
HomePort
An extension to allow automation
of smart devices on heterogene-

ous networks

Aalborg University
Department of Computer Science

Master Thesis

Department of Computer Science
Aalborg University
Selma Lagerlöfsvej 300
Telephone: +45 99 40 99 40
Telefax: +45 99 40 97 98
http://cs.aau.dk

Title:

HomePort – An extension to
allow automation of smart de-
vices on heterogeneous net-
works

Subject:

Home Automation

Project period:
Master Thesis,
Spring semester 2015

Project group:
DES101F15

Attendees:
Brian Holbech
Christian Mortensen
Søren Knudsen

Main advisors:
Arne Skou
Brian Nielsen

Edition: 1.0

Number of pages: 95

Appendix pages: 25

Finished: 9/6-2015

Synopsis:

In the field of Home Automation, a large
number of vendor-specific protocols makes
it difficult for end-users to control their
smart devices in a uniform manner. The
HomePort project attempts to solve this
problem by providing a platform that en-
ables end-users to uniformly access all of
the connected devices. Currently, there
are no means in HomePort for automating
these smart devices.
In this report, a language for automating
smart devices in HomePort is presented, as
well as a language which can be used to
specify unwanted behavior. In accordance
to these languages, a prototype implemen-
tation is integrated into HomePort, which
makes it possible for users to utilize the
languages for automation of smart devices
and for detecting unwanted behavior in the
system.
Based on a set of scenarios presented
throughout the report, automation and
safety rules are created and their behavior
is observed in order to evaluate the proto-
type implementation.
Lastly, a conclusion of the project is drawn
and suggested improvements to the system
are discussed.

The content of this report can be used freely; however publication (with source material)
may only occur in agreement with the authors.

Brian Holbech

Christian Mortensen

Søren Knudsen

Preface

This master thesis is written by three software engineering students during
the spring semester of 2015. The overall purpose of the project is to extend
HomePort with functionality to enable automation of smart devices, and to
create a system that detects unwanted behavior.

References to the bibliography is indicated by the use of []. For example,
[1] references to the first entry in the bibliography. Moreover, “...” is used in
code examples when code has been omitted.

We would like to thank Brian Nielsen and Arne Skou for supervision
throughout the project period.

Contents

1 Analysis 13
1.1 HomePort . 13
1.2 Related Work . 16

1.2.1 HomeOS . 16
1.2.2 BOSS . 17
1.2.3 RuCAS . 19

1.3 Generalized Architecture . 20
1.4 Challenges . 21

1.4.1 Automation Control 22
1.4.2 Device Groupings . 23
1.4.3 Unintended Behavior 23
1.4.4 Missing Components 24

1.5 Problem Delimitation . 25
1.6 Requirements Specification 26

2 Automation Rules 29
2.1 Scenarios . 29

2.1.1 Event Triggers and Delayed Actions 30
2.1.2 Interval Triggers . 30
2.1.3 Deactivate Rules . 30

2.2 Requirements . 30
2.3 Language Specification . 32

3 Safety Rules 35
3.1 Scenarios . 35

3.1.1 Conditional Statement and Service Groups 35
3.1.2 Time Window of Validity 35
3.1.3 Elapsed-time Monitoring 36
3.1.4 Time-based Monitoring 36
3.1.5 Conditional Monitoring 36

3.2 Requirements . 36
3.3 Language Specification . 37

7 of 95

CONTENTS CONTENTS

4 Grouping 41
4.1 Scenarios . 41

4.1.1 Grouping of Devices 41
4.1.2 Group Subsets . 41
4.1.3 Group Filtering . 42

4.2 Requirements . 42
4.3 Grouping of Devices and Services 43
4.4 Language Specification . 46

5 System Design 49
5.1 Component Architecture . 49
5.2 Event System . 50
5.3 Grouping . 51
5.4 Automation Engine . 52
5.5 Safety Engine . 52
5.6 REST Interface . 53

6 Evaluation 55
6.1 HomePort Implementation . 55
6.2 Test Setup . 57
6.3 Experiment . 57

6.3.1 Automation Rules . 57
6.3.2 Safety Rules . 60
6.3.3 Grouping . 63
6.3.4 Findings . 63

6.4 Conclusion . 65
6.5 Future Work . 66

6.5.1 Handling Unwanted States 66
6.5.2 Cooperation Between Automation and Safety Rules . 66

A REST API Specification 71

B Test Setup 91

C Automation Rules 93

D Safety Rules 95

8 of 95

CONTENTS CONTENTS

Introduction

More and more types of smart devices are currently being made available.
Many of these devices can be controlled remotely using smart phones, and
some vendors also support automation to some degree. These smart devices
make it possible to automate many tasks. For example, a home automation
system could automatically adjust radiators and open and close windows in
order to ensure a healthy indoor climate.

The problem with these smart devices, however, is that cooperation is
often limited to a range of products from the same vendor. This means that
if the thermostats and windows from the previous example are made by dif-
ferent vendors, the devices may be incompatible, and the desired cooperation
may not be possible.

In this project we will look at the home automation system HomePort,
a home automation system developed at Aalborg University, which already
supports integration of smart devices located on heterogeneous networks and
investigate how it can be extended to allow device automation across these
networks.

9 of 95

CONTENTS CONTENTS

10 of 95

CONTENTS CONTENTS

Initiating Problem

HomePort is a home automation platform currently used in a research con-
text. The purpose of the system is to provide a uniform interface to smart
devices on heterogeneous subnetworks and present these devices through a
REST interface. This is done by allowing third-parties to implement plug-
ins that are capable of translating device specific protocols into a uniform
protocol understood by HomePort.

Currently, HomePort only offers limited support for interaction between
devices across heterogeneous networks. This is not optimal, since the basic
goal of Home Automation is to provide improved convenience and comfort
by combining functionality from various devices.

How can HomePort be extended in a way that allows devices on different
subnetworks to be utilized for automation? Which changes must be made
to the existing HomePort architecture in order to facilitate the extension?

11 of 95

CONTENTS CONTENTS

12 of 95

1 | Analysis

In this chapter, the current state of HomePort is described and related work
regarding home automation systems that implement device automation in
different ways are analyzed. Based on this related work a generalized archi-
tecture for home automation is proposed and four challenges that we find
central in regard to extending HomePort with functionality for device au-
tomation is presented. Finally, we identify problems that should be solved
in this project and present a list of requirements.

1.1 HomePort

HomePort is a system that attempts to aggregate smart devices from dif-
ferent vendors and present these devices through a REST interface to al-
low uniform control of these devices regardless of their underlying protocol.
Developers can add support for smart devices located on different subnet-
works by writing adapters that translate the specific subnetwork protocol
into something that HomePort can understand. A subnetwork is, in this
context, a network of devices with the same underlying protocol. E.g a
network where all devices use the ZigBee[1] protocol.

In the latest version of HomePort, described in [6], we added support for
dynamic reconfiguration of adapters through the use of plugins isolated in
separate processes. Like previous versions, HomePort is developed in the C
programming language and is intended to run on a Linux distribution. The
resulting architecture of the project can be seen in Figure 1.1.

The HomePort Core is the main entry point of the system and is responsi-
ble for maintaining the state of the configuration and starting the Webserver
and Plugin Manager.

The Configuration is a data structure containing abstractions for plugins
and adapters. Figure 1.2 shows the interdependencies between data struc-
tures in the configuration. An adapter is an abstraction of a subnetwork and
can contain a number of devices belonging to the specific subnetwork. Each
device can have a number of services that can be used to control the device.
A service must either be an actuator (read/write) or a sensor (read-only).
Plugin data structures contain information about currently installed plugins.

13 of 95

HomePort Analysis

Plugin Directory

HomePort Core

Plugin ManagerPlugin Discovery

HomePort

Plugin

Configuration Webserver + REST

Plugin

Psychical
Device

Psychical
Device

Psychical
Device

Virtual
Device

Virtual
Device

Virtual
Device

Figure 1.1: Component architecture of HomePort

The Webserver exposes a REST interface, which contains methods to
get and set the state of plugins and devices. Plugins can be started and
stopped and devices can be manipulated by calling one of its actuator services
with appropriate parameters using a PUT request. Furthermore the state of
plugins, devices and services can be retrieved through GET requests.

The Plugin Manager is responsible for discovering plugins and announc-
ing these to the HomePort Core. When a new plugin is discovered the Plugin
Manager creates a data structure instance for it, passes this data structure
to the HomePort Core and attempts to start the plugin. It is also the job
of the Plugin Manager to facilitate communication between the HomePort
Core and individual plugins.

Plugins are used to implement code that translates subnetwork specific
protocols into something HomePort can understand. Plugins can do this
by using a Plugin API that can add, remove and update data structures in
HomePort’s configuration. Because plugins are isolated in separate processes
the API uses IPC to communicate with the Plugin Manager. This commu-
nication is bi-directional and is also used to facilitate requests made through
the REST interface to functions implemented in specific plugins.

The architecture in Figure 1.1 allows new adapters and devices to be
added to HomePort through the use of plugins, but lacks a proper way of
interconnecting them if they are located on different subnetworks. Currently,
the only way of achieving interconnectivity between devices on different sub-

14 of 95

Analysis HomePort

PluginConfiguration

Adapter Device

Service

Sensor

+ GET()

Actuator

+ PUT()

+ GET()

0..*1

1

0..*

1 0..*

1

1..*

Figure 1.2: UML diagram of HomePort data structure interdependencies

15 of 95

Related Work Analysis

networks is through the REST interface and requires that the logic of such
interconnectivity is implemented across the different plugins.

1.2 Related Work

In this section, three home automation systems that showcase different ap-
proaches for solving automation tasks are described. BOSS and HomeOS
rely on abstractions and application development for achieving this, while
RuCAS relies on event-condition-action rules created by the end-user.

1.2.1 HomeOS

HomeOS[3] is a platform that presents users and developers with a PC-like
abstraction for technology in the home. This means that network devices
regardless of their underlying protocols are presented as peripherals with ab-
stract interfaces and developers can use these interfaces to write applications
that enable cross-device tasks. The platform also gives users a management
interface for installing new applications, controlling access rights manage-
ment, etc.

Figure 1.3 shows the different layers in the HomeOS architecture. The de-
vice connectivity layer and device functionality layer are used for discovering
devices on different subnetworks and translating these devices into services
that can be used by developers. Services have roles and each role contains
a list of operations that enables interaction with the underlying device. A
“lamp” service can for instance have the role “lightswitch” with the opera-
tions “lightOn” and “lightOff”. It is also possible for a service to have more
than one role.

HomeOS enables devices to interact with each other through developer
written applications running in the application layer. Applications are writ-
ten against standardized APIs that contain functionality for subscribing to
notifications and invoking operations on existing services. Developers can
leverage these APIs to create applications that perform different automa-
tion tasks. If for instance two services with a “lightswitch” role and one
service with a “sensor” role existed in the system, an application could in-
voke “lightOn” and “lightOff” on the two “lightswitch” roles, depending on
the value returned by a “motionDetected” operation on the “sensor” service.

Applications must provide a manifest file that lists mandatory and op-
tional roles. This way the application layer can determine if an application
is compatible with the home and tell the user if services are missing.

The management layer provides features for adding and removing appli-
cations as well as other management tasks. When adding a new application
in HomeOS, the management layer controls that no conflicting accesses to a
device exists. A conflict can occur if two different applications have access
to the same device during the same time period. If a conflict is found the

16 of 95

Analysis Related Work

Figure 1.3: Overview of the HomeOS architecture

user is notified and must decide which application should be given the higher
priority.

It is also in the management layer that new devices are configured. When
a new device is registered, the user is prompted to choose a location for the
device. Knowing where a group of devices is located in the home makes
it possible to specify policies for a group of devices instead of individual
devices. Device groups are arranged in a tree hierarchy, which allow groups
to be contained in other groups. E.g. a lamp can be located in the living
room and the living room can be located indoors.

HomeOS does not provide end-users with the possibility of manually
creating rules for controlling automation, but relies purely on application
development. If a user wants to turn on the lights in the hallway when the
front door is unlocked, an application that supports this must be installed.

1.2.2 BOSS

Building Operating System Services (BOSS)[2], is a collection of services
that make up a distributed operating system for controlling smart devices.
By using these services, control applications can access and control devices
in an abstract manner, while also having well defined fault tolerance policies.
Generally, these control applications could be either automatic systems that
react to the environment using a set of rules, UI applications that allow users
to manually override settings in the system, or a combination of both.

Figure 1.4 shows an overview of the architecture used in BOSS. The
Hardware Presentation Layer (1), the Hardware Abstraction Layer (2), and

17 of 95

Related Work Analysis

the Time Series Service (3) all serve to create abstractions of physical de-
vices. Devices can be accessed through the HAL using an approximate query
language that allows control applications to query devices based on their re-
lationship to other items in the building (e.g. “lights in living room”), rather
than having to use the specific address or name of a device. The values of
these devices can then be accessed in the TSS, which contains a database
of both current and historical device readings. The HAL’s query language
serves to create an abstraction over devices in order to hide their physical
address (e.g. an IP address). Because the control applications use this ab-
straction when applying actions to devices, dynamic addition and removal
of devices in the system is handled seamlessly at the highest level. The cat-
egorization of devices that must happen in the HAL is, however, not trivial.
According to the article[2], this problem is not solved, and the mapping of
devices to types and locations is currently very manual.

