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ABSTRACT:

DNA-methylation is a process that hap-
pens in connection with gene expression.
This process has shown to be a promising
predictor of age. The relation is interest-
ing in the field of forensic science. If the
age of a suspect could be predicted on the
basis of DNA, a group of suspects could
be narrowed down or it could form a lead
for the police, if they had no other leads.

In this thesis regression models us-
able for handling high dimensional
genomics data of DNA-methylation
has been studied. The purpose was to
find few good predictors of age among
hundreds of thousands, and to determine
consistency of those.

The methods which were studied for
the purpose were Ridge regression,
Elastic net and Lasso. Especially Elastic
net and Lasso were relevant methods, as
they performed variable selection. The
consistency of predictors was determined
for the Lasso and Elastic net method by
Stability selection. Moreover Partial least
squares was applied to the data.

The final result was a Ridge regres-
sion model found by Elastic net combined
with Stability selection. It contained
18 stable predictors, and resulted in an
RMSE at 2.43 on the validation data.
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Resumé

I dette speciale er der arbejdet med regressions modeller anvendelige til genomisk data
af høj dimension. Mere specifikt er der arbejdet på at finde en model, der kan forudsige
en persons alder ud fra dennes DNA. Problemstillingen er særligt interessant indenfor
retsgenetik, idet at det vil være en fordel i forbindelse med efterforskningen af kriminal-
sager at kunne forudsige alderen på en mistænkt ud fra et DNA spor. Man vil så kunne
reducere antallet af mistænkte. Derudover vil en bestemt alder på en person være et godt
spor at gå ud fra, hvis politiet ikke har andre spor af gerningsmanden.

Det er en bestemt process i forbindelse med gen-ekspressionen kaldet DNA metylering,
som har vist en sammenhæng med alder. Denne process kan måles ved hjælp af en
teknologi fra Illumina. 485.000 forskellige steder på DNA’et i forskellige gener kaldet
markører, kan med denne teknologi måles for raten af DNA-metylering ved hjælp af
et micro array. I dette speciale er DNA-metylering blevet målt i 50 blodprøver fra 45
personer i alderen 15−82 år. Formålet var så at finde nogle få markører ud af de 485.000
målte markører, der bedst kunne forklare en persons alder. Dette var ønskeligt, da det
ikke er muligt at indsamle nok DNA fra et gerningssted til at kunne analysere mere end
omkring 12−24 markører. Udover at finde nogle gode markører til at forudsige alderen,
var det også vigtigt at disse markører ville kunne bruges gentagne gange til at prædiktere
alderen på en mistænkt. Det skulle derfor også være nogle stabile markører, der ville
kunne bruges på enhver persons DNA.

Det, at der var 50 observationer til rådighed og flere hundrede tusinde variable, der
skulle undersøges for hver observation, klassificerede data som værende høj dimen-
sionelt. Det er ikke muligt at anvende standard regressions metoder på høj dimen-
sionelt data, da disse metoder kræver, at data indeholder flere observationer end vari-
able. Metoderne der er blevet anvendt i forbindelse med at løse problemstillingen, er
derfor shrinkage-metoderne Ridge regression, Elastic net og Lasso. Metoderne er baseret
på least squares metoden, hvor der er tilføjet en straf parameter. De egner sig derfor
til høj dimensionelt data, idet at denne straf parameter tillægger modellen en smule
bias, og dermed opnås et bias-variance trade-off for modellen, som medfører, at det er
muligt at anvende flere variable end observationer i modellen. Derudover er dimensions-
reduktions metoden Partial least squares også blevet anvendt. Denne metode laver et
reduceret antal af nye variable ud fra lineære kombinationer af de oprindelige variable,
og på denne måde kan de reducerede nye variable benyttes i en standard lineær model.

Fordelen ved metoderne Elastisk net og Lasso var, at disse også udførte selektion af vari-
able. Med disse metoder var det muligt at få udvalgt et udsnit af de 485.000 markører.
For at finde stabile markører i blandt de udvalgte, blev metoderne kombineret med Sta-
bility selection.

Efter at have anvendt de forskellige metoder på data, blev en Ridge regression model
med 18 markører fundet som den bedste ud fra RMSE til at forudsige alderen ud fra
metyleret DNA i blodet. Modellen var et resultat af at anvende Elastisk net kombineret
med Stability selection.
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1Introduction

In the field of forensic science, association between human aging and DNA has been
studied, since it would be helpful in the investigation of a criminal offence to be able
to predict the age of a suspect on the basis of DNA evidence. By this opportunity, the
amount of suspects could be narrowed down, when no match with evidence DNA is
available. Moreover it would be a great lead for the police to know an approximate age
of the perpetrator, if no other leads are available. In the field of epigenetics especially
DNA methylation has attracted much attention, as several studies have shown that DNA
methylation changes with age [Fraga and Esteller, 2007, Florath et al., 2014, Yi et al.,
2014, Hannum et al., 2013], and thereby it might be a promising predictor of age.

DNA-methylation as a predictor of age is not only relevant in forensic science, the rela-
tion has also shown interest for age-related diseases such as diabetes mellitus (type 2),
cancer and cardiovascular disease [Florath et al., 2014].

In this thesis methylated DNA is measured in 50 blood samples from subjects in the
age 15 to 82, and association between methylated DNA in the blood and age is studied.
The methylated DNA is measured by the Infinium Human Methylation450 BeadChip Kit
from Illumina, a technology which is capable of measuring 485.000 different positions
on sequences of DNA per sample. The biology of DNA methylation and the technique
for measuring it is explained in Chapter 2, followed by a description of the preprocessing
and a first analysis of the data in Chapter 3.

As not much DNA evidence is available from a scene of crime, the purpose of this thesis
is to determine the 485.000 positions available from the blood samples, and find a com-
bination of 12− 24 of those, that gives the best prediction of a humans age, on the basis
of the level of methylated DNA in the blood. The purpose is not only to build a model
with a good prediction performance, but also to find some reliable predictors that can be
used to consistently predict the age of suspects.

The data to determine in this thesis is genomic data measured by a micro array, which is
generally high dimensional data, as we are able to measure several thousand predictors
and typically only have few observations available. Because of the high dimension, regu-
lar methods for fitting the data will not be applicable since for these methods there must
be more observations than predictors available. Issues like overfitting and collinearity
in the data, explained in Chapter 4, will typically be a problem. One way to deal with
such problems in the regression setting is by shrinkage models like Ridge regression,
Elastic net and Lasso. They add a regularization term to the standard linear regression
method which makes it possible to fit data with more predictors than observations. An
advantage of Elastic net and Lasso is that they perform variable selection, and they are
therefore relevant methods for the purpose of reducing the 485.000 measured predictors
to an amount between 12 and 24. The methods are explained in Chapter 5.

As the purpose not only is to find some predictive variables, but also to ensure to some
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2 1. INTRODUCTION

extent reliability of these variables, the method of Stability selection will be combined
with Elastic net and Lasso, to investigate the randomness of their selected variables. This
method will also be explained in Chapter 5.

Another type of methods useful for handling data of high dimension, is dimension reduc-
tion methods. As the name suggests the procedure reduces the dimension of a problem,
by making a reduced number of new predictors, where each one is based on linear com-
binations of all of the original predictors. A method of this type which will be applied in
this thesis, is the Partial least squares method, it will be explained in Chapter 6.

Results of applying the methods will be presented in Chapter 7, where performance of
some simulated data of methylation levels for different ages is also tested. The perfor-
mance of data for a subject at the age 18 is especially interesting, as their are different
rules for sentences of persons above or below this age. A model with more precision
around this age will hence be preferred.

Lastly the found results will be discussed in Chapter 8.



2Biology and Study of DNA Methylation

DNA methylation is a process that happens in connection with gene expression. In the
following biology of and a method for studying DNA methylation will be described.

2.1 DNA and RNA

DNA (deoxiribonucleic acid) and RNA (ribonucleic acid) are to classes of nucleic acids,
they store and process information inside cells. DNA determines

Figure 2.1: RNA and DNA molecules, mod-

ified from [Bartholomew et al., 2012].

characteristics such as eye color, hair color
and blood type. It makes the encoding of
information for proteins, and in this way
DNA directs the protein synthesis, and
controls shape and physical characteris-
tics of our bodies. RNA uses the informa-
tion from DNA to build proteins.

A nucleic acid is one or two long chains,
and the subunits of these chains are called
nucleotides. RNA only consists of one
chain of nucleotides, whereas DNA con-
sists of two (a pair), see Figure 2.1. Each
nucleotide consists of three components.
It contains a five-carbon sugar, either ri-
bose (in RNA) or deoxyribose (in DNA),
which is attached to a phosphate group
and a nitrogenous base. The nitroge-
nous bases that occur in nucleic acids are
adenine (A), guanine (G), cytosine (C),
thymine (T) and uracil (U). Thymine oc-
curs only in DNA and Uracil only in RNA,
[Bartholomew et al., 2012].

2.2 Gene Expression

The units that contain DNA are genes, they contain the DNA needed to produce par-
ticular proteins. The process of building a protein, starting with a gene, is called gene
expression. This process can be divided into two subprocesses, transcription and trans-
lation. The main function of these processes is that DNA is transcribed into messenger
RNA (mRNA), so that it can leave the nucleus and be translated into proteins. In the pro-
cess of transcription, elements such as the enzyme RNA polymerase and transcription
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4 2. BIOLOGY AND STUDY OF DNA METHYLATION

factors play an important role. General transcription factors are proteins required in the
transcription process. They bind to both RNA polymerase and certain DNA sequences
in the promoter region of a gene 1. A sequence called enhancers can help to increase
the process of transcription of specific genes. The enhancers bind to special transcrip-
tion factors called activators which bind to another special class of transcription factors
called co-activators, and they finally bind to the general transcription factors which binds
to the gene [Jorde, 2006].

The expression of genes may be tissue specific. That is, almost all cells contain the exact
same sequence of DNA, and hence only some of the genes in a cell are transcribed de-
pending on the type of tissue, and it happens at specific points in time. To prevent genes
from being expressed in a wrong tissue, silencing of these genes is necessary. Silencers
are DNA sequences that helps to repress the transcription of genes [Jorde, 2006]. This
can happen by DNA methylation

2.3 DNA Methylation

DNA methylation is silencing of genes by modification of DNA. It happens at CpG-sites
of the nitrogenous bases. The notation is a shorthand for C - phosphate - G, that is
cytosine is in front of a guanine in the DNA sequence, and they are connected by this
phosphate group only. The notation is to avoid confusion with the CG base pairing. A
methyl group is in this process added to the fifth carbon atom of the cytosine, thus it
becomes 5-methylcytosine (methylated C), see Figure 2.2. This transferring of a methyl
group to the cytosine, is done by the enzymes DNA methyltransferases. The effect of the
methylated C’s, is that they block the binding of activators to the enhancers, and thus the
gene cannot be transcribed, as illustrated in Figure 2.2. Methylation is an epigenetic phe-
nomena, which means that gene expression is altered without changing the nucleotide
sequence [Ginder and Singal, 1999].

Figure 2.2: The effect of DNA methylation on gene expression [Zeisel, 2007].

1a nucleotide sequence laying in the upper part of a gene
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CpG-islands

DNA methylation is in particular found in regions called CpG-islands. These regions
are DNA-sequences consisting of several CpG-sites next to each other. They are often
found in the promoter region of a gene. CpG-islands can be divided into two classes,
depending on whether the frequency of CpG-sites is low or high. CpG-islands with low
frequency of CpG-sites are typically seen in genes that are tissue-specific, and are there-
fore often methylated. If the frequency of CpG-sites is high, CpG-islands are generally
unmethylated [Armstrong, 2014].

2.4 Illumina 450k Methylation Array

To determine the methylation pattern of DNA, it can be treated with bisulfite. By this
process unmethylated cytosines are converted into uracil (U) and the methylated cy-
tosines stay unchanged [Ginder and Singal, 1999]. After this the DNA is whole genome
amplified, and uracil (U) has turned into thymine (T), while the methylated cytosines
become cytosines (C) again. The conversions make an analysis of the single nucleotide
polymorphisms (SNP’s) possible in the search for T’s and C’s. This analysis can be done
by micro arrays. There are different types of micro arrays, they can be used to determine
the expression of genes or like in this case, to determine variation in genomic DNA by
analyzing SNP’s.

A micro array is a solid surface with probes attached to it. A probe is a dissolution of a
smaller DNA- or RNA-strand, that is supposed to capture a specific target. The targets
are complementary DNA - or RNA strands labeled with reporter molecules, typically flu-
orescent dyes, which makes it possible to measure the frequency of targets captured by
the probes. The process where a target binds to a probe is called hybridization. Weak hy-
bridizations are subsequently washed away, and the array is ready to be scanned. When
a target labeled with a fluorescent dye is captured by a probe, it emits light which is
measured during the scan [Welle, 2013].

One type of micro arrays for the study of DNA methylation is called Infinium Human-
Methylation450 BeadChip Kit. It allows more than 485,000 methylation sites per sam-
ple, which should be understood as 485,000 different probes. These methylation sites or
probes will further on be referred to as CpG-positions or CpG-markers. Two chemistry
technologies are used in this array, these are called infinium I - and infinium II assays.
Infinium I allows 135,000 probes whereas infinium II allows 350,000.

Infinium I Assay

This assay uses two different probes, one to detect the ’methylated’ CpG-sites and one
for detection of the unmethylated CpG-sites. As in Figure 2.3 (A), the target for the
’methylated’ probe is the nucleotide polymorphism C and for the ’unmethylated’ probe
T. The signals in both probes emitted from the fluorescent dyes are generated in the same
color channel [Dedeuwaerder et al., 2011].
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Infinium II Assay

Only one probe detects if the CpG-sites are ’methylated’ or not, see Figure 2.3 (B). The
targets are either the nucleotide polymorphisms A or G, since they have the complemen-
tary bases T and C respectively. Methylated and unmethylated signals are generated in
green and red color channels respectively.

Figure 2.3: Infinium I assay (A) and Infinium II assay (B) [Bibikova et al., 2011].

The methylation can be measured as

β =
Methylated CpG-sites

Unmethylated CpG-sites + Methylated CpG-sites + offset
, (2.1)

where the offset is an arbitrary value. It is added to avoid division with small values. In
stead of using β as the measure for the level of methylation, it is rather preferred to use
M-values. They are computed as logit(β) [Hansen and Aryee, 2013], the definition is

M = logit(β) = log
(
β

1− β

)
= log

(
Methylated CpG-sites

Unmethylated CpG-sites + offset

)
. (2.2)

The data is then closer at fulfilling the assumption of normality, since M ∈ (−∞,∞). In
this thesis offset = 0, and a threshold is set for β, to avoid β to be equal to 0 and 1. The
threshold is set to 0.001, and hence β will be in the range [0.001,0.999].



3Preliminary Data Analysis

For analyzing Illumina’s 450k Methylation arrays, the package minfi can be used, to-
gether with the software R [Hansen and Aryee, 2013].

Section of Forensic Genetics, University of Copenhagen, has provided data in the form of
50 blood samples from 45 subjects in the age range 15− 82 years, random across gender.
In the following structure, preprocessing and a first analysis of the data will be described.

