
Time Predictable Dalvik v0.1
An analysis of the DVM opcodes with focus on timing

predictability

Project Report

dpt105f15

Aalborg University

Department of Computer Science

Selma Lagerlöfs Vej 300

DK-9220 Aalborg Øst

http://www.cs.aau.dk

http://www.cs.aau.dk




Student Report

Department of Computer Science

Selma Lagerlöfs Vej 300

DK-9220 Aalborg Øst

http://www.cs.aau.dk

Title:

Time Predictable Dalvik v0.1

Theme:

Programming Technologies (PT)

Project Period:

Spring Semester 2015

Project Group:

dpt105f15

Participant(s):

René K. Hornbjerg

Supervisor(s):

Bent Thomsen

Copies: 3

Page Numbers: 30

Date of Completion:

May 9, 2015

Abstract:

This project presents an analysis of the

opcode implementations within the

Dalvik Virtual Machine (DVM). The

analysis targets the portable version

of the iterative interpreter with focus

on timing predictability. A way to re-

factor each implementation follows its

inspection.

Furthermore, the project includes a

discussion on additional work needed

to make the DVM fully timing pre-

dictable. The discussion points out

the need for a different programming

model as well as the need for a re-

placement or removal of the underly-

ing Linux kernel.

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the author.

http://www.cs.aau.dk


4



Preface

This report is written by a single software-engineering student attending 10th

semester at Aalborg University. The semester project was started on the 1st of

February 2015, and finished on the 9th of May 2015.

This report will concentrate on subjects related to computer science. There-

fore, it is assumed that the reader has equivalent knowledge in the field of com-

puter science, as that of a 10th semester software-engineering student

Three kind of sources references are used throughout this report. The first

is a reference placed after a period, which refers to the given paragraph. The

second type of reference is placed before a period, which refers to the particular

sentence or word. The last type of reference is placed after a colon or semicolon

and refers to the following list. The sources of the references used throughout

this report can be found in the bibliography at the end of the report.

René K. Hornbjerg

rande10@student.aau.dk

5





Contents

1 Introduction 9

1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Report Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 13

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Java in Real-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The Dalvik Virtual Machine (DVM) . . . . . . . . . . . . . . . . . . . . 15

3 Contribution 17

3.1 Approach for Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Opcode Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Timing Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Conclusion 27

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography 31

Appendix 31

7



8



Chapter 1

Introduction

In the modern world, the number of computer systems is ever increasing, and

as a result thereof, a large set of different computer systems exists.

One of the types of computer systems are embedded systems. Embedded

systems are characterized by the platform they are designed to operate on. Em-

bedded systems operates on a small platform with limited resources in terms of

processor and memory.

Another type of computer systems are Real-Time systems whose reliability is

determined by their ability to complete tasks before a given deadline.

Real-Time systems can be separated into three categories, depending on

how they tolerate missing a deadline, hard Real-Time, soft Real-Time, and firm

Real-Time. Hard Real-Time systems have no tolerance for missed deadlines, soft

Real-Time systems tolerate missed deadlines to a certain degree, and firm Real-

Time systems are a blend between hard and soft Real-Time systems. A hard Real-

Time system, whose failure result in loss of human lives, is called a Safety Critical

System.

The combination of the two types of computer systems described above is

known as an Embedded Real-Time system. An embedded Real-Time system is

required to work on a platform with limited resources, and at the same time

respect timing constrains in order to function correctly.

Embedded Real-Time systems are usually implemented using low-level pro-

gramming languages such as C or Assembly. The use of low-level languages

is based on hardware controllability, as low-level languages offer more direct

control over the underlying hardware compared to high-level languages such as

C# and Java. Additionally, the execution time of low-level languages is typically

faster than that of high-level languages.

Despite the widespread use of low-level language, these languages can be

difficult to master and they are usually not taught to programmers during edu-

9



cation. Hence, the programming industry is faced with the problem of finding

skilled programmers for embedded Real-Time systems.

