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Preface

Many people with whom the author has spoken have expressed the
opinion that programming under such circumstances will be im-
possibly complicated and will never be worth while.
S. Gill on parallel programming, 1958

This report is the master thesis of Birgir Már Elíasson and Johannes Lindhart
Borresen, Software Engineering students working at the Department of Com-
puter Science at Aalborg University, Denmark.

The project is a continuation of our 9th semester report, Sorting and Syn-
chronising - Evaluating concurrent and parallel implementations of Santa Claus
and Quicksort in X10, Java, Clojure, and Erlang. We build upon the findings
of said report by developing a new programming language for the Java Virtual
Machine (JVM), called Joe, designed with the goal of supplanting the existing
concurrency mechanisms found in Java.

The project is inspired by a project proposal suggested by the authors, with
guidance from their supervisor to realise the idea.

Bibliography and appendix are found in the closing part of the report. All
program code has been uploaded to the digital project library along with a copy
of this report.

For interested parties without access to the AAU project library, access to the
online source code repository (found at https://bitbucket.org/nattfari/
dpt104f15-code) may be granted upon request.

Birgir Már Eliasson

belias10@student.aau.dk

Johannes Lindhart Borresen

jborre10@student.aau.dk
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Chapter 1

Introduction

The MOS Technology 6502 was an affordable microchip used in many consumer-
grade appliances, sometimes credited as the catalyst of the home computer rev-
olution of the 1980’s. In 1984, Rockwell International introduced a microcom-
puter that combined two 6502 cores on a single chip[13][26], perhaps making
it the earliest example of a consumer-grade Symmetric Multiprocessing (SMP)
system.

However, it was not until 2005, when both AMD[2] and Intel[22] introduced
consumer-grade dual-core processors, that multi-processing came into the main-
stream. This enabled entire industries of entertainment, research, big data, among
others, to evolve.

Despite the leaps in processing capability and new applications, program-
ming safe, concurrent or parallel applications remains difficult. Issues of par-
allel computing date back more than 50 years, from acknowledgement [19] to
solutions [7].

According to the TIOBE index, the ten most popular programming languages
are sequential by nature and mainly offer concurrent building-blocks through
libraries that complement a threaded memory model. An example is Java, an
object-oriented relative of C. Java first appeared in 1995 and had its first stable
release in 1996, however it was not until version 5.0 in 2004 that measures were
taken to improve on its broken memory model and supply utilities to deal with
the difficulties of thread programming. At the time of writing, Java triumphs in
popularity, followed by other sequential relatives of the C language, such as C#,
C++, and Objective-C, which also incorporate threads.

Opposing these is Erlang, concurrent and distributed programming language
with language primitives for these features. Founded on the actor model, it
utilises message passing and offers language-level features for managing pro-
cesses. Compared to the more popular C-like languages, however, Erlang is rel-
egated to 36th place on the TIOBE index, following Scala, a functional, actor-
based JVM language, on 32nd.

If parallelism is the future of computing, why is it that none of the most pop-
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ular languages embed it at their core? More so, why are languages with this in-
terest in mind not more widely used?

While analysing the reasons for this is beyond the scope of this project, we
suggest that programming languages’ staying power is a result of their platforms
and age; porting entire systems between languages is costly and prone to errors,
while languages with a very broad platform support are more appealing special-
isation choice for professional programmers, granting more job opportunities.
Thus we consider the issue from a different perspective: “If you can’t beat them,
join them.” If it is not possible to supplant a programming language, would it in-
stead be possible to augment it in a way as to afford better and safer parallelism?
This is the core of our thesis.

We propose a new language, designed to be easy to learn by programmers
familiar to Java-like languages, where concurrency is not just an option - it is
built into the core of the language. Further, we wish to augment the language in
such a way as to aid the programmer in avoiding some of the major pitfalls of
concurrent programming:

The project itself builds upon the work and findings of the authors’ prespe-
cialisation, a report written as a precursor to this thesis. [6]. Referenced will
be made throughout this report. We do, however, present an overview of that
project’s contents and results in Section 2.1.

1.1 Motivations

Working through various problems and their implementations in X10, Java, Erlang
, and Clojure, we experienced the vast differences in expression across paradigms
and coding philosophies. Languages exhibit very different properties in regards
to synchronisation, non-termination and even globally accessible variables.

A key discovery, however, was the realisation that even today, programming
languages in practice have very little, if anything, to remove the two key issues
facing anyone programming concurrent software: Deadlocks and race condi-
tions. Further, the languages surveyed had no clean way to implement Trono
[37]’s Santa Claus problem as specified. While representations were possible
given some allowances, it was more difficult to represent the properties of the
system as part of the language’s syntax or type system. Instead, solutions had to
rely on conditionals and self-imposed structure to establish a protocol of com-
munication.

We envision a language where concurrency is inherent to its very structure,
implicit and safe in its use. Where many languages use libraries to introduce
concurrency using existing formalisms (such as classes and functions) we in-
stead want concurrency to have its own syntax or, even better, to underlie the
entire code. Optimally, this language will complement an existing, mainstream
language, allowing programmers to either convert complex, concurrent applica-
tions to a simpler programming model gradually, or implement concurrent parts
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of a system in this new language, applying interoperability to keep sequential or
trivial application parts in its original language.
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Chapter 2

Analysis

2.1 Previous Work

During the fall of 2014, we analysed four programming languages within the
context of two problems, one parallel and one concurrent. For each implemen-
tation, the languages and their solutions was evaluated based upon four criteria:

Complexity relates to code length, required effort when translating a model
into code, and the difficulty of ensuring correctness of code.

Scaling speaks to the possibility of scaling an implementation, how the scaling
would be performed, as well as an evaluation of the effort required to do
so.

Maintenance considers the effort required to control technical debt and the so-
lution’s overall readability.

Performance is relevant only to parallel problems and examines the trade-off
between time spent and efficiency gained when implementing a solution
in a language.

The languages were chosen based on their TIOBE[8] ranking as well as the
purity of their concurrency model. The latter refers to how deeply concurrency
was built into the language as opposed to being added as a library (compare, for
example, the pthreads library of C with the communication primitives of Erlang).

Java was chosen as a baseline language on which to compare the others. It is C-
like, popular, and while most of its concurrency is featured through library
support, it does contain some syntax specifically for the purpose.

Clojure is a Lisp-like, functional language that runs on the JVM. Beyond this,
several of Clojure’s concurrency mechanisms rely on Software Transac-
tional Memory (STM).
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Erlang as an actor-based, functional language. Unlike Java or Clojure, Erlang
contains keywords and syntax specifically for the handling of messages

instead of using function call formalities.

X10 stands as a language built for high performance and scalability, right out of
the box.

Two problems were chosen for implementation in all four languages:

The Santa Claus problem as described by Trono [37]. It models the problem
of simulating Santa Claus as well as his elves and reindeer, primarily fo-
cusing on the handling of various issues of concurrency; deadlocks, race
conditions, and semaphores.

Quicksort was used as a parallel problem to be solved in the four programming
languages. Of particular interest was the ease of work distribution and
scaling performance on each language.

Findings

X10, Java and Erlang all afforded relatively simple mappings for the Santa Claus
problem, containing abstractions (in the form of classes or processes) to act as
each party of the problem itself. Clojure, with its Lisp-like syntax presented a
much greater challenge in writing a solution that did not diverge significantly
from the source description. If this was disregarded, more maintainable ver-
sions could be achieved.

As Quicksort can be implemented with relatively few language constructions
(namely, functions, lists and a parallelism mechanism), all languages displayed
simple implementations. X10, Java, and Clojure displayed high performance
even with large lists to sort, possibly as a result of all three languages running on
the JVM. Erlang, on the other hand, exhibited very long running times compared
to the other surveyed languages. While an Erlang solution with comparable per-
formance exists, it is both verbose and complex.

Future Work

Based on the findings of the prespecialisation we hypothesised the possibility of
designing a language with cleaner and more succinct concurrency mechanisms
with an acceptable performance trade-off for the benefit of cleaner design and
safer multi-processing.

2.2 Related Work

Ours is not the first attempt to bring improved concurrency mechanisms to the
JVM or modern programming languages in general. Throughout this section we
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present the primary models and concepts used in our work, with a final argu-
mentation for the niche that we envision the language will fill.

2.2.1 Actor Model

The actor model is tailored for artificial intelligence and parallel execution, de-
scribed by Hewitt [20], among others. In this view, actors are primitives in com-
putation, encapsulating data and communicating via asynchronous message
passing. This minimises the risk of deadlocks and data races, making the model
a desirable option for implementing concurrent systems.[1] Actors are offered
both as the primary computation model in languages and as a language exten-
sions, in forms of libraries and frameworks.

Languages or Libraries

The programming language Scala, first released in 2003, applies actors and fu-
tures in its concurrency model. It runs on the JVM and is interoperable with
Java. Scala actors are implemented as a library, allowing for a mix of concurrency
models to co-exist. This also increases the risk of breaking the safety properties
conferred by a pure actor model. The risk itself is not the problem. However,
developers tend to fall back on known technologies when faced with difficult
problems. For example, Tasharofi, Dinges, and Johnson [30] shows that Scala
developers have a tendency to introduce threads into actor systems, claiming
library- and actor model inadequacies or arguing efficiency. What ever the rea-
son is, it is clear that language-level features are more desirable than a library.
This would push developers into seeking solutions within the actor model, ef-
fectively guarding its safety properties.