3.1 Structure of The Data

When receiving data generated by Illumina’s Infinium HumanMethylation450 BeadChip
Kit, relevant files for analysis by the minfi package are the IDAT files. These represent
red and green color channels before normalization.

The overall dataset is called a plate, it contains at most 8 slides, which again contains 12
arrays per slide. The arrays are subdivided into a 6 by 2 grid which are further divided
into red and green color channels. A single array contains only one sample, and it mea-
sures approximately 450,000 CpG-positions [Hansen and Aryee, 2013], in this particular
data set 485,512 CpG-positions are measured. The content of the plate is shown below,
arranged into the eight slides.
> baseDir <- file.path("D:", "UNI", "Speciale", "Metylering", "Raw_data")

> list.files(baseDir)

[1] "8918692116" "8918692117" "8918692128" "9297949068"

[5] "9297949069" "9297949106" "9297949109" "9297949127"

[9] "A2003_01-96.csv"

The csv-file also contained in this overall filepath is called the samplesheet. This file
makes the data more readable, and contains information such as array, slide, sample id
and for this purpose also age of the subjects.

If we look inside slide 8918692116 we get 12 arrays, each with a green (Grn) and a red
(Red) IDAT file .
> list.files(file.path(baseDir, "8918692116"), pattern=".idat")

[1] "8918692116_R01C01_Grn.idat" "8918692116_R01C01_Red.idat"

[3] "8918692116_R01C02_Grn.idat" "8918692116_R01C02_Red.idat"

[5] "8918692116_R02C01_Grn.idat" "8918692116_R02C01_Red.idat"

[7] "8918692116_R02C02_Grn.idat" "8918692116_R02C02_Red.idat"

[9] "8918692116_R03C01_Grn.idat" "8918692116_R03C01_Red.idat"

[11] "8918692116_R03C02_Grn.idat" "8918692116_R03C02_Red.idat"

[13] "8918692116_R04C01_Grn.idat" "8918692116_R04C01_Red.idat"

[15] "8918692116_R04C02_Grn.idat" "8918692116_R04C02_Red.idat"

[17] "8918692116_R05C01_Grn.idat" "8918692116_R05C01_Red.idat"

[19] "8918692116_R05C02_Grn.idat" "8918692116_R05C02_Red.idat"

[21] "8918692116_R06C01_Grn.idat" "8918692116_R06C01_Red.idat"

[23] "8918692116_R06C02_Grn.idat" "8918692116_R06C02_Red.idat"

7



8 3. PRELIMINARY DATA ANALYSIS

3.2 Preprocessing

In order to process the data, all the IDAT files are brought together with the samplesheet
to an RGChannelSet that contains the raw unprocessed data. It contains measures of red
and green channels from the different CpG-positions for each sample, which we wish to
convert to methylation levels of the CpG-positions. The raw data needs to be normalized
before any analysis can take place, since it is important that differences in intensities are
in fact due to difference in level of methylation and not due to experimental artefacts
[Dudoit and Yang, 2003, Ch. 3]. A function called preprocessIllumina in the minfi

package is able to make this background normalization besides from converting the sig-
nals. It takes an RGChannelSet as input and returns a Methylset denoted Mset.norm

below, which is the data converted from green and red channels to methylated and un-
methylated signal respectively [Hansen and Aryee, 2013].

It is now possible to observe the number of methylated and unmethylated CpG-sites at
individual CpG-positions for each sample. The following shows the number of methy-
lated CpG-sites at five of the 485,512 CpG-positions for three of the 50 samples.

> getMeth(Mset.norm)[1:5,1:3]

9297949127_R03C01 9297949068_R05C02 8918692128_R05C01

cg00050873 933.05278 10053.66467 5916.90935

cg00212031 47.06794 119.45793 156.45378

cg00213748 53.98970 2202.50557 242.68814

cg00214611 22.14962 45.86331 70.21941

cg00455876 184.11872 3381.08604 1294.74739

In the same way the number of unmethylated CpG-sites can be observed, and β (as de-
fined in (2.1)) can be computed for every CpG-position, where offset=0. The values of β
can be obtained by the following function

> getBeta(Mset.norm,offset=0)[1:5,1:3]

9297949127_R03C01 9297949068_R05C02 8918692128_R05C01

cg00050873 0.5145038 0.889664936 0.70924395

cg00212031 0.2500000 0.025151583 0.15894869

cg00213748 0.2867647 0.952051637 0.64590164

cg00214611 0.2807018 0.008477918 0.08662614

cg00455876 0.3333333 0.839735099 0.50071463

Furthermore the M-values (defined in (2.2)) can be obtained by

> getM(Mset.norm, type = "", betaThreshold = 0.001)[1:5,1:3]

9297949127_R03C01 9297949068_R05C02 8918692128_R05C01

cg00050873 0.08372183 3.011371 1.286472697

cg00212031 -1.58496250 -5.276457 -2.403632736

cg00213748 -1.31451062 4.311486 0.867164317

cg00214611 -1.35755200 -6.869791 -3.398331167

cg00455876 -1.00000000 2.389476 0.004123952

where type="" indicates that the values are computed without any offset, and
betaThreshold=0.001 is the threshold mentioned in Section 2.4, to avoid values of β at
0 and 1.
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3.3 Differentially Methylated Positions

The derived Methylset is applicable for analysis of the individual CpG-positions. We
are now capable of examining the correlation of the methylation level (β) for each CpG-
position with specific phenotypes. Where an individual correlation between a pheno-
type and the methylation level for a CpG-position occurs, is defined as a differentially
methylated position (dmp) [Hansen and Aryee, 2013]. In this thesis we are as mentioned
looking at age, a continuous phenotype.

As age is a continuous phenotype, we are dealing with a regression problem. The most
simple type of regression is linear regression, and hence a first analysis of the data will
be to use linear regression to determine the dmp’s. The dmp’s can be identified by the
dmpFinder function, it performs univariate linear regressions of age by each of the CpG-
positions. It is then tested by multiple testing if the regression coefficient is equal to zero,
i.e. if the regression coefficient is significant.

The Methylset is turned into the M-values as computed in (2.2) for use in these tests,
with a threshold for β (computed in (2.1)) at 0.001. Since the data is from both males
and females, the sex chromosomes might influence the analysis. Females have the dou-
ble amount of the X-chromosome compared to males, and hence in order to remove a
potential false gender effect, the CpG-positions appearing from this chromosome are re-
moved. From the 485,512 CpG-positions, 11,232 appearing from the X-chromosome are
removed, which leaves 474,280 CpG-positions for analysis. This data set of M-values,
where the positions from the X-chromosome are removed, will be the data applied in all
later analysis, unless otherwise stated.

The output of dmpFinder is seen below for the six most significantly differentially methy-
lated CpG-positions, where beta is the change in mean age per unit increase in level of
methylation. The variable qval, gives the q-value, which is the false discovery rate (FDR)
when performing multiple testing. It is the expected proportion of CpG-positions which
is incorrectly called significant. The object M.noX denotes the data, where CpG-positions
from the X-chromosome are removed.

> dmp <- dmpFinder(M.noX, pheno=age, type="continuous")

> dmp[1:6,]

intercept beta t pval qval

cg10501210 3.8050619 -0.05224796 -12.914126 2.147430e-16 9.998429e-11

cg16867657 -0.7246028 0.02805765 12.000476 2.576239e-15 5.997481e-10

cg22454769 -1.3324585 0.02815874 11.213349 2.386375e-14 3.703653e-09

cg06639320 -1.3242045 0.01790768 10.503227 1.904581e-13 2.216931e-08

cg04875128 -5.0814385 0.04998958 10.007979 8.425975e-13 7.846264e-08

cg08128734 1.5105158 -0.02304459 -9.624023 2.726463e-12 1.990679e-07

In Figure 3.1 linear regression with the six most significant differentially methylated
CpG-positions are illustrated one at a time. Linear trends are clear, although some out-
liers are appearing. By visually inspecting 220 of these most significant dmp’s, it is more
clear that the slope of the regression line and the goodness of fit indicates whether the
CpG-position is a good predictor of age or not. The closer the slope is to zero, the more
difficult it gets to measure if the subject is young or old. Moreover a high variance among
the samples makes a prediction uncertain. A slope that indicates a great change in the
level of methylation during age would hence be preferable together with a good fit to the
regression line.
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Figure 3.1: Linear trends with age of the six most significant differentially methylated

CpG-positions.



4High-Dimensional Regression

In the preliminary analysis a linear trend between a persons age and the level of methy-
lated DNA in the blood was seen. It is then the purpose to build a model which is able to
explain this linear trend in the best possible way, and hence to pick those CpG-markers
from the data with the most predictive value in relation to a persons age. The most clas-
sical method used for fitting linear models is the least squares method. However, this
method is not feasible due to singularity if dimensions of the data is high, i.e. when
the data contains more predictors than observations, and hence other methods should
be considered. Some of the major problems with high dimensional data are the risk of
overfitting a model and the concept of collinearity.

As we in this particular case work with a data set with 50 observations and 474,280 pre-
dictors, we are dealing with a high dimensional regression problem, in which the above
mentioned issues needs to be considered. In this chapter the problems of overfitting and
collinearity will be deeper explained, and appropriate methods for dealing with these
issues will be introduced to make the foundation of the methods determined in the fol-
lowing chapters.

4.1 Overfitting

When the number of predictors is high compared to the number of observations in a data
set, care should be taken when estimating the prediction error. The complexity of the
model plays a key role in this connection. A model tends to fit a set of training data more
and more accurate, the more complex it gets, that is when more and more predictors are
added to the model, no matter if they truly are associated with the response. This is the
concept of overfitting, as the model follows the errors or the noise in the data to closely.
In this case the model will not be able to predict new data well, and hence the error
of independent test data will increase with the complexity, unless the predictors truly
are associated with the response. The error of a model fitted to training data is hence
misleading, and conclusions should always be made from the error of a model fitted to a
test set which has not been used to train the model. Cross-validation can also be used as
a valid method for estimating the prediction error [James et al., 2013].

The reason why the prediction errors increases when a model becomes more flexible by
adding more variables, is due to an increase of the variance of the model. The variance
should be understood as the variability of estimating the model by other sets of training
data. Not much change in the data would cause big changes to a model with high flexi-
bility, and hence the variance will get high. Another term of interest when estimating the
accuracy of a model is the bias. The bias is the difference between the predicted and the
observed values. This term will generally decrease with the complexity, as the model will
fit the data more well the more flexible it gets. A trade off between a low bias and a low
variance will give the best prediction as illustrated in Figure 4.1, where the total error

11
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of a model will be minimal around the point where the bias and the variance intersect.
Overfitting will then occur after passing this point [James et al., 2013].

Figure 4.1: The bias-variance trade-off [Fortmann-Roe].

To illustrate the problem of overfitting, the methylation data is fitted by linear regres-
sion models, where the number of predictors is increased by one each time. Cross vali-
dation is used to estimate the prediction error. As we cannot use more predictors than
observations in a linear model to obtain a unique solution, a number between 1−48 CpG-
positions can be used in the model (due to the intercept and the degrees of freedom). One
CpG-marker at a time of the 48 most significant ones found by the dmpFinder-function
in Section 3.3 is added in a linear model, and each time leave-one-out cross validation
is performed. The prediction error for each model computed as the Akaike Information
Criterion (AIC) is plotted in Figure 4.2.
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Figure 4.2: The cross validation error of linear models of age by DNA methylation with

different numbers of CpG-positions.

Figure 4.2 shows that the error as expected increases with the complexity of the model,
even though all of the 48 CpG-positions should be associated with the response. A model
with around ten CpG-positions would yield the most reasonable model, as the error is
minimal here. This is one way to find and select some significant CpG-positions for
prediction of age by the level of DNA methylation and avoid overfitting. We are though
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by this method constrained to use 10 CpG-markers, and we do not know whether some of
the less significant positions would contribute to a better prediction in combination with
more significant positions. A deeper investigation of all of the 474,280 CpG-positions
should therefore be made, to find the best combination of CpG-positions for prediction
of age.

As the full data set contains 474,280 predictors and only 50 observations, it is not pos-
sible to fit a linear model by all of the predictors. A linear regression model is normally
fitted by the least squares method, which corresponds to minimizing the residual sum of
squares (RSS) given by

RSS(β) =
N∑
i=1

yi − β0 −
p∑
j=1

βjxij


2

, (4.1)

with N being the number of observations and p being the number of predictors. The
solution of the minimization is

β̂ = (XTX)−1XT y,

where X = [1,x1, . . . ,xp] and xj = (x1j , . . . ,xNj )T .

The termXTX will be singular when the number of predictors are higher than the num-
ber of observations, due to X not having full rank. Because of this the variance of the
regression coefficient estimates will be infinite, causing the variance of the model to be
infinite. Shrinkage methods like Ridge regression, Elastic net and Lasso are methods
appropriate for handling high dimensional problems like this. As we also saw in Fig-
ure 4.1, the variance of a model will increase as the number of predictors increases. The
shrinkage methods are capable of using all of the 474,280 predictors, as they are linear
regression models with a shrinkage penalty. This penalty term adds some bias to the
model and in this way a bias-variance tradeoff is achieved as it causes a reduction of the
variance of the model. Elastic net and Lasso does even perform feature selection, and a
less complex model is obtained by these methods. Partial least squares is another useful
method in the high dimensional setting. It reduces the dimension of the original problem
by using a reduced number of transformed predictors in stead of the original predictors
in a linear model. Another reason why standard linear regression should not be used, is
due to collinearity.

4.2 Collinearity

A problem in regression models, especially for high dimensional data, is that two or
more predictors might remind of each other, in which case we call them collinear or
multicollinear if a group of predictors can be formed by linear combinations of each
other. For this data set the problem is essential, the predictors are variations of each
other, as they all contain the same measure, namely the level of methylated DNA in a
persons blood. For this reason the predictors actually associated with the response age
all remind of each other, and can to some extent be described as linear combinations of
each other.

When collinearity occurs, some of the predictors xj can be described as linear combina-
tions of other predictors, which causes the term XTX to become nearly singular. Com-
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plete singularity would cause no unique solution of β̂. Where it is close to singular,
results will be unstable, and small changes to the data will have a big influence on β̂
[Dorman et al., 2013], causing an increased variance.

It becomes a problem in a linear regression model, when testing the significance of pre-
dictors included in the model. Standard errors of the regression coefficients will increase
due to the increased variance, and induce a low t-statistic as the t-statistic for each pre-
dictor is given by (β̂j − β0)/SEβj . A low t-statistic may cause that collinear predictors
incorrectly will be discarded from the model, since they will not be stated statistically
significant. This is even though they are truly associated with the response [James et al.,
2013, Madsen and Thyregod, 2011].