Figure 1.4: Overview of the BOSS architecture

When a control application wants to control a device, it must do so by
queuing a transaction in the Transaction Manager (4). A transaction con-
tains a number of actions that should be applied to a number of devices, as
well as a lease time, a revert sequence, and an error policy. First, the trans-

18 of 95

Analysis Related Work

action manager checks whether the devices in question are already leased
out to another control application. If this is the case, the transaction is
only attempted if it has a higher priority. In case a transaction fails to fully
execute all of its actions, the chosen error policy will be applied.

When a transaction’s lease time is up, the state of the affected devices is
rolled back using the revert sequence, and control of the devices is yielded to
the transaction with the next highest priority. If no such transaction exists,
a preprogrammed default behavior takes control of the devices.

Lastly, the Authorization Service (5) allows an administrator to restrict
access to physical resources. These restrictions apply in terms of the approx-
imate query language, so, for example, a user could be restricted access to a
certain type of device in a specific part of the building.

1.2.3 RuCAS

RuCAS is a framework which makes it possible to create context-aware ser-
vices [7]. A context-aware service is able to recognize a real-world context,
and behave autonomously based on this context. All the context-aware ser-
vices in RuCAS are described as ECA (Event-Condition-Action) rules. The
architecture of RuCAS is shown in Figure 1.5, and is built on top of another
framework called Sensor Service Framework (SSF), which presents physical
devices as web services.

Figure 1.5: The architecture of RuCAS

The RuCAS architecture consists of several layers, which together makes
it possible to create context-aware services. The first layer in RuCAS is the
adapter layer, which manages all the adapters in the system. An adapter in
RuCAS is a wrapper around a web service for accessing it uniformly. Similar,

19 of 95

Generalized Architecture Analysis

the Action layer in RuCAS manages all the actions in the system. An action
in RuCAS is also a wrapper around a web service e.g. the action LightOn
could map to the web service http://rucas/lamp/on.

The context layer manages all the contexts created in RuCAS. A single
context in RuCAS is called an atomic context, and it consists of a context ex-
pression which is a logical formula where a true or false value can be deduced
e.g. adapter1.value >= 25. If a single atomic context lacks expressiveness,
several contexts can be combined using logical operators (AND, OR) which
forms a compound context. Each atomic context can be configured to be
periodically evaluated, and when an evaluation is triggered the context will
fetch a new value from the adapter and evaluate itself.

The contexts are the main building blocks for creating rules in RuCAS,
and it is used in the event and condition part of the rule. The event part
consists of a single context, which is a trigger for evaluating the rest of the
rule. The condition part can consist of one or more contexts, which acts as
a guard condition(s). When both the event and condition clauses are true,
the chosen action(s) will be executed. RuCAS exposes a REST API which
makes it possible to add new elements to the layers depicted in Figure 1.5,
and uses these element to build an ECA rule.

1.3 Generalized Architecture

The three home automation systems described above, although different,
have some architectural commonalities. Figure 1.6 shows a proposed mul-
tilayered architecture that encapsulates the three solutions in generalized
terms.

At the lowest tier are a number of Devices. These devices may be con-
nected through subnetworks and use arbitrary protocols for communication.
Heterogeneously connected devices are the premise of the problem of creating
a general solution for home automation. An Adapter Layer facilitates device
discovery, as well as communication over the heterogeneous subnetworks us-
ing device specific protocols. Beyond this point, devices can be accessed in
a uniform manner by the rest of the system.

Third is a Device Abstraction Layer. This layer serves to create meaning-
ful abstractions over the connected devices, in an attempt to help facilitate
high-level control over the system. For example, devices could be categorized
by their type (e.g. lamp or television), or by location (e.g. living room or
kitchen). In BOSS this layer consists of the HPL and TSS that allow users
to access devices and their values using a query language. RuCAS allows the
creation of contexts – a concept used to allow users to define and reference
aggregations of several devices when creating rules. In HomeOS devices are
assigned roles which serve as abstract definitions of the capabilities of the
device.

20 of 95

Analysis Challenges

Figure 1.6: Generalized multilayered architecture for home automation sys-
tems

Above the device abstraction layer is the Management Layer. The pur-
pose of this layer is to validate actions before they are sent to the physical
devices. This validation can consist of several processes, such as authentica-
tion, conflict detection, and prioritization. In both BOSS and HomeOS, this
layer contains a UI which allows an administrator to set up access rights and
priorities for the various applications that control the system. In HomeOS,
the Management Layer is also used for installation of applications, as well
as a rudimentary view of connected devices to allow manual control.

The Control Layer, at the top of the architecture, is what ultimately con-
trols the system. The Control Layer comprises components that allow either
a user or an automatic system to control connected devices. In RuCAS, the
control system consists of a rule engine with a REST interface, in which a
user can create event-condition-action rules that are evaluated on an inter-
val. HomeOS and BOSS both expose APIs that can be used for developing
applications that control the system.

1.4 Challenges

This section describes four challenges that we find central in regard to ex-
tending HomePort with support for device automation. We compare a rule
based and an application based approach for handling device automation and
look at how the systems from Section 1.2 use device groups to ease manage-

21 of 95

Challenges Analysis

ment tasks. Then we discuss how the existence of many rules or applications
in a system can lead to unintended system behavior. Lastly, we compare
the current HomePort architecture with the generalized architecture from
Section 1.3 and identify missing components.

1.4.1 Automation Control

The systems described in Section 1.2 have different approaches on how to
handle automation control. All three solutions include structured ways to
introduce automation. HomeOS and BOSS rely on exposing their services
through an API, and having developers make control applications for the
system. These applications can then be utilized by end-users without much
configuration. RuCAS relies on a central rule engine with an interface which
can be used for building rules and including them in the rule engine.

Both solutions have advantages and disadvantages from the point of view
of the end-user. When using an application system, it is theoretically easy for
an end-user to install an application that fits the configuration of devices he
needs to control. In practice, however, the user relies heavily on the specific
implementation of applications, and may discover that an application has not
yet been developed for his specific use-case. This restriction is not present
when using a rule-engine in which all devices can be combined arbitrarily at
will. This means that users can set up any form of automation they see fit,
asuming the rule language has enough expressiveness, and can also change it
whenever they like. On the other hand, when using the rule engine provided
with RuCAS, the user is responsible for configuring the entire system, which
can be a big task if there are many devices to control. In such advanced
automation cases, it may be preferable to use a tried-and-true pre-configured
application.

The application-based approach used by both BOSS and HomeOS rely on
some form of internal typing or categorization of devices that must happen
before an application can access them effectively. HomeOS tries to solve this
problem using roles that can be assigned to devices. If no role that describes
the functionality of a specific device exists, a new one can be added to a
central database. This solution seems sound but can lead to confusion if
developers create new roles that cover the same functionality. In BOSS,
devices are categorized both based on the functionality that they provide,
as well as their physical location. This allows applications to access them
using an approximate query language designed for the task. BOSS provides
no solution for mapping devices to these categories automatically. Instead,
an administrator must manually perform this task each time a new device is
added to the system. When using a rule-engine configured by human users
this problem is diminished, since they are able to interpret arbitrary device
categorization based on the context.

22 of 95

Analysis Challenges

1.4.2 Device Groupings

Grouping of devices can make it faster and more clear to perform different
managements tasks. It can for instance allow users to specify that a policy
or action should be applied to a group of devices rather than be applied for
each individual device. It can also make it easier for users to find the device
they are looking for, if devices are grouped in a meaningful way.

In HomeOS, when a new device is registered the user must choose a
location for it. This aligns with physical access, since devices are divided by
rooms. It also makes it possible to allow or deny users access to devices in an
entire room. The location of devices is also used by applications when they
need to find a certain device type in a specific room. The type of a device is
not specified by the user, but by the module that created the device.

Devices in BOSS are also grouped by location and type as in HomeOS.
The intention in BOSS however, is that the grouping process should happen
automatically without any user involvement. This has showed to be very
difficult and a solution for this has therefore not been developed. In RuCAS
device groupings do not exist. It is, however, possible to create compound
contexts that aggregate information from several devices.

The challenges involved in developing a solution for device groupings is
to identify what groups should be present and whether groups should be
manually specified by the user or be automatically derived by the system.

1.4.3 Unintended Behavior

When controlling a home automation system, one must take care when set-
ting up the rules that govern automatic control in order to avoid unintended
behavior. Requests for control can lead to unintended behavior in several
ways, some of which will be described in the following.

When several sources control the home automation system over the same
period of time, some may potentially effect conflicting changes in the same
device(s) concurrently. As an example of this, consider the following two
rules:

if LightSensor.Value >= 50 then Lamp.TurnOn() end

if LightSensor.Value <= 60 then Lamp.TurnOff() end

If these rules are evaluated while the value of the light sensor is between
50 and 60, the conditions of both rules are fulfilled. One will request that
the lamp turns on, while the other will request that it turns off. If this is
not handled in the system, both actions will be executed and the ultimate
result of the evaluation will depend on the order of execution in the specific
case.

In HomeOS, concurrent device access is handled by assigning priorities
to the applications that potentially can control the same device at the same

23 of 95

Challenges Analysis

time. This guarantees that only one application at a time can access a specific
device and since the HomeOS API allows applications to make synchronous
requests to a device; applications have control over the device as long as
it needs. BOSS handles concurrent device access in a similar manner to
HomeOS, while RuCAS does not specify how this problem is solved.

Another kind of unintended behavior may occur when many rules or ap-
plications exist in the system. Although individual rules may work fine, rules
in combination may not align with the intention of the user. As more rules
are introduced in the system, it gets harder for a user to predict how it will
react in all situations. In some cases this may never be a problem, or only
cause minor inconveniences, but the system could potentially exhibit unin-
tended wasteful or even dangerous behavior. In some situations problems
may be easy to find since they often occur in the system, but there may also
be corner cases that rarely occur and are difficult to find.

It seems that neither HomeOS, BOSS nor RuCAS have a way of speci-
fying behavior that should not occur in the system, but trust that users are
able to command the overall system behavior even though many rules or
applications may be present in the system. Even in the case where a user is
able to properly set up the collection of automation rules to make the system
behave as intended in all situations, it seems reasonable to assume that in
some cases it may be a difficult task to consider what behavior the system
will exhibit in every case.

The challenge in solving these problems lies in choosing a solution that
provides users with confidence in the system’s ability to exhibit appropriate
behavior while also being practical to use.

1.4.4 Missing Components

Comparing the HomePort architecture described in Section 1.1 with the
generalized architecture from Section 1.3 reveals that some components are
missing in HomePort.

HomePort’s plugin system makes up the Adapter Layer, enabling third
parties to develop plugins that can discover devices on any given subnetwork,
and may use a provided API to add these devices to HomePort’s configura-
tion dynamically.

The configuration is an abstraction over all connected devices that can
be used by the rest of the system with no regard to the specific protocol
that must be used for communication. This configuration is HomePort’s
Device Abstraction Layer, but it is limited in that only plugins are able to
control the level of abstraction. Users have no way of aggregating devices
or otherwise controlling the level of abstraction with which devices can be
accessed. Since HomePort currently just exposes every connected device and
service in a REST interface for manual manipulation, the system does not
rely on persistent device and service ID’s.

24 of 95

Analysis Problem Delimitation

The Management Layer in HomePort consists of a simple REST inter-
face that exposes all devices for control. The interface only allows for polling
device values directly through plugins (i.e. there is no event or notification
system). There is no way of restricting user access to the system. If users
are connected to the same network as HomePort, they have access to the
entire REST interface without restriction. The system also does not handle
conflicting actions in any way. If a user was to program an application for
automation using the current system, he would have to guarantee that ac-
tions sent through the REST interface have already been checked for conflicts
prior to this step.

Lastly, the Control Layer is completely missing. For a user to begin
setting up automation in HomePort, he would have to develop this whole
layer himself. The REST interface could technically be used for this, but
in order to allow users to control the system or set up automation in a
meaningful way, the interface must be improved, or a rule engine must be
integrated in HomePort.

1.5 Problem Delimitation

To allow devices on different sub-networks to be utilized for automation, we
propose that a rule engine should be integrated in HomePort. As discussed
in Section 1.4.1 there are both advantages and disadvantages with choosing
a rule engine over an application based approach. One advantage of choosing
an application based approach is the simplicity of setting up automation as
an end-user. If an application that supports a desired automation scenario
exists, a user can easily install and configure the application without having
to manually create advanced event-action rules.

On the other hand, if no application exists for the purpose, the user must
wait until a developer finds time to built it. Using a rule engine it would
be possible for the user to manually create event-condition-action rules that
fulfill most scenarios. In systems using a rule engine, users can visually see
devices in the system and has control over which should be included in a
rule. Therefore the need for predefined device categories is not absolutely
necessary.

It is, however, still useful to allow users to create groups of devices us-
ing arbitrary categories. As mentioned in Section 1.4.2, there may be some
advantages to grouped device access. Namely, having the ability to reason
about a group of devices instead of single devices can potentially make it
easier for end-users to cope with the complexity of creating rules. We there-
fore propose that end-users should be able to create device groups as a form
of abstraction that can ease the process of both creating and maintaining
rules in HomePort.

