = U>S (3.33)

With the transformed variables in the orthogonal space S0, a one-way analysis of
variance (one-way ANOVA) [20], can be applied. This analysis will calculate a p-
value for each variable. The p-value is a measurement of the statistical significance
of a given variable, which can be used to determine, whether or not the variable
should be used during the classification stage.
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A false discovery rate [7] threshold is applied on the p-values for the variables, called
a q-value, and will in this way reduce the number of variables. The q-value can be
adjusted, to avoid having too many or too few variables in the end.

3.9 Riemannian Regression

Like Euclidean regression, explained in Section 3.6, the goal of Riemannian regres-
sion is to find a correlation between the EEG readings and a continuous value, such
that a new reading can be translated to the corresponding value. As with the Eu-
clidean classification, explained in Section 3.5, the Euclidean regression does not
work in Riemannian space. Therefore other means must be employed.

Regression in the Riemannian Tangent Space

To enable the usage of Euclidean regression methods, it is necessary to transform
the points from the Riemannian manifold into the tangent space similarly to how it
was done in Section 3.7 where the goal was to use Euclidean classifications methods.
Using the same method as TSLDA, a mean point on the Riemannian manifold is
used as the center for a tangent space. Vectors can now be created using Algorithm
5 in Section 3.7. One part is different though. In TSLDA the mean point used,
was for the entire training set. The reason being, the classification should cover all
classes possible on the same tangent space. When using regression, the assumption
is that the class is predetermined, therefore a mean point for a specific class, is used
instead. Instead of using only one mean point as in TSLDA, one for each class
will be used, similar to MDRM, which in turn means a tangent space for each class
will be created. Inspired by TSLDA, this method will henceforth be designated as
tangent space regression (TSREG). With TSLDA, various methods can be employed

to reduce the number of dimensions of the vectors, as the base size is n(n+1)
2

, as
explained in Section 3.8. For regression, the same idea can be used, of reducing the
number of dimensions, but instead of PCA, regression can use regularization, which
is explained in Section 3.6.

3.10 Combined Classification & Regression

As explained in Chapter 2, the goal is to combine both predictor tasks, classification
and regression.

Classification is used to predict the class of the signal, while regression is used to
predict the magnitude. As both predictor tasks will be used on the same signal, the
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training data will need to be labeled with both the corresponding class, as well as
the signal’s magnitude.
The choice of classification method does not change the structure of the system.
The method used will be found through testing, to ensure the best result. For
classification a single trained classifier is sufficient. For regression two models (see
Section 3.6) are needed, one for each of the possible classes e.g. a regression model for
the speed of left hand movement, and another for the speed of right hand movement.
A model is created for each of the possible classes to be able to predict the magnitude
of a new signal, no matter the classification result.
When using the trained system, the analysis will consist of several steps. First the
preprocessing, as explained in Section 3.3 prepares the data. Then the classification
method is used to predict the class, and finally the data is evaluated, using the
corresponding class’ regression model. This process is illustrated in Figure 3.15.

Figure 3.15
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CHAPTER 4

IMPLEMENTATION

In this chapter, the implemented algorithms and functions are explained. The algo-
rithms are implemented according to the theory in Chapter 3. Because some of the
algorithms have been explained in our previous work [16], they will not be explained
here. Some exceptions are made, for implementations that have changed, which will
be explained in their respective sections.

4.1 Matlab

The API matlabcontrol [3] is used to connect to Matlab, as many of the functions
are implemented in Matlab. In Listing 4.1 it is shown how to connect, which makes
it possible to send commands from Java to Matlab.

Listing 4.1: Connecting to matlab
1 MatlabProxyFactory f a c t o r y = new MatlabProxyFactory ( ) ;
2 MatlabProxy proxy = f a c t o r y . getProxy ( ) ;

Through the created proxy it is now possible to send commands to Matlab using
the eval() method, an example of this can be seen in Listing 4.2.

Listing 4.2: Example of using eval
1 proxy . eva l ( ”a = 1 + 2” ) ;

The example in Listing 4.2 shows the command ’a = 1 + 2’ being send via the
proxy to Matlab to be executed.
In order to do calculations on a matrix from Java in Matlab, it needs to be converted
to a type that Matlab can work with. This is achieved using MatlabTypeConverter

as shown in Listing 4.3, where a jagged array in Java representing a matrix is saved
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as a variable named matrix in Matlab so it can be manipulated in the Matlab
environment.

Listing 4.3: Example of using the MatlabTypeConverter
1 double [ ] [ ] matrixJava = new double [ ] [ ] { {1 , 2} , {2 , 1} } ;
2
3 MatlabTypeConverter conv = new MatlabTypeConverter ( proxy ) ;
4 conv . setNumericArray ( ” matrix ” , new MatlabNumericArray ( matrixJava , n u l l ) ) ;
5
6 proxy . eva l ( ” r e s u l t = inv ( matrix ) ” )

Finally to extract the result from the previous example one again needs to make
use of the MatlabTypeConverter, as shown in Listing 4.4. The result is stored in a
type known as a MatlabNumericArray, which can be used in java.

Listing 4.4: Getting the result
1 MatlabNumericArray r e s u l t = conv . getNumericArray ( ” r e s u l t ” ) ;

4.2 Riemannian basic function

Several functions are required for both MDRM and TSLDA, and therefore does not
belong to either, but to a more general understanding of Riemannian geometry. This
includes the functions for moving between Euclidean space and Riemannian space
and method to calculate the mean in Riemannian space.

Exponentials

The exponential mapping function is used to find a point on the Riemannian man-
ifold given a point in the tangent space, and is covered in Section 3.7.

The implementation for the exponential function, can be seen in Listing 4.5, takes
two inputs S1 and P, where S1 is a point in tangent space and P is the center point
of the tangent space.

Listing 4.5: Exponential mapping
1 conv . setNumericArray ( ”S1” , S1 ) ;
2 conv . setNumericArray ( ”P” , P) ;
3
4 proxy . eva l ( ” [ U1 Lambda1 ] = e i g (P) ; ” ) ;
5 proxy . eva l ( ”G = U1* s q r t (Lambda1) ; ” ) ;
6 proxy . eva l ( ”Y = inv (G) *S1* inv (G) ’ ; ” ) ;
7 proxy . eva l ( ” [ U2 Lambda2 ] = e i g (Y) ; ” ) ;
8 proxy . eva l ( ”P1 = (G*U2) *diag ( exp ( diag (Lambda2) ) ) *(G*U2) ’ ; ” ) ;
9

10 re turn conv . getNumericArray ( ”P1” ) ;
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Logarithms

The logarithmic mapping function is the inverse of the exponential function. Given
a point on the Riemannian manifold it maps it to a point in the tangent space.
The implementation for the logarithmic function, can be seen in Listing 4.6, takes as
the exponential function two inputs P1 and P, where P1 is a point on the Riemannian
manifold and P is the center of the tangent space.