1.1 The Problem

The challenge of finding skilled low-level programmers for the industry have

lead researchers to focus on enabling high-level languages for use in program-

ming embedded Real-Time systems.

One of the most popular languages in this regard is the programming lan-

guage Java. Java is a high-level language following the Write Once Run Any-

where (WORA) principle. Java is taught at a large number of programming edu-

cations and is one on the popular high-level languages for most developers[8].

Unlike the low-level languages, Java is usually not natively compiled, but relies

on a Java Virtual Machine (JVM) for execution. Different JVM implementations

exist, however they all execute the Java bytecode generated by the Java compiler.

The JVM has been a the target for many researchers aiming at enabling Java

for embedded Real-Time applications. However, general purpose implementa-

tions of the JVM, such as Oracle Hotspot[5], are not timing predictable which

is a requirement if the Virtual Machine (VM) is to be used for Real-Time appli-

cations. Also these JVM implementations are usually not targeted at embedded

systems.

While implementations of the JVM, targeted at embedded Real-

Time systems exist, the focus of this report is the Dalvik Virtual

Machine (DVM) residing inside the Android mobile Operating

System (OS). Java is the primary development language for An-

droid. Additionally, as a consequence of Android running on

embedded platforms, the DVM is designed for such platforms.

The DVM is not timing predictable, as such it cannot safely

be used for Real-Time applications. This raises the ques-

tion of whether it is possible to make the DVM timing pre-

dictable, and if so, how it can be done.

1.2 Report Overview

The remainder of the report is structured in the following chapters:

10



Chapter 2: Related Work

Topics and research paper related to Java and Android with respect to

Real-Time are described to cover solutions related to the problem at hand.

Chapter 3: Contribution

The essential inner workings of the Android OS and the DVM are described

along with this projects approach for a solution.

Chapter 4: Conclusion

The knowledge optioned during the project is reflected upon and the project

is concluded. Finally, a list of future work are presented.

11



12



Chapter 2

Related Work

This chapter presents a small list of terminology followed work related to the

subjects of Java as a Real-Time programming language as well a general intro-

duction to the DVM.

2.1 Terminology

This section presents a short list of terminology used throughout the remainder

of the report.

Safe & Precise Worst Case Execution Time (WCET)

• A safe WCET is guaranteed never to be exceeded.

• The precision of a calculated WCET is determined by its deviation

from the task’s actual WCET.

Real-Time Garbage Collection

A Real-Time Garbage Collector (GC) is executed concurrently with the other

tasks in the application. The GC can be preempted by any other task at any

time if the need arises. Additionally, the GC is fully predictable in term of

both behavior and execution time.

2.2 Java in Real-Time

As the Java programming language was original designed for general desktop

computer systems, the system model of the language does not fit the require-

ments prescribed by embedded Real-Time systems. To overcome this, both the

Java programming language and the JVM specification have been extended. The

13



most notable extensions of Java, in terms of Real-Time, are the Real-Time Spec-

ification for Java (RTSJ)[1] and Safety-Critical Java (SCJ)[3].

2.2.1 Real-Time Specification for Java (RTSJ)

The RTSJ extends the Java class library in seven areas as described in my pre-

specialization[4]. The two extensions which are most important to this project

are presented here.

Memory Management

The concepts of immortal and scoped memory allow for allocation of ob-

jects not affected by the GC.

Scheduling

To make scheduling comply with a program’s timing predictability, the

RTSJ provides the classes; Parameter Classes and Scheduler Classes along

with the interface Schedulable. These make Real-Time scheduling within

the application possible.

