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PREFACE

This chapter contains a general outline of the thesis, acknowledgements, and an
abstract written in danish. The bibliography reference structure, uses Arabic nu-
merals in square brackets, and the authors are shown in order of appearance. Most
of the concepts discussed in this thesis, has been implemented using the statistical
package R, from this point forth written as R. The functions and scripts written
for the thesis can be obtained by contacting the author at the following address:

svilsen@math.aau.dk.

Outline

Chapter 1: Introduction to the basics of DNA, STR, and NGS, as well as
the data used throughout the thesis. Furthermore, this chapter also contains
some preliminary results, especially with regard to uncontaminated single con-

tributor samples.

Chapter 2: A comprehensive look into the quality generated per base in
the NGS process. The chapter discusses potential uses of quality, quality
restriction due to preferential detection, and the probability of two strings

being equal, based on the quality ratio.

Chapter 3: This chapter aims to categorise the stutters and shoulders ob-
served in the data. Stutters are a well known phenomenon, known to originate
from the PCR process, and the main focus will therefore be to examine the
hypothesis that the LUS is a better predictor of stutter ratio, than the allele
length.


svilsen@math.aau.dk

Chapter 4: The general noise of the data is analysed, fitting a one-inflated
zero-truncated negative binomial model with the goal of creating a threshold

isolating the alleles and systematic noise.

Chapter 5: As the introduction of a noise threshold has the potential to
create drop-outs, the probability of drop-out is analysed, by first examining
the heterozygote balance for possible covariates. As applying a noise threshold,
creates missing values in the data, the covariate is imputed assuming that the
full coverage follows a gamma distribution. The probability of drop-out is then

predicted.

Chapter 6: This chapter recaps the thesis, adding on a few comments to
some of the methods used in the thesis, and a few possibilities for future work

is presented.

Appendix A: Contains a short introduction to the incomplete regularised

beta function, and derivatives thereof.

Appendix B: A simulation study of the one-inflated zero-truncated negative
binomial model. Data is simulated using a fixed set of parameters and the

model is then applied is estimating the parameters.

Appendix C: A simulation study examination of the EM imputation using

simulated gamma coverage.

Appendix D: Gamma QQ-plots of the real and simulated coverage, including

95% confidence envelopes.

Appendix E: Contains the reference profiles for the two contributors to the

dilution series, strings not included.
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Abstract in Danish

The generelle formal med projektet er at opna en forstaelse for den statistiske vari-
ation, i short tandem repeat (STR) anden generations sekvensering (NGS) data, i
retsgenetiske sammenhaeng. Specialet starter med en introduktion til DNA, STR og
NGS, hvorefter en metode til identifikation af STR-regioner i NGS data introduc-
eres, ved hjelp af de sdkaldte direkte tilstsddende flankregioner. Der bliver herefter
vist hvordan en DNA profil kan dannes, hvis det vides, at prgven kun indeholder
DNA fra et enkelt individ. Metoden virker dog kun i dette special tilfaelde, derfor
tages et grundigt blik pa de fejl der opstar i NGS data genereringsprocessen, men
forst undersgges kvaliteten af de kaldte baser.

For en hver base sekveseret i NGS processen, tildeles ogsa en kvalitet, der repracsen-
terer sandsynligheden for at basen er kaldt forkert. Kvaliteten undersgges i hab om
at kunne indkorporere den i vidre analyse, enten til at restringere data (ved at fjerne
strenge under et givet kvalitets niveau), eller ved at justere coverage. Det viser sig,
at pa grund af den made STR-regionerne findes, sa bliver kvaliteten allerede re-
stringeret, da kvaliteten er faldende over tid. Dette medfgrer at sandsynligheden

for fejl stiger. Konsekvensen er, at jo leengere STR-region en base findes, desto

iii



mindre bliver sandsynligheden for at den identificeret korrekt. Ydermere, udledes

en metode, hvorved sandsynligheden for, at to strenge er ens kan udregnes.

Stutter og shoulder, er produkter af henholdsvis PCR og NGS processen, der begge
falder under systematisk stgj i data. Stutter er et velkendt fenomen fra PCR og
malet ved at analysere disse er derfor at undersgge hypotesen, at LUS er en bedre
predikator af stutter frekvensen, end allele leengden. Yderligere, undersgges shoulder
frekvensen, for at give et threshold til enten at fjerne disse fra data, eller eventuel

identifikation i et mikstur tilfselde.

Udover systematisk stgj, ses ogsa en mere generel stgj i data. Denne generelle stgj
modelleres ved en one-inlfated zero-truncated negativ binomial fordeling (KINB).
KINB modellen, tilpasses ved hjalp af to forskellige metoder, implementationerne
af disse undersgges i Appendiks B. De tilpassede parametre bruges derefter til at
lave et stgj threshold, specifikt til hver locus og sample, ved at bruge et kvartil fra

fordelingen med disse parametre og dens standard afvigelse.