Another focus of this project will be to handle unintended system be-

25 of 95

Requirements Specification Analysis

havior, described in Section 1.4.3. Solutions for handling concurrent device
access are already proposed by HomeOS and BOSS and a solution for this
will therefore not be considered. Instead, the focus will be on developing
a language that can help users command the overall system behavior even
though many rules or applications are present in the system.

As described in Section 1.4.4, service values must be retrieved using
polling. By introducing automation rules, the number of requests to services
will increase because the condition of a rule continuously must be checked to
find out if actions in the rule should be carried out. This consumes unneces-
sary many resources and can be avoided by introducing an event mechanism
that allow automation rules to subscribe to state changes of services. We
therefore suggest that an event mechanism is integrated with HomePort.

The management layer described in Section 1.4.4 will not be considered
in this project. The layer currently consists of a REST interface that al-
lows control over selected functionality in HomePort. The REST interface
will, however, be extended as appropriate in order to allow access to new
functionality.

1.6 Requirements Specification

The following requirements are listed in order of importance, the first, be-
ing the most important. The reason for choosing these requirements are
explained in Section 1.5.

1. HomePort must be extended with a rule engine

The rule engine must support simple event-condition-action rules. To
make it possible to interact with the rule engine, the existing REST in-
terface must be extended with support for rule management operations
(i.e. add, remove, and edit rules).

2. It must be possible to subscribe to events about state changes
in connected devices

This event mechanism should be usable across the different compo-
nents in HomePort. E.g. the rule engine should be able to receive
notifications when the state of a device or service changes in Home-
Port. Furthermore, the plugin API should be extended to allow plugins
to publish updated values on services.

3. Users must be able to define unintended behavior in the sys-
tem

The system should be able to handle unintended behavior by allowing
users to specify scenarios that should never occur in the system. We

26 of 95

Analysis Requirements Specification

propose that users should be able to define unintended behavior in
a similar manner that intended behavior can be defined using event-
condition-action rules. The mechanism for defining such unintended
behavior will be named Safety Rules.

4. Users must be able to manually group devices

To make it easier for users to create rules and get an overview of
existing devices in HomePort, it must be possible to group devices
based on location or type. The REST interface must also be extended
to support add, edit and remove operations to facilitate management
of device groupings.

27 of 95

Requirements Specification Analysis

28 of 95

2 | Automation Rules

As stated in Requirement 1, an event-condition-action rule engine must be
integrated into HomePort. From now on this rule engine will be referred to
as the automation engine.

In order to create such an automation engine, we will first design a lan-
guage which can be used to express rules for HomePort. As the name sug-
gests, rules in an event-condition-action format have three main components.
First, one or more event triggers may be added to the rule. In our case these
triggers will be state changes in observable devices connected to HomePort
(e.g. when a switch is flipped). The condition component is an expression
of boolean algebra. The values in this expression may be a combination
of absolute values and live sensor values. The last main component of the
rule is the action. This component defines one or more actions that must
be applied in the case where an event trigger is fired, and the condition is
satisfied. In our case, an action is simply an assignment of a value to an
actuator connected to HomePort.

1 event: LightSensor
2 cond: LightSensor > 70
3 action: Lamp.TurnOn()

Listing 2.1: Example of event-condition-action rule

An example of a simple event-condition-action rule can be seen in List-
ing 2.1. In this example, when the value of the light sensor changes, the
condition is evaluated. If the value of the light sensor is more than 70, the
action will be applied, and the lamp will turn on.

2.1 Scenarios

In order to gather additional information about requirements for an event-
condition-action type automation engine for HomePort, we will consider a
number of scenarios that show potential desires of a user using such a system.
The consumer persona is named Peter and is 34 years old. He likes electronic
gadgets and his technical skills may be considered above average. Peter owns

29 of 95

Requirements Automation Rules

a home automation system, which he uses to automate as many smart devices
in his home as he can think of.

2.1.1 Event Triggers and Delayed Actions

Since installing his new smart fan in his bathroom, Peter has been thinking
of different ways to utilize the fan best. He decides that he would like it to
function much like an ordinary bathroom fan, which is connected to the light
switch and will stay on for a while after the light has been turned off again.
Therefore, he would like to create two rules. The first stating that, when the
light switch is turned on, the fan should be activated. The other rule states
that, when the light is turned back off, there should be a ten minute delay
after which the fan should turn off.

2.1.2 Interval Triggers

During the holidays, Peter is, as usual, going to live with his family for about
a week. In order to deter criminals from looting his empty home, Peter would
like the lights to turn on and off on an interval in order to feign that the
house is not empty. He would like to create a rule that turns on the lights
in the living room, the kitchen, and the bedroom at various intervals for
various amounts of time, and then turns them back off.

2.1.3 Deactivate Rules

In order to save money on energy used to light his house, Peter has installed
a bunch of motion sensors around the house, and has set up appropriate
rules to turn lights on and off as he moves around the house. However, his
wife is a restless sleeper and has complained that if she moves even an inch
during the night, the lights will turn on and wake her up. In order to prevent
this from happening, Peter would like to add an activation interval to the
lighting rules. This states that every day, between 24:00 and 06:30, the rule
should be inactive, such that the lights will not turn on, even though the
motion sensor is activated.

2.2 Requirements

From reading through the scenarios we can derive a number of requirements
for the language in which rules are to be written.

1. The user must be able to specify a number of sensors to ob-
serve for changes in their state. Upon such change, the rule
must be evaluated.

30 of 95

Automation Rules Requirements

Using state changes as rule triggers in an event-condition-action au-
tomation engine is a natural choice in the context of home automation,
since this allows rules to immediately react to changes in the observable
environment.

2. It must be possible to specify a time interval that describes
when the rule should be evaluated.

Timed interval triggers enable users to create rules that are evaluated
periodically without being tied to a specific event in the environment.
An example of this can be seen in Scenario 2.1.2.

3. The user must be able to specify a conditional statement that
is to be evaluated when a rule is prompted for evaluation by
either a state change or a time interval.

The conditional statement should allow users to compare absolute val-
ues and live sensor values in order to determine whether or not a set
of actions should be applied. This is an integral part of the event-
condition-action system.

4. The user must be able to specify a number of actions to be
applied to actuators in the environment in the event that a
rule is prompted for evaluation, and its internal conditional
statement evaluates to true.

In the context of HomePort, an action is the assignment of a value to
a connected actuator.

5. It must be possible to both specify immediate as well as de-
layed actions in a rule.

As can be seen in Scenario 2.1.1, it may be appropriate to delay an
action. Defining a delay with each action will also enable users to
create sequences of actions that are applied over time.

6. It must be possible for the user to specify a time interval that
describes whether or not the rule is active at a given time.

In some cases a rule is only appropriate at specific times of the day.
An example of this can be seen in Scenario 2.1.3 It should be possible
to specify this in order to allow HomePort to disable and enable rules
automatically as appropriate.

31 of 95

Language Specification Automation Rules

2.3 Language Specification

Listing 2.2 contains an abstract context-free grammar in Backus-Naur form
for expressing rules. Abstract meaning that some terminals, such as data
types (eg. int, string) are not defined detail. In this language, a rule consists
of four sections; event, condition, action, and within. The event section
can consist of a number of intervals or service values. The condition is
optional, and can consist of either an int, which describes a timed interval
in milliseconds, or a string that describes a time of day. Actions consist of
one or more pairs of a service value and values to be applied. The within
section is optional, but may consist of a pair of intervals that describe when
the rule should activate and deactivate, respectively.

The service values used in events, conditions, and actions consist of two
strings which are used to identify a service. An interval may consist either
of a traditional interval of days, hours, minutes, and seconds or it may be
set to a specific time of day on specific days of the week.

rule := ’event’ eventExp ’cond’ condExp ’action’
actionExp within

eventExp := serviceValue eventExp
| interval eventExp
| ε

condExp := cond boolOp condExp | cond
cond := value binOp value | true | false

| ’(’ condExp ’)’
| ’!’ condExp
| groupAggrExp

value := literalValue | serviceValue
literalValue := int | double | string | bool
serviceValue := device ’.’ service
binOp := ’>’ | ’>=’ | ’<’ | ’<=’ | ’==’ | ’!=’
boolOp := ’&&’ | ’||’
actionExp := serviceValue literalValue delay actionExp

| groupActExp delay actionExp | ε
delay := int | ε
within := ’within’ interval interval | ε
interval := int | string

Listing 2.2: BNF for Automation Rules

The event section consists of a number of service values and intervals.
Service events will trigger when the value of the service changes. In the case
of an interval, a timer will ensure that the rule is evaluated according to the
interval.

A rule must have a condition that can be evaluated to a true or false value
to determine whether actions in the rule should be applied or not. A simple

32 of 95

Automation Rules Language Specification

condition could be: service == 5, meaning that if the value of service
is equal to 5, then the actions in the rule should be applied. One could
also imagine more complex examples where several conditions are chained
together to form a single condition. Consider the more complex condition: 4
>= service_1 and service_2 == "Active", where two simple conditions
have been combined using the and operator to express that both the condi-
tion on the right and left-hand side of the and operator must be true before
any actions will be executed. The AggrExp component in cond refers to a
group expression, which is described in detail in Chapter 4. In short, it al-
lows comparison with aggregates (i.e. minimum, maximum, average, count)
of a group of services.

An action consists of a service value, an absolute value, and, optionally,
a delay. The service value must refer to a service which has actuator capa-
bilities, and the value must be compatible with the service. When an action
is applied, the plugin responsible for the service is notified to change the
value according to the action. The delay defined in an action is relative to
the action that was applied immediately before, and as such, will also affect
subsequent actions. For example, if you have two actions, each with a delay
of 200 ms, the first will be applied at T+200 ms, and the second at T+400
ms. In addition to applying an action to a single service, it is also possible
to replace this with an ActionExp, which will apply a value to a group of
services. Details about ActionExp can be found in Chapter 4. In summary,
it allows the user to create a rule that applies the same action to a group of
services.

The two strings comprising a service value are a device ID and a service
ID, respectively. These IDs are defined by the plugin that governs the device
in question.

Figure 2.1: The flow of an automation rule in HomePort

The overall evaluation flow of a rule is depicted in Figure 2.1. To sum-
marize, the event part of the rule can consist of one or more events, which
will trigger the rest of the rule to be evaluated. An event can either be a
timer which triggers the rule to be evaluated in a periodic fashion or it can
be a service which changes its value and thereby raises an event. When an
event triggers, the rule’s condition will be evaluated. If the condition is satis-
fied, the set of actions will be executed. An overview of the full context-free
grammar for an automation rule can be seen in Appendix C.

33 of 95

Language Specification Automation Rules

34 of 95

3 | Safety Rules

Requirement 3 states that users must be able to define unintended behavior
in the system in a similar manner that automation rules can be used to define
intended behavior. To make this possible we propose a language that can be
used for this purpose.

Scenarios will be presented that try to highlight what type of unintended
behavior users would like to be able to define. Based on these scenarios, a
list of requirements will be given and finally a language for creating safety
rules will be presented.

3.1 Scenarios

To investigate what type of unintended behavior users would like to be able to
define, the following scenarios have been created. The scenarios are partly
based on the discussion of unintended behavior from Section 1.4.3. The
persona used in each scenario is described in Chapter 2.

3.1.1 Conditional Statement and Service Groups

Peter knows that it affects his heating bill when thermostats in his house are
not switched off when he airs out the house. When windows and doors are
opened, the room temperatures will drop and the radiators will consequently
try to compensate by heating more.

To make sure that the thermostats in the living room cannot be turned
on when he airs out the room, he would like to tell the system that if one or
more windows in the living room is open, then the thermostats in that room
must be switched off.

3.1.2 Time Window of Validity

Peter has created automation rules that cause the radiators in the entire
house to automatically be turned down to 15 degrees Celsius, when he turns
on the alarm system as he leaves for work. He knows how important this is
to his heating bill and would therefore like to make sure that this actually
happens as intended.

35 of 95

Requirements Safety Rules

If he could tell the system that the thermostats in the entire house must
never be set above 15 degrees Celsius between 8 AM and 3 PM every day
except in the weekend, he would be sure that his automation rules worked.

3.1.3 Elapsed-time Monitoring

The windows in Peter’s living room is equipped with motors that allow him
to open and close them using his home automation system. He has created
rules that will close the windows when he locks the front door after leaving
his house in case he forgets to do it manually.

The windows take a few seconds to close and he wonders if it is possible
to create a safety rule that monitors if the windows are properly closed 30
seconds after he turns on his alarm system.

3.1.4 Time-based Monitoring

In Peter’s bathroom he has an extractor fan that should start when the
bathroom light switch is turned on and continue running for 30 minutes
after the light switch is turned off.

Peter is not convinced that the rule he has setup is working properly
and wants to add a safety rule that monitors whether the extractor fan is
actually running for the full 30 minutes.

3.1.5 Conditional Monitoring

Peter decides that it is not necessary that the extractor fan in the bathroom
continues running after the light switch is turned off and deletes the old rule
and creates a new one that stops the fan when the switch is turned off.