2.2.2 Safety-Critical Java (SCJ)

SCJ defines a more limited programming model, most notable of which is the

concept of missions. This concept will be referenced in a discussion of timing

presented later in the report. Missions consist of three phases; Initialization, ex-

ecution, and termination. All reference types for the mission is allocated and ini-

tialized during the initialization phase. The execution phases executes the mis-

sion’s tasks concurrently, and the termination phase is reached when all tasks is

completed. The termination phase may include a global clean-up, after which

the mission can be re-initialized.[4]

2.2.3 Hardware near Virtual Machine

The Hardware near Virtual Machine (HVM) is a software implementation of a

JVM designed for bare metal use on low-end embedded devices. The HVM im-

plements the SCJ profile and supports application of SCJ compliance level 0 and

1.[9] The HVM was at a later time re-factored in order to make the interpreter

timing predictable. The re-factored HVM is referred to as Time Predictable HVM

(HVMTP)[7].

The HVMTP was constructed by analyzing the original HVM implementa-

tion of each Java bytecode with focus on timing predictability. By harnessing

concepts of SCJ the bytecode implementation found to be unpredictable was

re-factored, in the end leaving all bytecode implementations timing predictable.

14



2.3 The Dalvik Virtual Machine (DVM)

The DVM is the execution environment used in the Android OS up til Android

version 4.4. The DVM targets embedded systems with limited resources such as

processor speed, memory, battery, etc.[2]

The DVM differs from a classic JVM implementation in a few ways;

Execution Language

The code executed by the DVM is called Dalvik Executable (dex) code. The

dex code is generated by a tool in the Android tool-chain, called dexgen.

Dexgen is given Java bytecode, in form of .class file, as input and gener-

ates the equivalent dex code stored in a single .dex file.[2]

Calculations Performing

The DVM uses 32 bits registers for performing calculations. The register-

based approach used for the DVM may yield a performance boost if the

machines is adjusted to the underlying hardware[6]. The use of registers,

in contrary to a stack, does however require longer instructions.

Applications running on the Android OS are sandboxed from each other.

This means that each application is running on its own DVM instance, and each

application thereby have no notion of other running applications. Each new

DVM instance is provided at application start-up by the tool called Zygote.[6]

The Zygote tool can be described as an “über”-DVM started at the same time as

the Android OS. Each time an application is about to start, a start-up request is

sent to the Zygote tool, and a new DVM instance is forked from the DVM instance

of the Zygote tool.

15



16



Chapter 3

Contribution

This chapter describes the inner workings of the Android with focus on the exe-

cution environment, the DVM. Furthermore, this chapter presents the approach

for a solution to the problem presented in Section 1.1.

3.1 Approach for Solution

This section describes the approach used for addressing the problem described

in Section 1.1. The approach in this chapter is largely inspired the work of Luckow

et al. presented in [7] which is also described in Section 2.2.

The problem is described as folows;

Is it possible to make the DVM timing predictable, and if so,

how it can be done.

The approach in this project is aimed at the portable version of the iterative in-

terpreter living within the DVM. The interpreter in the DVM works in three ma-

jor steps; 1) fetch, 2) decode, and 3) execute. The implementation of the main

loop is illustrated in Listing 3.1.

The first step, illustrated in line 7, reads the opcode pointed to by the instruc-

tion pointer, also known as the Program Counter (PC). This is done in constant

time.

The second step, shown in line 9, is handled by a jump-table with a constant

look-up time.

As the two first steps can both be considered timing predictable without fur-

ther work, the third is left as the only obstacle. The third step is performed by

performing logic starting from the jump target and this step is thus the only step

which is dependent on the current context.

17



The logic of each jump target is referred as the opcode implementations. The

approach here is to analyze the opcode implementations with a focus on pre-

dictable timing behavior.

Listing 3.1: The main loop for the iterative interpreter of the DVM

1 #define FETCH(_offset) (pc[(_offset)])

2

3 #define INST_INST(_inst) ((_inst) & 0xff)

4 // ...

5 while (1) {

6 /* fetch the next 16 bits from the instruction stream */

7 inst = FETCH(0);

8

9 switch (INST_INST(inst)) {

10 // Opcode implementations

11 // ...

12 }

3.2 Opcode Analysis

Opcodes operating in a similar way can be sorted into opcode groups. The op-

codes in each group is implemented in similar ways or used for operating with

similar concepts.