Collinearity can be detected by determining the correlation between predictors. A rule of
thumb or a threshold for detection of collinearity is a pairwise absolute correlation above
0.5 − 0.7 [Dorman et al., 2013]. As an example, take a look at the pairwise correlations
between the four most significant CpG-markers found by dmpFinder

cg10501210 cg16867657 cg22454769 cg06639320

cg10501210 1.00 -0.81 -0.80 -0.77

cg16867657 -0.81 1.00 0.87 0.86

cg22454769 -0.80 0.87 1.00 0.94

cg06639320 -0.77 0.86 0.94 1.00

As seen, all of the pairwise absolute correlations are above 0.7, and are therefore highly
correlated and indicates collinearity. In Figure 4.3 the CpG-markers are plotted against
each other and age to show their linear relation. They all have a linear relation to the
response age, but they do also have a linear relation to each other as the correlation
coefficients also show.
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Figure 4.3: Relation between the four most significant CpG-markers and age.



4.2. COLLINEARITY 15

To show how collinearity influence the significance of predictors, a linear model of age is
fit by the CpG-markers cg22454769 and cg06639320 as they showed to be most collinear
by a correlation coefficient at 0.94. The result is shown in Figure 4.4, where the data M

contains the response age and the data of the two CpG-markers.

Figure 4.4: Linear regression of age by the CpG-markers cg22454769 and cg06639320.

> fit <- lm(age ~ cg22454769 + cg06639320,data=M)

> summary(fit)

Call:

lm(formula = age ~ cg22454769 + cg06639320, data = M)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 53.830 5.285 10.186 6.46e-13 ***

cg22454769 17.451 6.944 2.513 0.0159 *

cg06639320 14.787 10.730 1.378 0.1755

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Only one of the two CpG-markers is stated statistically significant, and the significance
level is only just reached with a p-value at 0.0159. Moreover the t-value is low for both
of the CpG-markers, due to the large standard error. Removing one of the CpG-markers
changes a lot, as shown in the outputs in Figures 4.5 and 4.6. A great decrease in the
standard error is seen, which causes the t-value to increase, and the CpG-marker becomes
much more statistically significant. A linear model with both of these CpG-markers
would thus not be optimal, even though they both are significant predictors of age.

Figure 4.5: Linear regression of age by the CpG-marker cg06639320.

> fit <- lm(age ~ cg06639320, data=M)

> summary(fit)

Call:

lm(formula = age ~ cg06639320, data = M)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.856 2.376 27.71 < 2e-16 ***

cg06639320 40.180 3.826 10.50 1.9e-13 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Figure 4.6: Linear regression of age by the CpG-marker cg22454769.

> fit <- lm(age ~ cg22454769, data = M)

> summary(fit)

Call:

lm(formula = age ~ cg22454769, data = M)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 46.754 1.267 36.91 < 2e-16 ***

cg22454769 26.463 2.360 11.21 2.39e-14 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We are interested in using collinear predictors in the same model, as some of them might
explain something that the others do not, and hence other methods accounting for this
problem should be applied. As the problem with collinearity is high variance, the shrink-
age methods also accounts for this, by the addition of some bias in the model, leading to
a reduction of variance of the model. Especially Ridge regression is appropriate for solv-
ing this problem, as this method does not perform feature selection. In the Partial least
squares method, the transformed variables are uncorrelated, and collinearity will hence
not exist.



5Shrinkage Methods

Techniques similar to least squares but where the coefficient estimates become regular-
ized can be used for fitting regression models on high dimensional data. Such techniques
are called shrinkage methods, since they shrink the regression coefficients towards zero
[James et al., 2013].

In the following three regularized variants of the least squares method; Ridge regression,
Lasso and Elastic net, will be presented. The theory is from [Hastie et al., 2009, James
et al., 2013] unless otherwise stated.

Let N be the number of observations and let p be the number of predictors also known
as features in a data set (X ,y). The design matrix X is of dimension N × p, where X =
[x1, . . . ,xp] and xj = (x1j , . . . ,xNj )T for j = 1, . . . ,p. The response y is of dimension N × 1
and is defined as y = (y1, . . . , yN )T .

5.1 Ridge Regression

Recalling that the Least squares method corresponds to minimizing the RSS given in
(4.1), the Ridge regression coefficient estimates are given by

β̂Ridge =argmin
β


N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

+λ
p∑
j=1

β2
j


= argmin

β

RSS +λ
p∑
j=1

β2
j

 ,
here λ ≥ 0 is a tuning parameter, and the term λ

∑p
j=1β

2
j that makes the difference be-

tween least squares and Ridge regression, is called the shrinkage penalty. It is in fact an
L2-penalty, since the L2-norm of β is

∥∥∥β∥∥∥
2

=
∑p
j=1β

2
j . The tuning parameter controls the

amount of shrinkage of the coefficient estimates βj , i.e. when λ→∞, βj → 0. When λ = 0,
the Ridge regression coefficient estimates become the least squares coefficient estimates.

It is a constrained optimization problem which also can be written as

β̂Ridge = argmin
β

N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

subject to
p∑
j=1

β2
j ≤ t.

It should be noticed that shrinkage is not applied to the intercept β0 in the shrinkage
penalty term, since when the features xj = 0, the intercept is a measure of the mean of
the response, which should not be shrunken. If the feature data has been centered to
have mean zero before Ridge regression is performed, then β̂0 = ȳ = 1

n

∑n
i=1 yi .

17
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In matrix form the Ridge regression would be the minimization of

RSS(λ) = (y −Xβ)T (y −Xβ) +λβTβ,

where X = [1,x1, . . . ,xp] and β = (β0, . . . ,βp)T .

The solution is then

∂RSS(λ)
∂β

=− 2XT (y −Xβ) + 2λβ = −2XT y + 2(XTX +λI)β,

∂RSS(λ)
∂β

=0⇔

β̂Ridge =(XTX +λI)−1XT y, (5.1)

with I being the identity matrix. The addition of λ to the termXTX, solves the problem
of singularity.

5.1.1 Singular Value Decomposition

Another way of expressing Ridge regression can be done by making a singular value
decomposition (SVD) of the N × p input matrix X. In this way, the understanding of the
shrinkage effect of the method can be enhanced. The usual SVD when N > p is given by

X =UDV T , (5.2)

where U and V are orthogonal matrices of dimensions N × p and p × p respectively. The
columns of U are spanning the column space of X whereas columns of V are spanning
the row space of X. D is a diagonal matrix of dimension p × p, where the diagonal
entries d1 ≥ d2 ≥ . . . ≥ dp ≥ 0, these are called the singular values of X. X is singular if
one or more of the diagonal entries are equal to zero. The situation where p >> N will be
explained in Section 5.1.3.

By the singular value decomposition ofX, the Ridge regression fitted vector is computed
as

Xβ̂Ridge =X(XTX +λI)−1XT y

=UDV T (V DUTUDV T +λI)−1V DUT y

=UDV T (V D2V T +λI)−1V DUT y

=UDV T (V D2V T +λV V T )−1V DUT y

=UDV T (V (D2 +λI)V T )−1V DUT y

=UDV T (V T )−1(D2 +λI)−1V −1V DUT y

=UDV TV (D2 +λI)−1V TV DUT y

=UD(D2 +λI)−1DUT y.

Writing out the expression yields
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Xβ̂Ridge =UD(D2 +λI)−1DUT y

=
p∑
j=1

uj
d2
j

d2
j +λ

uTj y, (5.3)

with uj indicating the j’th column of U . Since λ ≥ 0, the term
d2
j

d2
j +λ
≤ 1, and hence as

λ→∞, it has the effect of shrinking the values of the fitted vector. Shrinkage where d2
j

is small, would then be greater than for bigger values of d2
j .

In the same way we can compute the variance of the Ridge regression coefficient estimate

Var
(
β̂Ridge

)
=Var

(
(XTX +λI)−1Xy

)
=(XTX +λI)−1XTVar(y)X(XTX +λI)−1

=(XTX +λI)−1XT σ2IX(XTX +λI)−1

=(V DUTUDV T +λI)−1V DUT σ2IUDV T (V DUTUDV T +λI)−1

=(V D2V T +λI)−1V DUT σ2IUDV T (V D2V T +λI)−1

=(V D2V T +λV V T )−1V DUT σ2IUDV T (V D2V T +λV V T )−1

=(V (D2 +λI)V T )−1V DUT σ2IUDV T (V (D2 +λI)V T )−1

=(V T )−1(D2 +λI)−1V −1V DUT σ2IUDV T (V T )−1(D2 +λI)−1V −1

=V (D2 +λI)−1V TV DUT σ2IUDV TV (D2 +λI)−1V T

=V (D2 +λI)−1DUT σ2IUD(D2 +λI)−1V T

=σ2V (D2 +λI)−1D2(D2 +λI)−1V T .

Writing it out gives

Var
(
β̂Ridge

)
= σ2

p∑
j=1

vj
d2
j

(d2
j +λ)2

vTj .

As λ increases, it is seen that the variance of the coefficient estimates decreases.

Singular value decomposition can be used for expression of principal components, and
in this way the meaning of the size of the values d2

j can be shown. The sample covariance
matrix is

S =
XTX

N
,

and by (5.2)
XTX = V DUTUDV T = V D2V T .

This is the eigen decomposition ofXTX, where vj are the eigenvectors. The eigenvectors
are the principal component directions of X. The first principal component of X is
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given by z1 =Xv1 and has the largest sample variance comparing all normalized linear
combinations of the columns in X. The sample variance is computed as

zTj zj

N
=
vTj X

TXvj

N
=
vTj V D

2V T vj

N

=
ejD

2eTj

N
=
d2
j

N
,

where ej is the j’th column of the identity matrix. The normalized principal components
are uj , since

zj =Xvj =UDV T vj =UDeTj = ujdj .

The principal components are orthogonal to the earlier ones and the last one has the
lowest variance. That is, small values of dj means a low variance of the principal compo-
nents of X. Connecting this with (5.3), U is spanning the column space of X, and the
columns of U are the normalized principal components, thus Ridge regression shrinks
the directions with low variance in the column space of X the most.

5.1.2 Ridge regression and bias

An advantage of Ridge regression is as mentioned, that by adding some bias to the model
in the form of λ, it reduces the variance of the estimates which yields a lower prediction
error for the model.

The Ridge regression model is biased when λ > 0. We know that an estimator is unbiased
if E

[
β̂
]

= β, the bias is hence given by Bias(β̂) = E

[
β̂
]
−β. The bias of the Ridge regression

estimator is

Bias(β̂ridge) = E

[
β̂ridge

]
−β

= E

[
(XTX +λI)−1XT y

]
−β

= (XTX +λI)−1XT
E [y]−β

= (XTX +λI)−1XTXβ −β
= (XTX +λI)−1(XTX +λI −λI)β −β
= (XTX +λI)−1(XTX +λI)(I −λI(XTX +λI)−1)β −β
= (I −λI(XTX +λI)−1)β −β
= −λI(XTX +λI)−1β.

Notice that we get Bias(β̂ridge) = 0 when λ = 0, since this is just the Ordinary Least
Squares estimator, which is an unbiased estimator. As seen the bias increases with λ.
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5.1.3 When p >> N

When we are dealing with data matrices X, where the dimension of the columns (p)
is much bigger than the dimension of the rows (N ), we can use the SVD to reduce the
computations to N dimensions rather than p. This method is usable only for methods
fitting linear models with a quadratic regularization on the coefficients. It results in a
reduction of computational cost from O(p3) to O(pN2) [Hastie et al., 2009].

Making SVD on a matrix where p >> N corresponds to making usual SVD as in (5.2), but
at the transpose ofX, where the dimension of the columns ofX is N and the dimension
of the rows is p. This matrix with more rows than columns has at most rank N . We will
then obtain the matrix X̃, with dimension N × p, where p >> N as follows

X̃ =XT = (UDV T )T = V DUT = ŨD̃Ṽ T , (5.4)

where Ũ is orthogonal and Ṽ has orthonormal columns, the matrices are of dimensions
N ×N and p ×N respectively. The diagonal matrix D̃ is of dimension N ×N , since the
rank of X is at most N when p >> N .

The singular value decomposition can hence be defined as follows

X̃ =ŨD̃Ṽ T

=RṼ T . (5.5)

This makesR an N ×N matrix. The estimates of Ridge regression can then be expressed
as

β̂Ridge = Ṽ (RTR+λI)−1︸              ︷︷              ︸
∗

RT y, (5.6)

since using (5.5) in (5.1) we get

β̂Ridge =(XTX +λI)−1XT y

=
(
(RṼ T )TRṼ T +λI

)−1
(RṼ T )T y

=(Ṽ RTRṼ T +λI)−1Ṽ︸                      ︷︷                      ︸
∗∗

RT y. (5.7)
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We can then show that (5.6) is equal to (5.7), by showing that ∗ is equal to ∗∗

(Ṽ RTRṼ T +λI)−1Ṽ = Ṽ (RTR+λI)−1⇔
Ṽ = (Ṽ RTRṼ T +λI)Ṽ (RTR+λI)−1⇔
Ṽ = (Ṽ RTRṼ T Ṽ +λṼ )(RTR+λI)−1⇔
Ṽ = (Ṽ RTR+λṼ )(RTR+λI)−1⇔
Ṽ = Ṽ (RTR+λI)(RTR+λI)−1⇔
Ṽ = Ṽ .

The Ridge regression model can hence be expressed as β̂Ridge = Ṽ θ̂, with θ̂ being the
Ridge regression estimates of (ri , yi) for i = 1, . . . ,N . In a high dimensional setting the
data matrix X̃ can be reduced to R, and the penalized fit is then made on the rows of
R, which has fewer predictors. Afterward the result of the fit is transformed back to the
p-dimensional vector solution, by multiplying it with the matrix Ṽ .

5.1.4 Example

A small example of how to use Ridge regression will now be presented, where some
simulated data will be used. A data matrix X is generated by drawing independently
from the standard normal distribution, where the dimensions are chosen to be 30× 100,
i.e. a fictive data set with 100 features and 30 observations. The response y is randomly
chosen to be the addition of the first and sixth column of X with some noise.

n = 30

p = 100

set.seed(3177)

X = matrix(rnorm(n*p), ncol=p)

y = X[,1] + X[,6]+ rnorm(n)

The Ridge regression solutions can then be computed by the function glmnet() in the R-
package glmnet. It is a function capable of fitting generalized linear models by different
kinds of penalized least squares methods. It optimizes

RSS(β) +λ
[

(1−α)
2
‖β‖22 +α ‖β‖1

]
, (5.8)

which is a shrinkage method called Elastic net, it is a combination of Lasso and Ridge
regression described in Section 5.4. To obtain the Ridge regression shrinkage method,
alpha is set to 0. As default the function performs regression on 100 automatically cho-
sen values of λ. The beta coefficient estimates for these λ’s can be reached by coef(),
which is a matrix, in this case with 101 rows (one for each feature and an intercept) and
100 columns (one for every value of λ).

> ridge.mod <- glmnet (X,y,alpha =0)

> dim(coef(ridge.mod))

[1] 101 100

# One of the lambdas
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> ridge.mod$lambda[50]

[1] 160.5806

# The first 10 regression coefficients for lambda =50

> coef(ridge.mod)[,50][1:10]

(Intercept) X1 X2 X3 X4 X5

0.270847903 0.019302946 0.008606355 -0.007749915 0.002828386 0.008156471

X6 X7 X8 X9 X10

0.016153727 0.003055189 -0.001431342 0.003970974 0.001077364
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Figure 5.1: The Ridge regression coefficient estimates for different values of log(λ). The

dashed vertical line indicates the best value of λ, found by leave-one-out cross-validation.

