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replacement material for traditional materi-
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fiber reinforced polymer composites. How-
ever no Eurocode is available for fiber rein-
forced polymer composites.
In this report, fatigue of fiber-reinforced poly-
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tial safety factors using probabilistic meth-
ods for a traffic bridge system. The traf-
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plied according to DS/EN 1991-2 and uncer-
tainties regarding the traffic load is modeled
as stochastic variables. The fatigue limit state
is investigated along with a sensitivity analy-
sis. Based on the fatigue limit state and corre-
sponding design equation, the partial safety
factors are calibrated to the target reliability
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Reading Guidelines

References throughout the report are collected in a bibliography at the back of
the report, where all the sources of knowledge are mentioned with the needed
data. Sources are presented using the Harvard Method, wherein a reference is
given as: [Author, Year].
In each chapter of the main report, tables, pictures, and equations are used.
They are given a reference numbers, starting with the number of the chapter.
For equations the numbering will only occur if the equation has been referred
to. Also, if needed, commentary text is added below figures/tables for easier
understanding for the reader.
Important appendixes coupled to the report are found at the back of the report.
A digital appendix is placed on a CD attached to the report. The digital appendix
contains MATLAB scripts, Excel-documents and the report as a PDF version.
References inside the report to the Appendix-CD are done as [Appendix-CD,
"Document Name"].
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Abstract

Fiber-forstærket polymer kompositter har været anvendt som udskiftnings-
materiale for traditionelle materialer såsom stål og beton i mange år, men
bliver nu anvendt i større grad som konstruktionsmateriale. Dette skaber
behov for en designnorm for fiber-forstærket kompositter, men der er ikke
i skrivende stund en Eurocode eller dansk anneks tilgængelig for fiber-
forstærker polymer kompositter.

I denne rapport undersøges udmattelse af fiber-forstærket polymer kom-
positter med mål at kalibrere partialkoefficienter for et brosystem ved brug
af probabilistiske metoder. Brosystemet består hovedsageligt af komposit-
materiale.
Til karakterisering af materialeegenskaber anvendes statiske forsøg samt
udmattelsesforsøg, hvor Maximum-Likelihood metoden anvendes til at be-
stemme materialeparametre til S-N-kurven samt statistiske usikkerheder.
Ydermere undersøges forskellige constant life diagrammer på bagrund af
tilgængeligt eksperimentelt data.
Brosystemet påvirkes af trafiklaster. Til at estimere trafiklasten anvendes
udmattelseslastmodel 4 iht. DS/EN 1991-2. Yderligere påføres stokastiske
usikkerheder til trafiklaster for at tage højde for varierende vægt og place-
ring samt dynamiske effekter.
I forbindelse med undersøgelse af udmattelse af fiber-forstærket polymer
kompositter undersøges udmattelsesgrænsetilstanden ved en pålideligheds-
analyse. I pålidelighedsanalysen opstilles en ligning for grænsetilstanden,
der tager højde for usikkerhed på laster og materiale. Ydermere foretages
et følsomhedsstudie af udmattelsesgrænsetilstanden for at vurdere, hvilke
stokastiske variable er mest betydningsfulde for sikkerhedsindekset. De-
signligninger opstilles for forskellige constant life diagrammer, hvor par-
tialkoefficienter og karakteristiske værdier er anvendt. Partialkoefficienter
kalibreres iht. årlige sikkerhedsindekser for trafikbroer iht. dansk anneks,
hvorfra anbefalede partialkoefficienter til brug i det undersøgte komposit-
materiale bestemmes.
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CHAPTER 1
Introduction

During the last 100 years, architects have been constrained in their efforts to cre-
ate futuristic concepts due to the small collection of materials available for their
designs, most commonly timber, steel, concrete and masonry. Now, advanced
composite materials such as fiber-reinforced polymer composites are revolution-
izing the industry by replacing the traditional materials. [Premier Composite
Technologies, 2015] In civil engineering, fiber-reinforced polymer composites
are increasingly being used in various areas ranging from replacement of in-
ternal reinforcement to their use as a cost effective replacement material dur-
ing repairs and externally reinforcement of deteriorated concrete components
to their use in bridge deck and bridges fully constructed in composites. [V. M.
Karbhari, 2000]

In contrast to steel, fiber-reinforced polymer composites have several advan-
tages such as higher resistance to corrosion leading to increased durability and
lifespan, higher tensile and compression capacity, and high strength-to-weight
ratio resulting in less dead load and more efficient structural designs e.g. larger
spans in bridges. Additionally, fiber-reinforced polymer composites are non-
conductive for electricity as well as non-magnetic. This is ideal for structures
near or in seawater or other corrosive environments [Alsayed et al., 2015]. How-
ever compared to steel, fiber-reinforced polymer is characterized with lower
Young’s modulus and more sensitive to creep. During production, the energy
consumption is lower compared to traditional building materials such as steel,
concrete and aluminum. Compared to both steel and concrete, fiber-reinforced
polymer composites also have higher thermal efficiency meaning lower thermal
bridging and thereby energy cost savings.
Even though fiber-reinforced polymer composites provide several benefits com-
pared to traditional building materials, a number of problems must be addressed
before fiber-reinforced polymer composites can be used as a standard construc-
tion material. One of the problems is the lack of well documented data, similar
to that available for grades of steel and concrete used in civil engineering. In re-
lation to traditional construction materials, the countless combinations in fiber-
reinforced polymer composites in regard to fiber and matrix systems makes the
material attractive, but it can be a limitation in an industry where standardiza-
tions are key. The numerous combinations of fiber-reinforced polymer compos-
ite layups makes it difficult to predict fatigue life accurately due to its already
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2 1. Introduction

complex fatigue behavior. Partially, because of fatigue failure in composites con-
sists of multiple failure mechanics and partially due to the complex stress state
within the material. [Premier Composite Technologies, 2015]

Because fiber-reinforced polymer is a new material compared the conventional
civil construction materials, there are challenges to overcome in the process of
standardizing it. Fiber-reinforced polymer has been used as a construction ma-
terial for several years, and there are multiple examples of clever use of the ma-
terial characteristics. An example is the Fiberline Composites A/S bicycle and
pedestrian bridge in Nørre Aaby on Funen built entirely in composites shown
in figure 1.1. Here the low density of the material allowed for a prefabricated
bridge that was rapidly installed. In comparison to a similar bridge in concrete,
the composite bridge weighs 6 t and the concrete bridge would weigh about 20
times more, 120 t. As development and investigation continues, more data and
knowledge arise and composites could in the near future be used as the primary
as well as secondary construction material for train as well as car bridges, where
low weight allow for longer span and fewer substructures. [Fiberline Compos-
ites A/S, 2014]

Figure 1.1. Pedestrian and cyclist bridge in Nørre Aaby on Funen.

This development will likely not be brought on by a single construction, but
rather a change in the general tendency. However when change in construc-
tion material arise, new conflict points will as well. For example; replacing a
concrete slab with a composite deck might lead to fatigue becoming a critical
design point. This leaves the engineer with few possibilities as there are no par-
tial safety factors developed for fatigue of composites. As a direct result, there
is no way to ensure that a standardized safety level is met.
As stated earlier fiber-reinforced polymer composites are used as replacement
material. Generally, reinforced concrete is reinforced with steel bars as it is effec-
tive and cost-efficient. But steel reinforcement bars are susceptible to oxidation,
especially when exposed to aggressive chemicals. Typically aggressive environ-
ments are coastal areas or areas where salt is used for de-icing. Fiber-reinforced
polymer composites have corrosion resistance and will not rust. Generally, fiber-
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reinforced polymer composites are fatigue insensitive, but unlike steel, compos-
ites are dependent on the mean load effect. As such, fatigue can become a prob-
lem for composite reinforcement bars in concrete as concretes high density will
induce mean stresses. An example of a composite reinforcement bar is ComBAR
by Schöck.

1.1 Statement of Intent

This report will investigate fatigue of fiber-reinforced polymers with focus on
tension reinforcement bars in a representative traffic bridge system. The follow-
ing points are studied in the report in order to calibrate partial safety factors
according to safety levels in DK NA.

• Study of fatigue life assessment methods

• Derivation of S-N curves and constant life diagrams from experimental
data for Schöck ComBAR or similar material

• Estimation of fatigue loads on a bridge system

• Uncertainty modeling of strengths and loads

• Reliability analysis of fatigue limit state for composite tension reinforce-
ment bars

• Calibration of partial safety factors including sensitivity analysis

1.1.1 Delimitation

In this report, all recommendations and comments are given without consider-
ing economic aspects. For all reliability analysis’, all fatigue effects will be con-
sidered to follow the behavior of high cycle fatigue. All static calculations will
assume complete linear elasticity, and any second order effects are disregarded.
All data and analysis will be done for a single material and lay-up combina-
tion. Therefore the fatigue data, sensitivity studies, partial coefficients and all
comments hereof can only be considered representative for this exact material.
For generating a load spectrum no real traffic data will be used. Generally any
fatigue influence from; long load exposure, temperature or chemical interaction
is neglected. Lastly no fatigue effect from accidental loads will be considered.
Only reinforcement bars in tension is investigated in this report.





CHAPTER 2
A Short Introduction to

Composites

A composite is generally defined as an entity comprised of multiple elements.
In the field of construction, a reference to a composite material will often be to
glass- or carbon fiber reinforced beams. However, the definition composite is
also applicable for other construction elements. Reinforced concrete is probably
the most commonly known one, but even mixing thatch and mud for the con-
struction of mud huts is a composite. Generally, composites used in construction
consist of materials that complement each other.
This report will only concern the glass fiber-reinforced polymer composite, which
is comprised of a polymetric resin (the matrix) and glass fiber (the reinforce-
ment). This report will use Schöck ComBAR as vantage point. Schöck ComBAR
is a glass fiber-reinforced polymer reinforcement bar. This is of great importance
as even though two composite reinforcement bars comprised of the same mate-
rials will not necessarily have the same structural properties even if their outer
geometry is alike. This is because the order of the layers as well as the fiber
volume that comprise a glass fiber-reinforced polymer composite beam are not
irrelevant. In a glass fiber-reinforced polymer, the order of layers is referred to
as a lay-up. Each layer is a mat of woven glass fiber. The weave of such a mat
varies and examples of mat types are shown in figure 2.1. [Fiberline Compos-
ites A/S, 2003] As the structural properties of the composite can be altered, it
is possible to design glass fiber-reinforced polymers to a specific purpose. Thus
a glass fiber-reinforced polymer can be adapted to a certain load configuration
[Vassilopoulos and Keller, 2011].

Figure 2.1. Examples of mat types. Left to right; continuous mat, woven mat, complex
mat and bidirectional mat. [Fiberline Composites A/S, 2003]

5



6 2. A Short Introduction to Composites

• Continuous mat - Consists exclusively of randomly aligned fibers

• Woven mat - Half and half with 0◦ and 90◦ woven fibers

• Complex mat -As the woven mat, with some randomly aligned fibers

• Bidirectional mat - Woven with 0◦, 45◦ and 90◦, and some randomly aligned
fibers

As seen in figure 2.1, the layers that comprise the material, and the very fact
that it is comprised by layers, yield an anisotropic material. This can result in
cumbersome calculations for the design engineers but as mentioned above the
gain can be significant if the material is applied correctly.
Schöck ComBAR is produced by pultrusion illustrated in figure 2.2.

VentilationInjection of matrix

SawPullers
Reinforcement

Heating and 
curing

Figure 2.2. Principle of pultrusion.

Pultrusion is a continuous process which produces composite profiles with a
constant cross-sectional area. The method ensures constant reproducible quality.
First the fibers are positioned accurately according to the cross-sectional area.
Hereafter the fibers are fed to a machine, where the fibers are impregnated with
the matrix and the machine hardens the profile. The fibers fed to the machine
is considered reinforcement and is either fed as layers, as shown in figure 2.1 or
as roving. Roving fibers are single strands that lay in the longitudinal direction
of the beam and as with the mats there are different types, shown in figure 2.3.
[Fiberline Composites A/S, 2003]

Figure 2.3. Examples of roving types. Left to right; smooth, spun, mock. [Fiberline Com-
posites A/S, 2003]

Another manufacturing process is infusion, where the fiber mats are placed in a
closed mold and infused with the liquid resin under heat and vacuum.
Furthermore additives are added to the matrix. The additives vary in func-
tion and add anything from resistance to environmental degradation to simply
changing the color of the polymer.
Generally in composite materials, the reinforcement adds strength and stiffness
as well as the ability to resist tension and compressive stresses. The reinforce-
ment is typically glass fiber, carbon fiber or aramid fiber. These reinforcement
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types have different advantages in comparison to each other e.g carbon fibers
provide high stiffness. [Vassilopoulos and Keller, 2011]
The matrix keep the reinforcement together as well as handle shear stresses in
the cross-sectional area. Additionally, the matrix type is important regarding
corrosion, fire resistance and electric insulation. The types of matrices that are
normally considered are; polyester, epoxy and phenolic resin. [Fiberline Com-
posites A/S, 2003]
As composite materials are anisotropic their strengths and stiffness’s vary in the
different directions. Furthermore composites are prone to creep, which is why
only a fragment of the strength can be utilized when calculating for example
dead load. The creep is however not relevant when calculating ultimate limit
state and therefore the full material strength is available for limit state [Fiber-
line Composites A/S, 2003]. The creep is however naturally counteracted in the
sense that composites have relatively low densities.
When determining fatigue in composites, the mean stresses have effect, unlike
what is assumed for steel structures. This complicates the calculations and the
subject is further discussed in chapter 2.1. Although fatigue failure in compos-
ites is a complex problem, it is a fatigue resistant material. This is one of the
many reasons composite materials are becoming more widely used instead of
just replacing material such as steel, concrete or wood in certain parts of the
structure. Their low density, high strength and adaptability makes it an appeal-
ing material for structures like foot way and light vehicle bridges. An example
of this is the Fiberline bridge shown below in figure 2.4. The bridge was the first
composite bridge in Scandinavia and opened in 1997. The short installation time
was a clear advantage as the busy railway line restricted the installation work to
only a few hours between Saturdays and Sundays. It took 18 hours to install the
bridge. [Vassilopoulos and Keller, 2011] [Fiberline Composites A/S, 2003]

Figure 2.4. Image of the Fiberline Bridge i Kolding, Denmark [Fiberline Composites
A/S, 2015].

While full composite traffic bridges may be too futuristic, the application of
composite material in a traffic bridge is not. The composite reinforcement bars
produced by Schöck far exceed the steel reinforcement bars currently used in
components such as reinforced concrete. A comparison of some material char-
acteristics is shown below in table 2.1.
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Table 2.1. Comparison between steel and composite reinforcement bars [Schöck, 2014].

Properties Steel rebar
Stainless

steel rebar
Schöck

ComBAR

Ultimate tensile strength fu,t [MPa] 550 550 >1000
Characteristic value
of tensile strength fy,t [MPa]

500 500 No yielding

Strain at ultimate limit state 2.18 ‰ 2.72 ‰ 7.4 ‰
Tension modulus of elasticity [MPa] 200,000 160,000 60,000
Density [ g

cm3 ] 7.85 7.85 2.2
Magnetism yes very little no

The large tensile strength in the composite reinforcement bar is practical for ul-
timate limit state calculations. The interaction in-between the composite rein-
forcement bars and the concrete is significantly changed, due to the compara-
tively low Young’s modulus of the Schöck ComBAR.

2.1 Fatigue in Composites

Engineering structures subjected to dynamic loads will experience fatigue. Fa-
tigue is a failure mode where cracks are initiated and developed under varying
load, which leads to loss of strength and stiffness and/or cracking and failure.
Fatigue is progressive and localized structural damage and fracture occurs when
the cross-sectional area no longer has capacity to transfer the peak loads. In
structures mainly statically loaded, fatigue is rarely an issue, however in struc-
tures where a dynamic load is present and is of noticeable size compared to the
total load fatigue phenomena can occur. Examples of such structures can be;
bridges, offshore structures and wind turbines.
Although composite materials are characterized as fatigue-insensitive compared
to metallic ones, they are subjected to fatigue load and fatigue must be consid-
ered, even in the design phase even for structures where it is not normally an
issue [Vassilopoulos and Keller, 2011]. An example of this could be a concrete
road bridge which is not fatigue-sensitive due to the dead loads being signifi-
cantly higher than the live loads. But fatigue may become important for a light-
weight composite bridge, where the dead loads are not of the same magnitude
as for the concrete bridge.
Because the fatigue behavior in composite materials differ from that of metallic
ones, conventional methods and fatigue life prediction cannot be applied di-
rectly to composite materials. In metals fatigue failure is assumed to be caused
by a single crack that develops until the remaining cross-section is insufficient.
Fatigue failure in composites does not evolve from a single crack like in metals.
Instead it causes one of, or a combination of; delamination, microbuckling and
translaminar crack growth. These then result in one of several failure modes.
Delamination is the separation of layers along the layer planes. Microbuckling
is local buckling of the fibers that reinforce the composite. Lastly translaminar
crack growth is crack growth across the fiber layers. This results in a compli-
cated failure cause.
Furthermore different material configurations such as manufacturing methods,
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matrices and lamination stacking sequences makes the development of new
methods that takes all these modifications into account challenging.
As composites are generally considered brittle and have no reserve load carry-
ing capacity, an accurate prediction of failure is important. Therefore knowledge
of fatigue life prediction and fatigue behavior in composites is important, espe-
cially in unidirectional composite materials. Fiber-reinforced polymer compos-
ites fatigue behavior is dependent on many factors.

• Manufacturing process

• Fiber volume

• Type of loading

• Mean stress

• Environment

• Frequency

• Interface properties

• Constituent materials

[Allah et al., 1996]

The fatigue life of a structure subjected to fatigue load is expressed by the num-
ber of load cycles to failure. The fatigue life can be determined by the use of S-N
curves in case of a constant amplitude load. In cases where the dynamic load
will be of variable amplitude, Miners rule can be applied. The formulation of
S-N curves, also known as Wöhler curves, is shown in eq. (2.1). The S-N curve
is a simple way to represent fatigue data and it is preferred to other approaches
since it requires input data that can be acquired using simple recording devices.
It is an empirical formulation and assumes a linear relation in a log-log plot, as
shown in figure 2.6.

N = K S−m
a or log N = logK−m logSa (2.1)

Where

N Number of cycles
Sa Cyclic amplitude stress
K Material parameter
m Material parameter

In figures 2.5 and 2.6, definition of stresses and an illustration of the S-N curve
is shown, where number of cycles is plotted with cyclic amplitude stress in a
log-log diagram.



10 2. A Short Introduction to Composites

Smax

Sm

Smin

Srange

1 cycle

Sa

log N

log Sa

m

Figure 2.5. Definition of stresses. Figure 2.6. Illustration of S-N curve.

The material parameters m denotes the slope of the S-N curve related to the ex-
amined material. For fiber-reinforced polymer m is typically in the range of 7
to 25, lower range for multidirectional and higher range for unidirectional com-
posites.
The S-N curves are estimated using constant amplitude fatigue data for a spe-
cific fatigue load type, where tests are conducted with different cyclic amplitude
stresses and the number of cycles to failure is measured. The S-N curve is fitted
to the fatigue data. As seen in figure 2.6 the lower stress level the longer fatigue
life.
Regarding the representation of constant amplitude fatigue data for any com-
posite material, it is accepted that a Log-Log representation is sufficiently accu-
rate, in most cases as there is no universal theoretical model able to accurately
model fatigue behavior in composite materials. [Vassilopoulos and Keller, 2011]

2.1.1 Damage Accumulation

When estimating the fatigue damage of a structure the empirical Palmgren-
Miner damage accumulation rule is used also denoted Miner’s rule. Tradition-
ally this rule used to determine fatigue damage for metallic structures, but in-
vestigations have shown that it is also applicable to composite materials. The
method is used to determine fatigue damage from loading with variable ampli-
tude and is shown in eq. (2.2). [Vassilopoulos and Keller, 2011]

D =
n

∑
i=1

ni

Ni
≤ 1 (2.2)

Where

D Damage
ni Number of cycles with a specific load amplitude
Ni Number of cycles to failure for a specific load amplitude

A structure is considered failed if D ≥ 1. Sequence effects are disregarded in
Palmgren-Miner’s damage rule, but can be important in composite materials if
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the applied load spectrum e.g. first causes matrix cracking and subsequently the
loading causes compression and thus enabling micro buckling.
The characteristic number of cycles to failure is determined by the use of the
S-N curve for a specific load amplitude. The number of cycles, n, and their
corresponding amplitude and mean stresses Sa and Sm can be determined using
different methods. In this report, the Rainflow counting method in accordance
with the ASTM standard is applied, as it is suggested in engineering standards.
[CEN/TC 250, 2014]

2.1.2 Constant Life Diagram

S-N curves can be obtained for different fatigue load types and plotted together
in a constant life diagram. This is done in order to take the effect of the mean
stress into account for the fatigue life of the material. The constant life diagram is
used to derive S-N curves for R-ratios different from those derived experimen-
tally. This means that constant life diagrams offer a predictive tool to estimate
the fatigue life of the material under a fatigue load type where no experimental
data is available, if data from neighboring load types are available.
The constant life diagram is defined by the mean cyclic stress, Sm, the cyclic
amplitude, Sa, and the R-ratio. The R-ratio is defined in eq. (2.3).

R =
Smin

Smax
(2.3)

Where

R Ratio between Smin and Smax
Smin Minimum stress
Smax Maximum stress

In figure 2.7 an illustration of a constant life diagram is shown.
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Figure 2.7. Principles in a constant life diagram.

As shown in figure 2.7, the (Sm − Sa)-half-plane is divided into three sectors.
The center sector is comprised by combined tensile and compressive loading
(T-C) representing S-N curves with R < 0. The tension-tension (T-T) sector is
bounded by radial lines representing S-N curves at R = 1 and R = 0, where
R = 1 corresponds to long term static loading e.g. creep and R = 0 relates to
tensile fatigue cycling with Smin = 0. The radial lines in the T-T sector has a
corresponding symmetric line with respect to the Sa-axis, which is located in
the compression-compression (C-C) sector whose R-ratios are the inverse of the
tensile R-ratios. The radial lines shown in figure 2.7 are expressed in eq. (2.4).

Sa =

(
1− R
1 + R

)
Sm (2.4)

Where

Sm Cyclic mean stress
Sa Cyclic stress amplitude

Eq. (2.4) represent S-N curves for a specific R-ratio.
The constant life diagram is constructed by connecting S-N curves at different
R-ratios, these lines are called constant life lines. The constant life lines can
be linear or non-linear depending on constant life diagram formulation. Each
constant life line connect data points with the same number of cycles to failure
between neighboring S-N curves.
It should be noted that constant life diagrams cannot accurately model the fa-
tigue life close to the horizontal axis which represent high mean values and very
low stress amplitudes (zero stress amplitude at R = 1).
This point cannot be considered static loading but rather creep of the material
(static load over a period of time).
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Several configurations of the constant life diagram have been proposed, and in
the following four constant life diagrams are presented. All these constant life
diagrams have different advantages and disadvantages and it is important to
choose the optimal constant life diagram for the case in question.

Shifted Goodman Diagram

The Goodman diagram is defined as symmetric and linear shown in figure 2.8.
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Figure 2.8. Illustration of a Goodman diagram.

As seen from figure 2.8, the Goodman diagram only uses the S-N curve at R =
−1. The linear Goodman diagram is not ideal for composite materials as the
absolute values of the tensile and compressive strengths are not identical. A
shifted Goodman diagram can be constructed based on the symmetric and linear
Goodman diagram. The shifted Goodman diagram is constructed from a single
S-N curve and takes difference in absolute values of compressive and tension
strength into consideration, as illustrated in figures 2.9 and 2.10.
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Figure 2.9. Illustration of shifted Goodman diagram based on S-N curve at R = −1.
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Figure 2.10. Illustration of shifted Goodman diagram based on S-N curve at R = 0.1.