Again, Peter would like to convince himself that his new rule is working
properly and wants to create a safety rule that monitors if the extractor fan
is running until the light switch is turned off.

3.2 Requirements

The scenarios presented in the previous section highlighted different types
of unintended system behavior. Based on these scenarios the following list
of requirements for safety rules have been identified.

1. It must be possible to specify a conditional expression that
can include sensor services (e.g. light sensor, thermometer).

A conditional statement is used in every scenario from Section 3.1 and
should always be included in a safety rule. The conditional statement
can be used to define a scenario that must never occur in the system.

36 of 95

Safety Rules Language Specification

2. It must be possible to use device group abstractions in a con-
ditional expression

In scenario 3.1.1, the user defines a conditional statement containing
the sentence: “ ‘if one or more windows in the living room is open..”.
This suggests that an abstraction over devices would be a good idea
to help abbreviate conditional statements. The design of device group
abstractions can be seen in Section 4.3.

3. It must be possible to specify a time window in which the
safety rule is active

Users might want safety rules to be active only within a specific period
of time. An example of this can be seen in scenario 3.1.2.

4. It must be possible to specify that a condition is satisfied
during a time period

In scenario 3.1.4 the user would like to monitor that a condition is
always true during a period of time.

5. It must be possible to specify that a condition eventually
becomes true within a time period

In scenario 3.1.3, the user would like to check that a condition eventu-
ally becomes true before a specified period of time has elapsed.

6. It must be possible to specify an optional, second conditional
expression

In scenario 3.1.5, the user would like to monitor that a condition is
true until another condition becomes true. To allow for this, it should
be possible to specify a second conditional expression. This condi-
tional expression should have the same characteristics as described in
Requirement 1.

3.3 Language Specification

The syntax for expressing safety rules is expressed as an abstract context-
free grammar in Backus-Naur Form while the semantics are described using
state diagrams. Some terminals, such as data types (e.g int, string) are not
specified in detail.

Based on the requirements from Section 3.2 and the scenarios from Sec-
tion 3.1, an abstract grammar describing a safety rule has been created. The
grammar can be seen in Listing 3.1 and specifies four types of safety rules
that monitor the system in different ways. In each of the four types, an
optional within construct can be defined if the user wants to limit the rule

37 of 95

Language Specification Safety Rules

to be active within a certain time window. This time window was added to
each rule to fulfill Requirement 3.

The conditional expression (condExp), as well as the event expression
(eventExp), are identical to the constructs defined in automation rules, de-
scribed in Section 2.3. The syntax for conditional expressions support the
use of sensor services and group abstractions and does therefore already fulfill
Requirement 1 and 2.

safetyRule := ’cond’ condExp within
| ’event’ eventExp ’cond’ condExp safetyType within

safetyType := ’always’ condExp ’for’ uint
| ’always’ condExp ’until’ condExp
| ’eventually’ condExp ’for’ uint

condExp := cond boolOp condExp | cond
cond := value binOp value | true | false

| ’(’ condExp ’)’
| ’!’ condExp
| groupAggrExp

value := literalValue | serviceValue
literalValue := int | double | string | bool
serviceValue := device ’.’ service
binOp := ’>’ | ’>=’ | ’<’ | ’<=’ | ’==’ | ’!=’
boolOp := ’&&’ | ’||’
eventExp := serviceValue ’||’ eventExp | serviceValue
within := ’within’ interval interval | ε
interval := int | string

Listing 3.1: BNF for Safety Rules

The most basic safety rule that can be constructed from the grammar is
’cond’ condExp within, where within is optional. This rule is based on
Requirement 1 and can be used to specify that the given condition should
never be satisfied in the system.

Figure 3.1 shows a state diagram of this rule. The condition (Never
Condition) is only evaluated if the current time is within the specified time
window (Within) or if no time window is specified. If the condition evaluates
to true, an unwanted state is entered to indicate that some kind of unintended
behavior has occurred. As long as the condition evaluates to false, the safety
rule is reevaluated.

The syntax: ’event’ eventExp ’cond’ condExp ’always’ condExp
’for’ uint within is based on Requirement 4 and defines the safety rule
for monitoring that a condition is always satisfied during a specified period
of time. In this type of rule, the user must specify an event, two conditions,
a time period in seconds and optionally a time window.

A state diagram of this safety rule can be seen in Figure 3.2. This type
of safety rule starts the same way as an automation rule, where an event

38 of 95

Safety Rules Language Specification

Figure 3.1: State diagram of a safety rule with a condition that must never
be satisfied.

triggers the rest of the safety rule to be evaluated. When the event in the
safety rule gets triggered the Within state is entered. If the current time is
within the specified time window (Within) or if no time window is specified,
the Guard Condition is evaluated in order to determine whether the rule
should be evaluated further, just like an automation rule. If so, the Always
Condition state is entered and a timer is started. Before the timer is started
it is set to the time period specified by the user. If the Always Condition
becomes false before the timer times out, the condition has not been true
for the entire time period and an unwanted state is entered. If this does not
happen, the timer is stopped and the rule is reevaluated.

Figure 3.2: State diagram of a safety rule with a condition that must always
be satisfied during a specified time period.

The rule for monitoring that a condition is eventually satisfied before
a defined time period has elapsed can be constructed using the syntax:
’event’ eventExp ’cond’ condExp ’eventually’ condExp ’for’ uint
within. This rule is based on Requirement 5 and like in the latter, the user
must specify one or more events, a guard condition, a time period in sec-
onds and optionally a time window. The difference between the rules is the
second keyword, ’always’ and ’eventually’, respectively. This keyword
makes it possible to distinguish between the two and give them semantically
different meanings. The semantics of the different rules will be explained in
the following section.

The state diagram in Figure 3.3 shows how this safety rule is evaluated.
This diagram is similar to the one in Figure 3.2 but differs in how the true,
false and timeout transitions are taken from the condition state (Eventually

39 of 95

Language Specification Safety Rules

Condition). In this safety rule, an unwanted state is entered if the condition
has not evaluated to true before the timer has timed out.

Figure 3.3: State diagram of a safety rule with a condition that must even-
tually be satisfied during a specified time period.

The last type of safety rule has two conditions and can be used to verify
that one condition is true until another condition becomes true. The rule
has the syntax: ’event’ eventExp ’cond’ condExp ’always’ condExp
’until’ condExp within and is based on Requirement 6. The user must
specify an event, three conditions, and an optional window of time.

Figure 3.4: State digram of a safety rule with two conditions.

A state diagram describing this rule can be seen in Figure 3.4. As with
the other rules, an Event triggers the rule to be evaluated, and the Within
state is entered, and if it evaluates to true the Guard Condition state is
entered, and similarly, if the Guard Condition is satisfied the Until Condition
is entered. If this condition is satisfied, the entire rule is reevaluated, since
there is no reason to check the Always Condition. If the Until Condition
evaluates to false, the Always Condition is checked and an unwanted state
is entered if it also evaluates to false. This is because the Always Condition
has not been true until the Until Condition was satisfied. Otherwise, the
Always and Until conditions will be evaluated until either Until evaluates to
true, or Always evaluates to false.

An overview of the full context-free grammar for a safety rule can be seen
in Appendix D.

40 of 95

4 | Grouping

In this chapter a solution for grouping devices in HomePort will be given.
Based on Requirement 4, it should be possible to group multiple devices.
Grouping of devices will act as an abstraction, that can help ease creation
and maintenance of rules in HomePort. Scenarios will be presented, that
demonstrates different use cases for where groups could be useful, and how
they are supposed to work. Requirements from these scenarios will be iden-
tified, and used when designing the concept of groups. Finally, a language
will be designed, to make it possible for users to utilize groups in their rules.

4.1 Scenarios

To get an overview of possible use cases where device groupings could be
useful, a number of scenarios have been developed. The persona used in the
scenarios is the same as in Chapter 2.

4.1.1 Grouping of Devices

Peter does not want to spend time, going through the entire house to switch
off all the lights before he leaves his house. He therefore decides to create
an automation rule that will turn off all lights in the house when he turns
on the alarm system. He discovers that it takes a lot of time to specify an
action for each individual light unit and wonders if it is possible to perform
an action on a group of devices instead.

4.1.2 Group Subsets

One day when Peter is going to bed, he discovers another problem which
annoys him. Peter has to go through the entire house to check if all the
lights are turned off. Peter already has a button installed in his bedroom,
which is currently not in use, and he figures that he could automate it via
HomePort. Peter has already created device groups based on location in the
house, and wants to use these groups when using the button via HomePort.
When someone presses the button, Peter wants it to turn all the lights off in
the house except for the bedroom.

41 of 95

Requirements Grouping

4.1.3 Group Filtering

Peter has a tendency to forget to close the windows in his home when he
leaves. So he figures, one thing he always remembers to do is to turn on
the alarm system. Peter has already created a group for the windows in his
home. He creates a rule that states, if one or more windows are open when
the alarm system is turned on, a lamp next to the door should start flashing.

4.2 Requirements

The scenarios presented in the previous section, display different use cases
for how groups could be utilized in HomePort. Based on these scenarios the
following requirements has been identified.

1. It must be possible to group multiple devices

As already stated in Requirement 4, groups should act as an abstrac-
tion mechanism for users, which should make it possible to group mul-
tiple devices. An example of this can be seen in Scenario 4.1.1.

2. It must be possible to control a group of devices uniformly
Devices in HomePort can consist of multiple services, which each can
have a different data type, and might also use a different naming con-
vention. This has to be taken into consideration when designing the
groups to allow devices to be uniformly accessed.

3. It must be possible to combine multiple groups

To avoid that redundant groups are created for special purposes, it
should be possible to combine existing groups.

4. It must be possible to exclude one or more groups from an
existing group

Using similar logic as the requirement above it should be possible to
exclude one or more groups from a set of groups. An example of why
group exclusion can be useful is shown in Scenario 4.1.2.

5. It must be possible to use aggregate functions on groups

It must be possible to use the aggregate functions count, average, min-
imum and maximum on groups. This could make it possible to query
how many services that fulfill a certain condition or get the minimum
value among a set of services. An example of how the count function
can be used is shown in Scenario 4.1.3.

6. It must be possible to apply an action to a group

42 of 95

Grouping Grouping of Devices and Services

It must be possible to apply an action uniformly on a group, like the
scenario in Section 4.1.2, where Peter turns off all the light in his house.

4.3 Grouping of Devices and Services

All of the above scenarios display different use cases for where groups can
help simplify the process of creating and maintaining rules in HomePort.
We will introduce the concept of a device group, which will make it possible
to group an arbitrary number of both devices and other device groups. A
device group in HomePort will act as an abstraction layer, which, in theory,
should make it easier for users to manage rules. To target a specific subset
of devices, operations from set theory can be borrowed. Simple operations,
like joining multiple device groups, or excluding one or several device groups
from a set of device groups would make it easier for users to target a specific
set of devices. Each device in HomePort can only belong to a single device
group, which forces users to create device groups which reuses existing device
groups. Forcing users to decide which device group a given device should
belong to should prevent redundant device groups. This way of structuring
devices has been exemplified in Figure 4.1, which creates a tree-like structure
for all of the grouped devices in the system.

Figure 4.1: An example of device groups

Although device groups makes it possible to group multiple devices, it is
still not possible to access their services uniformly. Devices in HomePort can
consist of an arbitrary number of services, which each can have a different
data type, but also use a different naming convention.

The main problem with uniformly accessing services on a set of devices
is that services are not bound to a predefined type in the system and it
can therefore not be automatically inferred what the service actually does.
Although services have a name and a data type, different naming conventions
and data types may be used on different services that have the exact same
functionality.

43 of 95

Grouping of Devices and Services Grouping

An example could be a lamp with an ON/OFF service. The “ON/OFF”
service name can be expressed in many different forms. Furthermore, the
data type of the “ON/OFF” service could possibly be implemented as a
boolean value, but could as well be an integer value.

In a naive solution you could try to access services based on name and
data type. This way work in some situations, but may also result in accessing
services with completely different functionality.

Figure 4.2: An example of device groups and service groups

Since uniform service access on device groups is not possible in the current
design, we propose a solution where users must manually group services
based on functionality and data type. This way it is guaranteed that a
group of services can be accessed in the same way.

We will from now on refer to this type of grouping as a service group.
A service group will consist of a name, a data type, service type and one
or several services. The name can be used to describe the functionality of
the contained services and the data and service types are used as constraints
that services must adhere to. The service type can either be sensor, actuator
or both.

A service group could for instance be named “Lamps On/Off”, specify
boolean as data type and actuator as service type. In this example, all
services in the group must be actuators and have the data type boolean.

Using these device and service groups, queries that target services on
multiple devices in a uniform manner can be formulated. Figure 4.2 dis-

44 of 95

Grouping Grouping of Devices and Services

plays three different lamps, each of which has some functionality for turning
the lamp on and off. The lamps could have been produced by different
manufacturers and, therefore, have a different naming convention for similar
functionality. In this example, a service group named “On / Off” has been
created. The data type of the service group is boolean, which matches all
of the on/off services of the lamps. Combining a service group and one or
several device groups makes it possible to either perform an action or query
a group of related services uniformly.

