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Resumé

Formålet med denne specialeafhandling er at betragte aktivallokerings strategier,
der er baseret på risikofaktorer i stedet for traditionelle strategier, der allokerer
ved hjælp af aktivklasser. Motivationen for at betragte risiko-baserede strategier
ligger i problemstillingen at strategier der udelukkende er baseret på estimater af
middelværdi og varians, som eksempelvis Markowitz mean-variance strategien, ikke
kan fange den tunge venstre hale i afkastfordelingen i perioder af høj volatilitet,
som for eksempel finanskrisen i 2008/2009. For at opnå en bedre forståelse af den
økonomiske tankegang bag risiko-baserede modeller, gives der en introduktion til
vigtige økonomiske faktor-baserede modeller, såsom Capital Asset Pricing Model,
Arbitrage Pricing Theory og Fama og Frenchs tre faktor model.

For at kunne finde de underliggende risikofaktorer af en portefølje betragtes principal
component analysis, som er en statistisk metode til at transformere det oprindelig
aktivrum i et lavere dimensionalt rum, der netop udgør risikofaktorerne. Denne
metode betragtes også fra en funktionel tilgang: functional principal component
analysis. Her arbejdes med de samme principper som i principal component analysis,
men det antages, at data har en underliggende funktionel from. Dermed arbejdes
der med egenfunktioner, som observeres over tid i stedet for egenvektorer, der bare
giver statiske og ikke-temporære estimater. For at kunne arbejde med functional
principal component analysis skal data transformeres til funktioner, hvilket gøres
ved hjælp af B-splines. Samtidig udglattes data ved at bruge en penalized weighted
least squares metode, hvilket øger signal-to-noise ratioen af data. Motivationen
for at betragte den funktionelle tilgang ligger i antagelsen om, at nøjagtigheden af
allokerings strategierne kan øges. Derudover er det teoretisk set muligt at indkludere
aktiver med forskellige samplingfrekvens i en portefølje, hvilket ikke er muligt i en
multivariat tilgang, hvor data betragtes som enkelte observationer.

Der fokuseres specielt på Equal Risk strategien, der kan betragtes med forskellige
tilgange. Enten kan den betragtes som en optimering der har til formål at vælge
porteføljevægtene sådan, at risiko bidragene fra hvert enkelt aktiv er lige store.
Eller den kan betragtes som en optimering, hvor vægtene af de enkelte aktiver i en
portefølje vælges sådan, at en principal component analysis på de historiske afkast-
serier giver så ens som mulig standardafvigelse i principal komponentretningerne.
Equal Risk strategien sammenlignes med fast allokering, Equally-Weighted, og den
traditionelle Minimum Variance strategi.
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For at kunne sammenligne præstationen af de forskellige strategier betragtes en
backtest med rullende estimationsvindue på historiske afkastserier. Der undersøges
forskellige estimationsvinduer, og det antages, at short-selling ikke er tilladt. Back-
testen baseres på tre forskellige portføljer, der indeholder flere aktivklasser samt et
forskelligt antal af aktiver. Det observeres, at både længden af estimationsvinduet
og sammensætningen af porteføljen har en indflydelse på den profit, der kan opnås
ved de forskellige allokerings strategier. Der er lagt meget vægt på at undersøge
effekten af at udelade nogle principal komponenter, det vil sige at betragte et min-
dre antal underliggende risikofaktorer. Der findes ikke et entydig resultat for om
denne effekt har en positiv eller negativ indflydelse på allokerings strategierne, men
det har været muligt at øge profitten i en af porteføljerne ved at betragte et mindre
antal principal komponenter. Desuden kan det konkluderes udfra backtesten, at
Equally-Weighted strategien det meste af tiden har en højere profit end de andre
testede strategier, men at den ikke performer godt igennem finanskrisen. Der er det
netop nogle af de betragtede risiko-baserede strategier, der performer stabilt, hvilket
motiverer brugen af disse strategier. Den funktionelle tilgang kan ikke outperforme
de andre risiko-baserede strategier igennem finanskrisen, men har i nogle portefølje
sammensætninger en meget aktraktiv afkast i normale tider. Desuden har de risiko-
baserede strategier en mindre volatil profit end Equally-Weighted strategien, hvilket
er en vigtig egenskab for de fleste investorer.
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Introduction 1
This thesis deals with studying asset allocation strategies that are based on risk
factors instead of traditional strategies, that allocate by asset classes. This is mo-
tivated by the fact that strategies which are entirely based on the estimates of the
mean and variance of assets, e.g. the Markowitz mean-variance strategy, cannot
capture the heavy left tail in the distribution of a return that occurs in times of
high volatility, e.g. during the recent financial crisis in 2008/2009.

The aim is to establish asset allocation strategies that are based on independent,
underlying drivers of assets. These drivers are also called risk factors, which can
be classified into observable factors, e.g. growth or inflation, and latent factors that
are not observable. The focus in this thesis is on strategies that are based on
latent factors such that the risk of a portfolio is spread out to assets that do not
all behave similar, especially during financial crises where many assets are likely to
crash. The emphasis is on the Equal Risk portfolio optimization strategy that can
be considered from different points of view, which will be investigated in this thesis.
For the purpose of comparing the performance of the risk-based strategies that
will be introduced, these strategies will be compared to the traditional Minimum
Variance strategy and the simple Equally-Weighted strategy.

The mathematical tool used to extract the underlying, lower dimensional risk factors
is principal component analysis, which is a well-known tool in the field of statistics
to find linearly uncorrelated, i.e. independent, variables in data. In addition, the
functional variant, functional principal component analysis, is considered in order
to explore possible improvements in the allocation strategies. Note that principal
component analysis should not be confused with factor analysis, which assumes
that there is an underlying model, since principal component analysis just is a
dimensionality reduction method.

In the recent years there is conducted some research of risk-based allocation strate-
gies. [S. Maillard, T. Roncalli, J. Teiletche, 2009] introduces the general idea of the
Equal Risk strategy and shows relations between the Equal Risk strategy to the
traditional Minimum Variance strategy and the simple Equally-Weighted strategy.
[Kind, 2013] focuses on the risk-based strategies using principal component analysis,
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CHAPTER 1. INTRODUCTION

and [Meucci, 2010] introduces a related strategy: Diversified Risk Parity, and ex-
tensions are presented in [A. Meucci, A. Santangelo, R. Deguest, 2014]. This thesis
presents among others some of the most important results of these articles.

But first in order to achieve a better understanding of the economical terminology,
concepts, and models the following sections introduce the basic economical theory
for factor models, their motivations and critics, the concept of diversification, and
risk premia.

1.1 Portfolio Theory
This section introduces general concepts within portfolio theory and is inspired by
[Luenberger, 2009]. The rate of return, r, of an asset over a single period is defined
as:

r = X(1)−X(0)
X(0) ,

where X(1) is the amount received and X(0) the amount invested. It is often
assumed that prices are log-normally distributed, which implies that log returns,
log(R), are given by:

log(R) = log(1 + r) = log
(
X(1)
X(0)

)
= log(X(1))− log(X(0)).

In order to form a portfolio, suppose that there are N different assets available in
the market. Let Xi(t) denote the price of asset i at time t, then the log returns,
log(Ri(t)), are computed as follows:

log(Ri(t)) = log(Xi(t))− log(Xi(t−1)), for i = 1, . . . , N and t = 2, . . . , T, (1.1)

where log(Ri(1)) = 0 and T is the number of observations in the sampling periode.
Both academics and practitioners often assume that asset log returns follow a normal
distribution, which is basis for many fields in finance. However, it can be observed
that real financial data often is more heavy tailed than the normal distribution, e.g.
under crashes return distributions have a heavy left tail. [Longin, 2005] This can
also be observed in Figure 1.1, which shows histograms for the monthly log returns
of two indexes describing equities and credits, respectively.
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1.1. PORTFOLIO THEORY
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Figure 1.1. Histogram of equities (left panel) and credits (right panel) monthly
log returns in the period from January 20, 1999 through September
29, 2014. The solid line indicates the normal distribution with the
same mean and standard deviation as the indexes.

When forming a portfolio of N assets, the investor has to select the amounts to be in-
vested in each asset, which can be expressed by portfolio weights w = (w1, . . . , wN)>.
These are constrainted by:

1>w = 1, (1.2)

where some of the weights can be negative if short-selling is allowed. Then the overall
rate of expected return of a portfolio, rP (w), is given by the weighted returns:

rP (w) = w>r.

Asset prices are not static, but flucate over time. They change due to demand
and arrival of new information, i.e. political or economical news. Therefore it is
convenient to model asset prices as a stochastic process. In general it is assumed
that the price of an asset follows a first order Markov process, which means that
the future price only depends on the present price.

Depending on the investment strategy, an investor could want to reblance the port-
folio weights periodically in order to maintain the desired asset allocation. This
means to buy or sell assets until the disired level of allocation is reached. For in-
stance, consider originally holding 50% stocks and 50% bonds in a portfolio and the
investor wants to maintain this strategy. Imagine that stocks perform pretty good
during a period such that the weight of stocks increases to 80%. In order to reweight
to the original allocation the investor could sell some stocks and buy more bonds
until the weights again are 50/50. The time interval of rebalancing is varying, e.g.
every month.

Given some weights w(t) = (w1(t), . . . , wN(t))> of the assets at time t, where it is
assumed that short-selling is not allowed and that the portfolio weights sum to one,
the value process, also called profit, P (t), of a portfolio consisting of N assets is
given by:

P (t) = w(t)>X(t),

where X(t) is a vector of asset prices at time t.
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CHAPTER 1. INTRODUCTION

The processes (w1(t))t≥0 . . . , (wN(t))t≥0 are adapted, i.e. the weights are chosen ac-
cording to the information available at time t. The process (w1(t) . . . , wN(t))t≥0 is
called the portfolio strategy. [Lesniewski, 2008] The continuously compounded return
profit using log returns is then computed by:

P (t+ 1) = P (t) · exp
(
w(t)> log(R(t))

)
,

where log(R(t)) is a vector of log returns at time t as defined in equation (1.1).
[Zivot, 2015] From this the annulized geometrical mean profit, MP, is given by:

MP =
(
P (T )
P (1)

) p
T

− 1, (1.3)

where p indicates the number of periods per year, e.g. when dealing with monthly
observed data p = 12. And the annulized volatility, Vol, of the profit is given by:

Vol =

√√√√√ 1
T

T∑
t=1

(
P (t)− 1

T

T∑
i=1

P (t)
)2

· √p. (1.4)

The next section introduces the general definitions of portfolio mean and variance,
some basic asset allocation strategies, and other measures of risk for a portfolio.

1.1.1 Portfolio Mean and Variance, and other Measures of
Risk

With the purpose of measuring the performance of an asset allocation strategy the
portfolio mean and variance often are considered. Portfolio optimization often is
based on maximizing the expected rate of return of a portfolio, µP (w), which is
given by:

µP (w) = w>µ,

where µ = (µ1, . . . , µN)> is a vector of expected values of the N assets of a portfolio.
Correspondingly, the variance of the rate of return of a portfolio, σ2

P (w), can be
determined by:

σ2
P (w) = E

[
(rP (w)− µP (w))2

]
= E

[
w>(r − µ)(r − µ)>w

]
= w>Σw, (1.5)

where Σ is the covariance matrix. The standard deviation of a portfolio’s rate of
return, σP (w), is usually used as a basic measure of risk:

σP (w) =
√
w>Σw. (1.6)

A higher standard deviation is associated with higher risk and higher risk is required
to get a higher expected return. Thereby each investor is faced by the tradeoff of
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1.1. PORTFOLIO THEORY

expected return and risk. Note that in financial context the standard deviation is
often called volatility and the two terms will be used interchangeably in this thesis.

The traditional Markowitz Mean-Variance, MV, asset allocation strategy aims to
find a portfolio, where the expected rate of return of the portfolio is fixed at some
abitrary expected value µ while minimizing the portfolio variance:

min w>Σw
subject to w>µ = µ and 1>w = 1. (1.7)

This strategy is based on the assumption that asset returns are normal distributed, a
strong assumption that as mentioned above often is violated for real data. Moreover,
this allocation strategy assumes stable correlations of assets over time, which again
is not met by most assets. Although these assumptions are likely to be violated, the
MV strategy is widely used by both academics and the financial industry because
of the ease of computations.

However, instead of focusing on the expected rate of return of a portfolio, which
often is hard to estimate, other portfolio optimization methods consider themarginal
risk contribution, ∂wi

σP (w), of the ith asset. It is defined by:

∂wi
σP (w) = ∂σP (w)

∂wi
= (Σw)i√

w>Σw

=
wiσ

2
i +∑

i 6=j wjσij
σP (w) . (1.8)

The marginal risk contributions explain the change in the volatility of a portfolio
due to a small increase in the weight of one component. [S. Maillard, T. Roncalli,
J. Teiletche, 2009]

One strategy that uses this concept is the Minimum Variance strategy, MVa, which
is based on the assumption that the marginal risk contributions should be identical
across the assets of a portfolio. [Kind, 2013] The MVa weights can be found by
solving:

min
w

w>Σw (1.9)

subject to 1>w = 1.

Hence the MVa strategy is a special case of the MV strategy, when the requirement
of the expected return is omitted.

But there are also strategies that assume that the risk contributions are equal, which
will be introduced in Chapter 3. The risk contribution of the ith asset, RCi(w), can
be expressed as:

RCi(w) = wi · ∂wi
σP (w) = wi

(Σw)i√
w>Σw

. (1.10)

In order to show further properties of the risk contributions RCi(w) the following
definition introduces the concept of a homogeneous function.
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CHAPTER 1. INTRODUCTION

Definition 1.1 (Homogeneous Function)
A function f : X ⊂ RN → R is called a homogeneous function of degree τ if
there exists a λ > 0 and x ∈ X, where λx ∈ X such that the following holds:

f(λx) = λτf(x).

[Tasche, 2008]

Furthermore, Theorem 1.2 introduces the Euler decomposition, which can be used
to show the relationship between the portfolio volatility σP (w) and the risk contri-
butions RCi(w).

Theorem 1.2 (Euler’s Theorem on Homogeneous Functions)
Let X ⊂ RN be an open set and let f : X → R be a continuously differentiable
function. Then f is a homogeneous function of degree τ if and only if it satisfies
the following:

τf(x) =
N∑
i=1

xi
∂f(x)
∂xi

,

where x ∈ X. [Tasche, 2008]

Proof. Omitted.

It is known that the volatility σP (w) is a homogeneous function of degree one, i.e.
τ = 1 in Definition 1.1. Thus it satisfies Euler’s decompostion as given in Theorem
1.2:

N∑
i=1

RCi(w) =
N∑
i=1

wi
(Σw)i√
w>Σw

= w>
Σw√
w>Σw

=
√
w>Σw = σP (w)

This shows that the volatility of a portfolio can be decomposed into risk contri-
butions of the included assets. After having introduced these basic concepts of
portfolio theory, the next section presents different economical theory concerning
factor models.
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1.2. FACTOR MODELS AND RISK FACTORS

1.2 Factor Models and Risk Factors
First, this section gives a short introduction to the Capital Asset Pricing Model,
CAPM, which is a one factor model that quantifies the tradeoff between expected
return and risk within the mean-variance framework. It was introduced indepen-
dently by Treynor (1961), Sharpe (1964), Litner (1965), and Mossin (1966). [Ang,
2014] The model involves a linear relationship between the expected return of an
asset with the covariance of its return and the return of the market portfolio. [J. Y.
Campbell, A. W. Lo, A. C. MacKinlay, 1997]

Furthermore in Section 1.2.2, the one factor CAPM model is expanded to a multi-
factor model, the Arbitrage Pricing Model, APT, developed by Ross (1976). [Ang,
2014] In this setup it is assumed that any risky asset can be considered as a linear
combination of various risk factors that affect the asset return. [T. E. Copeland
and J. F. Weston, 1988] There are different types of risk factors, like macro factors,
style factors, and firm-specific factors, which will be introduced. Furthermore the
Fama-French three factor model is shortly presented.

1.2.1 The Capital Asset Pricing Model
This section introduces the one factor model CAPM and is inspired by [Luenberger,
2009] and [M. Grinblatt and S. Titman, 2002]. In order to understand the CAPM,
first the concept of the market portfolio is explained. The market portfolio M is a
theoretical summation of all available assets of the world financial market, where
each asset is weighted by its proportion in the market, i.e. its market value. Let vi
denote the market value of asset i, then the market weights, wMi , can be expressed
by:

wMi = vi∑N
i=1 vi

.

Thereby the expected return of the market portfolio reflects the expected return of
the market as a whole and it is assumed that the portfolio has the lowest volatility
among all portfolio that have the same expected return as the market. This is
the same as saying that the market has the highest Sharpe ratio, which will be
introduced later in this section.

Assuming that all investors use the Markowitz mean-variance framework to de-
termine their portfolio weights, that everyone invests in all available assets in the
market, and that there are no transactions costs, then the market portfolio M is
said to be the efficient portfolio in the market. This means that investors will recal-
culate their estimates of the portfolio weights until demand matches supply, which
drives the market to efficiency. Additionally, the CAPM assumes the existence of a
risk-free asset, which represents the possibility of an investor to borrow or lend cash
at the risk-free rate. Let rf be the return of a risk-free asset, which means that the
return is deterministic. When included in a portfolio, a positive weight corresponds
to lending cash, whereas a negative weight means borrowing cash.

7



CHAPTER 1. INTRODUCTION

The following result states that risk-averse investors will invest in a portfolio con-
sisting of a combination of two portfolios:

Result 1.3 (Two-fund Seperation)
Each investor holds an efficient portfolio which is a combination of the risk-free
asset and a portfolio of risky assets, i.e. the market portfolio. [T. E. Copeland
and J. F. Weston, 1988]

Now consider a mean-standard deviation diagram as shown in Figure 1.2, where each
point represents an asset with its expected rate of return µ and standard deviation
σ. If one plots the market portfolio M in this diagram, then the efficient set of
portfolios consists of a straight line, called the capital market line, which starts in a
risk-free point rf and passes through the market portfolio M .

µ

σ

rf

Capital
market line

M

Figure 1.2. Mean-standard deviation diagram with capital market line drawn
from a risk-free point rf and passing through the market portfolio
M . The points indicate assets with their expected rate of return
µ and standard deviation σ. The figure is inspired by [Luenberger,
2009].

The capital market line describes the relation between the expected rate of return µ
of an asset and the risk of return, measured by σ. Let µM and σM be the expected
rate of return and standard deviation of the market rate of return described by the
market portfolio, and µP (w) and σP (w) be the expected rate of return and standard
deviation of an arbitrary efficient portfolio or asset. Then the capital market line
describes a portfolio consisting of one risk-free asset rf and one efficient risky asset
rM such that the expected rate of return of the portfolio is given by:

µP (w) = rf + µM − rf
σM

σP (w). (1.11)

The numerator in the slope of the capital market line, µM−rf , is called risk premium,
which is a kind of compensation for an investor that takes extra risk in holding a

8



1.2. FACTOR MODELS AND RISK FACTORS

risky asset compared to a risk-free asset. The slope of the capital market line,
µM − rf/σM , is often called the price of risk, since it tells how much the expected
rate of return of a portfolio must increase if the standard deviation increases by
one unit. It can be used to measure the efficiency of a portfolio by comparing the
location of a portfolio in the mean-standard deviation diagram relative to the capital
market line, since only portfolios that are on the line are efficient. This introduces
the concept of the Sharpe ratio:

S = µP (w)− µb(w)
σP (w) ,

where µb(w) denotes the benchmark expected rate of return, i.e. a reference portfolio
which is used to compare the performance of a portfolio. A higher ratio provides
better return for the same risk. The Sharpe ratio can be used to compare different
investment strategies with each other. The following result states the CAPM.

Result 1.4 (Capital Asset Pricing Model)
Assume that the market portfolioM is efficient, then the expected rate of return
µi of any asset satisfies the following:

µi − rf = βi(µM − rf ), (1.12)
where:

βi = σiM
σ2
M

. (1.13)

[Luenberger, 2009]

Note that the CAPM in equation (1.12) is just a rewrite of equation (1.11). The
CAPM describes the risk of an individual asset, measured by the factor exposure β
of that asset to the market factor. This means that the higher the exposure of an
asset to the market factor, the higher the expected return, which yields a positive
risk premium. Consequently, β is exactly the estimate of the slope in a simple linear
regression.

In general the β of an asset or portfolio measures the risk arising from general
market movements, where the market portfolio has assigned β = 1. So a portfolio
with β > 1 is predicted to have higher risk than the market portfolio, whereas
β < 1 indicates lower risk. And an asset that is completely uncorrelated with the
market has assigned β = 0. So the CAPM uses β instead of the standard deviation
σ as measure of risk of an asset. This implies that an investor prefers assets with
a negative β, since during market crashes it will act reversed to the market, and
thereby yield higher returns than the market portfolio. The portfolio β, βP (w), is
the weighted average of the βs of the single assets in the portfolio:

βP (w) = w>β.

9



CHAPTER 1. INTRODUCTION

Inspired by the CAPM in equation (1.12) the random rate of return of asset i can
be written as:

ri = rf + βi(rM − rf ) + εi, (1.14)

where εi is the residual. From equation (1.12) it follows that E [εi] = 0. In addition,
when taking the covariance of ri as given in equation (1.14) with the market rate of
return rM , it follows that Cov [εi, σM ] = 0. This implies that risk, measured by the
variance of an asset, σ2

i , can be decomposed into systematic risk and specific risk:

σ2
i = β2

i σ
2
M + σ2

εi
(1.15)

Total risk = systematic risk + specific risk,

where the systematic risk is the risk associated with the market as a whole.

Most investors want a high expected return and at the same time low risk. This
introduces the concept of diversification, which is a method to reduce the variance,
as given in equation (1.15), by including additional assets in a portfolio. The risk
associated with the market, the systematic risk, cannot be reduced by diversification.
Whereas specific risk can be diversified due to the uncorrelateness to the systematic
risk and the law of large numbers, by including a large number of assets in a portfolio.
The following simple example shows how the variance of a portfolio behaves when
using the Equally-Weighted strategy and a large number of assets in a portfolio.

Example 1 (Equally weighted portfolio)
Consider an equally weighted portfolio, where wi = N−1. Then the variance of the
rate of return of the portfolio can be rewritten as:

σ2
P (w) = N−2

N∑
i=1

σ2
i +N−2

6=∑
i,j

σij (1.16)

= N−2Nσ̄2
• +N−2N(N − 1)σ̄••

= N−1σ̄2
• + N − 1

N
σ̄••

= N−1σ̄2
•(1− ρ) + ρσ̄•.

The notation ∑6=i,j is a short form for ∑N
i=1

∑N
j=1,i 6=j. For a large number of assets N

it follows that:
lim
N→∞

σ2
P (w) = σ̄••.

Thus, the portfolio variance assymptotically is the average of the covariances be-
tween the assets. Hence σ̄•• denotes the systematic risk that cannot be diversified,
whereas N−1σ̄2

•(1−ρ) is the specific risk that can be diversified by including a large
number of assets in a portfolio.
Note that the correlation coefficient ρ has a lower bound, since it has to be ensured

10



1.2. FACTOR MODELS AND RISK FACTORS

that the portfolio variance σp(w) is positive semi-definite, i.e. σ2
P (w) ≥ 0. Consider

the expression given in equation (1.16) and rewrite it:

σ2
P (w) =N−2

 N∑
i=1

σ2
i + ρ

6=∑
i,j

σiσj

 ≥ 0

N∑
i=1

σ2
i ≥ −ρ

6=∑
i,j

σiσj

ρ ≥ −
∑N
i=1 σ

2
i∑6=

i,j σiσj
.

Considering the simplified case where all assets in a portfolio have variance σi = 1,
it follows that:

ρ ≥ − N

N(N − 1) = −(N − 1)−1, (1.17)

which is the lower bound for ρ. 4
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Figure 1.3. The effects of diversification of uncorrelated and correlated (ρ =
±0.3) assets in an equally weighted portfolio with an increasing num-
ber of assets N , cf. Example 1.

Another way to say this is that diversification aims to include assets in a portfolio
that do not behave similar, meaning that they are low or negatively correlated
with each other. Figure 1.3 shows how the variance of a portfolio behaves when
more assets are included. The figure distinguishes between the case of uncorrelated
assets, positively, and negatively correlated assets with a correlation of ±0.3. It can
be seen that the benefit of including more assets in a portfolio in order to obtain
diversificiation is most significant when holding a few assets and decreases rapidly.
Moreover it is observable that in the negatively and uncorrelated case the variance
associated with the specific risk decreases much faster than in the correlated case,
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CHAPTER 1. INTRODUCTION

which confirms the concept of diversification. Note that as shown in Example 1
there is a lower bound for the correlation coefficent ρ that ensures that the portfolio
variance does not get negative.

Since equation (1.14) can be considered as a simple linear regression, one can mea-
sure the fraction of systematic risk in the variance of the return of the ith asset in a
portfolio using the R2 statistic, which describes the percentage of the total variation
in the rate of return that is explained by the regression equation, i.e.:

R2 =
σ2
i − σ2

εi

σ2
P (w) ,

where σ2
i is the variance of the ith asset, σ2

εi
the variance of the residual of the ith

asset, and σ2
P (w) is the portfolio variance. A high R2 indicates that the variance

consists of mostly systematic risk, whereas a low R2 indicates mostly specific risk.