Listing 4.6: Logarithmic mapping
1 conv . setNumericArray ( ”P1” , P1) ;
2 conv . setNumericArray ( ”P” , P) ;
3
4 proxy . eva l ( ” [ U1 Lambda1 ] = e i g (P) ; ” ) ;
5 proxy . eva l ( ”G = U1* s q r t (Lambda1) ; ” ) ;
6 proxy . eva l ( ”Y = inv (G) *P1* inv (G) ’ ; ” ) ;
7 proxy . eva l ( ” [ U2 Lambda2 ] = e i g (Y) ; ” ) ;
8 proxy . eva l ( ”S1 = (G*U2) *diag ( l og ( diag (Lambda2) ) ) *(G*U2) ’ ; ” ) ;
9

10 re turn conv . getNumericArray ( ”S1” ) ;

Riemannian mean

As explained in Section 3.7 the task of calculating a mean in Riemannian space, is
not as easy as in Euclidean space.
The variable ClassMatrices is the collection of SPD matrices given as parameters
which are used to calculate the mean. This collection is first checked if there is only
one matrix or less, which then just return the first elements in the list, either null

if empty or the single matrix, which is also the mean.
A base mean is calculated, just an identity matrix to start from, and a base distance
for all SPD matrices in ClassMatrices to this mean.
As the base mean is just a starting point, a new mean is calculated, using the
function ExponentialMappingOfPoint, and the while loop is entered on line 27 in
Listing 4.7. In the while loop, the current mean is set to the previously calculated
mean on line 28, and using this the next distance is calculated. At this point
the mean for the next iteration is calculated. The check for the while loop is
then performed, which is a comparison between the norm of the distance matrix,
calculated from the SPD matrices and the current mean, and the constant epsilon
value. If the norm is greater than epsilon, the loop is ended and the mean used for
the distance calculation is returned.

Listing 4.7: Riemannian mean
1 // Ret r i eve matlab connect i ons
2 MatlabProxy proxy = Matlab . getProxy ( ) ;
3 MatlabTypeConverter conv = Matlab . getConverter ( ) ;
4
5 // Exit i f wrong input
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6 i f ( C las sMatr i ce s . s i z e ( ) <= 1) {
7 re turn Clas sMatr i ce s . get (0 ) ;
8 }
9

10 // Var iab le to compare wiht norm
11 double e p s i l o n = 0.005 d ;
12 // Amount o f channe l se
13 channe l s = Clas sMatr i ce s . get (0 ) . getLengths ( ) [ 0 ] ;
14
15 // Create i d e n t i t y matrix
16 proxy . eva l ( ”CurrentMean = eye ( ” + channe l s + ” ) ; ” ) ;
17
18 MatlabNumericArray currentMean = conv . getNumericArray ( ”CurrentMean” ) ;
19 MatlabNumericArray nextMean ;
20
21 // Ca lcu la te f i r s t d i s t ance between po in t s and c u r r e n t l y used mean
22 MatlabNumericArray cur rentDi s tance = CalculateDistance2Mean ( ClassMatr ices ,

currentMean ) ;
23
24 // Ca lcu la te next p o s s i b l e mean
25 nextMean = ExponentialMappingOfPoint ( currentMean , cur r entDi s tance ) ;
26
27 do {
28 currentMean = nextMean ;
29 cur rentDi s tance = CalculateDistance2Mean ( ClassMatr ices ,

currentMean ) ;
30
31 nextMean = ExponentialMappingOfPoint ( currentMean , cur r entDi s tance ) ;
32 } whi le ( Matr ixOperat ions . Norm( cur rentDi s tance ) > e p s i l o n ) ;
33
34 re turn currentMean ;

4.3 Upper Operation

This section covers the implementation of the upper operation described in Sec-
tion 3.7 which is used to convert the upper triangular part of a symmetrical matrix
into a vector. The implementation of upper can be seen in Listing 4.8.

Listing 4.8: Upper operation
1 i n t dimension = ( matrix . l ength * ( matrix [ 0 ] . l ength + 1) ) / 2 ;
2
3 double [ ] sVector = new double [ dimension ] ;
4
5 i n t mIndex = 0 ;
6
7 f o r ( i n t i = 0 ; i < matrix . l ength ; i++) {
8 sVector [ mIndex ] = matrix [ i ] [ i ] ;
9 f o r ( i n t j = i + 1 ; j < matrix [ 0 ] . l ength ; j++) {

10 mIndex++;
11 sVector [ mIndex ] = Math . s q r t (2 ) * matrix [ i ] [ j ] ;
12 }
13 mIndex++;
14 }
15
16 re turn sVector ;
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On line 1 in Listing 4.8 the length of the vector is calculated using the formula from
Section 3.7 that says the length of the vector is m calculated as n(n+1)

2
where n is

the electrode count.

The final result after having run through the matrix in the for loop is a vector
where the diagonal gets a unity weight applied, while the off diagonal gets a weight
of
√

(2) applied.

4.4 Temporal function

The temporal smoothing function used in this implementation is a Hanning Window
[16]. The length of the window is the same as the length of the signal. In line
5 the algorithm iterates each timestamp of the signal sample. For each of these
timestamps, a weight or modifier is calculated. This weight is calculated by taking
half the length of the window, to each side of the current point, as seen in line 8.
As the window is moved over each timestamp, it is not guaranteed that the window
does not exceed the range of the data set. Because of that, we check in line 9, the
current modifier. If the condition is true, the modifier value is calculated and saved
in line 10 and applied in 13, as well as added to a joint modifier value in line 12.
This is done such that the correct divider can be used in line 16, to calculate the
new value. And lastly, in line 17 the modified value is saved in the data set.