Figure 4.3: Intersection of a device group and a service group

The intersection of a device group and a service group can be described
via a Venn diagram as seen in Figure 4.3. The diagram displays a device
group containing three devices, and a service group containing three services
from two of the devices. The intersection of these two groups is a collection
of related services that can be accessed and manipulated uniformly.

45 of 95

Language Specification Grouping

4.4 Language Specification

An abstract grammar for querying and performing actions on a group of
devices has been developed, and can be seen in Listing 4.1.

groupActExp := ’[’ groupExp ’do’ literal ’]’
groupAggrExp := ’[’ groupExp aggrFunc binOp literal ’]’
groupExp := ’group’ groupType excludeExp ’type’ type whereExp
groupType := ’*’ | groupCom
groupCom := group ’,’ groupCom | group
excludeExp := ’exclude’ groupCom | ε
whereExp := ’where’ whereCondExp | ε
whereCondExp := whereCond boolOp whereCondExp | whereCond
whereCond := whereValue binOp whereValue | true | false

| ’(’ whereCondExp ’)’
| ’!’ whereCondExp
| groupAggrExp

whereValue := literal | device ’.’ service | #
literal := int | double | string | bool
aggrFunc := ’count’ | ’min’ | ’max’ | ’avg’
boolOp := ’&&’ | ’||’
binOp := ’>’ | ’>=’ | ’<’ | ’<=’ | ’==’ | ’!=’

Listing 4.1: BNF for Grouping

Two types of group expressions are available depending on where it is
used in a given rule. groupActExp should be used in the action part of a rule
in order to perform a uniform action across several services. groupAggrExp,
on the other hand, is used in the condition part of a rule. It computes an
aggregated value from the set of selected services and compares it to a literal
value.

Both groupActExp and groupAggrExp are encapsulated by [] to make
it clear where a group expression starts and ends. Both of them can consist
of one or several device groups which are expressed by group followed by the
device group names which should be separated by a comma if there is more
than one. If it is the objective to target all of the devices in the system, the
* operator can be used. This will result in either all of the devices in the
system if the * operator is used, or the union of all of the declared device
groups.

Moreover, it is possible to exclude one or several device groups. This is
expressed in an exclude clause containing the names of the device groups
that should be excluded. Similar to how group works, it will result in the
union of all of the declared device groups. The combination of the exclude
and group clauses is the set difference of the two groups of devices.

Next, a service group has to be defined in the type clause. The intersec-
tion between the device group clause and the service group clause will result

46 of 95

Grouping Language Specification

in a unique set of related services of the same data and service type.
Subsequently, it is possible to filter the set of services by defining a where

clause containing a whereCondExp. whereCondExp is similar to the condExp
used in rules and safety rules. It is possible to either use literal values,
service values or the # operator that refers to each individual service in the
group of services being filtered. An overview of the evaluation flow of both
groupActExp and groupAggrExp can be seen in Figure 4.4.

When using groupAggrExp, aggrFunc has to be defined which can either
be count, min, max, and avg. count returns the number of selected services,
min returns the minimum value of all of the selected services, max returns the
maximum value of all of the selected services, and avg returns the average
value of all of the selected services. aggrFunc has to be combined with
a binary operator and a literal value. Similarly, groupActExp has to be
followed by a do clause containing a literal value that should be applied to
all of the specified services.

47 of 95

Language Specification Grouping

Figure 4.4: Evaluation flow of groupActExp and groupAggrExp

48 of 95

5 | System Design

In this chapter, a system design for HomePort will be presented. The design
is based on the Requirements Specification, Section 1.6, as well as Chap-
ters 2, 3, and 4, in which languages for automation and safety rules are
described.

5.1 Component Architecture

The different components which HomePort consist of are depicted in Fig-
ure 5.1. The components are grouped using a three-tiered architecture. This
architecture was chosen to separate the responsibilities of the different com-
ponents in the system, but also to create a more modular architecture, where
components can easily be exchanged by others.

The Presentation Tier is made up by components that expose function-
ality to the ‘outside world’. The components in this tier are acting as an
interface between HomePort and inputs from foreign stimuli. In our case,
the presentation tier consists of a REST Interface, which third parties can
use to interact with HomePort.

The components in the Logic Tier are responsible for coordinating and
managing the main functionality in HomePort. More specifically, the Au-
tomation Engine, the Safety Engine, the Plugin Manager and the Configu-
ration.

The last tier in the architecture is the Data Tier, which contains all the
components which contains the components responsible for managing per-
sistent data. Below is a more detailed description of each of the components
in the HomePort architecture.

REST Interface The REST Interface exposes an API which third par-
ties can utilize for interacting with HomePort. Its responsibilities is
to expose the necessary functionality for the end-users and pass the
retrieved information forward to the logic tier, but also retrieve data
from the logic tier when a request is made.

Automation Engine The Automation Engine should maintain a list of
automation rules in the system, as well as expose functionality for

49 of 95

Event System System Design

Figure 5.1: Component Architecture of HomePort

managing the rules (e.g. add, remove, edit).

Safety Engine The Safety Engine is responsible for managing all the safety
rules in HomePort, and should also expose appropriate management
operations, similarly to the Automation Engine.

Plugin Manager The Plugin Manager’s responsibility is to manage all the
plugins. It should automatically discover when new plugins are avail-
able in the file system, and try to load them into HomePort.

Configuration The configuration contains an internal representation of
plugins, devices, and services that are currently connected to Home-
Port.

Database The database component should facilitate persistent storage of
automation rules, safety rules, device groups, and service groups.

5.2 Event System

According to Requirement 2, it must be possible to subscribe to state-change
events of connected devices. The event system will be designed and imple-
mented with the use of the publish-subscribe pattern. Using this design

50 of 95

System Design Grouping

pattern will allow other components to subscribe to specific events and be
notified when the event is triggered.

The plugin API will be extended with functionality to allow plugins to
publish service values to HomePort. It is the responsibility of the plugin
to publish updated service values. This design choice is made on the basis
that many embedded devices do not have an event mechanism which triggers
when its value updates. In these cases the plugin would be able to update
the value as appropriate for a given device.

5.3 Grouping

The concept of device groups and service groups has been presented in Sec-
tion 4.3, and will be further elaborated with design details. Device and
service groups will act as an abstraction mechanism in HomePort. A de-
vice group can contain an arbitrary number of devices, and there are no
restrictions on how many nor which devices can be grouped together.

A device group will have a name to uniquely identify it when users, for
instance, utilize them in rules. Figure 5.2 displays a class diagram of a device
group in HomePort. The device group will be equipped with functionality
for controlling and manipulating the device group itself.

Figure 5.2: Class diagram for a device group

Service groups, on the other hand, can contain multiple services. There
is no restriction on the number of services which a service group can contain,
only that they need to be of the same data type and service type. Further-
more, similarly to a device group, a service group will also have a name to
uniquely identify it. Figure 5.3 displays a class diagram for a service group.

Figure 5.3: Class diagram for a service group

Both device and service groups will be created by the user, and their
data has to be saved persistently to avoid data loss.

51 of 95

Automation Engine System Design

5.4 Automation Engine

Since the event-condition-action automation rules in HomePort are based
on event triggers, each automation rule can exist as a self-contained entity.
As such, there is no need for an actual rule engine, but rather, it will act
as a relatively simple container which is responsible for maintaining the col-
lection of automation rules. The rule engine will expose functionality for
adding and removing rules, and also for activating and deactivating them
manually, overriding the automatic activation functionality. The automa-
tion rules maintained by the automation engine are designed in accordance
with the specification in Chapter 2.

Firstly, an automation rule contains a collection of Events, each of which
can either be a Sensor or an Interval. These are the services and intervals
specified in the ’event’ clause when a rule is created. An interval maintains
a timer which triggers an event as appropriate, and a sensor triggers events
when a new value is pushed from its governing plugin. While the automation
rule is active, it subscribes to all events in the collection. When an event is
triggered, the rule will evaluate its conditional statement. If the condition is
satisfied, the collection of Actions will be applied in the sequence that they
were specified when the rule was created. Since the application of actions
may happen over time because of delays specified by the user, the rule will
be deactivated for the duration to prevent unexpected behavior that may
occur if the rule is prompted multiple times for evaluation faster than its
actions can be applied. Each application of an action simply constitutes
the assignment of a value to an actuator. Lastly, an automation rule also
contains a Within object which maintains the times at which the rule should
automatically activate and deactivate as specified by the user. The within
object publishes an activate and a deactivate event that the rule subscribes
and responds to as appropriate.

5.5 Safety Engine

As with automation rules, safety rules rely on event triggers for their eval-
uation, and as such do not require an engine to periodically monitor them.
Therefore, the safety engine will not have any responsibilities apart from
maintaining a collection of safety rules. As with the automation engine, the
safety engine should expose functionality for adding and removing safety
rules, as well as for manual activation and deactivation of rules.

Each safety rule maintained by the safety engine can be one of four types
of safety rules, each of which is described in Chapter 3. Each safety rule con-
tains a combination of service event triggers, conditions, and timed triggers
that allows the rule to evaluate itself in accordance with the specifiction.
These constructs have all been explained in the previous section detailing

52 of 95

System Design REST Interface

the automation engine. While active, a safety rule may discover that the
system is in an unwanted state. When this happens, the rule will notify the
user of the violation, but will not take any action to correct it.

5.6 REST Interface

In the previous version of HomePort, a REST interface was designed to
allow external sources to control HomePort. This interface will be extended
with additional functionality, for managing both groups of devices, groups of
services, automation rules, and safety rules. An overview of the functionality
which the REST interface exposes can be seen in Table 5.1. It depicts all
of the resources that are available for the client, and the available actions
which can be applied on a given resource. A placeholder in the form of {id}
is used to indicate a unique id for either devices, services, plugins, device
groups, service groups, automation rules, or safety rules.

Clients should be able to retrieve information on both services and de-
vices. Moreover, client should be able to change the value of a service via the
REST interface. Devices and services in HomePort are created by plugins
that other parties have developed, which entails that certain constraints exist
on what clients can do via the REST interface to these types. It is therefore
not possible to either add or delete any of them. Clients will only be able to
change their state and retrieve information about them. Changing the state
of a device refers to changing its meta-information, and for services clients
can change both the meta-information and its value.

URI GET POST PUT DELETE
/devices ×
/devices/{id} × ×
/devices/{id}/services ×
/devices/{id}/services/{id} × ×
/plugins ×
/plugins/{id} × ×
/devicegroup × ×
/devicegroup/{id} × × ×
/servicegroup × ×
/servicegroup/{id} × × ×
/rules × ×
/rules/{id} × × ×
/safetyrules × ×
/safetyrules/{id} × × ×

Table 5.1: Overview of REST Interface

The REST interface will be extended in order to allow creation and

53 of 95

REST Interface System Design

management of device and service groups in HomePort. Moreover, HomePort
has been extended with automation and safety rules, both of which can also
be managed via the REST interface. A more detailed description of each of
the resources can be found in Appendix A, which elaborates how each of the
resources functions.

54 of 95

6 | Evaluation

In order to determine the viability of the proposed solution of automation
and safety rules, the system will be tested and a qualitative evaluation will
be conducted. The tests will be based on the scenarios presented throughout
the report, since these scenarios are the basis for the requirements for the
system.

For each scenario, the necessary automation and safety rules will be pro-
duced using their respective syntax, which can be found in Appendix C
and D. The rules will be loaded into HomePort, and the system will be
connected to a virtual home which contains all the devices described in the
scenarios. Then, the behavior of the virtual home will be recorded and com-
pared to the desired outcome in each scenario.

6.1 HomePort Implementation

During the last extension of HomePort, described in our previous work [6],
we found that working with C was often unnecessarily low-level, taking into
account the system we were developing. It was therefore decided that the
core architecture of HomePort should be re-implemented in the C# pro-
gramming language using Mono [5]. By doing so, the system runs on all
platforms that support Mono or .NET.

The resulting architecture after the re-implementation can be seen in
Figure 6.1, and is based on the three-tiered architecture described in Sec-
tion 5.1. Compared with the previous architecture, described in Section 1.1,
three new components have been added. That is, the Automation Engine,
Safety Engine and the Database module. In the previous version of Home-
Port, plugins were run in separate processes in order to ensure the stability
of the system. Instead of this approach, plugins will be isolated using App-
Domains [4].

55 of 95

HomePort Implementation Evaluation

Figure 6.1: HomePort’s Implemented Architecture

56 of 95

Evaluation Test Setup

6.2 Test Setup

The physical model contains in total 17 devices, each of which is one of the
following: window, lamp, thermostat, motion sensor, switch, or fan. Each
of these devices can be utilized by HomePort, and can be used in either an
automation or safety rule. An overview of the home can be seen in Figure 6.2.
Each device has its own symbol with a color code to distinguish them from
each other. The description of each of the devices can also be seen the figure.

The physical model is build out of a cardboard box where a drawing of
the floor plan is attached to the front. To emulate the devices previously
described, electronic components that mimic their behavior have been used.
The windows are implemented with yellow LEDs to indicate whether they are
opened or closed and lamps are implemented with green LEDs. To be able
to adjust the temperature on a thermostat we used potentiometers. Motion
sensors are implemented with a light-dependent resistor. Lastly, switches
are implemented with on-off buttons, and the fan is implemented with an
old PC cabinet cooler. The front and rear view of the model can be seen in
Appendix B.