The concept of diversification is connected with the CAPM by the β of an asset,
since it can be rewritten as:

β = ρiMσi
σM

,

where ρiM is the correlation between the return of asset i and the market return.
So a high β means low diversification benefits. As mentioned earlier, investors want
to hold assets with low or negative β such that when the market crashes, they hold
assets that do not crash.

One of the drawbacks of the CAPM is that it focuses on the variance and covariances
of the asset returns as measure of risk. The variance is a first-moment measure of
risk, but most investors also consider higher moment measures of risk, e.g. kurtosis
and skewness of asset returns. So indeed including additional assets in a portfolio
reduces the variance, but other measures of risk may not be diminished. A portfolio
can get more negatively skewed thus it has a higher downside risk, which would not
be detected by the variance or β of an asset.

The CAPM has some very strong assumptions, which often are not met in reality.
For instance the CAPM assumes that investors have mean-variance utility, but in
reality investors have much more complicated utilities. In addition, it is assumed
that investors have homogeneous expectations, although they are heterogeneous.
And it is disregarding transaction costs, which can vary across assets. Furthermore,
the CAPM is a single-period model, which assumes that returns are independently
and identically distributed and that they are jointly multivariate normal. [J. Y.
Campbell, A. W. Lo, A. C. MacKinlay, 1997]

As mentioned earlier, the market portfolio reflects systematic risk, which effects all
assets. The next section extends the model setup to also include style factors like
value-growth investing and momentum, or macro factors like inflation and economic
growth, that have risk premia based on, e.g. investor characteristics and production
capabilities of the economy.
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1.2. FACTOR MODELS AND RISK FACTORS

1.2.2 Multifactor Models and the Arbitrage Pricing
Theory

Unless otherwise stated, this section is based on [T. E. Copeland and J. F. Weston,
1988], [Overby, 2010], and [Ang, 2014]. The previous section introduced the CAPM,
which assumes that there is only one factor in the market, namely the market factor.
This section aims to generalize this setup to multifactor models, that describe the
underlying drivers of assets by several factors.

One of the first models that used multiple factors was the Arbitrage Pricing Theory,
APT, which has less restrictions regarding the assumptions made in the CAPM such
as assumptions on the distribution of the returns or the utility function of investors.
Moreover it does not require to identify the market portfolio, which can be difficult.
The APT is mainly based on the assumption of no arbitrage i.e. the factors cannot
be diversified away.

It is assumed that the rate of return, r, of the assets can be modelled as a linear
function of K unknown factors, f , using a multifactor model:

r = µ+Bf + ε (1.18)
E [f ] = 0
E [ε|f ] = 0

E
[
εε>

]
= Σε,

where µ is the intercept of the factor model, B = [β1, . . . ,βN ]> is the matrix of
factor loadings, and ε is the residual that describes the specific risk. [J. Y. Campbell,
A. W. Lo, A. C. MacKinlay, 1997] It is assumed that the factors f only account for
common variation, systematic risk, in the asset returns. Note that returns that have
similar factor loadings on specific factors are likely to be correlated. The expected
return of the assets is given by:

E [r] = E [µ+Bf + ε] = E [µ] +BE [f ] + E [ε] = µ.

By assuming independence of the residuals, the law of large numbers says that in
a portfolio consisting of a large number of assets the specific risk vanishes. Conse-
quently, the overall rate of return of a portfolio, rP (w), can be expressed as:

rP (w) = w>r = w>µ+w>Bf , (1.19)

where it is assumed that wi ≈ N−1, i.e. no asset is overweighted, and ∑N
i=1wiβij =

βPj = 0 for each factor fj where j = 1, . . . , k. The second assumption ensures
that there is no exact collinearity between the risk factors and thereby the overall
model is factor neutral. This implies that w>B = 0>, i.e. w ∈ Null(B). Due
to this assumptions, the portfolio given in equation (1.19) is called an arbitrage
portfolio, since both systematic and specific risk are eliminated, and therefore it can
be rewritten as:

rP (w) = w>µ = µP (w) = 0. (1.20)
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The return rP (w) in equation (1.20) has to be equal to zero for otherwise it would
be possible to attain an infinite return without risk and capital requirements. The
result from equation (1.20) together with w>B = 0> imply that the expected
return µ must be a linear combination of a constant vector λ = (λ1, . . . , λk) and
the coefficient matrix of factor loadings B = [β1, . . . ,βN ]>, i.e. it is assumed that:

E [r] = µ ≈ 1λ0 +Bλ, (1.21)

where λ0, . . . , λk are risk premia. If there exists a risk-free asset with return rf then
λ0 = rf . Hence equation (1.21) can be rewritten as:

µ− 1rf = Bλ.

Assuming that λ = δ̄ − 1rf this can be formulated as:

µ− 1rf = B(δ̄ − 1rf ), (1.22)

where δ̄ is the expected rate of return on a portfolio with unit loading to the jth
factor and zero loading on all other factors. Such a portfolio is called a pure factor
portfolio. The formulation of λ = δ̄ − 1rf is equivalent to the risk premium for-
mulation in the CAPM in equation (1.12) with the difference that the CAPM only
considers the market factor whereas the APT considers multiple factors.

Interpreting equation (1.22) as a linear regression equation and assuming that re-
turns are jointly normal distributed and that the factors δ̄ are linearly transformed
to be orthonormal, the elements βij of the matrix B are defined in a similar manner
to the CAPM as stated in equation (1.13), this is:

βij =
Cov

[
µi, δ̄j

]
Var

[
δ̄j
] .

So the CAPM can be viewed as a special case of the APT.

Let r(l)
P (w) denote the return of the lth factor portfolio, where l = 1, . . . , k, which

can be expressed by:

r
(l)
P (w) = µ

(l)
P (w) +

k∑
j=1

β
(l)
Pj(w)fj,

where:

µ
(l)
Pj(w) =

N∑
i=1

w
(l)
i µi,

β
(l)
Pj(w) =

N∑
i=1

w
(l)
i βij for β

(l)
Pj(w) =

1 if j = l,

0 if j 6= l,
(1.23)

N∑
i=1

w
(l)
i = 1.
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In matrix notation equation (1.23) can be expressed as WB = Ik, where W is a
N × k matrix of weights, B is a k × k matrix of factor loadings, and Ik is a k × k
identity matrix. Note that there has to be solved a system of linear equations.
Hence it is ensured that there are unique solutions if there are the same number of
equations as there are unknowns. Else if there are fewer equations than unknowns,
there are infinitely many solutions. The risk premium for the lth factor is then
defined by:

λl = µ
(l)
P (w)− rf .

Using this setup, Ross (1976) has shown that in the absence of arbitrage opportu-
nities the APT can be formulated as:

Result 1.5 (Abitrage Pricing Theory)
Consider an investment without specific risk, then the expected rate of return
is given by:

µ ≈ 1λ0 +Bλ,

where λ0 is the intercept and λ = (λ1, . . . , λk)> are risk premia for the K
factors. [J. Y. Campbell, A. W. Lo, A. C. MacKinlay, 1997]

The disadvantage of multifactor models is that they do neither specify the number
factors nor identify their meaning. As mentioned in [Ang, 2014] risk factors are like
nutrients are to food. Such as some types of food are a bundle of nutrients and
others contain only one nutrient, assets can consist of one or more risk factors. The
intuition behind this is, that the risk factors behind the assets matter, not the assets
themselves.

It can be distinguished between macro factors that are common for several assets in
a portfolio due to the presence of, e.g. inflation or volatility, in the financial market
and style factors like value-growth or size based on firm-characteristics, which will
be explained later in this section. These two types of factors are undiversifiable.
Specific factors, that for instance only affect a specific firm, can be diversified by in-
cluding a large number of assets as explained above. Depending on the exposure and
type of the underlying, undiversifiable risk factors assets have different risk premia.
These premia compensate for low returns during bad times with a premium of high
returns in the long run. This means that different risk premia describe different sets
of bad times, i.e. bad economical times. Every investor has an individual definition
of ’bad time’, which among others depends on the investor’s income, liabilites, and
risk aversion. Depending on the aggregate supply of a factor in the financial markets
and type of risk factor, risk premia can be positive, negative, or zero. Assets that
have high returns during bad times, e.g. are negatively correlated to market move-
ments, have a high price and thereby a low risk premium. In contrast have assets
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that are positively correlated with market movements, i.e. crash together with most
other assets, a low price and high risk premium to compensate for these losses.

There exists a plenty of different factors, where the most fundamental factor is the
market factor described by the CAPM as introduced in the previous section. But in
order to use them, one should justify the academic research behind them and they
should satisfy the following which is inspired by [Mesomeris, 2013]:

• Risk factors shall be explainable.
• They must be persistent, i.e. continue to exist and not just be a phenomenon

for a short time period.
• In isoloation they should have attractive return characteristics.
• A risk factor should have low correlation to traditional market β’s and other

risk factors considered for a portfolio.
• The risk factor must be accessible.
• Risk factors should be priced.

The following gives a short explaination of macro and style factors.

Macro Factors

Macro factors affect all investors and prices of assets in an economy. For instance
affects low growth and high inflation everyone, but to different degree. Many macro
factors are lasting, e.g. when inflation is low today, it is likely that it will be low
next month. One other well-known macro factor is volatility, since stock returns
are negatively correlated to volatility, which is also known as the leverage effect.
This effect describes the relationship between stock returns and volatilities, since
stock prices fall when volatility increases. Volatility can also be viewed as a kind of
uncertainty risk factor, since it is highly correlated with the uncertainty of investors
to e.g. policy decisions that can affect the economy. There are many other macro
factors, e.g. economic growth, interest rate risk, or currency risk.

The following section introduces some of the style factors considered in this thesis.

Style Factors

As mentioned earlier, the assumptions of the CAPM model, introduced in Section
1.2.1, do often not hold in reality. The model has been tested extensively in the
1970s using time series regressions of e.g. the returns of the S&P 500.1 The tests
showed that the assumption of the CAPM that the market factor is the only factor
in the market were not satisfied, hence there must be other factors in the market
that influcence asset prices. [M. Grinblatt and S. Titman, 2002] This has motivated
to introduce models which are based on several factors.

1The Standard and Poor’s S&P 500 stock market index includes the 500 leading companies in
the US. [SP Dow Jones Indices, 2015]
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Fama and French (1993) introduced a model that explains assets by three factors.
The first factor is the traditional market factor M from the CAPM, and then they
had two additional factors to capture a size factor, S, and a value-growth factor, V :

µi = rf + βi,ME [rM − rf ] + βi,SE [S] + βi,VE [V ] .

The following explains the size and value-growth factors.

Size Factor
This factor describes the market capitalization of stocks. It has been observed that
small firms outperform large firms. The effect was discovered in 1981, but since the
mid-1980s the existence of this effect is debatable. There are made many studies
that argue for the disappearance of the effect, and others can find the effect for
special segments. For are discussion of the disappearance of the size effect see e.g.
[Crain, 2011].

Value-growth Factor
Stocks that have a low price in relation to their net worth, which is the same as a
high book-to-market ratio, are called value stocks. The book-to-market ratio is the
book value divided by the market capitalization. This are companies that currently
are out of favour in the financial market or newer companies with unknown track
records. [J. O. Reilly, S. O. Barba, N. Pavlov, 2003] On the other hand, stocks with
low book-to-market ratios are called growth stocks. This are typically companies
that had good earnings in the recent years and are expected to continue to yield
high profit growth. The investment strategy of going long value stocks and short
growth stocks is known as the Value-Growth strategy. The reason for this is that
value stocks outperform growth stocks, on average. It has been a robust premium
for many years.

The factors in the Fama-French model can be constructed by using characteristic-
sorted portfolios, which means that the factors are estimated by using portfolios that
are formed based on firm characteristics as described for the different style factors.
[M. Grinblatt and S. Titman, 2002] Besides the size and value-growth effects there
are other effects, as will be explained in the following.

Momentum Factor
Momentum describes the strategy of buying stocks that have increasing returns over
the past months and selling stocks with the lowest returns over the same period.
The effect is that winner stocks continue to win and losers continue to lose. It is
observed that the Momentum strategy yields higher profits than the Value-Growth
and Size strategies do, and it is observable in every asset class. The effect can be
added to the Fama-French model, where positive momentum βs indicate winner
stocks and negative βs indicate loser stocks.

Low Risk Factor
Describes assets that have low volatility and is often called Low Volatility strategy.2

2Source: Internal documentation from Jyske Bank A/S.
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Quality Factor
Quality describes the effect of firms facing negative returns in future earnings an-
nouncements, when a large proportion of their earnings come from revenue, com-
pared to firms where earnings are based on cash flow.2

Strategies like Size, Value-Growth, and Momentum are called cross sectional strate-
gies, since they compare one group of stocks with another group, e.g. value stocks
with growth stocks. It should be noted that both the CAPM, APT, and Fama-
French model assume that the βs are constant, but the exposure of assets to sys-
tematic factors vary over time, and often increases during bad times.

This chapter introduced some basic economical concepts regarding portfolio opti-
mization including different measures of risk and some traditional asset allocation
strategies. Furthermore, some important economical models for factor models have
been introduced in order to get a better understanding of diversification and risk
factors. In order to establish risk-based asset allocation strategies in Chapter 3, the
next chapter introduces statistical methods to find underlying, lower dimensional
factors. These are the projection methods principal component analysis, PCA, and
functionional principal component analysis, fPCA.
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Functional Data Analysis 2
This chapter introduces the concept of functional data analysis, FDA, which is used
for data providing information about curves, surfaces, or anything else that varies
over a continuum. The focus in this thesis is on asset prices which are observed
discretely but in fact follow an underlying stochastic process. This means instead
of considering asset prices as individual observations, it is assumed that data has a
functional form, i.e. the observations are linked together in some way. Asset prices
can be considered as curves whose continuum is time, e.g. consider Figure 2.1, and
therefore it is possible to apply FDA techniques. Many of these techniques are
conceptually the same as for multivariate data, but instead of vectors there are
considered infinite dimensional vector spaces. It is possible to account for unequally
spaced observations, i.e. different sampling rates of assets in a portfolio, and FDA
also can handle missing values.
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Figure 2.1. Monthly sampled scaled stock indexes from January 1, 2002 through
September 24, 2012. Canada (SPTSX), Sweden (OMX), United
Kingdom (UKX), China (SHSZ300), Germany (DAX), United
States (SPX), Denmark (KFX).
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Moreover, in order to extract risk factors that lie behind the assets of a portfolio,
principal component analysis, PCA, is introduced in Section 2.2 and expanded to
functional principal component analysis, fPCA, considering data to be functional
instead of multivariate in Section 2.3. The motivation for this is that fPCA is
better to capture the variability of the asset returns, which is essential for the asset
allocation strategies introduced in Chapter 3. This is due to the fact that in fPCA
it is possible to observe the behaviour of the eigenfunctions over time in contrast to
PCA that just gives a static, non-temporal estimate of the eigenvectors. In addition,
functional data is smoothed before performing a fPCA, which improves the signal-to-
noise ratio of data and therefore may improve the allocation strategies by specifying
the true underlying risk factors.

The following sections give an introduction to FDA, the concept of basis functions,
and of smoothing functional data. Furthermore the projection methods PCA and
fPCA are introduced, and some important results for these methods are shown.

2.1 Functional Data
This section is based on [J. O. Ramsay , B. W. Silverman, 2005] and [Zhang, 2014].
In functional data analysis, observed data functions are considered to provide in-
formation about possible infinite-dimensional curves. The observations often have
time as continuum, but could also have other continua such as spatial position.

The reason that functional data is not considered as multivariate data is the as-
sumption of the observations being linked together in some way, meaning that data
has a functional form. Consider the observed data (tj, yj) for j = 1, . . . , n where yj
is a response observed at times tj. The transformation to the functional form has
two cases; the discrete values are assumed to be errorless:

y(tj) = yj = x(tj),

where x(tj) is a smooth function. This process of converting discrete data into
functional data is called interpolation. The other case is given by:

y(tj) = yj(t) = x(tj) + εj. (2.1)

The second case may involve smoothing of data in order to reduce the residual εj.
One possible smoothing technique will be introduced in Section 2.1.2. Equation
(2.1) can be rewritten to represent all N curves:

yi(tj) = xi(tj) + εi(tj) for i = 1, . . . , N and j = 1, . . . , ni. (2.2)

It is assumed that the function xi(t) can be decomposed into:

x̄(t) + νi(t),
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where x̄(t) is the mean function, which is given by:

x̄(t) = N−1
N∑
i=1

xi(t), (2.3)

and νi(t) is the ith individual variation from x̄(t) with ∑N
i=1 vi(t) = 0. Thus a func-

tional data set is modelled as independent realizations of an underlying stochastic
process:

yi(tj) = x̄(tj) + νi(tj) + εi(tj),

where it is assumed that νi(t) and εi(t) are independent. Moreover it is assumed
that νi(t) and εi(t) follow stochastic processes:

νi(t) ∼ SP(0, v) and εi(t) ∼ SP(0, vε),

where SP(x̄, v) denotes a stochastic process with mean function x̄(t) and covariance
function v(s, t), which is given by:

v(s, t) = (N − 1)−1
N∑
i=1

(xi(s)− x̄(s)) (xi(t)− x̄(t)) . (2.4)

Moreover it is assumed that vε(s, t) = σ2(t)1[s = t], where σ2(t) is the residual
variance function that measures the variation of the measurement errors.

Normally the data transfromation takes place seperately for each curve i, but if
there is a low signal-to-noise ratio or sparsely sampled data, it can be useful to
take information from neighboring or similiar curves into account to get more stable
estimates for a curve.

The assumption of a smooth function usually means that the function x(t) has one or
more derivatives. Thereby functional data analysis uses information in the features
of a curve, i.e. slopes, curvature, crossings, peaks, or valleys. Functional features
can be considered as events that are related to a specific value of the argument
t. They can be characterized by their location, amplitude, or width, which can be
treated as a measure of dimension. For instance, a peak can be considered as being
three-dimensional, since location, amplitude, and width have to be known for full
information of the peak.

The argument values t1, . . . , tni
can be the same for all curves i, but can also vary

from curve to curve. In addition, it is also possible to deal with curves that have
missing values, since data is transformed to a continuous structure. It is also im-
portant to consider the sampling rate of data, which takes into account the ratio
between the argument values tj relative to the amount of curvature, which is mea-
sured by the second order derivative |D2x(t)| or [D2x(t)]2. The higher the curvature
is, the more points are needed for a good estimation of a curve. [J. O. Ramsay , B.
W. Silverman, 2005]

In order to represent the continuous functions, the next section introduces the con-
cept of basis functions.
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2.1.1 Basis Functions
This section is based on [J. O. Ramsay , B. W. Silverman, 2005]. In functional
space basis functions are the counterpart to basis vectors in vector space. This
means, that such as every vector can be represented by a linear combination of
basis vectors, every continuous function can be represented by a linear combination
of basis functions.

Consider the vector-valued function x with components x1(t), . . . , xN(t). Moreover
let φ be the vector-valued function with K independent, real-valued basis function
components φ1(t), . . . , φk(t), and let C be a N × K coefficient matrix, then the
simultaneous expansion of all N curves can be expressed by:

x̂ = Cφ(t). (2.5)

For a single curve xi(t) this corresponds to:

x̂i(t) = c>i φ(t) = φ(t)>ci.

This shows, that basis expansion methods represent possibly infinite functions by
finite dimensional vectors.

The number of basis functions K can be seen as a parameter, that is selected
according to characteristics in data, often by using a cross validation method. It
is preferred to have a low value of K in order to avoid overfitting and to reduce
computations. The case K = ni, where ni is the number of observations of curve i,
is known as exact representation or interpolation.

Basis functions φk are said to be orthogonal over some interval t ∈ T if for all m:

∫
T
φk(t)φm(t) =

0 k 6= m,

λm k = m,
(2.6)

where λm ∈ R and if λm = 1, then the basis functions are said to be orthonor-
mal. There are different choices of basis functions depending on the structure of
data. The most common basis functions are Fourier- , B-splines- , monomials- ,
and wavelets basis functions. When dealing with periodic data the most widely
used basis functions are Fourier functions, whereas in the non-periodic case it is
B-splines. [J. O. Ramsay , B. W. Silverman, 2005] In the following B-splines will be
introduced.

B-Splines

Spline functions have replaced polynomials, since they have the property of fast
computation and a high degree of flexibility. [J. O. Ramsay , B. W. Silverman,
2005] In order to define a spline, consider the interval over which a function is to
be approximated. The interval is divided into L subintervals, which are seperated
by so-called breakpoints τl , l = 1, . . . , L − 1, i.e. an interval [a, b] is diveded into
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a = τ0 < τ1 < · · · < τL−1 < τL = b. The breakpoints τl for l = 1, . . . , L − 1 are
called the interior breakpoints. Over each subinterval [τr, τr+1) for r = 0, . . . , L− 1,
a spline is a polynomial of order m, which are required to join smoothly at the
interior breakpoints. This means that the derivatives match up to the order one less
than the degree of the polynomial.

The first polynomial has m degrees of freedom, but each subsequent polynomial has
only one degree of freedom because of the m− 1 constraints on its behaviour. This
implies that the total number of degrees of freedom in the fit equals the order of the
polynomials plus the number of interior breakpoints, L+m degrees of freedom.

The higher the order, the better is the approximation of the function. In addition,
greater flexibility in a spline is achieved by increasing the number of breakpoints.
The breakpoints do not have to be equally spaced, so it is preferable to have more
breakpoints where the function posses the most variation. Note that given an order
m and a breakpoint sequence τ , every basis function φk is itself a spline function.
And that any linear combination of basis functions φk is a spline function.

A B-spline basis function of order m has the compact support property. The support
of a function is the set of points where the function is not zero-valued, if the function
is positive over no more thanm intervals, and when these are neighbouring intervals.
This property is important for fast computation, since it implies that when there are
K B-spline basis functions, the order K matrix of inner products of these functions
will be band-structured, with m − 1 subdiagonals above and below the diagonal
containing nonzero values. So the computation of spline functions increases only
linearly with K.

A B-spline at time t defined by the breakpoint sequence τ is denoted by Bk(t, τ),
where k refers to the number of the largest breakpoint at or to the left of the value
t. Thus a spline function S(t) with interior breakpoints is defined as:

S(t) =
m+L−1∑
k=1

ckBk(t, τ). (2.7)

The reason that there are m + L − 1 basis functions is that there normally is no
information about how the functions behave beyond the interval on which data is
collected. Thereby the function may be discontinuous beyond the boundaries, which
makes the functions non-differentiable at the boundaries. B-splines avoid this by
extending the breakpoint sequence at each end with additional m− 1 replicates of
the boundary breakpoint value. In equation (2.7) only the m−1 breakpoints added
to the initial breakpoint are also counted.

23



CHAPTER 2. FUNCTIONAL DATA ANALYSIS

0 100 200 300

0.
0

0.
4

0.
8

Figure 2.2. B-spline basis with K = 30 basis functions.

The position of the interior breakpoints τl can be determined by different methods.
Often the default method is equal spacing, which is good as long data has a constant
sampling rate as mentioned in Section 2.1. An example of an equally spaced B-spline
basis with 30 breakpoints can be seen in Figure 2.2. Another possibility is to place a
breakpoint at every j’th breakpoint, where j is a fixed number selected in advance.
There exists algorithms for breakpoint positioning which are similar to variable
selection techniques in multivariate regression. [J. O. Ramsay , B. W. Silverman,
2005]

One possible approach of constructing orthogonal basis functions is functinal prin-
cipal component analysis, fPCA, which will be introduced in Section 2.3. But first
the following section explains how data can be smoothed using a roughness penalty.

2.1.2 Smoothing Functional Data
This section is inspired by [J. O. Ramsay , B. W. Silverman, 2005] and [J. O.
Ramsay, G. Hooker, S. Gaves, 2009]. When data observations may contain errors,
data it has to be smoothed in order to obtain a functional form as stated in Section
2.1. There are different techniques available, but the focus here is on smoothing
data using a roughness penalty. This method is based on weighted least squares,
which is given by:

SMSSE(y|c) = (y − Φ(t)c)>W (y − Φ(t)c),

where W is a symmetric positive definite weight matrix , y is a response vector,
c is a vector of coefficients, and Φ(t) is a matrix consisting of basis functions as
described in Section 2.1.1. The basis functions in Φ could for instance be B-splines.

When the covariance matrix Σe for the resiuduals εj is known, then the weight
matrix is given by:

W = Σ−1
e .

To be able to establish smoothing by a roughness penalty, one has to quantify the
notion of roughnesss of a function. A natural measure could be the integrated
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squared mth derivative:
PENL(x) =

∫
[Lx(s)]2 ds,

where L = Dm is the mth derivative. A rough function has high curvature, which
yields high values for PENL(x). Let x(t) be the vector resulting from a function
x evaluated at time arguments t. Then the penalized residual sum of squares is
defined by:

PENSSEλ(x|y) = (y − x(t))>W (y − x(t)) + λPENL(x), (2.8)

where λ ≥ 0 is a smoothing parameter that measures the tradeoff between goodness
of fit of data and the variability of the function x. When λ = 0 then the penality
term has no influence and equation (2.8) is a usual weighted least squares problem.
As λ→∞ the penalty term gets more influence so curvature is more penalized. In
the field of statistics this is also known as ridge regression.