Where the shifted Goodman diagram based on S-N curve at R = −1 is denoted
CLDSGMR=−1 and the shifted Goodman diagram based on S-N curve at R = 0.1
is denoted CLDSGMR=0.1 . The advantage of using a shifted Goodman diagram
instead of a piecewise linear constant life diagram, is the need for fewer exper-
imental tests, however the fatigue life predictability is reduced [Vassilopoulos
and Keller, 2011]. Using a shifted Goodman diagram may prove beneficial in
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cases where experimental funds or time is limited. Additional beneficiality is to
be achieved if the load pattern follows the vicinity of a single R-ratio.

Goodman Diagram by Germanischer Lloyd

Germanischer Lloyd, see section 2.2, presents in "Guideline for the Certification
of Wind Turbines" a simplified method for determining a shifted Goodman di-
agram applicable to composites. The formulation for calculation of fatigue life
requires no fatigue tests. This may prove practical in situations where limited or
no fatigue tests are available or when quick calculations are needed. Fatigue life
is estimated by eq. (2.5).

N =

[
Su,t + |Su,c| − |2Sm − Su,t + |Su,c||

2Sa

]m

(2.5)

Where

Su,c Ultimate compression strength
Su,t Ultimate tensile strength

And with partial safety factors applied according to Germanischer Lloyd in eq.
(2.6).

N =

[
Su,t,c + |Su,c,c| − |2γMa Sm − Su,t,c + |Su,c,c||

2 γMb
C1b

Sa

]m

(2.6)

Where

Su,c,c Ultimate characteristic compression strength
Su,t,c Ultimate characteristic tensile strength

Where γMa is determined as.

γMa = γM0

γMb is found as.

γMb = γM0 ·ΠCib

For all analysis, γM0 is.

γM0 = 1.35

In fatigue verification, γMb is determined by multiplying with Cib presented be-
low.
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C1b = N
1
m Curve of high-cycle fatigue for the load cycle number N

and slope parameter m. m is determined by an analysis
(S-N curve) to be agreed with Germanischer Lloyd.

C2b = 1.1 Temperature effect

C3b = 1.0 Unidirectional reinforcement

= 1.1 Non-woven fabrics and unidirectional woven rovings

= 1.2 Woven fabrics and mats

C4b = 1.0 Post-cured laminate

= 1.1 Non post-cured laminate

C5b = 1.0 to 1.2 Local partial safety factor for the blade trailing edge.
The exact magnitude depends on the quality of the
verification (1.0 for dynamic blade test in the edgewise
direction,1.1 for FE calculation, 1.2 for calculation
according to Bernoulli theory).

m is defined in "Guideline for the Certification of Wind Turbines" for a number of
cases defined by their resin and fiber volume. For other cases it is recommended
to determine m by fatigue analysis. The guideline do not provide information
of which R-ratio m is related to. In this report it is assumed to be R = −1. The
Goodman diagram by Germanischer Lloyd, CLDGL, is shown in figure 2.11.

S a

S m S u,tS u,c S -|S |u,t u,c

2

mean

amplitude

Figure 2.11. Illustration of Goodman diagram by Germanischer Lloyd.

Piecewise Linear Constant Life Diagram

The piecewise linear constant life diagram is denoted, CLDPL, and is referred
to as the piecewise linear constant life diagram. and its formulation is derived
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by linear interpolation between known S-N curves or points in the (Sm − Sa)-
plane. This formulation require multiple experimentally determined S-N curves
as well as the ultimate tensile and compressive strengths of the material. Typi-
cally, S-N curves with R-ratios of 10,-1 and 0.1 is chosen representing the range
of possible loading patterns. A well determined piecewise linear constant life
diagram is shown in figure 2.12.
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Figure 2.12. Illustration of a piecewise linear constant life diagram determined from 5
R-ratios. [Vassilopoulos and Keller, 2011]

More S-N curves at different R-ratios will increase the accuracy of the constant
life diagram. It is however costly and time consuming to perform fatigue tests.
Therefore obtaining S-N curves at R-ratios in proximity of the expected loading
pattern is favorable.
Of the compared constant life diagrams, the piecewise linear constant life dia-
gram includes the most experimental data in its assessment of fatigue life. Be-
cause of this, it will be used the reliability analysis. Previously presented con-
stant life diagrams will still be included, and design equations using these will
be presented. The calibrated partial safety factors will be applicable for the be-
fore mentioned constant life diagrams.

2.1.3 Det Norske Veritas Fatigue Life Prediction Method

In the following section, a fatigue life prediction method proposed by Det Norske
Veritas (DNV) is presented. The method is also referred to as DNVs method.
This method is needed for calculating fatigue life using a constant life diagram.
It calculates the number of cycles to failure, N, corresponding to a cyclic ampli-
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tude and cyclic mean stress. The method is used to predict fatigue life for all
the constant life diagrams presented previously except the Goodman diagram
by Germanischer Lloyd.
Det Norske Veritas’ method uses a piecewise linear constant life diagram con-
structed from available S-N curves typically R =10, R =-1 and R =0.1 to obtain
fatigue lifetimes for cycles obtained from Rainflow counting with different mean
and amplitude strains. In this report, the method is applied to stresses.
The method assumes a piecewise linear constant life diagram and constant life
lines are drawn for lifetimes of 10, 100, 1000. . . cycles. Furthermore it assumes
that all constant life lines are connected to the static tensile and compressive
strains at failure as shown in figure 2.13.
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Figure 2.13. Principle of Det Norske Veritas’ fatigue life prediction method. [Det Norske
Veritas, 2006]

With the before mentioned assumptions established Det Norske Veritas presents
a procedure estimating the expected lifetime to failure, N, for a given cyclic
mean strain and cyclic strain amplitude presented below and shown in figure
2.13.

1. Draw the point P in the constant life diagram representing the given strain
amplitude, α, and mean, η.

2. Draw a line a from the origin of the constant life diagram (0 mean, 0 am-
plitude) through and beyond the point P.

3. Identify the two closest constant life lines nearest to P, n1 and n2, where n2
is the line with the higher number of cycles to failure.

4. Measure the length a1 on line a between the two constant life lines n1 and
n2 nearest to P.

5. Measure the length a2 on line a between point P and the constant line n2
with the higher number of cycles nearest to P.

6. Find the line b nearest to P representing fatigue life of a measured R-ratio,
e.g. R =10, or R =-1, or R =0.1.

7. Measure the length b1 on b between n1 and n2.

8. Calculate b2 = b1
a2
a1

.
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9. Find the strain amplitude, εCLD, corresponding to point Q that lies on b at
a distance b2 away from the intersection of b and n2.

10. Obtain the characteristic value of the expected number of cycles to failure
N for εCLD using the measured characteristic S-N curve.

[Det Norske Veritas, 2006]

The description above is programmed, the steps above are repeated for each
load cycle investigated. The method is laborious compared to Germanischer
Lloyds fatigue life estimation method shown in eq. (2.5). It should be noted that
the method described above is an approximation of the fatigue life.

Accuracy of Det Norske Veritas’ Fatigue Life Prediction Method

As the fatigue life prediction method by DNV is an approximation, its accuracy
is studied in the following section.
In order to successfully conduct reliability analysis’ of fatigue in composites,
an accurate fatigue life prediction is essential. In the following analysis, the fa-
tigue life is assumed to follow a piecewise linear constant life diagram using 3
R-ratios (see Appendix A). A method that iteratively achieve the fatigue life of
each cycle (the spatial plane method) is compared to the approximate method
proposed by DNV in DNV-OS-j102 for fatigue life prediction, see section 2.2 for
further details. The full comparison and presentation of DNVs fatigue life pre-
diction method is presented in Appendix A.
The comparison of the two methods yielded results largely dependent on the
amount of computational power available. The DNV method is computation-
ally fast, as it only approximates, by linear interpolation, the fatigue life based
on the two nearest constant life lines. The spatial plane method iterates within
zones of the constant life diagram. The difference in computational time is sig-
nificant at only a few hundred thousand data points. Making the choice of
method significant, not only in regard to accuracy. In figures 2.14 and 2.15, the
convergence analysis for the two method is shown for point 2 (see Appendix A
for more information).
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Where the step size, istep, defined as eq. (2.7). The location of Point 2 is shown in
Appendix A.

10istep ,10istep·1, . . . ,10istep·(n−1),10istep·nstep istep ∈ < > 0 (2.7)
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Where

istep Step size
nstep Number of steps

As seen in figure 2.14, the DNV method is relatively precise at its recommended
constant life line distance, with a maximum deviation of 1.2 %. As the step size
decrease, the constant life lines will change position and the distance to the point
will therefore change with step size. Therefore the load cycles position is impor-
tant in regard to the error in fatigue life.
As seen in figure 2.15, the spatial plane method converges relatively fast, how-
ever when compared to DNVs method, its computational time is more than a
factor of 2 greater at a realistic amount of data points with a required relative
stress precision equal to 10−7 is chosen. A lower precision would decrease the
computational time of the spatial plane method.
It is evaluated in Appendix A, that using the DNV method will be sufficient
in accuracy when compared to the potential time increase required to achieve
more accuracy towards the piecewise linear constant life diagram. Henceforth
the DNV method with a constant life spacing of istep = 1 will be used.
It is noted that the accuracy of the DNV method is largely dependent of the
position of the point in respect to the constant life lines. In the Appendix, two
examples are shown, one where the DNV method is conservative and one where
it is not. There is a clear tendency, depending on the m parameters of the two
adjacent S-N lines, to whether the DNV method is conservative or not. It will
however always have more conservative than non conservative areas. This does
not mean that the DNV method necessarily is conservative, only that there is a
tendency that it will be.

2.2 Fiber-Reinforced Composites in Codes

This chapter provides an overview of some standards and their approach to
fatigue in fiber-reinforced polymer. Although this section treats Det Norske Ver-
itas and Germanischer Lloyd separately, the two companies have now merged.

2.2.1 DS/EN

DS/EN provides a wide variety of design codes which cover the most com-
mon constructions and materials, however at the present time no design code
is available for fiber-reinforced polymer structures. A working group WG4 has
been established by CEN TC250 with the aim to develop a new Eurocode for
"Fiber-reinforced polymer structures" [Shave, 2014]. EN 13706 is the only Eu-
rocode which refers to fiber-reinforced polymer composites and covers testing
and notification of glass fiber-reinforced polymer pultruded profiles [Potyrala,
2011].

2.2.2 Det Norske Veritas

Det Norske Veritas provide standards which cover composite materials. DNV-
OS-C501: Composite Components is a standard developed due to lack of a good
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glass fiber-reinforced polymer guideline. It is a general standard for design of
load bearing structures, sandwich structures and components fabricated from
fiber-reinforced polymer. However, little is mentioned about fatigue in the stan-
dard and only distribution of fatigue load effects are described. Further infor-
mation about fatigue is found in DNV-OS-J102, where the fatigue limit state
analysis is explained including fatigue damage of wind turbine blades. The pro-
cedure for estimating fatigue life is presented in section 2.1.3 and takes basis in
Miner’s rule for damage accumulation and a piecewise linear constant life dia-
gram dependent on the number of R-ratios available.
The method proposed in DNV-OS-J102 is used for fatigue life estimation in this
report.

2.2.3 Germanischer Lloyd

Germanischer Lloyd (GL) provides information regarding fatigue in composites
in "Guideline for the Certification of Wind Turbines". The guideline offers infor-
mation regarding the characteristics of fiber-reinforced materials in general as
well as information for strength analysis including fatigue. The fatigue analysis
is based on a shifted Goodman diagram. A formulation for estimation of the
fatigue life is given and is based on tensile and compressive strengths. There is
no need for fatigue parameters from tests for the estimation. For damage accu-
mulation Miner’s rule is recommended.

2.2.4 Guidelines

Manufacturers such as Fiberline Composites A/S offer design manuals intended
for use with their products. Design manuals provide general information about
manufacturing, product list, design concept, partial safety factors, material pa-
rameters and connections. The design manual by Fiberline Composites A/S
offer no information about handling fatigue in fiber-reinforced polymer.



CHAPTER 3
Bridge System

The following chapter presents the traffic bridge system used in the report as
basis for derivation of the partial safety factors. The traffic bridge system is a
2 lane traffic bridge that is simplified to two static systems; Along-system and
Cross-system. The traffic bridge system is assumed to be representative for the
majority of traffic bridges constructed.
Furthermore, the design criteria e.g. design life is listed for the bridge system
and assumptions of static loading of the bridge system are presented.

3.1 Design Criteria

The bridge system is designed with reliability according to DS/EN 1990 for CC2
and CC3 as these are the allowable consequence classes for bridges. Further-
more a design life of 100 years is chosen according to recommended value by
DS/EN 1993-2 DK NA for traffic bridges.

3.2 Static System

In the following section, the static systems used throughout the report are pre-
sented. The static system will represent a generic bridge system. This generic
system is a simplification of reality. The bridge is sketched in 3-D in figure 3.1.
Additionally, dimensions of the bridge has been chosen and are presented in
figure 3.1. As seen in figure 3.1, the traffic bridge has a 30 m bridge span and
10 m wide. Dimensions are based on a typical two way traffic bridge crossing a
highway in Denmark. It is assumed that any vehicle crossing have its center in
the middle of the lanes e.g 3 m and 7 m along the y-axis without the inclusion of
any uncertainty regarding the position of the vehicle. Furthermore, the bridge
is fully paved and the dead load from guardrails is not taken into consideration.
The traffic bridge system consist of two longitudinal composite reinforced con-
crete beam with supports a number of composite decks.

23
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Figure 3.1. 3-D sketch of the bridge system.

In the bridge system composite materials are utilized as reinforcement bars in
the concrete and as composite bridge decks. In this report only the composite
bridge deck and the tension reinforcement bars are considered. Calculations are
conducted for both the composite bridge deck and the tension reinforcement
bars. The composite bridge deck is assumed to have the same material charac-
terization as the reinforcement bars. Interaction between the reinforcement bars
and the concrete is not investigated in this report. Furthermore it is assumed
that the concrete is intact.

The composite bridge deck will distribute the vertical loads from the lorry axles
and transfer it to the longitudinal beam. The longitudinal beam transfer loads
to the supports. As shown in figure 3.2, the longitudinal beams are considered
simply supported beam with three supports.

LA LA

z

x

aA

P X( , X , X )Load Pos DynA

Figure 3.2. Static system of Along-system.

The static system of longitudinal beams is denoted "Along-system" and indexed
with "A". LA is equal to 15 m.
As seen on the figure 3.2, the load PA is moving along the beam in this plane cor-
responding to a lorry crossing the bridge. PA is the reaction from the bridge deck
caused from a lorry axle crossing the bridge, and it is amplified or decreased by a
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stochastic variables; XLoad, XPos and XDyn. These stochastic variables represents
the uncertainty of the load and the position of lorries in the lane, this variable is
also shown in figure 3.3. This is described in further detail in chapters 4 and 5.
The static system for the bridge decks are shown in figure 3.3.
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Figure 3.3. Static system of Cross-system.

The static system of the bridge decks is denoted "Cross-system" and indexed
with "C". LC is equal to 10 m.
The transverse decks are considered as simply supported beams with two sup-
ports. On each deck the loading is as presented in figure 3.3.
Regarding the width of the bridge decks shown in figure 3.1, it is assumed only
one axle of a lorry is loading a single bridge deck at a time. Therefore the width
of the bridge deck is 0.32 m corresponding to wheel types presented in DS/EN
1991-2. As long as the bridge decks are considered beam elements this will gen-
erate the highest stresses in the Cross-system. Plate effects and several axles on
the same bridge deck is not investigated.

3.3 Static Loads

An estimation of the static loads acting on the Along-system and Cross-system
are presented in this section. The static loads affects the mean stresses and is
important in regards to the constant life diagram for composites as it changes
the position of the load cycles in the constant life diagram. Static loads are based
on simple assumptions and DS/EN 1992-1-1 DK NA. This estimation advances
from figure 3.1 showing the parts producing a dead load that will be taken into
account. Additionally, a layer of asphalt concrete with a thickness of 200 mm is
assumed placed on top of the composite bridge decks [Asfaltindustrien, 2004].

3.3.1 Asphalt Concrete Layer

Asphalt Concrete is assumed to have a self-weight of 25 kN/m3 [Asfaltindus-
trien, 2004]. As the thickness of the layer is known, the area dead load, Gasphalt,
can be determined as.

GAsphalt = 25kN/m3 · 0.2m = 5.0kN/m2
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3.3.2 Composite Bridge Decks

The bridge deck is assumed to have a height of 200 mm and [Harries and Moses,
2007] estimates a dead load presented in table 3.1 for composite decks with
200 mm heights. This is considered a slightly conservative estimate as putting
composite I-profiles of the same height side by side yielded a load of 0.7 kN/m2

[Fiberline Composites A/S, 2003].

Table 3.1. Dead load of composite bridge decks.

[kN/m2]

GDeck 1.0

Furthermore, it is assumed the composite bridge decks have a width allowing
only one axle to load the bridge deck at a time. A width of 32 cm is assumed
based on geometrical definitions of tires in DS/EN 1991-2. This assures maxi-
mum dynamic load relative to static load, as 32 cm is the smallest width a deck
can have and still single-handedly carry an axle.

3.3.3 Reinforced Concrete Beams

The dead load from the reinforced concrete beams, GBeam, is determined by a de-
terministic calculation in ultimate limit state in order to estimate its dimensions.
Partial coefficients according to DS/EN 1990-1-1 DK NA and DS/EN 1992-1-1 is
used. The calculations are presented in Appendix B. In table 3.2, the dead load of
the concrete beams is presented with an assumed weight density of 25 kN/m3.
The cross-section is 1000 mm × 800 mm and shown in figure 3.4.

Table 3.2. Dead load of concrete beams.

[kN/m]

GBeam 20
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Figure 3.4. Cross-section of the longitudinal concrete beams.

The reinforced concrete beams have a first moment of area as shown in table 3.3.
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Table 3.3. First moment of area of concrete beams.

[mm3]

zBeam 31 · 106

First moment of area as shown in table 3.3 is the first moment of area at the
tension reinforcement bars.

3.3.4 Line Load on Along-system

The line load on Along-system is found by determining the reactions from the
bridge decks and adding the dead load of the concrete beams. Due to symmetry
and the width of the bridge decks are 10 m, the line load on Along-system can
be determined by eq. (3.1)

qA = GBeam +
LC

2
· (GDeck + GAsphalt)

= 50kN/m (3.1)

3.3.5 Line Load on Cross-system

The line load on the bridge decks (Cross-system) are determined by eq. (3.2).

qC = 0.32m · (GDeck + GAsphalt)

= 1.92kN/m (3.2)

Where 0.32 m is the width of a single bridge deck.





CHAPTER 4
Uncertainty Modeling

In this chapter, characterization of uncertainties applied in the reliability anal-
ysis and load models are presented. How the uncertainties are introduced in
reliability analysis is explained in chapters 5 and 6. An overview of the uncer-
tainties used in this report can be found in table 4.15 on page 47.
The material properties of the composite reinforcement bars are determined
based on static and fatigue tests using statistical analysis. Fatigue tests are used
to determine S-N curve for the material at two R-ratios in the tension part of the
constant life diagram. Additionally, the Maximum-Likelihood Method is used
to determine statistical uncertainties regarding the fatigue tests.
Furthermore, uncertainties regarding the fatigue load is presented. Three stochas-
tic variables are used to describe the uncertainty related to the fatigue load.
Uncertainties are identified by two major categories; aleatory and epistemic.
Aleatory uncertainties are irreducible uncertainties associated with the physical
system or the environment, which cannot be changed by the modeler. Epistemic
uncertainties are due to lack of knowledge of the system or the environment.
These uncertainties can be reduced by gathering more data, introducing better
models etc.
Uncertainties are typically modeled as stochastic variables X = (X1, . . . , Xn) and
can be divided into the following sub groups.

Aleatory

• Physical uncertainty: Inherent variation associated with natural ran-
domness of a quantity.

Epistemic

• Measurement uncertainty: Related to imperfect measurements.

• Statistical uncertainty: Related to limited sample size of a quantity.
The statistical uncertainty is reduced by increasing the sample size of
the quantity.

• Model uncertainty: Related to inaccuracy of the mathematical models
used and choice of distribution types for the stochastic variables.

These are the types of uncertainties accounted for in a reliability analysis, how-
ever another type of uncertainty which is not covered is gross errors or human

29
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errors. This type of uncertainty is managed through quality controls. [Sørensen,
2011b]

4.1 Experimental Characterization of Fiber-Reinforced
Composite Materials

In the following chapter, the static and fatigue data is presented. The data is
used for estimation of S-N curves for use in constant life diagrams as well as
determining compression and tension ultimate strengths. Least Square Method
and Maximum-Likelihood Method is used to determine fatigue properties; logK
and m. Classic statistics are used to determine static failure characteristics; Su,c
and Su,t.
An ideal scenario is to acquire data for Schöck ComBAR. Unfortunately, it has
not been possible to acquire an adequate amount of tests for Schöck ComBAR.
Instead, a similar material with data available is used.
The characteristics for Schöck ComBAR is listed in table 4.1.

Table 4.1. Characteristics for Schöck ComBAR. [Schöck, 2014]

Material ComBAR
Fiber Type Glass
Lay-up -
Fiber volume, % 75
Resin Type Polyester
Ultimate tensile strength > 1000 MPa
Process Pultrusion

Additionally, the fiber direction in Schöck ComBAR is only unidirectional. As
the fibers are unidirectional, the axial tensile strength is high, but tensile and
compressive strengths in perpendicular direction to the fibers are relatively low.
Furthermore, Schöck ComBAR behaves linearly elastic to failure and yielding is
not observed for the reinforcement bar as shown in figure 4.1. [Schöck, 2014].
No ultimate compression strength are mentioned in [Schöck, 2014].



4.1. Experimental Characterization of Fiber-Reinforced Composite Materials 31

Figure 4.1. Stress-strain diagram [Schöck, 2014].

The criteria for choosing a similar material are listed below.

• Mainly or only unidirectional fibers

• Fatigue data for multiple R-ratios preferably in tension-tension

• Identical fiber and resin type, chemical composition may vary

• Similar fiber volume percentage

• Static tension and compression strength tests available

• Preferably similar tension and compression strengths

Two databases are examined for appropriate data; OpTiDAT and SNL/MSU/DOE
Composite Material Fatigue Database.
OpTiDAT is a material database regarding OpTiMat blades and contains all test
results by the OpTiMat research. The database cover various static and fatigue
load type testing, as well as material characteristics. In the database only a few
fatigue test are carried out using unidirectional materials and is not sufficient
for a statistical analysis.
The SNL/MSU/DOE Composite Material Fatigue Database was established in 1989
with a goal to further increase the knowledge required to improve and un-
derstand the behavior of composite materials for structural applications. The
database has more than 500 fatigue and static tests of unidirectional materials.
A material with 33 tests available and characteristics alike those of a composite
rebar is selected. The unidirectional material has 8 static and 25 fatigue tests
available. The characteristics for the material is shown in table 4.2.
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Table 4.2. Characteristics for suitable material.

Material UNI-PPG1200-PU
Fiber Type Glass
Lay-up [0]6
Fiber volume, % 59
Resin Type Polyester
Ultimate tensile strength see table 4.3
Process Infusion

Additionally, it should be noted that these fatigue tests are carried out on test
coupons. A notable difference between the materials presented in tables 4.1 and
4.2, is the processing method. As the comparable material is not pultruded, it
can only consist of mats and resin. Furthermore, the fiber volume is significantly
lower in the suitable material compared to the ComBAR material. Generally, the
fiber volume effect the mechanical properties of the material, and a high fiber
volume increase the material strengths [Université libre de Bruxelles, 1996]. Ad-
ditionally, it has been studied that the fiber volume has an effect on the fatigue
life of composites [Allah et al., 1996].