The devices described above are connected to a Raspberry Pi via its
GPIO pins. A small program has been implemented on the Raspberry Pi
to make it possible to control the electronic components remotely. To make
the devices available in HomePort a plugin that communicates with the
Raspberry Pi program has also been written. An overview of the test setup
can be seen in Figure 6.3.

6.3 Experiment

To evaluate the automation and safety rule systems, a number of rules have
been created. These rules are based on scenarios that have been used as a
foundation for the specification of the rule languages. For brevity, the rules
are described according to the grammars that can be found in Appendix C
and D instead of their JSON equivalents.

6.3.1 Automation Rules

Multiple automation rules will be created based on the scenarios described
in Chapter 2 in order to test if the desired behavior can be expressed with
the proposed language, and whether or not the behavior is in accordance
with the intent of a given rule. The automation rules will be described in
details and linked with our model home depicted in Figure 6.2.

Peter wants both the bathroom fan (F1) and the light (L5) to turn on
when he turns the bathroom switch (S2) on. Furthermore, when someone
leaves the bathroom and turns the light (L5) off again, the bathroom fan

57 of 95

Experiment Evaluation

W3

W2

W1

L2

L4

L5

L1

S2

S2

F1

T1

S1

M1T2

T3

M2

L3

W

L

T

M

S

F

Window

Lamp

Thermostat

Motion Sensor

Switch

Fan

Figure 6.2: Overview of the Floor Plan

58 of 95

Evaluation Experiment

Figure 6.3: Overview of the Test Setup

(F1) should keep going for another 15 minutes. This scenario has been
transformed into two automation rules which can be seen in Listing 6.1.

event BathroomLightSwitch.OnOff cond BathroomLightSwitch.OnOff == ←↩
true action BathroomFan.OnOff true

event BathroomLightSwitch.OnOff cond BathroomLightSwitch.OnOff == ←↩
false action BathroomFan.OnOff false 600

Listing 6.1: Automation rule for bathroom fan

When Peter leaves his home for a vacation. He wants his lamps (L1, L2,
L4, and L5) to turn on and off on a specified interval to mimic the behavior of
him being at home. This scenario has been transformed into an automation
rule which can be seen in Listing 6.2.

event 3600 cond true action KitchenLamp.OnOff true, BathroomLamp.←↩
OnOff true 10, BedroomLamp.OnOff true 20, KitchenLamp.OnOff ←↩
false 600, BathroomLamp.OnOff false, BedroomLamp.OnOff false

Listing 6.2: Automation rule for vacation

Furthermore, Peter also wants to save money on his energy bill and,
therefore, wants the motion sensors (M1 and M2) in his home to turn the
light (L2 or L4) on in a given room when motion is detected, and vice versa
if no motion is detected turn the light off again. Because Peters wife is a
restless sleeper these rules will only be active between 24:00 and 06:30. To
express the desired behavior, four automation rules has been created which
can be seen in Listing 6.3.

event LivingroomMotionSensor.Sensor cond LivingroomMotionSensor.←↩
Sensor == true action LivingroomLamp.OnOff == true within 06:30 ←↩
24:00

59 of 95

Experiment Evaluation

event LivingroomMotionSensor.Sensor cond LivingroomMotionSensor.←↩
Sensor == false action LivingroomLamp.OnOff == false

event BedroomMotionSensor.Sensor cond BedroomMotionSensor.Sensor ←↩
== true action BedroomLamp.OnOff == true within 06:30 24:00

event BedroomMotionSensor.Sensor cond BedroomMotionSensor.Sensor ←↩
== false action BedroomLamp.OnOff == false

Listing 6.3: Automation rule for motion sensors

All of the listed automation rules have been tested in our model home,
and all of them work as expected. Each rule performed the task which was
expressed by the automation rule language successfully. The only apparent
problem is that if two or more automation rules control the same service
concurrently, the outcome is unpredictable. As described in the analysis,
this problem is well known, and solutions for it have been developed in other
contexts.

6.3.2 Safety Rules

The premise for testing the Safety Rule Engine and the specified Safety Rule
language is the same as with Automation Rules. The scenarios described
in Chapter 3 will be implemented in the test setup in order to determine
whether or not the language specification and engine implementation is ade-
quate. Because of limitations of the physical devices in the test setup, some
of the automation rules defined in the safety system scenarios will not work,
and will therefore not be implemented in the system. Because of this, the
affected safety rules will be tested with manual inputs.

Scenario 1

Peter wants to make sure that when a window is open in a room, the ther-
mostat in that room is also turned off. In other words, if W1 is open, T1

must be turned off. If W2 is open, T2 must be turned off, and if W3 is open,
T3 must be turned off. A safety rule expressing this behavior can be seen in
Listing 6.4.

1 cond (LivingroomWindow.OpenClose == true && LivingroomThermostat.←↩
Temp > 0) || (KitchenWindows.OpenClose == true && ←↩
KitchenThermostat.Temp > 0) || (BedroomWindows.OpenClose == true←↩
&& BedroomThermostat.Temp > 0)

Listing 6.4: Thermostats must be turned off when windows are open

60 of 95

Evaluation Experiment

This safety rule works as expected. Each logical pair of window and ther-
mostat reacts identically. The safety rule issues warnings when a thermostat
is on and its respective window open. It does not issue warnings if neither
or only one or the other is on.

Scenario 2

When Peter is about to leave his home he always turns the alarm system
(S1) on. To save money on his heating bill, he wants all the thermostats
(T1, T2, and T3) to adjust their temperature to 15 degrees when the alarm
system is turned on. A safety rule that monitors this behavior can be seen
in Listing 6.5.

1 event AlarmSystem.OnOff cond AlarmSystem.OnOff == true always ←↩
LivingroomThermostat.Temp <= 15 && BedroomThermostat.Temp <= 15 ←↩
&& KitchenThermostat.Temp <= 15 until AlarmSystem.OnOff == false

Listing 6.5: Thermostats must be turned down while no one is home

This safety rule works as expected. If one of the thermostats is set to
more than 15 degrees as the alarm system turns on, a warning is issued. If
one of the thermostats is turned to more than 15 degrees while the alarm
system is on, a warning is issued as well.

Scenario 3

Peter would like to make sure that the windows are closed when the alarm
system is turned on in accordance with the rule that he has set up. Since it
takes a few seconds to close the windows, Peter would like to incorporate a
period of 30 seconds in the rule. In short, when S1 is turned on, W1, W2,
and W3 must be closed within a period of 30 seconds. The safety rule that
expresses this behavior can be seen in Listing 6.6

1 event AlarmSystem.OnOff cond AlarmSystem.OnOff == true eventually ←↩
[group Windows type WindowOpenClose where # == true count == 0] ←↩
period 30

Listing 6.6: Windows must be closed when no one is home

This safety rule works as expected. If all windows are closed before
the timer times out, the rule does not issue a warning. There is, however,
an inherent problem with the way “eventually” safety rules work. If the
alarm system is turned on, and the windows are closed within the time
limit, the rule is deactivated, and nothing happens if the windows are once
again opened. It seems reasonable that the intent of the safety rule in this

61 of 95

Experiment Evaluation

scenario is that the windows should be closed, and then remain closed for as
long as the alarm system is on.

Scenario 4

Peter is not convinced that the extractor fan in the bathroom is on for as
long as he would like it to be after the lights are turned off. He creates a
safety rule to monitor the situation. The safety rule states that when S2 is
switched off, F1 must be on for 30 minutes. The safety rule used for this
scenario can be seen in Listing 6.7.

1 event BathroomSwitch.OnOff cond BathroomSwitch.OnOff == false ←↩
always BathroomFan.OnOff == true period 1800

Listing 6.7: The extractor fan must stay on after leaving the bathroom

This safety rule works as expected. If the extractor fan is turned off
before the timer times out, a warning is issued.

Scenario 5

Later, Peter decides that he wants the extractor fan to only be on while the
lights in the bathroom are on. He creates a safety rule to make sure that
the setup is working as intended. The rule states that when S1 is turned on,
F1 must also turn on and must stay on until S1 is turned off. A safety rule
expressing this behavior can be seen in Listing 6.8.

1 event BathroomLightSwitch.OnOff cond BathroomLightSwitch.OnOff == ←↩
true always BathroomFan.OnOff == true until BathroomLightSwitch.←↩
OnOff == false

Listing 6.8: The extractor fan must be on while the lights are on

In this scenario, an issue arrises as the logic for turning the bathroom fan
on and off is defined using automation rules. One rule states that the fan
must turn on when the switch is flipped on, and another states the opposite.
When these automation rules and the above safety rule are active in the
system at the same time, the outcome depends on the order of evaluation
of the rules and the speed of the overall system. When the switch is flipped
on, the automation rule will send a signal that the fan should turn on, and
at the same time the safety rule will instantly check whether the fan is on or
not. The safety rule reacts either before the automation rule or before the
actions of the automation rule has had any effect on the physical devices.
The result is that the safety rule will issue a warning because the fan was
not on when the rule was evaluated, but it is obvious that in a lax context
this behavior does not seem appropriate.

62 of 95

Evaluation Experiment

6.3.3 Grouping

Rules that implement the behaviors of the scenarios listed in Section 4.1 can
be seen in Listings 6.9, 6.10, and 6.11. this shows that the grouping syntax
is expressive enough to cover the proposed scenarios. However, support for
the proposed queries has not yet been implemented, and as such, cannot be
tested in the current system.

1 event AlarmSystem.OnOff cond AlarmSystem.OnOff == true action [←↩
group LightingUnits type LightOnOff do false]

Listing 6.9: Apply action to a group of services

1 event BedroomButton.OnOff cond BedroomButton.OnOff == false action←↩
[group LightingUnits exclude Bedroom type LightOnOff do false]

Listing 6.10: Apply action to subset of a group of services

1 event AlarmSystem.OnOff cond AlarmSystem.OnOff == true && [group ←↩
Windows type WindowOpenClose where # == true count > 0] action ←↩
WarningLamp.OnOff == true

Listing 6.11: Count the number of windows that are currently open

6.3.4 Findings

Since the automation rules work as expected and the grouping functionality
cannot be tested due to not being implemented, this section will focus on
the problems discovered during evaluation of the safety rule system.

The first problem is with the “eventually” safety rule construct, in which
a condition that must eventually become true is expressed. In some cases,
the actual intent of the user may be that the condition should eventually be
true, and then stay true either for a specific duration, or until some other
condition is satisfied.

The second problem happens when automation rules and safety rules
depend on some of the same parameters, in which case the behaviour of the
system depends on the order of evaluation of the rules, as well as the overall
response speed in the system.

Even though these two problems are very different, a single solution may
solve both of them by allowing the user to specify a tolerance in the safety
rules that contain “always” conditions. This tolerance should be a time
period that is allowed until the condition of the rule must be satisfied, which

63 of 95

Experiment Evaluation

effectively permits a lag in the evaluation of the safety rule. A safety rule
that works as intended for the first problem can be seen in Listing 6.12

1 event AlarmSystem.OnOff cond AlarmSystem.OnOff == true always [←↩
group Windows type WindowOpenClose where # == true count == 0] ←↩
until AlarmSystem.OnOff == false tolerance 30

Listing 6.12: Safety rule with tolerance

Without the tolerance, this rule would state that for as long as the alarm
system is turned on, all windows must remain closed. The tolerance gives
the system 30 seconds of slack from the moment that the alarm system is
turned on, until the windows must be closed. After this time, the windows
must then remain closed until the alarm system is turned back off.

For the second problem, a tolerance would help by giving the environment
time to react to the actions applied by automation rules. In this case, a small
tolerance would allow the system to enter an unwanted state for a short
amount of time before the given safety rule should be enforced. In strict,
safety critical systems this may not be appropriate, but in many applications
it will not be a problem to allow some slack in the safety system. Listing 6.13
contains a safety rule with a short delay that would solve this problem.

1 event BathroomLightSwitch.OnOff cond BathroomLightSwitch.OnOff == ←↩
true always BathroomFan.OnOff == true until BathroomLightSwitch.←↩
OnOff == false tolerance 0.5

Listing 6.13: Safety rule with tolerance

Because of the 500 ms tolerance that was added to the rule, the negative
effect of the order of evaluation is negated, and the environment is allowed
some time to react to the actions of automation rules. For casual applications
it might even be appropriate to incorporate a default tolerance in all safety
rules unless the user specifies otherwise, in order to make the overall system
more lax.

64 of 95

Evaluation Conclusion

6.4 Conclusion

In this project we have investigated how the home automation system Home-
Port can be extended to support automation of devices located on heteroge-
neous networks. We have analyzed three existing home automation solutions
with different approaches on how to handle automation and identified miss-
ing components in HomePort that must be added to make it possible to
support device automation.

HomePort was extended with an automation engine that supports event-
condition-actions rules, because it makes the user independent of application
development and does not depend on predefined device types in the system.
Based on user scenarios that highlight possible use cases of device automa-
tion, a language that supports the creation of these rules was designed and
implemented.