1 double currentValue = 0 ;
2 double cu r r en tMod i f i e r = 0 ;
3 double mod i f i e rD iv ide r = 0 ;
4
5 f o r ( i n t i = 0 ; i < data . s i z e ( ) ; i++) {
6 currentValue = 0 ;
7 mod i f i e rD iv ide r = 0 ;
8 f o r ( i n t N = −1 * ( data . s i z e ( ) / 2) + 1 ; N < data . s i z e ( ) / 2 ; N++) {
9 i f ( i + N >= 0 && i + N < data . s i z e ( ) ) {

10 cur r en tMod i f i e r = 0 .5 * (1 − Math . cos ( (2 * Math . PI * (N +
( data . s i z e ( ) / 2) ) ) / ( data . s i z e ( ) ) ) ) ;

11
12 mod i f i e rD iv ide r += cur r en tMod i f i e r ;
13 currentValue += data . get ( i + N) * cu r r en tMod i f i e r ;
14 }
15 }
16 currentValue /= mod i f i e rD iv ide r ;
17 data . s e t ( i , currentValue ) ;
18 }

This implementation, and the implementation in [16], have been tested with several
different data set, but was found to result in worse classification each time. Therefore
it will not be used in the final tests.
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4.5 Common Spatial Pattern Implementation

This section covers the implementation of the Common Spatial Pattern method,
described in Section 3.4, and follows the implementation described in our previous
work [16] closely. The code consists of two primary functions trainCSP() and
applyCSP(). the function trainCSP() is used during the calibration of the BCI
system and creates a weight matrix to be used during the feedback phase. The
function applyCSP() is used to apply the weight data to some new data, to create
a feature vector to be classified. The creation of the feature vector is shown in
Listing 4.9 and follows Equation 4.1.

Listing 4.9: Extraction of feature vector
1 f o r ( i n t i = 0 ; i < Z . l ength ; i++) {
2 nominator = ca l cVar iance (Z [ i ] ) ;
3 double denominator = 0 ;
4
5 f o r ( i n t j = 0 ; j < Z . l ength ; j++) {
6 denominator += ca l cVar iance (Z [ j ] ) ;
7 }
8
9 f ea tu reVec to r [ i ] = Math . log10 ( nominator / denominator ) ;

10 }

fp = log

(
var(Zp)∑2m
i=1 var(Zi)

)
(4.1)

In Equation 4.1 the term Zp refers to the pth row of the matrix Z of CSP filters, with
p varying from 1 to 2m and the operation var(.) gives the variance of the input.

4.6 Linear Discriminant Analysis

In our previous work [16] Matlab have been used to train and also classify data.
To train the classifier the following Matlab method is called fitcdiscr(data,

labels) where data is a matrix consisting of rows corresponding to feature vec-
tors and columns trials. The labels are the class the data belongs to, where each
label corresponds to one trial in the data. The result of the function call is a
classification object, containing the information of how data patterns look like for
each class. When classifying, this object is used to predict the class data belongs to
with the following function predict(LDAClassifier, dataToBeClassified). The
LDAClassifier is the object computed from the test data and dataToBeClassified

is the data we want to classify.

The implementation of LDA are split into two methods LDA.train() and LDA.classify()

which are shown in Listing 4.10 and Listing 4.11 respectively.
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Listing 4.10: Linear Discriminant Analysis Training
1 pub l i c s t a t i c void t r a i n ( ArrayList<double []> data , i n t [ ] l a b e l s ) throws

MatlabInvocat ionExcept ion {
2
3 .
4 .
5 .
6
7 // Sto r e s the v a r i a b l e s in the Matlab environment
8 conv . setNumericArray ( ” data ” , dataNumericArray ) ;
9 conv . setNumericArray ( ” l a b e l s ” , labelsNumericArray ) ;

10
11 // Creates the c l a s s i f i e r with the s to r ed v a r i a b l e s in Matlab
12 proxy . eva l ( ” LDAClass i f i e r = f i t c d i s c r ( data , l a b e l s ) ; ” ) ;
13 }

The method train shown in Listing 4.10 trains the LDA classifier. The methods
takes an ArrayList of vectors and an array of same dimension containing labels cor-
responding to each entry in the ArrayList of vectors. After some type conversions
the variables are stored in a Matlab environment on line 8-9. Next the classifier is
trained using Matlab on line 12. After this step a trained LDA classifier is stored in
Matlab and is ready to be used to predict new data. The method classify is shown
in Listing 4.11 and is used to classify data after the classifer is trained. The method
takes as input an ArrayList of vectors containing data and returns an integer array
of the same size as the input ArrayList, containing a classification result (e.g. 0 or
1) for each entry in the data being classified. On line 8 the Matlab method predict

is called, using the LDAClassifier object, created when training the classifier and
the data to be predicted. On line 14-18 the result is extracted and returned.

Listing 4.11: Linear Discriminant Analysis Classify
1 pub l i c s t a t i c i n t [ ] c l a s s i f y ( ArrayList<double []> data ) throws

MatlabInvocat ionExcept ion {
2
3 .
4 .
5 .
6
7 // C l a s s i f y us ing the c l a s s i f i e r ob j e c t in Matlab
8 proxy . eva l ( ” LDAClas s i f i ca t i onResu l t = p r e d i c t ( LDAClass i f ier ,

dataToBeClass i f i ed ) ; ” ) ;
9

10 // Ret r i eve the r e s u l t
11 double [ ] tmpLDAClass i f i cat ionResult = ( double [ ] )

proxy . ge tVar i ab l e ( ” LDAClas s i f i ca t i onResu l t ” ) ;
12
13 // Convert to i n t e g e r array
14 i n t [ ] LDAClas s i f i ca t i onResu l t = new i n t [ tmpLDAClass i f i cat ionResult . l ength ] ;
15 f o r ( i n t i = 0 ; i < tmpLDAClass i f i cat ionResult . l ength ; i++) {
16 LDAClas s i f i ca t i onResu l t [ i ] = ( i n t ) tmpLDAClass i f i cat ionResult [ i ] ;
17 }
18 re turn LDAClas s i f i ca t i onResu l t ;
19 }

39



4.7 Minimum distance to Riemannian mean

The implementation of the MDRM method follows the theory as described in Sec-
tion 3.7 under ’Classification in the Riemannian Manifold’.

The method is divided into two parts, a calibration phase and a runtime phase. In
the calibration phase the Riemanninan mean is found for the desired classes, while
in the runtime phase, the new data is checked up against the Riemannian means to
find the class to which the distance is shortest.

Calibration phase

The code in Listing 4.12 shows how for each class the corresponding Riemannian
mean is found. The list classSCMs contains the covariance matrices for each class,
such that the method classSCMs.get(i) returns all the covariance matrices for
class i. Finally the mean calculated for a class is stored in the list classMeans.