Table 4.3. List of static tests on UNI-PPG1200-PU. STT: Static tension, STC: Static com-
pression.

Static test Test type Failure stress [MPa] Young’s Modulus [GPa]

1 STT 1143 39.6
2 STT 1040 39.5
3 STT 1042 39.7
4 STT 1043 42.9
5 STT 1033 41.3
6 STC -728 42.8
7 STC -761 42.5
8 STC -746 41.8

In table 4.3, the static tests are listed. The static load tests are carried out with
constant displacement rate. Compared to the ultimate tensile strength of Schöck
ComBAR presented in table 4.1, the static tension tests show similar results.
In table 4.4, the fatigue tests are presented.
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Table 4.4. List of fatigue tests on UNI-PPG1200-PU.* indicates run-outs.

Fatigue test Sa [MPa] N R

1 207 1057085 -1
2 207 4000000* -1
3 241 1680125 -1
4 310 106485 -1
5 345 20532 -1
6 345 24227 -1
7 345 27043 -1
8 345 35832 -1
9 345 42852 -1
10 379 10903 -1
11 414 7967 -1
12 414 10144 -1
13 517 219 -1
14 186 310952 0.1
15 186 678003 0.1
16 186 770361 0.1
17 202 96223 0.1
18 202 162886 0.1
19 202 173091 0.1
20 217 25643 0.1
21 217 28490 0.1
22 217 47170 0.1
23 248 9204 0.1
24 248 23966 0.1
25 248 28690 0.1

As seen from table 4.4, two R-ratios are presented. This is assumed sufficient
as it is primarily the tension part of the constant life diagram that is utilized
in the tension reinforcement bar. All the fatigue tests presented in table 4.4 are
performed with constant load amplitude until failure occur. Failure is taken
as complete separation, effects like; delamination, stable matrix cracking and
fiber damage may gradually accumulate during the lifetime of the test speci-
men. Tests were performed at ambient laboratory air (18-24 ◦C) and fatigue
coupons are air cooled with a fan.
It should be noted that the amount of static and fatigue tests used below the
limit (25-30 tests) normally used in statistical analysis. As Fatigue test 13 is well
within the limit of low-cycle fatigue (< 1000 cycles), it will be disregarded.
As the data is acquired through a renowned database and produced in a lab-
oratory, it is assumed to be; independent, homogeneous and stationary. These
prerequisites are necessary for the statistical data processing to be valid. Inde-
pendence assures that no data point influences the outcome of another. Homo-
geneity is the assumption that the test subjects will not experience differentiating
load prior to testing, that will affect the fatigue durability outcome, and thus be-
long to the same statistical population. Furthermore homogeneity requires for
all the tests to have been performed at the same frequency. Stationarity requires
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that there are no change in statistical moments as an effect of time.

4.1.1 Assessment of Failure Characteristics

Tensile and compressive experiments are conducted in order to derive the ex-
amined materials strength. The experimental test results are shown in table 4.3
and are displacement controlled tests.
According to JCSS [2014], strength distributions are assumed Lognormal dis-
tributed. Both set of static tests will be fitted to Lognormal distributions, this
is done with full disregard for the lacking amount of data. If this analysis and
derivation of partial safety factors were to be done for a real competitive rein-
forcement bar material, more static tests would be needed. This would likely
not be a problem as static tests are inexpensive and hasty in comparison to fa-
tigue tests. Also it would be financially efficient as it would eliminate much of
the statistical uncertainty. In this report the statistical uncertainty of the static
properties is disregarded.
The statistical moments are found by equations; (4.1) and (4.2).

µln =
1
N

N

∑
i=1

ln xi (4.1)

σln =

√√√√ 1
N

N

∑
i=1

(ln xi − µln)2 (4.2)

Where

N Sample size
xi Sample no. i
µln Lognormal sample mean
σln Logarithmic standard deviation of sample

The values calculated by equations (4.1) and (4.2) are transformed to mean and
standard deviation by equations (4.4) and (4.3).

σln =

√
ln
(

σ2

µ2 + 1
)

(4.3)

µln = lnµ− 1
2

σ2
ln (4.4)

where

µ Mean
σ Standard deviation

The results are presented below in table 4.5.
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Table 4.5. Statistical parameters for static properties.

µ σ COV Dist.
[MPa] [MPa]

Su,c 745 16.5 0.02 LN
Su,t 1060 45.2 0.04 LN

The ultimate strengths are assumed uncorrelated. It is not possible to test exper-
imentally the correlation as it would require the break the same test specimen
two times.

4.1.2 Assessment of S-N curves

In this section, the S-N curves are estimated using two fitting methods; Least
Square Method, which minimize the sum of the square of the error and Maximum-
Likelihood Method. It maximizes the likelihood of the data belonging to the dis-
tribution, giving the most probable statistical moments. Least Square Method is
used as a first estimate for the Maximum-Likelihood Method iteration. The S-N
curve is shown in eq. (2.1).

Least Square Method

The Least Square Method determines the statistical parameters by solving the
optimization problem in eq. (4.5). [Sørensen, 2011b]

min
θ

n

∑
i=1

(
F̂i − FX(xi|θ)

)2 (4.5)

Where FX is a given distribution function with the unknown statistical parame-
ters θ = (θ1,θ2, . . . ,θm). F̂ is the empirical distribution function determined using
e.g. the Weibull plotting formula shown in eq. (4.6).

F̂i =
i

n + 1
, x = x̂i (4.6)

Where n is number of observations and x̂ = (x̂1, x̂2, . . . , x̂n) is data/observations
sorted in size.

Least Square Method provides expected values for logK and m. m is used in the
S-N curve formulation to calculate logKi for each sample. Standard deviation
for logK is found using classical statistics by eq. (4.7).

σlogK =

√
1
n

n

∑
i=1

(
logKi − µlogK

)2 (4.7)

Where

σlogK Standard deviation of logK
µlogK Mean of logK
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logKi is determined as

logKi = m logSai + log Ni

based on m found by Least Square Method. Where Sai and Ni is found in table
4.4.
The results of the Least Square Method are shown in table 4.6.

Table 4.6. Results from Least Square Method for different R-ratios.

R = −1 R = 0.1

µlogK 26.3 32.4
m 8.6 11.8
σlogK 0.20 0.24

The results from Least Square Method are used as an initial guess for the Maximum-
Likelihood Method.

Maximum-Likelihood Method

Statistical parameters (α0,α1, . . . ,αm) are determined by maximizing the Likeli-
hood function, L, shown in eq. (4.8) with xij being the jth coordinate of the ith
observation.

L(α0,α1, . . . ,αm) =
n

∏
i=1

fX(yi = α0 + α1xi1 + . . . + αmxim + ε) (4.8)

Where fX is a probability density and

yi = α0 + α1xi1 + . . . + αmxim + ε (4.9)

is a linear regression model. ε models the lack of fit of the model, the aleatory
uncertainty. ε has a predetermined mean value of 0 and is assumed to be nor-
mally distributed with a standard deviation σε. The statistical parameters are
determined by solving the optimization problem shown in eq. (4.10).

max
α0,α1,...,αm,σε

ln L(α0,α1, . . . ,αm,σε) (4.10)

If the S-N curve, presented in eq. (4.11), is compared with eq. (4.9)

log N = logK−m logSa + ε or N = K S−m
a + 10ε (4.11)

then

y = log N
α0 = logK
α1 = −m
x1 = logSa
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The S-N curve is inserted in eq. (4.8), the Likelihood function becomes as shown
in eq. (4.12). This formulation takes run-outs, no, taken into consideration. n is
number of observations of failure.

L(logK,m,σε) =
n

∏
i=1

1√
2π σε

exp

(
−1

2

(
log Ni − (logK−m logSa)

σε

)2
)

·
n+n0

∏
i=n+1

Φ
(

log Ni − (logK−m logSa)

σε

)
(4.12)

Where Φ() is the standard Normal distribution function and n is number of ob-
servations of failure. n0 is number of observations of run-outs. σε is the standard
deviation of ε.
In table 4.7, the Maximum-Likelihood Method results is presented for R = −1
with and without run-outs in order to evaluate the effect of taking run-outs into
consideration.

Table 4.7. Results from Maximum-Likelihood Method with and without run-outs for
R = −1.

Without With
run-outs run-outs

µ µ

logK 26.3 26.8
m 8.6 8.8
σε 0.20 0.21

It is seen from table 4.7, including the survival of the run-out specimen increases
the expected value and the standard deviation. The increase in standard devi-
ation is not beneficial, however the effect is counteracted by the significant in-
crease in the expected value.
Additionally, the Maximum-Likelihood Method can give information regard-
ing statistical uncertainty. As the Maximum-Likelihood Method parameters are
determined using a limited number of data, the parameters are subject to sta-
tistical uncertainty. If the data pool is of the size 25-30 or greater the param-
eters logK and σε estimated by the Maximum-Likelihood Method parameters
become asymptotically normally distributed stochastic variables with expected
value equal to the Maximum Likelihood estimators and a covariance matrix as
shown in eq. (4.13). [Sørensen, 2011a]
As presented in table 4.4, only 12 fatigue tests are available at each R-ratio.
This is well below the previously mentioned limit and the estimated Maximum-
Likelihood Method parameters are by the statistical uncertainty.

ClogK,m,σε
= [−HlogK,m,σε

]−1 =

 σ2
logK ρlogK,m σlogK σm ρlogK,σε

σlogK σσε

ρlogK,m σlogK σm σ2
m ρm,σε σm σσε

ρlogK,σε
σlogK σσε ρm,σε σm σσε σ2

σε


(4.13)

Where
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ClogK,m,σε
Covariance for logK, m and σε

HlogK,m,σε
Hessian matrix with second order derivatives of the log-Likelihood function

σlogK Standard deviation on logK
σm Standard deviation on m
σσε Standard deviation on σε

ρlogK,σε
Correlation coefficient between logK and σε

ρlogK,m Correlation coefficient between logK and m
ρm,σε Correlation coefficient between m and σε

The Hessian matrix is obtained from.

Hi,j =
∂2

∂αi∂αj
ln L(α0,α1, . . . ,αm)

Where α is the statistical parameters. The Hessian matrix is estimated from nu-
merical differentiation. In table 4.8, the Maximum-Likelihood Method results
for both R-ratios with run-outs taken into consideration.

Table 4.8. Results from Maximum-Likelihood Method for different R-ratios with run-
outs included.

R = −1 R = 0.1
µ µ

logK 26.8 32.4
m 8.8 11.8
σε 0.21 0.24

The estimated correlation matrix for the S-N curve at R = −1 becomes .

ρR=−1 =

 1 0.99 0.63
0.99 1 0.63
0.63 0.63 1


It is seen that logK and m are highly correlated. Therefore their statistical un-
certainty can be modeled together. If m is assumed deterministic with the value
estimated by Maximum-Likelihood Method and the parameters logK and σε is
determined by Maximum-Likelihood Method, the results presented in table 4.9
are achieved.

Table 4.9. Results from Maximum-Likelihood Method for R-ratios -1 and 0.1 with
run-outs. m is assumed deterministic determined by Maximum-Likelihood
Method. *Values taken from table 4.8.

R = −1 R = 0.1
µ σ µ σ

logK 26.8 0.06 32.4 0.07
m 8.8* - 11.8* -
σε 0.21 0.05 0.24 0.05
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σσε and σlogK represent the statistical uncertainty. The estimated correlation ma-
trices becomes.

ρR=−1 =

[
1 0.06

0.06 1

]
ρR=0.1 =

[
1 0.01

0.01 1

]
From the correlation matrix above, it can be concluded that logK and σε are
almost completely uncorrelated. In all further analysis, it will be assumed that
logK and σε are completely uncorrelated.
The estimated mean S-N curves along with their 95 % confidence interval of
logK excluding and including of the statistical uncertainties as defined in equa-
tions (4.14) and (4.15) are plotted with the experimental data in figures 4.2 and
4.3 for respectively R = −1 and R = 0.1.

logK = N(µlogK,σε) (4.14)

logK = N(µlogK,σlogK) + N(0, N(σε,σσε)) (4.15)

In order to estimate the confidence interval of eq. (4.15) a small reliability anal-
ysis is conducted.
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Figure 4.2. Estimated mean S-N curves and 95 % confidence interval for R = −1 with
and without statistical uncertainty plotted with experimental data.
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Figure 4.3. Estimated mean S-N curves and 95 % confidence interval for R = 0.1 with
and without statistical uncertainty plotted with experimental data.

It can be seen in figures 4.2 and 4.3 that the effect of the statistical uncertainty
is of minor importance to the confidence interval. The mean S-N curves are
used to construct constant life diagrams as shown in figures 4.4, 4.5, 4.6 and 4.7
corresponding to the constant life diagrams presented in section 2.1.
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Figure 4.4. Piecewise CLD constructed from
estimated mean S-N curves
without statistical uncertainty.

Figure 4.5. Shifted Goodman diagram using
S-N curve at R =−1 constructed
from estimated mean S-N curve
without statistical uncertainty.



4.1. Experimental Characterization of Fiber-Reinforced Composite Materials 41

S
m

[MPa]

-800 -600 -400 -200 0 200 400 600 800 1000 1200

S
a

[M
P

a
]

0

100

200

300

400

500

600

N=10
3

N=10
4

N=10
5

N=10
6

N=10
7

R=0.1

S
m

[MPa]

-800 -600 -400 -200 0 200 400 600 800 1000 1200

S
a
[M

P
a
]

0

100

200

300

400

500

600
R=-1

N=1

Figure 4.6. Shifted Goodman diagram using
S-N curve at R = 0.1 constructed
from estimated mean S-N curve
without statistical uncertainty.

Figure 4.7. Goodman diagram by German-
ischer Lloyd using m-value for S-
N curve at R = −1.

The constant life diagrams presented in figures 4.4, 4.5, 4.6 and 4.7 will be used
for comparison henceforth. This is done in order to account for some designs
only using one R-ratio, or even a simplified constant life diagram as the one
presented by Germanischer Lloyd. This will often be the economic approach as
fatigue tests are expensive and fatigue rarely dictate the design of shirt traffic
bridges. The constant life diagrams are named as and referred to as presented
as shown below in table 4.10.

Table 4.10. Table of names and figures containing the used constant life diagrams.

Name Sketched in figure

CLDPL 4.4
CLDSGMR=−1 4.5
CLDSGMR=0.1 4.6
CLDGL 4.7

4.1.3 Accuracy of Shifted Goodman Diagrams and Goodman
Diagram by Germanischer Lloyd

In the following section, the accuracy in fatigue life estimation of the shifted
Goodman diagrams and Goodman diagram by Germanischer Lloyd is com-
pared with the fatigue life prediction by the piecewise linear constant life di-
agram using two R-ratios as it uses the most experimental data and therefore it
is assumed it estimate damage most accurately.
The comparison is performed by predicting fatigue life in a grid of stress cycles
(with one stress cycles at each point) located inside the constant life diagrams.
The predicted fatigue life from the different constant life diagrams are compared
using eq. (4.16).

DCompared

DCLDPL

(4.16)
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Where

DCompared Damage of compared constant life diagram
DCLDPL Damage of piecewise linear constant life diagram

Miner’s rule is used for damage calculation. Fatigue life is estimated by DNVs
method for the piecewise linear constant life diagram and the shifted Goodman
diagrams. For the Goodman diagram by Germanischer Lloyd eq. (2.5) is used.
S-N curves for constructing the constant life diagrams are obtained in section
4.1. The constructed constant life diagrams used for this analysis is presented in
figures 4.4, 4.5, 4.6 and 4.7 on the previous page.
According to eq. (4.16), DCompared

DCLDPL
> 1 will indicate that the shifted Goodman dia-

grams or Goodman diagram by Germanischer Lloyd is more conservative in its
estimation of damage at the stress cycle compared to the piecewise linear con-
stant life diagram.
The results of this is shown below in figures 4.8 through 4.10. In each of the fig-
ures the numbers position represent the placement of a cycle and the magnitude
of the number represents the relative difference as shown in eq. (4.16).
In figure 4.8, the Shifted Goodman diagram using R = −1 is compared with
the piecewise linear constant life diagram using two R-ratios. The hatched area
indicate the difference in area covered by the constant life diagrams
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Figure 4.8. Comparison of estimated damage by Shifted Goodman diagram by R = −1
line and the piecewise linear constant life diagram.

It can be seen from figure 4.8, that using a constant life diagram with R-ratio
R = −1 generally underestimate the damage compared to the piecewise linear
constant life diagram. Additionally, the shifted Goodman diagram cover a larger
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area than the piecewise linear constant life diagram. It should be noted that dif-
ferences in damage estimation at low cyclic amplitudes e.g. high fatigue life,
does not have as large an influence as the difference in damage at high cyclic
amplitudes as these stress cycles typically contribute with the most damage.
The damage in the compression side of the constant life diagram is estimated
exactly as the piecewise linear constant life diagram, because of the way DNVs
method estimates damage.

In figure 4.9 the shifted Goodman diagram using R = 0.1 is compared with the
piecewise linear constant life diagram.
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Figure 4.9. Comparison of estimated damage by Shifted Goodman diagram by R = 0.1
line and the piecewise linear constant life diagram.

From figure 4.9, it can be seen that everything right of R = 0.1 is estimated simi-
larly as expected. The rest of shifted Goodman diagram generally estimate more
damage compared to the piecewise linear constant life diagram. At high stress
levels this can have a large influence on the damage estimation by the shifted
Goodman diagram as these stress cycles contributes with most of the damage.

In figure 4.10, the Goodman diagram by Germanischer Lloyd is compared with
the piecewise linear constant life diagram.
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Figure 4.10. Comparison of estimated damage by Goodman diagram by Germanischer
Lloyd and the piecewise linear constant life diagram.

Figure 4.10 shows that Germanischer Lloyds constant life diagram model over-
estimate damage in every part of the constant life diagram. This is an ideal trait
for a simplified model as it is conservative. It should be noted that this is only
investigated for one material, and this tendency may not persist for other com-
posites.

From this comparison it can be concluded that it is important that the stress
levels of the mean and amplitudes stresses are of appropriate size in regards to
what the structure would experience in a real life scenario as this can signifi-
cantly change the damage estimation by the different constant life diagrams.

4.2 Uncertainty of Transverse Positioning of Vehicles

The transverse positioning of vehicles is modeled with a normally distributed
uncertainty, XPos, with an expected value of 0.0 and a standard deviation of
0.24 m. [Road Directorate et al., 2004]
XPos, is the deviation from the mid-lane. The transverse position is assumed
constant for the entire crossing of each lorry. XPos is realized individually for
each lorry. A sketch of the uncertainty related to the transverse position is shown
in figure 4.11
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Figure 4.11. Sketch of XPos on the Cross-system.

Table 4.11. Mean and standard deviation of XPos.

µ σ

XPos 0.0 0.24

4.3 Uncertainty for Variable Loads

These uncertainties take dynamic effects and variable load of lorries into con-
sideration.
The uncertainty, XDyn, is modeled as a normally distributed stochastic variable
with an expected value 1.0 and a standard deviation of 0.2 corresponding to
high uncertainty according to [Road Directorate et al., 2004]. This is uncertainty
takes the dynamic effects of lorry crossings into consideration such as additional
force exerted to the bridge from bumps in the road or suspension system in the
lorry. The dynamic uncertainty refers to the total load, the lorry exerts upon the
bridge both amplitude and mean load.

Furthermore an uncertainty, which takes varying traffic loads into account is
introduced. This uncertainty, XLoad, is assumed normally distributed with an
expected value 0.0 and a standard deviation of 49 kN (= 5t). This variable is
added to the mean load of each crossing lorry. [Road Directorate et al., 2004]
XDyn and XLoad are realized for each lorry individually.

Table 4.12. Mean and standard deviation of XDyn and XLoad.

µ σ

XDyn 1.0 0.2
XLoad 0.0 49 kN

4.4 Uncertainty in Calculation of Stresses

This uncertainty is related to calculation of stress amplitude. Description the
uncertainty related to the transformation from load to stresses. The uncertainty
is denoted, XModel , and is modeled as an independent lognormally distributed
stochastic variable with an expected value 1.0 and a standard deviation of 0.1
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[Sørensen, 2009]. XModel is applied to both cyclic stress amplitudes and cyclic
mean stresses. The uncertainty is applied per lifetime. Application of XModel is
shown in eq. (5.5).

Table 4.13. Mean and standard deviation of XModel .

µ σ

XModel 1.0 0.1

4.5 Damage Accumulation Model

Palmgren-Miner’s damage accumulation rule is normally recommended to es-
timate damage in composite materials. Even though new models for damage
accumulation have been proposed, these models do not perform much better
[Toft and Sørensen, 2009]. Therefore the Miners rule is used and uncertainties
related to Miner’s rule can be divided into three parts.

• Model uncertainty on Miner’s rule

• Physical uncertainty on the S-N curves

• Statistical uncertainty on the S-N curves

Model uncertainty related to S-N curves and constant life diagrams can be im-
proved with better models. In the present report, the physical and statistical un-
certainty related to the S-N curves are determined based a number of constant
amplitude tests at different R-ratios, see section 4.1. The model uncertainty for
Miner’s rule, ∆, is assumed lognormally distributed with an expected value 1.0
and a standard deviation 0.40. The standard deviation for Miner’s rule is based
on the assumption that it should be less certain than the standard deviation for
steel (0.3 [JCSS, 2014]). If variable amplitude tests were available, ∆ could be
determined. ∆ is included in the reliability analysis. ∆ is applied per lifetime.

Table 4.14. Mean and standard deviation of ∆.

µ σ

∆ 1.0 0.4

4.6 Overview of Uncertainties and Stochastic Variables

In table 4.15, an overview of the uncertainties used in the present report are pre-
sented. Distribution types and characteristic values take basis in DS/EN 1990
and JCSS’ “Probabilistic Model Code”. Characteristic values are normally cho-
sen as 5-% quantiles. As there is no valid Eurocode or Danish annex for fiber-
reinforced polymers yet, this will be used there as well.
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Table 4.15. Overview of uncertainties.

µ σ COV Dist Characteristic quantile Characteristic value

XLoad 0 49 kN - N - -
XPos 0 0.24 m - N - -
XModel 1 0.10 10 % LN - -
XDyn 1 0.20 20 % N - -
logKR=−1 26.8 0.06 0.2 % N see eq. (4.17) 26.4
logKR=0.1 32.4 0.07 0.2 % N see eq. (4.17) 32.0
σε,R=−1 0.21 0.05 24 % N - -
σε,R=0.1 0.24 0.05 21 % N - -
∆ 1 0.40 40 % LN - 1
Su,c 745 16.5 2 % LN 5 % 718
Su,t 1060 45.2 4 % LN 5 % 988

logKC,0.05 = µlogK + Φ−1(0.05)σε (4.17)

Note that eq. (4.17) does not included statistical uncertainty, it can be seen from
figures 4.2 and 4.3 that this would have a minor effect on the characteristic value.
The 5% quantiles of the two log K values would be 26.4 and 32.0 if the statistical
uncertainty was included. All stochastic variables are assumed uncorrelated.
The correlation between the logKs is investigated further in section 6.7. As the
error term, ε, is assumed to be normally distributed with an expected value of
0.0. The standard deviation modeled as a Normal distribution, ε is modeled as
shown in eq. (4.18).

εR=−1 = 0 + uR=−1σε,R=−1

εR=0.1 = 0 + uR=0.1σε,R=0.1 (4.18)

where uR=−1 and uR=0.1 are standard Normal distributions.

Figures showing the Characteristic S-N curves found from the Characteristic
logK values presented above, is presented below in figures 4.12 and 4.13.
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CHAPTER 5
Fatigue Loads

In the following chapter, a fatigue load model is presented in order to determine
the reliability level of the bridge system. It is important the fatigue load model
is representative to ensure the partial safety factors are representative.
Often when designing a structure in fatigue limit state, only critical areas of the
structure are designed and the design is applied for the whole structure. There-
fore, critical fatigue points in the bridge system are investigated to ensure a rep-
resentative load spectrum. Furthermore, the load spectrum in selected points
across the bridge system is studied.
Additionally, it is investigated how many lorries needs to cross the bridge sys-
tem in order to represent the uncertainties related to the fatigue load.