In the analyzed home automation systems, solutions for handling con-
flicts between rules and actions are given, but none of the systems provide
means that can help users convince themselves that the system behaves cor-
rectly when the complexity of automation increases. To combat this, we
have designed and implemented a system where users are able to define un-
intended behavior in the system, by the means of safety rules, in the same
way as intended behavior is defined using automation rules.

HomePort has also been extended to support device and service groups,
with the purpose of providing users with a better overview of available devices
in the system and easing the creation of automation and safety rules. A
language that can be used to query and perform actions on these groups has
been designed but not implemented.

In the evaluation of HomePort, scenarios developed throughout the re-
port have been used as a basis to investigate whether the final design of
automation and safety rules are sufficient. The evaluation shows that safety
rules in most situations can help users convince themselves that the system
is always in a correct state, but also reveals that the safety rule language
lacks expressiveness in some scenarios.

This project contributes a prototype implementation of an event-condition-
action automation engine for HomePort, which makes it possible to auto-
mate devices located on heterogeneous networks. Contrary to the existing
home automation solutions that have been analyzed in this report, Home-
Port makes it possible to define unintended system behavior through the use
of safety rules, which has the purpose of ensuring intended system behavior.

65 of 95

Future Work Evaluation

6.5 Future Work

In this section we will discuss ideas for leveraging the solution that has been
developed in this report by using the knowledge about the state of the system
that safety rules provide.

6.5.1 Handling Unwanted States

The system of safety rules that has been developed throughout this report is
able to detect when the system enters unwanted states for various reasons.
In order to take advantage of such a system, we must consider whether the
system should take action when an unwanted state is entered, and if so, what
that action should be.u

Taking inspiration from the concept of rollback actions used in transac-
tions in BOSS [2], one solution could be to specify a set of actions for each
safety rule. When the safety rule discovers that the system has entered an
unwanted state, its set of actions could be performed in order to recover to
a safe state.

One could also imagine that a default state known to be safe could be
defined for the system, or parts of the system. This would allow the system
to fall back to this default state or behavior in case a safety rule detects
unwanted behavior.

In other cases, the most appropriate course of action may be to simply
warn the user that a violation has happened, and then allow them to correct
the state of the system manually.

Ultimately, the best solution depends on the specific context in which the
violation happens. Under strict circumstances, automatic corrections would
usually be preferable, since they can be applied immediately in order to cor-
rect the system state as quickly as possible. Under less strict circumstances,
such as the scenarios presented in this report, the most appropriate course
of action may be to present the user with different suggestions as to how
the unwanted behavior can be corrected, and then letting them make the
decision in each case.

6.5.2 Cooperation Between Automation and Safety Rules

In the forms that they have been described so far, automation and safety
rules are completely separate entities. A safety rule will only act when a
state change event is published, and its condition is not satisfied (i.e. when
something has already gone wrong). The current flow of the indirect inter-
action between automation and safety rules can be seen in Figure 6.4. In
this example, a rule is triggered and its action is applied with no regard to
active safety rules. After the value changes, the safety rules will be able to

66 of 95

Evaluation Future Work

pick up on the change because of the event system, and will discover that
the system is in an unwanted state.

Figure 6.4: Automation and safety rule with no cooperation.

In order to better utilize the functionality of the safety rules, we can
change their functionality to allow them to intercept actions that would
create an unwanted state if they were applied. In order to achieve this, a
system that intercepts the actions of all automation rules and validates them
according to the safety rules could be implemented.

This can be done by simulating each action and evaluating the conditions
of the safety rules. While evaluating a condition, when we encounter the
service that would be affected by the action, the action’s intended value
should be used instead of a live one from the service. Each type of safety rule
(as described in Chapter 3) should be handled differently when simulating
actions.

The simplest of the safety rules that simply consist of a single condition
should always be tested when actions are applied, since they contain no
temporal constraints.

Figure 6.5: Automation and safety rule with simple simulation.

Figure 6.5 illustrates the proposed flow of interaction between automation
and safety rules with no temporal constraint. In the examples, an automation
rule is triggered, but before its action is applied, the safety rule’s condition
is tested with a simulated value. If the simulation violates the safety rule’s
condition, applying the action would cause the system to enter an unwanted
state.

The three types of safety rules that do contain temporal constraints
should only be simulated when the specific rule is actively monitoring its
condition(s).

• Always safety rule

67 of 95

Future Work Evaluation

In this case, the safety rule’s condition must always be true while its
timer is active. Therefore, when simulating actions, the conditions of
these safety rules must be tested only while its timer is active. If the
condition evaluates to false, the action will violate the rule.

• Eventually safety rule

Since these rules reason about something that must eventually be true,
we cannot say anything about whether or not a single action would
cause a violation with the rule, and as such there is no benefit from
simulation. If the action happens to satisfy the condition, the rule will
terminate its timer when the action is applied, and if not, the rule will
simply keep waiting to see if its condition will eventually be satisfied.

• Always Until safety rule

This type of safety rule must be simulated when it has been triggered,
but the Until condition still has not been satisfied. In this case, the
action must be simulated against the Always condition. If this con-
dition evaluates to false, the application of the action will cause the
system to enter an unwanted state.

At first glance the original functionality of the safety rules (i.e. the
ability to passively monitor changes) may seem redundant if actions can be
simulated, but this is indeed still useful in cases where outside forces change
the values of devices connected to HomePort (e.g. manual user interaction).

When a simulation determines that an action would cause the system to
enter an unwanted state the best course of action depends on the context.
The action may be part of a collection of actions that a rule is currently
applying, and in this case some actions may already have been applied, and
some may be queued for application after the violating action. In the case
of actions that are yet to be applied, a decision must be made as to whether
or not they should be applied or not after an action in the chain has been
blocked as a result of simulation. In the case of actions that have already
been applied, a decision must be made as to whether they should be rolled
back or not, and if so, how this can be done in an appropriate manner.
Ultimately, the most appropriate course of action depends entirely on the
context, and as such it should be left up to the user to define this behavior
for each rule.

68 of 95

Bibliography

[1] ZigBee Alliance. Zigbee. http://zigbee.org/. [Online; accessed 17-02-
2015]. 13

[2] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar
Karandikar, Gabe Fierro, Nikita Kitaev, and David E Culler. Boss:
Building operating system services. 17, 18, 66

[3] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A. J. Brush, Bongshin
Lee, Stefan Saroiu, and Paramvir Bahl. An operating system for the
home. In Proceedings of the 9th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’12, pages 25–25, Berkeley, CA,
USA, 2012. USENIX Association. 16

[4] Microsoft. Microsoft – AppDomain Class. https://msdn.microsoft.com/
en-us/library/system.appdomain. [Online; acccessed 03-06-2015]. 55

[5] Mono Project. Mono Project – Cross platform, Open source .NET frame-
work. http://www.mono-project.com/. [Online; acccessed 23-02-2015]. 55

[6] Christian Mortensen Søren Knudsen, Brian Holbech. Homeport - Dy-
namic Loading and Isolation of Device Adapters in Homeport. Technical
report, Department of Computer Science, Aalborg University, Jan 2015.
13, 55

[7] H. Takatsuka, S. Saiki, S. Matsumoto, and M. Nakamura. A rule-based
framework for managing context-aware services based on heterogeneous
and distributed web services. In Software Engineering, Artificial Intel-
ligence, Networking and Parallel/Distributed Computing (SNPD), 2014
15th IEEE/ACIS International Conference on, pages 1–6, June 2014. 19

69 of 95

http://zigbee.org/
https://msdn.microsoft.com/en-us/library/system.appdomain
https://msdn.microsoft.com/en-us/library/system.appdomain
http://www.mono-project.com/

BIBLIOGRAPHY BIBLIOGRAPHY

70 of 95

A | REST API Specification

This gives an overview of how the REST API should be used. In each table
a request URI as well as the request type (GET, PUT, POST, DELETE) is
specified. The request and response format is JSON and if a request returns
data, an example JSON object is shown. In requests that requires a body,
optional and required object fields as well as query parameters are described.

GET: /devices/{id}
Returns a specific device based on a the device id.

Example
Result

{
"identifier": "RPIPlugin$23",
"name": "Bedroom Lamp",
"description": "Bedroom",
"pluginId": "RPIPlugin",
"services": [

{
"identifier": "1",
"name": "On/Off",
"description": "Turn lamp on or off",
"type": "System.Boolean",
"parameter": [

true,
false

],
"value": false,
"deviceId": "RPIPlugin$23"

}
]

}

71 of 95

REST API Specification

GET: /devices
Returns a list of the installed devices in HomePort.

Example
Result

[
{

"identifier": "RPIPlugin$11",
"name": "Livingroom Window",
"description": "Livingroom",
"pluginId": "RPIPlugin",
"services": [

{
"identifier": "1",
"name": "Open/Close",
"description": "Open or close window",
"type": "System.Boolean",
"parameter": [

true,
false

],
"value": false,
"deviceId": "RPIPlugin$11"

}
]

},
{

"identifier": "RPIPlugin$12",
"name": "Livingroom Lamp",
"description": "Livingroom",
"pluginId": "RPIPlugin",
"services": [

...
]

}
]

PUT: /devices/{id}
Modifies an existing device based on the device id.

Fields name Name of the device (Optional).
description Description of the device (Optional).

72 of 95

REST API Specification

GET: /devices/{id}/services/{id}
Returns a specific service based on the device and service id. The first id
is a device id, and the second is a service id.

Example
Result

{
"identifier": "1",
"name": "On/Off",
"description": "Turn lamp on or off",
"type": "System.Boolean",
"parameter": [

true,
false

],
"value": false,
"deviceId": "RPIPlugin$23"

}

GET: /devices/{id}/services
Return a list of all of the services belonging to the specific device in
question.

Example
Result

[
{

"identifier": "1",
"name": "On/Off",
"description": "Turn lamp on or off",
"type": "System.Boolean",
"parameter": [

true,
false

],
"value": false,
"deviceId": "RPIPlugin$23"

}
]

PUT: /devices/{id}/services/{id}
Modifies an existing service based on the provided device and service id.
It is only possible to change the meta-information and the value of the
service.

Fields
name Name of the service (Optional).
description Description of the service (Optional).
value Value of the service(Only on actuator).

73 of 95

REST API Specification

GET: /plugins/{id}
Returns a specific plugin based on the plugin id.

Example
Result

{
"identifier": "RPIPlugin",
"name": "RPI Plugin",
"description": "Plugin to control

GPIO on Raspberry PI",
"isActive": true

}

GET: /plugins
Returns a list of all of the installed plugins in HomePort.

Example
Result

[
{

"identifier": "RPIPlugin",
"name": "RPI Plugin",
"description": "Plugin to control

GPIO on Raspberry PI",
"isActive": true

}
]

PUT: /plugins/{id}
Modifies the state of a plugin to either active or deactivate.

Fields
name Name of the plugin (Optional).
description Description of the plugin (Optional).
isActive Activate/deactivate the plugin (Optional).

74 of 95

REST API Specification

GET: /devicegroups/{id}
Returns a specific device group based on the device Group id.

Example
Result

{
"identifier": 1,
"name": "Kitchen",
"description": "Devices located

in the kitchen",
"devices": [

{
"device": "RPIPlugin$16"

},
{

"device": "RPIPlugin$18"
},
{

"device": "RPIPlugin$22"
}

]
}

75 of 95

REST API Specification

GET: /devicegroups
Returns a list of all of the device groups in HomePort.

Example
Result

[
{

"identifier": 1,
"name": "Kitchen",
"description": "Devices located in

the kitchen",
"devices": [

{
"device": "RPIPlugin$16"

},
{

"device": "RPIPlugin$18"
},
{

"device": "RPIPlugin$22"
}

]
},
{

"identifier": 2,
"name": "Indoor",
"description": "Devices located indoors",
"devices": [

{
"device": "RPIPlugin$3"

}
{

"identifier": 1,
"name": "Kitchen",
"description": "Devices located

in the kitchen",
"devices": [

{
"device": "RPIPlugin$16"

},
{

"device": "RPIPlugin$18"
},
{

"device": "RPIPlugin$22"
}

]
}

]
}

]

76 of 95

REST API Specification

POST: /devicegroups
Create a new device group in HomePort. The POST data should contain
a name, and an array of device groups id or service ids.

Fields
name Name of the device group (Required).
description Description of the device group (Required).
devices An array of ids of devices or existing device

groups (Required).

Example
Result

{
"identifier": 1,
"name": "Kitchen",
"description": "Devices located

in the kitchen",
"devices": [

{
"device": "RPIPlugin$16"

},
{

"device": "RPIPlugin$18"
},
{

"device": "RPIPlugin$22"
}

]
}

PUT: /devicegroups/{id}
Modifies an existing device group in HomePort.

Fields
name Name of the device group (Optional).
description Description of the device group (Optional).
devices An array of ids of devices or existing device

groups (Optional).

DELETE: /devicegroups/{id}
Deletes a specific group based on the device group id.

77 of 95

REST API Specification

GET: /servicegroups/{id}
Returns a specific service group based on the service group id.