In order to obtain a smoothed functional data set, the aim is to minimize equation
(2.8). Substituting the basis expansion x(t) = c>Φ(t) = Φ>(t)c into this equation,
yields:

PENSSEλ(x|y) = (y − c>Φ(t))>W (y − c>Φ(t)) + λc>Rc, (2.9)

which follows from the following computation:

PENL(x) =
∫

[Lx(s)]2 ds

=
∫ [

Lc>Φ(s)
]2
ds

=
∫
c>LΦ(s)LΦ(s)>c ds

= c>
∫
LΦ(s)LΦ(s)>ds c

= c>Rc,

where R =
∫
LΦ(s)LΦ(s)ds is the roughness penalty matrix. It is possible to ob-

tain analytic solutions for some types of basis systems, e.g. for the B-spline basis,
but the details for this computation are complicated and omitted in this thesis.
Differentiating equation (2.9) with respect to c yields:

−2Φ(t)>Wy + Φ(t)>WΦ(t)c+ λRc = 0.

Hence the estimated coefficient vector is given by:

ĉ =
(
Φ(t)>WΦ(t) + λR

)−1
Φ(t)>Wy, (2.10)

which is exactly the ridge regression estimate.

In order to determine λ, generalized cross validation, GCV, with the following cross
validation statistic as criterium is used:

GCV(λ) = n−1SMSSE
(n−1trace(I −H))2 , (2.11)
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which was developed by Craven and Wahba (1979), see [Craven and Wahba, 1979].
It is an approximation to the statistic obtained by leave-one-out cross validation,
LOOCV, when using a linear regression model which is given by:

LOOCV = n−1
n∑
i=1

(
SMSSE
1− hi

)2

.

This result can for instance be found in [Hyndman, 2014]. LOOCV is a cross
validation method where all observations expect from one are used as trainings
set and the excluded observation is used as validation set, which is done until all
observations have been in the validation set. [J. Friedman, T. Hastie, R. Tibshirani,
2009] When using cross validation to find the smoothing parameter λ one has to pay
attention when choosing possible λ values to be validated, since the linear system
to be solved has limitations. Define the term in the parenthesis in equation (2.10)
as:

M(λ) = Φ(t)>WΦ(t) + λR.

The matrices Φ(t)>WΦ(t) and R have elements of completely different size, but
M(λ) has to be invertible in equation (2.10), which poses some limitations. [J. O.
Ramsay , B. W. Silverman, 2005] suggests that the size of λR should not exceed
1010 times the size of Φ(t)>WΦ(t).

It is possible to make λ dimensionless by considering log10(λ), which is in accordance
with the fact that λ > 0 when there is imposed a penality. So the roughness penalty
PENL(x) should be multiplied by 10ν , where ν = log10(λ).

Before introducing fPCA in Section 2.3, the basic ideas of PCA for multivariate
data are explained in the next section.

2.2 Principal Component Analysis
This section is inspired by [Tvedebrink, 2014] and [J. O. Ramsay , B. W. Silverman,
2005]. PCA is a dimensionality reduction method that uses orthogonal transfor-
mations to transform a set of variables into a set of linearly uncorrelated variables
known as principal components. The method is defined in such a way that the first
principal component accounts for the largest possible variance in data, and each
subsequent component has the highest possible variance subject to the constraint
of being orthogonal to the preceding components. The method is often confused
with factor analysis, which is a very similar method but assumes that variables can
be expressed as a linear combination of underlying factors. Hence factor analysis
assumes that there exist underlying factors, whereas PCA just is a dimensionality
reduction method.

In the case of multivariate data a matrix X is considered. Without loss of generality,
it is assumed that the matrix is centered, which means that X = X − N−111>X,
where N is the number of observations in data.
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In addition, the covariance matrix V can be expressed by:

V = N−1X>X, (2.12)

which is of dimension p × p. It is possible to look at a linear combination of the
variable values:

fi =
p∑
j=1

βjxij = β>xi, i = 1, . . . , N, (2.13)

where β is a weighting vector (β1, . . . , βp)> and xi is an observed vector (xi1, . . . , xip)>.
PCA is then used to define sets of normalized weights that maximize variation in the
fi’s. The first step is to find a vector ξ1 = (ξ11, . . . , ξp1)> such that the covariance:

Cov [Xξ1] = E
[
(Xξ1)>Xξ1

]
− E [Xξ1]> E [Xξ1]

= E
[
ξ>1 X

>Xξ1
]
− ξ>1 E [X]> E [X] ξ1

= ξ>1 Cov [X] ξ1 = ξ>1 V ξ1, (2.14)

is as large as possible. To ensure that the covariance not gets arbitrarily large, the
following constraint is introduced:

‖ξ1‖2 = ξ>1 ξ1 = 1.

The problem can also be formulated as maximizing the mean square:

1
N

N∑
i=1

f 2
i1 subject to ‖ξ1‖2 = 1,

where fi1 = ∑p
j=1 ξj1xij = ξ1xi. The linear combination fi1 is also called a principal

component score. Moreover, the subsequent projections have to be uncorrelated to
the previous ones:

p∑
j=1

ξjkξjl = ξ>k ξl = 0, k < m ≤ p,

where m indicates the number of steps taken, which are limited by the number of
variables p.

This means that the projections are orthogonal to each other, which guarantees
that they are describing a new underlying feature in data. Based on the introduced
constraints, the following maximization problem can be formulated:

max
ξ1
ξ>1 V ξ1 − λ(ξ>1 ξ1 − 1), (2.15)

which is solved by:

(V − λI)ξ1 = 0
V ξ1 = λξ1. (2.16)

This can be considered as finding the eigenvalues λ and eigenvectors ξj of the co-
variance matrix V . An eigenvector can represent the direction of a component and
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the corresponding eigenvalue can represent how much variance there is in data in
this direction.

Since the covariance matrix V is positive semi-definite, it can be decomposed into
an orthogonal matrix U and a diagonal matrix Λ, whose entries are the eigenvalues
λ1 > · · · > λp. The decomposition is then given by:

V = U>ΛU =
p∑
j=1

λjuju
>
j . (2.17)

Using this expression in equation (2.15) and defining ξ̃1 = Uξ1, where:∥∥∥ξ̃1

∥∥∥2
= ξ̃>1 ξ̃1 = (Uξ1)>Uξ1 = ξ>1 U

>Uξ1 = ξ>1 ξ1 = ‖ξ1‖2 ,

the maximization problem from equation (2.15) can be rewritten as:

max
ξ̃1:ξ̃>

1 ξ̃1=1
ξ̃>1 Λξ̃1 = max

ξ̃1:ξ̃>
1 ξ̃1=1

p∑
j=1

ξ̃2
1jλj.

This is maximal when ξ̃11 = 1, so ξ̃1 = e1, where e1 is the unit vector with a one in
the first entry. As mentioned, the next component has to be uncorrelated with the
first component, so:

0 = Cov [Xξ1, Xξ2] = ξ>1 Cov [X,X] ξ2 = ξ>1 U
>ΛUξ2 = ξ̃>1 Λξ̃2. (2.18)

Since ξ̃1 = e1, equation (2.18) reduces to 0 = λ1ξ̃21 ⇔ ξ̃21 = 0. Hence, the new
maximization problem is:

max
ξ̃2:ξ̃>

2 ξ̃2=1;ξ̃21=0
ξ̃>2 Λξ̃2 = max

ξ̃2:ξ̃>
2 ξ̃2=1;ξ̃21=0

N∑
j=1

ξ̃2
2jλj,

which implies that ξ̃22 = 1, so ξ̃2 = e2, where e2 denotes the unit vector with a one
in the second entry.

This procedure is repeated until the m principal components are found, where m is
at most p. [J. O. Ramsay , B. W. Silverman, 2005]

2.2.1 Singular Value Decomposition and the Smoothing of
Data

This section is inspired by [J. Friedman, T. Hastie, R. Tibshirani, 2009]. As men-
tioned in Section 2.1.2, the estimated coefficient ĉ is similar to a ridge regression
estimate. This section shows that ridge regression has a relation to PCA. Consider
the case of a weighted matrix as described in Section 2.1.2, where W is a weight
matrix. The singular value decomposition, SVD, of a weighted and centered matrix
Φ is then given by:

W 1/2Φ = UDV >, (2.19)
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where U is an N × p orthogonal matrix whose columns span the column space of Φ
and V is an p× p orthogonal matrix whose columns span the row space of Φ. The
matrix D is a diagonal matrix with diagonal elements d1 ≥ · · · ≥ dp ≥ 0, which are
the so-called singualar values of Φ. The matrix Φ is called singular if one or more
elements dj are zero.

Consider the eigendecompostion of Φ>WΦ:

Φ>WΦ = V DU>UDV > = V D2V >,

where the vectors vj are the eigenvectors of Φ>WΦ. Using equation (2.19), the
ridge regression estimate from equation (2.10) can be rewritten as:

ĉ = (Φ>WΦ + λR)−1Φ>W 1/2y

= (V D2V > + λR)−1V DU>W 1/2y

= (V (D2 + λR)V >)−1V DU>W 1/2y

= V (D2 + λR)−1DU>W 1/2y.

Thus it follows that:

ŷ = W 1/2Φĉ = UD(D2 + λR)−1DU>y. (2.20)

Hence, ridge regression as used to smooth functional data finds projections of y on
uj and then shrinks these coordinates by (D2 + λR)−1. So ridge regression shrinks
coefficients with least variance most as can be seen in equation (2.20). This is
equivalent to the concept of PCA, which finds directions in data that explain most
variance and then finds orthogonal directions that describe less variance.

After having introduced the ideas of principal component analysis for multivariate
data, the next section introduces the functional variant of this method.

2.3 Functional Principal Component Analysis
The following section is written with inspiration from [J. O. Ramsay , B. W. Silver-
man, 2005] and [J. O. Ramsay, G. Hooker, S. Gaves, 2009]. Instead of considering
variable values, fPCA considers univariate function values xi(s), where the discrete
index j has been replaced by a continuous index s. This implies that the linear
combination in equation (2.13) can be expressed as:

fi =
∫
β(s)xi(s)ds, i = 1, . . . , N. (2.21)

The functions x(s) are assumed to be real-valued and to be elements of a Hilbert
space H as defined in Defintion A.3 of Appendix A.1, i.e.:

(∫
x(s)2ds

) 1
2
<∞.
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Considering functions instead of vectors, summations over j are replaced with in-
tegrations over s. So the results from Section 2.2 can be formulized to finding a
weight function ξj(s) that maximizes:

1
N

N∑
i=1

f 2
ij = 1

N

N∑
i=1

(∫
ξj(s)xi(s)

)2
ds,

subject to: ∫
ξj(s)2ds = 1 and

∫
ξk(s)ξm(s)ds = 0, k < m, (2.22)

where ξj(t) are eigenfunctions. Similar to the multivariate case, the functions are
acquired to be centered, meaning that each function has been subtracted by the
mean function as stated in equation (2.3).

The counterpart to the covariance matrix in the multivariate case of a PCA is
to consider the variance function in a fPCA. Corresponding to the formulation of
the eigendecomposition in equation (2.17) using Mercer’s Theorem A.6, as stated
in Appendix A.1, the covariance function, v(s, t), given in equation (2.4) can be
decomposed into:

v(s, t) =
∞∑
j=1

λjξj(s)ξj(t), (2.23)

where it is assumed that
∫
v(t, t)dt <∞.

According to Definition A.4 in Appendix A.1, the covariance operator V is intro-
duced. It is an integral transform of the weight function ξ(s) and given by:

[V ξ](s) =
∫
v(s, t)ξ(t)dt. (2.24)

The following lemma summarizes the properties of the covariance operator.

Lemma 2.1
Let V : H → H be defined as in equation (2.24). Then the following hold:

1. V is compact.
2. V is positive.
3. V is self-adjoint.

[Alexanderian, 2013]

Proof. Omitted. Can be found in [Alexanderian, 2013].

Let V be defined as in equation (2.24) and using Lemma 2.1 together with the spec-
tral Theorem A.7 for self-adjoint operators given in Appendix A.1, the maximization
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problem given in equation (2.16) can be reformulated as:∫
v(s, t)ξ(t)dt = λξ(s) (2.25)

[V ξ](s) = λξ(s),

for an eigenvalue λ. For complex structured curves it is not possible to solve equa-
tion (2.25) exactly, but Section 2.3.1 shows how approximations can be found. In
contrast to the multivariate case, where the number of eigenvalue-eigenvector pairs is
limited to p, in fPCA the number of function values, thus the number of eigenvalue-
eigenfunction pairs, can be infinite. [J. O. Ramsay , B. W. Silverman, 2005]

One can also consider fPCA as finding a set of K orthogonal functions ξ in such a
way that the expansion of each curve in terms of these basis functions approximates
the curve as closely as possible. Since it is known from the construction of fPCA
that these functions are orthonormal, it follows that the expansion is given by:

xi(t) =
K∑
k=1

fikξk(t), (2.26)

where fik is the principal component value
∫
ξk(t)xi(t)dt. Equation (2.26) is also

known as Karhunen-Loeve expansion as stated in Theorem 2.2.

Theorem 2.2 (Karhunen-Loeve Expansion)
Let xi : D×Ω→ R be a centered mean-squared continuous stochastic process,
i.e.:

lim
k→∞

E
(xi(t)− K∑

k=1
fikξk(t)

)2 = 0.

Then there exists a basis expansion ξi for i = 1, . . . , k of H such that for t ∈ D:

xi(t) =
∞∑
k=1

fikξk(t),

with convergence in H and where fik(ω) is the principal component value∫
D ξk(t)xi(t)dt. Then the following is satisfied:

1. E [fik] = 0.
2. E [fikfij] = δkjλj.
3. Var [fik] = λj,

where δkj is the Kronecker delta. [Alexanderian, 2013]
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Proof. Let V be the Hilbert-Schmidt operator as given in equation (2.24), then V
has a complete set of eigenvectors ξi ∈ H and non-negative, increasing eigenvalues
λi ∈ H.

1. The first allegation is shown by:

E [fik] = E
[∫
D
xi(t)ξk(t)dt

]
=
∫

Ω

∫
D
xi(t;ω)ξk(t)dtdP (ω)

=
∫
D

∫
Ω
xi(t;ω)ξk(t)dP (ω)dt

=
∫
D
E [xi(t)] ξk(t)dt = 0,

where the last equality follows since it is assumed that xi(t) is a centered proces,
i.e. E [xi(t)] = 0.

2. The second allegation is verified by:

E [fikfij] = E
[(∫

D
xi(s)ξk(s)ds

)(∫
D
xi(t)ξj(t)dt

)]
= E

[∫
D

∫
D
xi(s)ξk(s)xi(t)ξj(t)dsdt

]
=
∫
D

∫
D
E [xi(s)xi(t)] ξk(s)ξj(s)dsdt

=
∫
D

(∫
D
v(s, t)ξj(t)dt

)
ξk(s)ds

=
∫
D

[V ξj](s)ξk(s)ds

= 〈V ξj, ξk〉 = 〈λjξj, ξk〉 = λjδkj,

where δkj is the Kronecker delta. Then 3. follows from 1. and 2.:

Var [fik] = E
[
(fik − E [fik])2

]
= E

[
f 2
ik

]
= λj.

It remains to show the convergence in H. Therefore define:

εk(t) = E
(xi(t)− K∑

k=1
fikξk(t)

)2 , (2.27)

where it has to be shown that limk→∞ εk(t) = 0 uniformely, and hence pointwise in
D. Expand equation (2.27):

εk(t) = E
[
xi(t)2

]
− 2E

[
xi(t)

K∑
k=1

fikξk(t)
]

+ E
 K∑
k=1

K∑
j=1

fikfijξk(t)ξj(t)
 (2.28)

The first term in equation (2.28) can be expressed as k(t, t), which follows from
equation (2.23). The middle term can be rewritten as:
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E
[
xi(t)

K∑
k=1

fikξk(t)
]

= E
[
xi(t)

K∑
k=1

(∫
D
xi(s)ξk(s)ds

)
ξk(t)

]

=
K∑
k=1

(∫
D
E [xi(t)xi(s)] ξk(s)ds

)
ξk(t)

=
K∑
k=1

λkξk(t)2 (2.29)

And finally the last term can be rewritten as:

E
 K∑
k=1

K∑
j=1

fikfijξk(t)ξj(t)
 =

K∑
k=1

K∑
j=1

λkδkjξk(t)ξj(t)

=
K∑
k=1

λkξk(t)
K∑
j=1

δkjξj(t)

=
K∑
k=1

λkξk(t)2. (2.30)

From equations (2.28), (2.29) and (2.30) it then follows:

εk(t) = v(t, t)−
K∑
k=1

λkξk(t)2.

Using Mercer’s Theorem A.6 yields:
lim
k→∞

εk(t) = 0,

which shows the convergence in H and completes the proof, which is inspired by
[Alexanderian, 2013].

The basis given in equation (2.26) is referred to as the most efficient basis possible
for the selected number of eigenvalues m, which means that it has the lowest total
error sum of square, SSE, for a given number of eigenvalues m:

SSE =
N∑
i=1

∫
[xi(t)− x̂i(t)]2dt.

Suppose that the number of eigenvalue-eigenfunctions pairs is truncated to be N−1.
Then assume that 1 ≤ m ≤ N −1, where m is the number of eigenvalues, and using
equation (2.26) the SSE can be rewritten as:

SSE =
N∑
i=1

∫ [
x̄(t) +

N−1∑
k=1

fikξk(t)−
(
x̄(t) +

m∑
k=1

fijξk(t)
)]2

dt

=
N∑
i=1

∫ [
N−1∑
k=1

fikξk(t)−
m∑
k=1

fijξk(t)
]2

dt

=
N∑
i=1

∫  N−1∑
k=m+1

fikξj(t)
2

dt

=
N∑
i=1

 N−1∑
k=m+1

fik

∫
ξk(t)2dtfik +

N−1∑
k=m+1

N−1∑
l=m+1;l 6=k

fik

∫
ξk(t)ξl(t)dtfil

 ,
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where the conditions from equation (2.22) are used. It then follows that:

=
N∑
i=1

N−1∑
k=m+1

f 2
ik.

Using equation (2.21) this can be expressed by:

=
N∑
i=1

N−1∑
k=m+1

∫
(ξk(t)xi(t))2 dt

=
N−1∑

k=m+1

N∑
i=1

∫
ξk(t)2xi(t)2dt

=
N−1∑

k=m+1

∫
ξk(t)2

N∑
i=1

xi(t)2dt

=
N−1∑

k=m+1

∫
ξk(t)2Nv(s, t)dt,

where the last equation follows from equation (2.23). Hence the relationship between
the SSE and the eigenvalues is given by:

SSE = N
N−1∑

k=m+1
λk, (2.31)

where only the smallest eigenvalues contribute. Hence, the basis expansion found
by fPCA has the lowest possible SSE for a given number of eigenvalues. The next
section introduces a method to approximate the solution of the eigendecomposition.

2.3.1 Approximate Solution to Eigendecompostion
This section shows one possible way to compute approximate solutions to the func-
tional eigendecomposition in equation (2.25). It is inspired by [J. O. Ramsay , B.
W. Silverman, 2005] and [J. Peng and D. Paul, 2012].

In order to estimate the eigenvalues and eigenfunctions of the covariance function, it
can be useful to truncate the series on the right side in equation (2.23) at some finite
m ≥ 1 as also mentioned above, which yields the projected covariance function:

v
(m)
proj(s, t) =

m∑
j=1

λjξj(s)ξj(t). (2.32)

Since
∥∥∥v(s, t)− v(m)

proj(s, t)
∥∥∥ = ∑∞

k=m+1 λ
2
k, and as long as the eigenvalues decrease to

zero sufficiently fast, the approximation v(m)
proj(s, t) of the covariance function results

in small bias. Let Λ be a diagonal matrix containing the m eigenvalues, i.e. Λ =
diag{λj}mj=1. Moreover, assume that the eigenfunctions can be modelled by basis
functions:

ξj(t) =
K∑
k=1

ckjφk(t) for j = 1, . . . ,m and K ≥ m ≥ 1.
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The eigenfunctions can then defined to be:

ξ(t)> = (ξ1(t), . . . , ξm(t)) = (φ1(t), . . . , φK(t))C,

where the K ×m matrix C satisfies:

C>
(∫

φ(t)φ(t)>dt
)
C =

∫
ξ(t)ξ(t)>dt = Im, (2.33)

where φ(·) = (φ1(·), . . . , φK(·))>. This means, that the matrix C lies in a Stiefel
manifold, which is a space of real-valued matrices with orthonormal columns. The
Stiefel manifold K ×m matrices are defined by SK,m = {A ∈ RK×m : A>A = Im}.

In order to obtain an approximate solution to the eigendecomposition one converts
the continuous functional eigendecomposition to a discrete expression by using the
idea of the projected covariance function as given in equation (2.32). Assume that
the functions xi(t) are represented by basis functions as given in equation (2.5), then
the covariance function can be expressed by:

v(s, t) = N−1φ(s)>C>Cφ(t).

Define a rank K symmetric matrix W =
∫
φ(t)φ>(t)dt and assume that an eigen-

function ξ(t) for equation (2.25) has the basis expansion:

ξ(t) = φ(t)>c,

where c is a coefficient vector. Then the following must apply:∫
v(s, t)ξ(t)dt =

∫
N−1φ(s)>C>Cφ(t)φ(t)>cdt

= N−1φ(s)>C>CWc.

This implies that the eigenanalysis in equation (2.25) can be expressed by:

N−1φ(s)>C>CWc = λφ(s)>c,

which can be rewritten as:
N−1C>CWc = λc,

since the eigenanalysis has to hold for all s. Note that the eigenfunctions have to
satisfy the normalization constraint

∫
ξ(t)2dt = 1 in a fPCA, which implies that:

1 =
∫
ξ(t)2dt =

∫
c>φ(t)φ(t)>cdt = c>Wc.

Additionally, in order to ensure orthogonality of two eigenfunctions ξl(t) and ξk(t)
the coefficient vectors must satisfy c>kWcl = 0.

In order to find principal components, define the eigenvector u = W 1/2c, which
implies that u>u = 1 in accordance with the normalization constraint in the fPCA.
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Then solve the symmetric eigenvalue problem:

N−1W 1/2C>CW 1/2u = λu,

which is solved for λ and u. The coefficient vector c is then computed by c =
W−1/2u and the eigenfunction is given by ξ(t) = φ(t)>W−1/2u.

The next section considers different possiblities to select the number of principal
components.

2.3.2 The Choice of the Number of Principal Components
When working with PCA or fPCA it is known that by construction the principal
components are ordered such to describe descending variation in data. Therefore
when dealing with high dimensional data it might be appropriate to only consider
the first m principal components and thereby ignore the effect of the last p − m

components as explained in the previous sections.

In litterature there are studied several methods to determine the number of principal
components m. This section is based on the discussion in [Cangelosi and Goriely,
2007] and [K. V. Mardia, J.T. Kent, J. M. Bibby, 1994] on different methods to
select the number of principal components. It is a very important parameter, since
including too many components to describe data may involve noise, while includ-
ing too few components may remove valuable information. It can be distinguished
between heuristic methods, where there are used subjective criteriums like how
much of the variance in data should be explained by the principal components, and
statistical methods. This section aims to give a short overview of some heuristic
methods, since it is argued in litterature that statistical methods often are computa-
tional heavy, overestimate the number of principal components, and some methods
require distributional assumptions of data. [Cangelosi and Goriely, 2007]

A possible criterium can be stated such that components whose standard deviations
are less than or equal to some predetermined threshold v times the standard devia-
tion of the first component are omitted. That is, the included components satisfy:

√
λj ≥ v ·

√
λ1 j = 1, . . . ,m, (2.34)

where 0 ≤ v ≤ 1 and m ≤ p indicates the number of selected principal components.
This criterium is also implemented in the R function prcomp, which will be used to
perform a PCA in pratice.

Another way to determine the number of principal components is by examining a
scree plot, which visualizes the proportion of total variance each factor is accounting
for. Hence it is a plot of the eigenvalues λj against their indicies j. This means that
when there for some value j occurs a sharpe change in the slope of the scree plot
then this is chosen to be the number of components m to retain. From equation
(2.31) it can be seen that this might imply a small SSE, but the difficulty with this
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method is that it is not ensured that there will be a clear change or there might be
several changes, which makes it difficult to interpret the plot.

Another possibility is to consider the cumulative variance explained by the first j
principal components, which is given by:

CPVj =
∑j
i=1 λi∑p
i=1 λi

, (2.35)

where CPV1 < · · · < CPVp = 1, which follows from the property of the eigenvalues.
Then there can be selected a certain value of how much of the variance in data
that should be explained by the first m principal components, e.g. the components
should explain about 70−90% of the variance. As for the other introduced heuristic
methods, the drawback of this method is that it is a subjective choice to select how
much of the variance that should be explained.

When omitting some principal components, the hypothesis of equal eigenvalues
should be checked, i.e. if λp = λp−1 = · · · = λm+1. In general, eigenvalues that
are equal to each other should be treated in the same way. This means either all
components are omitted or all components are retained. Therefore the standard
deviation criterium in equation (2.34) will be used throughout this thesis, since it,
in contrast to the scree plot and the cumulative variance explained, incorporates
this property.

After having introduced the concept of functional data analysis, principal component
analysis, and functional principal component analysis, the next chapter introduces
different asset allocation strategies that make use of these methods.
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Risk-based Allocation Strategies 3
One of the most used asset allocation strategies in the financial industry is the MV
strategy, which attempts to trade off risk and return. However, the method is not
very accurate due to estimation errors in the mean estimate. Therefore, this chapter
introduces risk-based allocation strategies, that do not have to estimate the expected
value, but only the variance, which often is a much more robust estimate than the
mean estimate. Furthermore these strategies are more efficient in diversifying a
portfolio than the Markowitz approach, since they allocate due to the underlying
risk factors of a portfolio instead of only focusing on the overall risk of a portfolio.