In order to verify fatigue resistance in structures fatigue load models can be
used. This is done because a precise prediction of the actual dynamic load pat-
tern is hard, or impossible to acquire. Therefore a load model that predicts a con-
servative estimate is convenient. Most of the load models presented in DS/EN
1991-2 are only intended for predicting a lack of the possibility of fatigue fail-
ure (infinite life). For the majority of the load models a characteristic property
is that they do not claim to have the same traffic as the traffic on the intended
site. The claim is that the fatigue damage from the models is equivalent to the
fatigue damage that the traffic on the intended site would cause. All the models
presented here have chosen to consider cars as negligible and only lorries are of
importance. Below a summarization of the five fatigue load models presented
in DS/EN 1991-2 and their characteristic properties are presented.

• Fatigue load model 1
Intended for checking for infinite life. Used for determining fatigue

from a single type of crossing. Can be modified for a specific case.

• Fatigue load model 2
Intended for checking for infinite life. Used for determining fatigue

from a single type of crossing. Load defined by a set of frequent lorries,
wherein the most critical is chosen for analysis. All traffic is assumed to be
of this type.

• Fatigue load model 3
Intended for fatigue life assessment. Used for determining fatigue

49
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from a single lorry crossing. Can not be used for assessing infinite life.
Defined by a single lorry geometry, unlike the other fatigue load models it
refers to a plane parallel to the road.

• Fatigue load model 4
Intended for fatigue life assessment. Can not be used for assessing in-

finite life. Defines a number of lorry types and proposes several mixes of
traffic. Each of the lorries are assumed to cross the bridge alone. Rainflow
counting is suggested for determining stress ranges. Intended for deter-
mination of a stress range spectra.

• Fatigue load model 5
Intended for fatigue life assessment. Prerequisites relevant traffic data.

For all load models an amount of annual crossings is to be chosen. A replication
of the table showing these in DS/EN 1991-2, is shown below in table 5.1. These
categories are all paired with short descriptions of the traffic situation they rep-
resent.

Henceforth, load model 4 will be used. Fatigue load model 4, as the only one,
presents a distribution of heavy traffic. These distributions are described as rep-
resentative for traffic in Europe. This is in line with the goal of the report which
is to develop partial safety factors for fatigue assessment, corresponding to the
safety levels presented in Eurocode. The heavy traffic distributions are defined
by table 5.2 which is as presented in DS/EN 1991-2. Traffic category 2 is used
for calibrating partial safety factors in this report as traffic category 1 require 2
or more lanes per direction. Later in this chapter, it is investigated if 5 · 105 lorry
crossings is adequate amount to represent the uncertainties related to the fatigue
load described in chapter 4. Fatigue load models defined in DS/EN 1991-2 as-
sumes that each standard lorry is considered to cross the bridge in absence of
any other lorry. Lorry crossings in both direction are simulated.

Table 5.1. Indicative number of heavy vehicles expected per year and per slow lane.
[DS/EN 1991-2, 2003]

Traffic categories Nobs per year and per slow lane

1
Roads and motorways with 2 or more
lanes per direction with high flow rates
of lorries

2 · 106

2
Roads and motorways with medium
flow rates of lorries

0.5 · 106

3
Main roads with low flow rates of
lorries

0.125 · 106

4
Local roads with low flow rates of
lorries

0.05 · 106
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Table 5.2. Indicative number of heavy vehicles expected per year and per slow lane
[DS/EN 1991-2, 2003]. Lorries are denoted Lorry 1, Lorry 2, Lorry 3, Lorry
4 and Lorry 5 from the top.

Vehicle Types Traffic Type
Long

distance
Medium
distance

Local
traffic

Lorry
Axle

Spacing
[m]

Equivalent
axle

loads
[kN]

Lorry
%

Lorry
%

Lorry
%

Wheel
type

4.5 70
130

20.0 40.0 80.0 A
B

4.20
1.30

70
120
120

5.0 10.0 5.0 A
B
B

3.20
5.20
1.30
1.30

70
150
90
90
90

50.0 30.0 5.0 A
B
C
C
C

3.40
6.00
1.80

70
140
90
90

15.0 15.0 5.0 A
B
B
B

4.80
3.60
4.40
1.30

70
130
90
80
80

10.0 5.0 5.0 A
B
C
C
C

As seen in the table 5.2, the standard defines different wheel types shown in
table 5.3.
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Table 5.3. Definition of wheel and axle types. [DS/EN 1991-2, 2003]

Wheel/
Axle type

Geometrical definition

A

B

C

All the wheel types; A, B and C can be simplified to two point loads with 2 m
in-between, this simplification is applied in this report.

Based on the load model 4, a time series of lorries crossing the bridge system
is realized in order to assess the load cycles. The time series is based on traf-
fic category 2 and the "Long distance" traffic distribution. All lorries have the
uncertainties; XLoad, XPos and XDyn applied to their load. The total load of each
lorry will vary with a normally distributed variable, XLoad, with a mean of 0
and a standard deviation of 49 kN. The position of the lorry in the lane will vary
from the enter position of the driving lane with a random outcome of a normally
distributed variable, XPos, with a mean of 0 and a standard deviation of 24 cm.
Each lorry crossing will maintain its transverse position for the entire length
of the crossing. Lastly, bumps in the road and difference in the individual lor-
ries’ suspension systems will cause the lorries to exert an amplified or decreased
force upon the bridge. For the realizations a normally distributed variable, XDyn,
with an expected value of 1 and a standard deviation of 0.2 is applied to the to-
tal load of the lorry e.g. all axle have the same outcome of XDyn applied. All of
these are applied to each lorry individually and their application and interaction
with other stochastic variables shown in equations (5.1) to (5.4). Uncertainties
not mentioned here is applied in the reliability analysis per lifetime.
When lorries crosses the bridge system, their load effect is determined using in-
fluence lines. Influence lines describe the load effect in a point as a function of
a single loads position. Influence lines for Along-system and Cross-system are
shown in figures 5.1 and 5.2 and their formulations in equations (5.1) and (5.2).
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Figure 5.1. Influence line at bA = 0.4 L for a single point load in Along-system.
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Figure 5.2. Influence line at bC = 0.4 L for a single point load in Cross-system.
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The formulations yielding the influence lines are shown for respectively the
Along-system and the Cross-system in equations (5.1) and (5.2).

MA(aA) = PA (bA − aA)−
4 PA L3

A − 5 PA L2
A aA + PA a3

A

4 L3
A bA

0≤ aA ≤
LA

2

MA(aA) = −
4 PA L3

A − 5 PA L2
A a + PA a3

A
4 L3 bA

LA

2
≤ aA ≤ LA

(5.1)

MA(aA) = −
PA (2 LA − aA)

3 − L2
A PA (2 LA − aA)

4 L3
A bA

LA ≤ aA ≤ 2 LA

MC(aC) = PC (LC − (aC + XPos))
bC

LC
0≤ aC ≤ bC

MC(aC) = PC (aC + XPos)
LC − bC

LC
bC ≤ aC ≤ LC

(5.2)

M Rotational moment
Pi Point load
Li Length of section
ai Distance to point load
bi Distance to point investigated by influence line

Pi is the load from the tires and is defined respectively for Along-system and
Cross-system as shown in equations (5.3) and (5.4).

PA = PC
(aC + XPos)

LC
(5.3)

PC = (Q + XLoad)XDyn (5.4)

Where Q is the tire force of a single tire on the lorry, which varies depending on
axle and lorry type as shown in table 5.2. As seen in eq. (5.3), the load effect in
Along-system is dependent on position of the lorry, as it will change the corre-
sponding reaction force from the lorry.
As composites behaves linearly elastically with no yielding, superposition is
valid up until failure. The load effect from both tires are superimposed to give
the total load effect. Furthermore the reactions from each tire force in the Cross-
system are superimposed to give the total load effect at a point in the Along-
system.
When the loads are determined, the stresses can be obtained as shown in eq.
(5.5).

Sa =
Ma

z
Xmodel

Sm =
Mm

z
Xmodel (5.5)
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z Design parameter
Ma Amplitude rotational moment
Mm Mean rotational moment

Ma and Mm are obtained by performing a Rainflow count on the time series gen-
erated by lorry crossings.
Where z is the design parameter representing the first moment of area. Thus by
changing z the stresses changes. As defined in chapter 4, Xmodel is applied to
each lifetime and not the lorries, and therefore will not be taken into consider-
ation in this chapter. As the uncertainty and the design parameter are applied
to both the amplitude and mean stress, it will not change the R-ratio of the load
cycle.

By using the influence lines shown in equations (5.1) and (5.2), time series of
lorry crossings can be generated. In figures 5.3 and 5.4, the "Long distance" traf-
fic distribution presented in table 5.2 is simulated using the influence lines for
both Along-system and Cross-system. 20 lorries are simulated as this is what is
needed in order to represent the traffic distribution. The time series presented in
figures 5.3 and 5.4 are shown only with extreme values as only these are needed
for Rainflow counting in order to determine cyclic amplitude stresses and cyclic
mean stresses. Furthermore the times series shown in figures 5.3 and 5.4 are gen-
erated without any stochastic uncertainties shown in equations (5.1) and (5.2).
The static load from the bridge determined in section 3.3 is applied.

Load series
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Figure 5.3. Traffic time series of load effect at bA = 0.4 LA for Along-system, 20 lorry
crossings are shown.
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Figure 5.4. Traffic time series of load effect at bC = 0.4 LC for Cross-system, 20 lorry cross-
ings are shown.

As seen in figures 5.3 and 5.4, Lorry 3 contributes with the largest load ranges,
and therefore contributes with most damage. Thus the "Long distance" traffic
distribution is used henceforth as this distribution has the highest percentage of
Lorry 3. Additionally, it can be seen that the Along-system is subject to larger
mean loads than Cross-system.

After the time series has been generated, Rainflow Counting is applied to de-
termine cyclic amplitude stresses and cyclic mean stresses. In figures 5.5 and
5.6 for Along-system and figures 5.7 and 5.8 for Cross-system, the results from
a Rainflow count of a time series with 500000 lorry crossings with uncertainties
(related to the load) applied are shown.
As concluded from section 2.1, appropriate stress levels are important. There-
fore the design parameter z determined in Appendix C for fatigue limit state
where "Long distance" traffic distribution is used in traffic category 2. Traffic is
simulated for 100 years according to DS/EN 1993-2 DK NA for traffic bridges.
The design parameter yielding a damage of 1 is the design parameter used for
this analysis.
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Figure 5.5. Stress cycles from 500000 lorry crossings at bA = 0.4 LA in Along-system.
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Figure 5.6. Stress cycles from 500000 lorry crossings at bA = 0.4 LA in Along-system dis-
cretized with a step size of 10 MPa.
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Figure 5.7. Stress cycles from 500000 lorry crossings at bC = 0.4 LC in Cross-system.
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Figure 5.8. Stress cycles from 500000 lorry crossings at bC = 0.4 LC in Cross-system dis-
cretized with a step size of 10 MPa.

It is important to note that the design parameter from Appendix C for fatigue
limit state is for Along-system, but is also applied here to the Cross-system.
Figures 5.6 and 5.8 shows the results of the Rainflow counting in a Markov ma-
trix with step size of 10 MPa. By discretizing the load cycles the computational
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time is reduced as well as the precision of the damage estimation. In figures 5.5
through 5.8 that the static load is applied which shift the load cycles to the right
in the constant life diagram, but the shift is not significant in the Cross-system
due to low static loads. The load cycles are mainly in the tension part of the con-
stant life diagram. Therefore only S-N curve with R-ratios in the tension part of
the constant life diagram is of interest when performing fatigue tests.
In figure 5.6, it can be seen that the R-ratios -1 and 0.1 are not the optimal R-ratios
to perform fatigue tests for, with the considered load spectrum in the Along-
system. A more precise estimate of damage would be achieved by performing
fatigue tests at R = 0.6. For the load spectrum in the Cross-system seen in figure
5.8, R = 0.1 seems appropriate.
Additionally, it can be seen that the stresses are of reasonable size.

5.1 Critical Fatigue Points

In this section, critical fatigue points in the Along and Cross-system are stud-
ied as performing reliability analysis on all points along each system would be
impractical and time consuming. Therefore it is typical to design structures at
critical points and apply this design to the rest of the structure. Therefore, it is
important that the partial safety factors are calibrated to the load spectrum in
the most critical point of the structure. This ensures that the partial safety fac-
tors are representative of the load spectrum the structure would be designed for.
Typically, these critical fatigue points are details, but in this report only fatigue
points in the Along-system and Cross-system are investigated. Therefore an
analysis is conducted to determine critical fatigue points for the Along-system
and Cross-system. Additionally, the appearance of the load spectrum of along
the Along-system and Cross-system is investigated.
For the analysis, all the constant life diagrams presented in section 2.1 are used
to study if different constant life diagrams result in different fatigue points.
As concluded in section 2.1, it is important that the stresses are of appropriate
size. Stress levels are adjusted by the first moment of area (the design parame-
ter), therefore in this analysis, the first moment of area found in Appendix C is
used.

5.1.1 Critical Fatigue Points in the Along-system

To determine the critical fatigue point in the Along-system, the maximum load
range of a point load moving across the system is considered. In a situation
where mean stress did not affect the fatigue life, the largest load range would
generate the most damage, and because the stress amplitude is raised to the
power of −m in the S-N formulation, the single largest stress amplitude could
dictate the location of the critical fatigue point.
Therefore a analysis is conducted where influence lines are formulated at differ-
ent points, bA, along the Along-system. A unit load is moved across the Along-
system and the maximum load range in every point of bA is determined. The
calculation of the maximum load range in a point bA is shown in eq. (5.6).

∆M(bA) = max(MA(aA,bA)−min(MA(aA,bA)) 0≤ aA ≤ 2L (5.6)

Where
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∆M Rotational moment range
bA Distance to where influence line is defined. bA is defined in figure 5.1
aA Distance to the load. Defined in figure 3.2
MA Rotational moment in Along-system

In figure 5.9, the maximum load range for influence lines is shown.
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Figure 5.9. Load range for influence lines for a unit point load moving across the Along-
system.

It can be seen from figure 5.9, that the largest load range is experienced in 0.48 LA
and due to symmetry in 1.52 LA. As previously mentioned composites materials
are sensitive to mean load effects. Therefore the effect induced by the dead load
of the bridge introduces complexity. The load effect from the dead load is shown
in figure 5.10.
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Figure 5.10. Rotational moment, M, of a unit line load. Positive M is tension in the
bottom of the beam. x defines the position along the Along-system.

x defines the position along the Along-system in figure 5.10. It can be seen in
figures 5.9 and 5.10, that the extreme values are not located at the same point.
Therefore, figures 5.9 and 5.10 do not provide sufficient information about the
location of the critical fatigue point. Therefore the fatigue damage and the load
spectrum appearance along the Along-system are determined as the mean effect
changes the load cycles position in the constant life diagram and influence the
fatigue life.

In figure 5.11 and figures 5.12 through 5.15, shows how the load spectrum changes
along to static system. Figure 5.11 illustrates where the load spectrum is investi-
gated and which reinforcement bars are investigated. Only the tension parts of
the reinforcement bars are of interest based on the rotational moment distribu-
tion of the mean load in figure 5.10. Figures 5.12 through 5.15 are shown with
piecewise linear constant life diagrams and a load spectrum corresponding to
500000 lorry crossings of the Along-system with uncertainties included. The
R-ratio that match the majority stress cycles is also shown in the constant life
diagrams. This R-ratio is the recommended R-ratio to perform fatigue test for, if
no fatigue data is available.
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Figure 5.11. Cross-sections where the load spectrum is investigated.
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Figure 5.13. Piecewise linear constant life diagram with load spectrum at bA = 0.4LA in
Along-system. The colorbar indicates number of cycles, n.
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Figure 5.14. Piecewise linear constant life diagram with load spectrum at bA = 0.6LA in
Along-system. The colorbar indicates number of cycles, n.
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Figure 5.15. Piecewise linear constant life diagram with load spectrum at bA = 0.8LA in
Along-system. The colorbar indicates number of cycles, n.

From figures 5.12 through 5.15, it can be seen that stress cycles changes slightly.
The R-ratio that match the majority of the stress cycles are almost constant along
the Along-system except close to the center of the Along-system where stress cy-
cles have an R-ratio of 0.3.

As previously stated, the fatigue damage along the Along-system is determined
in order to investigate the critical fatigue point. 20 lorry crossings are simulated
to represent the lorry distribution presented earlier in chapter 5. The stochastic
uncertainties shown in equations (5.1) and (5.2) are not applied in this analysis
as it is assumed these will not change the location of the critical fatigue point as
it will not change the shape of the load spectrum. Furthermore traffic from the
opposite lane is neglected as this will not change the critical fatigue point. The
fatigue damage along the Along-system using the four constant life diagrams
presented in section 2.1 to estimate the damage are shown in figures 5.16, 5.18,
5.20 and 5.22. Only half of the Along-system is shown due to symmetry.
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Figure 5.16. Fatigue damage along the Along-system using CLDPL without stochastic
uncertainties. Red circle indicate largest fatigue damage.
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Figure 5.17. Stress cycles where the fatigue damage is maximum (bA = 0.4LA) using
CLDPL without stochastic uncertainties.
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Figure 5.18. Fatigue damage along the Along-system using CLDSGMR=−1 without
stochastic uncertainties. Red circle indicate largest fatigue damage.
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Figure 5.19. Stress cycles where the fatigue damage is maximum (bA = 0.4LA) using
CLDSGMR=−1 without stochastic uncertainties.
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Figure 5.20. Fatigue damage along the Along-system using CLDSGMR=0.1 without
stochastic uncertainties. Red circle indicate largest fatigue damage.
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Figure 5.21. Stress cycles where the fatigue damage is maximum (bA = 0.4LA) using
CLDSGMR=0.1 without stochastic uncertainties.
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Figure 5.22. Fatigue damage along the Along-system using CLDGL without stochastic
uncertainties. Red circle indicate largest fatigue damage.
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Figure 5.23. Stress cycles where the fatigue damage is maximum (bA = 0.4LA) using
CLDGL without stochastic uncertainties.

From figures 5.16, 5.18, 5.20 and 5.22 and table 5.4, it can be seen that all constant
life diagrams tested estimate approximately 0.4LA (6 m) as the critical fatigue
point. The fatigue point changes slightly with adjustment of z. It is assumed
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that this point, 0.4LA, is representative for similar load spectra and henceforth
used to calibrate partial safety factors.

Table 5.4. Comparison of critical fatigue points using different constant life diagrams in
the Along-system.

Damage in
Critical point

Critical point

[m]

CLDPL 2.06 · 10−18 0.4LA
CLDSGMR=−1 2.36 · 10−18 0.4LA
CLDSGMR=0.1 2.06 · 10−18 0.4LA
CLDGL 3.42 · 10−18 0.4LA

Compared to figure 5.9, the point where the largest load range is observed is
where the critical fatigue point is located.

5.1.2 Critical Fatigue Points in the Cross-system

In the Cross-system, the lorries are crossing the Cross-system perpendicular
with only one axle loading the Cross-system a time. Therefore the Cross-system
is either loaded or not (when investigating only one bridge deck). Based on this
and conducting the same investigation as for the Along-system, the critical fa-
tigue point in Cross-system is expected to be directly under the tire closest to
the center of the bridge as it is where the load range is largest as shown in figure
5.24. Figure 5.24 assumed the transverse position of all lorries are constant.
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Figure 5.24. Rotational moment, M, as a function of y where Cross-system is loaded with
two unit loads with positions corresponding to that of a lorry axle.
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Although the dead load of the bridge deck is minor in comparison to the line
load the along-system experiences, its effect can only be included through cal-
culation of fatigue damage. The rotational moment, M, exerted by the dead load
is shown in figure 5.25.
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Figure 5.25. Rotational moment, M, of the static load in the Cross-system.

Along with the introduction of mean load effect, the stochastic uncertainty, XPos,
is introduced. This will vary the position of the lorries center when crossing the
bridge. In figure 5.26, it is shown different points in the Cross-system where the
load spectrum is investigated. In figures 5.27 through 5.30, the load spectrum is
shown at different points in the Cross-system with the static load applied.
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Figure 5.26. Cross-sections where the load spectrum is investigated in the Cross-system.
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Figure 5.27. Piecewise linear constant life diagram with load spectrum at bC = 0.1LC in
Cross-system. The colorbar indicates number of stress cycles, n.
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Figure 5.28. Piecewise linear constant life diagram with load spectrum at bC = 0.2LC in
Cross-system. The colorbar indicates number of stress cycles, n.
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Figure 5.29. Piecewise linear constant life diagram with load spectrum at bC = 0.3LC in
Cross-system. The colorbar indicates number of stress cycles, n.
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Figure 5.30. Piecewise linear constant life diagram with load spectrum at bC = 0.4LC in
Cross-system. The colorbar indicates number of stress cycles, n.

In figures 5.27, 5.28, 5.29 and 5.30, it is seen that the R-ratio that match the ma-
jority of the stress cycles does not along the length of the Cross-system due to
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the low static load.

As the load spectrum changes along the Cross-system, the fatigue damage is
estimated. The damage from 10000 lorries is simulated and shown in figure
5.31. The only stochastic uncertainty taken into consideration is XPos, as this is
the only uncertainty that affects the shape of the load spectrum is XPos. 10000
realizations of lorry crossings is assumed sufficient to model a single stochastic
variable. CLDPL is used for damage estimation.
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Figure 5.31. Damage of Cross-system after the lorry distribution crossed with the
stochastic variable XPos taken into account, 10000 lorries simulated.

As seen in figure 5.31 the critical fatigue point is bC = 0.4LC (4 m). This point
will be used for calibration of partial safety factors in the Cross-system. Lastly, it
can be seen that the opposite lane traffic contribute insignificantly to the fatigue
in the critical point. Therefore, in order to save computational power, ongo-
ing traffic will not be simulated and henceforth neglected. It is however only
insignificant because of the chosen load model. If the load model included mul-
tiple lorries on the bridge, this assumption may not be valid.

In table 5.5 and figures 5.32 and 5.33, a comparison of critical fatigue points using
the piecewise linear constant life diagram, shifted Goodman diagrams and the
Germanischer Lloyd proposed constant life diagram as presented in section 2.1
to ensure that the critical fatigue point is bC = 0.4LC for all constant life diagrams.



74 5. Fatigue Loads

b
C

[m]

0 1 2 3 4 5 6 7 8 9 10

N
o
rm

al
iz

ed
 d

am
ag

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CLD
SGMR=-1

CLD
GL

CLD
SGMR=0.1

CLD
PL

Figure 5.32. Comparison of critical fatigue points using different constant life diagrams.
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Table 5.5. Comparison of critical fatigue points using different constant life diagrams.

Damage in
Critical point

Critical point

[m]

CLDPL 2.14 · 10−38 4.00
CLDSGMR=−1 2.54 · 10−31 4.05
CLDSGMR=0.1 1.21 · 10−39 4.05
CLDGL 1.01 · 10−29 4.05

From table 5.5 and figures 5.32 and 5.33, it can be seen that the critical fatigue
point is approximately the same regarding the use of different constant life dia-
grams.

The critical fatigue points found previously are marked on figure 5.34 for both
Along-system and Cross-system and presented in table 5.6.

2,3
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z
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y
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Figure 5.34. Illustration of the critical fatigue points.

Table 5.6. Comparison of critical fatigue points using different constant life diagrams.