Limitations and Opportunities

As explained in our prespecialisation project [6] there are some issues regard-
ing synchronisation in the actor model. It may allow for a modular and simpler
design of concurrent systems, however, correctness verification is not one of its
properties. It is therefore in the hands of the programmer to verify the sound-
ness of a solution’s communication patterns. However, we consider the actor
model to be an excellent medium for solving problems such as Trono’s Santa
Claus problem, where independently acting agents work within a single system
to achieve the program’s overarching goals.

2.2.2 Behavioural Types

Type checking is one of various formal methods for validating system correct-
ness. As a key feature of compiler optimisation, types are often syntactically ex-
pressed in programming languages or inferred during compilation. Benjamin C.
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Pierce provides this definition of a type system in his book Types and Program-
ming Languages

A type system is a tractable syntactic method for proving the ab-
sence of certain program behaviours by classifying phrases accord-
ing to the kinds of values they compute.[28]

A behavioural type system does not only classify phrases according to the
kinds of values they compute, it also classifies the phrases according to how they
compute.

Reasoning about concurrent execution in systems can be difficult. This of-
ten results in errors that may be hard to debug and sometimes flawed products
that, in the eyes of the user, inexplicably break down and stall. Behavioural types
enable developers to better reason about the execution of their concurrent ap-
plications. Moreover, it can be utilised in tool support for system validation,
raising compile-time errors when an implementation would not act as a speci-
fication dictates.

The following story about the Therac-25 [39] underlines the importance of
better verification mechanisms for concurrent code, particularly in safety-critical
systems:

Therac-25 was a radiation therapy machine produced by a Canadian
nuclear science and technology laboratory. Due to a race-condition
error, it could administer radiation doses thousands of times larger
than normal, resulting in radiation poisoning, which in three cases
led to death. The problem was introduced in software interlocks
which replaced previously used hardware ones. Being safety-critical,
these interlocks were vulnerable to an error which was nearly im-
possible to reproduce as it involved both timing and input variables.

Only through careful investigation did underlying causes of the issues sur-
face, resulting in the creation of a development standard for medical device soft-
ware[39].

In the following sections we outline a selected subset of behavioural type
systems to analyse their suitability in our proposed programming language.

Type and Effect Systems

Nielson and Nielson [27] expounds on type and effect systems, an inference-
based (as opposed to flow-based) technique of static analysis. Originally con-
ceived by Lucassen and Gifford [25], the type and effect system’s types are aug-
mented with effects that reflect what happens with a variable of a certain type
during program execution.

One application is Deterministic Parallel Java, an extension to the Java pro-
gramming language that guarantees deterministic semantics [4]. In Determin-
istic Parallel Java (DPJ), programmers annotate the code in order to partition
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the heap into regions, explicitly noting when methods read or write to differ-
ent regions. This, in turn, allows the DPJ compiler to analyse program flow and
ensure that the program exhibits deterministic behaviour under parallel con-
ditions. This happens in much the same way as checked exceptions in Java, in
which method declarations must explicitly state whether they internally handle
exceptions or pass them up the call stack.

While the authors show DPJ to be sound, it does further increase the ver-
bosity of Java in ways that could be considered redundant.

Session Types

Session types were originally used to describe linear interactions between two
threads. In this sense, session types can be applied within the context of pro-
cesses communicating via messages in order to verify their interactions accord-
ing to some specification or protocol. [9]

A resulting session has notions for sending and receiving ends of channels,
the types communicated on these channels, and the order in which they should
be communicated. Sessions have been extended to include choice and recur-
sion, enabling branching and infinite sessions.

Well-typed programs conforming to a binary session type system are safe in
regards to two classes of programming errors, namely communication- and race
errors. Communication errors comprise incompatible interaction. For example
when a process tries to send a message to a receiving process which does not
accept the message. If two processes both try to send or receive on the same
channel at the same time, it would constitute a race error.

In an introductory paper to the subject, Vasconcelos, Aceto, et al. [38] presents
a version of session types that allow for branching communication between more
than two parties.

In the paper [21] session types are integrated into Java and presented in a
full implementation. In this implementation sessions are declared as protocols
inside classes and session type branching and session type recursion are explicit
syntactical constructs. While the implementation promises correctness and low
overhead, its verbosity is not appealing. The added syntax and injection of pro-
tocols into class declarations might intimidate novice developers.

Contracts

Usually described in programming languages with similarities to process alge-
brae or Labeled Transition System (LTS)s, contracts do not only describe possi-
ble actions, they directly describe actions that are allowed to be taken. Similar
to session types, no communication errors will occur between two complemen-
tary contracts if they are compatible. Additionally, Fournet et al. [18] adopted
CCS algebra for denoting contracts, contributing stuck-free conformance which
roughly corresponds to deadlock exemption.
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Hu, Yoshida, and Honda [21] use contracts, referring to them as sessions.
While this might entail stuck-free conformance, a desired property, its verbosity
remains an issue.

Contracts offer much in terms of safety and correctness. Coupled with the
actor model, we consider this a powerful formalism for describing and ensuring
correctness of actors as well as their ensuing communications.

2.2.3 Model Checking

As systems grow increasingly more complex, ad hoc methods of verification lose
effectiveness, calling for formal testing methods to assure correctness of the pro-
grams. Traditionally developers have relied on debugging, peer reviews, and
unit testing for verification of their work. Peer review is a good example of static
analysis with reliable results. Empirical studies indicate that the technique, al-
though often performed in an ad hoc manner, catches between 31-93% of bugs[5].
It can, however, be difficult to reason about concurrent and parallel systems
making peer reviews less effective.

Model checking offers a greater capacity for verification, through brute force
simulation while applying mathematically proven verification algorithms on a
representation of the system.

Baier and Katoen [3] define model checking as follows:

Model checking is an automated technique that, given a finite-state
model of a system and a formal property, systematically checks whether
this property holds for (a given state in) that model.

Among the various tools created for the purpose of model checking, UPPAAL
is a state-of-the-art automata verifier, complete with a description language, a
simulator, and a graphical user interface. Released in 1995 it has been applied
to a number of case studies and is actively maintained and extended.[31]

Verifying Actor Communication

As explained in Section 2.2.1, coordinating actor communication can be diffi-
cult, especially as the system grows in complexity. We suggest applying model
checking as a means of verifying the communication patterns and specifications
of actors.

D’Osualdo, Kochems, and Ong [15] propose a method to verify Erlang-style
concurrency. The method entails deriving an abstract model of the system, called
an Actor Communicating System (ACS), from control flow analysis of the pro-
gram, which may be interpreted as a vector addition system (a type of LTS).
Properties are verified using a tool called Soter which translates the model into a
petri net and properties into queries, which in turn are verified by a coverability-
checker called BFC .

We envision using a similar technique in the verification of actors and their
contracts to verify the protocols of communication.
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2.2.4 JVM and Languages

The JVM is a portable platform with a large community [12]. Therefore, lan-
guages targeting the JVM may benefit from third-party community projects right
out of the box. These languages typically bring different paradigms or coding
styles compared to Java, allowing system designers to pick the right tool for the
job while retaining interoperability with the entire JVM code base. In the fol-
lowing we present a list of programming languages that run on the JVM, in an
attempt to find one that already achieves what we aim to do.

Jython is Python, ported to Java. It is a dynamically typed scripting language. It
implements Python’s threading library while also supporting the concur-
rency packages of Java.[23]

Clojure is a Lisp dialect, thus predominantly a functional language. It focuses
on STM for its concurrency.[11]

Scala presents itself as a pure object-oriented as well as functional language. It
relies on Java for its concurrency support.[34]

Ozma is based on Scala and provides concurrency constructs similar to futures
in a semi-transparent fashion. Strictly speaking, Ozma runs on the Mozart
VM, but uses a modified Scala compiler tool-chain for most of its compi-
lation.[14]

Groovy is described as an object-oriented programming language. Valid Java

code is typically also valid Groovy code, albeit with dissimilar semantics.
It primarily relies on Java’s concurrency constructs, although third-party
libraries wraps this for convenience.[33]

Kotlin is a statically typed language that compiles to a variety of targets, includ-
ing the JVM, of which Scala was an inspiration. It relies on interoperability
with the Java libraries for concurrency.[24]

Ceylon is an imperative, statically typed and object-oriented language with syn-
tax derived from C. It also relies on interoperability with the JVM for its
concurrency.[10]

Fantom is a Java-like language and uses separate actors for its concurrency.[17]

Thorn isolates processes (components) and only allows transmittal via message
passing.[35]

The majority of these languages expects the programmer to use the lan-
guages’ interoperability features to invoke Java’s own concurrency utilities, a few
offer their own. However, they all expect the designer to allocate concurrency
where needed, instead of building the language around it.
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2.2.5 The E Programming Language

Only one language stood out during our search for languages with features and
formalisms similar to those we propose in this report: The E programming lan-
guage. E is an object-oriented, dynamically typed programming language de-
signed by Mark S. Miller, and others from Communities.com, in 1997. While
not inherently concurrent, it introduces a concurrency model based on mes-
sages, event loops and promises. The creators claim that their promise-pipeline,
inspired by the Joule programming language, guarantees complete exemption
from deadlocks and that E is essentially an actor system.

E is implemented on two platforms, Java and Common Lisp. In E, everything is
an object and encapsulation is enforced by the language. The syntax is inspired
by the C family of languages, primarily C and C, in an attempt make transition
into the language easier on developers familiar with those languages.