The numbers in the top of the plot, illustrates non-zero coefficients.

The Ridge regression coefficient estimates are plotted as a function of the 100 values
of log(λ) in Figure 5.1, where the numbers in the top of the plot indicates the number
of non-zero coefficient estimates as λ gets larger. It is seen that as λ gets larger the
coefficient estimates shrink towards zero, but non actually hits zero. The optimal value
of λ is chosen by cross-validation. The data is divided into a training - and a test set for
the purpose, and the function cv.glmnet() performs as default 10-fold cross validation.
Setting nfolds in the function equal to the number of observations of the training data,
the method performs instead leave one out cross validation. The optimal value of λ is
then the one resulting in the lowest mean squared error (MSE) on the training data.

> set.seed (317)

> train=sample(1:n, n/2, replace=FALSE)

> test=(- train )

> y.test <- y[test]
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> set.seed (317)

> cv.out <- cv.glmnet (X[train ,], y[train], nfolds=15, alpha=0)

> bestlam <- cv.out$lambda.min

> bestlam

[1] 15.35349

# MSE

> ridge.pred <- predict(ridge.mod, s=bestlam, newx=X[test,])

> mean((ridge.pred-y.test)^2)

[1] 2.192798

By cross validation on the training data λbest = 15.35 gave the minimal MSE = 2.19 on
the test data. λbest is plotted in Figure 5.1 as the dashed vertical line, at log(15.35) = 2.73.
Predicting the response with λbest, by the function predict() and type ="coefficients",
gave the Ridge regression coefficient estimates seen below (of the first twenty). None of
these coefficients are shrunken directly to zero as the minimal value of the 100 coef-
ficients is 0.0013, and hence all features are used in the model. Notice however that
shrinkage of feature X1 and X6 is less than the other features. They are as seen in Fig-
ure 5.1 the most important features, since they have been used to form the response.
Moreover the maximal value of the coefficients is the value of X1.

> ridge.coef=predict (ridge.mod, type ="coefficients", s=bestlam)

> ridge.coef[1:21]

1

(Intercept) 0.337695179

X1 0.129320036

X2 0.056627091

X3 -0.047963240

X4 0.017414684

X5 0.054591182

X6 0.112815127

X7 0.028119017

X8 -0.006663196

X9 0.020135052

X10 0.001301733

X11 -0.003958387

X12 0.017978184

X13 -0.032709595

X14 0.030024584

X15 0.015043737

X16 -0.010108345

X17 -0.026801563

X18 -0.015428539

X19 0.010281764

X20 -0.033930709

> max(abs(ridge.coef[-1]))

[1] 0.12932

> min(abs(ridge.coef[-1]))

[1] 0.001301733

5.2 The Lasso

Lasso stands for least absolute shrinkage and selection operator. It is similar to Ridge
regression, but as the name suggests it does not only shrink the coefficient estimates
towards zero, it actually sets some of them directly to zero. In this way it also "selects"
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the coefficient estimates. Unless otherwise stated, theory in this section is from [Murphy,
2012].

The Lasso is defined in its lagrangian form by

β̂Lasso = argmin
β

1
2

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj )
2 +λ

p∑
j=1

|βj |

 ,
where as for Ridge regression, λ is a tuning parameter. The constrained optimization
problem can also be written as

β̂Lasso = argmin
β

N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

subject to
p∑
j=1

|βj | ≤ t.

Since the objective function
∑N
i=1(yi −β0 −

∑p
j=1 xijβj )

2 = (y −Xβ)T (y −Xβ) is quadratic,

and the constrains
∑p
j=1 |βj | are linear, it is a quadratic programming problem.

The shrinkage penalty
∑p
j=1 |βj | is an L1 penalty, since the L1 norm of β is given by ‖β‖1 =∑p

j=1 |βj |. Taking a deeper look at this term, it is seen that it is not differentiable when
βj = 0, and therefore the derivative of the absolute value f (θ) = |θ| is undefined.

The shrinkage penalty makes the optimization problem non-smooth, and for this term
the standard definition of a derivative is not usable. A subderivative [Rockafellar, 1997]
of such a function f : I →R at a point θ0 can then be defined as a scalar g such that

f (θ)− f (θ0) ≥ g(θ −θ0) ∀θ ∈ I,

with I being the interval containing θ0. The set of subderivatives is then defined as the
interval [a,b], where a and b are the one-sided limits

a = lim
θ→θ−0

f (θ)− f (θ0)
(θ −θ0)

, b = lim
θ→θ+

0

f (θ)− f (θ0)
(θ −θ0)

. (5.9)

The subdifferential of the function f at θ0 is denoted ∂f (θ)|θ0
, it contains the subderiva-

tives of the set [a,b]. Using (5.9), we see that for the absolute value function f (θ) = |θ|,
when θ > 0, f ′(θ) = θ

|θ| = 1. When θ < 0, f ′(θ) = θ
|θ| = −1. The subderivative of the

absolute value is then given by

∂f (θ) =


{−1} if θ < 0
[−1,1] if θ = 0
{+1} if θ > 0.

Returning to the Lasso problem, we can find the partial derivatives in the standard way,
if we leave the penalty term out
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∂
∂βk

RSS(β) =
∂
∂βk

N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

=
∂
∂βk

N∑
i=1

yi − β0 − xikβk −
p∑

j=1,j,k

xijβj


2

=− 2
N∑
i=1

xik

yi − β0 − xikβk −
p∑

j=1,j,k

xijβj


=− 2

N∑
i=1

xik

yi − β0 −
p∑

j=1,j,k

xijβj

+ 2
N∑
i=1

x2
ikβk

=akβk − ck

where

ak =2
N∑
i=1

x2
ik = 2xTk xk (5.10)

ck =2
N∑
i=1

xik

yi − β0 −
p∑

j=1,j,k

xijβj

 = 2xTk rk .

The residual rk is the residual computed with all features xj except xk . Thus, ck can be
interpreted as being proportional to the correlation between the k’th feature xk and the
residual with all the other features, since the data is assumed to have been centered to
have mean zero and unit norm. Hence, ck is then a measure of how important the k’th
feature is in the prediction of the response y, in relation to the other features.

The subderivative of the Lasso estimate is by the penalty term added back in, given as

∂βkf (β) =akβk − ck +λ∂βk
∥∥∥β∥∥∥

1

=


{akβk − ck −λ} if βk < 0
[−ck −λ,−ck +λ] if βk = 0
{akβk − ck +λ} if βk > 0.

When f is a convex function, it can be shown that for a subdifferential, the point θ̂ is
a local minimum if and only if, 0 ∈ ∂f (θ)|θ̂ [Rockafellar, 1997, Thm. 28.3]. We have
that in vector form the solution of the partial derivative of the RSS with respect to βk is
∂βkRSS(β) = 2XT (Xβ −y)k .

It is then only true that 0 ∈ ∂f (θ)|θ̂ if the following holds

2XT (Xβ −y)k ∈


{+λ} if βk < 0
[−λ,λ] if βk = 0
{−λ} if βk > 0.

(5.11)
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There is then three possible solutions of ∂βkf (β) = 0:

1. β̂k = ck+λ
ak

< 0, which holds when ck < −λ. This corresponds to a strongly negative
correlation between the k’th feature and the residual.

2. β̂k = 0, which holds when ck ∈ [−λ,λ]. In this case there is only a weak correlation
between the k’th feature and the residual.

3. β̂k = ck−λ
ak

> 0, which holds when ck > λ. This corresponds to a strongly positive
correlation between the k’th feature and the residual.

To sum up we have

β̂k(ck) =


ck+λ
ak

if ck < −λ
0 if ck ∈ [−λ,λ]
ck−λ
ak

if ck > λ.

The solution can be written as soft thresholding

β̂Lasso
k = soft

(
ck
ak

;
λ
ak

)
= sign

(
ck
ak

)(∣∣∣∣∣ ckak
∣∣∣∣∣− λak

)
+
,

where x+ = max(x,0), i.e. the positive part of x. Setting λ = 0 corresponds to the ordinary
Least Squares (OLS) estimate and hence

β̂OLS
k =

ck
ak

(5.12)

The maximum value of λ needed to be considered is

λmax = max
k
|2xTk y|,

since for βk = 0 we have that 2XT (Xβ−y)k ∈ [−λ,λ] from (5.11). That is when βk = 0 for
all k, we get 2xTk y ∈ [−λ,λ]. This means that

∥∥∥2xTk y
∥∥∥ < λ for all k, and in particular the

biggest value of 2xTk y also needs to be less than λ. We then get
∥∥∥2XT y

∥∥∥∞ = max
k
|2xTk y| =

λmax.

5.2.1 Why does Lasso perform Feature Selection?

If we compare Lasso and Ridge regression, a geometric interpretation of the two con-
straint optimization problems with p = 2 can be seen in Figure 5.2. For the Lasso the
constraint region |β1|+ |β2| ≤ t is formed like a diamond, with sharp corners on the axes,
and for Ridge regression β2

1 + β2
2 ≤ t is a circle. The red ellipses on the figure, around the

Least Squares estimate β̂, represents the RSS.
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222 6. Linear Model Selection and Regularization

β2 β2

β1β1

β β^^

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |β1| + |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red ellipses are the contours of

the RSS.

circle represent the lasso and ridge regression constraints in (6.8) and (6.9),
respectively. If s is sufficiently large, then the constraint regions will con-
tain β̂, and so the ridge regression and lasso estimates will be the same as
the least squares estimates. (Such a large value of s corresponds to λ = 0
in (6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie
outside of the diamond and the circle, and so the least squares estimates
are not the same as the lasso and ridge regression estimates.
The ellipses that are centered around β̂ represent regions of constant

RSS. In other words, all of the points on a given ellipse share a common
value of the RSS. As the ellipses expand away from the least squares co-
efficient estimates, the RSS increases. Equations (6.8) and (6.9) indicate
that the lasso and ridge regression coefficient estimates are given by the
first point at which an ellipse contacts the constraint region. Since ridge
regression has a circular constraint with no sharp points, this intersection
will not generally occur on an axis, and so the ridge regression coefficient
estimates will be exclusively non-zero. However, the lasso constraint has
corners at each of the axes, and so the ellipse will often intersect the con-
straint region at an axis. When this occurs, one of the coefficients will equal
zero. In higher dimensions, many of the coefficient estimates may equal zero
simultaneously. In Figure 6.7, the intersection occurs at β1 = 0, and so the
resulting model will only include β2.
In Figure 6.7, we considered the simple case of p = 2. When p = 3,

then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the

1

Figure 5.2: Geometric interpretation of Lasso (left) and Ridge regression (right) when

p = 2. The blue diamond and circle are the constraint regions of the methods, and the red

ellipses around the Least Squares estimate β̂ are the RSS [Hastie et al., 2009, Fig. 3.11].

We know that when λ = 0 in Lasso or Ridge regression we get the Least Squares estimates,
and hence on the figure the constraint regions would contain β̂ if this was the case. As
this is not the case, we get the Lasso or Ridge regression estimates at the first point in
which the ellipses of the RSS hits the diamond or circle respectively. Since the diamond
has sharp corners on the axes, the ellipse will more likely hit one of these first, rather
than edges between the axes. For Ridge regression it is the other way around, since the
constraint region is a circle and thus has no corners. For this reason if the solution of the
Lasso is at a corner of the diamond, one of the coefficient estimates is equal to zero, and
hence the Lasso performs feature selection [James et al., 2013].

5.2.2 Example

The same simulated data as used in Section 5.1.4 is here applied in an example of the
Lasso method. Again the function glmnet() is used, where alpha is set to 1, to obtain
the Lasso fit.

> n = 30

> p = 100

> set.seed(3177)

> X = matrix(rnorm(n*p), ncol=p)

> y = X[,1] + X[,6]+ rnorm(n)

> lasso.mod <- glmnet(X, y, alpha=1)

A plot of the result can be seen in Figure 5.3, where most of the coefficient estimates
are shrunken directly to zero as log(λ) gets bigger. The numbers in the top of the plot
indicates the number of non-zero coefficient estimates as log(λ) gets bigger.
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Figure 5.3: The Lasso coefficient estimates for different values of log(λ), where the dashed

vertical line indicates the best value of λ found by leave one out cross-validation. The

numbers in the top of the plot represent non-zero coefficients.

Using the same split of the data into a training - and a testset, as for Ridge regression, the
best value of λ is chosen by leave one out cross validation on the training set, with the
function cv.glmnet(). The MSE is afterward computed on the test set using the function
predict(), to get the prediction of the response with the chosen λ.

>set.seed(317)

>cv.out=cv.glmnet(X[train,], y[train], alpha=1, nfolds=15)

>bestlam=cv.out$lambda.min

> bestlam

[1] 0.6344081

# MSE

> lasso.pred=predict(lasso.mod, s=bestlam, newx=X[test,])

> mean((lasso.pred-y.test)^2)

[1] 2.068049

The best value of λ is plotted as the dashed vertical line in Figure 5.3. This value resulted
in an MSE at 2.07, which is a bit lower than the one obtained by Ridge regression at 2.19.
Compared to Ridge regression, the Lasso method has the advantage of making feature
selection. The non-zero coefficient estimates associated with the chosen λ are

> lasso.coef=predict(Lasso.mod, type="coefficients", s=bestlam)

> lasso.coef[which(lasso.coef!=0),]

(Intercept) X1 X6

0.1077382 0.9566929 0.4902700
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All of the features are eliminated from the model, except for X1 and X6, which is as
expected, since they are the only features truly associated with the response. In Figure 5.3
these coefficients deviate from the others with much higher values.

5.3 Least Squares versus Ridge Regression and Lasso

If we assume that the columns of the data matrix X are orthonormal, we have that
XTX = I.

We then get the following results for the three methods

• Ordinary Least Squares

β̂OLS
k = (xTk xk)

−1xTk y = xTk y.

• Ridge Regression

β̂
Ridge
k = (xTk xk +λ)−1xTk y =

β̂OLS
k

1 +λ
.

• Lasso
From (5.10) we get that ak = 2, if the columns ofX are orthonormal. Then β̂OLS

k = ck
2

from (5.12), and the solution is

β̂Lasso
k = sign

(
β̂OLS
k

)(∣∣∣β̂OLS
k

∣∣∣− λ
2

)
+
.

Ridge

least squares
ridge

Lasso

least squares
lasso

Figure 5.4: Comparison of Ridge regression and Lasso coefficient estimates as a func-

tion of the response in relation to the Least Squares. Inspired from [Hastie et al., 2009,

Tab. 3.4].



5.4. ELASTIC NET 31

By these expressions of the methods, it is more clear that Lasso and Ridge regression
are regularized variants of the Ordinary Least Squares. The estimators are plotted in
Figure 5.4 as a function of the response, where it also appears that Lasso and Ridge
regression are biased estimators, since they shrink all of the coefficients even when this
is not desired, that is when the coefficient estimates have a high value.