Example
Result

{
"identifier": 1,
"name": "On/Off",
"description": "Turn lamps On/Off",
"serviceType": "HomePort.Data.IController",
"dataType": "System.Boolean",
"services": [

{
"device": "RPIPlugin$18",
"service": "1"

},
{

"device": "RPIPlugin$8",
"service": "1"

}
]

}

GET: /servicegroups
Returns a list of all of the service groups in HomePort.

Example
Result

[
{

"identifier": 1,
"name": "On/Off",
"description": "Turn lamps On/Off",
"serviceType": "HomePort.Data.IController",
"dataType": "System.Boolean",
"services": [

{
"device": "RPIPlugin$18",
"service": "1"

},
{

"device": "RPIPlugin$8",
"service": "1"

}
]

}
]

78 of 95

REST API Specification

POST: /servicegroups
Create a new service group in HomePort. The POST data should contain
a name, data type, and an array of service ids.

Params servicetype The type of services in the service group. Can
either be sensor, actuator or controller (Re-
quired).

datatype The data type of services in the service group.
Can either be int, double, bool or string (Re-
quired).

Example
Request

POST /servicegroups?servicetype=controller&datatype=bool

Fields
name Name of the service group (Required).
description Description of the service group (Required).
devices An array of service ids (Required).

Example
Result

{
"identifier": 1,
"name": "On/Off",
"description": "Turn lamps On/Off",
"serviceType": "HomePort.Data.IController",
"dataType": "System.Boolean",
"services": [

{
"device": "RPIPlugin$18",
"service": "1"

},
{

"device": "RPIPlugin$8",
"service": "1"

}
]

}

PUT: /servicegroups/{id}
Modifies an existing service group in HomePort.

Fields
name Name of the service group (Optional).
description Description of the service group (Optional).
devices An array of service ids (Optional).

DELETE: /servicegroups/{id}
Deletes a specific service groups based on the id provided in the URI.

79 of 95

REST API Specification

GET: /rules/{id}
Returns a specific rule based on the id provided in the URI.

Example
Result

{
"identifier": 1,
"events": [

{
"device": "RPIPlugin$5",
"service": "1"

}
],
"cond": {

"cond": {
"left": {

"device": "RPIPlugin$5",
"service": "1"

},
"operator": "==",
"right": true

}
},
"actions": [

{
"device": "RPIPlugin$10",
"service": "1",
"value": true,
"delay": 0

}
]

}

80 of 95

REST API Specification

GET: /rules
Returns a list of all the rules in HomePort.

Example
Result

[
{

"identifier": 1,
"events": [

{
"device": "RPIPlugin$5",
"service": "1"

}
],
"cond": {

"cond": {
"left": {

"device": "RPIPlugin$5",
"service": "1"

},
"operator": "==",
"right": true

}
},
"actions": [

{
"device": "RPIPlugin$10",
"service": "1",
"value": true,
"delay": 0

}
]

},
{

"identifier": 2,
"events": [

{
"interval": {

"cron": "0 0/1 * 1/1 * ? *"
}

}
],
"actions": [

{
"device": "RPIPlugin$18",
"service": "1",
"value": true,
"delay": 0

}
]

}
]

81 of 95

REST API Specification

POST: /rules
Creates a new rule in HomePort. The POST data should contain a rule
in a valid format for it to be accepted by HomePort.

Fields

event Event for triggering evaluation of the rule (Re-
quired).

cond Condition that must be satisfied for actions to be
triggered(Required).

action Actions to be performed (Required).
within Time period where the rule should be active (Op-

tional).

Example
Result

{
"identifier": 1,
"events": [

{
"device": "RPIPlugin$5",
"service": "1"

}
],
"cond": {

"cond": {
"left": {

"device": "RPIPlugin$5",
"service": "1"

},
"operator": "==",
"right": true

}
},
"actions": [

{
"device": "RPIPlugin$10",
"service": "1",
"value": true,
"delay": 0

}
]

}

82 of 95

REST API Specification

PUT: /rules/{id}
Modify an existing rule in HomePort. The PUT data should contain a
rule in a valid format for it to be accepted by HomePort.

Fields

events Event for triggering evaluation of the rule (Op-
tional).

cond Condition that must be satisfied for actions to be
triggered (Optional).

actions Actions to be performed (Optional).
within Time period where the rule should be active (Op-

tional).

DELETE: /rules/{id}
Delete a specific rule from HomePort, which is selected by the id from the
URI.

GET: /safetyrules/{id}
Returns a specific safety rule based on the id provided in the URI.

Example
Result

{
"identifier": 4,
"cond": {

"cond": {
"left": {

"device": "RPIPlugin$11",
"service": "1"

},
"operator": "==",
"right": true

},
"boolOp": "&&",
"expr": {

"cond": {
"left": {

"device": "RPIPlugin$13",
"service": "1"

},
"operator": ">",
"right": 0

}
}

}
}

83 of 95

REST API Specification

GET: /safetyrules
Returns a list of all the safety rules in HomePort.

Example
Result

[
{

"identifier": 3,
"cond": {

"cond": {
"value": true

}
},
"always": {

"cond": {
"left": {

"device": "RPIPlugin$10",
"service": "1"

},
"operator": "==",
"right": true

}
},
"period": 10,
"events": [

{
"device": "RPIPlugin$5",
"service": "1"

}
]

},
{

"identifier": 4,
"never": {

"cond": {
"left": {

"device": "RPIPlugin$11",
"service": "1"

},
"operator": "==",
"right": true

}
}

}
]

84 of 95

REST API Specification

POST: /safetyrules
Creates a new safety rule in HomePort. This schema shows four different
safety rules that can be created.
Safety rule 1

Fields cond Condition that if satisfied, will result in an unwanted
state (Required).

within Time period where the rule should be active (Op-
tional).

Example
Result

{
"identifier": 4,
"cond": {

"cond": {
"left": {

"device": "RPIPlugin$11",
"service": "1"

},
"operator": "==",
"right": true

},
"boolOp": "&&",
"expr": {

"cond": {
"left": {

"device": "RPIPlugin$13",
"service": "1"

},
"operator": ">",
"right": 0

}
}

}
}

85 of 95

REST API Specification

Safety rule 2

Fields

events Event for triggering evaluation of the condition,
cond (Required).

cond Condition that if satisfied, will cause the entire
safety rule to be evaluated (Required).

always Condition that should always be satisfied (Re-
quired).

for Time unit where the always condition must be true
(Required).

within Time period where the rule should be active (Op-
tional).

Example
Result

{
"identifier": 3,
"cond": {

"cond": {
"left": {

"device": "RPIPlugin$5",
"service": "1"

},
"operator": "==",
"right": false

}
},
"always": {

"cond": {
"left": {

"device": "RPIPlugin$10",
"service": "1"

},
"operator": "==",
"right": true

}
},
"period": 10,
"events": [

{
"device": "RPIPlugin$5",
"service": "1"

}
]

}

86 of 95

REST API Specification

Safety rule 3

Fields

events Event for triggering evaluation of the condition,
cond (Required).

cond Condition that if satisfied, will cause the entire
safety rule to be evaluated (Required).

eventually Condition that must eventually be satisfied
(Required).

for Time unit that specifies the latest point in time
where the eventually condition must be satis-
fied (Required).

within Time period where the rule should be active
(Optional).

Example
Result

{
"identifier": 2,
"cond": {

"cond": {
"left": {

"device": "RPIPlugin$3",
"service": "1"

},
"operator": "==",
"right": true

}
},
"eventually": {

"cond": {
"left": {

"device": "RPIPlugin$11",
"service": "1"

},
"operator": "==",
"right": false

}
},
"period": 5,
"events": [

{
"device": "RPIPlugin$3",
"service": "1"

}
]

}

87 of 95

REST API Specification

Safety rule 4

Fields

events Event for triggering evaluation of the condition,
cond (Required).

cond Condition that if satisfied, will cause the entire
safety rule to be evaluated (Required).

always Condition that should be satisfied until the until
condition is satisfied (Required).

until Condition that defines when the always condition is
allowed to be false (Required).

within Time period where the rule should be active (Op-
tional).

Example
Result

{
"identifier": 1,
"events": [

{
"device": "RPIPlugin$3",
"service": "1"

}
],
"cond": {

"cond": {
"value": true

}
},
"always": {

"cond": {
"left": {

"device": "RPIPlugin$22",
"service": "1"

},
"operator": "<=",
"right": 15

}
},
"until": {

"cond": {
"left": {

"device": "RPIPlugin$3",
"service": "1"

},
"operator": "==",
"right": false

}
}

}

88 of 95

REST API Specification

PUT: /safetyrules/{id}
Modify an existing safety rule in HomePort. The object fields depend on
the type of safety rule that should be edited. The four types of rules and
their specific fields can be seen in the specification for a POST request.
All fields are optional.

DELETE: /safetyrules/{id}
Deletes a specific safety rule from HomePort, which is selected by the id
from the URI.

89 of 95

REST API Specification

90 of 95

B | Test Setup

91 of 95

Test Setup

92 of 95

C | Automation Rules

rule := ’event’ eventExp ’cond’ condExp ’action’
actionExp within

eventExp := serviceValue eventExp
| interval eventExp
| ε

condExp := cond boolOp condExp | cond
cond := value binOp value | true | false

| ’(’ condExp ’)’
| ’!’ condExp
| groupAggrExp

value := literalValue | serviceValue
literalValue := int | double | string | bool
serviceValue := device ’.’ service
binOp := ’>’ | ’>=’ | ’<’ | ’<=’ | ’==’ | ’!=’
boolOp := ’&&’ | ’||’
actionExp := serviceValue literalValue delay actionExp

| groupActExp delay actionExp | ε
delay := int | ε
within := ’within’ interval interval | ε
interval := int | string
groupActExp := ’[’ groupExp ’do’ literal ’]’
groupAggrExp := ’[’ groupExp aggrFunc binOp literal ’]’
groupExp := ’group’ groupType excludeExp ’type’ type whereExp
groupType := ’*’ | groupCom
groupCom := group ’,’ groupCom | group
excludeExp := ’exclude’ groupCom | ε
whereExp := ’where’ whereCondExp | ε
whereCondExp := whereCond boolOp whereCondExp | whereCond
whereCond := whereValue binOp whereValue | true | false

| ’(’ whereCondExp ’)’
| ’!’ whereCondExp
| groupAggrExp

whereValue := literal | device ’.’ service | #
literal := int | double | string | bool
aggrFunc := ’count’ | ’min’ | ’max’ | ’avg’

93 of 95

Automation Rules

94 of 95

D | Safety Rules

safetyRule := ’cond’ condExp within
| ’event’ eventExp ’cond’ condExp safetyType within

safetyType := ’always’ condExp ’for’ uint
| ’always’ condExp ’until’ condExp
| ’eventually’ condExp ’for’ uint

condExp := cond boolOp condExp | cond
cond := value binOp value | true | false

| ’(’ condExp ’)’
| ’!’ condExp
| groupAggrExp

value := literalValue | serviceValue
literalValue := int | double | string | bool
serviceValue := device ’.’ service
binOp := ’>’ | ’>=’ | ’<’ | ’<=’ | ’==’ | ’!=’
boolOp := ’&&’ | ’||’
eventExp := serviceValue ’||’ eventExp | serviceValue
within := ’within’ interval interval | ε
interval := int | string
groupActExp := ’[’ groupExp ’do’ literal ’]’
groupAggrExp := ’[’ groupExp aggrFunc binOp literal ’]’
groupExp := ’group’ groupType excludeExp ’type’ type whereExp
groupType := ’*’ | groupCom
groupCom := group ’,’ groupCom | group
excludeExp := ’exclude’ groupCom | ε
whereExp := ’where’ whereCondExp | ε
whereCondExp := whereCond boolOp whereCondExp | whereCond
whereCond := whereValue binOp whereValue | true | false

| ’(’ whereCondExp ’)’
| ’!’ whereCondExp
| groupAggrExp

whereValue := literal | device ’.’ service | #
literal := int | double | string | bool
aggrFunc := ’count’ | ’min’ | ’max’ | ’avg’

95 of 95

	Analysis
	HomePort
	Related Work
	HomeOS
	BOSS
	RuCAS

	Generalized Architecture
	Challenges
	Automation Control
	Device Groupings
	Unintended Behavior
	Missing Components

	Problem Delimitation
	Requirements Specification

	Automation Rules
	Scenarios
	Event Triggers and Delayed Actions
	Interval Triggers
	Deactivate Rules

	Requirements
	Language Specification

	Safety Rules
	Scenarios
	Conditional Statement and Service Groups
	Time Window of Validity
	Elapsed-time Monitoring
	Time-based Monitoring
	Conditional Monitoring

	Requirements
	Language Specification

	Grouping
	Scenarios
	Grouping of Devices
	Group Subsets
	Group Filtering

	Requirements
	Grouping of Devices and Services
	Language Specification

	System Design
	Component Architecture
	Event System
	Grouping
	Automation Engine
	Safety Engine
	REST Interface

	Evaluation
	HomePort Implementation
	Test Setup
	Experiment
	Automation Rules
	Safety Rules
	Grouping
	Findings

	Conclusion
	Future Work
	Handling Unwanted States
	Cooperation Between Automation and Safety Rules

	REST API Specification
	Test Setup
	Automation Rules
	Safety Rules