Listing 4.12: Calculate Riemannianm ean for each class
1 classSCMs . s i z e ( ) ;
2 f o r ( i n t i = 0 ; i < c lassCount ; i++) {
3 MatlabNumericArray meanPoint =

Int r in s i cMeanOfDi f fu s i onTensor s ( classSCMs . get ( i ) ) ;
4 c lassMeans . add ( meanPoint ) ;
5 }

Runtime phase

During the runtime phase new data is given as input, to be classified. The data’s dis-
tance to the different class means are compared in order to determine the class it be-
longs to, as shown in Listing 4.13. The data is given to the method GeodesicDistance()

as a parameter, together with the class mean, if the distance to the mean is shorter
than the current mean, the class is stored. When all classes have been tested, the
class with the shortest distance will be returned as the prediction.

Listing 4.13: Classify new data
1 // f i n d minimum d i s t ance to determine c l a s s o f data
2 f o r ( i n t i = 0 ; i < c lassCount ; i++) {
3 double d i s t ance = Geodes icDistance ( classSCM , classMeans . get ( i ) ) ;
4
5 i f ( d i s t ance < currMinDistance ) {
6 currMinDistance = d i s t anc e ;
7 c l a s s L a b e l = i ;
8 }
9 }
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4.8 Tanget space mapping

This section covers the implementation of the mapping from the Riemannian space
to the tangent space, the reason for this, is to enable the use of methods that rely
on the Euclidean space e.g. LDA and linear regression.
The method for converting the points in the Riemannian manifold represented as
matrices to an equivalent vector in tangent space can be seen in Listing 4.14.

Listing 4.14: Tangent Space Mapping
1 conv . setNumericArray ( ”SPDMeanPointModified” , meanPoint ) ;
2 proxy . eva l ( ” [U Delta ] = e i g ( SPDMeanPointModified ) ; ” ) ;
3 proxy . eva l ( ”G = U* s q r t ( Delta ) ; ” ) ;
4 proxy . eva l ( ”SPDMeanPointModified = inv (G) ” ) ;
5
6 // L i s t to s t o r e tangent v e c to r s in
7 ArrayList<double []> tangentVectors = new ArrayList<double [ ] > ( ) ;
8
9 // Create tangent ve c t o r s from SPDs

10 f o r ( i n t i = 0 ; i < SPDs . s i z e ( ) ; i++) {
11 MatlabNumericArray tmp = LogarithmicMappingOfPoint ( meanPoint , SPDs . get ( i ) ) ;
12 conv . setNumericArray ( ” LogResult ” , tmp) ;
13 proxy . eva l ( ” InnerUpperResult = SPDMeanPointModified * LogResult *

SPDMeanPointModified” ) ;
14 MatlabNumericArray InnerUpperResult = conv . getNumericArray ( ” InnerUpperResult ” ) ;
15 tangentVectors . add ( upperOperation ( InnerUpperResult . getRealArray2D ( ) ) ) ;
16 }
17
18 // Return the tangent ve c t o r s
19 re turn tangentVectors ;

The code as shown in Listing 4.14 follows the pseudocode of Algorithm 5 in Sec-
tion 3.7 and goes through each covariance matrix that is stored in the ArrayList

named SPDs and applies the algorithm. The resulting list tangentVectors is then
returned containing a tangent space vector corresponding to each of the points in
the Riemannian manifold.

4.9 Tangent Space Linear Discriminant Analysis

The implementation of Tangent Space Linear Discrimiant Analysis combines the
mapping of points into tangent space (see Section 4.8) and LDA (see Section 4.6).
The implementation of the TSLDA method can be split into a calibration phase
and a runtime phase just as the Minimum Distance to Riemannian Mean method
in Section 4.7.

Calibration phase

During the calibration phase the labeled data is gathered in a list and converted
into covariance matrices. Based on these covariance matrices a mean point is found
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to be used in the mapping of points into tangent space. The implementation in
Listing 4.15 shows how this is achieved, where first the SCM’s for all classes stored
in classSCMs are passed to the function calculateMeanForEntireSet() for a mean
point to be calculated, as can be seen on line 2 in Listing 4.15.

Listing 4.15: Calculate mean and tangent space mapping
1 // Ca lcu la te riemannian mean f o r whole data s e t
2 Riemannian . ca lcu lateMeanForEnt i reSet ( classSCMs ) ;
3
4 // Ca lcu la te the tangent v e c to r s
5 ArrayList<MatlabNumericArray> l e f tTangentVector s =

Riemannian . tangentSpaceMappingV2 ( classSCMs . get (0 ) ) ;
6 ArrayList<MatlabNumericArray> r ightTangentVectors =

Riemannian . tangentSpaceMappingV2 ( classSCMs . get (1 ) ) ;

After the mean is calculated the covariance matrices are mapped into the tangent
space, as can be seen in Listing 4.15 on line 5-6. This is done by calling the method
tangentSpaceMappingV2(), where the passed parameter classSCMs.get(0) con-
tains the covariance matrices for class 1, while classSCMs.get(1) contains the co-
variance matrices for class 2. The tangent vectors are now as described in Section 3.8
going to be joined together to create a new matrix as seen in Listing 4.16.

Listing 4.16: Classifier training
1 conv . setNumericArray ( ” tangentVector ” , v e c t o r s . get (0 ) ) ;
2 proxy . eva l ( ” tangentVectorMatrix = tangentVector ’ ; ” ) ;
3
4 f o r ( i n t i = 1 ; i < ve c t o r s . s i z e ( ) ; i++) {
5 conv . setNumericArray ( ” tangentVector ” , v e c t o r s . get ( i ) ) ;
6 proxy . eva l ( ” tangentMatrix = horzcat ( tangentVectorMatrix , tangentVector ’ ) ; ” ) ;
7 }
8
9 re turn conv . getNumericArray ( ” tangentSpaceMatrix ” ) ;

The first thing that happens in Listing 4.16 on line 1-2 is that the first tangent vector
gets inserted into the variable tangentVector and afterwards it is transposed and
inserted into the variable tangentVectorMatrix as the first vector. The lines 4-7
is a for-loop, where each of the remaining vectors are concatenated into the matrix
tangentVectorMatrix, that is then returned.