5.4 Elastic Net

A combination of Ridge regression and Lasso is the Elastic net, it uses a compromise of
the L1 and L2 penalties [Zou and Hastie, 2005]. It is given by

β̂Elastic net = argmin
β


N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

+λ
p∑
j=1

α|βj |+ (1−α)β2
j

 ,

where 0 ≤ α ≤ 1 controls the mix of the two shrinkage penalties. Setting α = 0 yields the
Ridge regression solution, and α = 1 yields the Lasso solution.

An advantage of Elastic net over Lasso when p>>N is that it is able to select more than
N non-zero coefficients. Moreover if a group of features are highly correlated with each
other, Lasso would only choose one of these features, whereas Elastic net would choose
the whole group, for details see [Zou and Hastie, 2005]. A contour plot of the constrain
of Elastic net in two dimensional space compared with the constrains of Ridge regression
and Lasso is illustrated in Figure 5.5.

Figure 5.5: Contourplot of the constrains of Ridge regression (the dashed-dotted line),

Elastic net (the solid line) with α = 0.5 and Lasso (the dashed line)[Zou and Hastie, 2005,

Fig. 1].
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5.5 A Bayesian Viewpoint of Ridge Regression and Lasso

The two shrinkage methods Ridge regression and Lasso can also be expressed from a
Bayesian point of view [Murphy, 2012, James et al., 2013]. From Bayes’ theorem it follows
that the posterior distribution is given by

p(β|X ,y) ∝ f (y|X ,β)p(β|X) = f (y|X ,β)p(β), (5.13)

where f (y|X ,β) is the likelihood of the data, and p(β) is the prior distribution of β.
The equality in (5.13) holds since it is assumed that the feature data X is fixed. If we
assume the linear model given as usual with independent errors drawn from a normal
distribution, we compute the likelihood of the data as follows,

f (y|X ,β) =
N∏
i=1

N

yi
∣∣∣∣∣∣β0 +

p∑
j=1

xijβj ,σ
2


=

N∏
i=1

( 1
2πσ2

) 1
2

exp

− 1
2σ2

yi − β0 −
p∑
j=1

xijβj


2

=
( 1

2πσ2

)N
2

exp

− 1
2σ2

N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

∝ exp

− 1
2σ2

N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2 .

Furthermore assume that the prior distribution of β is p(β) =
∏p
j=1 g(βj ), where g is a

density function, then the Lasso and Ridge regression follows from two special choices
of g.

5.5.1 Ridge Regression

If the prior of β is gaussian distributed with mean zero, and standard deviation τ2 =
σ2/λ, where λ > 0, we get the following

p(β) =
p∏
j=1

N
βj ∣∣∣∣∣∣0, τ2


=

p∏
j=1

( 1
2πτ2

) 1
2

exp
(
− 1

2τ2β
2
j

)

=
( 1

2πτ2

) p
2

exp

− 1
2τ2

p∑
j=1

β2
j


∝ exp

− 1
2τ2

p∑
j=1

β2
j

 ,
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and the posterior is

p(β|X ,y) ∝ f (y|X ,β)p(β)

∝ exp

− 1
2σ2

N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

− 1
2τ2

p∑
j=1

β2
j

 .
By performing maximum a posteriori probability (MAP) estimation, we get the posterior
mode of β. In this case, the MAP estimate is similar to the maximum likelihood estimate,
and we get the Ridge regression solution

β̂
Ridge
MAP = argmin

β

 1
2σ2

N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

+
1

2τ2

p∑
j=1

β2
j

 (5.14)

= argmin
β


N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

+λ
p∑
j=1

β2
j

 .
The expression in (5.14) is multiplied with 2σ2 to get the Ridge solution, and λ = σ2

τ2 .

5.5.2 The Lasso

If we use a laplacian prior, that is, if g has a Laplace distribution, the posterior mode of
β will yield the Lasso solution.

The prior is given by

p(β) =
p∏
j=1

Lap

βj ∣∣∣∣∣∣0, 1
λ

 ∝ p∏
j=1

exp
(

1
(1/λ)

|0− βj |
)

∝
p∏
j=1

exp
(
−λ|βj |

)
= exp

−λ
p∑
j=1

|βj |

 ,
and the posterior is hence

p(β|X ,y) ∝ exp

− 1
2σ2

N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

−λ
p∑
j=1

|βj |

 .
Using MAP-estimation we obtain the Lasso solution

β̂Lasso
MAP = argmin

β

 1
2σ2

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj )
2 +λ

p∑
j=1

|βj |


= argmin

β


N∑
i=1

yi − β0 −
p∑
j=1

xijβj


2

+λ′
p∑
j=1

|βj |

 ,
with λ′ = 2σ2λ, when the expression is multiplied with 2σ2.
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Figure 5.6: A gaussian prior (left) can be used to obtain the Ridge regression solution

as the posterior mode, whereas a laplacian prior (right) can be used to obtain the Lasso

solution as the posterior mode [James et al., 2013, Fig. 6.11].

The two different priors can be seen in Figure 5.6, where the Lasso prior is not differen-
tiable when the coefficient estimates are equal to zero, since the peak of the function is
more like a spike compared to the prior of Ridge regression which has the famous bell
shape. Hence the Lasso expects a priori that more of the coefficients will be equal to
zero.

5.6 Stability Selection

When performing variable selection as is the case with the Lasso and Elastic net method,
it is of great interest to determine the consistency of the selected variables. A method
called Stability selection is capable of doing this. The method was first described by
[Meinshausen and Bühlmann, 2010]. Assume a tuning parameter λ ∈ Λ ⊆ R

+ as for the
Lasso, which controls the regularization of the model. For each λ ∈Λ we get an estimate
with a subset Ŝλ ⊆ {1, . . . ,p} of non-zero β-coefficients, also known as the selected set. The
aim is then to determine how to choose λ to obtain the right amount of regularization,
such that Ŝλ is identical to the true set S of relevant non-zero β-coefficients with a high
probability [Meinshausen and Bühlmann, 2010].

To determine this consistency of selected variables, a concept called stability path needs
to be introduced. It is defined in Definition 5.6.1 to be, when randomly resampling
from the data, the probability of selecting each variable. In this section the number of
observations will be denoted by n in stead of N .

Definition 5.6.1 (selection probabilities).
Let I be a random subsample of {1, . . . ,n} of size bn/2c, drawn without replacement. For
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every set K ⊆ {1, . . . ,p}, the probability of being in the selected set Ŝλ(I) is

Π̂λ
K = P ∗{K ⊆ Ŝλ(I)}.

The probability P ∗ is with regard to the subsampling being random, and if the algorithm
for finding Ŝλ contains other sources of randomness.

The procedure in Stability selection is that a shrinkage model like the Lasso is fitted to
many subsamples of the data, where each fit gives a resulting selected set Ŝλ(I). The
consistent or stable variables are then the ones occurring in a great part of the selected
sets, see Definition 5.6.2.

Definition 5.6.2 (stable variables).
For a cut-off πthr with 0 < πthr < 1 and a set of regularization parameters Λ, the set of
stable variables is defined as

Ŝstable = {k : max
λ∈Λ

(Π̂λ
k ) ≥ πthr}.

The selection probabilities make up the stability path, and it is hence only the variables
with a high selection probability, higher than a certain threshold, which are selected as
the stable variables.

It is desired to obtain the true set S, and that carry to select a set without as many noise
variables, denoted by N , as possible. In that connection the regularization parameter
plays an important role. As an advantage in Stability selection it is stated in [Mein-
shausen and Bühlmann, 2010], that the initial set of regularization parameters in a rea-
sonable range, will not be very essential for the result. Moreover another advantage is
that exact error control is possible [Meinshausen and Bühlmann, 2010].

Definition 5.6.3 (additional notation).
Let ŜΛ = ∪λ∈ΛŜΛ be the set of selected structures or variables if varying the regularization
λ in the set Λ. Let qΛ be the average number of selected variables, qΛ = E(|ŜΛ|). Define V
to be the number of falsely selected variables with stability selection, V = |N ∩ ŜStable|.

It is only possible to get exact error control i.e. to estimate E(V ) if some simple assump-
tions are made.

Theorem 5.6.1 (error control).
Assume that the distribution of {1{k∈ŜΛ}, k ∈N } is exchangeable for all λ ∈Λ. Also, assume
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that the original procedure is not worse than random guessing,

E(|S ∩ ŜΛ|)
E(|N ∩ ŜΛ|)

≥ |S |
|N |

. (5.15)

The expected number of V of falsely selected variables is then bounded for πthr ∈ (1
2 ,1) by

E(V ) ≤ 1
2πthr − 1

q2
Λ

p
.

Proof.
The idea is first to show that P (k ∈ ŜΛ) ≤ qΛ

p for all k ∈ N , and then use Lemmas A.1.1

and A.1.2 (in section A.1, page 77) to complete the proof.

Let ŜΛ = ∪λ∈ΛŜλ and qΛ = E(|ŜΛ|). Furthermore letNΛ =N∩ŜΛ, the set of noise variables

in the set ŜΛ and UΛ = S ∩ ŜΛ the set of true variables in ŜΛ. We can then write the

expected number of falsely selected variables as

E(|NΛ|) = E(|ŜΛ|)−E(|UΛ|) = qΛ −E(|UΛ|). (5.16)

From the assumption in (5.15), we get

E(|UΛ|)
E(|NΛ|)

≥ |S |
|N |
⇔ E(|UΛ|) ≥ E(|NΛ|)

|S |
|N |

.

Combining this with (5.16) yields

E(|UΛ|) = qΛ −E(|NΛ|) ≥ E(|NΛ|)
|S |
|N |

.

Therefore we have that qΛ is bounded below by

qΛ ≥ E(|NΛ|)
(
|S |
|N |

+ 1
)
.

The overall number of variables is p, which includes the number of noise variables and

the true variables, hence p = |N |+ |S | and we get

qΛ ≥ E(|NΛ|)
(
|S |
|N |

+
|N |
|N |

)
= E(|NΛ|)

p

|N |
,

which is equivalent to
E(|NΛ|)
|N |

≤
qΛ
p
.

We have that E
[
1{k∈Ŝλ}, k ∈N

]
= P

(
1{k∈Ŝλ} = 1, k ∈N

)
= P

(
k ∈ ŜΛ

)
. Due to the exchange-

ability assumption we end up with a distribution closely related to the binomial distribu-

tion and hence we get P
(
k ∈ ŜΛ

)
= E(|NΛ|)

|N | for all k ∈ N . It then holds that P
(
k ∈ ŜΛ

)
≤ qΛ

p

for all k ∈N , which was what we wanted to show.
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From Lemma A.1.2 we can write

P
[
max
λ∈Λ

(
Π̂

simult,λ
k

)
≥ ξ

]
≤

(qΛ/p)2

ξ
,

for all 0 < ξ < 1 and k ∈N .

Using Lemma A.1.1 we get the following

max
λ∈Λ

(
Π̂

simult,λ
K

)
≥ 2max

λ∈Λ

(
Π̂λ
K

)
− 1⇔

max
λ∈Λ

(
Π̂λ
K

)
≤

max
λ∈Λ

(
Π̂

simult,λ
K

)
+ 1

2
.

Let ξ = πthr, we may then have

P
[
max
λ∈Λ

(
Π̂λ
k

)
≥ πthr

]
≤ P


{
max
λ∈Λ

(
Π̂simult,λ

)
+ 1

}
2

≥ πthr

 ≤ (qΛ/p)2

2πthr − 1
.

The expected number of falsely selected variables is then bounded above by

E(V ) =
∑
k∈N

P
[
max
λ∈Λ

(
Π̂λ
k

)
≥ πthr

]
≤

∑
k∈N

1
2πthr − 1

q2
Λ

p2 = p
1

2πthr − 1
q2
Λ

p2 =
1

2πthr − 1
q2
Λ

p
.

The expected number of falsely selected variables is also named the per-family-error
rate (pfer), used in the following examples. The error controlled in this way, will then
correspond to the expected number of type 1 errors, that is the probability that at least
one variable has been falsely selected in the set Ŝstable [Sill et al., 2014].
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5.6.1 Example 1

In the following an example will illustrate the method of Stability selection by the Lasso.
The data used is randomly generated from the normal distribution with mean zero and
standard deviation one.

set.seed(3)

x <- matrix(rnorm(80*500,0,1),80,500)

y <- x[1:80,1:500]%*% c(rep(3,2),rep(-3,3),rep(.1,495))

The data consists of 80 observations with 500 features, and the response y is constructed
such that the last 495 features should be less important than the first 5 features. The
functions used in R to perform Stability selection is to be found in the library c060. The
stability path of the data is constructed by the function stabpath(), which is applied
to the Lasso path as default. The actual stability selection is performed by stabsel(),
with a type I error level err=0.05 of the type per-family-error rate (pfer). The output is
shown below, where the variables V2,V3,V4 and V5 are selected as stable.

res <- stabpath(y,x)

sel <- stabsel(res,error=0.05,type="pfer",pi_thr=0.6)

sel

$stable

V2 V3 V4 V5

2 3 4 5

$lambda

[1] 3.429283

$lpos

[1] 7

$error

[1] 0.05

$type

[1] "pfer"

In Figure 5.7 the penalization path and the stability path are plotted, where four variables
marked with red have been selected as stable. Notice, as expected it is four of the first
five variables which have been selected as stable. The fact that V1 has not been selected
as stable, corresponds to a false negative, that is the variable has falsely not been detected
as stable. This is a consequence of the method accounting for false positives and not false
negatives.
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Figure 5.7: Penalization- and stability path, where the selected stable variables are

marked with red. The logarithm of the chosen lambda value is the vertical red line,

whereas the horizontal red line represents the value of πthr.

5.6.2 Example 2

When collinearity or multicollinearity exists in a data set, the Lasso method will as the
penalty parameter λ increases only select the variables which are most correlated with
the response, in a group of multicollinear variables. This property is not desirable if we
are interested in all of the relevant variables, and we can in stead make use of Elastic net,
which selects variables in groups by their multicollinearity. The following example will
demonstrate how Stability selection perform when variables are collinear, using Lasso
and Elastic net.

The data is simulated from a multivariate normal distribution, with a mean vector of
zeroes. The covariance matrix is constructed as the identity matrix, except for the entries
of the variables which we want to be collinear and multicollinear. As shown in the output
below, we construct the covariance matrix such that x1, x2 and x3 forms a group of
multicollinear variables, and x7 and x8 are collinear. The response is constructed as a
weighted sum of the 500 variables, where a higher weight is on the first eight variables.