Each opcode group is sorted as Intuitive Predictable or Non-Intuitive Pre-

dictable presented in Section 3.2.1 and Section 3.2.2 respectively.

3.2.1 Intuitive Predictable Opcodes

This section presents the groups of opcode which either naturally have pre-

dictable execution time, or require simple modifications for enabling predictabil-

ity.

Move Opcodes Opcodes in this group are used to move data between registers.

The group include; move, move-wide, move-object, and move-result. The

opcodes in this group is considered simple and includes no logic which causes

problems for timing predictability.

Return Opcodes Opcodes in this group are used for returning results from

methods. The groups includes; return-void, return, return-wide, and re-

turn-object. As opcodes in the move group, this group of opcodes does not

introduce problems for timing predictability.

18



Goto This group of opcodes is used for unconditional jumps. The group in-

cludes; goto, goto/16, and goto/32. The opcodes in this group is implemented

by simply adjusting the PC. Hence, the cause no problem for timing predictabil-

ity.

Comparison of Primitive Type This group is used for comparison of two val-

ues of the same primitive type. The opcodes in this group include; cmpl-float,

cmpl-double, and cmp-long. The opcodes are all handled in the same way, by

the function HANDLE_OP_CMPX(_opcode,_opname,_varType,_type,_nanVal).

This function is simple and no unpredictable logic is used.

If Jumps This group is used for conditional jumps. The opcodes in the group

include; if-eq, if-ne, if-ge, if-eqz, and if-nez. These opcodes are imple-

mented in a similar way to the goto opcodes and no unpredictable logic is used.

Primitive Type Conversion The primitive types supported by the DVM are;

short, int, float, double, long, byte, and char. The conversion between the

types are in most cases a simple problem of altering the size of data representa-

tion, and this is considered no problem for timing predictability.

Mathematical & Bit Operations The mathematical and bit operations sup-

ported by the DVM include; multiply, division, reminder, xor, and shifts. Though

these opcodes are platform dependent, they should not be a problem for timing

predictability. Multiplication can, for example, be conducted by using addition

and shifts with an execution time bounded by the number of bits.

Switch This group of opcodes handled switch statements. The opcodes in this

group are; packed-switch and sparse-switch. Both of these opcodes are im-

plemented in a simple way using a jump table which is considered to have con-

stant time look-up time. Thus, this opcode group is of no concern for timing

analysis.

3.2.2 Non-Intuitive Predictable Opcodes

This section presents the groups of opcodes which require re-factoring in order

to enable timing predictability. Groups which call for further reflection are dis-

cussed in Section 3.3.

19



Constant Opcodes Opcodes included in this group are; const, const-wide,

const-string, and const-class. The opcodes for handling constants of prim-

itive types are of no concern in timing perspective. However, the implementa-

tion of constant strings and classes could cause problems. The implementations

of const-string and const-class are almost identical.

The implementations of the opcodes poses no obvious problem. However,

the use of constants of non-primitive types raises issues as the object for the

constant reference is to be initialized before the constant can be used. The time

of instantiating may be unknown at start-up time. A work around for this could

be to always assume that all objects needs to be instantiated before the can be

used. This would yield a safe WCET, the WCET would, however, not be precise

and it would in most cases be a heavy overestimation. This issues is discussed

further in Section 3.3.

Type Checking Opcodes This group is used for run-time type checking of ref-

erence types. The group includes the two opcodes; instance-of and check-

cast. In classic JVM implementations these operations is handled by iterating

through the class hierarchy until compatibility can be concluded. In the DVM,

these operations are handled by the dvmInstanceof() function. The imple-

mentation of dvmInstanceOf() is shown in Listing 3.2.

The implementation makes used of other defined functions, such as dvm-

InstanceOfNonTrivial(). The actual workings behind the type checking is

unclear for the author, so whether type checks is handled by iterating through

the class hierarchy is also unclear. It is, however, unlikely this way it is done. As

the complete class hierarchy can be found in the dex file at compile-time, it is

most likely that the DVM is implemented to use this for optimization purposes.