Listing 4.17: Classifier training
1 MatlabNumericArray principalComponents =

MatrixOperations . pr inc ipalComponentAnalys is ( tangentVectorMatrix ) ;
2 MatlabNumericArray pValues = MatrixOperat ions . oneWayAnova( principalComponents ,

group ) ;
3 MatlabNumericArray fdrValues = MatrixOperat ions . f indFa l seDi scoveryRate ( pValues ) ;

Listing 4.17 shows how the returned matrix of tangent vectors tangentVectorMatrix
is run through the remaining operations covered in Section 3.8. On line 1 in List-
ing 4.17 a principal component analysis is performed on the matrix, which is done
using the ’svd’ operation in matlab, the output is then used to perform the principal
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component analysis as shown in Equation 3.33 from Section 3.8. One-way ANOVA
is then performed using the matlab method ’anova’ for each of the variables re-
turning a vector of p-values. Finally the FDR method will be used on the p-values
returning a vector of 0’s and 1’s where 1 indicate that the variable is selected.

Listing 4.18: Classifier training
1 func t i on [ out ] = s e l e c t V a r i a b l e s ( vector , f d r )
2 count = sum( fd r ) ;
3 tmpVector = ze ro s (1 , count ) ;
4 vectorLength = length ( vec to r ) ;
5 index = 1 ;
6 f o r i =1: vectorLength
7 i f index > count
8 break ;
9 e l s e i f f d r ( i ) == 1

10 tmpVector ( index ) = vecto r ( i ) ;
11 index = index + 1 ;
12 end
13 end
14 out = tmpVector ;
15 end

For the list of tangent vectors belonging to each class the variables selected by the
previous operations are now extracted into a new vector as seen in Listing 4.18.
These vectors are now ready to be used to train an LDA classifier.

Listing 4.19: Classifier training
1 // Create c l a s s l a b e l s and merge l e f t / r i g h t
2 i n t [ ] c l a s s L a b e l s = new i n t [ l e f tTangentVector s . s i z e ( )
3 + rightTangentVectors . s i z e ( ) ] ;
4 ArrayList<MatlabNumericArray> mergedTangentVectors = new

ArrayList<MatlabNumericArray>() ;
5
6 f o r ( i n t i = 0 ; i < l e f tTangentVector s . s i z e ( ) ; i++) {
7 c l a s s L a b e l s [ i ] = 0 ;
8 mergedTangentVectors . add ( l e f tTangentVector s . get ( i ) ) ;
9 }

10 f o r ( i n t i = le f tTangentVector s . s i z e ( ) ; i < l e f tTangentVector s . s i z e ( ) +
r ightTangentVectors . s i z e ( ) ; i++) {

11 c l a s s L a b e l s [ i ] = 1 ;
12 mergedTangentVectors . add ( r ightTangentVectors . get ( i − l e f tTangentVector s . s i z e ( ) ) ) ;
13 }

On line 6-9 in Listing 4.19 shows how the data is labeled for the left hand trials,
while line 10-13 shows the labeling of the right hand trials while the tangent vectors
are merged into a list to be given together with the labels to train the classifier.

Runtime phase

During the feedback phase new data is read and these points are mapped into the
tangent space, using the same method as described in the calibration phase, this is
shown on line 1-4 in Listing 4.20.
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Listing 4.20: Feedback phase
1 // Ca lcu la te the tangent ve c t o r s f o r l e f t c l a s s
2 l e f tTangentVector s = Riemannian . tangentSpaceMappingV2 ( classSCMs . get (0 ) ) ;
3
4 // Ca lcu la te the tangent ve c t o r s f o r r i g h t c l a s s
5 r ightTangentVectors = Riemannian . tangentSpaceMappingV2 ( classSCMs . get (1 ) ) ;
6
7 l e f tTangentVector s = Riemannian . s e l e c t V a r i a b l e s ( l e f tTangentVectors , fdrValues ) ;
8 r ightTangentVectors = Riemannian . s e l e c t V a r i a b l e s ( r ightTangentVectors , fdrVa lues ) ;

On line 7-8 in Listing 4.20 the selected variables are extracted from the tangent
vectors, using the previously calculated FDR values. This is done by calling the
method shown in Listing 4.18. The tangent vectors now containing only the selected
variables are once again merged into a list and given to the LDA method to be
classified as shown in Listing 4.21.

Listing 4.21: Feedback phase
1 mergedTangentVectors . c l e a r ( ) ;
2
3 f o r ( i n t i = 0 ; i < l e f tTangentVector s . s i z e ( ) ; i++) {
4 mergedTangentVectors . add ( l e f tTangentVector s . get ( i ) ) ;
5 }
6 f o r ( i n t i = le f tTangentVector s . s i z e ( ) ; i < l e f tTangentVector s . s i z e ( ) +

r ightTangentVectors . s i z e ( ) ; i++) {
7 mergedTangentVectors . add ( r ightTangentVectors . get ( i − l e f tTangentVector s . s i z e ( ) ) ) ;
8 }
9

10 // Convert MatlabNumericArray to double [ ] [ ]
11
12 i n t [ ] c l a s s i f i c a t i o n R e s u l t s = C l a s s i f i c a t i o n . c l a s s i f y M a t l a b (1 ,

mergedTangentVectors ) ;

4.10 MDRM combined with regression

This section describes the combination of the classification method MDRM (see
Section 3.7) and a linear regression method (see Section 3.6). The implementation of
the MDRM method is described in Section 4.7. This section describes the regression
aspect of the implementation and how it is combined with the MDRM method.
The idea as described in Section 3.10 is to use the classification method to predict
the class the signal belongs to whereafter the magnitude is predicted, using linear
regression.

Listing 4.22: Fitting the regression model
1 ArrayList<MatlabNumericArray> l e f tTangentVector s =

Riemannian . tangentSpaceMappingV2 ( c las sData . get (0 ) ,
Riemannian . c lassMeans . get (0 ) ) ;

2 ArrayList<MatlabNumericArray> r ightTangentVectors =
Riemannian . tangentSpaceMappingV2 ( c las sData . get (1 ) ,
Riemannian . c lassMeans . get (1 ) ) ;

3
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4 MatlabNumericArray le f tTangentMatr ix =
MatrixOperations . createMatrixFromVectors2 ( l e f tTangentVector s ) ;

5 MatlabNumericArray rightTangentMatrix =
MatrixOperations . createMatrixFromVectors2 ( r ightTangentVectors ) ;

6
7 Regres s ion . t r a i n R e g r e s s i o n L e f t ( le f tTangentMatr ix , t imestampsLeft ) ;
8 Regres s ion . t ra inRegre s s i onRight ( rightTangentMatrix , timestampsRight ) ;

Each of the class covariance matrices are converted into the tangent space using their
own class mean point as the center on line 1-2 in Listing 4.22. The resulting tangent
vectors are then gathered together to create a matrix for each of the classes on line
4-5, where each row in the matrix is a tangent vector. The linear regression model is
then trained on line 7-8 for each of the classes, where the variables timestampsLeft
and timestampsRight are vectors containing the time it took to perform the 90
degree hand movement as described in Section 5.7. The linear regression model is
trained using the matlab command ’fitlm’ as shown in Listing 4.23.