> p=500

> n=80
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# The covariance matrix

> Sigma=diag(p)

> Sigma[1,2] <- Sigma[2,3] <- Sigma[1,3] <- Sigma[7,8] <- 0.8

> Sigma[2,1] <- Sigma[3,2] <- Sigma[3,1] <- Sigma[8,7] <- 0.8

# Data is simulated

> set.seed(211)

> x <- rmvnorm(n=n, mean=rep(0,p),sigma=Sigma)

# The response is constructed

> y <- x\%*\%c(rep(1,8),rep(.1,492))

The following output shows how correlated the first eight relevant variables are with the
response, and the high correlations between the collinear variables are also given in the
correlation matrix of these.
# Correlation between the response and relevant variables

> cor(y,x[,1:8])

x1 x2 x3 x4 x5 x6 x7 x8

y 0.5390047 0.4452463 0.5594276 0.1694115 0.230595 0.3955168 0.2510914 0.3437712

# Correlation between collinear variables

> cor(x[,c(1:3,7:8)])

x1 x2 x3 x7 x8

x1 1.0000000 0.7688409 0.8016038 -0.2426516 -0.2290382

x2 0.7688409 1.0000000 0.7773380 -0.2713801 -0.2581502

x3 0.8016038 0.7773380 1.0000000 -0.2782402 -0.2562329

x7 -0.2426516 -0.2713801 -0.2782402 1.0000000 0.8751749

x8 -0.2290382 -0.2581502 -0.2562329 0.8751749 1.0000000

Stability paths are computed with tuning parameter α = 1 corresponding to the Lasso
method, and with α = 0.1 for the Elastic net method. The paths are plotted in Figure 5.8,
where the Stability selection with per-family-error-rate equal to 0.05 is shown by the
black vertical line indicating the value of log(λ) for the selected variables x1 and x3, and
the black horizontal line indicating the threshold at 0.6 for the selection probabilities.

It is seen that for the Lasso method, the collinear variables with the lowest correlation
to the response x2 and x7, have a low selection probability, and will not be considered
as stable variables as they never passes the line of πthr , even though they are relevant
and higher correlated with the response compared to other variables. When using the
Lasso, the factor influencing the stability path, is the individual subsamples. If some
observations have an influence on the correlation to the response, it will not be consistent
which variable in a group of multicollinear variables the method will select, and hence
the selection probability will be lowered, causing that some relevant variables will not be
detected as stable.

Setting α = 0.1 results in an increase of the selection probability for the collinear and
multicollinear variables, due to the property that Elastic net selects variables in groups
by their collinearity. The fact that only x1 and x3 are selected as stable, might be due to
their higher correlation to the response, compared to the six other relevant variables, and
thereby they might be selected by Lasso or Elastic net more often than the others. Even
though Elastic net has the property of selecting variables in groups, it is a compromise
between Lasso and Ridge regression, and the part from the Lasso will shrink most of
the regression coefficients to zero. However, none of the eight relevant variables have
a considerably high correlation to the response, and as seen some of the 492 irrelevant
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variables in Figure 5.8 have selection probabilities just as high as some of the relevant
ones. A clearer difference between relevant and irrelevant variables, as their would be
in real data, with some variables being truly associated with the response, would cause a
more clear distinction of stable variables.
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Figure 5.8: Stability paths of Lasso (α = 1) and Elastic net (α = 0.1), where some of the

variables are collinear and multicollinear. The horizontal black line marks πthr , and the

vertical line marks the value of log(λ) for the selected variables x1 and x3. The faded

lines in the background are the 492 irrelevant variables.





6Partial Least Squares

Partial least squares (PLS) is another useful technique for high dimensional regression
problems. It transforms the predictors and uses those in stead of the original predictors
to fit a least squares model. The method is appropriate for high dimensional data, since
one of the advantages is that a problem can be reduced to a lower dimension, by using
fewer transformed variables in stead of all the original predictors. The theory is from
[Garthwaite, 1994], unless otherwise stated.

The partial least squares regression equation is given by

ŷ = β0 + β1t1 + β2t2 + . . .+ βmtm, (6.1)

where the transformed variables are tk for k = 1, . . . ,m, they will also be referred to as
the PLS-components in the following. The response and predictors are denoted in their
centered form by u1 = y− ȳ and v1j = xj − x̄j , for j = 1, . . . ,p. The index of u1 and the first
index of v1j is due to PLS being an iterative procedure.

The first transformed variable t1 is a linear combination of v1j , it is obtained by regress-
ing u1 on each of the j predictors v1j in turn. Since the sample means are zero due to the
centering, we end up with the regression equation

û1j = b1jv1j , (6.2)

where solving for the least squares solution yields b1j = vT1ju1/v
T
1jv1j . As we would like

an estimate of u1, and û1j for j = 1, . . . ,p give estimates of u1, an average of those would
be reasonable, hence the first PLS-component t1 is computed as the weighted average of
(6.2)

t1 =
p∑
j=1

w1jb1jv1j ,

p∑
j=1

w1j = 1.

Since t1 is an average, there might still be some useful information left, which is not ex-
plained by t1. This information can possibly be obtained for the predictors by the resid-
uals from regression of v1j on t1, and for the response by the residuals from regressing
u1 on t1. The residuals are named v2j and u2 respectively, and the next PLS-component
t2 is hence computed in the same way as t1, though using v2j and u2 in stead of v1j and
u1. This procedure continues, and the residuals are in general computed as follows

vi+1,j = vij −
tTi vij

tTi ti
ti ,

43
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and

ui+1 = ui −
tTi ui

tTi ti
ti .

The PLS-components are then

ti+1 =
p∑
j=1

wi+1,jbi+1,jvi+1,j , where bi+1,j =
vTi+1,jui+1

vTi+1,jvi+1,j
. (6.3)

These PLS-components are used in stead of the original predictors xj in (6.1) to fit a
linear model by the least squares method. The choice of m, the number of components ti
to use in the model, is typically found by cross-validation.

The weights wij are for all i, j computed as wij = vTijvij . This is approximately equal to

the sample covariance of vij which is vTijvij /n − 1. Inserting the value of wij into (6.3)
gives

ti =
p∑
j=1

vTijvij
vTijui

vTijvij
vij =

p∑
j=1

(vTijui)vij . (6.4)

The term vTijui can be shown to be proportional to the correlation between the two vari-
ables [James et al., 2013], and hence the centered predictors or residuals with the highest
correlation to the centered response or residual will contribute the most to the construc-
tion of the particular transformed variable.

An advantage of the method is that a regressor is uncorrelated with the residual, and
ti is thereby uncorrelated with v(i+1)j . Because of this, the components ti in (6.1) are
uncorrelated, and we would be able to fit a linear model by these, where collinearity is
not a problem.
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6.1 Example

The method of Partial least squares will in the following be performed using the exact
same simulated data as used in the example of Ridge regression and the Lasso method
(see subsection 5.1.4). The data consists of 100 features with 30 observations, and the
response is constructed by some noise and the features X1 and X6. The data is divided
into 15 training - and 15 test-samples as in subsection 5.1.4. PLS is performed by the
function plsr() in the R-package pls. The output of the fitted model to the training
data is shown in Figure 6.1, where data is a matrix containing both the response and the
features. The validation argument is a specification of whether the validation should
be regular cross validation ("CV"), with default 10 folds, or leave one out cross validation
("LOO").

Figure 6.1: Output of the Partial least squares model fitted to some simulated data.

> set.seed(4013)

> pls.fit=plsr(y~., data=data[train,], validation ="LOO")

> summary(pls.fit)

Data: X dimension: 15 100

Y dimension: 15 1

Fit method: kernelpls

Number of components considered: 13

VALIDATION: RMSEP

Cross-validated using 15 leave-one-out segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

CV 1.98 1.799 1.726 1.710 1.711 1.714 1.714

adjCV 1.98 1.745 1.669 1.653 1.653 1.656 1.656

7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps

CV 1.714 1.714 1.714 1.714 1.714 1.714 1.714

adjCV 1.656 1.656 1.656 1.656 1.656 1.656 1.656

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps

X 9.11 17.07 24.58 31.92 39.96 46.99 55.45

y 92.21 99.24 99.88 99.99 100.00 100.00 100.00

8 comps 9 comps 10 comps 11 comps 12 comps 13 comps

X 61.58 69.04 74.12 82.75 88.97 94.43

y 100.00 100.00 100.00 100.00 100.00 100.00

The term adjCV is the adjusted cross validation error. It adjusts for bias associated with
training the model on segments of the data, in stead of using all the data [Mevik and
Cederkvist, 2004].

As seen the adjusted cross validation root mean squared error is lowest when using three
or four PLS-components. A prediction of the test data with the model containing three
PLS-components results in a mean squared error equal to 4.14, which is around the dou-
ble of the one obtained by Ridge regression and Lasso, with an MSE equal to 2.19 and
2.07 respectively.

Fitting the model with three PLS-components to the full data set yields the explained
variance in the response at 99.25% as seen in the output in Figure 6.2. Most of the infor-
mation in the response seems though to be explained by the first PLS-component with
an explained variance at 84.91, but the three PLS-components together does a reasonable
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job of explaining the response.

Figure 6.2: Output of the PLS-model with three PLS-components fitted to the full data

set.

> pls.full=plsr(y~., data=data, validation ="LOO",ncomp=3)

> summary(pls.full)

Data: X dimension: 30 100

Y dimension: 30 1

Fit method: kernelpls

Number of components considered: 3

VALIDATION: RMSEP

Cross-validated using 30 leave-one-out segments.

(Intercept) 1 comps 2 comps 3 comps

CV 2.146 1.793 1.758 1.742

adjCV 2.146 1.772 1.734 1.714

TRAINING: % variance explained

1 comps 2 comps 3 comps

X 5.835 11.08 14.90

y 84.906 95.51 99.25

The term vTijui in (6.4) is typically denoted as a loading. It tells how important a given
feature is in the construction of a PLS-component. In Figure 6.3 the absolute value of
the loadings of the features in the first PLS-component are sorted in decreasing order,
and the two features with the highest and lowest values are shown. To illustrate their
importance in the first PLS-component, their associated features are plotted against the
first PLS-component in Figure 6.4.

Figure 6.3: The two highest and the two lowest loadings in the first PLS-component.

> loadings <- sort(abs(pls.full$loadings[,1]),decreasing=T)

> loadings[1:2]

X1 X96

0.3266672 0.2425969

> loadings[99:100]

X43 X46

0.006319321 0.000736374

As seen in Figure 6.4 feature X1 and X96 have a stronger relation to the first PLS-component,
compared to the two features X43 and X46, where almost no relation is indicated. As
feature X1 has been used in the construction of the response, it has as expected a high
loading, and is thereby also highly associated with the first PLS-component. We would
also expect X6 to have a loading close to that of X1, since it also was used to construct
the response. The reason why this is not the case, could be that all of the features are
random simulated, and other features might accidentally have a higher association with
the response due to the addition of noise to the response.
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Figure 6.4: Relation between the first PLS-component and features X1,X96, X43 and X46.

The correlation matrix in Figure 6.5 shows that the PLS-components as expected are
uncorrelated, with correlation coefficients effectively zero.

Figure 6.5: The correlation matrix of the three PLS-components.

> cor(pls.full$scores)

Comp 1 Comp 2 Comp 3

Comp 1 1.000000e+00 1.243253e-16 7.836004e-17

Comp 2 1.243253e-16 1.000000e+00 -6.132732e-17

Comp 3 7.836004e-17 -6.132732e-17 1.000000e+00





7Results

For analysis of the correlation between age and DNA methylation, 50 blood samples were
available. Of these samples, there were replicates for three subjects, two subjects had two
replicates and one subject had one. The five replicates were removed from the data used
for the analysis, so that they could be used for later validation. The 45 samples left were
divided into a training and a test data set, 29 samples were used for training and 16
samples were used as test data.

The training data were randomly sampled with 2/3 from each of the four age groups in
Table 7.1, the rest was used as test data.

Age groups

15-30 31-45 46-60 61-82

Subjects 8 18 8 11

Table 7.1: Number of subjects in four different age-groups.

In this chapter five different methods described in the previous chapters, will be applied
to the data just mentioned, and the results will be presented. At first the three shrinkage
models Ridge regression, Elastic net and Lasso will be fitted to the data with different
values of the tuning parameter α. Afterward Stability selection will be applied to Elastic
net models, with the purpose to obtain some consistent CpG-markers. To see if other
methods does a better job of selecting relevant CpG-markers and predicting age, Partial
least squares will also be applied to the data. At last prediction performance of achieved
models from Stability selection will be tested on some simulated data with specific ages,
constructed from knowledge of the observed data, based on Ridge regression to compen-
sate for collinearity of predictors. The validation data will subsequently be used to asses
the model performance.

7.1 Shrinkage Models

The training data was fitted to three different types of shrinkage-models, Ridge regres-
sion, Elastic net and Lasso with the glmnet-package in R by a grid of 20 α-values in
the range [0,1]. Leave-one-out cross-validation was used on the 29 training samples to
choose the best λ among 100 values of λ for each model. In Table 7.2 the prediction error
on the test data can be seen as the root mean squared error (RMSE) together with the
chosen λ and the number of CpG-markers for each model.

As seen in Table 7.2 the model with the lowest prediction error that performed most
feature selection was the Elastic net model with α = 0.95, it resulted in a model with 42
CpG-markers shown in Figure 7.1.

49
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α λ CpG-markers RMSE

0.00 13586.13 474280 0.26

0.05 5.96 378 0.57

0.11 3.12 221 0.59

0.16 2.08 158 0.58

0.21 1.64 130 0.60

0.26 1.31 111 0.60

0.32 1.09 98 0.60

0.37 0.93 84 0.59

0.42 0.82 78 0.57

0.47 0.73 68 0.57

0.53 0.95 62 0.82

0.58 0.72 60 0.67

0.63 1.05 53 1.07

0.68 0.88 49 0.98

0.74 0.49 51 0.58

0.79 0.63 50 0.80

0.84 0.43 45 0.58

0.89 0.77 41 1.12

0.95 0.67 42 1.02

1.00 0.83 42 1.37

Table 7.2: Results of Ridge regression, Elastic net and Lasso.

Section of Forensic Genetics wanted to limit down the number of CpG-markers to ap-
proximately 12 − 24, since otherwise they would need to much DNA from a scene of
crime, in order to consistently be able to estimate the age of the person of interest. Due
to this limitation, further reduction of the CpG-markers was necessary. However, we
were also interested in finding some reliable CpG-markers, and for this reason we would
like to determine the randomness associated with the selected CpG-markers by Lasso
and Elastic net. This was done by Stability selection.
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Figure 7.1: The 42 CpG-markers selected by the Elastic net-model with α = 0.95.
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52 7. RESULTS

7.2 Stability Selection

As Section of Forensic Genetics wanted some reliable CpG-markers to predict the age of
a suspect, it was very important that the chosen CpG-markers for a potential model were
consistent, and thus had a predictive value for any given data set of DNA evidence.

We were interested in the best combination of CpG-markers with a high correlation to
age, since some CpG-markers might explain something that the others did not. As we
saw in the example in Section 5.6.2, Elastic net selects groups of predictors that are mul-
ticollinear, and Lasso would only select the predictor with the highest correlation to age
in such a group. This causes instability in which predictors the Lasso method selects
for each subsample in Stability selection, and only few if any will be selected as sta-
ble. It was experienced that only one CpG-marker was selected as stable when applying
Stability selection to the Lasso method. To ensure that all relevant CpG-markers were
considered, the method of Stability selection was applied on 20 Elastic net-models where
α was varied in the range [0.01;0.99]. Notice that these α′s are different from the ones in
Table 7.2, as the methods of Ridge regression and Lasso are excluded. The error was the
"per-family-error-rate" and the level was 0.05, where πthr = 0.6.