In order to utilise the concurrent facilities of E special syntax must be used
to return a promise instead of a value. The E documentation refers to this as
a send action, hence the message concept. Any subsequent calls made on the
returned promise must be sent correspondingly, unless an event construct is
used. The event construct allows for safe direct method calls on promises using
event triggers.

E boasts about its exemption from deadlocks, barring any human design
oversights. For example, a concurrent system may stall, waiting on a message
that is never sent. [29][16]

Summary

E presents the closest match to what we propose as an actor-based language
with strong safety features within concurrency, while remaining easy to learn
and use. However, E fails to meet our criteria for such a language. We conclude
this section with an overview of the reasons for this.

Syntax
While Edraws inspiration from the C family languages (most notably Python

)[16], introducing several syntactical constructs for concurrent features.
We fear this departure from the core syntax of similar languages steepens
the learning curve unnecessarily.

Concurrency model
E, while based on the actor model, exposes an event loop to programmers,
which may alienate some due to the added complexity. We suggest that
an implicit message passing semantic would greatly benefit new program-
mers.

Safety
The E creators boast about the language’s security in context of encap-
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sulation and untrusted code. However, it lacks any facilities for the ver-
ification of communication between modules in a program, leaving it to
the individual programmer to ensure correctness. Here, we propose using
features of model checking to define specifications and verify their corre-
sponding implementations.

While E displays many of the traits we seek in a programming language, it
does not fit squarely within our criteria. Neither is it to be found on the TIOBE
index [36], being virtually unknown within the context of popular languages.

Judging from its outdated documentation, missing source repositories, and
the date of last change to its unofficial git repository, we assume it is no longer
actively maintained.

2.3 Summary

Multiple attempts have been made to extend and enhance languages like Java

with the introduction of various extensions and libraries. These include be-
havioural types, actor frameworks, and language-level features. While many of
these attempts are sound, in the context of popular languages, we observe prob-
lems with their verbosity, introduction of superfluous new language features or
complexity.

Instead, we intend to design a language that combines an inherently con-
current memory model with actors and contracts within the syntactic context of
a popular programming language.

We call this language Joe.
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Chapter 3

Design

A programming language’s syntax and formalisms govern the methods by which
a programmer will express a solution to a problem. Depending on the target do-
main, a language may feel more restrictive when compared to general-purpose
languages. This should not be considered a limitation as much as an aid in cor-
rectness.

Consider a simple example: any C-like language against a strictly functional
language such as Erlang or Scheme/Lisp. An imperative language typically gives
the programmer great freedom of expression (global variables, protocols, state
and paradigm mixing) while the stricter functional languages will generally dis-
courage such features in order to foster a better program design.

In this chapter, we present Joe, an inherently concurrent actor-based pro-
gramming language running on the JVM. In order, we present the criteria for the
design of the language, based on findings from the pre-specialisation, leading to
a high-level description of the language’s most prominent features. We conclude
with a rough overview of the language’s architecture in regards to workflow.

3.1 Language design criteria

Joe stems from the desire to create a language that simplifies a programmer’s
task of creating concurrent or parallel applications on a wide spectrum of com-
puter systems. As a consequence, Joe targets the JVM, allowing it to reach a very
large install base of Personal Computers (PCs) and, potentially, smart phones.

It is designed in such a way as to easily avoid (or altogether eliminate) race
conditions and deadlocks, while fostering a syntax that is intended to allow a
more concise and maintainable translation of the Santa Claus to program code.
Notably within the following key areas:

Concurrency is a foundation, on which the language is built on. Many lan-
guages (C, Java, Clojure) expose concurrency constructs either as library
functions or function-like statements. For example, C only allows for con-
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currency (and parallelism) through OS-dependant libraries like pthreads

, while Java’s concurrency comes through specific class libraries. Even
Erlangdoes not initiate concurrency through language syntax, rather through
function calls in the runtime (spawn/1 thru spawn/3). Joe intends to make
concurrency intrinsic to the language and how actors operate.

Syntax recognisability governs how easily new programmers will familiarise them-
selves with the syntax and its corresponding semantics. Realising that
many of the most popular programming languages are part of the C fam-
ily[36], we imagine message passing represented in the guise of method
invocation between objects. The call-return expectation fits well with a
synchronised, binary protocol.

Safety should be guaranteed to a high degree by the language or its tools (such
as the compiler toolchain). By introducing concepts known in other con-
texts such as interfaces and protocols, programmers will be able to apply
the new features of Joe without needing to learn a completely new theory
of computation.

3.2 Features

There are many facets to Joe, covering aspects of syntax and semantics as well
as approaches to the verification mechanisms. Throughout this section, we will
present major features of the language.

Joe’s two primary defining features, when compared to Java, is the intro-
duction of Actors and Protocols. Actors take the place of classes in Java as the
primary form of structure. They are said to understand one or more Protocols,
replacing Java’s interfaces. In this manner, they declare the messages they un-
derstand, and the message sequence for the communication protocol. s

3.2.1 Syntax

Joe’s syntax is derived from Java, and it is our aim that programmers familiar
with C and its derivatives will be able to easily accustom themselves to the lan-
guage. Most principally, this comes in the form of defining Protocols, Actors and
their behavioural logic. While the style will be recognisable, core keywords and
the semantics of code will have drastic differences. On the face of it, a Java devel-
oper should be able to write a valid Joe program without much coaching, making
use of the concurrency features almost to a fault. Compare a basic Java class in
Listing 1 Joe Actor in Listing 2.

Note the very close similarities between declarations of class and Actor as
well as method and message endpoint definitions. Their styles are purposely
kept syntactically close. Their meaning, however, are drastically different. Where
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Listing 1 A simple Java class.

1 // In JavaInterface.class

2 interface JavaInterface {

3 public void JavaMessage(Object sender);

4 }

5

6 // In JavaClass.class

7 class JavaClass implements JavaInterface {

8 private String name;

9

10 public JavaClass(String newname) {

11 this.name = newname;

12 System.out.println(this.name + " is in an initial state!");

13 }

14

15 @Override

16 public void JavaMessage(Object sender) {

17 System.out.println("JavaMessage was called!");

18 }

19 }

Java methods may have a number of visibilities and can thus be called from out-
side the object, Joe Actors’ fields are private, their only external interface being
the message endpoints declared in an understood Protocol.

3.2.2 Actors

Actors are defined very much like classes in Java, see Listing 3
Message endpoints (or message handlers) are defined in a similar manner to

methods in Java, with a name, list of formal parameters, and method body. An
Actor may not define a handler that is not defined as part of its corresponding
Protocol’s input messages. There is a single special case as an exception to this
rule: Constructors. An Actor may contain a constructor, setting initial values of
fields and initiating communication as specified by its protocol.

Within a message handler’s body, most expressions that are valid Java ex-
pressions remain valid Joe expressions. Variable declarations, assignment, and
loops look like their Java counterpart. Sending a message to another Actor is
syntactically equivalent to calling a method in Java. Semantically, however, an
Actor will not wait for a response or the conclusion of its target’s computations.
It simply continues running its own statements. That is, sending messages is a
non-blocking action.

Joe does add a notation not found within the method bodies of Java: Asyn-
chronous method calls. By default, all messages to other Actors are sent asyn-
chronously, while all calls to regular Java code is handled sequentially. To over-
ride this behaviour, any call may be prefixed with the @ sign. This wraps the calls

25



Listing 2 The JavaClass translated to Joe.

1 // In JoeProtocol.spec

2 protocol JoeProtocol {

3 JoeProtocol() -> JoeMessage

4 JoeMessage() -> end, JoeMessage

5 }

6

7 // In JoeActor.joe

8 actor JoeActor {

9 String name

10

11 JoeActor(String newname) {

12 name = newname

13 print("I'm in an initial behavioural state!")

14 }

15 }

Listing 3 An example of an Elf from the Santa Claus problem described in terms
of a Joe Actor.

1 actor Elf understands ElfProtocol {

2 Santa santa

3

4 Elf(Santa s) {

5 santa = s

6 }

7

8 ProblemFixed() {

9 // Problem was fixed. React to it!

10 }

11 }

return value (if any) in an implicit future, to be resolved when the return value
is needed. Joe’s runtime will try to re-order statements, running independent
code as far as it can before blocking in anticipation of return values.

3.2.3 Protocols

Protocols are Joe’s form of contracts between Actors. In order for an Actor to
define any message endpoints, it must first declare that it supports (or under-
stands) a specific Protocol. Protocols are defined similar to Java interfaces, with
annotations regarding understood messages. See Listing 4.

Each line reads as follows: First a message definition, followed by its formal
parameters, allowing additional data to be passed as part of a message. Directly
proceeding this declaration, a number of possible protocol steps can be given.
The list of steps denotes which messages are valid immediately following the
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Listing 4 A basic Protocol.

1 protocol MessageProtocol {

2 MessageProtocol() -> ^SendMessage

3 SendMessage(String message) -> ReceiveMessage

4 ReceiveMessage(String response) -> ^SendOtherMessage

5 SendOtherMessage(Boolean confirmation) -> end

6 }

one given in the message definition - the list itself is not a strict ordering of mes-
sages. Each step must correspond to a message definition, or the special step end

which signifies the final step of a protocol. A step prefixed with ˆ denotes an out-
going message while an unadorned step is for an incoming message. A Protocol
is binary, written from the perspective of one half of a session of communica-
tion. An Actor may declare themselves to understand the second party role of a
Protocol by negating it with ˆ in its understands list of understood protocols. An
example is shown in Listing 5.

Listing 5 An Actor, declaring that it understands MessageProtocol as the second
party.