In addition to introducing different variants of the Equal Risk, ER, strategy another
risk-based allocation strategy will be presented, the Diversified Risk Parity, DRP,
strategy. It will be shown that the DRP strategy is related to one of the ER
approaches. At the end of this chapter a simplified example shows how the different
strategies introduced in this chapter are implemented using the software R and in
addition there is considered a simulation study to investigate the similarities and
differences of the portfolio weights found by the different strategies.

3.1 Equal Risk Portfolio Optimization
This optimization method can be considered from different points of view:

• A strategy to find a risk-balanced portfolio such that the risk contributions
are the same for all assets of a portfolio.

• An optimization, where the weights of the assets are chosen such that the
PCA yields equal volatilities in the components.

sam The different approaches are introduced in the following sections. Moreover,
there is investigated how the strategy relates to other asset allocation strategies,
e.g. EW and the MVa strategies. Also a functional variant of the ER strategy is
introduced which uses fPCA instead of PCA.
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3.1.1 Risk Contribution Approach
This section is inspired by [S. Maillard, T. Roncalli, J. Teiletche, 2009]. As men-
tioned above, the idea of an ER portfolio is to find a portfolio in such a way that
the risk contributions RCi(w), as introduced in Section 1.1, are the same for all
assets i included in a portfolio. For simplicity it is assumed that short-selling is not
allowed, which means that 0 ≤ wi ≤ 1 for i = 1, . . . , N . Then the optimal weights
of an ER portfolio can mathematically be described by:

w∗ =
{
w ∈ [0, 1]N :

N∑
i=1

wi = 1;RCi(w) = RCj(w) for all i, j
}
.

In order to get a better understanding of this method, consider the following simple
example with a portfolio consisting of two assets.

Example 2 (Two asset case)
A portfolio containing two assets has the weights w = (w, 1 − w). It follows from
equation (1.10), that the vector of risk contributions is then given by:(

RC1(w)
RC2(1− w)

)
= 1
σP (w)

(
w2σ2

1 + w(1− w)ρσ1σ2

(1− w)2σ2
2 + w(1− w)ρσ1σ2

)
.

It is used that the covariance can be expressed by σ12 = ρσ1σ2.

The aim is then to find a weight w such that both rows of the risk contribution
vector are equal. This means, find a weight w such that w2σ2

1 = (1 − w)2σ2
2 and

0 ≤ w ≤ 1:

w2σ2
1 = (1− w)2σ2

2

w = σ2

σ1 + σ2
,

which yields:
w∗ =

(
σ1

σ1+σ2
, σ2
σ1+σ2

)
.

Notice that the optimal solution w∗ not depends on the correlation of the assets,
but only on their variances. 4

This can be generalized to a portfolio containing N assets. There are three different
cases to be considered depending on the volatility and correlation structure of the
assets in a portfolio.

Different Volatilities, Equal Correlation

The first case is to assume equal correlation across the assets, i.e. ρij = ρ for all
i, j, where ρij denotes the correlation between the return of asset i and the return
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of asset j. Then the risk contributions are given by:

RCi(w) =
w2
i σ

2
i +∑

j 6=iwiwjρσiσj
σP (w)

=
wiσi(wiσi + ρ

∑
j 6=iwjσj)

σP (w)

=
wiσi(wiσi − ρwiσi + ρ

∑N
j=1wjσj)

σP (w)

=
wiσi

(
(1− ρ)wiσi + ρ

∑N
j=1wjσj

)
σP (w) .

From the ER portfolio setup it is known that RCi(w) = RCj(w) and it then follows
that wiσi = wjσj. Therefore, together with the constraint ∑N

i=1wi = 1 it is given
that:

1 =
N∑
j=1

wj =
N∑
j=1

wiσi
σj

= wiσi
N∑
j=1

σ−1
j ,

which can be rewritten as:

1
wi

= σi
N∑
j=1

σ−1
j .

So the optimal weights for assets with equal correlations are given by:

w∗i = σ−1
i∑N

j=1 σ
−1
j

. (3.1)

So the higher the volatility of a component, the lower is the weight in the ER
portfolio. Note, that when the assets have equal volatilities, i.e. σi = σj, then the
optimal weights would simply be w∗i = N−1. It will also be shown in Section 3.1.2
that when the ER strategy uses the lower bound of the correlation coefficent ρ, cf.
equation (1.17), then it finds similar portfolio weights to the MVa strategy.

Equal Volatilities, Different Correlations

The second case is when correlation across assets differ, but the volatilities are the
same, i.e. σi = σ for all i. Then it follows by the same reasoning as above, that the
optimal weigths are given by:

w∗i =

(∑N
k=1wkρik

)−1

∑N
j=1

(∑N
k=1wkρjk

)−1 .

Again it can be noted, that assuming equal correlations would yield equal weights,
i.e. w∗i = N−1.
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Different Volatilites and Correlations

The most general case is when both the volatilites and the correlations of the assets
differ. Consider the covariances and risk contributions, respectively:

σiw = Cov
ri, N∑

j=1
wjrj

 =
N∑
j=1

wjCov [ri, rj] =
N∑
j=1

wjσij;

RCi(w) = wi
σiw

σP (w)

Then from the definition of the βP (w) of a portfolio, as stated in equation (1.13),
it follows that βi = σiw/σ

2
P (w). Thereby the risk contributions can be rewritten as

RCi(w) = wiβiσP (w). From the ER approach it follows that RCi(w) = RCj(w).
Together with the constraint ∑N

i=1wi = 1 it follows that the weights are given by:

w∗i = β−1
i∑N

j=1 β
−1
j

.

Thus, the higher the β an asset, the lower the weight, which implies that assets
with high volatility or correlation with other assets will be assigned a lower portfolio
weight.

It can be seen that in the last two cases the optimal solution w∗i is endogenous, since
it dependents on itself. This implies that there is no closed-form solution, but the
solution has to be found numerically.

One approach is to use Sequential Quadratic Programming, SQP, to solve the fol-
lowing optimization problem:

w∗ = argmin f(w) (3.2)
subject to 1>w = 1 and 0 ≤ w ≤ 1,

where:

f(w) =
N∑
i=1

N∑
j=1

(wi(Σw)i − wj(Σw)j)2 .

The algorithm minimizes the numerator of the risk contributions, i.e. it solves
wi(Σw)i = wj(Σw)j.

In order to summarize this section it is interesting to compare the ER strategy with
other asset allocation strategies, mainly the EW and MVa strategies. Mathemati-
cally the three strategies make use of the following:

Equally-Weighted (EW): wi = wj
Minimum Variance (MVa): ∂wi

σP (w) = ∂wj
σP (w)

Equal Risk (ER): RCi(w) = RCj(w).

The next section explains how the three strategies are related.
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3.1.2 Properties of the Equal Risk Strategy
This section is based on the work of [S. Maillard, T. Roncalli, J. Teiletche, 2009]
and [Stefanovits, 2010] and aims to show that there is a relationship between the
ER, EW, and MVa strategies. First it can be shown that the ER strategy is similar
to the MVa portfolio for a special structure of the correlation matrix.

Connection to the Minimum Variance Strategy

Let R be a constant correlation matrix such that Rij = ρ and Rii = 1, i.e.:

R = ρ11> + (1− ρ)IN ,

where IN is the N×N identity matrix. The covariance matrix can then be expressed
by Σ = σσ>R and consequently the inverse covariance is given by Σ−1 = ΓR−1,
where Γij = 1

σjσj
and:

R−1 = ρ11> − ((N − 1)ρ+ 1)IN
(N − 1)ρ2 − (N − 2)ρ− 1 .

The structure of R−1 is veryfied by the following calculation:

RR−1 = ρ11> + (1− ρ)IN
ρ11> − ((N − 1)ρ+ 1)IN
(N − 1)ρ2 − (N − 2)ρ− 1

= ρ2N11> − ρ11> ((N − 1)ρ+ 1) + ρ11>(1− ρ)− (1− ρ) ((N − 1)ρ+ 1) IN
(N − 1)ρ2 − (N − 2)ρ− 1

= −NρIN −Nρ
2IN − 2ρIN + ρ2IN − IN

(N − 1)ρ2 − (N − 2)ρ− 1
= IN

The weights for the MVa strategy are given by:

w∗MV a = Σ−11
1>Σ−11

, (3.3)

hence using the constant correlation matrix the weights of the MVa strategy can be
rewritten as:

w∗i = ρ
∑N
k=1(σiσk)−1 − ((N − 1)ρ+ 1)σ−2

i∑N
k=1

(
ρ
∑N
j=1(σkσj)−1 − ((N − 1)ρ+ 1)σ−2

k

) .
Consider the lower bound of the correlation coefficent ρ = −(N − 1)−1 as shown in
equation (1.17), then the MVa weights are:

w∗i =
∑N
k=1(σiσk)−1∑N

j=1
∑N
k=1(σjσk)−1 = σ−1

i∑N
j=1 σ

−1
j

,

which is exactly the solution of the ER strategy with equal correlations and different
volatilities as given in equation (3.1). Hence the MVa and ER strategies coincide
when having a portfolio consisting of assets that have the same lower bound corre-
lation.

The next section shows that there is a relationship between the volatilities of the
ER, EW, and MVa strategies.
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The Relationship between the Volatilities of the ER, EW, and MVa
Strategies

Before showing the relationship of the volatilities, first it is shown that the ER op-
timization can be formulated in another way then given in equation (3.2). Consider
the following optimization problem:

w∗(c) = argmin
√
w>Σw (3.4)

subject to
N∑
i=1

ln(wi) ≥ c and w ≥ 0,

for any constant c ∈ R. This optimization problem aims to minimize the volatility
of a portfolio subject to the constraint ∑N

i=1 ln(wi) ≥ c. The Lagrangian for this
optimization problem is given by:

L =
√
w>Σw − γ1

(
N∑
i=1

ln(wi)− c
)
− γ>2 w,

where γ1 and γ2 are Lagrange multipliers. Suppose that there exists portfolio weights
w∗ that are a solution for this optimization problem for an arbitrary constant c,
and that the Lagrange multipliers satisfy the first order condition:

∇L = Σw∗√
w∗>Σw∗

− γ∗1

(
1
w∗1
, . . . ,

1
w∗N

)
− γ∗2 = 0. (3.5)

Moreover the following Kuhn-Tucker conditions are satisfied:

γ∗1 , (γ∗2)i ≥ 0 for i = 1, . . . , N,
(γ∗2)iw∗i = 0, (3.6)

γ∗1

(
N∑
i=1

ln(w∗i )− c
)

= 0. (3.7)

Because ln(w∗i ) is not defined for w∗i = 0 it follows from equation (3.7) that w∗i > 0,
hence equation (3.6) implies that (γ∗2)i = 0. Furthermore, assuming that γ∗1 = 0
must imply that Σw∗ = 0 from equation (3.5), which leads to w∗ = 0 which is not
allowed. Therefore the second Lagrange multiplier γ∗1 must be greater than zero.
These parameter conditions and equation (3.5) imply that the optimal portfolio
weights w∗ satisfy:

Σw∗√
w∗>Σw∗

− γ∗1

(
1
w∗1
, . . . ,

1
w∗N

)
= 0⇔

w∗i ∂wi
σP (w) = γ∗1 ⇔

RCi(w∗) = γ∗1 .

This shows that the optimization problem in equation (3.4) is a ER strategy, since
it finds equal risk contributions RCi(w∗).
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The portfolio weights also have to satisfy 1>w∗ = 1, therefore the portfolio weights
are normalized:

w∗i = w∗i (c)∑N
i=1w

∗
i (c)

. (3.8)

Now in order to show the relationship of the volatilities of the MVa, ER, and EW
strategies suppose that c1 ≤ c2 then σP (w∗(c1)) ≤ σP (w∗(c2)), since ∑N

i=1 ln(wi)−
c1 ≥ 0 is less restrictive than ∑N

i=1 ln(wi)− c2 ≥ 0.

In the case of c = −∞ the optimization problem in equation (3.4) yields the MVa
portfolio since the inequality constraint disappears. On the other hand, when c =
−N ln(N) then the optimization problem is the EW portfolio, which follows from
Jensen’s inequality and the constraint 1>w = 1:

1
N

N∑
i=1

ln(wi) ≤ ln
(

1
N

N∑
i=1

wi

)
= − ln(N),

which implies that∑N
i=1 ln(wi) ≤ −N ln(N), hence σP (w∗(−∞)) ≤ σP (w∗(−N ln(N))).

For a general c ∈ [−∞,−N ln(N)] it therefore must hold that:

σP (w∗(−∞)) ≤σP (w∗(c)) ≤ σP (w∗(−N ln(N)))
σMVa(w) ≤σER(w) ≤ σEW(w). (3.9)

This means that the MVa strategy is the less volatile strategy, the EW strategy
is more volatile, and the ER strategy lies between both. Note that the portfolio
variances for the MVa and the EW strategy are given by:

σ2
MVa(w) = 1

1>Σ1
and σ2

EW(w) = N−1σ̄2
•(1− ρ) + ρσ̄•, (3.10)

where the expression for σ2
MVa(w) follows from equations (1.5) and (3.3), and σ2

EW(w)
is derived in Example 1. There is no closed-form solution for the portfolio variance
σ2
ER(w), since it depends on the variance and correlation structure of the assets in

a portfolio, as discussed in Section 3.1.1. But now it is known that it is bounded
below and above.

The following example considers again the case of two assets and shows the rela-
tionship of the portfolio weights for the three strategies.
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Example 3 (Two asset case - continued)
Example 2 showed that the weights for the ER strategy are given by:

w∗ER =
(

σ1

σ1 + σ2
,

σ2

σ1 + σ2

)
.

It is known that the portfolio weights for the MVa strategy minimize the portfolio
variance, which is given by:

σ2
P (w) = (w, 1− w)

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

](
w

1− w

)
= σ1w

2 + 2ρσ1σ2w(1− w) + σ2
2(1− w)2.

So in order to find the the weights that minimize the portfolio variance σ2
P (w) the

first order derivative with respect to w is determined:

d

dw
σ2
P (w) = 2w(σ2

1 − 2ρσ1σ2 + σ2
2) + 2ρσ1σ2 − 2σ2

2 ⇔

w = σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2
.

In order to verify that these weights find the minimum variance, the second order
derivative is determined:

d2

dw2σ
2
P (w) = 2(σ2

1 − 2ρσ1σ2 + σ2
2).

Since ρ ≤ 1 the second order derivative can be rewritten as:

2(σ2
1 − 2ρσ1σ2 + σ2

2) ≥ 2(σ2
1 − 2σ1σ2 + σ2

2) = 2(σ1 − σ2)2 ≥ 0,

which verifies that w minimizes σ2
P (w), hence the portfolio weights for the MVa

strategy are given by:

w∗MV a = 1
σ1 − 2ρσ1σ2 + σ2

2

(
σ2

2 − ρσ1σ2, σ
2
1 − ρσ1σ2

)
.

For the EW strategy the weights simply are:

w∗EW =
(1

2 ,
1
2

)
.

It can be seen that when σ1 = σ2 the weights of the three strategies are the same:

w∗MV a = w∗ER = w∗EW .

This statement is also shown in Figure 3.1. Furthermore, when ρ = −1 then
w∗MV a = w∗ER, which corresponds exactly to the case of the lowest possible cor-
relation coefficent as shown in the start of this section. 4
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Figure 3.1. The portfolio weights in the two asset case as a function of σ2. The
labels ER1 and ER2 correspond to the two weights found by the ER
strategy, MVa1 and MVa2 correspond to the two weights found by
the MVa strategy, and EW indicates the weights found by the EW
strategy. As shown in Example 3 the weights of the three strategies
are the same when σ1 = σ2. In the MVa case the correlation is set
to ρ = 0.2. This figure is inspired by the work of [Stefanovits, 2010].

From this section it can be learnt that the ER strategy is a tradeoff between the MVa
and EW strategies in terms of the portfolio variance σ2

P (w∗), i.e. the risk associated
with using the strategy. The ER and MVa strategies are similar when there are
equal correlations between the assets of a portfolio. Earlier in this section it has
also been shown that the ER and EW strategies coincide when both the correlations
and volatilities are equal for all assets of a portfolio.

The next section considers the other ER approaches using PCA and fPCA to find
the portfolio weights.

3.1.3 Principal Component Analysis Approach
Principal component analysis as described in Sections 2.2 and 2.3 is a useful statis-
tical tool in many mathematical contexts and it turns out that this is also the case
in connection with asset allocation strategies. This section describes how PCA is
used to find the weights of an ER portfolio, which is inspired by the work of [Kind,
2013] and [Meucci, 2010].

PCA considers an eigendecomposition of a square matrix, which in financial context
either is a covariance matrix or a correlation matrix of asset returns. [Guan, 2013]
When modelling asset returns using factor models as given in equation (1.18), it is
assumed that the factors may be correlated. Using PCA in portfolio optimization
the covariance matrix can be decomposed into lower dimensional, latent factors,
which represent independent, i.e. uncorrelated, risk factors. Note that PCA finds
a linear combination of the portfolio returns as stated in equation (2.13), i.e. the
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factors fji can be expressed as a linear combination of asset returns:

f1i = ξ>1 ri, . . . , fpi = ξ>p ri, for i = 1, . . . , n, (3.11)

where ξj is the jth eigenvector, or the so-called loading, and ri is an observed vector
of asset returns (ri1, . . . , rip)>. Note that if no principal components are omitted,
there are as many principal components as there are assets in a portfolio, i.e. p = N

where N denotes the number of assets in a portfolio. This is in contrast to factor
analysis, where it is assumed that the portfolio is a linear combination of underlying
factors. [Seber, 2004] As mentioned in Chapter 1 the factors found by using PCA
are unobservable factors, which means that their economical interpretation is not
straightforward. Nevertheless, as can be seen in equation (3.11) it is possible to
investigate the eigenvectors and thereby determine which asset returns that form
the factors. When the original assets are very low correlated it may be possible to
deduce the economical interpretation of a factor. [H. Lohre, H. Opfer, G. Orszag,
2013] Alternative, it is possible to use orthogonal rotation techniques to rotate the
PCA space into a space that makes it easier to interpret the loadings found by a
PCA. A possible technique is VARIMAX, which both can be used for multivariate
and functional data, which aims to maximize the sum of the squared loadings. Note
that the rotated component scores are not uncorrelated anymore, but orthogonality
is preserved. The aim of the VARIMAX rotation is to relate each variable to as few
as possible factors and thereby ease the interpretation of these factors. But this is
beyond the scope of this thesis. [J. O. Ramsay , B. W. Silverman, 2005]

As already stated in equation (2.17) the eigendecomposition of the positive semi-
definite covariance matrix is given by:

V = U>ΛU,

where Λ is a diagonal matrix consisting of V ’s eigenvalues λj, for j = 1, . . . , p, which
are organized in descending order, and the columns in U represent V ’s loadings ξj.
The loadings ξj represent the weight of an asset towards each principal component
portfolio, which define a set of p uncorrelated principal portfolios with variances λj.
The returns and weights in the PCA space, the principal portfolio, can be expressed
by:

r̃ = U>r and w̃ = U>w, (3.12)

where r are asset returns, or log returns, and w are the weights of the original
assets.

Since the principal portfolios are uncorrelated, the variance of the principal portfolio
is simply given by:

σ2
P (w) = w>Vw = (Uw̃)>V Uw̃ = w̃>U>V Uw̃ = w̃>Λw̃ =

m∑
i=1

w̃2
i λi = σ2

P (w̃).

Hence the portfolio variance σ2
P (w) can either be expressed by the quadratic form

in the original asset space w>Vw or in the PCA space w̃>Λw̃. The total number of
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principal portfolios equals the number of considered principal components m. The
marginal risk contributions in the PCA space are given by:

∂w̃i
σP (w̃) = 1

2
√∑m

i=1 w̃
2
i λi

2w̃iλi = w̃iλi
σP (w̃) .

Moreover, since in the PCA space the covariance matrix has covariances that equal
zero, the risk contributions R̃Ci in the principal space must be equal to:

R̃Ci = w̃2
i λi√∑m

i=1 w̃
2
i λi

Hence a similar optimization problem to Section 3.1 can be formulated:

w∗ = argmin f(w) (3.13)
subject to 1>w = 1 and 0 ≤ w ≤ 1,

where
f(w) =

m∑
i=1

m∑
j=1

(
R̃Ci − R̃Cj

)2
.

The zero covariances in the PCA space also imply that the weights can be expressed
by a closed-form solution similar to equation (3.1). Thus the optimal weights in the
PCA space are given by:

w̃∗i = (
√
λi)−1∑m

i=1(
√
λi)−1 . (3.14)

Another way of formulating the ER approach is inspired by the work of Jyske Bank,
where the principal portfolios found are used to construct a diversified portfolio in
such a way that the weights are chosen to yield as equal as possible volatilities in each
component. So the aim of the optimization is to have equal risk in all directions of
risk. The risk in a direction is defined as the amount of risk of the overall risk that is
found in the given direction, where risk is proportional to the variance, i.e. are given
by the eigenvalues in each direction. In order to hold a well-diversified portfolio its
overall risk should be evenly spread across the principal portfolios. Jyske Bank has
established the following objective function:

min
w

m∑
i=1

CPVi subject to 1>w = 1 and − 1 ≤ w ≤ 1, (3.15)

where CPVi is the ith cumulative proportion of variance from the PCA as defined
in equation (2.35). The objective function is the sum of every principal component’s
cumulative proportion of variance. This means by minimizing equation (3.15), the
proportion of variances are made as equal as possible, which corresponds to have
equal risk in each component. An example of the cumulative proportion of each
component can be seen in Figure 3.2.
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Figure 3.2. Cumulative proportion of variance of a PCA on five assets.

It can be observed that the plot by construction is a convex function that always
equals one in the last component, unless some of the principal components are
omitted. Thereby, the sum of cumulative proportions can be interpreted as a discrete
integral, where the difference between neighbouring bars describes the variance of
the component. The minimization problem formulated in equation (3.15) aims to
minimize the proportion of the first component and to make the function as little
convex as possible, which exactly corresponds to have equal risk in every component.
1

The optimization algorithm used is the Nelder-Mead algorithm, where in every step
of the optimization the input data for the PCA are the log returns multiplied by
the portfolio weights. So the PCA is performed on weighted log returns. Since the
Nelder-Mead algorithm is unconstrainted, the portfolio weights are normalized as
in equation (3.8) in order to ensure that the portfolio weights sum to one.

The question of how many principal components to consider given a number of assets
does not have a straight forward answer. In practice, it is often observed that most of
the risk of a portfolio is in the first three to five principal components. As discussed
in Section 2.3.2 the criterium stated in equation (2.34) is used to select the number
of principal components m. To omit some of the principal components makes both
from a mathematically and economically perspective good sense. Mathematically
it is often known for real data, that the first few principal components describe
most of the variance in data, such that only the first few components are needed
to describe the whole data. From an economical point of view it also makes sense
to assume that there only are a limited number of latent factors in a factor model.
For instance, consider a portfolio consisting of 30 assets. When no truncation of the
number of considered principal components is conducted, then it would be assumed
that there are 30 latent factors. But it seems more realistic to assume that the assets
are sensitive to only 2-6 factors, which are the factors with a significant amount of
standard deviation in the data.

1Source: Internal documentation from Jyske Bank A/S.
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The next section expands the ER approach to make use of functional principal
component analysis. The reason for considering this approach is, that it is assumed
to capture the variability in assets returns better, since it makes use of the underlying
functional form the returns, and thereby may find more accurate portfolio weights.

Functional Principal Component Analysis Approach

Functional principal component analysis, fPCA, considers data to have an under-
lying functional form that can be modelled by univariate functions as explained in
Section 2.3. This makes it possible to observe the behaviour of the eigenfunctions
over time in contrast to PCA that just gives a static, non-temporal estimate of the
eigenvectors. That is, it is possible to see the features characterizing asset returns
over a period of time.

In order to obtain an ER portfolio using fPCA, a similar optimization problem as
given in equation (3.15) is solved. Hence the ER approach of finding equal volatilities
in the components is considered. The reason to only consider this approach is
because it is not known how the functional variant will perform in a backtest, so
only one of the ER approaches is investigated for possible improvements. The
difference to the PCA is that fPCA should be better in taking into account the
variation of the asset returns over time.

To make use of fPCA first data has to be transformed to functional data and to be
smoothed as explained in Section 2.1.2. The basis functions used for the roughness
penalty matrix R are equally spaced B-splines. So one has to determine the number
of B-splines K and the smoothing parameter λ.

The number of basis functions is chosen by a three-fold cross validation. This
means that data is divided into three equally sized sets, where two of the sets are
used to train different values of K and the last set is used to validate the found
K values. Simultaneously, there is performed a five-fold cross validation for λ on
the trainings sets of the basis functions, again by dividing the training set into five
equally spaced sets. The reason that the cross validation for λ is embedded in the
cross validation for K is because the smoothing parameter λ depends on the number
of basis functions K. The setup is illustrated in Figure 3.3. Hence for every trained
K value there is a corresponding λ value. Then the two trained K values with their
corresponding λ are tested on the validation set. The criterium used to find the best
K and λ is the GCV(λ) as given in equation (2.11). The GCV statistic is used within
the performed three- and five-fold cross validation, since it is an approximation to
leave-one-out cross validation as explained in Section 2.1.2. Furthermore a rolling
window is used, where the first part of data is used as trainings set and the last
part of data for validation, which should give better parameter estimates when
calculating the portfolio weights today. This also means that this setup might not
be completely proper when used in a backtest.
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Training set
T T T T V

Training set
T T T T V

Validation set

Figure 3.3. Illustration of the cross validations for finding the number of basis
functions K and the smoothing parameter λ. The first two boxes
are the trainings sets for K, which are also used to cross validate λ.
Then the validation set, the last box, is used to validate K with the
corresponding λ value. T and V indicate the training and validation
sets for λ, respectively.