Object Allocations The group includes; new-instance, new-array, filled-

new-array and filled-new-array-range. When an object is allocated in the

DVM, the memory for the object is zeroed to avoid bad memory values. The ex-

ecution time for zeroing the memory is linear in the size of the object. A WCET

corresponding to the largest object in the application can be found. However,

thought this WCET can be considered safe for all allocations, it is in many cases

not precise and it is therefore desirable to find an other approach. Further dis-

cussion on this is given in Section 3.3.

Gets & Puts This group of opcodes is used for getting and setting values of dif-

ferent types into arrays, instance fields, and static fields. This group of opcodes

is implemented using several general defined functions. As for this constant op-

codes, the implementation of these opcodes poses no obvious problem. How-

20



ever, as for the constants of reference types, getting an setting data to a static

field requires the static object to be initialized. Assuming initializing is needed

every time a static field is called would yield a safe, but rather inaccurate, WCET.

This problem does not occur for instance field as each instance is assumed to be

initialized before any values can set of received from the instance. This issues is

discussed further in Section 3.3.

Method Invocation This group of opcodes includes; invoke-virtual, invo-

ke-super, invoke-static, and invoke-interface. Management of method

invocation is handled by the use of a call stack which introduces no obvious

issues for timing predictability.

Implementation of all the previous opcodes a done in similar ways. All op-

codes uses a function called invokeMethod(). This function handles coping

arguments from the current stack frame to the new stack frame, updates the

required values (PC, Frame Pointer (FP), etc.) and jumps to the start of the inter-

preter. Hence, this function is responsible for transferring control which causes

no problem for timing.

Methods is stored in a virtual table. Each method can be found by indexing

the table with the methods index, which is a constant time operation. invoke-

virtual and invoke-super implements this in similar ways. invoke-interfa-

ce uses a slightly different approach, the function dvmInterpFindInterface-

Method(). This function iterates the if-table of the receiver of the method call,

which is the only operation in this function without constant execution time.

The execution time for the operation of iterating through the if-table is linear in

the size of the if-table. The size of the if table is known at compile-time, which

makes the overall execution time of the function bound-able at compile-time.

Exceptions Exceptions can be thrown in one of two forms, unchecked or check-

ed. Unchecked exceptions are thrown implicit by the opcode implementations.

Checked exceptions are thrown explicit by use of the throw opcode.

One issue raised by use of exceptions are similar to the issues of constant

reference types and manipulation of static fields. Although a safe WCET corre-

sponding to the initialization of the largest exception object can be found, this

is still an inaccurate and heavy overestimated WCET. Further discussion on this

is given in Section 3.3.

The second issue raised by use of exception is determining and execute the

handler for the exception. The exception may be caught somewhere in the call

stack. Assuming the worst-case behavior, the maximum size of the call stack is

used. The maximum size of the call stack can be determined by a reconstruction

of the call graph, and then determined the maximum depth. Reconstruction of

21



the call graph and maximum depth determination would require the use of a

tool. In the case of the HVMTP[7] the ICECAP-TOOLS is used for this matter.

Remaining Opcodes Some of the opcodes implemented in the DVM are con-

sidered only for advanced use or only for use on optimized dex files. Those op-

codes are not included in this analysis as they are considered dispensable. The

author of this report is of the believe that a fully functional DVM could be im-

plemented without the use of those opcodes. This DVM version would though

require further verification of the dex file to make sure the dispensable opcodes

is not used.

The art of making these opcode timing predictable should, however, be a

simple manner of using the same mindset as for the other groups of opcodes.

22



Listing 3.2: Implementation of dvmInstanceOf()

1 INLINE int dvmInstanceof(const ClassObject* instance, const ClassObject*

clazz)

2 {

3 if (instance == clazz) {

4 if (CALC_CACHE_STATS)

5 gDvm.instanceofCache->trivial++;

6 return 1;

7 } else

8 return dvmInstanceofNonTrivial(instance, clazz);

9 }

3.3 Timing Discussion

This section presents a discussion of the issues with timing predictability found

during the opcode analysis described in Section 3.2.