1 actor Recipient understands ^MessageProtocol {

2 SendMessage(String msg) {

3 sender.ReceiveMessage(msg)

4 }

5 SendOtherMessage(Boolean confirmation) {

6 print("Received confirmation " + confirmation + ".")

7 }

8 }

All Protocols must define an initial “pseudo message” that declares all legal
first steps in the protocol. This message must carry the same name as the Proto-
col itself.

Thus, Listing 4 can be read as follows: The Protocol MessageProtocol is de-
fined by the message definitions SendMessage (which transfers a String value),
ReceiveMessage (also a String), and SendOtherMessage (which transfers a boolean
value). An Actor that acts as first party to MessageProtocol must first output a
SendMessage, then receive a ReceiveMessage, finally sending a SendOtherMessage,
terminating the protocol session.

3.2.4 Polymorphism

While Joe does not support inheritance in its current form, it does allow for poly-
morphism along the same lines as Java. An Actor SomeActor that understands
ProtocolA and ^ProtocolB can be assigned to a variable of any of the three types.
Note that while SomeActor may be assigned to a variable of type ProtocolA it may
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not be assigned to a variable of type ^ProtocolA. A Protocol and its negated coun-
terpart are considered two mutually exclusive types.

Listing 6 An Actor that understands ProtocolA and the negation of ProtocolB.

1 protocol ProtocolA {

2 ProtocolA() -> ^Hello

3 Hello() -> end

4 }

5

6 protocol ProtocolB {

7 ProtocolB() -> Goodbye

8 Goodbye() -> End

9 }

10

11 actor SomeActor understands ProtocolA, ^ProtocolB {

12 // Both protocols only contain output messages.

13 }

Listing 7 An Actor that tries to assign a SomeActor instance to various fields.

1 actor OtherActor {

2 ProtocolA actorA

3 ProtocolB actorB

4 SomeActor anActor

5

6 OtherActor(SomeActor myActor) {

7 // Valid

8 acActor = myActor

9 // Valid

10 actorA = myActor

11 // Invalid. SomeActor understands negated ProtocolB

12 actorB = myActor

13 }

14 }

This feature allows an Actor to declare interactions with an Actor of a very
specific type, or any Actor that adheres to a specific Protocol. See Listing 7 for an
Actor that tries to assign a SomeActor (Listing 6) to its fields.

3.2.5 Message Passing

In designing Joe, two approaches to message passing were considered: Active
Erlang-style explicit sending and receiving as opposed to a more passive event-
style format. Here we present both along with a short discussion, before con-
cluding with a final choice.

In both variants, message passing is masked as method invocation on other
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actors (targetProcess.message()), becoming an asynchronous invocation. The
discussion erupts when considering how to describe message reception in Joe.

Erlang style

In Erlang, messages in the queue are handled explicitly. A message is sent using
the ! operator (such as targetProcess ! { message }) and received in the other
end with the use of the receive block, see Listing 8.

Listing 8 An Erlang receive block.

1 receive

2 { message } -> DoSomething()

3 end

Messages are filtered via pattern matching, allowing messages to be post-
poned or even disregarded as the process runs.

In Joe, this style would be represented by explicit receive blocks akin to those
of Erlang, with the added static correctness of Java. As such, a receive block
cannot attempt to receive messages that are undefined in the accepted protocols
and their current state. Listing 9 gives an example of how this might look.

This style has the following benefits:

Explicit blocking through the use of receive blocks offers programmers a high
degree of flow control.

Methods defined on the actor level can be leveraged for program structure, en-
capsulating actor behaviour from external code.

Validation can offer finer granularity in results, given the level of annotation
resulting from explicit receives.

Event style

The event style focuses on passive message endpoints rather than explicit receive
blocks, each endpoint (a message handler) containing the code necessary to

handle any incoming messages. Endpoints must match the protocols accepted
by the actor. See Listing 10 for an example.

Compared to Erlang, event-style message passing has the following proper-
ties:

Methods cannot be used directly for structuring complex internal behaviour.
This must be nested in a constructor and/or looping idle code.

Blocking is not possible. While this requires the programmer to think differ-
ently about a solution, it fosters more concise message handlers that rely
on internal actor state for complex behaviour without too much handling
code.
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Listing 9 An example of what message receive would look like in Joe.

1 protocol PingPong {

2 PingPong() => ^Ping

3 Ping() => Pong

4 Pong() => Ping

5 }

6

7 actor Pinger understands PingPong {

8 // Single, repeating behaviour.

9 Pinger(^PingPong other) {

10 other.Ping()

11 receive PingPong.Pong as msg {

12 System.out.println("Received pong response.")

13 }

14 }

15 }

16

17 actor Ponger understands ^PingPong {

18 // Single, repeating behaviour.

19 Ponger(PingPong other) {

20 receive PingPong.Ping as msg {

21 System.out.println("Received ping request.")

22 }

23 other.Pong()

24 }

25 }

Validation cannot be performed on single actors. As an actor will trivially ac-
cept any message for which its current protocol states allow (once it has
completed any current message handling action), it must be put in unison
with a whole (at least one opposing actor) in order to verify its interactions.

Decision

Both message passing styles have their own merits but are mutually exclusive
(the roles of “method” definitions in the actor body have vastly different uses).
We opt to implement the event style, focusing on the brevity of code and implicit
handling of messages for programming ease.

3.2.6 Safety

In order to verify Actors’ conformance to their own protocols as well as their
communication patterns with other Actors, Joe leverages the model checking
capabilities of UPPAAL. This requires that an Actor and its Protocols be trans-
lated to a format the UPPAAL can understand.
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Listing 10 An example of Joe using event-style message passing.

1 // Protocol PingPong defined elsewhere

2

3 actor Pinger understands PingPong {

4 // This acts as a constructor/initial code.

5 Pinger(^PingPong other) {

6 other.Ping()

7 }

8

9 Pong() {

10 System.out.println("Recived pong.")

11 sender.Ping()

12 }

13 }

14

15 actor Ponger understands ^PingPong {

16 // Constructor unnecessary, comes from Pinger

17

18 Ping() {

19 System.out.println("Recived ping.")

20 sender.Pong()

21 }

22 }

Protocol to LTS

Translation of a Protocol is quite simple. All message definitions are defined as
locations in an LTS. The initial Protocol’s state is also modelled as a location.
Protocol steps from each become transitions from the message definition to the
location named by the step. The transition synchronises on a channel bearing
the target location’s name. The special message end is a transition to a special
“end” location, with an extra transition to the initial state, allowing the Proto-
col to “reboot”. Listing 11 shows a Protocol in Joe while Figure 3.1 shows the
resulting UPPAAL template. The negated protocol is created in the same way,
reversing the meaning of all input and output messages.

Listing 11 A QA Protocol. One of two questions, containing a String, is sent.
In response, either a boolean or String response is sent back. At this point the
Protocol session ends.

1 protocol QuestionProtocol {

2 QuestionProtocol() -> ^StringQuestion, ^BooleanQuestion

3 StringQuestion(String question) -> StringAnswer

4 BooleanQuestion(String question) -> BooleanAnswer

5 StringAnswer(String answer) -> end

6 BooleanAnswer(boolean answer) -> end

7 }
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Figure 3.1: The resulting QuestionProtocol LTS in UPPAAL.

Actor to LTS

While Protocols are afforded a simple translation, Actors require a deeper anal-
ysis to mirror. While an Actor clearly declares its supported Protocols, and thus
which channels it will use to synchronise on, the order of the synchronisations
(particularly outgoing) is more complex to model correctly.

The core issue of the analysis lies in a construction of a Control Flow Graph
(CFG) that is sufficient to describe the Actor’s actions throughout its life time
is not fully solved. In particular, loop constructs muddle the count of certain
actions such as Actor instantiation and message sending, forcing the resulting
UPPAAL model to remain imprecise in several key areas.

The premise of a translation goes as follows: set an initial location. Tran-
sition to a location denoting the beginning of the Actor’s constructor (if one is
present). Traverse the CFG of the constructor, creating a location for each node
and a transition between each node. Whenever a message is sent, add a synchro-
nisation to the matching transition matching the name of the message as was
the case with a Protocol’s translation. Once the constructor finishes, transition
to a “hub” state. From the hub state, create transitions to locations matching all
input messages that the Actor can receive. For each such location, map out the
matching handler’s method body in the same way as for the constructor. Once
the CFG has been traversed, add a transition back to the hub location. Listing
12 shows an Actor definition while Figure 3.2 shows its corresponding UPPAAL
template.

Verification

In order to verify that an Actor will adhere to the rules set forth by its supported
Protocols, an UPPAAL system is constructed in which the Actor is instantiated
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Listing 12 An Actor that understands the QuestionProtocol.

1 actor ModelActor understands QuestionProtocol {

2 ModelActor(^QuestionProtocol answerer) {

3 answerer.StringQuestion(

4 "What is the answer to life, the universe, and everything?")

5 }

6

7 StringAnswer(String answer) {

8 print("Got an answer:")

9 print(answer)

10 }

11

12 BooleanAnswer(boolean answer) {

13 if (answer) {

14 print("The answer was yes.")

15 } else {

16 print("The answer was no.")

17 }

18 }

19 }

together with instances of the negated versions of its understood Protocol. The
idea is to simulate the Actor’s behaviour when combined with constructed coun-
terparts.

Two queries are tested on the final system: A[] not deadlock to determine
whether a circular system deadlocks at any point. If it does, E<> deadlock and

ActorName.ActorNameHub to ensure that the Actor will only deadlock when receiv-
ing messages, not during message handling. An Actor may deadlock in the hub
location if, for example, it does not send any new messages that would result in
responses from any of its supported Protocols.