After having found values for K and λ, data can be smoothed and a fPCA can
be performed. The number of considered principal components m is determined
corresponding to the previous section using equation (2.34).

To properly investigate if the fPCA provides better estimates of the portfolio weights
and may yield higher profits, Chapter 4 considers different portfolios and investigates
the performance of different asset allocation strategies including the ER approach
using PCA and fPCA, respectively. But first a related asset allocation to the ER
strategy is introduced in the next section.

3.2 Diversified Risk Parity
Another approach to find a well-diversified portfolio is described by [Meucci, 2010],
which introduces the concept of the diversification distribution.

The Diversified Risk Parity, DRP, strategy normalizes the principal portfolios’ con-
tributions by the principal portfolio variance, defined by:

pi = w̃2
i λi∑m

i=1 w̃
2
i λi

, i = 1, . . . ,m,

where m ≤ p is the considered number of principal components. Note that the
distribution is always non-negative and the elements pi sum to one. A portfolio is
said to be well-diversified when the pi’s are approximately equal such that the diver-
sification distribtion is close to be uniform. Conversely, this means when principal
portfolios load on specific factors, the distribution has a peak. For interpretational
proposes, the diversification is measured by the exponential of the entropy, H:

NH = exp
(
−

m∑
i=1

pi ln(pi)
)
. (3.16)

The interpretation of NH can be seen by two extreme cases. The first case is when
all risk is due to one single principal portfolio, i.e. pi = 1 for one i and pj = 0 for
j 6= i, which yields an entropy of zero and thereby NH = 1. On the other hand
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if one holds a homogenous portfolio where pi = m−1 for all i, the entropy equals
ln(m), such that the maximium value of NH = m.

The optimization problem to be solved is given by:

arg max
w
NH (3.17)

subject to 1>w = 1 and − 1 ≤ w ≤ 1.

Hence it is a nonlinear problem with constraints which could be solved using a SQP
optimization algorithm as explained in Section 3.1.1.

The difference between the ER and DRP approaches is that they are based on two
different measures of risk. The ER approach aims to diversify a portfolio such that
the risk contributions are equal. On the other hand, the DRP approach defines a
well-diversified portfolio such that the elements pi of the diversification distribution
are uniform distributed. [A. Meucci, A. Santangelo, R. Deguest, 2014] But without
any further constraints the solutions to the optimization problems given in equation
(3.13) and equation (3.17) coincide. This is due to the fact that the risk contributions
in the PCA space R̃Ci are almost equal to the diversifications distribution elements
pi, so in this case the ER and DRP approaches optimize a similar problem just with
different objective functions. This will also be shown in the simulation study in
Section 3.4.2. Table 3.1 summarizes some of the important notations in the asset
and principal space, respectively.

Table 3.1. Notions in the asset space and in the PCA space. This table is inspired by
[Kind, 2013].

Asset Space Principal Space

Weights wi w̃i

Portfolio Variance σ2
P (w) = ∑N

i=1w
2
i σ

2
i +∑6=

i,j wiwjσij σ2
P (w̃) = ∑m

i=1 w̃
2
i λi

Marginal Risk ∂wi
σP (w) = wiσ

2
i +
∑

i 6=j
wjσij

σP (w) ∂w̃i
σP (w̃) = w̃iλi

σP (w̃)
Contribution

Risk RCi = w2
i σ

2
i +
∑

i6=j
wiwjσij

σP (w) R̃Ci = w̃2
i λi

σP (w̃)
Contribution

The next section shows that the traditional allocation strategies EW and MVa as
introduced in Chapter 1 also can be considered in the PCA space.
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3.3 The Equally-Weighted and Minimum
Variance Strategies using Principal
Portfolios

The strategies EW and MVa can also be performed in the PCA space. This section
gives a short introduction to these approaches and is based on the work of [Kind,
2013], but they will not be considered in the backtest performed in Chapter 4. The
portfolio weights of the EW strategy used on the principal portfolio are given by:

w̃∗i = m−1 for i = 1, . . . ,m,

where m is the number of principal components. In the PCA space the EW strategy
probably is a very bad diversification strategy, since the variance of each principal
portfolio is given by the eigenvalues λi. It is known that eigenvalues are chosen to be
variance maximizing and of decreasing order, hence using the EW strategy will give
a very unbalanced risk distribution of the principal portfolio. Based on equation
(3.3) the portfolio weights of the MVa strategy in the PCA space can be expressed
by:

w̃∗i = λ−1
i∑m

i=1 λ
−1
i

.

From equation (3.10) it follows that the portfolio variances in the PCA space for
the MVa and the EW strategy are given by:

σ2
MV(w̃) = 1∑m

i=1 λ
−1
i

and σ2
EW(w̃) = m−1λ̄•,

where λ̄• is the average of the principal portfolio variances. Similar to the property
of the portfolio volatilities in equation (3.9), it can be shown that the same property
applies for the portfolio volatilities in the PCA space:

σMV(w̃) ≤ σER(w̃) ≤ σEW(w̃),

where the ER strategy using risk contributions in the PCA space, ER- PCA RC,
as given in equation (3.13) is considered. For a proof of this statement see [Kind,
2013]. Since it is known that the assets in the PCA space are uncorrelated and may
have different volatilites, there is an explicit expression for the portfolio variance in
the ER approach. Hence using the expression for the portfolio variance in the PCA
space as stated in Table 3.1 with the portfolio weights from equation (3.14), the
portfolio variance for the ER- PCA RC strategy is given by:

σ2
ER(w̃) = m(∑m

i=1(
√
λi)−1

)2 .

This section shows that the relation between the portfolio volatilities of the three
strategies: MVa, ER, and EW is valid both in the original asset space as well as in
the PCA space.
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The next section considers an example of finding portfolio weights with the different
ER strategies and the DRP strategy. Moreover, there is performed a simulation
study in order to investigate the similarities and differences of the portfolio weights
found by the different risk-based allocation strategies.

3.4 Example
In order to get a better intuition of how the different risk-based asset allocation
methods work, consider the following simple portfolio consisting of three indexes
describing the asset classes: Equities, Bonds, and Credits. This example is simpli-
fied such that reweighting of the portfolio is disregarded thereby the weights are
determined based on the whole sampling period.

Data is sampled every month from January 28, 1999 through September 29, 2014.
The scaled prices of the three indexes can be seen in Figure 3.4. It can be seen that
Bonds are fairly stably increasing throughout the entire sampling period, whereas
Equities and Credits behave more volatile with an overall increasing trend, and have
a drop in the financial crisis 2008/2009.

1

2

2000 2005 2010 2015
Date

V
al

ue

Asset
Equities
Bonds
Credits

Index − Portfolio Components

Figure 3.4. Scaled prices of the three indexes: Equities, Bonds, and Credits.

Moreover, the correlation matrix for the three assets based on data of the whole
sampling period is illustrated below. It can be seen that Bonds are negatively
correlated to Equities and Credits. Whereas Equities and Credits are positively
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correlated to each other:

Equities Bonds Credits
1 −0.03 0.39

−0.03 1 −0.21
0.39 −0.21 1


To get a better overview of how the different strategies work and how they are
implemented in R, the example considers first the ER and DRP strategies using
PCA, after which the ER strategy is considered using fPCA.

3.4.1 Principal Component Analysis
First consider PCA, which can be used to find the orthogonalized representation of
the risk factors in this portfolio. In R a PCA is performed using the prcomp function,
which by default centers the variables to have zero mean. Since the input indexes
are measured on the same scale and the covariance structure plays an important
role in both the ER and DRP strategies, the default setting scale=FALSE in prcomp

is used, which means that the assets are not scaled to have unit variance.

The left panel of Figure 3.5 shows the variances of the three principal components.
It can be seen that the first risk factor accounts for the greatest part of the vari-
ance in the portfolio, which is consistent with the explained theory in Section 2.2.
Considering the scree plot in the right panel of Figure 3.5 it can be seen that the
first two components describe about 92 percent of the variance in the portfolio.
This suggests to consider a two factor model for modelling the log returns of this
portfolio.
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Figure 3.5. Plot of the variances against the number of the principal components
in the left panel. And a scree plot of the principal components in
the right panel.

Therefore Figure 3.6 shows the loadings of the three asset classes on the first two
components, or risk factors. The factors are latent factors, which means that it is not
known what they explain. But it is possible to make a guess of the interpretation of
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the factors by investigating the loadings of the assets on the factors as mentioned in
Section 3.1.3. It can be seen that Equities load mostly on the first factor, whereas
Bonds and Credits load mostly on the second factor. The reason that Equities
are dominiated by the first principal component is that Equities have the highest
variance of the three indexes. The risk of Equities may be decomposed into equity
market risk, i.e. risk of general market movements, industrial membership, and firm-
specific risk. And Bonds and Credits may be decomposed into interest rate risk, i.e.
risk of interest rate movements, and issuer specific risk, i.e. risk of default. Hence
the first risk factor could describe equity market risk, whereas the second risk factor
could be interest rate risk.

Equities Bonds Credits

−
0.

5
0.

0
0.

5 Factor 1
Factor 2

Figure 3.6. Asset loadings for the first two principal components.

In order to find the weights in the ER strategy, there are two possibilities for the
PCA approach: the optimization problem in equation (3.13), ER- PCA RC, or the
problem given in equation (3.15), ER- PCA.

The optimization method used to solve equation (3.13) is a SQP algorithm imple-
mented in the function solnp. In this function it is possible to specify the constraints
that the weights have to sum to one and that the weights have to lie in the inter-
val [0, 1], i.e. no short-selling is allowed. The function needs an initial guess of the
portfolio weights, which is chosen to be equal weights, i.e. the initial weights are
w = (0.33, 0.33, 0.33)>, for all used strategies in this example.

The optimization problem in equation (3.15) on the other hand is solved using
a Nelder-Mead algorithm implemented in the optim function. This is an uncon-
strainted, nonlinear algorithm that aims to minimize CPVj as described above. In
order to ensure that the weights sum to one, the found portfolio weights are nor-
malized as stated in equation (3.8). The reason that the optimization in equation
(3.15) is solved using an unconstrainted algorithm is that when using different con-
strainted algorithms, the algorithms did not converge, i.e. they always choose the
initial weights, whereas the Nelder-Mead algorithm converges.
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The DRP strategy is solved by the optimization problem given in equation (3.17)
also using a SQP algorithm, as in the case for the ER- PCA RC. As described in
Section 3.1.3 the optimization procedure for the DRP has to maximize NH to yield
the number of considered principal components. Note that by default the function
solnp minimizes a function, thus in order to make it a maximization problem the
negative of NH is used.

The found portfolio weights for the ER- RC, ER- PCA RC, ER- PCA, and DRP
strategies can be found in Table 3.2, where the weights are displayed when using all
principal components and when only using two principal components. For instance
the portfolio weights for the ER- PCA strategy are found to be:

w∗ER ≈ (0.16, 0.43, 0.41)>.

This means that the ER- PCA strategy suggests to hold 16% Equities, 43% Bonds,
and 41% Credits. The next section considers the ER strategy using functional
principal component analysis.

3.4.2 Functional Principal Component Analysis
Consider on the other hand the ER strategy using fPCA, where the R package fda

can be used. In order to perform a fPCA, the first step is to transform the discrete
observed data into functional data. This can be done as described in Section 2.1.2
using B-splines as basis functions and since the assets included in the portfolio
have a constant sampling rate it is appropriate to use equally spaced B-splines. In
order to find the number of basis functions K, cross validation is used as described
in Section 3.1.3. A three-fold cross validation with a sequence of possible values
K = 10, 15, . . . , 50 is considered and at the same time a five-fold cross validation
with corresponding λ values is done, where λ = 0.00001, . . . , 1, . . . , 10000 are used.
Figure 3.7 shows the chosen B-spline basis, which has 15 basis functions for 365
discrete observations.
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Figure 3.7. B-spline basis with K = 15 basis functions.
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The corresponding smoothing parameter is found to be λ = 10000. Then the
function smooth.basis performs a penalized residual sum of squares to obtain the
smoothed curves. Figure 3.8 shows the original log returns and the corresponding
smoothed curves. Note that in the ER- fPCA strategy solving equation (3.15) the
weighted log returns are smoothed.
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Figure 3.8. Original log returns for the three indexes in the left panel and the
smoothed weighted log returns in the right panel.

Then a fPCA can be performed and the weights of the portfolio can be found using
the ER- fPCA strategy in accordance with the optimization given in equation (3.15).
Again a scree plot is considered in Figure 3.9, which shows that the last principal
component does not account for any variation.
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Figure 3.9. Scree plot of the principal components.

Figure 3.10 shows the first two eigenfunctions of the portfolio. It can be be seen that
the first eigenfunction accounts for 84.4 percent of the variability of data, whereas
the second eigenfunction accounts for 15.6 percent as it also can be seen in Figure
3.9. The solid line represents the mean function x̄(t) and the effects of adding (+)
and subtracting (-) a multiple of each principal component. In order to identify
which multiple should be used, define a constant C and let T denote the number
of observations of an asset, where the root-mean-square difference C2 between the
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mean function x̄(t) and its overall time average x̃ is defined as:

C2 = 1
T
‖x̄(t)− x̃‖ ,

where:
x̃ = 1

T

∫
x̄(t)dt.

Then Figure 3.10 plots the mean function x̄(t) and x̄(t)±Cξj(t). [J. O. Ramsay , B.
W. Silverman, 2005] It can be seen that the first eigenfunction varies from the mean
curve. Comparing the first eigenfunction with the smoothed log returns in the right
panel of Figure 3.8 it can be observed that the variation of adding the first principal
component is very similar to the smoothed Equities log returns, whereas the effect
of subtracting is very similar to the Bonds and Credits smoothed log returns. This
indicates that the first eigenfunctions describe the overall variation caused by the
three indexes. On the other hand the second eigenfunction is very similar to the
mean function, it could describe a time shift effect, since adding and subtracting
the principal components are shiftet curves compared to mean function.
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Figure 3.10. The first two eigenfunctions. The third eigenfunction is omitted,
since it does not account for any variance of data. The solid line
indicates the mean curve, and the effects of adding (+) and sub-
tracting (-) a multiple of each eigenfunction are displayed.

Similar to the ER- PCA strategy in the previous section, a Nelder-Mead algorithm
is used to solved equation (3.15) but the CPVj result from a fPCA instead of a
PCA of the weighted log returns. Depending on the used strategy and the number
of considered principal components the weights in Table 3.2 are obtained.

60



3.4. EXAMPLE

Table 3.2. Optimal weights for the different strategies. In the PCA and fPCA strategies
the weights are calculated using all principal components, three, and only
using two components. The ER- RC strategy is not based on PCA or fPCA,
therefore there is only one portfolio weight vector.

#Components: 2 #Components: 3

Strategy Weights Weights
Equities Bonds Credits Equities Bonds Credits

ER- RC w∗ ≈ (0.13, 0.45, 0.41)>
ER- PCA w∗ ≈ (0.16, 0.43, 0.41)> w∗ ≈ (0.16, 0.43, 0.41)>
ER- PCA RC w∗ ≈ (0.07, 0.53, 0.41)> w∗ ≈ (0.11, 0.57, 0.32)>
ER- fPCA w∗ ≈ (0.27, 0.32, 0.41)> w∗ ≈ (0.27, 0.32, 0.41)>
DRP w∗ ≈ (0.19, 0.65, 0.16)> w∗ ≈ (0.11, 0.57, 0.32)>

It can be observed from Table 3.2 that the ER- PCA RC and DRP have the same
weights when using three principal components, whereas their weights differ when
there only are considered two principal components. It is interesting to observe that
the two strategies change the portfolio weights in different directions, i.e. the ER-
PCA RC strategy gives less weight to Equities and Bonds, but more to Credits.
The DRP strategy behaves exactly reversed. This behaviour is due to the two
different optimization problems that have to be solved. When omitting a principal
component in the ER- PCA RC strategy, the weight of Credits has to increased
in order to maintain the equal risk contributions of the assets, since Equities and
Bonds have a larger exposure on the two first principal components than Credits
has as can be observed in Figure 3.6. In the DRP strategy the elements of the
diversification distribution pi have to be equal to pi = 1/3 when using all principal
components, but by only considering two components the elements have to be equal
to pi = 1/2, which explains the increased weights of Equities and Bonds, and the
decreased weight of Credits since the DRP solves a maximization problem.
Changing the number of principal components has no effect on the portfolio weights
of the ER- PCA and ER- fPCA strategies in this portfolio. Furthermore, it can be
seen that the portfolio weights for the ER- RC and ER- PCA strategies are very
similar to each other, whereas the weights of the ER- fPCA give more weight to
Equities and less to Bonds than the ER- RC and ER- PCA strategies do. Note
that all ER strategies give the same weight to Credits when using two principal
components.

In order to understand the differences in the portfolio weights when using different
strategies, a simulation study is considered in the next section. The aim is to investi-
gate the differences and similarities of the strategies, and the estimation uncertainty
of the portfolio weights.
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Simulation Study

The study is based on 100 simulations of the log returns of three equally corre-
lated assets drawn from a multidimensional normal distribution with the following
correlation matrix: 

2 0.3 0.3
0.3 4 0.3
0.3 0.3 6


Since there are considered three assets with equal correlation it is known from
Section 3.1.1 that there exists a closed-from solution for the ER- RC strategy as
stated in equation (3.1). So the aim of this simulation study is to investigate how
accurate the portfolio weights found by the other ER strategies are compared to
the closed-form solution. In addition, it is interesting to examine how the portfolio
weights found by the ER strategies differ from the portfolio weights found by the
DRP strategy, since the example in the previous section showed that there are some
variations across the strategies.

Figure 3.11 shows the boxplots of the portfolio weights found by calculating the
portfolio weights of the ER- RC strategy using equation (3.2), the ER- PCA RC
strategy using equation (3.13), the ER- PCA using equation (3.15) and the corre-
sponding optimization for fPCA, and the DRP strategy using equation (3.17).
It can be seen that the portfolio weights of the ER- RC and ER- PCA strategies are
very close to the closed-form solution and the strategies find very accurate weights,
i.e. they have a small estimation uncertainty. The DRP and ER- PCA RC strategies
find weights that are more widely dispersed compared to the closed-form solution,
which means that these strategies are not fully consistent with the basic idea of the
ER strategy. The ER- fPCA, ER- PCA RC, and the DRP strategies have a large
estimation uncertainty, which is disadvantageous for an asset allocation strategy,
since small differences in the portfolio weights can cause big losses.

Note that in the ER- fPCA strategy the number of basis functions is chosen to be
10 and the smoothing parameter is selected to be 100, which is an ad hoc choice in
order to reduce computation time in this study.
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Figure 3.11. Boxplots of weights found by simulating log returns for the different
asset allocation strategies. The red dots indicate the weights found
with the closed-form solution from equation (3.1) for the case with
equal correlations and different volatilities of assets.

In order to check the accuracy of the strategies compared to the closed-form solution,
the mean squared error, MSE, for the different strategies can be seen in Table 3.3.
The ER- RC and ER- PCA strategies have the lowest MSEs, whereas the ER- PCA
RC and DRP have a higher and identical MSE. The ER- fPCA strategy has the
highest MSE, which is also due to the large estimation uncertainty in the portfolio
weights as seen in Figure 3.11.

Table 3.3. Mean squared error for the different strategies determined by comparing the
found weights with the closed-form solution.

Strategy MSE

ER- RC 0.0016
ER- PCA 0.0015
ER- PCA RC 0.044
ER- fPCA 0.133
DRP 0.044

What can be concluded from the example in Section 3.4 and the simulation study
in this section is that the ER- RC and ER- PCA strategies result in very similar
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CHAPTER 3. RISK-BASED ALLOCATION STRATEGIES

portfolio weight, as well do the ER- PCA RC and DRP strategies when using all
principal components, but result in different portfolio weights when varying the
number of considered principal components. The ER- fPCA is more similar to the
ER- RC and ER- PCA strategies than the ER- PCA RC and DRP strategies are, but
it has a large estimation uncertainty. The estimation uncertainty might be caused
by the choice of the number of basis functions K and the smoothing parameter λ.

As mentioned earlier, the next chapter aims to investigate the different risk-based
asset allocation strategies considering different portfolios. The purpose is to figure
out which strategy that gives the best mean profit, is least volatile, and hopefully
also can perform well throughout a financial crisis like in 2008/2009.
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Backtest of Allocation Strategies 4
In order to investigate the performance of the different asset allocation strategies
introduced in chapter 3, this chapter considers a backtest on historical data.

Backtesting means to use historical data to test a trading strategy, since it seems
reasonable that a strategy that has not been profitable in the past will not be
profitable in the future, assuming that there are no major changes in the market.
This does not mean that a good backtest guarantees a good performance when
trading a strategy in real live, so a backtest may be viewed as a tool to reject
strategies, but one has to be careful using it as a validation tool. There is used
a walk-forward backtest which in general describes the concept of estimating the
parameters of a trading strategy based on a selected set of data, and then roll
forward and estimate again. This means that the weights of a portfolio for, e.g.
the next month, are determined based on an estimation of data back in time for a
specified period, e.g. two years. In order to find the different weights of the portfolio
over time one uses a rolling estimation window such as illustrated in Figure 4.1.

1, . . . , t

2, . . . , t+ 1
. . .
n− t, . . . , n

Figure 4.1. Rolling estimation window, where t is the specified backtest period
and n is the last observation in data.

The next section introduces some portfolios containing different assets, which will
be used to backtest the allocation strategies in Section 4.2. In order to benchmark
the different strategies the Equally-Weighted, EW, strategy is used as benchmark.
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CHAPTER 4. BACKTEST OF ALLOCATION STRATEGIES

4.1 Portfolios
The aim of this section is to study portfolios consisting of different assets, investigate
the correlation between the assets and statistics, such as volatility, of the included
assets. Data for this backtest is kindly provided by Jyske Bank and therefore treated
confidentially.

4.1.1 Asset Classes
The first portfolio contains four indexes that describe Equities, Bonds, Commodities,
and Credits. Data is sampled every month from January 28, 1999 through April 29,
2012. This portfolio is a rather traditional portfolio consisting of indexes describing
four different asset classes. The idea of this portfolio construction is to obtain
diversification by investing in different asset classes that do not behave similar. But
it is questionable if the specific risk that the assets may have will vanish, when the
portfolio only consists of four assets.

Figure 4.2 shows the scaled prices of the four considered indexes. It can be seen that
Bonds are fairly stable increasing throughout the entire sampling period, whereas
Equities, Commodities, and Credits behave more volatile with an overall increasing
trend, and have a drop in the financial crisis 2008/2009.

1
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Date

V
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ue

Asset
Equities
Bonds
Commodities
Credits

Index − Portfolio Components

Figure 4.2. Scaled prices of the four indexes.

Moreover, Table 4.1 illustrates the correlation matrix of the four assets based on
data of the whole sampling period in the upper half, and the correlation based on
approximately four year sampling periods (January, 1999 - Februrary, 2003; March,

66



4.1. PORTFOLIOS

2003 - March, 2007; April, 2007 - April, 2012) in the lower half of the table. In
the upper half it can be seen that Bonds are only negative correlated to Credits.
Commodities are positively correlated to Equities and Credits, and Credits and
Equities are positive correlated to each other. The part below the diagonal shows
the varying correlations for the approximately four year periods. From this it can be
noted that Equities and Bonds are not uncorrelated throughout the whole sampling
period, but have a change from positive to negative correlation, which is also true for
Bonds and Commodities. For the other assets, the overall correlation from the upper
half is a suitable representation of the overall correlation for the 12 considered years.
As shown in Figure 1.3 in Section 1.1.1, the less positively correlated the assets of a
portfolio are, the more diversification is possible. Consequently, this portfolio sould
have a reduced portfolio variance as explained in Section 1.1.1.

Table 4.1. Correlation matrix for the four assets. The part above the diagonal shows
the correlation for the whole sample period January 28, 1999 through April
29, 2012. The part below the diagonal shows the correlation for four year
periods: January, 1999 - Februrary, 2003; March, 2003 - March, 2007; April,
2007 - April, 2012.

Equities Bonds Commodities Credits
Equities 1 0 0.5 0.5
Bonds 0.4; 0.2; -0.3 1 0 -0.3
Commodities 0.6; 0.3; 0.5 0.5; 0.2; -0.3 1 0.3
Credits 0.4; 0.2; 0.7 0; 0.1; -0.5 0.2; -0.2; 0.5 1

Table 4.2 shows the volatility of the profit, mean profit, and Sharpe ratio of the port-
folio using the EW strategy and the corresponding statistics for the assets them-
selves. The mean profit and the volatility of the profit are computed according
to equations (1.3) and (1.4) as stated in Section 1.1. The reason to consider the
EW strategy, is because it is used to benchmark the other introduced allocation
strategies later in the backtest. The table illustrates that the profit of Equities and
Commodities are much more volatile than that of Bonds and Credits are. However,
Commodities have the highest mean profit and actually the highest Sharpe ratio.
All in all, using the EW strategy and rebalancing every month, this portfolio has a
mean profit of 6.22 and a volatiliy of 8.01, which yields a Sharpe ratio of 0.78. As
explained in Section 1.1.1 the Sharpe ratio can be used to compare the performance
of the different allocation strategies.
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Table 4.2. Statistics for the portfolio.