An issue which was encountered several times during the analysis resolve

around the time of which an object is initialized. Due to the standard Java pro-

gramming model used by the DVM, allocation of a new object can be tricked,

roughly, at any time during execution of an application. If a WCET for the func-

tions in an application are to be calculated, the worst-case behavior must be as-

sumed at all times, and in the case of object allocations, the worst-case behavior

would be to initialize a new object every time an object is referenced.

Analyzing the program flow before execution could mark every occurrence

of referencing and thereby incorporate the WCET for object initialization into

the WCET of each function. Thought this approach would yield a safe WCET for

all functions, the WCETs would in many cases be highly inaccurate.

Introducing a different programming model similar to that of SCJ would help

decrease the inaccuracy. Using a programming model dictating all objects to

be allocated prior to the logic of the application would decrease the inaccuracy

greatly. Allocation all objects prior to application logic would yield a different

worst-case behavior for functions, as object in this context can be assumed to

be allocated at every reference.

The accuracy problem would, however, only be partly solved. The WCET for

object allocation would still be corresponding to the largest object of the appli-

cations, which is not accurate for all objects. This issue is resumed later in this

section.

Deallocation of object is another issue. As the behavior of the DVM’s default

GC is highly unpredictable, deallocation can happen at practically any time. Ad-

23



ditionally, the GC stops all execution of the application to keep the memory in a

consistent state.

A simple way to overcome this issue would be to disable the GC. This would,

however, introduce a risk of running out of memory. An other way to overcome

this would be to introduce a predictable GC as described in Section ??.

The issue of inaccurate WCETs for object allocations is due to the zeroing of

memory at allocation time. The execution time for zeroing the memory is linear

to the size of the object, yielding a allocation WCET corresponding to the largest

object in the application.

Relocating the responsibility for zeroing of memory would partly solve the

issue. Zeroing the memory at system start-up, that is before the application is

started, would increase the system start-up time, but would remove the issue at

application run-time.

The remaining part of the issue revolves around deallocation. If the ap-

proach of disabling the GC is used, memory would not require a re-zeroing as it

is never freed. Using a predictable GC memory could be re-zeroed subsequently

to freeing, thereby extending the execution time of deallocation, but it not influ-

encing allocation of new objects.

Re-factoring the DVM in the correct way may make it timing predictable, but

even a timing predictable version of the DVM would not be completely suitable

for Real-Time systems. The DVM is designed to run on top a Linux kernel. The

Linux kernel used for the Android OS, and thereby the DVM, is not predictable

in a way which support Real-Time applications.

Two ways for addressing this issue is considered; replacing the default kernel

with a Real-Time kernel, and removing the need for the kernel

Substituting the standard kernel with a Real-Time version would make the DVM

better suited for use for Real-Time applications. A complete replacement

of the kernel may, however, require modifications of the interface between

the DVM and the kernel. Additional work might be needed for porting the

drivers from the default kernel to the new Real-Time version. However, if

the DVM is used as a stand-alone VM for Real-Time many of the drivers

required for the Android OS would not be needed. In this case, the em-

bedded platform can be assumed to be more specialized for a specific ap-

plication domain thereby not requiring the presence of, for example, Wifi,

touch-screen, etc.

Removing the kernel would lead to a bare-bone version of the DVM. This would

be beneficial in terms of system size. If the DVM does not require the

24



presence of a OS the overall system size would be greatly reduced. The

approach would require a extension of the VM. Lacking the presence of

an OS the responsibility for systems facilities such as Input/Output (I/O)

and locking of memory would have to be handled directly in the VM. The

same is the case for scheduling.

Discussion Summary

The problem of WCET for object allocation yielding a rather inaccurate WCET

for the overall system, was encountered several times during the analysis of the

opcodes. Seeking inspiration from SCJ, introduction of a programming model

dictating allocation of all object prior to logic execution would reduce, but not

remove, the problem. Relocating the responsibility of memory zeroing in com-

bination with a disabled GC would help eliminating the problem, but disabling

the GC would introduce the risk of running out of memory.