Figure 3.2: The UPPAAL LTS of the ModelActor Actor.
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Chapter 4

Implementation

We have implemented a subset of the Joe language, focusing on features neces-
sary to implement a working minimal solution to the Santa Claus problem.

Joe has been implemented using the Xtext framework. This has the benefit of
streamlining several phases of language development, from grammar definition
to code generation and runtime, allowing us to focus on the key aspects of the
language rather than rudimentary language development tasks.

4.1 Grammar

Joe is split up into two connected grammars: One for the specification of Proto-
cols, and one for Actors themselves. They can be found in Appendix A.1.

As Joe is intended to run on the JVM, downwards interoperability is an ap-
pealing prospect. The Xtext framework contains several grammars and mod-
ules, allowing the use of all or some parts it. Its largest module, Xbase, is a
statically typed expression language that can be embedded as part of other lan-
guages. Using XBase requires the use of a model inferrer, rather than a code gen-
erator, to compile code. The inferrer maps elements of the source language to
matching concepts in Java, and an XBase-specific generator translates the mod-
els to Java.

Using XBase as the basis for Joe would allow direct interoperability with Java,
and indeed describing Joe in terms of XBase’s grammar rules is quite simple.
Translating Joe’s model to Java, however, is a complex undertaking. Some con-
cepts are cleanly modelled such as Actors to classes, and message handler dec-
larations to methods declarations. However, several of Joe’s essential features
require more work than was feasible during this project. In particular, message
send actions could not be implemented. In principle, a basic translation sim-
ply requires wrapping a method call to the target Actor in a future instantiation
and invocation. Unfortunately, this would require disassembling XBase’s own
block expressions in order to retrieve the specific parts involved in method in-
vocation. Similarly, this could principally be performed on the Abstract Syntax
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Tree (AST)-like model used for code generation by overriding XBase’s code gen-
eration behaviour. This, in turn, also proved too complex for the project.

In lieu of using XBase, a subset of Joe was implemented from scratch only
using the JavaVMTypes grammar of Xtext (one of XBase’s dependencies) along
with elements of an example expression language bundled with Antlr (the parser
used by XBase), SimpleExpressions. The grammar allows referencing Java types,
opening the door for simpler interoperability (type usage and method invoca-
tion).

The following elements of Joe were implemented:

• Protocols in long form. A short-form Protocol format (inspired by CCS)
was considered, but not implemented.

• Actor declarations. The only types recognised are those defined in Joe (Ac-
tors and Protocols) as well as list constructs.

• Partial message endpoint definitions. The expression language used in
the body of message handlers is sufficient to express a concurrent system
of interacting Actors, but has no Java interoperability, thus missing large
features sets (such as file I/O, process handling, network connectivity, and
more)

4.1.1 Body logic

The issue of using XBase as a base grammar is most obvious when defining the
grammar for the bodies of message handlers. Using XBase, it could be defined
in Xtext’s grammar as follows:

MessageHandler:

'def' name=ID '(' (parameters+=FullJvmFormalParameter

(',' parameters+=FullJvmFormalParameter)* )?

')'

body=XBlockExpression

The accompanying model inferrer would handle MessageHandler rules by cre-
ating a method with the given name, formal parameters, and pass it the body
cleanly. This will generate a syntactically correct Java method in the containing
class with accompanying scope and logic. However, it does so with the seman-
tics of the Xtend language, not Joe. In particular, one core element is missing:
asynchronous message passing and invocation. There are two distinct chal-
lenges in implementing the two variants.

For global function and Java interop invocations, the use of the “@” prefix is
unique in its context within Java. While the character is used to denote annota-
tions for a number of declarations, it is unused in the context of method invo-
cations, making it safe for use within the XBase Expression language. Thus, the
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problem becomes one of creating a rule that wraps invocations that are prefixed
with “@”, allowing the model inferrer to give them special treatment. However,
the XBase grammar is quite expansive and, given its expressiveness, difficult to
modify without affecting its entirety.

For asynchronous message sending, the problem is even greater. As the syn-
tax of this feature matches that of method invocations perfectly (an intentional
feature), the grammar is insufficient to determine whether a Joe element or Java
element has been referenced, an issue of ambiguity. Thus, the inference of ref-
erence must come at a later step, exasperating the issue. It is necessary to over-
ride the model inferrer’s behaviour when translating the correct XBase rules for
method invocation, correctly identifying Joe messages (and translating them) or
deferring to the original implementation.

Unfortunately, it was not possible to implement this functionality. In the
interest of testing the verification step, a much simpler hand-made expression
language was constructed. The Santa Claus problem was used as base case for
implementation, guiding the minimal set of features necessary for an imple-
mentation and test of the verification step. This encompasses:

• Conditional branching (to allow Santa to continue in an idle state when
insufficient elves or reindeer have contacted him).

• Looping (to allow Santa to send individual message back to each recipi-
ent).

• Dynamic arrays (to store references to elves and reindeer).

• A “print” statement (for visual debugging).

• Actor initialisation

• Actor-level fields.

• Assignment.

4.2 Translation

By design, Joe programs look almost like Java programs. This is not only a ben-
efit when learning the language, but also when translating it to Java for further
compilation.

Protocols

Translating Protocols to Java is a basic process of converting it to a Java interface.
Listing 13 shows the original ElfProtocol implementation while Listing 14 shows
the corresponding Java implementations. The workflow runs as follows:
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For a given Protocol, create two interfaces, one normal and one inverted (in
the example, one for ElfProtocol and one for ^ElfProtocol. Declare methods for
all the output messages in the normal Protocol’s interface, and all inputs in the
inverted Protocol’s interface. The interface methods have the same signature as
their Protocol counterparts, with one extra parameter - a reference to the send-
ing Actor, via interface. A message,

Problem(String description, int ticketId)

in the protocol MyProtocol would be translated to

Problem(MyProtocolInverted sender, String description, int ticketId)

Listing 13 Protocol for the Elf.

1 protocol ElfProtocol {

2 ElfProtocol() -> ^Problem

3 Problem() -> Solution

4 Solution() -> ^Problem

5 }

Listing 14 Java equivalents of the Elf Protocol.

1 interface ElfProtocol {

2 public void Problem(ElfProtocolInverted sender);

3 }

4

5 interface ElfProtocolInverted {

6 public void Solution(ElfProtocol sender);

7 }

Using interfaces in the final Java program is not useful for the Joe program-
mer, but is a useful tool for toolchain and run-time developers, ensuring result-
ing code is correct.

Actors

Similar to Protocols, Actors are translated to Java classes with a few modifica-
tions. An Elf Actor in Listing 15 would be translated as shown in Listing 16. Most
code is translated as-is, with the following exceptions:

print statements are translated to calls to System.out.println.

Message calls to other Actors are wrapped as callables and passed to Joe’s run-
time.
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Listing 15 A Joe implementation of an Elf

1 actor Elf understands ElfProtocol {

2 Santa santa

3

4 Elf(Santa s) {

5 santa = s

6 santa.Problem()

7 }

8

9 Solution() {

10 santa.Problem()

11 }

12 }

4.3 Verification

Verifying Joe code involves translating the program code of Actors and protocols
into suitable representations within the UPPAAL program. In this project, this is
achieved by constructing a CFG of the complete Joeprogram and translating it to
a fitting abstraction that can be read and analysed by UPPAAL. In this section we
describe the general rules used for CFG construction as well as the translation
to UPPAAL XML files.

While a production version of Joe would include a complete toolchain, gen-
erating and validating XML files in the background, this was out of scope for
the project. While invoking the UPPAAL processes from within a compile task
is relatively simple, issues of proper file placement as well as distribution of the
UPPAAL binaries, remain open questions for such an undertaking.

4.3.1 CFG

Construction of the CFG is attained via an object model traversal using the vis-
itor pattern. When an Actor’s CFG is requested, it traverses first the list of mes-
sage end points, then their bodies, building up a set of locations and transitions
as described in Section 3.2.6. CFGs are constructed no deeper than at the Actor
level. That is, message passing and function invocations are not followed in the
traversal.

4.3.2 XML construction

The Template class in the uppaal package functions as a serializer and in-memory
representation of the Extensible Markup Language (XML) to be generated. Once
an Actor’s CFG has been generated within it, matching XML can be output as a
string. Template outputs partials, or incomplete UPPAAL files, as it only gener-
ates the single template relevant for the represented actor.
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Listing 16 The Java implementation of an Elf

1 public class Elf extends JoeLangActor implements ElfProtocol {

2 Santa santa;

3

4 Elf me = this;

5

6 public Elf(Santa santa) {

7 this.santa = santa;

8 System.out.println("Elf lives. Problem to Santa");

9 Runtime.submitTask(santa, new Callable<Void>() {

10 @Override

11 public Void call() throws Exception {

12 santa.Problem(me);

13 return null;

14 }

15 });

16 }

17

18 @Override

19 public void Solution(ElfProtocolInverted sender) {

20 System.out.println("Received a solution. Got a new problem!");

21 // TODO Auto-generated method stub

22 Runtime.submitTask(santa, new Callable<Void>() {

23 @Override

24 public Void call() throws Exception {

25 System.out.println("ElfActor->SantaActor runnable");

26 santa.Problem(me);

27 return null;

28 }

29 });

30 }

31 }

A full UPPAAL XML file is comprised of three distinct sections: global dec-
larations, template definitions, and template instantiation. While the template
definition section can be filled procedurally, declarations and instantiations can-
not be filled until the entire system has been parsed.