Critical point

bA 0.4LA (6 m)
bC 0.4LC (4 m)

These are the two points that will be considered in the reliability analysis. The
distance from start of each static system to the critical fatigue point will be de-
noted as bA and bC for respectively Along-system and Cross-system.
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5.2 Estimation of Adequate Amount of Lorry Crossings

In the realization of the load signal each lorry crossing is affected by three stochas-
tic variables, as shown in equations (5.1) and (5.2). To ensure that each of these
stochastic variables has been represented properly e.i. the stochastic variables
mean and standard deviation have converged, a convergence analysis is con-
ducted. As previously mentioned traffic category 2 is used, and it is investigated
in this section if 5 · 105 lorry crossings is an adequate amount of lorry crossings
in order to ensure the stochastic variables are represented properly.
In figures 5.35 and 5.36, the convergence analysis is illustrated. The blue crosses
indicate the deviation, ∆Davg , from the total average damage per lorry from all
simulations, Dtot,avg, both defined in equations (5.7) and (5.8). 40 simulations are
performed at different amounts of lorry crossings e.g. 100000 lorry crossings are
simulated 40 times.

∆Davg,ij =
Davg,ij

Dtot,avg
− 1 (5.7)

Dtot,avg =
Dtot

ntot
Davg,ij =

Dsim,ij

nrel,ij

ntot =
nset

∑
j=1

nsim

∑
i=1

nrel,ij Dtot =
nset

∑
j=1

nsim

∑
i=1

Dsim,ij (5.8)

Where

∆Davg Deviation from the total average damage per lorry from all simulations, Dtot,avg

Davg,ij Average damage per lorry for a simulation in a set
Dtot Total damage from all simulations
Dsim,ij Damage from a simulation in a set
ntot Total number of realizations from all simulations
nrel,ij Number of realizations in given simulation
nsim Number of simulations in a set
nset Number of sets

Outcomes of ∆Davg are assumed to be normally distributed with an expected
value of zero and a standard deviation given as.

σj =

√
1

nsim

nsim

∑
i=1

(
∆Davg,ij

)2
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Figure 5.35. Convergence analysis of amount of lorries needed for Along-system.
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Figure 5.36. Convergence analysis of amount of lorries needed for Cross-system.

In figures 5.35 and 5.36, the dashed line indicate 3 % variation from the total
average damage per lorry from all simulations, Dtot,avg. A criteria for a suitable
amount of lorry crossings could be that the 95 % confidence interval is within
this 3 % change of total average damage per lorry from all simulations, Dtot,avg.
The Along-system is already within this limit at 4 · 105 lorry crossings per year,
however the Cross-system would need 7 · 105 lorry crossings per year to com-
ply with the criteria. A reasonable compromise is made to keep to the computa-
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tional time down for the reliability analysis. At 5 · 105 lorry crossings per year,
the Along-system is within this limit and the Cross-system is close. This amount
of lorry crossing will be used for the reliability analysis and derivation of partial
safety factors. Furthermore 5 · 105 lorry crossings per year corresponds traffic
category 2 in table 5.1.
As the largest load cycles typically contribute with the largest amount of dam-
age, figures 5.35 and 5.36 are strongly dependent on the largest load cycles.
Therefore it is an extreme value problem, dependent on few large realizations
in the time series. This can be seen by evaluating the damage contribution from
the most critical 5 % of the cycles. If 5 · 105 lorry crossings are simulated and the
total damage of the lorry crossings is estimated using the piecewise linear con-
stant life diagram, the 5 % largest load cycles contribute with 94% of the total
damage.

5.3 Precision of Discretization

In the following section, the effect of discretizing the data is studied. The dis-
cretization changes the estimated fatigue, but the advantage is reduction in com-
putational time. The piecewise linear constant life diagram is used for damage
calculation and 500000 lorry crossings are simulated in this analysis correspond-
ing to traffic category 2. The design parameter used is determined in Appendix
C.
After a time series have been generated, Rainflow counting is applied, with the
added feature of recording the mean value of the registered cycles. The result of
the Rainflow counting is plotted along with the R-ratios with S-N curves below
in figures 5.37 and 5.38 where the mean effect of the static loads are taken into
account. Sa is cyclic load amplitude and Sm is cyclic mean load.

Figure 5.37. Stress cycles from one year of traffic at bA = 0.4LA (6 m) in Along-system.
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Figure 5.38. Stress cycles from one year of traffic at bC = 0.4LC (6 m) in Cross-system.

Figures 5.37 and 5.38 are discretized in order to keep calculations manageable in
the reliability analysis and calibration of partial safety factors. Below in figures
5.39 and 5.40, a discretization load effect is shown with a step size of 10 MPa.

R=-1 R=0.1

R=0.6

S
m

[MPa]
-100 -50 0 50 100 150 200 250 300 350 400

S
a

[M
P

a
]

0

20

40

60

80

100

120

140

160

180
×10

4

0

1

2

3

4

5

6

7

Figure 5.39. Stress cycles from one year of traffic, discretized with a step size of 10 MPa.
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Figure 5.40. Stress cycles from one year of traffic, discretized with a step size of 10 MPa.

In the above figures, a design parameter is applied. However when conducting
the reliability analysis, the results from the Rainflow count is discretized with a
step size of 1 · 103 Nm before the design parameter is applied.
With the chosen discretization the amount of unique cycles that will need in-
dividual damage calculations is decreased by respectively 99.7 % and 99.9 %
for the Along-system and Cross-system. This reduction is at the cost of some
accuracy, this is tested below in tables 5.7 and 5.8.

Table 5.7. Precision loss after discretization for Along-system measured by change in
calculated damage in year 100 with a first moment of area of 3 · 106 mm3, as
found in Appendix C.

Discretization Discretization Discretization Discretization
None = 1 · 103 Nm = 1 · 104 Nm = 1 · 105 Nm

# of unique cycles 500037 1574 99 8
Damage in year 100 0.199 0.201 0.202 0.280
Relative change 0.00 % +1.39 % +1.81 % +40.73 %
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Table 5.8. Precision loss after discretization for Cross-system measured by change in cal-
culated damage in year 100 with a first moment of area of 3 · 106 mm3, as
found in Appendix C.

Discretization Discretization Discretization Discretization
None = 1 · 103 Nm = 1 · 104 Nm = 1 · 105 Nm

# of unique cycles 2075006 575 65 7
Damage in year 100 6.05 · 10−5 6.12 · 10−5 6.21 · 10−5 15.70 · 10−5

Relative change 0.00 % +1.10 % +2.56 % +158.97 %

From tables 5.7 and 5.8, the loss of accuracy is deemed acceptable as it only
induces conservatism.

5.4 Concluding Remarks

In the following section, chapter 5 and the conclusions derived from it are pre-
sented.
In table 5.9, the assumptions for the load model is shown.

Table 5.9. Choices made in chapter 5.

Load model 4
Traffic category 2
Traffic type Long distance
Lorry crossings 500000
bA 0.4LA
bC 0.4LC
Discretization 1 · 103 Nm

In figures 5.41 and 5.42, the Markov matrices used for reliability analysis and
calibration of partial safety factors for the Along-system and Cross-system is
shown. The Markov matrices is presented, uses the design parameter found in
Appendix C. However the Markov matrix used in reliability analysis is without
the application of the design parameter, z, but is applied here for illustrative
purposes. Therefore in the reliability analysis, the Markov matrix contains the
cyclic amplitude loads, Ma, and the cyclic mean loads, Mm.
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Figure 5.41. Load spectrum from one year of traffic, discretized with a step size of
10 MPa for Along-system. The colorbar indicates number of cycles, n

R=-1 R=0.1

S
m

[MPa]

-100 0 100 200 300 400 500

S
a

[M
P

a
]

0

50

100

150

200

250
×10

5

0

1

2

3

4

5

6

Figure 5.42. Load spectrum from one year of traffic, discretized with a step size of
10 MPa for Cross-system. The colorbar indicates number of cycles, n

Figures 5.41 and 5.42 indicates that the optimal R-ratio to perform fatigue tests
at are respectively R = 0.6 and R = 0.1 for the Along-system and Cross-system
for this load spectrum. However, this is when the R-ratio is to fit well to the
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majority of the stress cycles. Instead, a calculation of damage from the load
spectrum can be performed. In figures 5.43 and 5.44, the damage from the load
spectrum is shown.
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Figure 5.43. Load spectrum from one year of traffic showing damage, discretized with a
step size of 10 MPa for Along-system. The colorbar indicates damage.
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Figure 5.44. Load spectrum from one year of traffic showing damage, discretized with a
step size of 10 MPa for Cross-system. The colorbar indicates damage.
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From figures 5.43 and 5.44, it can be seen that the optimal R-ratio to perform
fatigue tests at are respectively R = 0.4 and R = 0 for the Along-system and
Cross-system for this load spectrum. These R-ratios correspond well with the
stress cycles with the largest stress amplitudes of the load spectrum. Choos-
ing the optimal R-ratio for performing fatigue tests requires knowledge of the
load spectrum, the composite material will experience. Additionally, compos-
ites are complex materials with a large variation on capabilities. Therefore the
best fatigue test plan is based on the location of the load spectrum and previous
knowledge of the material.



CHAPTER 6
Reliability Analysis

In the following chapter, a reliability analysis is carried out in order to estimate
the safety level of the bridge system. The fatigue limit state presented in this
chapter is the only failure mode considered for the reliability analysis. The struc-
tural system in chapter 3 is decomposed into two systems and a fatigue limit
state equation is formulated for each system. The reliability analysis is used to
calibrate partial safety factors for target reliability levels presented in DK NA for
DS/EN 1990. Furthermore, the reliability is evaluated by performing sensitivity
analysis where both mean and standard deviation as well as correlation between
parameters are investigated. Three measures of sensitivity are used to charac-
terize the sensitivity of the reliability index with respect to stochastic variables.
Additionally, the general theory used for calculating the structural reliability in
this report is outlined.

6.1 Basic Concept of Probabilities in Civil Engineering

In civil engineering, the general objective of any structural design is to ensure
the safety of the structure. This is achieved by ensuring that the resistance, R, is
greater than or equal to the expected load effect, Q, as shown in eq. (6.1)

R ≥ Q (6.1)

Generally in civil engineering the resistance and load are deterministic quan-
tities but are accompanied with uncertainties e.g. difference in nominal and
actual resistance of an element, natures phenomenons being unpredictable or
uncertainty related to idealizations of the mathematical models applied. Due to
these uncertainties, eq. (6.1) can not be solved deterministically with an abso-
lute safety. Therefore a probability of failure, Pf , for the system is introduced,
describing the probability for the load to exceed the resistance during a given
time period e.g. one year. As the goal in structural design is to ensure safety, a
measure of the safety of the structure can be expressed as shown in eq. (6.2).

Pn f = 1− Pf (6.2)

Where Pn f is the probability of non-failure which is a measure of the safety thus
expressing the structural reliability and the structural design becoming a matter
of decision as to when a system is safe enough.

85
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The structural reliability can be estimated by different methods, which can be
divided into four levels.

Level I methods: The uncertain parameters are modeled by one
characteristic value, as for example in codes
based on partial safety factor concept.

Level II methods: The uncertain parameters are modeled by the
mean values and the standard deviations, and
by the correlation coefficients between the
stochastic variables. The stochastic variables
are implicitly assumed to be normally dis-
tributed. The reliability index method is an ex-
ample of a level II method.

Level III methods: The uncertain quantities are modeled by their
joint distribution functions. The probability of
failure is estimated as a measure of reliability.

Level IV methods: In these methods the consequence (cost) of fail-
ure are also taken into account and the risk
(consequence multiplied by the probability of
failure) is used as a measure of the reliability.
In this way different designs can be compared
on an economic basis taking into account un-
certainty, costs and benefits.

Table 6.1. Methods to measure the reliability of the structure. All methods can be cali-
brated with a method that is of higher level [Sørensen, 2011b].

The complexity of the methods increases with higher level. In this report level
II and III reliability methods are considered and used to calibrate level I meth-
ods e.g. partial safety factors. Using level II and III reliability methods several
techniques can be used to estimate the system reliability.

• FORM techniques: In First Order Reliability Methods the limit state func-
tion (see section below) is linearized in the design point.

• SORM techniques: In Second Order Reliability Methods a quadratic ap-
proximation of the failure function is applied in the design point and the
probability of failure is estimated.

• Simulation techniques: Realizations of the stochastic variables are gener-
ated for each sample and the failure function is calculated for each realiza-
tion. An example of a simulation technique is crude Monte Carlo simula-
tion.

6.1.1 Basic Variables and Failure Surfaces

An important part of reliability analysis is to decide whether the quantities are
modeled as stochastic variables or deterministic parameters. The stochastic vari-
ables models uncertainties related to the parameter in question. The stochastic
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variables are denoted X = (X1, . . . , Xn), where n is the number of stochastic vari-
ables. The stochastic variables in X are also known as basic variables. Realiza-
tions of the basic variables are denoted x = (x1, . . . , xn).
In order for the mentioned reliability techniques to be applied, it is important
that the realizations x of the basic variables can determine whether the structure
is in a safe region or a failure region. For this, a limit state function, g(x), is
formulated, which divide the basic variable space, ω, into a safe region, ωS, and
a failure region, ωF. The two regions are separated by the limit state function
defined as eq. (6.3) and depicted in figure 6.1.

g(x) =
{
> 0 ,x ∈ ωS
≤ 0 ,x ∈ ωF

(6.3)

g(  )   0xg(  )>0x <

Safe,ω Failure,ωs f

g(  )=0x
x1

x2

Figure 6.1. Failure function g(x) = 0 in physical space.

It should be noted that the failure surface is not defined by a unique failure
function in the physical space. This is however the case in the u-space.
If the realizations x are replaced by the stochastic variables X, the safety margin
M or limit state equation (LSE) is obtained.

M = g(X)

Where M is a stochastic variable and the probability of failure, Pf , is.

Pf = P(M ≤ 0) = P(g(X) ≤ 0)

The reliability index, β, can be obtained by eq. (6.4).

Pf = P(g(X) ≤ 0) = Φ(−β) (6.4)

If the safety margin is non linear the approximation shown in eq. (6.5) is used.

Pf = P(g(X) ≤ 0) ≈ P(β−αT U) = Φ(−β) (6.5)

where β−αT U is the linearized safety margin.
The reliability index can be defined in different ways and the definition pre-
sented in eq. (6.4) is by Hasofer & Lind. In order to obtain the reliability index,
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β Reliability index
n Number of stochastic variables
ui Value of stochastic variable in design point in u-space

the limit state function is transformed using the Rosenblatt transformation from
the physical domain into a normalized domain denoted u-space by eq. (6.6)
to make the stochastic variables Normal distributed. Furthermore Hasofer &
Lind’s reliability index requires a linear safety margin.

Φ(Ui) = FXi(Xi) (6.6)

where

Φ() Standard normal distribution
Xi Stochastic variable no. i
Ui Normalized stochastic variable no. i in u-space

Hasofer & Lind defines the reliability index as the shortest distance from origin
to where g(u) = 0 in the u-space as depicted in figure 6.2.

u2

u1

β g( )=0u

u*

α

ωS

ωF

Figure 6.2. Geometrical illustration of the reliability index in u-space.

The shortest distance to the limit state function in u-space will be the most likely
failure and is found the optimization problem by eq. (6.7)

β = min
gu(u)

√
n

∑
i=1

u2
i (6.7)

where It should be noted that the reliability index presented in eq. (6.7) is the
design reliability index, β, and not the annual reliability, βa, index which is nor-
mally presented in this report.
The annual reliability index can be found by performing two time dependent re-
liability analysis’ on the same problem, with the time input varied by one year.
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A reliability index can refer to other time periods as well, usually a reliability
index will refer to the lifespan or a year.

βa = −Φ−1(Φ(−β j)−Φ(−β j−1))

Where

βa Annual reliability index
j Refers to the year in which βa is sought

Normally a structure will be build with a target safety level, that refers to a target
annual reliability index. The annual reliability index of the structure should not
be lower than the target annual reliability index during its design life.

6.2 Reliability Assessment Methods

When assessing the Hasofer & Lind reliability index β, a number of methods
can be used, these methods are listed below in smaller sections. From all meth-
ods, a probability of failure can be found, however depending on the limit state
equation this result may vary. If FORM is not considered accurate for the case, it
will still be used as a starting point for the reliability assessment. In these cases
SORM or simulation may be used to yield an accurate probability of failure.
While SORM can be more accurate than FORM, it may still be inappropriate
for some cases, as only simulation perfectly replicates all limit state functions
presented.

6.2.1 First Order Reliability Method

FORM is the simplest approach. FORM uses a linear approximation of the limit
state function at the design point (see eq. (6.8)), and estimates the probability
of failure by eq. (6.6). As an effect thereof it will have the least accuracy in pre-
dicting the probability of failure and thereby the reliability index. The degree of
accuracy is largely dependent on the linearity of the limit state function.
When assessing the probability of failure a transformation to u-space is needed
in order to normalize the stochastic variables as standard normal distributions.
This allows the probability of failure to be considered as a product of likely or
unlikely outcomes, instead of physical parameters as resistance and load.
The reliability index defined in eq. (6.7) is found through numerical calculations
by solving the optimization problem by iteration. In figure 6.3, a geometrical il-
lustration of the reliability index as well as the linearized safety margin is shown.
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T
u

α

u*

ωS

ωF

Figure 6.3. Geometrical illustration of the linear safety margin in u-space.

The linearized safety margin is defined as.

0 = β−αT u (6.8)

Lastly, any cross-section through origin in u-space will be a standard normal
distribution, as it only consists of axis’ with these.

6.2.2 Second Order Reliability Method

In contrast to FORM, SORM is obtained by approximating the failure surface in
u-space with a second order surface as shown in figure 6.4.

u2

u1

β

g( )=0u

FORM

α

u*

SORM

ωF

ωS

Figure 6.4. Illustration of FORM and SORM approximation of the failure function in u-
space.

As the failure surface become more non-linear, SORM can be expected to yield
a better estimate of the probability of failure in comparison to FORM.
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6.2.3 Crude Monte Carlo Simulation

In simulations, the stochastic variables, X, are realized with outcomes, x. The
probability of failure is then estimated by calculating the limit state equation
for each realization. If the realization is within the failure region, ωF, a contri-
bution to the probability of failure is obtained. Crude Monte Carlo (CMC) is a
simulation technique which estimate the probability of failure from eq. (6.9).

Pf =
1
N

N

∑
j=1

I[g(xj)] (6.9)

N Number of realizations
x Realization of standard normally distributed stochastic vector, X
I[g(xj)] Indicator function

The indicator function is shown in eq. (6.10).

I[g(x)] =
{

0 if g(x) > 0 (safe)
1 if g(x) ≤ 0 (failure)

(6.10)

As this report evaluates annual probabilities of failure and not the total proba-
bility of failure in a lifetime. A rewriting of the results extracted from the CMC
is performed. The limit state function is as presented below in eq. (6.11), this
formulation is valid as the damage caused from one year of traffic is assumed
representative for each simulation.

g(xj) = ∆− t D(xj) (6.11)

In the year of failure, the limit state function will then be:

0 = ∆− tF D(xj)

Where tF is the year in which failure will occur. This can be rewritten as;

tF =
∆

D(xj)

The result from a simulation will then be a year of failure, instead of an indicator
of failure or not. An illustration of the annual probability of failure is seen below
in figure 6.5. The annual probability of failure in a certain year can then be found
by eq. (6.12).

Pf a,i =
n f a,i

Nsim
(6.12)

Where

n f a,i Number of failures in year i
Pf a,i Annual probability for year i
Nsim Number of lifetimes simulated
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Figure 6.5. Number of failures per year from a CMC after 7 · 106 simulations.

6.3 Target Reliability

In DS/EN, the partial safety factor method is proposed. Herein deterministic
values are multiplied with factors in order to reach a predetermined safety level.
This method is easily applicable and widely used in engineering practice. The
safety levels are enforced by target reliability indices. The target reliability index
is not to be exceeded in every case, it is merely the average of the applicable cases
that is intended to have a reliability index as such. The partial safety factors
that enforce the safety levels are derived from one of three methods, a, b and c,
shown in figure 6.6.
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Probabilistic methodsDeterministic methods

Historical methods
Empirical methods
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(Level II)

Full Probabilistic
(Level III)
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Partial factor
design

Figure 6.6. Overview of reliability methods [DS/EN 1990, 2007].

While Eurocode recommended partial safety factors are primarily derived by
method a and design value format, the partial safety factors found in this report
will be derived by probabilistic methods. These are both based on probabilistic
analysis. Depending on the degree of approximation found in section 6.5, FORM
will be used to determine the partial safety factors. This is an approximation
investigated further in section 6.5.
DS/EN defines three levels of reliability and consequence. The reliability levels
are shown below in table 6.2. These are rated from one to three and correspond
within each level. This means that a structure evaluated to be in consequence
class 3 (CC3) will also require reliability class 3 (RC3). The reliability classes
have been adjusted by DK/NA to the values shown below in table 6.3.

Table 6.2. Annual target reliability classes
for buildings according to DS/EN
1990.

βa

RC3 5.2
RC2 4.7
RC1 4.2

Table 6.3. Annual target reliability classes
for buildings according to DS/EN
1990 DK NA.

βa

RC3 4.7
RC2 4.3
RC1 3.8

According to [Sørensen, 2009], bridges are to be designed with the safety levels
as shown below in table 6.4. These reliability levels are higher than those sug-
gested for structures in DK NA. Bridges are only to be designed In consequence
class 2 and 3, as no bridges are designed with a low consequence of failure.
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Table 6.4. Annual target reliability levels for bridges. [Sørensen, 2009]

βa

CC3 5.2
CC2 4.8

It is in accordance with the reliability levels shown in table 6.4 that partial coef-
ficients for the bridge system are derived.

6.4 Overview of Reliability Analysis

In figure 6.7, an overview of the procedure for the reliability analysis is pre-
sented.
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Figure 6.7. Overview of reliability analysis. Triangles: deterministic values. Squares:
basic stochastic variables. Hexagon: Calculations. Circles: Results.

As illustrated in figure 6.7, the basic variables related to the load are realized
and a lorry distribution is simulated before conducting the reliability analysis as
the limit state equation needs the cyclic load amplitude and cyclic mean loads
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as input. Rainflow counting is performed to obtain a Markov matrix containing
cyclic load amplitudes and their related mean loads. In the limit state equation
the rest of the basic variables are defined as well as deterministic values. The
deterministic design parameter, z, is used to adjust the reliability index. The
reliability index is estimated using three different methods; FORM, SORM and
CMC and a zd corresponding to the reliability index is obtained used to calibrate
partial safety factors.

6.5 Fatigue Limit State

In the following section, a fatigue limit state equation is derived to estimate the
reliability for the components in the bridge system presented in chapter 3. The
fatigue limit state estimates the probability of failure due to fatigue loading and
is used to derive partial safety factors for annual reliability indices described
section 6.3. The fatigue limit state uses DNVs method for fatigue life predic-
tion presented in section 2.1.3 as well as Palmgren-Miner’s damage accumula-
tion rule to estimate fatigue damage on the components. The piecewise linear
constant life diagram with two R-ratios is used, under the assumption that it
predicts damage accurately. Therefore no model uncertainty is related to the
constant life diagram itself. Stochastic variables and uncertainties used in the
fatigue limit state are presented in chapter 4. All stochastic variables are as-
sumed uncorrelated.
The design parameter, z, is used to control the annual reliability of the system
and is defined in eq. (6.13). By defining the design parameter as shown in eq.
(6.13), the entire load spectrum will be scaled when z is adjusted, meaning that
all points will maintain their R-ratio during all calculations.

Sa =
Ma

z
XModel

Sm =
Mm

z
XModel (6.13)

Where Ma is cyclic load amplitude and Mm is cyclic mean value obtained from
Rainflow counting of the load series obtained by realization. Ma and Mm contain
data from one years traffic according to traffic class 2, the derivation of Ma and
Mm is covered in chapter 5. The fatigue limit state equation is presented in eq.
(6.14).

g(X) = ∆− t D(n,Sa,Sm,Ki,mi,εi,Su,c,Su,t) (6.14)

Where t is time in years and index i refers to properties belonging to S-N curves
at R-ratio -1 and 0.1. The annual damage, D, can be expanded as shown in eq.
(6.15) and illustrated in figure 6.8.
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Figure 6.8. Illustration of constant life diagram and zone subdivision.