Listing 4.23: Regression method call
1 MatlabProxy proxy = Matlab . getProxy ( ) ;
2 MatlabTypeConverter conv = Matlab . getConverter ( ) ;
3
4 conv . setNumericArray ( ” DataForRegress ion ” , data ) ;
5 conv . setNumericArray ( ” LabeledDataForRegress ion ” , labe ledData ) ;
6
7 proxy . eva l ( ” LinearMode lRegress ionLef t = f i t l m ( DataForRegression ,

LabeledDataForRegression , ’ l i n e a r ’ ) ; ” ) ;

After the MDRM method have classified a new signal to a given class, the linear
regression model fitted for that class is then used to predict the magnitude of the
signal using the method in Listing 4.24.

Listing 4.24: Regression method prediction
1 MatlabProxy proxy = Matlab . getProxy ( ) ;
2 MatlabTypeConverter conv = Matlab . getConverter ( ) ;
3
4 conv . setNumericArray ( ” DataToPredict ” , dataToPredict ) ;
5
6 proxy . eva l ( ” Regre s s i onResu l t = p r e d i c t ( LinearModelRegress ionLeft ,

DataToPredict ) ; ” ) ;
7
8 // Retr i eve the r e s u l t
9 double [ ] r e g r e s s i o n R e s u l t = ( double [ ] ) proxy . ge tVar i ab l e ( ” Regre s s i onResu l t ” ) ;

10
11 re turn r e g r e s s i o n R e s u l t ;

Line 6 in Listing 4.24 shows the call to the matlab method ’predict’ that takes as
input a linear model, and the new data in order to give a prediction. The prediction
is then converted to a double and returned.
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CHAPTER 5

TESTING

To evaluate the different methods used in this project, several tests will be per-
formed. Because the project investigates two different predictor tasks, namely classi-
fication and regression, the two will be combined and tested. A test of CSP, MDRM,
TSLDA and finally a combination of MDRM/TSREG is conducted. The goal of this
chapter is to compare the various methods with one predictor task and observe how
well it works when combining two predictor tasks. In the end a conclusion is given
based on the observed results for each method and possible complications.

5.1 Data

To confirm the validity of the used and implemented algorithms, the data used for
the classification test is professional recorded data. Berlin BCI, abbreviated as BBCI
have previously staged competitions in EEG analysis [6], with the last competition
being in November-December 2008. The data recorded for the competition and the
corresponding labels have been made publicly available. The data was recorded,
using an EEG reader with 22 electrodes, placed as illustrated in Figure 5.1. The
competition contains five data sets from four different institutes. The data set is
sampled at 250 Hz and bandpass filtered between 0.5 - 100 Hz. The set contains
recordings from nine test subjects and all will be tested by the classification pre-
diction methods CSP, MDRM and TSLDA. There is no existing competition data
for regression tasks, which have forced us to record our own data for the test that
involves a regression prediction task, namely TSLDA combined with TSREG. The
data we have recorded and used to test the regression predictor task is explained
later in this chapter.
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Figure 5.1: Placement of the 22 electrodes of the EEG reader used for competition
IV set 2a

5.2 Cross Validation

Throughout all tests, cross validation is performed to tune various parameters, e.g.
the value of ε used for Riemannian mean calculation. The way it is done, is by
dividing the data set into two parts, a training set and a test set. The training is
then split into five sets, as we use 5-fold cross validation. One set of the five are
chosen as temporary test data, and the remainder four sets are used to train the
system. This procedure is done for each set. This set of tests are performed for
a variety of different parameter values, and the parameter value, which results in
the best mean for the five tests, is then used in the final test. After the system is
trained with the tuned parameters and the complete training set, the original test
set is evaluated and the result of the accuracy is given, which is the result that is
listed in the tables shown later on in this chapter. An illustration of this process is
shown in Figure 5.2

Figure 5.2: 5-fold cross validation
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5.3 Subsampling

Subsampling is used exclusively for cutting out reaction time. When the competition
data is used, as explained in Section 5.1, subsampling is enabled. To address the
reaction time the first 0.5 second is cut from the start and only the next 500 samples
(2 seconds) are considered as a part of the signal. The reason we limit the signal
length to 500 samples is because it yielded the best results, found by cross validation.
It was observed that if a longer time frame of the signal was considered, the accuracy
decreased. A possibly explanation of this, can be the primary characteristics of
moving the left or right hand, at the early stage of the movement (and the thought
to move). The further of the initial thought or the actual movement of the hand,
the signal gets less focused.

5.4 Result format

The rest of this section shows the results for the aforementioned methods. The for-
mat is denoted in the following way 75/80, where the first number is the percentage
of correct classifications for left hand movement and the second number indicates
the percentage of correct classification for the right hand.

5.5 Euclidean Classification

CSP is tested, mainly to have a comparison to the Riemannian methods. According
to [4], CSP and MDRM have similar accuracy when classifying. Below are the results
for the classification accuracy when using CSP on the data described in Section 5.1
and using cross validation as described in Section 5.2.

CSP
Subject 1 95/72 Subject 4 44/73 Subject 7 59/78
Subject 2 98/1 Subject 5 15/90 Subject 8 96/95
Subject 3 83/100 Subject 6 79/40 Subject 9 86/96

The first notable discovery by examining the results, is that they differ a lot from
test subject to test subject. Considering test subject 2 and 8, it is clear that the
quality of the data gathered from the two are very different. It seems like the data
from test subject 2 looks very similar, and therefore nearly all trials are classified
as left hand movement. On the other hand test subject 8 provides very promising
results with a nearly perfect accuracy rate on both hands. This pattern of varying
results from subject to subject is something that is present in all the tests performed.
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5.6 Riemannian Classification

For Riemannian classification two methods are tested, namely MDRM and TSLDA,
which are two very different methods. MDRM takes advantage of the structure of
the covariance matrices and therefore stays in the Riemannian space. TSLDA on
the other hand converts the Riemannian space into an Euclidean space.