Declarations

The UPPAAL XML file’s declarations section contains declarations of the mes-
sage definitions used throughout the program, in the form of channels. In order
to avoid name clashes, the entire program must be parsed before writing to the
file.
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Template instantiation

A key element to the verification step is the instantiation of a sufficient number
of UPPAAL templates. Consider a simplified Santa implementation, shown in
Listing 17

Listing 17 Santa Claus, defined in JoeLang

1 actor Santa understands ^ElfProtocol {

2 ElfProtocol[] elves

3 Problem() {

4 elves.add(sender);

5 if (elves.size() >= 3) {

6 for (elf : elves) {

7 elf.Solution()

8 }

9 }

10 }

11 }

It is clear that if no more than two ElfProtocol actors send a Problem message
to the actor, it will not proceed with the next step of the protocol for any of the
instances, deadlocking. Now consider the matching program entry point for this
example, in Listing 18.

Listing 18 Entry point for the Santa/Elf example.

1 actor Main {

2 Santa santa

3 Main() {

4 santa = new Santa()

5 fornum(1..3) {

6 new Elf(santa)

7 }

8 }

9 }

A simple traversal of the Actor model would find exactly one occurrence of
the constructor for the elf Actor. Assuming one instance of the Elf template
would be enough may be tempting, but would obviously deadlock the system.
In this case, however, counting the number of constructor calls is possible, given
the static numbered loop, running exactly three times (iterators 1, 2, and 3).
Consider, however, a more generic example is shown in Listing 19.

Now, the number of loops is unknown until run-time, too late for the veri-
fication step. In the short term, a brute force technique, adding a template in-
stance and re-running the simulation, could alleviate small or trivial programs,
but will prove ineffective after very little program growth. Currently, we know
of no means for UPPAAL to answer queries with something other than a truth
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Listing 19 Another entry point, this time using unknowable loop sizes.

1 actor Main {

2 Santa santa;

3 Main(String[] args) {

4 santa = new Santa()

5 for (arg : args) {

6 new Elf(santa)

7 }

8 }

9 }

value. For example “which configuration of template instances are required for
the system not to deadlock?” is not a valid query.

4.4 Runtime

The runtime guarantees Actor-local consistency by only allowing a single mes-
sage to be handled for an Actor at a time. Many Actors may be active in this
way, but an Actor will never concurrently handle two incoming messages. This
is achieved by maintaining a list of messages in a global message queue, along
with information regarding the thread, if any, that is currently running in the
Actor.

Messages are implemented as Java Futures. As Actors are translated into reg-
ular Java classes, such classes from other libraries can transparently be consid-
ered Actors as well, treating method calls as messages. This way, their function-
ality would be preserved and their application within Joe would be consistent to
that of Actors.

The runtime itself is implemented as a class of methods and private fields,
all static. Actors, when compiled to Java, invoke these methods to submit tasks
(wrapped messages) to the global message queue. A thread pool is used to con-
currently run several message handlers (on separate Actors) simultaneously. Each
message is tagged to ensure that only one thread operates on a given object at a
time.

4.4.1 Queue

The queue encapsulated by the runtime is a BlockingSkipQueue, custom class
heavily inspired by the LinkedBlockingQueue, a class in Java’s standard library,
which is implemented as a linked list. However, messages are not handled in
a strictly First In, First Out (FIFO) manner. As several, consecutive messages on
a single Actor may await handling, free threads must search deeper in the queue
for available messsages. Thus the runtime requires a custom queue implemen-
tation.
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Figure 4.1: The BlockingSkipQueue being polled for the next available message

The BlockingSkipQueueutilises double locking to increase throughput, it grows
dynamically, and it maintains a hash map over object-to-thread associations.
When polled, the queue will search for the next available object according to
the hash map, comparing each message tag to the hash map. If no threads are
mapped to the object tag, or the tag matches the polling thread, the message is
removed and returned from the queue. Figure 4.1 visually represents this pro-
cess. Upon returning a message the queue updates the hash map accordingly
before allowing access to other threads, see Figure 4.2. If the queue reaches
its end, a null value is returned, effectively putting the polling thread in a wait
mode, to not waste execution time until a new message is put into the queue.
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Figure 4.2: BlockingSkipQueue updating the hash map after returning a message
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Chapter 5

Implementing Santa Claus

In this chapter, we present an implementation of the Santa Claus problem in
Joe. It is designed with a simple “one-to-one” Protocol design, containing single
Actors for each agent type in Santa Claus (Santa Claus, Elf, and Reindeer) and
simple, circular Protocols for their communications. This is to demonstrate how
Joe affords a much more concise implementation that remains easy to ready and
understand. This is in accordance with the original design goals of the language.

5.1 One to one Implementation

Listing 20 describes the Protocols used between Santa and either an Elf or a
Reindeer. Note they are simple and circular, essentially a call-response format.

Listing 20 The two Protocols used in the reference implementation of Santa
Claus.

1 // In ElfProtocol.spec

2 protocol ElfProtocol {

3 ElfProtocol() => ^Problem

4 Problem() => Solution

5 Solution() => ElfProtocol

6 }

1 // In ReindeerProtocol.spec

2 protocol ReindeerProtocol {

3 ReindeerProtocol() => ^Arrive

4 Arrived() => Delivered

5 Delivered() => ReindeerProtocol

6 }

Listing 21 shows the Joe implementations of the Elf and Reindeer Actor. They
act much like their Protocols would suggest - they respond with the countering
part of the Protocol’s steps. The two have been slightly differently implemented,
although their behaviour in the context of the program is equivalent. Elf stores
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a local reference to Santa which is used throughout its lifetime, while Reindeer

instead references Santa once directly, only responding directly to the message
sender of Deliver messages (which is Santa).

Listing 21 Implementations of Elf and Reindeer in Joe

1 // Elf.joe

2 actor Elf understands ElfProtocol {

3 Santa santa

4

5 Elf(Santa s) {

6 santa = s

7 santa.Problem()

8 }

9

10 Solution() {

11 print("Santa has presented a solution. New problem!")

12 santa.Problem()

13 }

14 }

1 // Reindeer.joe

2 actor Reindeer understands ReindeerProtocol {

3 Reindeer(Santa s) {

4 s.Home()

5 }

6

7 Deliver() {

8 print("Delivering presents with Santa. Coming home!")

9 sender.Home()

10 }

11 }

Finally, Listing 22 describes the Santa Actor. The implementation shows how
one might implement one-to-many communications using the binary Protocols
currently supported by Joe. For each message received from an Elf or Reindeer

, Santa stores a reference to the sending Actor in an appropriate list. Once the
count of list elements passes a threshold, Santa loops over the contents and
sends the appropriate response message to each in turn.

5.2 Alternative Implementations

As discussed in the prespecialisation [6], several approaches to implemening
Santa Claus were considered, depending on target language and supported con-
structs. Appendix A.2 contains a Joe implementation using queues as suggested
in the Erlang implementation described in [6].
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Listing 22 Joe implementation of Santa Claus

1 // Santa.joe

2 actor Santa understands ^ElfProtocol, ^ReindeerProtocol {

3 Elf[] elves

4 Reindeer[] reindeer

5

6 Problem() {

7 print("An elf has a problem")

8 elves.add(sender)

9 if (elves.size() >= 3) {

10 print("Solving problems.")

11 for (elf : elves) {

12 elf.Solution()

13 }

14 elves.clear()

15 } else {

16 print("Not enough elves for a solution.")

17 }

18 }

19

20 Home() {

21 print("Reindeer returned home")

22 reindeer.add(sender)

23 if (reindeer.size() >= 9) {

24 print("Delivering presents.")

25 for (r : reindeer) {

26 r.Deliver()

27 }

28 reindeer.clear()

29 } else {

30 print("Not enough to deliver, yet.")

31 }

32 }

33 }
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Chapter 6

Evaluation

With the current iteration of Joe we believe we have accomplished most of what
was intended in regards to language design. Joe’s implementation in Xtext as
well as the runtime remain in a prototype stage. While the verification model
was sufficient for Santa Claus and several test cases, several limiations were
identified and remain.

6.1 Language Design

One of the major contributions of this project is Joe’s design itself. While the
syntax was derived directly from Java, the underlying semantics and interactions
are what make Joe unique. We believe the use of well-known concepts such as
classes and interfaces, in the guise of Actors and Protocols, serve as excellent
metaphors to flatten the learning curve while introducing powerful new features
to the language.

Further, we believe the underlying notion, that all actors are concurrent, will
aid programmers rationalise about them as independently acting agents in an
environment, rather than a collection of objects with a single thread of logic
shared between them.

Protocol Complexity

Joe’s Protocols are binary as they support two Actors communicating with each
other. More complex Protocols, with annotations for multiple parties and even
constraints (to control message looping, for example), were considered, but did
not reach a sufficient level of maturity for inclusion in the language.

Message Handling

There remains a contention in regards to perform message handling in Joe, as
described in Section 3.2.5. Both styles, event and Erlang, present strong argu-
ments in their own favour. We opted for the event style in the interest of min-

49



imalism and conciseness, but concede that the explicit blocking of receive ex-
pressions grants the programmer a useful layer of control and may contribute
significantly as metadata for the verification step.