According to DNVs method for predicting fatigue life presented in section 2.1.3,
an equivalent amplitude stress is obtained and belongs to a specific R-ratio. As
shown in figure 6.8, two R-ratio are available for constructing the constant life
diagram. Load cycles in Zone 2 are transformed into a equivalent cyclic stress
amplitude on the line equal to R = 0.1. This procedure is done for all load cycles,
and the load cycles are divided into to a number of zones depending on the
number of R-ratios. From this observation, D can be expanded as shown in eq.
(6.15).

D =
k

∑
i=1

ni

∑
j=1

nij

Nij(Seq,ij)

=
k

∑
i=1

ni

∑
j=1

nij

Ki · Seq,ij
(
Sa,ij,Sm,ij,Su,c,Su,t,Ki,εi,mi

)−mi · 10εi

=
k

∑
i=1

1
10logKi+εi

ni

∑
j=1

nij

Seq,ij
(
Sa,ij,Sm,ij,Su,c,Su,t,Ki,εi,mi

)−mi
(6.15)

Where k is equal to two (number of R-ratios) and n is equal to the amount of
load cycles in the zone.
A design parameter, z, is sought, which provide an annual reliability index equal
to the annual reliability index of CC2 and CC3 in year 100. The z that yields the
sought annual reliability index is denoted zd. In figure 6.9, the annual reliability
index as function of time is shown for CC3 for Along-system and Cross-system.
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Figure 6.9. Annual reliability index as function of time for Along-system and Cross-
system.

As shown in figure 6.9, the annual reliability index in year 100 is in accordance
with the annual reliability indices stated for CC3 in section 6.4 for both Along-
system and Cross-system.

z
zd

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

β
a

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Along-system

Cross-system

Figure 6.10. Annual reliability index as function of z for Along-system and Cross-system
in year 100. zd corresponds to βa = 5.2.
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Figure 6.10 illustrates how the annual reliability index changes as function of z
for Along-system and Cross-system using FORM.

The design parameter, zd, found using FORM is shown in table 6.5 for Along-
system and Cross-system.

Table 6.5. Design parameter, zd, estimated using FORM for Along-system and Cross-
system.

zd
Along-system Cross-system

[mm3] [mm3]

βa = 5.2 4.5 · 106 2.2 · 106

βa = 4.8 4.2 · 106 2.1 · 106

βa = 3.8 3.6 · 106 1.8 · 106

Comparing the design parameters, zd, estimated by FORM for fatigue limit state
and the design parameter determined for ultimate limit state for the along sys-
tem in Appendix B equal to 31 · 106 mm3, it is seen that the design parameter for
fatigue limit state is approximately 8 times smaller than the design parameter for
ultimate limit state. The bridge design in Appendix B is done in consequence
class 2 for structures. This means that the partial safety factors applied should
give it an annual reliability index of β = 3.8. Therefore fatigue limit state will
not dictate the size of the design parameter for the bridge system.

The design point in the physical space, x∗, and the design point in u-space, u∗,
estimated using finite element reliability and shown in tables 6.6 and 6.7 for
respectively Along-system and Cross-system. x∗ is determined using the trans-
formation given in eq. (6.6) and the design point, u∗.

Table 6.6. Design point in physical space,
x∗, and u-space, u∗, estimated us-
ing FORM at βa = 5.2 for Along-
system.

x∗ u∗

∆ 0.62 -1.05
logKR=−1 26.8 0
logKR=0.1 32.3 -0.44
σεR=−1 0.21 0
σεR=0.1 0.27 0.52
uR=−1 0 0
uR=0.1 -1.68 -1.68
Xmodel 1.48 3.96
Su,c 745 MPa 0
Su,t 1045 MPa -0.31

Table 6.7. Design point in physical space,
x∗, and u-space, u∗, estimated us-
ing FORM at βa = 5.2 for Cross-
system.

x∗ u∗

∆ 0.57 -1.27
logKR=−1 26.8 -0.04
logKR=0.1 32.3 -0.49
σεR=−1 0.21 0
σεR=0.1 0.27 0.66
uR=−1 -0.13 -0.13
uR=0.1 -1.91 -1.91
Xmodel 1.46 3.82
Su,c 745 MPa 0
Su,t 1059 MPa 0

where uR=−1 and uR=0.1 is related to the physical uncertainty, ε, defined in eq.
(4.18). As uR=−1 and uR=0.1 are standard Normal distributions in the physical
space, they will have the same design point in u-space.
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It can be seen from table 6.6 and 6.7, that the uncertainty applied to the stress is
the most effectful uncertainty. The design point in the Xmodel-distribution is at
its 99.993 % quantile.

The α-vector in the design point for Along-system and Cross-system for CC3
is shown in tables 6.8 and 6.9.

α2

∆ 5.51% (24.7 %)
logKR=−1 0.00% (0.00 %)
logKR=0.1 0.95% (4.28 %)
σεR=−1 0.00% (0.00 %)
σεR=0.1 1.35% (6.06 %)
uR=−1 0.00% (0.00 %)
uR=0.1 14.0% (62.8 %)
Xmodel 77.7% (- %)
Su,c 0.00% (0.00 %)
Su,t 0.49% (2.19 %)

Table 6.8. Sensitivities for the stochastic
variables for Along-system in
year 100 for βa = 5.2. (..%) rep-
resents sensitivities when the α-
vector is normalized after remov-
ing Xmodel .

α2

∆ 7.92% (27.2 %)
logKR=−1 0.01% (0.03 %)
logKR=0.1 1.54% (3.97 %)
σεR=−1 0.00 % (0.00 %)
σεR=0.1 2.12% (7.28 %)
uR=−1 0.09% (0.29 %)
uR=0.1 17.8% (61.2%)
Xmodel 70.90% (- %)
Su,c 0.00% (0.00 %)
Su,t 0.00% (0.00 %)

Table 6.9. Sensitivities for the stochastic
variables for Cross-system in year
100 for βa = 5.2. (..%) repre-
sents sensitivities when the α-
vector is normalized after remov-
ing Xmodel .

In order to investigate the results from FORM, SORM and CMC are used to esti-
mate the annual reliability index as well. This is done using the design parame-
ter, zd, obtained from FORM. A lower βa (= 3.8) corresponding to CC1 according
to DS/EN 1990 DK NA for structures is chosen to decrease the amount of sim-
ulations needed for a reasonable estimate of Pf for the CMC. In figures 6.11 and
6.12, the comparison between the methods is presented. This is done in order
to evaluate the approximation by FORM. If FORM yields an accurate result the
tendency is assumed to be continued at other annual reliability levels and in
similar analysis’.
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Figure 6.11. Comparison of annual reliabilities for FORM, SORM and CMC for Along-
system.
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Figure 6.12. Comparison of annual reliabilities for FORM, SORM and CMC for Cross-
system.

It can be seen from figures 6.11 and 6.12, that the simulations converges de-
cently towards the FORM estimate. However it is slightly non-conservative to
apply the FORM solution. It is clear to see that the SORM does not estimate the
probability of failure well. There may be a number of reasons but the complex
shape of the limit state function is likely the cause. The Hessian matrix found
in the design point must indicate the shape of the limit state function poorly.
Furthermore it is complicated by the non-continuous failure surface. The FORM
estimate is relatively accurate at this reliability level. This tendency is assumed
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to continue for reliability levels in the proximity. Henceforth, FORM will be
used for the derivation of the partial safety factors under the assumption that it
is precise.
Additionally, it should be noted that, increasing the number of simulations for
the CMC increases the accuracy. In tables 6.10 and 6.11, the results from FORM,
SORM and CMC are presented.

Table 6.10. Results from reliability analysis
for Along-system.

βa

FORM SORM CMC

5.20 4.87 -
4.80 4.48 -
3.80 3.74 3.80

Table 6.11. Results from reliability analysis
for Cross-system.

βa

FORM SORM CMC

5.20 5.19 -
4.80 4.86 -
3.80 3.81 3.79

As seen in tables 6.10 and 6.11, CMC is only simulated at βa = 3.8 correspond-
ing to low consequence class according to DS/EN 1990 DK NA for structures.
Ideally CMC simulations would be performed at all reliability levels, to ensure
the precision the FORM calculations, however CMC simulations are quite time
consuming when estimation of damage is done by DNVs method. As a million
simulations of either system has an approximate duration of 6 hours, and the
needed amount of simulations increase exponentially with the safety level, this
will have to suffice. The duration is timed on a setup with specs as follows: Intel
Core i7-4790K CPU 4.0 GHz and 16 GB of RAM.

6.6 Sensitivity Analysis

A sensitivity analysis is conducted on the parameters in the limit state equa-
tion presented in section 6.5. The parameters used in the limit state equation
are presented in table 4.15. In the sensitivity analysis both mean and standard
deviation are varied. The sensitivity analysis is a useful tool for identifying and
characterizing parameters effect on the reliability index as well as evaluate the
importance of various system simplifications. This knowledge can then be used
when planning additional experiments. For this sensitivity analysis, three mea-
sures of the sensitivity are used.

• α-vector

• Reliability elasticity coefficient, ep

• Omission sensitivity factor, ζ

In tables 6.12 and 6.13, the α-vector at the design point for CC3 is presented for
Along-system and Cross-system. Generally, the α-vector can be interpreted as
a measure of the importance of the uncertainty for the corresponding stochas-
tic variable and α2 yields the percentage of the total uncertainty related with
the corresponding basic stochastic variable. It is important to note that this is
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only valid for uncorrelated basic variables. Otherwise, the components in the
α-vector can not be associated with specific stochastic variables, instead the α2

components for the correlated basic stochastic variables are summed and a per-
centage of the total uncertainty related to the correlated basic variables com-
bined is obtained.

α2

∆ 5.51% (24.7 %)
logKR=−1 0.00% (0.00 %)
logKR=0.1 0.95% (4.28 %)
σεR=−1 0.00% (0.00 %)
σεR=0.1 1.35% (6.06 %)
uR=−1 0.00% (0.00 %)
uR=0.1 14.0% (62.8 %)
Xmodel 77.7% (- %)
Su,c 0.00% (0.00 %)
Su,t 0.49% (2.19 %)

Table 6.12. Sensitivities for the stochastic
variables for Along-system in
year 100 for βa = 5.2. (..%)
represents sensitivities when the
α-vector is normalized after re-
moving Xmodel .

α2

∆ 7.92% (27.2 %)
logKR=−1 0.01% (0.03 %)
logKR=0.1 1.54% (3.97 %)
σεR=−1 0.00 % (0.00 %)
σεR=0.1 2.12% (7.28 %)
uR=−1 0.09% (0.29 %)
uR=0.1 17.8% (61.2%)
Xmodel 70.90% (- %)
Su,c 0.00% (0.00 %)
Su,t 0.00% (0.00 %)

Table 6.13. Sensitivities for the stochastic
variables for Cross-system in
year 100 for βa = 5.2. (..%)
represents sensitivities when the
α-vector is normalized after re-
moving Xmodel .

It can be seen in tables 6.12 and 6.13 that there is a high sensitivity related to
Xmodel . This is to be expected as Xmodel is raised to the power of m (respectively
m = 8.8 and m = 11.8) in the limit state equation. Furthermore it is important
to note that Along-system and Cross-system are loaded with different loading
patterns which affects the sensitivities of the stochastic variables.
In general, it can be seen that basic variables related to R = 0.1 is of higher im-
portance to the reliability index. This is because the majority of the data is lo-
cated near this R-ratio. Additionally, it is noted that even though the standard
deviation of ∆ is high, it is not the parameter that affects the reliability index
the most. The static compression strength has 0 % sensitivity due to the load
spectrum shape. In the Along-system the tension strength has some influence,
as it effects the transformation to Seq for the cycles under the R = 0.1-line. In
the Cross-system the effect of the static tension strength is insignificant, this is
because all load cycles in this load spectrum are located near the R = 0.1-line,
making its influence to the transformation to Seq small. It can be seen that the
physical uncertainty of log KR=0.1 is of major importance, this can be seen from
uR=0.1.

The annual reliability elasticity coefficient, ep, is another measure of sensitivity
and is defined by eq. (6.16).

ep,i =
dβa

dpi

pi

βa
(6.16)
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Where the parameter, pi, is a moment in a distribution or a constant in the limit
state equation. ep gives a measure of sensitivity as p is varied by 1% the change
in βa is ep%. Tables 6.14 and 6.15 presents ep for the mean and standard deviation
of the basic stochastic variables in the limit state equation.

ep,µ ep,σ

∆ 0.15 -0.05
logKR=−1 0.00 0.00
logKR=0.1 7.33 −6.6 · 10−3

σεR=−1 0.00 0.00
σεR=0.1 -0.09 −8.4 · 10−3

Xmodel -0.90 -0.52
Su,c 0.00 0.00
Su,t 0.26 −3.7 · 10−3

Table 6.14. Reliability elasticity coefficients
for Along-system for year 100 at
βa = 5.2.

ep,µ ep,σ

∆ 0.19 -0.07
logKR=−1 0.61 0.00
logKR=0.1 8.11 -0.01
σεR=−1 -0.6 · 10−3 0.00
σεR=0.1 -0.11 -0.01
Xmodel -0.89 -0.48
Su,c 0.00 0.00
Su,t 0.00 0.00

Table 6.15. Reliability elasticity coefficients
for Cross-system for year 100 at
βa = 5.2.

It can be seen from tables 6.14 and 6.15 that the mean value of logKR=0.1 is of
high influence. This is to be expected as it is KR=0.1 that is used in the limit state
equation. Therefore a small change in logKR=0.1 will have great effect on KR=0.1.
Unlike the α2-values, this analysis can also express the importance of the mean
values of the input parameters. It is worth noting that the ui-parameters are not
forgotten, since they are a tool used to model the standard deviation of εi, they
are marked as changed in mean value of σεi . It can be seen that the tendencies
of ep,σ match those of α2 shown in tables 6.12 and 6.13.
In figures 6.13 and 6.15, the reliability index as function of the relative changes
of mean and standard deviation for Along-system. In figures 6.14 and 6.16 the
same is shown for Cross-system.
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Figure 6.13. βa as function of relative change in mean for basic stochastic variables in
year 100 for Along-system at βa = 5.2.
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Figure 6.14. βa as function of relative change in mean for basic stochastic variables in
year 100 for Cross-system at βa = 5.2.
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Figure 6.15. βa as function of relative change in standard deviation for basic variables in
year 100 for Along-system at βa = 5.2.
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Figure 6.16. βa as function of relative change in standard deviation for basic variables in
year 100 for Cross-system at βa = 5.2.

Figures 6.13 through 6.16, show the tendencies indicated by the reliability elas-
ticity coefficients in tables 6.14 and 6.15 because the slopes in figures 6.13 through
6.16 are used to calculate the reliability elasticity coefficients. Regarding changes
in mean values, change in logKR=0.1 has the largest effect on the annual reliabil-
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ity index, and therefore enough fatigue tests are of importance. Furthermore it
can be seen that standard deviation of Xmodel is of great influence to the relia-
bility index. The standard deviation of Xmodel can be lowered depending on the
accuracy of the mathematical model.

The omission sensitivity factor, ζ, is defined by eq. (6.17).

ζi =
1√

1− α2
i

(6.17)

ζ can be used to determined if a stochastic variable can be considered determin-
istic in the reliability analysis e.g. if ζi − 1 < 0.01, the error in β is less than 1%
if the stochastic variable is considered deterministically as its mean value. Eq.
(6.17) is for independent normally distributed basic variables only. In tables 6.16
and 6.17, ζ and the error in β is presented.

ζ − 1

∆ 2.87%
logKR=−1 0.00%
logKR=0.1 0.48%
σεR=−1 0.00%
σεR=0.1 0.68%
u1 0.00%
u2 7.83%
Xmodel 111 %
Su,c 0.00%
Su,t 0.25%

Table 6.16. Omission sensitivity factors for
Along-system in year 100 at βa =
5.2.

ζ − 1

∆ 4.21%
logKR=−1 3.7 · 10−3%
logKR=0.1 0.58%
σεR=−1 0.00%
σεR=0.1 1.08%
u1 0.04%
u2 10.31%
Xmodel 85.38%
Su,c 0.00%
Su,t 0.00%

Table 6.17. Omission sensitivity factors for
Cross-system in year 100 at βa =
5.2.

It can be seen from tables 6.16 and 6.17, that considering the material static ul-
timate strengths as deterministic would induce little to no error. This is to be
expected from the indications from the previous sensitivity measures. It can
be seen, that in both systems that Xmodel is by far the most significant uncer-
tainty. The sensitivities related to logKR=−1 and logKR=0.1 differ not due to their
stochastic moments being different but due to the load spectrum.

6.7 Correlation between logK for Different R-ratios

In the following section, the correlation between logK for different R-ratios is
investigated and how it affects the annual reliability index. The correlation be-
tween logK for different R-ratios can not be determined experimentally because
it would require to break the same specimen twice.
The analysis is conducted by estimate the reliability index for different degrees
of correlation. In figures 6.17 and 6.18, the annual reliability index as function of
the correlation is shown.
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Figure 6.17. Correlation between logK for Along-system in year 100 for CC3.
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Figure 6.18. Correlation between logK for Cross-system in year 100 for CC3.

From figures 6.17 and 6.18, that the correlation is nearly insignificant. This is
because of the DNVs fatigue life prediction methods as it the load cycles to the
nearest R-ratio. In both system, load cycles are moved to R = 0.1, however as
seen in figure 5.7 on page 58, the S-N curve at R = −1 affects the slope of the
constant life lines between R = −1 and R = 0.1, and therefore of minor impor-
tance.
The assumption of uncorrelated logKi will be maintained since the change in
reliability index is below 1 %.





CHAPTER 7
Reliability-Based Calibration of

Partial Safety Factors

In the following section, partial safety factors are calibrated for reliability levels
CC2 and CC3 for bridges as presented in section 6.3. Partial safety factors are
calibrated for multiple design equations depending on the constant life diagram
used. The design equation consists of characteristic values of the basic variables
and partial safety factors. Generally, in ultimate limit state, partial safety factors
are applied to the resistance and the load, this is not the case for fatigue limit
state. The partial safety factor can be applied in different ways with different
levels of complexity. This section will describe three options for applying the
partial safety factor to the load and their corresponding design equations. First,
according to DS/INF 172 which applies partial safety factors to the cyclic stress
amplitude. Second, according the Germanischer Lloyd which applies the partial
safety factors to both the cyclic stress amplitude and the cyclic mean stress. Two
modifications to the application of partial safety factors for fatigue are tested,
the fatigue design factor and a reduction of Miners rule in the design equa-
tion. Lastly, an adjustment to the partial safety factors is conducted based on
the length of the bridge system.
All reliability calculations performed in this chapter are performed with the
piecewise linear constant life diagram.
Overview of partial safety factors can be found on [Appendix-CD, Gamma].

7.1 Partial Safety Factors as DS/INF 172

As described in section 2.2, no Eurocodes are available for fiber-reinforced poly-
mer materials, however, in DS/INF 172, the partial safety factors, γ f γm, is de-
fined and applied to the cyclic stress amplitudes for steel. If this is applied to
fiber-reinforced polymer materials, the design equation becomes as shown in
equations (7.1), (7.2) and (7.3) depending on which constant life diagram is used.

109



110 7. Reliability-Based Calibration of Partial Safety Factors

GPL = 1− t · D(n,Sa · γ f γm,Sm, logKc,R=−1, logKc,R=0.1,mR=−1,mR=0.1,Su,c,c,Su,t,c) = 0
(7.1)

GSGMR=−1 = 1− t · D(n,Sa · γ f γm,Sm, logKc,R=−1,mR=−1,Su,c,c,Su,t,c) = 0 (7.2)

GSGMR=0.1 = 1− t · D(n,Sa · γ f γm,Sm, logKc,R=0.1,mR=0.1,Su,c,c,Su,t,c) = 0 (7.3)

In equations (7.1), (7.2) and (7.3), characteristic values presented in table 4.15 on
page 47. γ f is partial safety factor for fatigue load and γm is partial safety factor
for fatigue strength, both applied to the cyclic stress amplitude. As seen in equa-
tions (7.1), (7.2) and (7.3), the partial safety factor is applied before calculation
of accumulated damage. As DS/INF 172 focus on welded steel, the cyclic mean
stresses are normally not of importance, however for fiber-reinforced polymer
materials the cyclic mean stresses is of importance and a suggestion could be to
add the partial safety factor to the cyclic mean stresses as well. But depending
on the constant life diagrams appearance this could increase the fatigue life of
the structure instead of lowering it as intended.
The product of γ f and γm is defined in eq. (7.4).

Πγ = γ f γm (7.4)

In this report, γ f and γm are divided into the following partial safety factors to
see the effect of the individual uncertainties have on Πγ.

γ f = γModelγLoad (7.5)

γm = γMatγStat (7.6)

where

γModel Partial safety factor related to XModel
γLoad Partial safety factor related to realized uncertainties: XLoad, XDyn and XPos
γMat Partial safety factor related to the material uncertainty
γStat Partial safety factor related to the statistical uncertainty

Partial safety factors are calibrated using design equations shown in equations
(7.1), (7.2) and (7.3). A design parameter, zd, estimated using the fatigue limit
state for CC2 (βa = 4.8) and CC3 (βa = 5.2) is used. The partial safety factor is
calibrated when the design equation is equal to zero.

In order to determine the partial safety factors defined in equations (7.5) and
(7.6), a design parameter, zd, is determined for the fatigue limit state for four
cases shown in table 7.1. Table 7.1 shows which uncertainties is taken into con-
sideration in each case. Case 1 is the case calculated in section 6.5. In Case 2,
XModel is assumed deterministic with its expected value of 1.0, this results in a
lower zd and as consequence a lower partial safety factor. By comparing the
partial safety factors for Case 1 and 2, γXModel can be determined.
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Table 7.1. Cases used for estimation of partial safety factors defined in equations (7.5)
and (7.6). γMat is presented in table 7.6.

Uncertainties related to

Material Statistical
Load
range

Stress
conversion

Result
Used to
obtain

∆
µlogK

σε

σlogK
σσε

XDyn
XLoad
XPos

XModel

Case 1 × × × × γCase1
Πγ; tables
7.2

Case 2 × × × γCase2
γXModel

tables 7.3

Case 3 × × × γCase3
γReal
tables 7.4

Case 4 × × × γCase4
γStat
tables 7.5

In tables 7.2, partial safety factors are presented for Case 1 for Along-system and
Cross-system for CC2 and CC3 where all uncertainties are taken into considera-
tion.

Table 7.2. Case 1. Πγ based on DS/INF 172 for CC2 and CC3 for Along-system and
Cross-system. CLDPL: Piecewise linear constant life diagram. CLDSGMR=−1 :
Shifted Goodman diagram using R = −1. CLDSGMR=0.1 : Shifted Goodman
diagram using R = 0.1.

Πγ = γCase1
Along-system Cross-system

CC2 CC3 CC3
CC2 CC2 CC3 CC3

CC2

CLDPL 2.00 2.14 1.07 1.99 2.12 1.07
CLDSGMR=−1 2.05 2.20 1.07 2.01 2.14 1.06
CLDSGMR=0.1 2.00 2.14 1.07 1.67 1.76 1.05

From tables 7.2 and 7.9, it can be seen that partial safety factors for CC2 are
lower than for CC3 as expected. Additionally, CLDPL and CLDSGMR=0.1 yields
the same partial safety factors in the Along-system. This is because the entire
load spectrum is located between R = 0.1 and R = 1, with high mean tensile
stresses relative to their amplitude stresses.
Furthermore, it can be seen that the CLDSGMR=−1 constant life diagram yields
higher partial safety factors. Furthermore it can be seen that instead of defining
partial safety factors for CC3, a consequence class factor, CC3

CC2 , can be defined.
Applying this to the partial safety factors for CC2 yields the appropriate safety
level for CC3. CC3

CC2 value is around 1.07 compared to the consequence class fac-
tor, KFI , defined in DS/EN 1990 DK NA with a value of 1.1.