Weight Volatility Mean Profit Sharpe Ratio
Portfolio 8.01 6.22 0.78
Equities 0.25 16.07 1.88 0.12
Bonds 0.25 7.11 4.53 0.64
Commodities 0.25 14.9 12.73 0.85
Credits 0.25 8.97 6.04 0.67

The next section describes another portfolio, which is an extension of the portfolio
presented in this section.

4.1.2 Asset Classes and Style Factors
It is also interesting to construct a portfolio that consists of both asset classes:
Equities, Bonds, Commodities, and Credits; and style factors: LowRisk, Momen-
tum, Quality, Size, and Value. The style factors, as introduced in Section 1.2, are
constructed by characteristic-sorted portfolios, which means that the factors are
estimated by using portfolios that are formed based on firm characteristics. The in-
tuition behind this construction is that for instance growth firms have similar stock
returns, so combining these stocks implies that it is very likely that this portfolio
has an exposure to an underlying risk factor, and thereby forms a style factor. [M.
Grinblatt and S. Titman, 2002]

The reason to consider such a portfolio in a backtest of risk-based allocation strate-
gies is to see whether it is possible to improve the profit characteristics by including
these style factors in the portfolio. The idea of style factors is very similar to pure
factor portfolios as introduced in Section 1.2.2, which are portfolios that only load
on one factor. It is interesting to see how a PCA-based strategy allocates the style
factors, since these strategies are based on finding underlying factors, which style
factors are by construction. Furthermore, it will be investigated if risk-based strate-
gies can improve the performance compared to the benchmark strategy.

The style factor indexes can have negative returns in some periods, but in the long
run they yield positive returns. This is in accordance with the introduced theory in
Section 1.2.2, that states that these indexes are constructed to describe investment
styles that compensate for low returns in bad times with high returns in the long
run. This implies that including style factors in a portfolio is more advantageous
for long-term investors.

Data is sampled every month from January 28, 1999 through April 29, 2012. This
portfolio should have lower specific risk than the portfolio considered in the previous
section, since there now are included nine instead of only four assets. Considering
Figure 4.3 it can be seen that the style factors are fairly stable increasing throughout
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the sampling period. Expect from Bonds, Quality, and Size the prices of the assets
drop in the financial crisis 2008/2009.
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Figure 4.3. Scaled prices of the indexes.

From Table 4.3 it can be seen that especially the style factors are low correlated to
each other with exceptions, e.g. are LowRisk and Value highly correlated, ρ = 0.8, in
the first four years. In general are the correlations very different over time, also with
changing sign for almost all assets. This means that the degree of diversification
also changes over time. But all in all the low and negative correlations imply that
this should be a well-diversified portfolio with a reduced portfolio variance. So
including the low and negatively correlated style factors has a positive effect on the
diversification properties of the portfolio.
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Table 4.3. Correlation matrix for the nine assets. The part above the diagonal shows the correlation for the whole sampling period January
28, 1999 through April 29, 2012. The part below the diagonal shows the correlation for four years: January, 1999 - Februrary, 2003;
March, 2003 - March, 2007; April, 2007 - April, 2012.

Equities Bonds Commodities Credits LowRisk Momentum Quality Size Value
Equities 1 0 0.5 0.5 -0.7 -0.1 -0.1 0 -0.1
Bonds 0.4; 0.2; -0.3 1 0 -0.3 0.3 -0.1 0 -0.2 -0.1
Commodities 0.6; 0.3; 0.5 0.5; 0.2; -0.3 1 0.3 -0.3 0.1 -0.2 0.1 -0.1
Credits 0.4; 0.3; 0.7 0; 0.1; -0.5 0.2; -0.2; 0.5 1 -0.4 0 -0.2 0.3 0.1
LowRisk -0.8; -0.5; -0.7 -0.1; 0.3; 0.6 -0.3; 0; -0.4 -0,4; -0.1; -0.6 1 0.1 0 0.1 0.4
Momentum -0.4; 0.2; 0.1 0; 0; -0.2 -0.2; 0.3; 0.3 -0.3; 0; 0.1 0.2; 0; -0.1 1 0.3 0.2 -0.2
Quality -0.2; -0.2; 0 0.1; 0; 0.1 -0.3; 0; -0.1 -0.2; 0; -0.1 0.2; -0.5; -0.2 0.3; 0.3; 0.4 1 -0.2 0.2
Size -0.3; 0.3; 0.4 -0.2; 0; -0.3 0; 0.2; 0.3 0.2;0.3; 0.5 0.3; 0; -0.3 0.3; 0.3; 0 -0.3; -0.2; 0 1 0
Value -0.5; -0.2; 0.5 -0.1; 0.2; -0.1 -0.3; -0.1; 0 -0.2; 0.2; 0.5 0.8; 0.1; -0.3 -0.1; -0.2; -0.6 0.5; 0.1; -0.3 -0.1; -0.6; 0.2 1
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Table 4.4 shows the volatility, mean profit, and Sharpe ratio of the assets and of the
portfolio using the EW strategy. It can be seen that Equities, Commodities, and
Momentum have the most volatile profits, whereas Quality has a very low profit
volatility. The overall volatility of the profit of the portfolio is only 3.87, hence the
portfolio volatility is reduced compared to the portfolio presented in the previous
section. This is due to the negative covariances between some of the assets, since
the portfolio variance asymptotically equals the average covariance in an equally
weighted portfolio as shown in Example 1. And including more assets reduces the
contribution of the single assets to the volatility and it may also reduce the specific
risk in the portfolio. The mean profit has also declined by adding the style factors.
But all in all the Sharpe ratio is increased from 0.78 to 1.52. So for an investor that
prefers lower risk and thereby also a slightly lower profit, adding the style factors to
the portfolio is a good choice. As mentioned in the start of this section, style factors
often first get profitable in the long run, which is also a consideration an investor
has to make.

Table 4.4. Statistics for the portfolio.

Weight Volatility Mean Profit Sharpe Ratio
Portfolio 3.87 5.88 1.52
Equities 0.11 16.07 1.88 0.12
Bonds 0.11 7.11 4.53 0.64
Commodities 0.11 14.9 12.73 0.85
Credits 0.11 8.97 6.04 0.67
LowRisk 0.11 9.68 4.43 0.46
Momentum 0.11 14.47 4.89 0.34
Quality 0.11 5.01 6.28 1.25
Size 0.11 7.94 5.58 0.7
Value 0.11 10.1 6.84 0.68

The next section introduces the final portfolio considered in the backtest later in
this chapter.

4.1.3 Large Portfolio - 21 Assets
In the two previous sections there are considered rather small portfolios, but in order
to ensure that systematic risk has been diversified and to investigate the behaviour
of the asset allocation strategies on a larger portfolio, there is now considered a
portfolio consisting of 21 assets. It is especially interesting to observe how many
underlying factors the PCA- and fPCA-based strategies suggest using the standard
deviation criterium in equation (2.34) compared to the smaller portfolios, since it
is difficult to assess the choice of the number of principal components when there
maybe are as many underlying factors as there are assets. In this portfolio there are
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included the same assets as in the previous portfolios: Equities, Bonds, Commodi-
ties, Credits, LowRisk, Momentum, Quality, Size, and Value. And then there are
included additional equity indexes representing different markets: Europe, USA,
Japan, and Emerging Markets (EM); and an additional goverment bond describ-
ing the 10 year interest rate in Denmark: BondsDK; and some indexes describing
different commodities: LiveStock, Agriculture (Agri), Precious Metal (PrecMetal),
Energy, Industrial Metal (IndMetal), Oil, and Gold.

Some of the assets have different sampling rates, i.e. the equity indexes: Europe,
USA, Japan, EM, and the commodity index Gold are sampled on all trading days
whereas the other assets are sampled on a monthly basis. When combining these
assets into one portfolio there are only considered monthly observations such that
only the observations that are in accordance with the monthly observations are
considered. This is due to technical reason in the backtest setup. As mentioned
in Chapter 2 it is possible to include all observation in the functional approach of
the Equal Risk, ER, strategy, but this is beyond the scope of this thesis. So data
is sampled every month from January 28, 1999 through April 29, 2012. Figure 4.4
shows the scaled prices of the added 12 assets in this portfolio. It is observable
that some of the assets behave very similar whereas others act independently of
each other. At the same time is the price range of the assets larger in this portfolio
compared to the two previous ones.
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Figure 4.4. The scaled prices of the added 12 assets in the portfolio are shown.
The prices of the other assets can be seen in Figure 4.3.
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Table 4.5. Statistics for the portfolio.

Weight Volatility Mean Profit Sharpe Ratio
Portfolio 7.67 7.18 0.94
Equities 0.05 16.07 1.88 0.12
Bonds 0.05 7.11 4.53 0.64
Commodities 0.05 14.9 12.73 0.85
Credits 0.05 8.97 6.04 0.67
LowRisk 0.05 9.68 4.43 0.46
Momentum 0.05 14.47 4.89 0.34
Quality 0.05 5.01 6.28 1.25
Size 0.05 7.94 5.58 0.7
Value 0.05 10.1 6.84 0.68
LiveStock 0.05 17.06 1.96 0.12
Agri 0.05 17.33 5.68 0.33
PrecMetal 0.05 17.24 12.54 0.73
Energy 0.05 25.19 17.43 0.69
IndMetal 0.05 20.43 12.68 0.62
Oil 0.05 30.97 15.85 0.51
Gold 0.05 34.5 9.63 0.28
Europe 0.05 21.11 3.04 0.14
USA 0.05 18.09 2.48 0.14
Japan 0.05 19.76 1.05 0.05
EM 0.05 25.85 12.47 0.48
BondsDK 0.05 3.04 4.93 1.62

Table 4.5 summarizes the portfolio statistics for the single assets and the overall
portfolio using the EW strategy with monthly rebalancing. It can be seen that
especially the equity and commodity indexes have very volatile profits, and only
some of them also have a high mean profit. On the other hand are most of the style
factors and the bonds less volatile. All in all the portfolio profit is rather volatile,
but has a moderate mean profit. Comparing the Sharpe ratios of this portfolio to
the two previous ones it can be seen that the Sharpe ratio is higher than that of the
first portfolio, but lower than that of the second portfolio. This portfolio has the
highest mean profit of the three considered portfolios when using the EW strategy.
Note that the weights are decreased in this portfolio due to the number of included
assets, which implies a smaller contribution of the single assets and thereby also has
an impact on the profit.

Table 4.6 shows the correlations of the assets for the whole sampling period. In
contrast to the other considered portfolios, the four year correlations are disregarded
due to lack of space. From the table it can be seen that many assets are low or
negatively correlated to each other, which is good for diversifying risk from the
portfolio. Some assets, like the equity indexes are highly correlated to each other,
which is expected.
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Table 4.6. Correlation matrix for the 21 assets. The table shows the correlation for the whole sampling period January 28, 1999 through April
29, 2012.

E B Co Cr LR M Q S V LS A PM En IM O G Eu US J EM DK
E 1 0 0.5 0.5 -0.7 -0.1 -0.1 0 -0.1 0.2 0.3 0.1 0.3 0.6 0.2 0.2 0.6 0.7 0.5 0.7 -0.3
B 1 -0.3 0 0.3 -0.1 0 -0.2 -0.1 0.4 0.1 0.2 -0.1 -0.1 0.1 0 -0.6 -0.3 -0.2 -0.5 0.5
Co 1 0.3 -0.4 0 -0.2 0.3 0.1 -0.2 0.1 0 0.2 0.3 0.1 0.2 0.6 0.5 0.4 0.6 -0.1
Cr 1 -0.3 0.1 -0.2 0.1 -0.1 0.3 0.6 0.3 0.8 0.8 0.6 0.3 0.2 0.2 0.2 0.3 -0.3
LR 1 0.1 0 0.1 0.4 0.1 -0.2 0 -0.1 -0.4 0 -0.1 -0.6 -0.7 -0.5 -0.6 0.4
M 1 0.3 0.2 -0.2 -0.1 0 0.1 0.2 0 0.1 0.1 0 -0.1 0 0 0
Q 1 -0.2 0.2 0 0 -0.1 -0.2 -0.1 -0.1 0 0 0 -0.3 -0.1 0
S 1 0 0 0 0.1 0.2 0.1 0.1 0.2 0.1 -0.1 0 0.2 -0.1
V 1 0 -0.1 -0.2 -0.1 0 0 0 0.1 0 -0.1 -0.1 0.1
LS 1 0.2 0.1 0.1 0.2 0.2 -0.1 -0.3 -0.1 -0.2 -0.2 0
A 1 0.2 0.2 0.3 0.1 0.2 0 0.1 0.1 0.2 -0.1
PM 1 0.2 0.3 0.1 0.6 -0.2 -0.1 0 0 0.1
En 1 0.4 0.7 0.2 0.1 0.1 0.2 0.2 -0.2
IM 1 0.3 0.3 0.3 0.3 0.2 0.4 -0.3
O 1 0.1 0 0 0.2 0.1 -0.2
G 1 0.2 0.2 0.2 0.3 0
Eu 1 0.9 0.6 0.9 -0.3
US 1 0.6 0.8 -0.2
J 1 0.6 -0.1
EM 1 -0.2
DK 1
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After having introduced the different portfolios, the next section deals with investi-
gating the performance of the different asset allocation strategies on historical data
by among others comparing their profits, Sharpe ratios, and turnovers. Further-
more, the selected portfolio weights are investigated over time.

4.2 Backtest
This section aims to examine the performance of the different risk-based alloca-
tion strategies introduced in Chapter 3 compared to the benchmark strategy: EW,
and the traditional MVa strategy by a walk-forward backtest on the portfolios as
described in Section 4.1. The considered asset allocation strategies are:

• Equally-Weighted strategy (EW):

w∗ = N−1.

• Minimum Variance strategy (MVa):

w∗ = min
w

N∑
i=1

N∑
j=1

wiwjσij.

• Equal Risk strategy – risk contribution approach (ER - RC):

w∗ = argmin
w

N∑
i=1

N∑
j=1

(wi(Σw)i − wj(Σw)j)2 .

• Equal Risk strategy – PCA approach (ER - PCA):

w∗ = min
w

m∑
j=1

CPVj.

• Equal Risk strategy – fPCA approach (ER - fPCA):

w∗ = min
w

m∑
j=1

CPVj.

• Equal Risk strategy – PCA risk contribution approach (ER - PCA RC):

w∗ = argmin
w

m∑
i=1

m∑
j=1

(
R̃Ci − R̃Cj

)2
.

• Diversified Risk Parity strategy (DRP):

w∗ = arg max
w
NH .

The reason that the MVa strategy is tested and not the Markowitz Mean-Variance,
MV, strategy is due the fact that the aim of this backtest is to compare the per-
formance of the alternative risk-based strategies with the benchmark strategy and
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a traditional strategy, but the MV strategy might find completely other portfolio
weights due to a high estimation error of the mean. So in order to obtain a meaning-
ful comparison of the different allocation strategies the MVa strategy is considered,
which is a special case of the MV strategy, and is exclusively based on the estima-
tion of the covariance matrix Σ, hence it is more similar to the other considered
strategies.

Appendix A.2 illustrates how the backtest is set up in R using a flow chart. First
the selected portfolio is read from a database, which then is inputted in a function
that can perform the backtest. Data is transformed to log returns as described in
equation (1.1) and outliers are detected and cut off by considering the standard
deviation of the log return of an asset in the following way:

| log(Ri(t))| > 2σi ⇒ log(Ri(t)) = ±2σi for i = 1, . . . , N,

where log(Ri(t)) is the log return of asset i at time t, σi is the standard deviation
of asset i, and N is the number of assets in a portfolio. This means that values
that are larger in absolute value than two times the standard deviation of the con-
sidered asset are cut off and set to be two times the standard deviation. Then this
function calls an optimization function, which is dependent on the asset allocation
strategy. Before performing the optimization some strategies need to specify some
additional parameters, e.g. the PCA-based strategies need the number of princi-
pal components, which is determined by the criterium in equation (2.34). Thus
the number of principal components m, the number of basis functions K, and the
smoothing parameter λ are computed before performing the backtest, such that the
used parameters are the same throughout the whole backtest period. Furthermore,
the optimization methods need an initial guess for the portfolio weights, which for
all strategies are set to equal weights.

Since all three portfolios introduced in Section 4.1 are modified to have a monthly
sampling rate, the portfolio weights of the different strategies are rebalanced every
month based on an estimation of the past two or five years, respectively. Thereby
data from the first two or five years are exclusively used for estimation purposes. It is
assumed that short-selling is not allowed, which is due to the theoretical limitations
of some of the strategies in this thesis, e.g. the ER- RC strategy. After the first
estimation of the weights, the estimated portfolio weights are used recursively as
initial weights to find the weights for the next period. This is in accordance with
the theory introduced in Section 1.1. Another possibility would be to always use
equal weights as initial weights, which might result in a different allocation.

In the backtest setup transaction costs are ignored, but in order to determine how
good an asset allocation strategy performs it is also essential to know how much it
will cost to use a specific strategy. Therefore the statistic describing the average
turnover over T periods can be considered:

TO = 1
T − 1

T∑
t=2

N∑
i=1
|wi(t)− wi(t− 1)|, (4.1)
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where N is the number of assets, wi(t) is the portfolio weight of asset i at time
t. The value of TO equals the average amount of buy and sell transactions as a
percentage of the portfolio value. [Kind, 2013] Often a low value of TO is preferred,
but if a strategy has very high profits, a high turnover might still pay off.

It is also interesting to consider the concentration of the portfolio, i.e. if some assets
are weighted much higher than others, using the different strategies over time t.
One possible statistic to measure concentration is the so-called Herfindahl index,
h(t), which is given by:

h(t) =
N∑
i=1

wi(t)2,

where wi(t) is the weight of asset i at time t. The index equals one if a portfolio
is concentrated, i.e. there is only invested in one asset. On the other hand when
there is invested uniformly in all assets then the index equals N−1. Usually the
normalized Herfindahl index, NH(t), is considered:

NH(t) = h(t)− 1/N
1− 1/N ,

where NH(t) ∈ [0, 1]. In general, a low value of NH(t) is preferred, since this
indicates a balanced portfolio. [S. Maillard, T. Roncalli, J. Teiletche, 2009]

The following sections backtest the introduced asset allocation strategies on the
different portfolios introduced in Section 4.1. A summary of the most important
results of the backtest can be found in Section 4.3.

4.2.1 Asset Classes
The first backtest of the mentioned asset allocation strategies is based on the port-
folio consisting of asset classes as introduced in Section 4.1.1. First a two year
estimation window is used and later in this section also a five year estimation win-
dow is considered.

For the strategies based on PCA the number of principal components m is deter-
mined using the standard deviation criterium from equation (2.34) with v = 0.1.
This means that only components whose standard deviation is larger than 10% of
the first principal component’s standard deviation are included in the PCA, which
is done to ensure that the included components account for enough variation and
thereby represent an underlying risk factor. The choice of the parameter v is ad hoc
and will therefore be investigated. This is also done for the ER- fPCA strategy and
in addition the smoothing parameter λ and the number of basis functions K are
determined using cross validation as explained in Section 3.1.3. Note that since all
assets have a constant sampling rate, equally spaced B-splines are used to smooth
data in the ER- fPCA strategy. The determined parameters are summarized in
Table 4.7.
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Table 4.7. The determined number of principal components m for the strategies based
on PCA and fPCA for v = 0.1. And the chosen number of basis functions K
and the smoothing paramter λ for the fPCA approach determined by cross
validation.

Strategy m K λ

PCA-based 4 - -
fPCA-based 3 15 10000

It can be seen from Table 4.7 that for the PCA-based strategies all principal compo-
nents are used, whereas in the case of ER- fPCA only three principal components are
used. This means that the PCA-based strategies suggest that there are four latent
factors, whereas the ER- fPCA strategy suggests three factors. The difference in
the number of principal components might be caused by smoothing data, which can
remove noise and reduces the variability of data, hence the eigenvalues might also
decrease and thereby the standard deviation criterium suggests a lower number of
principal components. But since this portfolio only consists of four assets, it might
be appropriate that there are four underlying factors that drive the assets.

The scaled portfolio profits for the different strategies are displayed in Figure 4.5.
The first two years are used as initial backtest period, hence the portfolio weights
are first determined from ultimo January 2001. After this period there can be
observed differences in the resulting profits of the different strategies, where it can
be noted that the ER- PCA RC and DRP outperform the benchmark strategy and
that the EW and ER- fPCA strategy drop during the financial crisis, whereas the
other strategies perform quite stable.
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ER − PCA
ER − RC
ER − PCA RC
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Figure 4.5. Scaled portfolio profits of the asset allocation strategies. The first
two years are exclusively used to estimate the first backtest weights.
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Figure 4.6 shows the portfolio weights over time for the different strategies. It can
be observed that the weights of the ER- RC and ER- PCA approaches are very
similar to each other, which is consistent with the results obtained in the simulation
study in Section 3.4. As investigated in Section 4.1.1 the correlations of the assets
in this portfolio are very similar to each other, expect from the negative correlations
of Bonds and Credits. Therefore it is expected from the results in Section 3.1 that
the ER- RC strategy finds weights that are inversely related to the volatilites of the
single assets. Using the volatilies from Table 4.2 it is assumed that the weights for
Equities and Commodities are very similar and small, whereas the weights for Bonds
and Credits are larger and on average also are very similar. This can be confirmed
by the portfolio weights found in Figure 4.6. The weights of the ER- PCA RC and
DRP approaches are also very similar, which also is expected from the results of
Section 3.4. The ER- fPCA strategy finds completely other weights and has a very
high turnover, which is disadvantageous for an asset allocation strategy since this
can imply high transaction costs. The MVa strategy gives most weight to the least
volatile assets, Bonds and Credits, which is in accordance with the aim of finding
portfolio weights that result in the minimum portfolio variance. As expected from
the correlation matrix in Figure 4.1, where it can be seen that Bonds and Credits
are negatively correlated, the weights for these behave reversed in all strategies, but
in the case of the ER- fPCA strategy it is difficult to see this behaviour due to the
high turnover of this strategy.
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Figure 4.6. The weights of the different strategies estimated on a rolling window
of two years and rebalanced every month. Note that the vertical axes
differ for some of the strategies.
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Even though the different asset allocation strategies find different portfolio weights
it still can be noted that they weight the different assets in a similar way. Hence to
a certain extent the allocation strategies agree, but of course can small differences
in the portfolio weights cause major differences in the portfolio profit.

Figure 4.7 shows the normalized Herfindahl index for the seven different strategies,
which describes how concentrated the portfolio is. It can be observed that the ER-
RC and ER- PCA strategies are fairly balanced throughout the sampling period since
the index is close to the value 0.25, which indicates a balanced asset allocation. On
the other hand are the ER- fPCA, ER- PCA RC, MVa, and the DRP strategies
very concentrated in some periods. This is also consistent when comparing the
normalized Herfindahl index to the the portfolio weights in Figure 4.6, where these
strategies often assign a large weight to one asset.
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Figure 4.7. Normalized Herfindahl index for the asset allocation strategies. It
measures how concentrated the allocations are.

In order to compare the performance of the different strategies, Table 4.8 shows the
mean profits, volatilities, the Sharpe ratios, and the turnovers of the portfolio using
the different asset allocation strategies.
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Table 4.8. Statistics for the optimized portfolio. The bolded numbers indicate the
lowest volatility, highest mean profit, highest Sharpe ratio, and the lowest
turnover, respectively.

Strategy Volatility Mean Profit Sharpe Ratio Turnover
Minimum Variance 5.22 7.06 1.35 0.07
Equally-Weighted 8.01 6.22 0.78 0
Equal Risk - RC 5.74 6.78 1.18 0.053
Equal Risk - PCA 6.03 6.77 1.12 0.046
Equal Risk - fPCA 8.68 6.49 0.75 0.41
Equal Risk - PCA RC 5.59 7.61 1.36 0.16
Diversified Risk Parity 5.62 7.39 1.31 0.16

As expected from the relation of the portfolio variances shown in Section 3.1.2, the
MVa strategy has the least volatile portfolio profit. Moreover, the EW strategy has
the lowest turnover, since it always assigns equal weight to every asset. Note that
by the definition of turnover as given in equation (4.1) the EW yields a turnover of
zero. This is of course not true in practice, since the investor still has to perform
trades in order to maintain the strategy as explained in Section 1.1. The ER- PCA
RC strategy has the highest profit and also the highest Sharpe ratio. At the same
time has this strategy a high turnover, which might cause high transaction costs.
So it has to be considered if the higher profit compensates for the high transaction
costs that might arise from this strategy. The ER- PCA strategy has also a low
turnover and at the same time a moderate mean profit, which might make the
strategy preferable compared to the ER- PCA RC strategy. As expected from the
plot of the portfolio weights in Figure 4.6 the ER- fPCA has a very high turnover. It
also has the highest volatility of all strategies. One way to dim the turnover might
be to impose a limit on the replacement of assets in a portfolio, e.g. that only 40%
of the portfolio are allowed to be replaced in every rebalancing. This might imply
a better performance of this strategy, but is beyond the scope of this thesis.

As mentioned earlier in this section it is interesting to observe the behaviour of the
different asset allocation strategies when the estimation window is expanded from
two to five years, which will be investigated in the next section.
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Backtest based on 60 Months

It can be imagined that some strategies behave different when using a larger estima-
tion window. The estimation of the covariance matrix is now based on 60 instead
of 24 observations, which should improve the estimate of the covariance matrix in
the ER- RC and MVa strategy. This implies also that the estimates of the eigenval-
ues should be improved and thereby the risk-based strategies using PCA might be
more accurate. Since the sampling period is still the same as in the case of the two
year estimation window, the same number of principal components m, smoothing
parameter λ, and number of basis functions K are used.