Inheritance

A notably missing feature from Joe is a stronger notion of inheritance. The poly-
morphic features, of combining and referencing Protocols into Actors, offers a
high degree of expressiveness and flexibility in program designs. We envision
a form of compositional Protocols, matching more closely with the behaivoural
types described in the source material. We should like to see these improved
Protocols together with actual Actor inheritance, once we can establish models
that describe their interactions.

6.2 Implementation

The current implementation of Joe is sufficient to demonstrate core features
within the context of a solution to the Santa Claus problem. Due to issues in re-
gards to the malleability of Xtext’s XBase expression language, the implemented
grammar is not as expressive as that of its siblings or Java itself. We stand by Xtext
as the tool of choice for implementing the language. Compared to many alter-
natives (Yacc, Lex, and derivatives), Xtext contains an entire toolchain, from to-
kenisation to code generation. It allows language developers to selectively mod-
ify the process, affording a high degree of control.

6.3 Verification

Initial tests of the verification model were promising, and correctly accepted
some Joe implementations of Santa Claus, reporting errors when parts of the
implementation were missing. During testing, however, we discovered several
cases where the current verification model is insufficient.

The current CFG construction contains insufficient information to accurately
reflect the many possible code paths of a Joe actor. We believe it is possible to
make some changes to the language, and the CFG construction, to cover many
cases. This was, however, not further examined. A particular issue is the resolu-
tion of “for each” loops which can, at best, be estimated.

UPPAAL Issues

Initial runs of verifications of Joe programs are promising, but two core issues
remain. One is the greater challenge of constructing a CFG that accurately re-
flects active actors in any given state, in order to provide UPPAAL with sufficient
information to decide the safety properties of the matching system.
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Language LOC
Joe (1:1) ~70
Joe (semaphores) ~83
Clojure ~85
Erlang ~102
Java ~183
X10 ~256

Table 6.1: The approximate line counts of implementing Santa Claus in Joe and
the four languages from [6] (Java, X10, Erlang, and Clojure). The lines of code are
counted from the source while retaining its original coding style.

Secondly (and to our knowledge), UPPAAL does not support a query format
that returns data beyond an acceptance or rejection of its formulae. It would
greatly benefit diagnostics and program design, if queries could be enhanced
to supply deeper responses to queries such as “under which conditions will the
system fail or succeed?”.

6.4 Santa Claus Implementation

The Joe implementation of Santa Claus can be written using less than 70 lines of
code using one-to-one Protocols and about 83 lines of code using semaphore-
like proxies (Appendix A.2). Compare this to the four languages surveyed in [6],
shown in Table 6.1. Although Joe’s implementation is much shorter than its
comparisons, note that coding style and metadata affects the representations
as well. Most profoundly, perhaps, is the inclusion of packages in X10 and Java,
bloating the line count. If Joe was to be properly integrated into the JVM ecosys-
tem, it may require the introduction of a similar notation, adding to its code size.

Applying the same four criteria from the prespecialisation [6], we find the
following:

Complexity is a core focus of Joe’s design. While not specifically built to imple-
ment a Santa Claus solution, it was designed around the concept of actors
and their interactions while retaining the algorithmic, imperative style of
its heritage. Problems that can be described in terms of pseudocode algo-
rithms or as a system of actors should be equally simple to implement.

Scaling of Joe lies within the domain of the implementation of the language
and its run-time, not the individual programs. The current iteration of the
runtime scales the number of threads with the available logical threads of
the host Central Processing Unit (CPU), allowing several Actors to run in
parallel.
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Maintenance in Joe is a controlled activity. A code base could easily be refac-
tored thanks to the strict checks of the protocols, while the encapsulation
of data eliminates risks of data corruption on smaller changes. We do,
however, defer largely to the maintenance evaluations of Java and X10 in
reference to Joe’s syntax heritage.

Performance can, unfortunately, not be determined at this time. We anticipate
a trade-off in Joe, between low complexity and high performance. Fur-
ther work is necessary to optimise the message passing mechanisms and
threading models used to run the actors concurrently.
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Chapter 7

Conclusion

In this, the final of our projects, we set out to design a new programming lan-
guage. Perhaps not the most novel of prospects, as numerous languages are
introduced every year. Maybe even futile, as very few of those languages reach
mainstream appeal. We believe, however, that designing a new language such
as ours has been a fruitful endeavour.

Motivated by the findings of our prespecialisation[6], the language Joe was
designed to fit well within the ecosystem of an existing popular programming
language (Java) with a deeply integrated concurrency model. Basing it on the
actor model, we have augmented it with the notion of protocols, inspired by be-
havioural type theory and session types. This allows a programmer to define the
communication between actors in terms of statically typed messages and their
ordering. To our knowledge, this is a first within the context of JVM languages.

Finally, we implemented a prototype compiler toolchain using the Xtext frame-
work[32] and Java futures, capable of compiling Joe elements to corresponding
Java and UPPAAL[31] files. Using this prototype, we wrote and verified a solution
to the Santa Claus problem[37] in Joe.

Joe

The programming language itself was designed to look very similar to Java. Ac-
tors bear many similarities to Java classes, and Protocols have close ties to Java

interfaces. Indeed, program code within an Actor’s message handlers is no dif-
ferent to that of Java method bodies. Two different syntaxes for the handling of
incoming messages were considered. One was inspired by the receive blocks
of Erlang, the other by that of event handlers found in many programming lan-
guages. Although both had their merits, the latter was chosen.

Verification

We added a mechanism in Joe that ensures program correctness via the verifi-
cation of Actors when put in the context of their Protocols. This was accom-
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plished by mapping actors and their corresponding models into equivalent LTSs
in the UPPAAL verification tool[31], testing the ensuing system’s safety proper-
ties. While the current model verifies Santa Claus, several improvements are
necessary in regards to the translation of an Actor to an equivalent UPPAAL tem-
plate.

Implementation

At this point, our implementation is sufficient to describe a solution to the Santa
Claus concurrency problem that set our work into motion. Using the Xtext frame-
work, we wrote two separate grammars, one each for actors and protocols. When
compiled, Protocols are translated into Java interfaces while Actors are trans-
lated to Java classes implementing these interfaces. The generated classes make
use of a separate Joe runtime with facilities for isolated execution of several Ac-
tors in parallel.

Santa Claus in Joe

In order to compare Joe with the programming languages surveyed in our pre-
specialisation (Erlang, Java, X10, and Clojure), we write a solution to Trono’s Santa
Claus problem[37], evaluating it using the same criteria: Complexity, Scalability,
Maintenance, and Performance. We find that Joe affords a much shorter imple-
mentation (measured in lines of code), while retaining high maintainability and
low complexity. Further, the Joe execution model is designed in such a way as
to allow several Actors to run in parallel. It was not possible to measure perfor-
mance, but we surmise Joe’s performance to be comparable (although slightly
lower) to that of Java.

7.1 Future Work

The current iteration of Joe is a good indicator of what we envision as a modern
programming language for the near future. Even so, much work remains before
Joe reaches a stable state fit for production use. Here, we conclude the report
with a number of suggestions for further study, not just within the context of
Joe, but model checking as well.

Language Design

• There is a dichotomy in regards to the syntax of receiving messages in Joe

. A further analysis of the two syntaxes may result in findings to find in
favour of one over the over in regards to expressiveness, performance or
issues with translation.

• A shorthand Protocol syntax was considered, equivalent to the current
syntax and reminiscent of Calculus of Communicating Systems (CCS). If
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equivalence could be proven, introduction of it in the language’s grammar
should be simple.

• Current Protocols only support one-to-one communication. Adding one-
to-many Protocols, constraints (bounds for loops, for example) and the
ability to compound or interweave Protocols is an appealing prospect.

Runtime

• The message queue implemented in the prototype build suffers consider-
able overhead, owing to the need for traversing the message queue from
the top every time a thread is available for work. A different approach,
perhaps with a different data structure or segmentation, may yield greater
performance.

• While the current runtime is able to actively use all logical threads of a host
CPU, it is not suitable for distributed computing. We suggest a runtime
model where messages as well as Actors themselves can be transferred
between runtime instances running on different machines. Going even
further, optimisation strategies may involve considering where to place
an Actor in order to ensure spatial locality in regards to its most common
message targets.

Model Checking

• In a perfect world, any program’s CFG could be accurately determined
statically. This is not so. For example, bounds checking on loops in a
CFG is in many cases not possible. While such a breakthrough may not be
immediately forthcoming, we do believe it is possible to further improve
upon the translation of Actors to UPPAAL models in order to improve the
validation, not just in strength, but in granularity. Running a series of tar-
geted queries may yield important validation errors to the programmer.

• The current models make a simple verification query, testing for a dead-
lock state in the resulting UPPAAL system. The result is boolean (either
the query is satisfied, or it isn’t). Working on the project, we found no
means of retrieving more complex query results from UPPAAL. For exam-
ple, it would be quite useful if UPPAAL could answer queries regarding
valid ranges of values for loops in program code, to more concisely test
with fitting numbers of template instantiations.