Adding a different programming model and making all opcodes timing pre-

dictable would reduce the unpredictability of application execution on the DVM,

but the DVM would still not be suitable for Real-Time systems. Enabling the

DVM for Real-Time usage would require attention to the underlying Linux ker-

nel. Replacing the kernel with a Real-Time version would enable the DVM for

Real-Time applications, but adaption between the DVM and the new kernel would

properly be needed. Removing the kernel from the picture could also enable

the DVM for Real-Time usage, but would require an extension of the DVM as it

would need to overtake the responsibility of system facilities such as I/O, locking

of memory, and scheduling.

25



26



Chapter 4

Conclusion

This project have introduced the problem of lack of developers for embedded

Real-Time systems. Attempting to solve this problem, research in the usage of

high-level languages for Real-Time programming have been conducted. This

spans from the introduction of new programming models for Java such as the

Real-Time Specification for Java and the Safety-Critical Java profile, to introduc-

tion of Java Real-Time platforms such as the Time Predictable HVM.

This project have focused on introducing the Dalvik Virtual Machine as a

competitor to the already existing Java Real-Time platforms. Although, the DVM

is not implemented in the same way as classic Java Virtual Machines, the DVM

still relay on Java a primary programming language.

This report have presented an analysis and discussion of DVM with focus on

timing predictability. The analysis targeted the opcode implementations of the

portable iterative interpreter in the DVM. Analyzing the individual implementa-

tions of the opcodes yielded two major groups of opcodes; Intuitive Predictable

and Non-Intuitive Predictable. The analysis found that some of the opcode im-

plementations resulted in work additional to a re-factoring of the implementa-

tions.

The discussion revolved around the additional required work found in the

analysis. Encountering a few problems in relation to object allocations called the

need for a different programming model to mind. Introducing a programming

model dictating allocation of object prior to execution of logic would increase

the probability of introducing the DVM as a new Java Real-Time platform.

However, introducing a new programming model alone, would not make the

DVM suitable for Real-Time usage. The underlying Linux kernel would require

attention as well.

27



Based on the analysis and discussion summarized above, it is concluded that

it would be possible to construct a timing predictable version of the Dalvik Vir-

tual Machine. However, attention only to the opcode implementations would

not be sufficient.

4.1 Future Work

This section presents the future work for this project. The topics presented in

this section mainly focus on what would be required to construct a Real-Time

version of the DVM.

Stand-alone DVM

The first step towards a Real-Time version of the DVM would be to extract

the DVM and its core dependencies from the Android system. Once ex-

traction have been done successfully drivers are no longer of concern for

the kernel.

Replacing the Linux Kernel

The default kernel shipped along side the Android OS is not suitable for

Real-Time requests. Replacing the kernel with a Real-Time version with

the required system facilities placed along side a stand-alone DVM would

simplify the remaining work needed for a Real-Time DVM.

Removing the Linux Kernel

With a stand-alone version of the DVM at hand, construction of a bare-

bone version of the DVM is right up our street. Constructing a bare-bone

version would reduce the overall size of the execution environment. On

the other hand, the DVM version would need to be extended with system

facilities such as scheduling and I/O management.

28



List of Listings

3.1 The main loop for the iterative interpreter of the DVM . . . . . . . . 18

3.2 Implementation of dvmInstanceOf() . . . . . . . . . . . . . . . . . . 23

29



30



Bibliography

[1] Greg Bollella, Ben Brosol, Peter Dibble, Steve Furr, James Gosling, David

Hardin, and Mark Turnbull. The Real-Time Specification for Java, 2013.

URL https://jcp.org/aboutJava/communityprocess/first/jsr001/

rtj.pdf.

[2] David Ehringer. The davlik virtual machine architecture, March, 2010.

URL http://davidehringer.com/software/android/The_Dalvik_

Virtual_Machine.pdf.