The union of the consistent CpG-markers selected from the 20 different α-models yielded
a set of 32 CpG-markers. They are plotted against age in Figure 7.3. Figure 7.4 provides
an overview of which markers appeared as consistent to each of the 20 values of α.

It seemed reasonable for prediction of age to consider a model with a combination of
CpG-markers corresponding to the result of Stability selection for one of the 20 α-values,
as it was 20 suggestions of stable CpG-markers related to age, with different levels, cor-
responding to α, of the number of multicollinear CpG-markers.

To estimate the prediction error of the models, a linear model would not be suitable, due
to the multicollinearity between the CpG-markers. As an example, the five consistent
markers chosen by Stability selection with α = 0.63 are plotted against each other in
Figure 7.2. They show a clear linear trend, and together with the correlation coefficients
given in the correlation matrix in Table 7.3 with values around 0.7 and above it indicates
collinearity.
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Figure 7.2: The linear relationship between CpG-markers chosen by stability selection

with α = 0.63.
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Figure 7.3: The 32 consistent markers found by stability selection for the different values

of α.
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54 7. RESULTS

Figure 7.4: Presence of the 32 CpG-markers at the different α-values in Stability selec-

tion.
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> cor(M.noXY[,res[[13]]])

cg06784991 cg10501210 cg22454769 cg16867657 cg11649376

cg06784991 1.0000000 -0.6766791 0.7747738 0.7875159 -0.7554610

cg10501210 -0.6766791 1.0000000 -0.7961520 -0.7954466 0.6971878

cg22454769 0.7747738 -0.7961520 1.0000000 0.8580314 -0.7198260

cg16867657 0.7875159 -0.7954466 0.8580314 1.0000000 -0.7026890

cg11649376 -0.7554610 0.6971878 -0.7198260 -0.7026890 1.0000000

Table 7.3: The correlation matrix for the CpG-markers (contained in res[[13]]) chosen

by stability selection with α = 0.63.

Ridge regression accommodated the problem of multicollinearity without performing
any variable selection, and hence the 20 models found by Stability selection was fitted
by Ridge regression to estimate the prediction error on the test data. A boxplot of the
prediction errors for the different models corresponding to the 20 α-values can be seen
in Figure 7.5. Furthermore Figure 7.6 illustrates a path of the estimated Ridge regression
coefficients for each of the 32 CpG-markers plotted against their corresponding value of
α.
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Figure 7.5: Distribution of prediction errors with the test data when Ridge regression

was performed on the models found by Stability selection.
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Figure 7.6: Ridge regression coefficient path for the different values of α. Each line seg-

ment refers to the CpG-markers in Figure 7.4, where e.g. cg10501210 is the lower red

line segment.

The root mean squared error for each model is given in Table 7.4, where the model ID
refers to the α-value from Stability selection. The lowest RMSE was obtained for the
model with model ID α = 0.22, this model contained 18 CpG-markers, which can be
seen in Figure 7.8.
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Model ID (α) CpG-markers RMSE λ

0.01 26 4.380 14.315

0.06 26 4.369 17.242

0.11 22 4.046 14.315

0.16 17 3.924 6.663

0.22 18 3.751 7.313

0.27 14 3.984 3.813

0.32 12 4.145 4.185

0.37 12 4.145 4.185

0.42 11 4.147 3.813

0.47 9 4.367 2.884

0.53 9 4.367 2.884

0.58 9 4.412 3.813

0.63 5 4.910 1.988

0.68 6 5.044 2.182

0.73 6 5.044 2.182

0.78 5 4.971 2.395

0.84 2 4.535 1.504

0.89 4 4.934 1.504

0.94 2 5.194 1.462

0.99 1 4.760 0.000

Table 7.4: Results of Ridge regression on the 20 models, where the model ID is the α-

values from Stability selection.

In Figure 7.7 it was determined if there was any trend associated with the age among
the prediction errors for the model with model ID α = 0.22. As seen there were no clear
relation.
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Figure 7.8: The 18 CpG-markers of the model with model ID α = 0.22.
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7.3 Partial Least Squares

The software used to fit a Partial least squares model to the data was the C++-implemen-
tation of partial least squares made by Thomas Hladish and Eugene Melamud [Hladish
and Melamud]. This method was applied, since the implementation of pls in R was not
applicable on such high dimensional data. The method was performed on the train-
ing data, and the number of PLS-components was set to 50. In Table 7.5 the explained
variance of the first 10 PLS-components is shown together with the corresponding sum
of squared errors (SSE). The optimal number of PLS-components was found to be 25
and 3, by leave-one-out (loo) and leave-some-out (lso) cross validation respectively. The
amount of data for testing in the lso method was 30% and the number of trials was 450
(10 times the number of observations). The loadings for the CpG-markers were extracted
for the first PLS-component, with the purpose to find the CpG-markers with the high-
est weights. The 30 CpG-markers with the highest weight on the first PLS-component
were used to fit a new model on the training data, where only the optimal number of
PLS-components was computed. Prediction was then made on the test data. The RMSE
for the full model with all CpG-markers included and for the reduced model with 30
CpG-markers included can be seen in Table 7.6 where both 25 and 3 PLS-components
were used for prediction.

No. of PLS-Comp. Explained variance SSE

1 0.22258 22.55

2 0.91352 2.51

3 0.98381 0.47

4 0.99632 0.11

5 0.99893 0.03

6 0.99978 0.01

7 0.99995 1.32e-03

8 0.99999 2.15e-04

9 1.00000 9.84e-06

10 1.00000 8.62e-07

Table 7.5: Explained variance associated with the number of PLS-components.

RMSE, loo RMSE, lso

All CpG-markers 11.65 11.67

30 CpG-markers 19.27 7.24

Table 7.6: Results of the Partial least squares method with 25 (loo) and 3 (lso) PLS-

components used.

The 30 CpG-markers with most influence on the first PLS-component are plotted in Fig-
ure 7.9. Compared to the 32 CpG-markers found by stability selection, they have 18 in
common, and 11 of them are also in common with the model with α = 0.22 from stability
selection.
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The RMSE was determined for the model with 3 PLS-components, where the 10 and 100
most influential CpG-markers were included, to see if further reduction of the RMSE
could be obtained by removing more markers. For these models the RMSE was 8.66 and
6.09 respectively.
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Figure 7.9: The 30 most influential CpG-markers in the first PLS-component.
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7.4 Prediction Performance with Simulated Data

The final model should be used to exclude suspects from a scene of crime, or to generate
leads for the police to narrow down the group of potential perpetrators. The reliability
and the prediction accuracy of the model was for this reason extremely important, as a
bad model with low prediction accuracy could lead to wrong exclusions from a group
of suspects. Another important issue was that especially the age 18 needed to have a
high prediction accuracy, as there are different rules for sentences of persons above and
below the age 18. To determine how the 20 Ridge regression models from stability se-
lection performed at different ages, new data was simulated from a multivariate normal
distribution. Let the observed ages be denoted as the vector age, and the observed data
of the methylation levels for the different CpG-markers be denoted as the matrix meth.
It was then assumed that age and meth followed a multivariate normal distribution, as
their marginal distributions with good approximation followed a normal distribution, as
illustrated by the qq-plots in Appendix A.2 at page 79. The mean and covariance matrix
were then computed as follows [Madsen and Thyregod, 2011]

µ =
[
µage

µmeth

]
, Σ =

[
Σage Σage,meth

Σmeth,age Σmeth

]
,

the conditional distribution was given by

meth|age = age ∼N (µmeth|age,Σmeth|age),

with

µmeth|age = µmeth +Σmeth,ageΣ
−1
age(age−µage)

Σmeth|age = Σmeth −Σmeth,ageΣ
−1
ageΣage,meth.

From this conditional multivariate normal distribution, 100 simulated observations were
made for each of the ages 18,25,30, 45,60 and 75, from knowledge of the observed data.
This was done for each of the 20 models in section 7.2. In Figure 7.10 a parallel coor-
dinates plot is made, for the model with α = 0.01 to illustrate how the simulated data
is distributed compared to the observed data. Each of the simulated data sets with 100
observations for each of the six ages are plotted with the transparent colors in addi-
tion to the 45 observations from the observed data which are plotted in black. The three
youngest ages follow nearly the same pattern, whereas the ages 60 and 75 follow an exact
opposite pattern, the age 45 follows a straight pattern in between these two groupings.
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Figure 7.10: Parallel coordinates plot of the simulations compared to the observed data.

Another way of inspecting the behavior of the simulated data in comparison to the ob-
served data was by looking at how the simulated methylation levels for the individual
ages were distributed for one single CpG-marker. This is shown in Figure 7.11 for one of
the CpG-markers cg10501210 by plotting the observed methylation levels for this marker
against age, where the distributions of the simulations are shown by boxplots for the in-
dividual ages. The simulations are based on the model with α = 0.01.
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Figure 7.11: Boxplots of the simulated data in addition to the observed data for one of

the CpG-markers in the model with α = 0.01.

For every of the 20 models from section 7.2, Ridge regression was applied to these using
all of the observed data except for the five observations left out for validation. Prediction
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was then performed six times for a particular model using the six different simulated
data sets, one for each of the six ages. The distribution of the prediction errors age−âge
for each of the 20 models are shown as boxplots in Figure 7.12.

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

−
20

−
15

−
10

−
5

0
5

10

age = 18

α

pr
ed

ic
tio

n 
er

ro
r

0.
01

0.
06

0.
11

0.
16

0.
22

0.
27

0.
32

0.
37

0.
42

0.
47

0.
53

0.
58

0.
63

0.
68

0.
73

0.
78

0.
84

0.
89

0.
94

0.
99

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

−
15

−
10

−
5

0
5

10
15

age = 25

α

pr
ed

ic
tio

n 
er

ro
r

0.
01

0.
06

0.
11

0.
16

0.
22

0.
27

0.
32

0.
37

0.
42

0.
47

0.
53

0.
58

0.
63

0.
68

0.
73

0.
78

0.
84

0.
89

0.
94

0.
99

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

−
20

−
10

−
5

0
5

10
15

age = 30

α

pr
ed

ic
tio

n 
er

ro
r

0.
01

0.
06

0.
11

0.
16

0.
22

0.
27

0.
32

0.
37

0.
42

0.
47

0.
53

0.
58

0.
63

0.
68

0.
73

0.
78

0.
84

0.
89

0.
94

0.
99

●

●

●

●

●

●

●

●

●

●●

●●

−
15

−
10

−
5

0
5

10
15

20

age = 45

α

pr
ed

ic
tio

n 
er

ro
r

0.
01

0.
06

0.
11

0.
16

0.
22

0.
27

0.
32

0.
37

0.
42

0.
47

0.
53

0.
58

0.
63

0.
68

0.
73

0.
78

0.
84

0.
89

0.
94

0.
99

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●●

−
15

−
5

0
5

10
15

20

age = 60

α

pr
ed

ic
tio

n 
er

ro
r

0.
01

0.
06

0.
11

0.
16

0.
22

0.
27

0.
32

0.
37

0.
42

0.
47

0.
53

0.
58

0.
63

0.
68

0.
73

0.
78

0.
84

0.
89

0.
94

0.
99

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●

−
10

0
10

20

age = 75

α

pr
ed

ic
tio

n 
er

ro
r

0.
01

0.
06

0.
11

0.
16

0.
22

0.
27

0.
32

0.
37

0.
42

0.
47

0.
53

0.
58

0.
63

0.
68

0.
73

0.
78

0.
84

0.
89

0.
94

0.
99

Figure 7.12: Distribution of the prediction errors for the different models with the simu-

lated data.

In Table 7.7 the models with the lowest RMSE on the simulated data are shown for the
investigated ages, together with the RMSE for the simulated data with the model which
had the lowest RMSE on the observed data (model ID α = 0.22).

The model with the lowest averaged RMSE across all ages was the model from stability
selection with model ID α = 0.37, the averaged RMSE was at 3.98, slightly lower than the
one obtained for the model with model ID α = 0.22, which was at 4.00.
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age RMSE Model ID (α) λ RMSEα=0.22

18 3.68 0.37 4.01 4.17

25 3.95 0.37 4.01 3.99

30 3.27 0.42 4.01 3.79

45 3.30 0.11 13.44 3.63

60 3.83 0.16 7.69 3.88

75 4.29 0.42 4.01 4.54

Table 7.7: The models with the minimal RMSE at the simulated data of the different ages.

The RMSE for the model that gave the lowest RMSE on the observed data (α = 0.22), is

also shown for comparison.

If we further inspect the boxplots in Figure 7.12, it seems that some systematic bias
exists, as the youngest ages seems to be overestimated, according to the majority of the
prediction errors being negative, whereas the oldest ages are generally underestimated as
the majority of the prediction errors are positive. The prediction errors seems though to
be centered around zero as expected for the age 45. There is an explanation for this bias,
which is easiest to show for the model (α = 0.99) where only the CpG-marker cg10501210
was selected as stable, the bias can here be explained as follows.

In this model, the simulated methylation levels were from the conditional bivariate nor-
mal distribution. Let the simulated methylation levels for the CpG-marker cg10501210
be given by the vector meth*, they were then simulated from the distribution given by
[Olofsson, 2005]

meth*|age ∼N
(
µmeth + ρ

σmeth

σage
(age−µage),σ2

meth(1− ρ2)
)
,

where meth is the observed methylation levels for the CpG-marker cg10501210.

The fitted model for the simulated data meth* then had the distribution

âge|meth* ∼N
(
µage + ρ

σage

σmeth
(meth*−µmeth),σ2

age(1− ρ2)
)
.

The mean of these distributions are regression lines, and by those the best predicted
values are obtained. Writing out the mean of the fitted model yields an expression of the
best predicted ages using the simulated data

E [âge|meth*] =µage + ρ
σage

σmeth
(E [meth*|age]−µmeth)

=µage + ρ
σage

σmeth

(
µmeth + ρ

σmeth

σage
(age−µage)

)
− ρ

σage

σmeth
µmeth

=µage + ρ2(age−µage) = ρ2age +µage(1− ρ2).

We would expect this expression to be equal to age if the method was unbiased, hence
the bias of the method is
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Bias(âge|meth*) =ρ2age +µage(1− ρ2)− age

=− age(1− ρ2) +µage(1− ρ2) = (1− ρ2)(µage − age).

The bias for this model is controlled by the mean of the observed ages which is µage =
45.10. It explains why almost no bias is observed for the simulated data of the age 45. A
similar bias occurs for the other models as well.

7.5 Validation

Two different types of methods had been applied to the data. From Stability selection
the model with the minimal RMSE was the model with model ID α = 0.22 containing 18
CpG-markers. When Partial least squares was applied to the data, a model with 3 PLS-
components gave the minimal RMSE when 30 of the most influential CpG-markers were
included. For validation of these models, the five samples of replicates were available.