Epsilon

As explained in Section 3.7 the ε value determines the precision of the mean SPD
matrix of a set. When performing tests that use Riemannian mean the ε influences
the results. For our Riemannian classification methods we set ε to 0.5 for all tests,
as this value gave the best result while using cross validation, while still terminating
within a reasonable time frame. Furthermore this is also the value that is used when
testing Riemannian classification and regression combined, which is shown in the
next section.

MDRM
Subject 1 92/87 Subject 4 55/84 Subject 7 45/89
Subject 2 92/2 Subject 5 54/58 Subject 8 96/97
Subject 3 79/100 Subject 6 71/69 Subject 9 87/96

As mentioned in [4], it was observed that the results from CSP and MDRM are very
similar. As seen in the MDRM table, the results are very similar compared to the
results in CSP and thus confirms this observation. It should be noted that even
though CSP and MDRM performs with very similarly results, MDRM still shows
considerably improvements over CSP runtime wise. The runtime of CSP takes 14
min, compared to the runtime of MDRM that takes 7 min, with the same input.
In other words, it takes twice as long and achieves similar results.

TSLDA
Subject 1 80/63 Subject 4 64/56 Subject 7 65/42
Subject 2 87/14 Subject 5 1/98 Subject 8 71/97
Subject 3 79/77 Subject 6 77/22 Subject 9 60/91

Furthermore it is observed in [4], that the TSLDA method yields better results in
their test. That is not the case in our tests, as can be seen in the TSLDA table.
This is of course worrying, but there is a possible explanation. When running the
TSLDA method it was observed that the number of variables selected by FDR (see
Section 3.8) varied greatly, from all of them to none. In an attempt to overcome
this, FDR was modified to dynamically change the q-value, which determines the
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threshold, to ensure that the number of found variables were within a given range.
This could possibly be improved further by manually selecting a q-value for each
subject or by using cross-validation to find the q-values.

5.7 Riemannian Classification Regression Test

To test our Riemannian regression method, it is needed to generate test data, as it
has not been possible to locate any publicly available data with regression labels.
This section covers how the data is gathered in a test setup, the test application,
methods used in the test, and finally the results of the Riemannian regression.

Test Setup

The subject is placed on a chair in a relaxed position. At the side of the test subject
there is a table in a height, such that the elbow can rest comfortably on it. Two
buttons are placed so the subject have the hand placed on one button when the
arm is relaxed, we call this the lower button. The other button is placed such that,
when the subject raises the arm, the button will be pushed when the arm reaches 90
degrees, we call this the upper button. The buttons are attached to a LEGO NXT
2.0 computer, which in turn is attached to a PC. The subject is instructed to raise
his/her arm to reach the button at different speeds (e.g. 0.5, 1, 1.5, 2 seconds), to
ensure a separation of the data points. By doing this test, data is gathered with
the EEG headset, which starts recording when the test subject lift his/her arm and
continues until the button at 90 degrees is pressed. Usually, when recording EEG
data, the movements are not actually performed, but imagined instead, with actual
movement indicating a possible noise source. As imagining moving a hand at a
specific speed, is difficult, for the tests performed in this section, the movements are
actual. The goal of the test setup is to record data at different speeds, such that
a regression model can be calculated and used on runtime to estimate the speed of
arm movements. The over all design of the test setup can be seen in Figure 5.3.

Test Application

A test application is developed to be able to record EEG data in our test envi-
ronment. The main screen is illustrated in Figure 5.4, which is the first and only
screen presented to the user. The screen consists of a start button and two radio
buttons. The start button starts the test, which should be pressed when the user is
in position and is resting his/her hand on the table on top of the start button. The
radio buttons indicates whether or not the lower or upper button is pressed, this is
for observational use only. Furthermore a timer is positioned in the middle of the
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Figure 5.3: Test setup design

screen, showing the user the time given to raise his/her arm 90 degrees. The way
the application works is that it sends a signal to a PC running the actual recording
software, which starts recording when the user raises his/her hand from the start
button and records until the stop button is pressed. This is called a trial and is
stored in a text file, with the exact time it took to do the arm movement, alongside
with the actual time it took. The reason why we record the exact time is because
it is often hard to perform the arm movement in the exact time frame given, so by
storing the exact time the regression training will be more accurate. It should be
noted by using this test setup that no reaction time needs to be accounted for, as
the EEG reader only records between when the start button is released and until
the end button is pressed.

Figure 5.4: Test - Main Screen
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Test Recording

The EEG recording was performed for two separate subjects. Each of these sub-
jects performed the recording once for each hand, recording 25 trials at each of the
designated speeds. Therefore the test were performed using 100 trials for each hand
for the classification.

Test Methods

After having gathered the data for the two predictor tasks, namely class (left/right
hand movement) and the speed of the movement, the two predictor task tasks can
be tested. First the data needs to be classified, this can be done with either CSP,
MDRM or TSLDA. Based on the test results in Section 5.5 and Section 5.6 MDRM is
chosen for the classification task. The MDRM method use the same epsilon value as
used when tested alone (see Section 5.6). The test is then performed, with the class
predicted first. Using the result of the classification, a regression model is selected,
and the test for regression is performed, thus resulting in both a class prediction
and a speed prediction.

Test Results

In this section, the results of our combined predictor task method is shown. The
test is performed on two test subjects. The tables shows the actual class and the
predicted class denoted as Class and P Class respectively, and the same way for
predicted speed.
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MDRMTSREG - Subject 1
Class P Class Speed P Speed Class P Class Speed P Speed
Left Left 676 2040 Right Right 1059 1107
Left Left 1006 416 Right Right 1917 7423
Left Left 1966 -2330 Right Right 1150 5283
Left Left 1301 2314 Right Right 605 -2703
Left Left 616 5465 Right Right 1043 228
Left Left 1058 2776 Right Right 559 295
Left Left 1899 532 Right Right 1539 3396
Left Left 1322 1253 Right Right 1883 -3346
Left Left 934 4093 Right Right 1014 -2553
Left Left 1916 -11857 Right Right 515 1260
Left Left 609 3974 Right Right 1688 2606
Left Left 604 -1661 Right Right 2503 4358
Left Left 1575 112 Right Right 1157 4270
Left Left 1376 27 Right Right 1424 5276
Left Left 1242 2760 Right Right 549 -798
Left Left 641 -522 Right Right 2211 2769
Left Left 1758 2419 Right Right 1731 1117
Left Left 1419 446 Right Right 1126 -1165
Left Left 1923 2759 Right Right 2035 1113