Ved introduktionen af et stgj threshold, introduceres ogsa drop-outs i vores data.
For at bestemme sandsynligheden for at en allele drop-out sker, undersgges fgrst
heterozygot balancen. Heterozygot balancen bruges til at finde en pridikator for
sandsynligheden for drop-out. Det ses, at der findes en sammenhaeng mellem sandsyn-
ligheden for drop-out og standard afvigelsen af heterozygot balancen, hvis den fulde
information er givet. Dette er dog ikke tilfeeldet, da nogle alleler ikke leengere er
obseveret pa grund af stgj threshold’et. Derfor imputeres disse ved hjalp af EM-
algoritmen. Denne implementation undersgges i Appendiks C. Herefter bruges den

imputerede standard afvigelse til at prediktere sandsynligheden for drop-out.

Sidst, men ikke mindst, konkluderes og kommenteres der pa projektet som helhed,

og der bliver givet forslag til eventuelt fremtidigt arbejde.
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CHAPTER

ONE

INTRODUCTION

The aim of this thesis is to investigate the statistical variation of next-generation
sequencing (NGS) in forensic genetics. The use of genetic analysis in forensic cases
is to create a DNA profile that is highly discriminating. Next-generation sequencing
offers a higher resolution than that of capillary electrophoresis presently used in
forensic casework. This chapter will serve as an introduction to the general princi-
ple of DNA, short tandem repeats (STR), next-generation sequencing, and the data
used in the remainder of this thesis, as well as some preliminary results and consid-
erations. Furthermore, Sections 1.1-1.5 will (unless otherwise indicated) be based on
The Fundamentals of Forensic DNA Typing and Advanced Topics in Forensic DNA
Typing: Methodology both by John M. Butler [1, 2|, as well as An Introduction to
Forensic Genetics by Goodwin, Linacre, and Hadi [3]. The data used throughout
this thesis is supplied by the Section of Forensic Genetics, Department of Forensic

Medicine, Faculty of Health and Medical Science, University of Copenhagen.

1.1 The Blueprint of Life

Deoxyribonucleic acid (DNA); often described as the blueprint of life. An organ-
isms DNA contains everything needed for passing down genetic attributes to future

generation. Found in every nucleated cell of our bodies it provides a program deter-
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mining physical features and many other attributes. A DNA strand can be broken
down into single units of DNA, called deoxynucleotide triphosphate (ANTP), poly-
merised together. A ANTP consists of three parts: a nucleobase (nitrogenous bases),
a deoxyribose sugar and a phosphate group as seen in Figure 1.1. The information
within the DNA is coded as a sequence of these nucleobases. The nucleobases take
one of four forms adenine (A), guanine (G), cytosine (C), and thymine (T). Each
of the four bases are attracted to its complimentary base, A binds to T and G to
C, and form what is commonly called a base pair (bp). This attraction binds two

single DNA strands into a double helix structure.

Figure 1.1: A generalized version of a deoxynucleotide triphosphate. The three

parts (from right to left): the nucleobase, deoxyribose sugar and phosphate
group.

The complete set of instructions necessary for making an organism, i.e. the entirety
of the DNA in a cell, is referred to as the genome. In humans it contains approx-
imately 3.2 billion bp of information organised into 22 chromosomes and the sex
chromosomes. The chromosomes are named in order of size, from largest to small-
est, i.e. chromosome one is the largest and chromosome 22 is the smallest. Humans
contain two sets of chromosomes; one set inherited from each parent. The parts
of the chromosome where the DNA code and regulate the synthesis of proteins are
called genes. The non-coding regions of the chromosome are referred to as junk-
DNA. The chromosomal location of a gene or a DNA marker is called a locus (loci

plural).

Nomenclature for DNA markers can be split into two categories depending on
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whether or not the marker falls within a gene. If it falls within, the name of the
gene is used e.g. the short tandem repeat marker THO1; TH is short for the gene
tyrosine hydroxylase found on chromosome 11, and 0! means that the repeated
region is within one intron (exons are the protein-coding parts of a gene, whereas
introns are the intervening sequences) of the TH gene. However, if the marker falls
outside of a gene e.g. the STR markers D5S818 or DYS19, the name can be broken
down as follows: D stands for DNA, 5 refers the 5th chromosome (in the case of a
sex chromosome it will either X or Y as seen in DYS19), S single copy sequence and

818 indicates that it is the 818th locus to found on the specified chromosome.

The alternative forms of a gene or genetic locus are called alleles. Two alleles at
a locus on homologous chromosomes (the chromosome pair have the same size and
contain the same genetic structure) can be either identical called homozygous, or
different, heterozygous. Suppose there are two alleles at a specific locus, A and a.
It then follows that there are three different combinations of alleles, AA, Aa and aa
(AA and aa are homozygous, and Aa is heterozygous). The specific combination of
alleles on a given locus is referred to as a genotype and the combination of genotypes

across multiple loci constitutes an individuals DNA profile.