Predicting the validation data using the Ridge regression model from section 7.2 with
model ID α = 0.22 yielded an RMSE at 2.43. If we instead used the partial least squares
model for prediction, we got RMSE= 6.56. Based on these predictions the Ridge regres-
sion model with model ID α = 0.22 would be preferable, as it resulted in the lowest
RMSE.

The validation data was replicates, and we had two samples from the same subject at
age 55.90 and two samples from the subject at age 43. The actual predictions and the
prediction errors of these observations are shown in Table 7.8 for the Ridge regression
model with model ID α = 0.22, to show the difference between the replicates.

Observed age Predicted age Prediction error

55.90 53.41 2.49

55.90 57.61 -1.71

43.00 45.25 -2.25

43.00 46.88 -3.88

22.80 22.36 0.44

Table 7.8: Prediction of the validation data by the Ridge regression model with model ID

α = 0.22.

In section 7.4 we investigated simulated data of methylation levels for different ages,
and found that the model with model ID α = 0.37 had the lowest RMSE for the age 18
and 25, it also turned out to be the model with the averaged minimal RMSE. As the
validation data contained one observation at the age 22.8, this model was applied on the
validation data to see if it performed better than the model with model ID α = 0.22 on
this observation. The predictions and prediction errors are shown in Table 7.9.
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Observed age Predicted age Prediction error

55.90 54.72 1.18

55.90 57.05 -1.15

43.00 48.56 -5.56

43.00 49.52 -6.52

22.80 15.66 7.14

Table 7.9: Prediction of the validation data by the Ridge regression model with model ID

α = 0.37 and λ = 4.01 from Table 7.7.

As seen the prediction error of the observation with age 22.8 is highest among the five
observations. The model results in an RMSE at 5.04.





8Discussion and Conclusion

High dimensional regression methods has been applied to genomic micro array data of
methylated DNA in this thesis, and the relation to a humans age was investigated. The
methods used for the study was the shrinkage models Ridge regression, Elastic net and
Lasso. Moreover Partial least squares was determined for comparison with another type
of model available for high dimensional data. The purpose was most importantly to find
some reliable predictors among hundreds of thousands predictors, usable for consistent
age prediction of suspects in crime cases. The interest was to find few predictors with a
high predictive performance, as not much DNA material is available at a scene of crime.
To ensure that the predictors found by the mentioned shrinkage models were reliable,
Stability selection was performed on these. The multicollinearity of the predictors was
found to influence their stability for the Lasso method, and hence 20 different Elastic
net models was used for the final investigation of these methods, where a model with 18
stable CpG-markers showed the lowest root mean squared error when Ridge regression
was applied on it. This model was fitted to the validation data which contained five
observations and it yielded an RMSE at 2.43.

The Partial least squares method resulted in a model with 3 PLS-components as the best
performing model when only using the 30 most influential CpG-markers from the first
PLS-component. On the validation data, this model yielded an RMSE at 6.56. It was seen
that the prediction error decreased, when several of the CpG-markers were removed
from the model, and hence including all of the CpG-markers would just add noise to
the model. The optimal number of CpG-markers could be determined for obtaining the
minimal RMSE, but as we needed as few CpG-markers as possible, and the prediction
error was seen to increase when more than 30 CpG-markers were removed, and it de-
creased when more were added, the model from Stability selection would be preferred
as a lower prediction error and a lower amount of CpG-markers was obtained with this
model. However the two models had 11 CpG-markers in common.

In addition to the results of the observed data, data was simulated for different ages, to
see how the 20 models found by Stability selection performed on these by Ridge regres-
sion. This was, to get an idea of a more general performance of the models, as the avail-
able observed data was limited. Special focus was on the age 18, as there are different
rules for sentences depending on whether a person is below or above 18 years. Moreover
the available data did not contain any observations at the age 18, or close to it, and hence
it was necessary to simulate data for this age, to determine model performance of it.
The model from Stability selection with α = 0.37 showed the averaged best performance
across the different ages, and in particular of predicting the age 18 on the simulated data,
with RMSE=3.98. This model was also fitted on the validation data with an RMSE at 5.04.
As the validation data contained an observation with the age 22.8, we would expect from
the results on the simulated data, that the prediction error of this observation would be
the smallest, as this model performed best for both the age 18 and 25 on the simulated
data (see Table 7.7). The prediction error for this observation was actually highest among
the five validation data points. It shows that no reasonable suggestions for the data can

69
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be made from the assumption of the data following a multivariate normal distribution,
even though we saw that their marginal distributions nearly followed a normal distribu-
tion. Moreover we saw a systematic bias when predicting the simulations, which caused
the results to be less straight forward to interpret. However, regardless of the bias, the
minimal RMSE for each of the ages in Table 7.7 was still only around 4, and reminded of
the RMSE’s of the observed data predicted by the models. The model that was found to
perform best on the observed data was the model with model ID α = 0.22, and it would
then be most reliable to look at the results for the simulated data with this model. For
the age 18 the RMSE was 4.17, and averaged across all ages the RMSE was 4.00. These
results are as close as we can get of a more general picture of the performance of this
model, and of the accuracy of predicting the age 18. Due to the systematic bias and what
we saw on the validation data, a deeper study of data from subjects at the age around 18
should be made, to be able to build a model with more accuracy in this area.

In regression models we assume that the predictors are measured without noise, but as
we saw for the validation data, the prediction error was different for those two observa-
tions who had a replicate. If the data was measured without noise, the measurements
would have been exactly the same, and the prediction errors would have been identical.
Measurements for genomic data like this is extremely sensitive, due to this it is difficult
to make an accurate model, and it is possible that other sets of observed data would re-
sult in another model with the best performance. Even though Stability selection was
performed, to ensure selection of stable markers, we can not provide for noise in the data
which could cause that other CpG-markers would be selected as stable for other observed
data sets. The analysis should therefore be performed on several independent observed
data sets, to see if the same results would be obtained for these.

In the field of forensic science, two recent studies of the relation between age and DNA
methylation [Zbieć-Piekarska et al., 2015, Yi et al., 2015] came up with linear models
including two and three CpG-markers respectively, resulting in prediction errors at 6.58
and 4 years. These studies used different technologies for measuring the methylation lev-
els. The study of [Zbieć-Piekarska et al., 2015] investigated the ELOVL2 gene, which has
been found interesting in relation to age in more studies as well [Florath et al., 2014, Han-
num et al., 2013, Garagnani et al., 2012]. Three out of the seven selected CpG-markers
from the ELOVL2 gene in the study of [Zbieć-Piekarska et al., 2015], was among the 32
stable CpG-markers chosen by Stability selection in this thesis, these are cg21572722,
cg24724428 and cg16867657 (see Figure 7.3). Moreover cg16867657 is among the 18
CpG-markers from the model with the best performance (model ID α = 0.22), see Fig-
ure 7.8. However in their study these three CpG-markers were not chosen for the final
model, as two other were more significantly correlated with age. Non of the two studies
accounted for collinearity or multicollinearity in their models. We experienced that mul-
ticollinearity was a great issue, and not accounting for it if it exists, might result in bad
predictions on new data, as small changes in data will have big influence on the model.

Two other studies outside the field of forensic science used the same technology by Il-
lumina as was used in this thesis, for examination of age and DNA methylation. One
of the studies by [Florath et al., 2014] found a linear regression model with 17 CpG-
markers and an average accuracy at 2.6 years, where only 10 of the CpG-markers were
detected as significant. Also here, no accounting of collinearity was made. However,
more of their 10 significant CpG-markers were among the 18 found by Stability selec-
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tion in the model with model ID α = 0.22 in this thesis. The other study with the same
technology was made by [Hannum et al., 2013]. They used the Elastic net method and
bootstrapping for selection of CpG-markers. In their model they also included gender
and body mass index (BMI) and yielded an optimal model with 71 CpG-markers and an
accuracy at 3.9 years. Also with this model, several CpG-markers were in common with
the CpG-markers found stable in this thesis.

Some of the other studies ensured that their subjects did not have any serious diseases.
This is something that was not accounted for in this thesis.

For improvement of the analysis, it would be of interest, like in the study of [Hannum
et al., 2013], to examine if there were any connection with the gender in relation to age
and DNA methylation. Other tissues could also be of interest to determine, such as saliva
and semen. It would be preferable to be able to use other tissues than blood for prediction
of age, in case if the only available DNA material was saliva or semen. Furthermore DNA-
methylation patterns for people with different ethnicity could be studied. Maybe people
from Africa or China has other patterns of DNA methylation than people coming from
Europe or Scandinavia.

As DNA-methylation is an epigenetic phenomenon, it would not be expected that it
would be affected by things having an impact on a persons biological age, such as physi-
cal shape and BMI. But these are potential subjects for investigations as well.

Another method which could be considered for high dimensional genomic data, is Super-
vised principal components. It is a method where the univariate regression coefficients
are computed, and based on a threshold found by cross validation, the regression coeffi-
cients that exceeds this threshold are chosen. Principal components are then computed
of these regression coefficients and are used in a regression model. It reminds of Partial
least squares, but an advantage is that Supervised principal components perform feature
selection, and hence sort out potential noise from the model [Hastie et al., 2009]. As we
performed feature selection of the Partial least squares model, a similar result might be
expected of the Supervised principal components method.

All in all, the method of Elastic net combined with Stability selection seems to be a great
combination for selecting stable variables in genomic data of high dimension, with its
advantage of selecting groups of multicollinear variables. Moreover Ridge regression is
a usable method for estimating prediction accuracy of models with highly multicollinear
variables. The final best performing Ridge regression model with the 18 CpG-markers
seems to be a reasonable suggestion for a model usable for age prediction by its low
prediction error and by accounting for collinearity in the data. The methods should
though be applied to other independent data sets, to determine the influence of noise
in the data. Furthermore a study with more measurements from subjects at the age 18
should be performed, to be able to make a more accurate model of persons at this age.
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AAppendix

A.1 Lemmas for Theorem 5.6.1

In section 5.6 we define selection probabilities on the basis of different subsamples of the
data. In stead we can split the data randomly into two samples of size bn/2cwhich have no
overlap. In this way we can determine if a variable occur in both samples simultaneously.
Define the two random subsets to be I1 and I2 of {1, . . . ,n} where |Ii | = bn/2c, i = 1,2 and
I1 ∩ I2 = ∅. The simultaneously selected set is then defined as

Ŝsimult,λ = Ŝλ(I1)∩ Ŝλ(I2). (A.1)

Definition A.1.1 (simultaneous selection probability).
Define the simultaneous selection probabilities Π̂ for any set K ⊆ {1, . . . ,p} as

Π̂
simult,λ
K = P ∗(K ⊆ Ŝsimult,λ), (A.2)

the probability P ∗ is with regard to the random sample splitting.

The following two lemmas are used in the proof of Theorem 5.6.1 in section 5.6.

Lemma A.1.1 (lower bound for simultaneous selection probabilities).
For any set K ⊆ {1, . . . ,p}, a lower bound for the simultaneous selection probabilities is, for
every ω ∈Ω, given by

Π̂
simult,λ
K ≥ 2Π̂λ

K − 1.

Proof.
Let I1 and I2 be defined as above. Denote then the probability P ∗

[
{K ⊆ Ŝλ(I1)∩K ⊆ Ŝλ(I2)}

]
by sK ({1,1}). In the same way sK ({1,0}), sK ({0,1}) and sK ({0,0}) are defined to be the prob-

abilities P ∗
[
{K ⊆ Ŝλ(I1)∩K * Ŝλ(I2)}

]
, P ∗

[
{K * Ŝλ(I1)∩K ⊆ Ŝλ(I2)}

]
and

P ∗
[
{K * Ŝλ(I1)∩K * Ŝλ(I2)}

]
respectively. From (A.1) and (A.2) we have that Π̂simult,λ

K =

sK ({1,1}). We can express the selection probabilities based on subsampling by the simul-

taneous selection probabilities based on sample splitting as follows

Π̂λ
K =sK ({1,0}) + sK ({1,1}) = sK ({0,1}) + sK ({1,1}),

1− Π̂λ
K =sK ({1,0}) + sK ({0,0}) = sK ({0,1}) + sK ({0,0}).
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It follows that sK ({1,0}) ≤ 1− Π̂λ
K since sK ({0,0}) ≥ 0, and we get that

Π̂
simult,λ
K = sK ({1,1}) = Π̂λ

K − sK ({1,0}) ≥ 2Π̂λ
K − 1,

as desired.

Lemma A.1.2.
Let K ⊂ {1, . . . ,p} and Ŝλ the set of selected variables based on a sample size of bn/2c.

If P
(
K ⊆ Ŝλ

)
≤ ε, then

P
(
Π̂

simult,λ
K ≥ ξ

)
≤ ε2/ξ.

If P
(
K ⊆ ∪λ∈ΛŜλ

)
≤ ε for some Λ ∈R+, then

P
{
max
λ∈Λ

(
Π̂

simult,λ
K

)
≥ ξ

}
≤ ε2/ξ.

The proof of A.1.2 can be found in [Meinshausen and Bühlmann, 2010].
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A.2 Normality assumptions

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●

● ●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●
●

● ●

●
●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●●

●

●
●

●

●
● ●

●
●

●
●

●

●

● ●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

● ●

●

●

●
●

●

●
●●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●

●

●●
●●

●●
●

●

●

●● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●

●

●●

● ●

●●
●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

● ●

● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●
● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

age cg00103778 cg01486610

cg01580888 cg02228185 cg03431918

cg03915012 cg04084157 cg04503319

cg04875128 cg06400319 cg06639320

cg06784991 cg08097417 cg08128734

cg10501210 cg11071401 cg11176990

cg11649376 cg14361627 cg16054275

cg16867657 cg17471102 cg18405719

cg18473521 cg19283806 cg19344626

cg21572722 cg22454769 cg22736354

cg22796704 cg24079702 cg24724428

20

40

60

80

−2.0

−1.6

−1.2

−0.8

0.5

1.0

1.5

2.0

2.5

−4.5

−4.0

−3.5

−3.0

−2.5

1

2

3

−3.0

−2.5

−2.0

−1.5

2.0

2.5

3.0

3.5

−3.25
−3.00
−2.75
−2.50
−2.25
−2.00

0.5

1.0

1.5

−5

−4

−3

−2

−1

0.5

1.0

1.5

2.0

2.5

−1.0

−0.5

0.0

−2.00

−1.75

−1.50

−1.25

−1.00

−3.5

−3.0

−2.5

−2.0

−0.5

0.0

0.5

1.0

1.5

0

1

2

3

−1.5

−1.0

−0.5

−5

−4

−3

0.3

0.6

0.9

−3.0

−2.5

−2.0

−1.5

−0.8

−0.4

0.0

0

1

2

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

1.0

−2

−1

0

1

2

3

−1.0

−0.5

0.0

0.5

−1.0
−0.5

0.0
0.5
1.0

−2.0

−1.6

−1.2

−0.8

0.0

0.5

1.0

−2.0

−1.5

−1.0

−0.5

0.0

−3

−2

−1

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

Theoretical

S
am

pl
e

Normal QQ−Plot

Figure A.1: QQ-plots of the distribution of the ages and the methylation levels for the 32

CpG-markers found by stability selection, against the normal distribution.
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