The top panel of Figure 4.8 considers the profit of the different strategies using a 60
month rolling estimation window. It can be seen that the EW strategy most of the
time has a higher profit than any other strategy. Moreover, at first glance it could
look like the ER- PCA RC performs worse than the other strategies, but it should be
noted that the ER- PCA RC performs quite stable throughout the whole backtest,
but some of the other strategies yield higher profits in the beginning of the backtest
period, which give them an upward shift throughout the whole backtest period. This
means that although the other strategies yield higher profits in the backtest it does
not mean that they in general perform better. Therefore in order to compare the
performance of the different allocation strategies using different estimation windows,
it is important to ensure that the estimation starts at the same time in order to
avoid misleading shifts in the profit in some periods. Therefore the backtest using
a two year estimation window is performed again based on a sampling period from
January, 2002 through April, 2012 such that the first estimated portfolio weights
of the two and five year estimation are consistent. The changed sampling period
implies that the number of principal components m, the smoothing parameter λ,
and the number of basis functions K are recalculated. The new parameter estimates
are shown in Table 4.9. It can be seen that all parameters are unchanged.

Table 4.9. The chosen number of principal components m for the strategies based on
PCA and fPCA for v = 0.1. And the chosen number of basis functions
K and the smoothing paramter λ for the fPCA approach for the sampling
period from January, 2002 through April, 2012.

Strategy m K λ

PCA-based 4 - -
fPCA-based 3 15 10000
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Figure 4.8. Scaled portfolio profits of the different asset allocation strategies.
The top panel shows the profit when using a five year estimation
window. The bottom panel shows the profit when using a two year
estimation window, but where the estimation period starts at the
same time as for the five year estimation, i.e. three years later than
for the original two year estimation as investigated previously in this
section.

The bottom panel of Figure 4.8 shows the profit of the strategies using the modified
sampling period for the two year estimation. The performances of the strategies
are very similar to each other in the two frameworks using the two year estimation
window. Whether to use a two or five year estimation window is dependent on
several aspects. The accuracy of the estimation of the covariance matrix and the
eigenvalues may be improved by using a larger window. On the other hand, when an
event such as the financial crisis in 2008/2009 happens it can be seen from Figure 4.8
that the two year estimation window is better in determining the portfolio weights
throughout the crisis. This is due to the fact that a shorter estimation window
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is better in accounting for the changes that happen right there, whereas a larger
window is affected by low volatile times before the crisis, or vice versa. Figure 4.9
shows the normalized Herfindahl index over time for the five year estimation window,
where it can be seen that especially the ER- fPCA strategy is very concentrated in
some periods.
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Figure 4.9. Normalized Herfindahl index for the different asset allocation strate-
gies for the five year estimation window. It measures how concen-
trated the allocations are.

Table 4.10 summarizes the performance of the different strategies using the 60
months rolling estimation window and Table 4.11 shows the result for the 24 month
estimation window with a shorter sampling period. Most of the strategies yield
higher Sharpe ratios in the two year framework, since the strategies are less volatile
during the financial crisis in 2008/2009, but at the same time is the turnover also
higher. The ER- PCA RC is the best performing strategy in the two year framework,
but one of the worst performing the five year framework. In the five year framework
there is not one best performing strategy, but several strategies show preferable
characteristics. But the ER- RC yields the highest Sharpe ratio and might therefore
be the preferable strategy in this framework.
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Table 4.10. Statistics for the optimized portfolio using a five year estimation window.
The bolded numbers indicate the lowest volatility, highest mean profit,
highest Sharpe ratio, and the lowest turnover, respectively.

Strategy Volatility Mean Profit Sharpe Ratio Turnover
Minimum Variance 6.61 5.03 0.75 0.027
Equally-Weighted 7.58 6.05 0.8 0
Equal Risk - RC 6.75 5.67 0.84 0.017
Equal Risk - PCA 7.05 5.65 0.8 0.014
Equal Risk - fPCA 8.96 6.68 0.75 0.20
Equal Risk - PCA RC 6.82 4.5 0.66 0.11
Diversified Risk Parity 7.12 5.63 0.79 0.13

Table 4.11. Statistics for the optimized portfolio using a modified two year estimation
window. The bolded numbers indicate the lowest volatility, highest mean
profit, highest Sharpe ratio, and the lowest turnover, respectively.

Strategy Volatility Mean Profit Sharpe Ratio Turnover
Minimum Variance 5.33 5.28 0.99 0.07
Equally-Weighted 7.63 5.63 0.74 0
Equal Risk - RC 5.56 5.56 1.00 0.057
Equal Risk - PCA 6.00 5.29 0.88 0.045
Equal Risk - fPCA 8.92 4.58 0.51 0.34
Equal Risk - PCA RC 5.6 5.58 1.00 0.17
Diversified Risk Parity 5.62 5.34 0.95 0.13

PCA-based Strategies

For the strategies based on PCA: ER- PCA, ER- PCA RC, and DRP, one can con-
sider the cumulative proportion of variance, CPVj for j = 1, . . . ,m as described in
equation (2.35), over time. The CPVj are determined from a PCA that is performed
every month using data from the last two years to extract the latent risk factors
embedded in assets of the portfolio.

It can be seen from Figure 4.10 that the cumulative variances increase from about
2008 until 2011 and then drop again, this means that the first principal component
accounts for much more variability in this period. Furthermore the plot shows that
the first two principal components account for about 75% of the variance most of
the time. But throughout the recent financial crisis it can be observed that they
actually account for about 90% of the variance. This might question the necessity
of considering all principal components as discussed in the beginning of this section.
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Figure 4.10. Cumulative proportion of variance extracted from the PCAs per-
formed every month based on a two year estimation window.

The question is whether the strategies perform better using a smaller number of
principal components? It turns out that first when v > 0.3 there only are three
principal components considered in the three PCA-based strategies. Therefore a
higher value of the parameter v, v = 0.4, is chosen such that only three principal
components are considered. Then the backtest is performed again for the PCA-
based strategies.

Figure 4.11 shows the weights for the three PCA-based strategies using only three
principal components. It can be observed that in the case of the ER- PCA strategy
the portfolio weights are very similar to the weights found using all principal compo-
nents as shown in Figure 4.6. Actually, Table 4.12 shows that the ER- PCA strategy
yields exactly the same volatility and mean profit as in Table 4.8. This means that
in this portfolio the ER- PCA strategy finds the same portfolio weights whether
it uses three or four principal components. On the other hand perform the ER-
PCA RC and DRP strategy slightly worse, since they are more volatile and yield
a lower mean profit when using three instead of four principal components, which
can be observed by comparing Tables 4.8 and 4.12. In addition, Figure 4.11 shows
that when using three principal components instead of four the portfolio weights
for the ER- PCA RC and DRP differ, whereas they were very similar when using
four principal components. This conforms with the results obtained in Section 3.4,
which made the same observation.

The reason that the ER- PCA yields unchanged portfolio weights, whereas the ER-
PCA and DRP change might be due to the different optimization problems for the
strategies. In the case of the ER- PCA the sum over the CPVj is minimized and
as can be seen from Figure 4.10 the last principal component does not account
for much cumulative variance, hence the optimization yields the same result using
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three or four principal components. On the other hand incorporate the optimization
problems for the ER- PCA RC and DRP strategies the principal portfolio weights
w̃ in the minimization of the risk contributions R̃Ci and the maximization of the di-
versification distribution pi, respectively. The principal portfolio weights give most
weight to the component with the lowest variance as stated in equation (3.14), hence
when removing one principal component the terms R̃Ci and pi will change, which
implies a different asset allocation. Note that since the portfolio considered in this
section consists only of four assets, the difference of removing one or more princi-
pal components may be larger than removing principal components in a portfolio
consisting of a larger number of assets.
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Figure 4.11. The weights of the different strategies estimated on a rolling window
of two years and rebalanced every month using only three principal
components. Note that the vertical axes differ for the different
strategies.

Table 4.12 shows the portfolio statistics for the PCA-based strategies using only
three principal components. As mentioned above, the ER- PCA is unchanged,
whereas the ER- PCA RC and DRP strategies yield a higher profit volatility and
a lower mean profit. From this it is difficult to tell which framework that is most
profitable. But since the fPCA also suggests to only consider three components, it
might be more appropriate to do that.

Table 4.12. Statistics for the optimized portfolio based on PCA with three principal
components.

Strategy Volatility Mean Profit Sharpe Ratio Turnover
Equal Risk - PCA 6.03 6.77 1.12 0.046
Equal Risk - PCA RC 5.68 7.09 1.25 0.12
Diversified Risk Parity 5.99 6.26 1.05 0.16

After backtesting the different strategies on the portfolio consisting of asset classes
it can be concluded that varying the time period of the estimation window changes
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the performance of the strategies, i.e. mean profit and volatility. In general a five
year window is prefered over a two year window in order to improve the estimation of
the covariance matrix and the eigenvalues used in the different allocation strategies.

In general it can be noted that the ER- RC and ER- PCA, and the ER- PCA RC
and DRP strategies yield very similar portfolio weights when using all principal
components, respectively. The weights for the ER- PCA RC and DRP strategies
may differ when m < N , i.e. the number of principal components is lower than
the number of included assets in a portfolio. The weights found by the ER- fPCA
strategy differ from the other ER strategies and the strategy has a higher turnover
than the other strategies. Therefore it could be considered to impose a limitation
on the replacement of the assets, which might improve the overall performance of
the ER- fPCA strategy. Nevertheless, the performance of the ER- fPCA strategy
is improved by using the five year estimation window. Also the MVa strategy finds
other portfolio weights than the other strategies, which is due to the different aim
of this strategy, namely to find the mimimum variance portfolio. Furthermore, the
ER- fPCA only uses three principal components, while the PCA-based strategies use
four principal components when using a low value for the parameter v in equation
(2.34). Thereby the ER- fPCA strategy suggests that there are three latent risk
factors and the other PCA-based strategies suggest that there are four latent risk
factors. As investigated, it might be appropriate to increase the parameter v in
order to reduce the number of principal components m.

It should also be noted that the strategies that yield a high profit as shown in Figure
4.5, also have a high turnover. Therefore an investor considering the ER- PCA RC
or DRP strategies has to determine if it is worth the transaction costs involved by
these strategies. Consequently, a good alternative that trades off turnover and the
Sharpe ratio are the ER- RC and ER- PCA strategies. These strategies have a
relatively low turnover and at the same time a moderate Sharpe ratio, which means
a moderate mean profit and low volatility.

The next section considers an extension of the portfolio considered in this section
by including five style factors in addition to the four asset classes as described in
Section 4.1.2.

4.2.2 Asset Classes and Style Factors
This section has the objective of backtesting the asset allocation strategies on a
portfolio consisting of both asset classes and style factors. Since the style factors are
constructed to be very low correlated and to be factors themselves it is interesting
to investigate the performance of the PCA-based strategies, that aim to extract
independent factors and to see if these strategies can improve the profit compared
to the benchmark strategy.
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The setup of the backtest in this section is inspired by the results of the previous
section. This means that both a two and five year rolling estimation window is
considered, but such that the estimation of the portfolio weights of the two different
window sizes starts at the same time. This means that the backtest using the
two year estimation window is based on the sampling period from January, 2002
through April, 2012, whereas the sampling period for the five year estimation window
is from January, 1999 through April, 2012. Furthermore the parameter v in the
standard deviation criterium for determining the number of principal components is
increased from 0.1 to 0.3. The reason for this choice is to ensure that the considered
risk factors are explanatory underlying drivers of the assets and is based on the
experiences of the previous section. Nevertheless, the profit statistics for the PCA-
based strategies will also be determined using all principal components in order to
investigate the differences of omitting components and including all components.
But it is maintained that the figures of the scaled profits and the Herfindahl index
only are considered for the PCA- and fPCA-based strategies making use of the
standard deviation criterium, since it is assumed in this thesis that there have not
to be as many underlying risk factors as there are assets in a portfolio. Nevertheless,
it is investigated if including the same number of principal components as there are
asset makes a difference in the ER- fPCA strategy. The result is that there is no
difference in neither portfolios and therefore these results are disregarded.

This implies that the number of principal components m, the number of basis func-
tionsK, and the smoothing paramter λ are determined for the two different sampling
periods and might be different. The determined parameters can be seen in Table
4.13, where it can be seen that m is identical for the fPCA-based strategy for the
two and five year estimation window. On the other hand, m differs in the case of
the PCA-based strategies. The number of basis functions differs in the two frame-
works, whereas smoothing parameter is identical. So in the two year framework
there are used 5 additional basis functions, which is explainable by the variation in
data, which is larger considering the modified two sampling period, hence there are
needed more basis functions to better cover these variations.

Table 4.13. The chosen number of principal componentsm for strategies based on PCA
and fPCA for v = 0.3. And the chosen number of basis functions K and
the smoothing paramter λ for the fPCA approach. The parameters are
displayed for ’two year estimation winodow/ five year estimation winodow’.

Strategy m K λ

PCA-based 5/6 - -
fPCA-based 4/4 15/10 10000/10000

Figure 4.12 shows the CPVj over time for the performed PCAs based on an esti-
mation every month on a two year estimation window, shown in the left panel, and
a five year estimation window, shown in the right panel. This figure is especially
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interesting in connection with the ER- PCA strategy, which aims to minimize the
CPVj for j = 1, . . . ,m. It is observable that the CPVj’s have different paths over
time for the two different estimation windows. It is especially interesting to examine
the different behaviour during the financial crisis, where in the five year framework
there is a drop, which means that there are needed more principal components to
describe the same variance, whereas in the two year framework the CPVj is rising.
This means that depending on which estimation window that is used, the exposure
of the assets in the portfolio is rising for some risk factors in the five year framework
and falling in the two year framework. The shorter estimation window should be
better to capture the dynamics, i.e. the latent risk factors, that affect the assets
to a specific time since it only examines the dynamics within the past two years.
Based on intuition it seems reasonable that during a financial crisis, there might
arise additional risk from factors that did not affect the assets that much during
normal times, e.g. assets may have a much higher exposure to the volatility risk
factor.
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Figure 4.12. Cumulative proportion of variance extracted from the PCAs per-
formed every month on a two year estimation window (left panel)
and a five year estimation window (right panel).

The differing exposure to the latent risk factors when using the different estimation
windows must imply that the ER- PCA strategy finds different portfolio weights in
the two frameworks, which also was the case for the portfolio considered in the pre-
vious section since the profits differed. This can be investigated by looking at Figure
4.13, where the left panel shows the weights found in the two year framework and
the right panel shows the portfolio weights determined in the five year framework.
As expected from the above discussion, the portfolio weights differ.
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Figure 4.13. The weights of the ER- PCA strategy using a 24 month (left panel)
and 60 month (right panel) estimation window, respectively. Note
that there are varying vertical axes.

In order to get an idea of how the portfolio weights of the other strategies look like
and how diversified the portfolio is during the backtest, the normalized Herfindahl
index is inspected. Figure 4.14 shows the index for the two year estimation in the
top panel and for the five year estimation window in the bottom panel. For the two
year estimation window it is especially the MVa strategy that is concentrated most
of the time, but gets less concentrated in the end of the backtest period. The DRP
and ER- fPCA strategies are concentrated in some periods, but well-diversified most
of the time. In the five year framework it is again the MVa and the DRP strategies
that are concentrated, but also the ER- PCA RC strategy is likely to allocate much
weight to one asset. It can be concluded that especially the MVa and DRP strategies
that often are concentrated in both estimation frameworks and at the same time
these strategies have a high turnover, which can be seen in Tables 4.14 and 4.14.
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Figure 4.14. Normalized Herfindahl index for the different asset allocation
strategies. It measures how concentrated the portfolio is over time.
The top panel shows the index for the two year estimation window
and the bottom panel shows it for the five year estimation window.

The scaled profits of the different asset allocation strategies using the different es-
timation windows are shown in Figure 4.15. The top panel shows the profits when
using the two year estimation window. It is observable that the MVa strategy per-
forms good and stable throughout the whole backtest period. The ER- RC, ER-
PCA, and ER- PCA RC strategies are very similar to each other, whereas the ER-
fPCA has a drop during the financial crisis in 2008/2009. The DRP strategies actu-
ally beats the EW strategy during and after the financial crisis. On the other hand
when looking at the bottom panel of Figure 4.15, which shows the five year frame-
work, it can be seen that the ER- fPCA strategy performs better than the other
strategies and in some periods, e.g. after 2009 it beats the benchmark strategy by
having higher profits.
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Figure 4.15. Scaled portfolio profits of the different asset allocation strategies.
The top panel shows the profit when using a two year estimation
window. The bottom panel shows the profit when using a five year
estimation window.

Table 4.14 shows the backtest statistics for the different allocation strategies using
the two year estimation window. It can be seen that the DRP strategy has the
highest mean profit and at the same time the highest turnover. The MVa has the
lowest volatility and the highest Sharpe ratio. Using all principal components in
the PCA-based strategies lowers the volatility of the profit, but for the ER- PCA
RC and DRP strategies it also lowers the mean profit and increases the turnover.
Therefore it is concluded that the omitting four principal components is reasonable
for the PCA-based strategies.
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Table 4.14. Statistics for the optimized portfolio for the two year estimation window.
The bolded numbers indicate the lowest volatility, highest mean profit,
highest Sharpe ratio, and the lowest turnover, respectively. The numbers
in the brackets show the statistics using all principal components.

Strategy Volatility Mean Profit Sharpe Ratio Turnover
Minimum Variance 1.88 3.66 1.94 0.14
Equally-Weighted 3.79 4.75 1.25 0
Equal Risk - RC 2.26 4.04 1.79 0.07
Equal Risk - PCA 2.7 (2.62) 4.32 (4.45) 1.6 (1.66) 0.13 (0.1)
Equal Risk - fPCA 3.66 4.4 1.2 0.26
Equal Risk - PCA RC 2.54 (2.2) 3.78 (3.56) 1.49 (1.62) 0.19 (0.23)
Diversified Risk Parity 3.17 (2.34) 4.82 (3.66) 1.52 (1.56) 0.38 (0.43)

On the other hand, Table 4.15 shows the corresponding statistics for the 60 month
estimation window. In this setup the ER- fPCA performs very well, since it yields
the highest mean profit. It has not the highest volatility as it could be seen in
previous setups, but it still has a fairly high turnover. When comparing the results
of Tables 4.14 and 4.15 it is observable that the profit gets more volatile for all
strategies expect for the ER- fPCA strategy, where the volatility decreases from
3.66 to 3.23, and at the same time the mean profit increases from 3.66 to 5.91,
which implies a higher Sharpe ratio. In general all mean profits increase when
using the larger estimation window and simultaneously the turnover decreases for
all strategies. In this framework there are omitted three principal components in
the PCA-based strategies, which also in this case seems reasonable.

Table 4.15. Statistics for the optimized portfolio for the five year estimation window.
The bolded numbers indicate the lowest volatility, highest mean profit,
highest Sharpe ratio, and the lowest turnover, respectively. The numbers
in the brackets show the statistics using all principal components.

Strategy Volatility Mean Profit Sharpe Ratio Turnover
Minimum Variance 2.69 5.52 1.98 0.06
Equally-Weighted 3.87 5.88 1.52 0
Equal Risk - RC 3.01 5.25 1.75 0.03
Equal Risk - PCA 3.08 (3.07) 5.49 (5.55) 1.78 (1.8) 0.05 (0.04)
Equal Risk - fPCA 3.23 5.91 1.83 0.33
Equal Risk - PCA RC 3.18 (3.05) 4.95 (4.78) 1.55 (1.57) 0.2 (0.15)
Diversified Risk Parity 3.7 (2.94) 5.62 (5.18) 1.52 (1.76) 0.31(0.19)

In the 60 month estimation window the ER- fPCA only uses four principal compo-
nents in contrast to the PCA-based strategies that use six principal components. It
could be observed that the ER- fPCA performs very well in the five year framework,
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which might be explainable by the fact that the ER- fPCA focuses on only four la-
tent risk factors, which seems reasonable when examining the right panel of Figure
4.12, since the first four principal components explain about 80% of the variance
almost during the whole backtest period.

As mentioned in the beginning of this section the motive of adding style factors to the
portfolio was to investigate the allocation process of the risk-based strategies, since
style factors themselves represent risk factors. And indeed there can be observed
a different allocation behaviour compared to the portfolio only consisting of asset
classes. Mainly, the volatility of the profit is decreased for all strategies. This means
that adding the style factors to the portfolio makes the portfolio profits much more
stable performing, which is an attractive property for many investors.

4.2.3 Large Portfolio - 21 Assets
The last portfolio considered in the backtest of the different asset allocation strate-
gies consists of 21 assets as introduced in Section 4.1.3. The reason to consider a
larger portfolio is in order to investigate the behaviour of especially the PCA- and
fPCA-based strategies, since it is interesting to see how many principal components,
i.e. how many underlying risk factors, will be considered using a larger portfolio and
how these strategies perform compared to the strategies that solely are based on
the estimation of the covariance matrix.

There is similar to the previous sections considered a backtest with a two year
estimation window, starting from January, 2002, and a five year estimation window
using the whole sampling period. Table 4.16 shows the chosen number of principal
components using v = 0.3, the number of basis functions K, and the smoothing
parameter λ for the ER- fPCA strategy for the different estimation windows. It is
interesting to see that λ has the same value for both estimation windows, whereas
the number of basis functions differs. This was also the case in the previous section,
but there were needed more basis functions in the two year framework, whereas here
it is in the five year framework. Similar to the previous backtests the fPCA uses less
principal components. So in the portfolio consisting of the 21 assets, the PCA-based
strategies suggest that there are six or seven latent risk factors driving the assets,
whereas the fPCA-based strategy suggests that there only are four latent factors.
Note that similar to the previous section the statistics when using all principal
components in the PCA-based strategies are displayed in brackets.
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Table 4.16. The chosen number of principal componentsm for strategies based on PCA
and fPCA for v = 0.3. And the chosen number of basis functions K and
the smoothing paramter λ for the fPCA approach. The parameters are
displayed for ’two year estimation winodow/ five year estimation winodow’.

Strategy m K λ

PCA-based 7/6 - -
fPCA-based 4/4 10/25 10000/10000
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Figure 4.16. Scaled portfolio profits of the different asset allocation strategies.
The top panel shows the profit when using a two year estimation
window. The bottom panel shows the profit when using a five year
estimation window.
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Figure 4.16 shows the scaled profits using the two year estimation window in the
top panel and the five year estimation window in the bottom panel. Moreover
Tables 4.17 and 4.18 show the profit statistics: volatility, mean profit, Sharpe ratio;
and the turnover of the different asset allocation strategies. From the figure and
the tables it can be seen that the EW, ER- PCA, and ER- fPCA strategies have
very similar profits both in the two and five year estimation window. Their profits
are increasing until 2008/2009 and then drop during the financial crisis, thereafter
the profit increases again. It is notable that although the ER- fPCA and EW
stratgies have a large drop in the financial crisis, they manage to outperform the
other strategies afterwards. On the other hand perform the MVa, ER- RC, and ER-
PCA RC also very similar to each other and have a more moderate, continuously
increasing profit with a small drop during the financial crisis. The DRP strategy
has a bit lower, but stable profit than the other strategies throughout the whole
backtest period in both frameworks.

Table 4.17. Statistics for the optimized portfolio for the two year estimation window.
The bolded numbers indicate the lowest volatility, highest mean profit,
highest Sharpe ratio, and the lowest turnover, respectively. The numbers
in the brackets show the statistics using all principal components.

Strategy Volatility Mean Profit Sharpe Ratio Turnover
Minimum Variance 3.23 4.4 1.36 0.2
Equally-Weighted 7.66 6.56 0.86 0
Equal Risk - RC 3.49 4.93 1.41 0.16
Equal Risk - PCA 5.91 (5.8) 6.26 (5.86) 1.06 (1.01) 0.26 (0.25)
Equal Risk - fPCA 6.91 7.46 1.08 0.28
Equal Risk - PCA RC 3.78 (3.57) 5.48 (4.62) 1.45 (1.29) 0.19 (0.21)
Diversified Risk Parity 5.46 (3.67) 4.51 (4.92) 0.83 (1.34) 0.8 (0.8)

Table 4.18. Statistics for the optimized portfolio for the five year estimation window.
The bolded numbers indicate the lowest volatility, highest mean profit,
highest Sharpe ratio, and the lowest turnover, respectively. The numbers
in the brackets show the statistics using all principal components.

Strategy Volatility Mean Profit Sharpe Ratio Turnover
Minimum Variance 4.67 5.74 1.23 0.15
Equally-Weighted 7.67 7.18 0.94 0
Equal Risk - RC 4.96 5.72 1.15 0.08
Equal Risk - PCA 6.61 (6.2) 6.28 (6.63) 0.95 (1.07) 0.2 (0.18)
Equal Risk - fPCA 7.35 6.96 0.95 0.33
Equal Risk - PCA RC 5.13 (4.93) 5.29 (5.73) 1.03 (1.16) 0.09 (0.15)
Diversified Risk Parity 6.38 (5.36) 3.96 (4.52) 0.62 (0.84) 0.4 (0.59)
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As also observed in the previous backtests, the ER- RC strategy has a very stable
profit, since it has a low volatility. The benchmark strategy, EW, is performing very
well for this portfolio, but the ER- fPCA is also performing well and actually to an
extend similar to the benchmark strategy. In the two year framework the ER- fPCA
also yields higher profits than the EW strategy during and after the financial crisis.
Omitting principal components has a negative effect on both the volatility and mean
profit, which might indicate that there are omitted too many components.