[3] The Open Group. Safety-Critical Java Technology Specification, 2013. URL

http://download.oracle.com/otn-pub/jcp/safety_critical-0_

94-edr2-spec/scj-EDR2.pdf.

[4] René Kjær Hornbjerg. Android in real-time. Student report, 9. semester,

Aalborg University, 2014.

[5] Hotspot. Hotspot. URL http://en.wikipedia.org/wiki/HotSpot.

[6] Igor Kalkov, Dominik Franke, John F Schommer, and Stefan Kowalewski. A

real-time extension to the android platform. In Proceedings of the 10th In-

ternational Workshop on Java Technologies for Real-time and Embedded Sys-

tems, pages 105–114. ACM, 2012.

[7] Kasper Søe Luckow, Bent Thomsen, and Stephan Erbs Korsholm. Hvmtp: A

time predictable and portable java virtual machine for hard real-time em-

bedded systems. In Proceedings of the 12th International Workshop on Java

Technologies for Real-time and Embedded Systems, 2014.

[8] Tiobe Software. Tiobe index for january 2015, 2015. URL http://www.

tiobe.com/index.php/content/paperinfo/tpci/index.html.

[9] Hans Søndergaard, Stephan E. Korsholm, and Anders P. Ravn. Safety-critical

java for low-end embedded platforms. In Proceedings of the 10th Interna-

tional Workshop on Java Technologies for Real-time and Embedded Systems,

2012.

31

https://jcp.org/aboutJava/communityprocess/first/jsr001/rtj.pdf
https://jcp.org/aboutJava/communityprocess/first/jsr001/rtj.pdf
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://download.oracle.com/otn-pub/jcp/safety_critical-0_94-edr2-spec/scj-EDR2.pdf
http://download.oracle.com/otn-pub/jcp/safety_critical-0_94-edr2-spec/scj-EDR2.pdf
http://en.wikipedia.org/wiki/HotSpot
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html


32



Resume

Dette projekt påpeger et problem med mangel på udviklere til Indlejret Tidstro

Software. I forsøget på at løse dette problem er der blevet forsket i brugen af

høj-niveau sprog for tidstro programmering. Forskningen strækker sig fra, ind-

førelsen af nye programmerings modeller for Java såsom RTSJ og SCJ profilen, til

indførelsen af tidstro Java platforme såsom HVMTP.

Fokuset is dette projekt har været på at indføre DVM’en som konkurrent til

de allerede eksisterende tidstro Java platforme. Selvom DVM’en ikke er imple-

menteret på samme måde som de klassiske JVM’en, bruger den Java som det

primære programmeringssprog.

Denne rapport præsenterer en analyse og diskussion af DVM’en med fokus

på tidsforudsigelighed. Analysen er målrettet implementeringerne af opkoderne

i den iterative fortolker. Analysen af de individuelle opkode implementeringer

giver to hovedgrupper; Intuitivt Forudsigelig og Ikke Intuitivt Forudsigelig. Anal-

ysen fandt, at nogle af implementeringerne behøver arbejde udover en refak-

turering.

Diskussionen tager udgangspunkt i det supplerende arbejde fundet i analy-

sen. Op til flere gange i analysen fremkom et problem i forhold til allokering af

objekter. Dette problem ledte tankerne hen på behovet for en anderledes pro-

grammeringsmodel. Indførelse af en programmeringsmodel som dikterer at alle

objekter skal allokeres før applikationens logik kan eksekvere ville øge mulighe-

den for at indføre DVM’en som en ny tidstro Java platform.

Derudover, dækker diskussionen nødvendigheden for at kigge på den un-

derliggende Linux kerne som ikke er brugbar til tidstro software.


	Introduction
	The Problem
	Report Overview

	Related Work
	Terminology
	Java in Real-Time
	The Dalvik Virtual Machine (DVM)

	Contribution
	Approach for Solution
	Opcode Analysis
	Timing Discussion

	Conclusion
	Future Work

	Bibliography
	Appendix