γModel (found by Case 2) is calculated by assuming XModel deterministic at its
expected value of 1.0. γModel is shown in table 7.3.
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Table 7.3. Case 2. γModel based on DS/INF 172 for CC2 and CC3 for Along-system and
Cross-system. CLDPL: Piecewise linear constant life diagram. CLDSGMR=−1 :
Shifted Goodman diagram using R = −1. CLDSGMR=0.1 : Shifted Goodman
diagram using R = 0.1.

γModel =
γCase1
γCase2

Along-system Cross-system
CC2 CC3 CC2 CC3

CLDPL 1.33 1.37 1.25 1.28
CLDSGMR=−1 1.33 1.37 1.24 1.27
CLDSGMR=0.1 1.33 1.37 1.20 1.22

From table 7.3, it can be seen that γModel is constant in the Along-system for both
CC2 and CC3, but is not constant in the Cross-system. This is due to the load
spectrums placement in the constant life diagram.
γLoad (Case 3) is determined by not applying XLoad, XDyn and XPos to the load
spectrum and presented in table 7.4.

Table 7.4. Case 3. γLoad based on DS/INF 172 for CC2 and CC3 for Along-system and
Cross-system. CLDPL: Piecewise linear constant life diagram. CLDSGMR=−1 :
Shifted Goodman diagram using R = −1. CLDSGMR=0.1 : Shifted Goodman
diagram using R = 0.1.

γLoad =
γCase1
γCase3

Along-system Cross-system
CC2 CC3 CC2 CC3

CLDPL 1.19 1.18 1.26 1.26
CLDSGMR=−1 1.19 1.18 1.26 1.25
CLDSGMR=0.1 1.19 1.18 1.21 1.21

It is notable that in table 7.4, CC2 yields higher partial safety factors than for
CC3, but Πγ increases in table 7.2, but it should be noted that this effect is very
small. Therefore the importance of the uncertainties related to γLoad is decreased
as the annual reliability index is increased.
Moreover, the partial safety factors for the Along-system are constant in both
CC2 and CC3 for the different constant life diagrams. This is not the case for
the Cross-system. This is likely due to the load spectrums placement for the
Along-system and Cross-system in the constant life diagram.
γStat (Case 4) is determined by not including σlogK and σσε in the reliability cal-
culation. γStat presented in table 7.5.

Table 7.5. Case 4. γStat based on DS/INF 172 for CC2 and CC3 for Along-system and
Cross-system. CLDPL: Piecewise linear constant life diagram. CLDSGMR=−1 :
Shifted Goodman diagram using R = −1. CLDSGMR=0.1 : Shifted Goodman
diagram using R = 0.1.

γStat =
γCase1
γCase4

Along-system Cross-system
CC2 CC3 CC2 CC3

CLDPL 1.01 1.01 1.01 1.01
CLDSGMR=−1 1.01 1.01 1.01 1.01
CLDSGMR=0.1 1.01 1.01 1.01 1.01
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It can be seen from table 7.5 that the partial safety factor related to the statistical
uncertainty is close to 1.0. The number of fatigue tests used in chapter 4 for each
of the S-N curve (12 tests) are below the recommended amount of data (25-30
tests) needed for using Maximum-Likelihood Method. Therefore the statistical
uncertainty may not have converged towards a Normal distribution, and the es-
timation using Maximum-Likelihood Method might not be accurate.

As Πγ, γModel , γLoad and γStat are determined, γMat can be calculated. γMat is
presented in table 7.6.

Table 7.6. γMat based on DS/INF 172 for CC2 and CC3 for Along-system and Cross-
system. CLDPL: Piecewise linear constant life diagram. CLDSGMR=−1 : Shifted
Goodman diagram using R = −1. CLDSGMR=0.1 : Shifted Goodman diagram
using R = 0.1.

γMat =
γCase1

γModelγLoadγStat

Along-system Cross-system
CC2 CC3 CC2 CC3

CLDPL 1.26 1.32 1.26 1.31
CLDSGMR=−1 1.29 1.35 1.28 1.33
CLDSGMR=0.1 1.26 1.32 1.15 1.19

Comparing tables 7.3, 7.4, 7.5 and 7.6, γModel yields the highest partial safety
factors followed by γLoad and γMat indicating that XModel contributes with most
uncertainty which corresponds with the sensitivity analysis in section 6.6. The
product of the partial safety factors in tables tables 7.3, 7.4, 7.5 and 7.6 result in
the partial safety factors presented in table 7.2.

γ f and γm can now be determined from previously determined partial safety
factors using equations (7.5) and (7.6) and is presented in table 7.7.

Table 7.7. γ f and γm based on DS/INF 172 for CC2 and CC3 for Along-system and
Cross-system. CLDPL: Piecewise linear constant life diagram. CLDSGMR=−1 :
Shifted Goodman diagram using R = −1. CLDSGMR=0.1 : Shifted Goodman
diagram using R = 0.1. Critical design case highlighted.

CC2 CC3

Along-system

γ f γm γ f γm

CLDPL 1.58 1.27 1.62 1.32
CLDSGMR=−1 1.58 1.30 1.62 1.36
CLDSGMR=0.1 1.58 1.27 1.62 1.32

Cross-system

CLDPL 1.57 1.26 1.61 1.32
CLDSGMR=−1 1.56 1.29 1.59 1.34
CLDSGMR=0.1 1.44 1.16 1.47 1.20
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In table 7.7, the critical design cases is highlighted. These values are used to
compute recommended values for use in design by Level 1 methods. Therefore
the recommended values gives the possibility of using the three constant life dia-
grams shown above in the design equation. The critical case is the Along-system
designed by CLDSGMR=−1 . This corresponds well with figure 4.8 on page 42. The
Along-system is critical due to the significantly higher mean stresses exerted by
the dead load. If the Cross-system was designed with a material with higher
density compared to the composite material resulting in higher mean stresses
the result may have changed.

In table 7.8, the recommended partial safety factors are shown.

Table 7.8. Recommended values for LA = 15m.

Recommended partial safety factors

γ f γm KFI

CC2 1.6 1.3 1.1

The partial safety factors shown in table 7.8 is only valid when the Along-system
or Cross-system is representative and when their associated uncertainties and
constant life diagrams are representative. γ f and γm in table 7.8 is based on the
table 7.7 and is determined as the highest partial safety factor rounded to one
decimal. The consequence class factor, KFI , is applied as shown in eq. (7.7). KFI
is applied to the partial safety factors when designing for CC3. If designing for
CC2, KFI is 1.0. The consequence class factor is based on CC3

CC2 relations shown in
table 7.2.

KFIγ f γm (7.7)

The product of the recommended γ f and γm is calculated for CC2 and CC3.

CC2: 1.6 · 1.3 = 2.08 > 2.05
CC3: 1.6 · 1.3 · 1.1 = 2.28 > 2.20

(7.8)

Where 2.05 and 2.20 are Πγ-values from table 7.2 for CLDSGMR=−1 for CC2 and
CC3 in the Along-system.
As seen above, the recommended values yield slightly higher Πγ-values.

7.2 Partial Safety Factors as Germanischer Lloyd

Germanischer Lloyd applies partial safety factors on both cyclic amplitude stresses
and cyclic mean stresses and the design equation becomes eq. (7.9).

GGL = 1− t · D(n,Sa · γMb,Sm · γMa,Su,c,c,Su,t,c,mR=−1) = 0 (7.9)

As seen in eq. (7.9), Germanischer Lloyd applies two separate partial safety
factors to respectively the cyclic stress amplitude and cyclic mean stress where
Eurocode only applies partial safety factors to the cyclic stress amplitude.
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The partial safety factor calibrated using the constant life diagram suggested by
Germanischer Lloyd is not divided into sub partial safety factors as Germanis-
cher Lloyd has defined in their standard which uncertainties γMa and γMb cov-
ers. It should be noted that the partial safety factors defined by Germanischer
Lloyd in their guideline are for wind turbine blades and the target reliability
level the partial safety factors are calibrated for is in accordance with reliability
levels for wind turbines. γMa is assumed 1.35 for fatigue analysis and only γMb
is calibrated.
γMb is calibrated using design equation shown in eq. (7.9). A design parameter,
zd, estimated using the fatigue limit state for CC2 (βa = 4.8) and CC3 (βa = 5.2)
is used.
γMb for CC2 and CC3 for Along-system and Cross-system is presented in table
7.9.

Table 7.9. γMb based on Germanischer Lloyd for CC2 and CC3 for Along-system and
Cross-system. CLDGL: Shifted Goodman diagram by Germanischer Lloyd.

γMb
Along-system Cross-system

CC2 CC3 CC3
CC2 CC2 CC3 CC3

CC2

CLDGL 1.77 1.91 1.08 1.72 1.81 1.05

CLDGL yields the lower partial safety factors when compared to table 7.2. This
is expected as it is predicts higher damage as seen in figure 4.8 on page 42 and
γMa = 1.35 is applied to the cyclic mean stresses. The consequence class factor,
CC3
CC2 , is intended to be applied to γMb as this would achieve the require annual
target reliability level. Applying the consequence class factor to γMa as well
would yield an annual reliability level higher than the annual target reliability
according to CC3 of βa = 5.2.

In table 7.10, the recommended γMa and γMb are shown.

Table 7.10. Recommended values for LA = 15m.

Recommended partial safety factors

γMa γMb KFI

CC2 1.35 1.75 1.1

The partial safety factors shown in table 7.10 is only valid when the Along-
system or Cross-system is representative. γMb is based on table 7.9 and is de-
termined as the highest partial safety factor rounded to one decimal. The conse-
quence class factor, KFI , is applied as shown in eq. (7.10). KFI is applied to the
partial safety factors when designing for CC3. If designing for CC2, KFI is 1.0.
The consequence class factor is based on CC3

CC2 relations shown in table 7.9. KFI is
only applied to γMb as it is the partial safety factor being calibrated. Applying
KFI to γMa would yield a higher target reliability index than that for CC3.

KFIγMb (7.10)
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The recommended γMb is calculated for CC2 and CC3.

CC2: 1.75 ≈ 1.72+1.77
2

CC3: 1.75 · 1.1 = 1.93 > 1.91

As seen above the recommended values yield slightly higher γMb-values for
CC3. This is deemed acceptable as it reduces the complexity in the Level 1
method.

7.3 Fatigue Design Factor as DS/INF 172

DS/INF 172 also suggest a fatigue design factor, FDF, applied to the design life
as shown in equations (7.11), (7.12) and (7.13) depending on which constant life
diagram is applied.

GPL = 1− t · FDF · D(n,Sa,Sm, logKc,R=−1, logKc,R=0.1,mR=−1,mR=0.1,Su,c,c,Su,t,c) = 0
(7.11)

GSGMR=−1 = 1− t · FDF · D(n,Sa,Sm, logKc,R=−1,mR=−1,Su,c,c,Su,t,c) = 0 (7.12)
GSGMR=0.1 = 1− t · FDF · D(n,Sa,Sm, logKc,R=0.1,mR=0.1,Su,c,c,Su,t,c) = 0 (7.13)

where FDF is defined DS/INF 172 as.

FDF = (γ f γm)
m (7.14)

The transformation shown in eq. (7.14) is valid when one linear S-N curve is
used without a constant life diagram (no mean stress). Due to the complex dam-
age estimation, and the possibility of multiple m-values, in a constant life dia-
gram, FDF has to be defined separately and eq. (7.14) is not applied.

FDF is calibrated by estimating the damage in year 100 with a design parameter
corresponding to an annual target reliability level of 4.8 (CC2) and 5.2 (CC3).
In tables 7.11, FDF-values are presented.

Table 7.11. Fatigue design factors based on DS/INF 172 for CC2 and CC3 for Along-
system and Cross-system. CLDPL: Piecewise linear constant life diagram.
CLDSGMR=−1 : Shifted Goodman diagram using R = −1. CLDSGMR=0.1 :
Shifted Goodman diagram using R = 0.1.

FDF Along-system Cross-system
CC2 CC3 CC2 CC3

CLDPL 1514 3248 1130 2190
CLDSGMR=−1 538 1003 465 794
CLDSGMR=0.1 1514 3248 1082 2122

In table 7.11, CLDPL and yielding the highest FDF. An obvious tendency for ta-
ble 7.11 is the exceptionally high numbers. It would likely feel unintuitive for an
engineer to design a structure with a fatigue life of over 300000 years (3248 · t).
As a result, the fatigue design factor will not be investigated any further.
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7.4 Reduction of Characteristic Value of Miner’s Rule

Tables 7.2 through 7.11 are obtained with Miner’s rule equal to 1.0 in the design
equation. With regards to tables 6.6 and 6.7 on page 98 presenting design value
in physical space, a lower value of Miner’s rule can be suggested for the design
equations. If Miner’s rule equal to 0.5 is applied in the design equation instead
of 1.0, the partial safety factors presented in tables 7.12 and 7.13 are obtained.
Miner’s rule equal to 0.5 corresponding to a safety factor of 0.5−

1
m applied to the

cyclic stress amplitudes.

Table 7.12. Case 1. Πγ based on DS/INF 172 for CC2 and CC3 for Along-system and
Cross-system with Miner’s rule set to 0.5. CLDPL: Piecewise linear con-
stant life diagram. CLDSGMR=−1 : Shifted Goodman diagram using R = −1.
CLDSGMR=0.1 : Shifted Goodman diagram using R = 0.1.

Πγ = γCase1
Along-system Cross-system
CC2 CC3 CC3

CC2 CC2 CC3 CC3
CC2

CLDPL 1.87 2.00 1.07 1.85 1.96 1.06
CLDSGMR=−1 1.90 2.04 1.07 1.86 1.98 1.06
CLDSGMR=0.1 1.87 2.00 1.07 1.63 1.73 1.06

Table 7.13. γMb based on Germanischer Lloyd for CC2 and CC3 for Along-system and
Cross-system with Miner’s rule set to 0.5. CLDGL: Shifted Goodman dia-
gram by Germanischer Lloyd.

γMb
Along-system Cross-system
CC2 CC3 CC3

CC2 CC2 CC3 CC3
CC2

CLDGL 1.54 1.62 1.05 1.63 1.73 1.06

As expected tables 7.12 and 7.13 show the same tendencies as tables 7.2 and
7.9 but with lower partial safety factors. As the decrease in the partial safety
factors is only slight and the impression of only using half of the fatigue life is
unintuitive, the characteristic value of Miner’s rule will be kept at 1.0, similar to
that of steel defined in DS/EN 1993-1-9.

7.5 The Bridge Spans Influence on Reliability Level

In the following section, it is studied how the bridge span affect Πγ and βa.
Only the Along-system is investigated in this section.
In figure 7.1, Πγ as function of bridge section length is shown. At every bridge
section length, a design parameter, zd, is determined corresponding to a annual
target reliability level of CC2 (βa = 4.8) and CC3 (βa = 5.2) using the piecewise
linear constant life diagram to estimate fatigue life. The design parameters are
used in the design equation, GPL, shown in eq. (7.1) and Πγ is calibrated so that
GPL = 0.
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Section length L
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 [m]
5 10 15 20 25 30

Π
 γ

1
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CC2 Along-system
CC3 Along-system

Figure 7.1. Πγ as function of bridge section length.

From figure 7.1, it can be seen that changed in bridge span has little effect on Πγ.
It can be seen that the required partial safety factor increase with bridge section
length. This is because higher mean stresses will be introduced when increasing
the length of the bridge span.

Using the design equations (7.1), (7.2) and (7.3) as well as the recommended
γ f and γm from table 7.8 on page 114, the annual reliability levels as function of
the bridge section length can be estimated in order to investigate the safety level
obtained using Level 1 methods.
Using the design equations, a design parameter can be determined for different
bridge spans so that G = 0 for CC2 and CC3. KFI = 1.1 is used for CC3. The
design parameters are used in the fatigue limit state equation estimating an an-
nual reliability index. In figure 7.2, the annual reliability index as function of the
bridge section length is shown. Additionally, the target reliability for CC2 and
CC3 is plotted.



7.5. The Bridge Spans Influence on Reliability Level 119

A
[m]

5 10 15 20 25 30

β
a

4

4.5

5

5.5

6

C 2: Π γ =1.6·1.3C

CC3: Π γ =1.6·1.3·1.1

CC3: Design eq. CLD
PL

CC3: Design eq. CLD
SGM, =-1R

CC3: Design eq. CLD
SGM, =0.1R

CC2: Design eq. CLD
PL

CC2: Design eq. CLD
SGM, =-1R

CC2: Design eq. CLD
SGM, =0.1R

Section length L

CC2: =4.8βa
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Figure 7.2. βa as function of bridge section length. βa is based on recommended γ f and
γm-values.

As seen from figure 7.2, the three constant life diagrams at both CC2 and CC3 are
above the annual target reliability levels at LA = 15m. This is because the recom-
mended γ f and γm-values yields a higher safety level as illustrated in eq. (7.8).
For CC2 and CC3 the mean annual reliability level from the three the constant
life diagrams at all presented lengths is respectively βa = 4.94 and βa = 5.49.
As expected the annual reliability decreases with increase in bridge section length
which corresponds well with figure 7.1.
A suggestion could be made to adjust the partial safety factors so that the mean
annual reliability index are approximately equal to βa = 4.8 and βa = 5.2 for
CC2 and CC3 as shown in figure 7.3. By adjusting the partial safety factors to
the mean reliability index, structures designed using the partial safety factors
will have a mean reliability index of βa = 4.8 and βa = 5.2 for CC2 and CC3.
This suits the definition of a target reliability index. In figure 7.3, γ f is lowered
from the recommended value of 1.6 to 1.55. The 1.55 correspond well to the
mean value of all γ f values presented in table 7.7 for CC2.
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Figure 7.3. βa as function of bridge section length. βa is based on adjusted recommended
γ f and γm-values.

For CC2 and CC3, the mean reliability level from the three the constant life dia-
grams is respectively βa = 4.77 and βa = 5.30 using the adjusted recommended
partial safety factors. By lowering γ f , the mean reliability levels are more in line
with the annual target reliability levels of βa = 4.8 and βa = 5.2 for CC2 and CC3.
It can be seen that the mean reliability level is slightly higher than CC3, this can
be lowered by reducing the consequence class factor, KFI .

The lowered value of γ f = 1.55 will be recommended.



CHAPTER 8
Discussion

In the following chapter, a discussion regarding choices and assumption made
in the report is conducted. Additionally, further analysis that could have im-
proved the objectives of the report are elaborated upon.

On the subject of choosing a representative static system, two static system were
investigated. To ensure that the partial safety factors are representative, more
static systems could have been studied to assure that the partial safety factors
are representative in all cases. Investigating more static system could change
the partial safety factors. Regarding the Cross-system presented in section 3.2, a
low static load (dead load) is used as the system was a composite bridge deck. If
a larger dead load is used e.g. composite reinforced concrete, the partial safety
factors could change.

In section 2.1, four constant life diagrams are presented. It is assumed that the
linear constant life diagram describes the fatigue life best as it uses most infor-
mation from different S-N curves. Optimally the investigated material would
have data at more R-ratios available. Other constant life diagrams could have
been studied such as the non-linear constant life diagram where a Sa-R-plane
is used to derive the constant life diagram. The model uncertainty related to
the constant life diagram and S-N curve can be improved by choosing a better
model.

In section 4.1, characterization of static and fatigue properties of a real applicable
material should have been conducted using experimental data. Unfortunately,
the amount of fatigue tests received for an applicable material were insufficient
for a statistical analysis. Furthermore the tests were conducted with entire spec-
imens cast into concrete. As such the test plans have been made for fatigue in
concrete, rather than for composite. Instead, experimental data for a similar
composite material is used. The similar composite material has lower fiber vol-
ume which affect the mechanical properties of the material, and experimental
data was performed on test coupons and not on reinforcement bars. This can
change the failure mode of the test specimen.
Of the experimental data used in the report, only three static compression tests
and five static tension tests are available, which is not sufficient for a statistical
analysis. In order to accurately determined the static strengths of the composite
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material more experimental data should be used.
The fatigue tests used in this report generally fail at a relatively low amount
of stress cycles (104-106) and therefore the accuracy of the S-N curves at high
amount of stress cycles (low fatigue load) may be questionable. Unfortunately
performing fatigue tests for stress cycles above this amount is exceptionally time
consuming and therefore impractical. The tested material had 12 fatigue tests
available at each of two R-ratios. This is not enough tests to determine the sta-
tistical uncertainty of the material properties properly. Furthermore a compos-
ite material used for reinforcement, should be tested for compression fatigue as
well. As such, more tests at compression R-ratios would be important, as com-
posite often do not benefit from compressive mean stresses. Furthermore, not
working with a real applicable material makes the entire reliability analysis, only
valid in its manner of approach. All material fatigue properties vary greatly in
composites. Even advantageous/disadvantageous behavior at tension or com-
pressive mean stresses vary in composites. Therefore a set of general partial
safety factors for composites should be calibrated based on multiple materials.

In chapter 5, fatigue load model 4 according to DS/EN 1991-2 is presented. This
load model may be the most extensive load model presented in DS/EN 1991-2
besides the use of traffic data, but it is still a simplification. Three uncertainties
have been applied to the load model to simulate a load signal from traffic. The
uncertainties take varying load of lorries, varying position and variation in ex-
ertion of force upon the bridge into account. These are all applied to single lorry
crossings. At any time, no more than one lorry will be crossing the bridge, not
even in the opposite lane. This simplification is significant, since many bridges
are designed by a traffic jam load case, but for small traffic bridges the simplifica-
tion becomes less important. Daily traffic jams, could cause fatigue more critical
than that estimated by the current model. Simulating multiple lorries crossing
the bridge by a Poisson process with varying traffic intensity both as a function
of time of day and time of year would have been preferable. In order for this
model to be accurate and representative, a study of traffic loading patterns and
traffic intensity would be required. The change in load model would change
the partial safety factors. This change in load model could be a valid extension
of the project if more time was available. Additionally, an investigation of the
precision of fatigue load model 4 for Danish traffic bridges could be determined
by comparing it real traffic data.
In chapter 4 the uncertainties applied in the report are described. Many of the
uncertainties and their statistical parameters are found from literature wherein
they are intended for use in a similar situation or other materials. This is espe-
cially noticeable in the choice of stochastic moments for the model uncertainty
in the transformation from load to stress (Xmodel). This uncertainty accounts for
over 70% of the sensitivity related to the design point (at βa = 5.2). The magni-
tude of the standard deviation of this parameter is very important for the entire
reliability analysis.

In chapter 6, a reliability analysis using the stochastic variables presented in ta-
ble 4.15 on page 47 is conducted for Along-system and Cross-system including
a sensitivity analysis. The sensitivity analysis revealed that the annual reliabil-
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ity index was highly dependent on XModel . Both limit state equations utilized
Miner’s linear damage accumulation rule, use of a different damage accumula-
tion model could have been investigated.
In order to verify the accuracy of the FORM estimate, SORM and CMC simu-
lation at βa = 3.8 was performed. If more computational power and time was
available performing CMC at βa = 4.8 and βa = 5.2 would have been optimal.
This would ensure or disprove the accuracy of FORM at these reliability levels.
Furthermore the use of other simulation techniques could have been investi-
gated.

Partial safety factors derived in chapter 7 are derived with a mean stress level
as determined in chapter 3. The partial safety factors could have been derived
by varying the mean stress level within a sensible range and observe the change
in annual reliability index. This would yield reliability index as a function of
mean stress level. The partial safety factor that yielded a mean annual reliability
index, equal the target annual reliability could then be used.