In addition it can be observed from Figure 4.17 that expect from the DRP and MVa
strategy, are the allocation strategies diversified throughout the sampling period.
Especially in the five year framework the DRP strategies assigns much weight to
specific assets. This may explain the constant, but low profit in the backtest period.
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Figure 4.17. Normalized Herfindahl index for the different asset allocation
strategies. It measures how concentrated the portfolio is over time.
The top panel shows the index for the two year estimation window
and the bottom panel shows it for the five year estimation window.
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This section shows that the PCA- and fPCA-based strategies only consider a small
number of latent risk factors, when using the standard deviation criterium in equa-
tion (2.34) with v = 0.3, compared to number of assets included in the portfolio. In
contrast to the results of the previous section it can be observed in the backtest of
this portfolio that including all principal components improves both the volatility
and the mean profit of the PCA-based allocation strategies. This may indicate that
there are avoided too many principal components and thereby the strategies may
perform better when reducing the parameter v. However, there are suggested many
different methods for determining the appropriate number of principal components
m in litterature, but there is no unique or proofed method given the right number,
since most methods are ad hoc and subjective as discussed in Section 2.3.2. But it
seems reasonable that the 21 assets are driven by four to seven latent risk factors.
Comparing the risk-based allocation strategies it is especially the ER- fPCA strat-
egy that yields high profits, expect from the period during the financial crisis. This
could indicate that during the crisis, the ER- fPCA is missing some latent factors
that may be included in the PCA-based approaches, since most of these strategies
perform more stable during the crisis.

4.3 Review of the Backtest
This section aims to summarize the most important results from the backtest. The
focus is on the impact of the size of the estimation window, the effect of omitting
principal components, the composition of the portfolios, and the performance of the
risk-based strategies compared to the benchmark strategy.

The backtest considered both traditional asset allocation strategies, i.e. the MVa
strategy and the simple EW strategy, but also alternative risk-based allocation
strategies like the ER and DRP strategies. Three different portfolios were consid-
ered: one classical consisting of indexes describing asset classes, one that combines
the classical portfolio with style factors, and finally a large portfolio including both
classical asset classes, style factors, and additional equity and commoditity indexes.

What can be concluded from the backtest is that the size of the estimation window
used to estimate the portfolio weights affects the performance of the asset allocation
strategies. A larger window might improve the estimates of the covariance matrix
used in the MVa and ER- RC strategies, and thereby also the estimates of the
eigenvalues in the PCA-based strategies. But at the same time the allocation in
a larger estimation window also is influenced by data that might not capture the
dynamics of the current economic situation, i.e. the large estimation window might
not response fast enough to the current economical dynamics.
This implies that most of the strategies get more volatile when enlarging the esti-
mation window, since there is a larger drawdown during highly volatile times, which
in this backtest period is the financial crisis in 2008/2009. At the same time the
strategies yield a higher mean profit in a larger window, hence in normal times a
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larger estimation window implies higher profits, but during highly volatile times one
should use a shorter window in order to better capture the market dynamics. The
effect on the Sharpe ratio is dependent on the composition of the portfolio, i.e. the
portfolio consisting of the nine assets has an increased Sharpe ratio when using the
larger estimation window, whereas in the other two profits most of the strategies
have a lower Sharpe ratio due to the increased volatility. This shows the positive
effect of including style factors in a portfolio, which are very low correlated to each
other and thereby the portfolio has good diversification properties which imply more
stable profits.

Furthermore, differing sampling periods may yield different degree of smoothing in
the ER- fPCA strategy. The reason that the smoothing parameter λ may differ
is due to the setup of the performed cross validation as described in Section 3.1.3.
Since a smaller sampling period implies that the training- and validation sets get
smaller in the cross validation, which has a large impact on the choice of the pa-
rameters. A different degree of smoothing also means that the number of principal
components m differs, since the parameter m is determined based on the smoothed
data. The more smoothed data is, the less is the number of principal components,
since smoothing removes much of the variability of data and thereby the standard
deviations used in equation (2.34) become smaller, hence more principal components
are avoided. In the considered backtest the same smoothing parameter is selected
for all setups, whereas the number of basis functions differs. This is an interest-
ing observation since the training- and validation sets cover the same time periods,
but the portfolios consist of different assets. The selected smoothing parameter is
the highest possible value, which is due large flucations in the included assets of
the portfolios, in particular the equity and commodity indexes, hence data is more
smoothed as explained in Section 2.1.2.
When enlarging the size of the estimation window and the number of assets in-
cluded in a portfolio, the ER- fPCA yields higher profits during the backtest, expect
from the large portfolio, but still has a drawdown during the financial crisis when
compared to other risk-based strategies. This shows that the strategy is better in
accounting for the variability in data during normal times when considering an ap-
propriate amount of data, i.e. a large enough estimation window. The reason that
the strategy not performs that well during the financial crisis in 2008/2009 might
be explained by a wrong number of principal components, since this parameter is
static throughout the backtest period, but it can be imagined that the number of
underlying risk factors increases during a financial crisis. Or data is smoothed too
much, which can remove valuable variablility. Therefore it should be considered to
make these parameters time-varying.

Excluding principal components that explain little variance in data seems reason-
able to do, but the choice of the parameter v that controls the number of principal
components is not that straightforward, as discussed in Section 2.3.2, and some of
the allocation strategies are rather sensitive to this parameter as will be explained
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below.
It could be examined in the backtest of the portfolio consisting of nine assets that
omitting components improved the mean profit, but also made the profit more
volatile. In the case of the large portfolio consisting of 21 assets it was more prof-
itable to include all principal components than only considering five or six as de-
termined by the criterium in equation (2.34). As mentioned above, this could be
caused by the large drawdown in the financial crisis due to missing risk factors that
explain the underlying market movements in this period. For the ER- fPCA strat-
egy it can be observed that there is no difference whether to use the number of
principal components suggested by the standard deviation criterium or by using as
many components as there are assets in the portfolio.
This raises the question of how many principal components that should be included.
In order to investigate this, Figure 4.18 shows the Sharpe ratio of the three strategies
that are based on PCA using a varying number of principal components by trying
different values for the parameter v, i.e. considering v = 0.1, 0.2, . . . , 0.9. The reason
to consider the Sharpe ratio is to find out which number of principal components
that makes the PCA-based strategies most profitable. The results for the portfolio
consisting of nine and 21 assets can be seen in the left and right panel of Figure
4.18, respectively.
It can be observed that the three strategies behave very different when changing the
number of principal components. The Sharpe ratio of the ER- PCA strategy does
not change that much, but decreases a bit when omitting some components. This is
caused by the fact that the profit volatility increases while the mean profit decreases
in proportion to each other. The ER- PCA RC strategy might yield a higher Sharpe
ratio when only including a small number of components, whereas the DRP strategy
in the case of the nine assets performs worse by omitting components, but in the
case of 21 assets yields the highest Sharpe ratio when considering 11 components.
In both strategies the profit gets more volatile and at the same time the mean profit
increases, but to different degree.
Studying different methods and thresholds for how many principal components that
should be included may improve the performance of the PCA-based strategies, but
is beyond the scope of this thesis.
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Figure 4.18. Varying the number of principal components by different values
of the parameter v and the development in the Sharpe ratio for
the PCA-based strategies. The upper axis shows the considered
number of principal components.

Table 4.19 summarizes the results of the three different portfolios using the five year
estimation window. The reason to consider this estimation window is due to the
assumption that the estimates of the covariance matrix and thereby the eigenvalues
are improved and that this estimation window yields higher profits compared to the
two year estimation window for most of the strategies.
It can be seen that the portfolio consisting of nine assets yields the least volatile
profits and the highest Sharpe ratios, which confirms the good diversification prop-
erties of adding style factors to the portfolio. The portfolio consisting of 21 assets
yields the highest mean profits, expect from the DRP strategy that has the smallest
mean profit in this framework, which would be improved by considering all principal
components as could be seen in Table 4.18.
Comparing the four different approaches of the ER strategy it can be seen that the
ER- RC strategy is the least volatile approach, whereas the ER- fPCA approach has
the highest mean profit but at the same time also has the highest turnover of these
strategies. Although the four ER strategies are based on the same principal, i.e.
that the assets contribute with the same risk in a portfolio, they result in different
portfolio weights which is due to their different optimization problems. The two risk
contribution approaches, ER- RC and ER- PCA RC, use a sequential quadratic pro-
gramming, SQP, algorithm to find the optimal portfolio weights, whereas the ER-
PCA and ER- fPCA strategies use a Nelder-Mead algorithm. The reason to use the
Nelder-Mead algorithm for two of the strategies was caused by a lack of convergence
when using constrainted optimization algorithms. Furthermore the PCA in the ER-
PCA and ER- fPCA strategies is performed on the weighted log returns, whereas
in the ER- PCA RC it is performed on the unweighted log returns.
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Table 4.19. Statistics for the optimized portfolio for the five year estimation window
for the three different portfolios. The bolded numbers indicate the low-
est volatility, highest mean profit, highest Sharpe ratio, and the lowest
turnover, respectively.

#Assets Strategy Volatility Mean Profit Sharpe Ratio Turnover
Minimum Variance 6.61 5.03 0.75 0.027
Equally-Weighted 7.58 6.05 0.8 0
Equal Risk - RC 6.75 5.67 0.84 0.017

4 Equal Risk - PCA 7.05 5.65 0.8 0.014
Equal Risk - fPCA 8.96 6.68 0.75 0.20
Equal Risk - PCA RC 6.82 4.5 0.66 0.11
Diversified Risk Parity 7.12 5.63 0.79 0.13
Minimum Variance 2.69 5.52 1.98 0.06
Equally-Weighted 3.87 5.88 1.52 0
Equal Risk - RC 3.01 5.25 1.75 0.03

9 Equal Risk - PCA 3.08 5.49 1.78 0.05
Equal Risk - fPCA 3.23 5.91 1.83 0.33
Equal Risk - PCA RC 3.18 4.95 1.55 0.2
Diversified Risk Parity 3.7 5.62 1.52 0.31
Minimum Variance 4.67 5.74 1.23 0.15
Equally-Weighted 7.67 7.18 0.94 0
Equal Risk - RC 4.96 5.72 1.15 0.08

21 Equal Risk - PCA 6.61 6.28 0.95 0.2
Equal Risk - fPCA 7.35 6.96 0.95 0.33
Equal Risk - PCA RC 5.13 5.29 1.03 0.09
Diversified Risk Parity 6.38 3.96 0.62 0.4

Some strategies have a high turnover, which might imply high trading costs when
traded in real live. This applies mostly to the ER- fPCA, ER- PCA RC, and the
DRP strategies which at the same time also often have a high mean profit. Also here
the size of the estimation window has an influence, since a smaller estimation window
for most of the strategies implies a higher turnover. The reason for this might be
due to larger flucations in the asset returns, which influence the estimates of the
covariance matrix and eigenvalues and thereby imply that the portfolio weights have
to change more. In order to dim the turnover there could be imposed a limitation
on the replacement of the assets when rebalancing the portfolio weights.

The backtest also confirms that the volatility of the ER- RC approach lies between
the volatility of the MVa and EW strategies as shown theoretically in Section 3.1.2.
But comparing the performance of all strategies to the performance of the EW
strategy, it can be seen that no strategy can outperform the EW strategy during
the whole backtest period, expect from the ER- PCA RC and DRP strategy using
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the portfolio consisting of four classical assets and using a two year sampling period
as can be seen in Figure 4.5.
The good performance of the simple benchmark strategy rises the question whether
the work of implementing the rather complicated risk-based strategies can pay off?
This is difficult to answer, but a great disadvantage of the EW strategy is that
it is not possible to control the risk of this strategy. The ER strategies are a
good tradeoff between the EW strategy that has a lack of risk monitoring and the
MVa strategy that only focuses on risk. Moreover the MVa strategy is not that
diversified as measured by the Herfindahl index, which applies in all frameworks
and all portfolios, since it gives much weight to low volatile assets.
It should also be noted that during the whole backtest period there has been falling
interest rates, which has a positive effect on the returns of bonds. Since bonds
are very low volatile the MVa strategy allocates mostly in bonds, i.e. the MVa
strategy benefits from the falling interest rates in the backtest period. This should
be considered when comparing the different strategies with the MVa strategy, since
it is not ensured that the MVa strategy always will perform as good as it does in
this selected backtest period.

Besides the performance measured by the profit, turnover, and diversification, of the
different asset allocation strategies it is also important to consider the computational
effort needed to find the portfolio weights. The computations for estimating the
covariance matrix and the eigenvalues in the PCA-based strategies are fairly fast.
On other hand, the fPCA-based strategy has to determine additional parameters, i.e.
the number of basis functions K and the smoothing parameter λ, which is done by
using cross validation. Afterwards data has to be smoothed using these parameters,
and then the fPCA can be performed to estimate the eigenvalues needed to find the
optimal portfolio weights. This implies that this strategy is more complex and time
consuming than the other strategies.

The performance of the risk-based strategies might be significantly improved when
estimations errors in the covariance matrix and the eigenvalues are ensured to be
minimal. The constraint of long-only portfolio might also have an impact on the
performance of the strategies. This is investigated by [Kind, 2013] who reports that
allowing long-short portfolios improves the diversification properties of the risk-
based allocation strategies, but it does not improve the performance the strategies.
It should of course be noted that good diversification of a portfolio does not neces-
sarily imply good performance.
In the backtest it should be considered to include other performance measures be-
sides the volatility of the profit, mean profit, Sharpe ratio, turnover, and Herfindahl
index. As can be seen from the above discussion, often more volatile profit can be
explained by a large drop in the cumulative return, this could be measured by the
drawdown or maximum drawdown.
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Recapitulation 5
The main conclusion of this thesis is that most of the introduced risk-based asset
allocation strategies outperform the Equally-Weighted strategy for medium-sized
portfolios during times of high volatility. I expect the outperformance to be even
more significant for larger portfolios, especially for the functional approach of the
Equal Risk strategy. Furthermore, I conclude that these strategies perform very
stable, which is especially preferable for long-term investors.

The purpose of this thesis has been to establish asset allocation strategies that are
based on latent risk factors instead of traditional allocation strategies that allo-
cate by asset classes. The reason to consider latent risk factors is due to the fact
that assets consist of latent factors and therefore there should be diversification
benefits when allocating in these factors. The motivation to consider alternative,
risk-based strategies is among others due to the recent financial crisis in 2008/2009
which showed that many traditional asset allocation strategies that are based on the
estimates of mean and variance could not capture the heavy left tail of the return
distribution and thereby did not perform well. Therefore it is interesting to consider
risk-based strategies, since these strategies allocate by considering the underlying
risk factors, hence these strategies might have captured the risks assets where ex-
posed to during the crisis. I have placed much emphasis on projection methods
to extract the underlying risk factors, namely principal component analysis and its
functional variant, functional principal component analysis.

Principal component analysis is a statistical method to transform the original vari-
able space into a lower dimensional space without losing too much information.
The reason to consider a lower dimensional representation of the original variable
space is due to the purpose of only considering the important features in data. The
aim is to reduce the asset space consisting of assets returns to latent factors, which
are represented by the principal components. The principal components are lin-
ear combinations of the original asset returns and are constructed such that the
first component is variance maximizing and the subsequent components are vari-
ance maximizing with the constraint of being orthogonal to the preceding compo-
nents. Functional principal component analysis is based on the same principles,
but considers data to have an underlying functional form that can be modelled by

107



CHAPTER 5. RECAPITULATION

univariate functions. The functional approach accounts for the dependence of the
underlying observations over time and thereby models the asset returns’ underlying
functional process. This implies that the functional data analysis can handle assets
with different sampling rates or missing observations, which is a great advantage to
multivariate analysis. Thereby eigenfunctions can be modelled over time, which is
contrast to principal component analysis, that gives a static, non-temporal estimate
of the eigenvectors. Hence it is assumed that the functional framework is better
in caputuring the variability in asset returns over time. In order to use functional
principal component analysis, data has to be transformed to functional data. The
transformation is done using basis functions, which are the counterpart to basis vec-
tors in functional space. Since asset returns are non-periodic, I introduced B-splines
as basis functions. Furthermore a technique for smoothing data has been described
which uses a roughness penalty and is based on weighted least squares. After study-
ing these methods to extract risk factors, some risk-based asset allocation strategies
have been introduced.

The main focus of this thesis was on the Equal Risk strategy which covers over
different techniques. One way to consider this strategy is by choosing the portfolio
weights of the single assets in a portfolio such that every asset contributes with the
same risk to the portfolio. This approach can either be considered in the original
asset space or it can be transformed into the principal space by using principal
component analysis. Another way to consider this approach is to select the portfolio
weights of the single assets in a portfolio such that a principal component analysis
performed on the asset returns yields as equal as possible volatility in the principal
component directions. This approach was also performed using functional principal
component analysis. Note that the Equal Risk strategy can be considered as a
tradeoff of the Minimum Variance and Equally-Weighted strategies in terms of the
portfolio variance, i.e. the risk associated when using this strategy.

For the purpose of investigating the performance of the different asset allocation
strategies I considered a backtest on historical data. A walk-forward backtest with
rolling estimation window was used to compute the portfolio weights every month,
where different sizes of the estimation window were analyzed. Using the assumption
that short-selling is not allowed, three different portfolios were backtested. These
portfolios included a different number of assets and different types of assets in order
to investigate the behaviour of the different strategies. Moreover, I focused on
investigating the impact of omitting some principal components, i.e. to reduce the
number of underlying risk factors. Selecting a method and a threshold for deciding
on how many principal components that should be omitted is a difficult choice and
I found ambivalent results regarding this issue. In some cases the mean profit of
a risk-based strategy that uses principal component analysis could be improved by
omitting components with the cost of a higher volatility of the profit, which in all
cases led to a reduced Sharpe ratio compared with the performance of the strategies
that used all principal components. Further research on this topic could improve
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the performance of the risk-based strategies that are based on principal component
analysis.

From the backtest it could also be concluded that the different risk-based strategies
perform different when varying the size of the estimation window and the composi-
tion of the portfolio. During normal times a larger estimation benefits the risk-based
strategies, but during highly volatile periods a shorter estimation window should be
used in order to capture the exposure to the risk factors present during this pe-
riod. The risk-based strategies most of the time had a lower volatile profit than the
Equally-Weighted strategy, the benchmark strategy. At the same time the bench-
mark strategy often had a higher mean profit than the risk-based strategies.

There is still room for improvement of the risk-based strategies. There may be
placed more emphasis on the estimation of the covariance matrix, since small esti-
mation errors can cause large deviations in the computation of the risk contributions
or in the principal component analysis and thereby in the selected portfolio weights.
Furthermore, the process of smoothing data in the functional approach may be in-
vestigated more comprehensively since this also can cause a completely different
allocation. In the setup of the backtest it should be considered to make the parame-
ters time-varying, i.e. to compute the number of principal components, the number
of basis functions, and the smoothing parameter for every estimation. This might
improve the principal component analysis-based strategies, since it seems reasonable
that the number of underlying risk factors varies over time, and that data has to
be smoothed to different degree over time in the functional approach of the Equal
Risk strategy. This has been disgraded in this thesis due to lack of time and thereby
simplification of the implementation of the backtest. It could also be considered to
implement the other principal component analysis-based strategies using the func-
tional approach, since there only is transformed one Equal Risk approach to make
use of functional principal component analysis. Furthermore, in the setup of the
backtest there still are disregarded observations for assets with different sampling
rates in the functional approach for ease of the implementation of the backtest,
although it theoretically is possible to include all observations. Hence including
all available observations of all assets might improve the functional approch. This
thesis focuses on the standard deviation as the measure of risk, but it could be
investigated if other measures of risk, e.g. the quantile-based value at risk, VaR,
or shortfall-based measures, could be used in the computation of the risk contribu-
tions in the Equal Risk strategy. Furthermore, other projections methods could be
considered, e.g. independent component analysis.

The usage of risk-based asset allocation strategies is not that widespread yet, but
several Nordic investors allocate a part of there assets in alternative, risk-based
strategies. To mention some of them: the Danish pension fund PKA, the Swedish
pension fund SPK, and the Swedish state pension funds AP2 and AP3. The Danish
pension fund PKA changed their equity strategy to also allocate in alternative, risk-
based strategies in 2012. [Liinanki, February/March 2015] Also the government
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pension fund of Norway, SPU, also called ’The Oil Fund’ is known to use factor
investing. It is one of the world largest pension funds, which at the end of 2012
managed $685 billion. [Ang, 2014] The reason that many investor still are hesitating
to use risk-based allocation strategies is that it can be time consuming to understand
and implement these allocation strategies. [Liinanki, February/March 2015]
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Appendix A
A.1 Hilbert Spaces
In order to define a Hilbert space, which is an infinite dimensional vector space,
firstly there is given a formal definition of an inner product.

Definition A.1 (Inner Product)
Consider a real vector space H. A mapping 〈·, ·〉 : H × H → R is called an
inner product on H if it has the following properties:

• For any α, β ∈ R and f , g,h ∈ H

〈αf + βg,h〉 = α 〈f ,h〉+ β 〈g,h〉

and
〈h, αf + βg〉 = α 〈h,f〉+ β 〈h, g〉 .

This means that an inner product is bilinear.
• In addition, it is symmetric:

〈f , g〉 = 〈g,f〉 , for all f , g ∈ H.

• And it is positive definite:

〈f ,f〉 ≥ 0 for all f ∈ H with equality if and only if f = 0.

[Björk, 2009]

Definition A.1 shows that the inner product is a generalization of the standard
scalar product on Rn. The definition below shows how a norm and the concept of
orthogonality also can be generalized to an infinite dimensional vector space.
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Definition A.2
• Let f ∈ H, then for any vector f the norm is denoted by ‖f‖ and defined

by:
‖f‖ =

√
〈f ,f〉.

• Two vectors f , g ∈ H are said to be orthogonal if 〈f , g〉 = 0.
• For any linear subspace M ∈ H the orthogonal complement is defined to

be:
M⊥ = {f ∈ H : f⊥M}.

[Björk, 2009]

A vector space with an inner product is called an inner product space, which leads
to the following definition of a Hilbert space.

Definition A.3 (Hilbert Space)
A Hilbert space is an inner product space which is complete, i.e. every Cauchy
sequence is convergent, under the induced norm ‖·‖ in Definition A.2. [Björk,
2009]

A generalization of the idea of matrices in infinite-dimensional spaces are Hilbert-
Schmidt operators as given in the following definition.

Definition A.4 (Hilbert-Schmidt operator)
Let D ⊂ Rn be a bounded domain. The function k : D × D → R is called a
Hilbert-Schmidt kernel if: ∫

D

∫
D
|k(x, y)|2dxdy <∞,

that is, k ∈ H. Define the integral operator K on H, K : u → Ku for u ∈ H,
by:

[Ku](x) =
∫
D
k(x, y)u(y)dy. (A.1)

The mapping K is called a Hilbert-Schmidt operator. [Alexanderian, 2013]

The following lemma states that the Hilbert-Schmidt operator is a compact operator,
i.e. some theory concerning matrices can be applied to this operator.
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Lemma A.5
Let D be a bounded domain in Rn and let k be a Hilbert-Schmidt kernel.
Then the integral operator K : H → H given by equation (A.1) is a compact
operator. [Alexanderian, 2013]

Proof. Omitted.

The following theorem generalizes the result that any positive semi-definite matrix
is the Gram matrix of a set of vectors to Hilbert spaces.

Theorem A.6 (Mercer’s Theorem)
Suppose that k(s, t) is a symmetric, continuous, and nonnegative definite kernel
function on D × D. Suppose further that the corresponding Hilbert-Schmidt
operator K is positive. Then there exists an orthonormal set of eigenfunctions
ξj(x) and eigenvalues λj such that:

k(s, t) =
∞∑
j=1

λjξj(s)ξj(t),

where convergence is absolute and uniform on D ×D. [Alexanderian, 2013]

Proof. Omitted.

Compact self-adjoint operators on infinite dimensional Hilbert spaces act very sim-
iliar to symmetric matrices.

Theorem A.7 (Spectral Theorem)
LetH be a Hilbert space and let T : H → H be a compact self-adjoint operator.
Then, H has an orthonormal basis {ξi} of eigenvectors of T corresponding to
eigenvalues λi. [Alexanderian, 2013]

Proof. Omitted.
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A.2 Flow Chart: R Code
The above flow chart illustrates the programming flow in R.

Read portfolio data from database

Portfolio optimization - Choose:
• Initial portfolio weights,
• Length of estimation window,
• Long only/ long-short portfolios,
• Allocation strategy.

Determines:
• Number of principal components
m,

• Number of basis functions K,
• Smoothing parameter λ.

Optimization procedure (depen-
dent on the allocation strategy)

Objective function (depen-
dent on the allocation strategy)

• Transforms data to log returns,
• Removes outliers.

First a portfolio data is read, where every series constains a date and a price. The
next function is used to backtest an asset allocation strategy as described in Section
4. In order to run a backtest one has to select between several options as described
in the flow chart. At the same time determines this function parameters that are
used in the optimization procedures, e.g. the number of principal components used
in the PCA-based strategies.

The portfolio optimization function calls the optimization procedure, which
depends on the chosen allocation strategy. The objective function to be optimized
is in another function. It is also here that data is transformed to log returns and
that outliers are removed.

It is possible to determine portfolio weights based on a specific period of time by
skipping the second step, Portfolio optimization, and just using the Optimiza-
tion procedure.
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