The first noteworthy observation is the classification results. The classification per-
forms well, with an accuracy of 100%. It should be noted though, that during cross
validation this was not the case, but after choosing the best settings after cross
validation, the accuracy was perfect. The regression prediction, on the other hand,
is inaccurate. As can be seen in the result table for subject 1, the actual speed and
the predicted speed, are rarely close to each other.
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MDRMTSREG - Subject 2
Class P Class Speed P Speed Class P Class Speed P Speed
Left Left 1675 968 Right Right 567 -5184
Left Left 1879 2962 Right Right 2625 7821
Left Left 1204 418 Right Right 1074 5555
Left Left 740 1127 Right Right 1655 -5736
Left Left 2454 3022 Right Right 1922 1220
Left Left 1717 261 Right Right 1197 -4374
Left Left 1382 478 Right Right 592 3273
Left Left 1094 292 Right Right 1709 -662
Left Left 710 2911 Right Right 1137 10615
Left Left 955 1624 Right Right 2025 10550
Left Left 2691 684 Right Right 1528 -3316
Left Left 1649 552 Right Right 673 22
Left Left 1595 2426 Right Right 1261 3327
Left Left 2000 1670 Right Right 1799 4756
Left Left 654 653 Right Right 1126 10199
Left Left 1550 947 Right Right 613 5219
Left Left 1043 1665 Right Right 2241 -4242
Left Left 2023 1324 Right Right 617 -1302
Left Left 690 1396 Right Right 1325 7199

The patterns observed for test subject 1 is similar to test subject 2. The classification
results are good, but the regression results are still very inaccurate.

Based on the above results, of the two predictor tasks combined method, it is clear
that the regression results are not acceptable. It is hard to conclude anything based
on the results from the regression task. It could be, that it simply is not possible to
fit a linear model to determine the speed of the subjects hand movement. Another
possibility is that the model might be overfitted, as no regularization was applied to
the model on account of erroneous implementation. An indication of overfitting as
a cause, can be found in the table for first test subject, where the predicted values
generally follow the increase and decrease of the actual time recorded during the
recording. As further prove, a subsequent test was performed, with the evaluation
data used for calibration as well. As this test showed near perfect results, the
possibility of overfitting has been further proved.
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CHAPTER 6

CONCLUSION

Throughout this project, a BCI system was developed, which uses Riemannian clas-
sification methods and Euclidean regression on a tangent space, based on the Rie-
mannian manifold. Based on the inplementation from our previous work in [16]
the preprocessing was implemented, as well as a classification method using CSP
combined with LDA. This implementation was used to compare the prediction per-
formance of CSP combined with LDA against the two Riemannian methods, namely
MDRM and TSLDA.
As shown in Section 5.5 and Section 5.6, the results of the classification predictions
have a high degree of variance, depending on the test subject. Despite the variance,
the methods CSP and MDRM performs similarly, and TSLDA slightly worse, and
therefore the method MDRM was chosen to be combined with regression. In the
test, the combined method classified well, but the regression was inaccurate, as seen
in Section 5.7.
The question posed in the problem statement, whether it is possible using a con-
sumer grade EEG reader to combine two predictor tasks to determine both class and
magnitude of a signal, can not be answered as of yet. Though the classification was
successful, the inaccuracy of the regression, means that new tests and improvements
would need to be made, to be able to give a well-founded answer to the problem.
One known improvement would be regularization, as the inaccuracy of the regression
result, is most likely caused by overfitting.
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CHAPTER 7

FUTURE WORK

This chapter outlines our thoughts of possible aspects of our product that can be
further improved. This includes methods, implementation and test.

7.1 Methods and implementation

Using the assumption, that a continuous value, i.e. regression, can be predicted
from BCI data, would mean that the methods used here, are insufficient. During
the research for this project, another regression method using Riemannian manifolds
was discovered, though it was not implemented on account of the time restraint.
The paper titled Geodesic Regression on Riemannian Manifolds [14] describes this
method. What they do is that they instead of creating the tangent space, to use the
Euclidean regression, as is done in this project, they find a regression model directly
on the Riemannian manifold. In this way it ensures no transformation of the data,
and thus no data loss, which can improve the precision of the prediction.

The implementation of our regression does not use regularization at the moment.
Implementing regularization, e.g. Lasso, can improve the results, because overfitting
is a problem, as the number of variables exceeds the number of trials we have.

The implementation of TSLDA suffers from a few issues that might account for the
results being worse than MDRM. As noted in Section 5.6, [4] shows TSLDA yielding
better results. It was mentioned in Section 5.6, that the q-value given to FDR for
the selection of variables, is selected dynamically. Instead of selecting the q-value
dynamically, better results might be achieved if the q-value is selected manually or
by using cross validation.
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7.2 Test Setup

The data gathering in our test setup was performed in a conference room, in a sub-
optimal environment. The reason why we think the environment could be improved
is based on the following issues:

Screen Placement

The screen showing the user how much time he/she should use to perform a hand
movement and how much time is left was awkwardly placed, which often led to
the user turning their head, to follow the time, which led to a less relaxed position.
Another problem with the screen was the user had to focus a lot on the timer ticking
down, which also might influence the brain signals.

Regression Magnitude Calculation

At the moment, the actual speed of our regression method, use the mean over an
entire trial. This can be an issue, if the test subject do not move the hand at a stable
speed throughout the hand movement. A solution to this can be to use sensor data,
which is done by attaching an accelerometer to the test subject’s hand and record
the acceleration of the hand at each sample. There is, of course, some problems
with this solution, namely the problem of synchronizing the sensor gathering to the
sampling rate of our EEG reader and the making sure that there is no delay such
that the samples of the sensor correspond to the exact sample of the EEG reader.

Time intervals of training setup

Another factor that might affect the regression results is the time intervals we use
when gathering test data. By studying the results it seems like the difference between
the signal of a fast hand movement and a slow hand movement is too similar. By
trial and error we found the slowest realistic movement to be 2 seconds, it could be
increased but the hand movement would feel awkward.
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APPENDIX A

EMOTIV EPOC EEG READER SPECIFICATIONS
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