• It may be prudent to model the message queues between Actors to achieve
a greater accuracy in the UPPAAL simulations. Whether this will improve
results or simply slow down the verification step remains to be seen.
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Spec.xtext

1 grammar dk.homestead.joelang.spec.Spec with org.eclipse.xtext.common.Terminals
2
3 generate spec "http://www.homestead.dk/joelang/spec/Spec"
4
5 import "http://www.eclipse.org/xtext/common/JavaVMTypes" as jvmTypes
6
7 Specification:
8 'protocol' name=ID '{'
9 msgDefs += MessageDefinition+
10 '}'
11 ;
12
13 MessageDefinition:
14 isInitial ?= ('init')? name=ID '('
15 (
16 parameters += MessageParameter
17 (',' parameters += MessageParameter)*
18 )?
19 ')' (
20 '=>' leadsTo += ProtocolStep
21 (',' leadsTo += ProtocolStep)*
22 )?
23 ;
24
25 ProtocolStep:
26 asOutput?=('^')? target=[MessageDefinition]
27 ;
28
29 MessageParameter:
30 type=[jvmTypes::JvmFormalParameter]
31 ;
32
33 /* The normal ID terminal allows '^' as a first character. This caused some
34  * ambiguity. We introduce our own, identical to that of Xtext, with the one
35  * exception of the hat character.
36  */
37 terminal ID:
38 ('a'..'z'|'A'..'Z'|'$'|'_') ('a'..'z'|'A'..'Z'|'$'|'_'|'0'..'9')*;
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JoeLang.xtext

1 grammar dk.homestead.joelang.actor.JoeLang with 
org.eclipse.xtext.common.Terminals

2
3 generate joeLang "http://www.homestead.dk/joelang/actor/JoeLang"
4
5 import "http://www.homestead.dk/joelang/spec/Spec" as Spec
6 import "http://www.eclipse.org/xtext/common/JavaVMTypes" as jvmTypes
7
8 Actor:
9 'actor' name=ID
10 (hasProtocol?='understands' protocols+=UnderstoodProtocol
11 (',' protocols+=UnderstoodProtocol)*)? 

'{'
12 (methods+=StepImplementation | fields+=Field)*
13 '}'
14 ;
15
16 UnderstoodProtocol:
17 negatedProt?=('^')? protocol=[Spec::Specification]
18 ;
19
20 StepImplementation:
21 name=ID '(' ((parameters+=Parameter) (',' parameters+=Parameter)*)? ')'
22 body=BlockExpression
23 ;
24
25 BlockExpression:
26 {BlockExpression}
27 '{' (expressions+=Expression)* '}'
28 ;
29
30 PrintCall:
31 'print' '(' toPrint=STRING ')'
32 ;
33
34 // Should handle both fields and methods.
35 /* Validate ID in regards to target during validation. */
36 MessageCall:
37 (target=[MessageTarget]) '.' message=ID invocation=FeatureInvocation?
38 ;
39
40 MessageTarget:
41 Field | LoopIterator | MessageSender
42 ;
43
44 MessageSender:
45 name='sender'
46 ;
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JoeLang.xtext

47
48 FeatureInvocation:
49 {FeatureInvocation}
50  '('
51 (
52 parameters+=ConcreteMessageParameter
53 (',' parameters+=ConcreteMessageParameter)*
54 )?
55 ')'
56 ;
57
58 ConcreteMessageParameter:
59 {ConcreteMessageParameter}
60 INT | STRING | MessageSender | ActorConstruction | FieldReference
61 ;
62
63 VarReference:
64 ref=[VarDeclaration]
65 ;
66
67 FieldReference:
68 ref=[Field]
69 ;
70
71 Field:
72 type=[Actor] (array?='[' ']')? name=ID ';'
73 ;
74
75 Parameter:
76 type=[Actor] name=ID
77 ;
78
79 /* The normal ID terminal allows '^' as a first character. This caused some
80  * ambiguity. We introduce our own, identical to that of Xtext, with the one
81  * exception of the hat character. *
82  */
83 terminal ID:
84 ('a'..'z'|'A'..'Z'|'$'|'_') ('a'..'z'|'A'..'Z'|'$'|'_'|'0'..'9')*;
85
86 // These expressions were mostly drawn from simple expressions package in 

antlr.
87 IfCondition:
88 'if' '(' condition=Expression ')' '{'
89 then+=Expression*
90 '}' ('else' '{'
91 else+=Expression*
92 '}'
93 )?
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94 ;
95
96 ForLoop:
97 'for' '(' (iterator=LoopIterator ':' list=[Field]) ')' '{'
98 body+=Expression*
99 '}'
100 ;
101
102 ForNumLoop:
103 'fornum' '(' from=INT '..' to=INT ')' '{'
104 body+=Expression*
105 '}'
106 ;
107
108 LoopIterator:
109 name=ID
110 ;
111
112 Expression returns Expression:
113 AndExpression ( {OrExpression.left = current} '||' right = AndExpression 

)*
114 ;
115
116 AndExpression returns Expression:
117 Comparison ( {AndExpression.left = current} '&&' right = Comparison )*
118 ;
119
120 Comparison returns Expression:
121 PrefixExpression ( {Comparison.left = current} operator = 

('=='|'<='|'>=') right = PrefixExpression)?
122 ;
123
124 PrefixExpression returns Expression:
125 {NotExpression} '!' expression = Atom
126   | Atom
127 ;
128
129 Atom returns Expression:
130 NumberLiteral
131   | MessageCall
132   | PrintCall
133   | IfCondition
134   | ForLoop
135   | ForNumLoop
136   | ActorConstruction
137   | Assignment
138   | VarDeclaration
139 ;
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JoeLang.xtext

140
141 VarDeclaration:
142 type=ID name=ID
143 ;
144
145 ActorConstruction:
146 'new' actor=[Actor] invocation=FeatureInvocation
147 ;
148
149 Assignment:
150 feature=[Field] '=' (=>complex=[Parameter] | simple=SimpleAssignment)
151 ;
152
153 SimpleAssignment:
154 INT | STRING | ActorConstruction
155 ;
156
157 NumberLiteral:
158 value = INT
159 ;
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Listing 23 The Protocols used in a queued Santa Claus implemented in Joe.

1 protocol ElfQ {

2 ElfQ() -> Problem

3 Problem() -> ^Solution

4 Solution() -> ElfQ

5 }

1 protocol DoorProtocol {

2 DoorProtocol() -> ^Knock

3 Knock() -> Answer

4 Answer() -> DoorProtocol

5 }

1 protocol ReindeerQ {

2 ReindeerQ() -> Home

3 Home() -> ^Deliver

4 Deliver() -> ReindeerQ

5 }

Listing 24 The Actors of Elf and Reindeer. Like their one-to-one counterparts,
they are quite simple.

1 actor QueueElf understands ^ElfQ {

2 QueueElf(ProblemQueue q) {

3 q.Problem()

4 }

5

6 Solution() {

7 sender.Problem()

8 }

9 }

1 actor QueueReindeer understands ^ReindeerQ {

2 QueueReindeer(HomeQueue q) {

3 q.Home()

4 }

5

6 Deliver() {

7 sender.Home()

8 }

9 }
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Listing 25 The queued implementation of Santa. Note how this Actor does not
note what kind of queue is messaging it, only responding along the established
Protocol steps.

1 actor QueueSanta understands ^DoorProtocol {

2 QueueSanta() {}

3

4 Knock() {

5 sender.Answer()

6 }

7 }
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Listing 26 The two queue implementations bear the brunt of the logic of this
implementation. Individually, they mimic the one-to-one version of Santa’s lists
of Actors to respond to.

1 actor HomeQueue understands ReindeerQ, DoorProtocol {

2 QueueSanta santa

3

4 QueueReindeer[] reindeer

5

6 HomeQueue(QueueSanta s) {

7 santa = s

8 }

9

10 Home() {

11 reindeer.add(sender)

12 if (reindeer.size() >= 3) {

13 santa.Knock()

14 }

15 }

16

17 Answer() {

18 for (r : reindeer) {

19 r.Deliver()

20 }

21 }

22 }

1 actor ProblemQueue understands ElfQ, DoorProtocol {

2 QueueSanta santa

3 QueueElf[] elves

4

5 ProblemQueue(QueueSanta s) {

6 santa = s

7 }

8

9 Problem() {

10 elves.add(sender)

11 if (elves.size() >= 3) {

12 santa.Knock()

13 }

14 }

15

16 Answer() {

17 for (e : elves) {

18 e.Solution()

19 }

20 }

21 }

78



Summary

This thesis is the conclusion of a project that has run over the course of two
semesters. It carries on from the authors’ prespecialisation, “Sorting and Syn-
chronising”, in 2014. Where the previous report delved into the difficulties of de-
signing safe concurrent and parallel implementations across a number of pro-
gramming languages, this thesis goes one step further, defining a new program-
ming language, designed to address these issues while retaining a syntax that
should be well-known to many programmers.

Joe is an inherently concurrent, actor-based programming language, with a
syntax very similar to Java. The similarity is intentional with a few notable ex-
ceptions taking the place of Java’s classes and interfaces. Actors, a parallel to
classes, represent a concurrent agent, capable of receiving and sending mes-
sages to other Actors. The concept of Protocols takes the place of interfaces. A
Protocol defines a number of message types as well as the series of messages (or
steps) that constitute a correct usage of the Protocol.

In order to ensure the correctness of communication between Actors, they
are translated to a format compatible with the UPPAAL verification tool. This is
accomplished by constructing a simple Control Flow Graph from the output of
the Xtext framework, which is used in the development of Joe.

At the time of writing, a subset of Joe was implemented, in order to imple-
ment a solution to Trono’s Santa Claus problem, allowing us to draw compar-
isons with similar implementations in the prespecialisation. We find that the
Joe implementations are shorter and more concise compared to those of Java,
X10, Clojure and Erlang.

Although we have managed fundamental strides towards verification of Ac-
tor communications, key elements are missing from the currently generated
control flow graphs, hampering any broad conclusions.

Despite of its shortcomings, we consider Joe a promising example of what a
modern programming language with deeply ingrained concurrency should be.
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