CHAPTER 9
Conclusion

A literature study has been conducted to investigate the fatigue behavior and
fatigue life assessment of fiber-reinforced polymers. From the literature study,
it can be concluded that the fatigue life of composite materials is highly depen-
dent on the mean stresses experienced by the structure. Additionally, it can be
concluded that the precision in fatigue life prediction of the constant life dia-
gram depends on the number of S-N curves used to construct the constant life
diagram. Use of more relevant experimental fatigue data for constructing the
constant life diagram is preferred.

Estimation of fatigue life using constant life diagrams can not be done analyt-
ically with exception of the method suggested by Germanischer Lloyd using
their constant life diagram. Therefore the fatigue life prediction method by Det
Norske Veritas has been used in this report which is a step-by-step method. The
method estimates an equivalent stress amplitude on the nearest S-N curve and
estimate fatigue life for this stress amplitude. Det Norske Veritas method as-
sumes linear interpolation between constant life lines to be valid and is there-
fore an approximation. It can be concluded that this approximation is of minor
importance. The method suggested by Germanischer Lloyd is the fastest as it
estimates the fatigue life analytically, but the method uses no experimental fa-
tigue test and uses only the static strengths along with the material parameter m
for the S-N curve. The method consistently overestimates damage.

As stated in the statement of intent, experimental data is used for derivation of
S-N curves and constant life diagrams using classic statistical analysis for static
strengths and Maximum-Likelihood Method for estimation of S-N parameters
with run-outs taken into consideration. The statistical moments are shown in
table 4.15.

In order to assess the fatigue loading of a traffic bridge system a load model
was established based on DS/EN 1991-2 load model 4.
From the load model with the static load added it can be seen that the fatigue
loading of the Along-system is with amplitudes that have a high mean value.
For the Cross-system it can be seen that the cyclic mean load is lower but still
occurring. This is in part due to the low density of the composite bridge deck.
For all fatigue loading in this system a cyclic mean stress of equal to or greater
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than the amplitude will occur.
Analysis’ to estimate adequate amount of lorry crossings and allowable dis-
cretization were conducted and an appropriate load spectrum was derived.

A study of the critical fatigue points at a reasonable stress level was conducted.
It was seen that the critical fatigue points were located at bA = 0.4LA bC = 0.4LC.
It was also noted that the location of the critical fatigue point in Along-system
would vary if the stress level changed significantly.

In chapter 6, a reliability analysis was conducted for the Along-system and the
Cross-system using different reliability techniques. Two limit state equations
were established for respectively the Along-system and the Cross-system. De-
sign parameters are estimated corresponding to annual target reliability levels
for bridges according to DK NA using FORM. The design parameters are shown
in table 6.5 on page 98. As FORM is the simplest reliability technique, SORM and
CMC have been used to estimate the annual reliability level using the design pa-
rameters found by FORM. It can be concluded that at an annual target reliability
index of 3.8, FORM, SORM and CMC estimate similar annual reliability levels,
see tables 6.10 and 6.11 on page 101.
At βa = 5.2, a sensitivity analysis was carried out for Along-system and Cross-
system. The sensitivity analysis showed that the stochastic variable, XModel ,
highly affected the reliability index.
Moreover, it can be concluded that correlation between logK at R = −1 and
R = 0.1 had very little influence for this load spectrum.

In chapter 7, partial safety factors are calibrated using design parameters found
using the fatigue limit state equation. Different applications of partial safety
factors were investigated.

• Partial safety factors as DS/INF 172

• Partial safety factors as Germanischer Lloyd

• Fatigue design factors as DS/INF 172

A set of partial safety factors were applied as DS/EN 1990 suggests. Three de-
sign equations were investigated each using different constant life diagrams; the
piecewise linear constant life diagram and the shifted Goodman diagrams. This
was done to ensure that the derived partial safety factors can be applied to a
design equation using any of the investigated constant life diagrams. The rec-
ommended partial safety factors are shown in table 9.1. The partial safety factors
can be applied to tension reinforcement bars in traffic bridges wherein the ex-
pected load spectrum can be represented by the load spectrum presented in this
report. Furthermore the tension reinforcement bar material should be alike that
presented in this report.
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Table 9.1. Recommended values of partial safety factors for composite tension reinforce-
ment bars in traffic bridges in fatigue limit state.

Recommended partial safety factors

γ f γm KFI

CC2 1.55 1.3 1.1

A second set of partial safety factors were applied as Germanischer Lloyd sug-
gests. Germanischer Lloyds constant life diagram simplifies the estimation of fa-
tigue life and thereby simplifies the design equation. This simplification makes
the design equation very applicable for the common engineer. The recommended
partial safety factors are shown in table 9.2.

Table 9.2. Recommended values of partial safety factors for composite tension reinforce-
ment bars in traffic bridges in fatigue limit state.

Recommended partial safety factors

γMa γMb KFI

CC2 1.35 1.65 1.1

Only γMb has been calibrated. γMa is chosen as recommended by Germanischer
Lloyd in their guideline.
Fatigue design factors were applied as DS/INF 172 suggests. The fatigue design
factors are shown in table 7.11 on page 116. The numeric values of the fatigue
design factors are exceptionally high, it would likely feel unintuitive for an en-
gineer to design a structure with a fatigue life of over 300000 years (3248 · t).
Therefore the fatigue design factor is not recommended for practical use.

Comparing the design parameters determined using the fatigue limit state for
the Along-system presented in table 6.5 on page 98 with the design parameter
for the Along-system in ultimate limit state shown in table 3.3 on page 27, it
can be concluded that the fatigue limit state is not the design limit state for the
Along-system as the design parameters determined by fatigue limit state are ap-
proximately 10 times smaller than the design parameter of ultimate limit state.
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APPENDIX A
Comparison of Fatigue Life

Prediction Methods

In the following chapter, two methods for predicting fatigue life will be com-
pared to evaluate their accuracy and performance. One of them being Det Norske
Veritas (DNV) method for estimating fatigue life is presented in DNV-OS-J102
Annex H. The other being a method describing constant life diagram and S-N
curves in a spatial plane, referred to as the spatial plane method.
First DNVs method is presented and its assumptions is defined. Hereafter the
method using spatial planes is presented with associated assumptions. Lastly,
the methods are compared based on accuracy and CPU time.
Both methods are tested using data found in [Vassilopoulos and Keller, 2011].
The parameters for these S-N curves and their corresponding R-ratios are shown
below in table A.1

Table A.1. S-N curve parameters used for the comparison of life estimation methods.
[Vassilopoulos and Keller, 2011].

logK m

R=10 40.45 18.83
R=-1 42.85 19.34
R=0.1 23.32 9.55

A.1 Fatigue Life Prediction by DNV

DNVs method uses the constant life diagram constructed from available S-N
curves typically R =10, R =-1 and R =0.1 to obtain fatigue lifetimes for cycles
obtained from Rainflow counting with different mean and amplitude strains.
DNV assumes a piecewise linear constant life diagram and constant life lines
are drawn for lifetimes of 10, 100, 1000. . . cycles. Furthermore it assumes that
all constant life lines are connected to the static tensile and compressive strains
at failure as shown in figure A.1.
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Figure A.1. Principle of DNVs fatigue life prediction method. [Det Norske Veritas, 2006]

With the before mentioned assumptions established DNV presents a procedure
estimating the expected lifetime Nexp for a given cyclic mean strain and cyclic
strain amplitude presented below and shown in figure A.1.

1. Draw the point P in the constant amplitude life diagram representing the
given stress amplitude, α, and mean, η.

2. Draw a line a from the origin of the constant amplitude life diagram (0
mean, 0 amplitude) through and beyond the point P.

3. Identify the two closest constant life lines nearest to P, n1 and n2, where n2
is the line with the higher number of cycles to failure.

4. Measure the length a1 on line a between the two constant life lines n1 and
n2 nearest to P.

5. Measure the length a2 on line a between point P and the constant line n2
with the higher number of cycles nearest to P.

6. Find the line b nearest to P representing fatigue life of a measured R-ratio,
e.g. R =10, or R =-1, or R =0.1.

7. Measure the length b1 on b between n1 and n2.

8. Calculate b2 = b1
a2
a1

.

9. Find the strain amplitude, εCLD, corresponding to point Q that lies on b at
a distance b2 away from the intersection of b and n2.

10. Obtain the characteristic value of the expected number of cycles Nexp for
εCLD using the measured characteristic S-N curve.

[Det Norske Veritas, 2006]

Besides the before mentioned assumptions, the expected lifetime, Nexp, deter-
mined by this approach is an approximation and not the exact solution. The
method is described for strains, it will however be applied for stresses in this
report. This is no approximation as the S-N curves are derived for stresses, and
the transformation between stress and strain is linear. The step size between
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the constant life lines is an important factor for improving the accuracy of the
method. To illustrate this, the step size, i, defined as eq. (A.1).

10istep ,10istep·1, . . . ,10istep·(n−1),10istep·nstep istep ∈ < > 0 (A.1)

Where

istep Step size
nstep Number of steps

In figure A.2 constant life diagrams are shown with different step sizes.
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Figure A.2. Constant life diagrams with step sizes, i, of respectively 1 and 0.25.

The two points shown in figure A.2 are used for a convergence analysis. Both
points are located on the 1012 constant life line. The convergence analysis is used
to determine the require step size needed for the approximate solution is equal
to the exact solution. The convergence analysis is shown in figures A.3 and A.4,
where the step size starts at 1 in relation to DNVs method and is decreased. The
first constant life line is drawn at 101.5.
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Figure A.4. Convergence analysis of step size between constant life lines used in DNVs
method for point 2.

It is seen from both figures A.4 and A.3, that as the step size decreases both
points converges towards N = 1012. It is important to note, that the relative de-
viation is small, at about istep = 1 is 0.02 % for the point 1 and 1.2 % for point 2,
and it can be concluded from this that DNVs decision of a step size of 1 is appro-
priate for this case. As seen on the figures, point 1 is estimated conservatively
at all step sizes, and the opposite is the case for point 2. This means that in a
large series of data, some of the precision of the end result will be a product of
the errors counteracting each other. The varying precision is due to the mechan-
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ics of the analysis. As the step size is decreased, the placement of the constant
life lines will vary, and the distance from the points to the nearest constant life
line will behave in a sinusoidal manner. Hence the precision will be high when
the a constant life line is placed on top of the point, and low when the point is
in-between two constant life lines.

A.2 Fatigue Life Prediction using Spatial Planes

An alternate method for determining number of cycles to failure, N, is to de-
scribe the constant life diagram and S-N curves with a spatial plane. The ad-
vantage of this compared to DNVs method is that N is determined more accu-
rately. In the following, section the derivation of the spatial planes is presented.
The method is derived for piecewise linear constant life diagrams as shown in
figure A.5 where a simple constant life diagram with only one R-ratio (R = −1)
is presented. Furthermore, it is assumed that all constant life lines are connected
to the tensile and compressive yield stress.

N
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S u,t
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3

10

4
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5

10

Figure A.5. Spatial illustration of a constant life diagram combined with a S-N curve.

In order to describe a constant life diagram using planes, two points are consid-
ered as shown in figure A.6 illustrating a constant life lines between two R-ratios
at a certain N.
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Figure A.6. Principle sketch of CL line.

Since a piecewise linear constant life diagram is considered, the constant life line
can be described using a linear equation shown in eq. (A.2).

Sa(Sm, N) = a(N) · Sm + b(N)

=
∆Sa(N)

∆Sm(N)
· Sm + b(N)

=
Sa2(N)− Sa1(N)

Sm2(N)− Sm1(N)
· Sm + b(N) (A.2)

where

a(N) Slope of the line
b(N) y-intercept

The cyclic mean stress and cyclic stress amplitude at the two points is deter-
mined from the S-N curve and the relation between the cyclic mean stress and
cyclic stress amplitude presented in eq. (A.3) and (A.4).

Sa =

(
K
N

) 1
m

(A.3)

Sm =

(
1 + R
1− R

)
Sa (A.4)

b(N) is determined using the following consideration.

Sa(Sm, N) = a(N) · Sm + b(N)

b(N) = Sa(Sm, N)− a(N) · Sm

The linear equation describing the line between two R-ratio can now be ex-
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pressed shown in eq. (A.5).

Sa(Sm, N) = a(N) · Sm + b(N) (A.5)

a(N) =


(

K2
N

) 1
m2 −

(
K1
N

) 1
m1(

1+R2
1−R2

)(
K2
N

) 1
m2 −

(
1+R1
1−R1

)(
K1
N

) 1
m1


b(N) =

[(
K2

N

) 1
m2
− a(N) ·

(
1 + R2

1− R2

)(
K2

N

) 1
m2

]

Above equation cannot be solved for N, and iteration has to be applied. For
example if a point, P, is known (Sm and Sa is known), N is obtained by inserting
the mean cyclic stress and iterating N until a relative deviation of the cyclic stress
amplitude is obtained.
A qualitative initial guess is made before iteration. P is located between two
R-ratio (two S-N curves) and Sa for point P is inserted in both S-N curves and
the average of N is taken and used as initial guess.
It should be noted that eq. (A.5) has to be established between every R-ratio that
forms the constant life diagram. Additionally a modification has to be made
when one of the R-ratio used in the equation is R = 1.
This is done by equating the cyclic mean stress equal to the ultimate compressive
or tensile stress and the cyclic stress amplitude to zero.
In figures A.7 and A.8 a convergence analysis is shown for the same points used
in the DNV method. A relative error of 10−7 of Sa is chosen. The convergence
analysis measure the number of iterations needed until they converge.
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Figure A.8. Convergence analysis for point 2.

It is seen from figures A.7 and A.8 converge after respectively 25 and 10 itera-
tions. The number of iterations needed highly depends on the initial guess and
the relative deviation selected.

A.3 Concluding Remarks

A notable point of comparison besides accuracy is computational time. How-
ever, as neither of the programs were optimized and their input parameters vary
and their precision differ, such a comparison would inadequate. When testing
the programs at a low amount of cycles with high accuracy it yielded a favor-
able result for spatial plane method, as it was both faster and more accurate.
However when a sample pool of 500000 was tested the DNV-method was su-
perior. Their total damage calculated differed minimally and the DNV-program
was more than 20 times faster. These exact numbers may not be replicable with
other programs, but the tendency will remain. It is worth noting that some of
the DNV-methods precision is due to the conservatism and non-conservatism of
the individual cycles counteracting each other. At a unrealistically low amount
of cycles, the spatial plane method will be faster as the large amount of calcula-
tions per cycle is still less than the calculations needed from the DNV method in
order to assess the nearest constant life lines. When the sample size is increased,
the number of calculations from the spatial plane method will increase linearly
with number of cycles. However, the DNV-method will still need approximately
the same amount of calculations for assessing the nearest constant life line and
then only a single set of calculations for determining the fatigue life of for the
cycles. In conclusion, the DNV-method is preferable in most cases, as the pre-
cision is decent at the recommended level and can be improved significantly
by e.g. using 10 times more constant life lines. If exceptionally large precision
is needed and large computational power was available, the method of spatial
planes could prove useful.



APPENDIX B
Calculation of Concrete Beam

In order to determine the dead load of the bridge, the dead load of the Along-
system has to be determined based on the static system presented in figure 3.2
in ultimate limit state. Furthermore the first moment of area from ultimate limit
state is compared to the first moment of area in fatigue limit state in section 6.5.
A rough calculation according to DS/EN 1992-1 is carried out with loads applied
in accordance with DS/EN 1991-2. Load Model 1 (LM1) is applied as DS/EN
1991-2 states that this model should be used for general and local verifications
in ultimate limit state. The load model consist of two partial systems: A double
concentrated load, Qk defined as.

αQQk

A uniformly distributed load, qk, defined as.

αqqk

Both loads are applied simultaneously. αQ and αq is dependent on expected traf-
fic and possibly on different classes of routes. Due to no information regarding
these factors, αQ and αq are set to 1.0. Additionally, the uniformly distributed
load should be applied only in unfavorable parts of the beam. Partial safety fac-
tors on the loads are applied according to DS/EN 1990 DK NA [DS/EN 1990
DK NA, 2009]. It is concluded from a simple check that the load combination
with the variable load is always critical. Therefore the following partial safety
factors are used.

Table B.1. Partial safety factors from DS/EN 1990-1-1 DK NA applied.

γQ 1.4
γG 1.0

1.4 is for traffic load on bridges. And γG is for the dead load where variable
loads are dominant.
The characteristic values of Qk and qk are taken from table B.2.
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Table B.2. Load model 1: characteristic values. [DS/EN 1991-2, 2003]

Axle loads Qik [kN] qik [kN/m2]

Lane Number 1 300 9
Lane Number 2 200 2.5
Lane Number 3 100 2.5
Other lanes 0 2.5
Remaining area qrk 0 2.5

As the bridge system in this report has two lanes only loads for "Lane Number
1" is used together with the load for "Remaining area". The load model 1 is
illustrated in figure B.1.

Figure B.1. Application of load model 1.

The point and distributed loads are applied directly to the Cross-system as shown
in figure B.2.
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Figure B.2. Static system and applied loads of Cross-system.

Only one axle is shown in figure B.2 as it is assumed in chapter 5 that only one
axle loads the Cross-system at any time. The reaction from the cross beam with
point loads becomes a line load in the Along-system.

Rcb,v = qrk · 5m + (q1k − qrk) · 3m + (5kN/m2 + 1kN/m2) · 5m
= qrk · 5m + (q1k − qrk) · 3m + (GAsphalt + GDeck) · 5m

= 62kN/m

As the distributed loads should only be applied in unfavorable parts of the sys-
tem a reaction with only the dead load from the deck and the asphalt is calcu-
lated.

Rcb,v,no dist. load = (GAsphalt + GDeck) · 5m

= (5kN/m2 + 1kN/m2) · 5m
= 30kN/m

Furthermore the reaction from the point load is found as.

Rcb,v,point load =
Q1k

2

(
1− 2m

Lc

)
+

Q1k

2

(
1− 4m

Lc

)
=

300kN
2

(
1− 2m

10m

)
+

300kN
2

(
1− 4m

10m

)
= 210kN

The above calculated reactions are applied to the Along-system as shown in
figure B.3. The point loads are positioned at the most critical point on the static
system determined by FEM analysis. Furthermore it can be concluded from
FEM analysis that it is favorable to apply distributed load to the right side of the
Along-system.
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Figure B.3. Static system and applied loads of Along-system.

As seen from figure B.3, the point loads are applied as stated by the load model
in figure B.1. The maximum moment is found to be 3091 kNm with the vari-
able load being the dominant load. This is the moment the Along-system are
designed for. The bending moment along the beam is shown in figure B.4

R cb,v,point loadR cb,v,point load

L =15 mA L =15 mA

6 m 2 m

Mmax

z

x

Figure B.4. Bending moment distribution for the beam.

Additionally, an added moment from the dead load of the beam is taken into
account. If the weight density of reinforced concrete is 25 kN/m3, the member
distributed load can be determined as shown in eq. (B.1).

qdead = 25kN/m3 ·
(

800mm · 1000mm
106

)
= 20kN/m (B.1)

where 800 mm is the width and 1000 mm is the height of a qualitative guess
of the design of the reinforced concrete beam presented in figure B.5 and table
B.3. The added load gives a total moment of 3564 kNm using the dimensions
presented in table B.3.
The beams are designed for pure bending with equal amount of compression
and tension reinforcement bars. Calculation with compression reinforcement
is basically the same as without, the only change is that the compressive zone
changes due to the contribution from the reinforcement. The stresses are found
using Navier’s equation as well as the assumption that the horizontal projection
needs to be zero. A cracked cross-section is assumed. Based on figure B.5, the
stresses can be found as shown below.
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Figure B.5. Cross-section of the beam.

A qualitative guess of the design of the reinforced concrete beam is also pre-
sented in figure B.5.
The cross-section consists of a total of 40 reinforcement bars, 20 in the top and
20 in the bottom of the cross-section with a diameter of 20 mm. A concrete C60
is chosen and characteristic values are given in table B.3

Table B.3. Characteristic values.

Reinforcement bar diameter ø20
Characteristic concrete strength fck 60 MPa
Elasticity modulus of concrete at failure Eck 7.3 GPa
Elasticity modulus of composite rebar ER 41.3 GPa
Elasticity ratio α (= Er

Eck
) 5.7

Height of beam h 1000 mm
Width of beam b 800 mm
Area of reinforcement, upper half AR,u 6283 mm2

Area of reinforcement, lower half AR,l 6283 mm2

Distance, top to upper reinforcement d0 50 mm
Distance, top to lower reinforcement d 950 mm
Rebar characteristic ultimate tension strength Su,t,c 988 MPa
Rebar characteristic ultimate compression strength Su,c,c −718 MPa

In order to make the characteristic values design values, partial safety factors
have to be applied to the modulus of elasticity and the strengths. It is assumed
that the reinforced concrete beams ares in-situ cast and are carried out in normal
consequence class. The partial safety factors are presented in table B.4.

Table B.4. Partial safety factors.

γc 1.45
γ3 1.0

The design values for the concrete are found using eq. (B.2).

fcd =
fck

γcγ3
= 41.4MPa (B.2)

The design values for composite reinforcement bars are determined as the 5 %
quantile of the distributions presented in table 4.5 on page 35.
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The compressive zone height, x, is found using horizontal projection.

Ac
1
2

x + α Aso (x− d0) = α Asn (d− x)

800mm · x · 1
2
· x + 5.7 · 6283mm2(x− 50mm) = 5.7 · 6283mm2(950mm− x)

x = 222mm

Next, the moment of inertia of determined.

It =
1
3

b x3 + α Aso(x− d0)
2 + α Asn(d− x)2

=
1
3
· 800mm · (222mm)3 + 5.7 · 6283mm2(222mm− 50mm)2

+ 5.7 · 6283mm2(950mm− 222mm)2

= 228 · 108 mm4

The stresses in the concrete and the reinforcement bars can now be calculated.

Sc =
M
It

x =
3564kNm · 106

228 · 108 mm4 · 222mm

= 34.8MPa < 41.4MPa OK!

SR,l = α
M
It
(d− x) = 5.7 · 3564kNm · 106

228 · 108 mm4 · (950mm− 222mm)

= 643MPa < 988MPa OK!

SR,u = −α
M
It
(x− d0) = −5.7 · 3564kNm · 106

228 · 108 mm4 · (222mm− 50mm)

= −152MPa > −718MPa OK!

The stresses are below the ultimate stresses. This design will be used as an es-
timate of the dead load of the concrete beams with a value of 20 kN/m. The
design first area of moment for ultimate limit state at the tension reinforcement
bars is.

zd =
It

d− x
= 31 · 106 mm3

Calculation of the concrete beam can be found on [Appendix-CD, Concrete Beam].



APPENDIX C
Approximate Fatigue Design

When analyzing the stress spectrum a design parameter will determine the stress
levels. This would not be an issue in a material unaffected by mean stresses with
a single S-N curve. However in a piecewise linear constant life diagram calcu-
lated with the approximated method proposed by DNV the tendencies and the
importance of the mean stress versus the amplitude stresses will vary with the
stress level. This can be seen from the findings in setion 2.1. A fitting first area of
moment will be found by iteration. The fatigue loads will be assessed by Load
model 4 shown in chapter 5. The amount of traffic will correspond to traffic
category 2, shown in table 5.1. The calculation will be performed deterministi-
cally with all parameters at their characteristic value presented in table 4.15 on
page 47. The design equation is shown in equation (7.1).

0 = 1− t · DPL(z)

where

DPL
Annual damage from load spectrum found
by the piecewise linear constant life diagram

t Design life, 100 years
z First area of moment relating to the reinforcement bar

The design first area of moment is found to be zd = 2.6 · 106 mm3. This is for the
Along-system designed with for a design life of a 100 years. Since this design
parameter was found without the use of any partial coefficients, which would
usually be applied in a Level 1 analysis, the design parameter is rounded up to
zd = 3 · 106 mm3. This value will be used for estimating stress levels in the main
report, for both the Along-system and the Cross-system.
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