Creating a discriminating DNA profile relies on individuals being different at a
genetic level and no two individuals have been found to have the same DNA (with
the exception of monozygotic twins). In general loci used for DNA profiling should
ideally be highly polymorphic (have a high variation between individuals) and have
a low mutation rate (have a low variation from generation to generation). Where

the latter is necessary in order to resolve paternity cases.

1.2 Short Tandem Repeats

Repeated sequences come in all sizes and are designated by the length of the core
repeated unit (sometimes referred to as motif). From satellites that can contain
several thousand base pairs, to mini-satellites also called variable number tandem
repeats (VNTRs) of 8-100 bp and micro-satellites more commonly called STRs of
2 to 7 bp. The general structure is however the same; variation between different
alleles is caused by a different number of the repeated unit, which results in alleles

of different lengths. The majority of forensic cases involves the analysis of STR
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polymorphism. In order to analyse STR markers, flanking regions surrounding the
repeats have to be determined. Then the region is amplified using a polymerase
chain reaction (PCR).

PCR is an enzymatic process that replicates a marked region of DNA by heating
and cooling the sample in a very specific cyclic pattern, seen in Figure 1.2, over

239 replicates of the sample).

28-30 cycles (under optimal conditions 30 cycles yields
The region for replication is marked by two primers, a forward and a reverse primer.
Having well designed primers is a very important component of PCR amplification,
it will however not be discussed further in this thesis, for more information see e.g.

[1, Chapter 7].

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC

TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG
94°

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC
TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG

50°-60°

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC
TAACH

<4CTAC
TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG

72°

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC
TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC

TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG

Figure 1.2: A PCR cycle. The sample is heated to 94° to denature (separate)
the two template DNA strands. It is then cooled to 50° — 60° in order to
anneal (bind) the primers (the sideways facing arrows indicate the polymerase
enzyme). Finally the sample is once again heated to 72° to let the DNA
polymerase extend the primers to copy the DNA template strands.
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STR sequences are named by the length of the core repeated unit. In the case of
human identification the most common is tetranucleotides, i.e. four nucleotides in
the repeat unit. STR sequences can be split into categories based on the pattern
repeated. The three most commonly used in forensic genetics are illustrated and

described in Figure 1.3.

Simple repeats; the repeated units are of the same length and sequence.
TGAT TGAT TGAT TGAT TGAT
Compound repeats; made of two or more adjacent simple repeats.
TGAT TGAT TGAT GCCA GCCA
Complex repeats; may contain several repeated blocks of variable bp length.

TGAT GCCA ATCT TC TTCA

Figure 1.3: An illustration and description of simple, compound, and complex

repeats.

Furthermore, not all alleles contain complete repeat units. These alleles are called
microvariants. One of the most common microvariants is the 9.3 at the THO1 locus
(this microvariant is present in approximately 34% of the Danish population). It
contains nine tetranucleotides and one repeat unit of 3 bp, because the seventh
repeat is missing an A out of its normal AATG sequence as illustrated in Figure
1.4. That is, the .3 notation refers to the number of bases in the incomplete repeat

unit.

—AATG AATG AATG AATG AATG AATG ATG AATG AATG AATG——

Figure 1.4: The 9.3 microvariant at the THO1 locus.

Even though the STR loci are in part chosen due to their low mutation rate, muta-
tions still occur. The rate of mutation at a given marker is estimated by comparing
genotypes from parents and their offspring. Most STR mutations occur, as a single
repeat unit is either lost or gained, e.g. an allele 14 mutates into a 13 or 15 in the
following generation. A list of mutation rates for the most common STR loci can be
found in [1, p.402]. It is important to keep the mutation rate in mind when handling

paternity cases, as it might otherwise lead to the wrong conclusion.



CHAPTER 1. INTRODUCTION

1.3 Capillary Electrophoresis

The current standard for obtaining a DNA profile is capillary electrophoresis (CE).
CE works by placing the sample DNA in an inlet buffer with a negatively charged
electric field. This causes the DNA molecules to give up H' ions making the DNA
molecules negatively charged. The samples are then injected onto the capillary by
applying a voltage (this process is also known as electrokenetic injection). The
capillary itself is a narrow glass tube filed with a viscous polymer solution acting
as a sieve for the DNA molecules. At the other end of the capillary is an outlet
buffer carrying a positive charge. The DNA molecules are therefore moving from
the inlet buffer through the capillary towards the outlet buffer. A high voltage is
applied across the capillary in order to separate the DNA fragments. The polymer
chains within the capillary act as obstacles, making smaller fragments move through
the capillary faster than larger ones, and it follows that the molecules are separated
based on their size. The DNA molecules are then analysed and excited by a laser,
as they pass by a detection window, resulting in an electropherogram. Furthermore,
fluorescent-dyes are normally added making it possible to analyse multiple loci of

similar length simultaneously.

The electropherograms produced are then compared to an allelic ladder (an artificial
mixture of common alleles present in the human population for the chosen STR
markers; they are generated with the same primers as the sample tested and hence
serve as a reference DNA size for every allele included in the ladder) to create a
DNA profile of the sample. Ideally this profile (in a non-mixture scenario) contains
one (homozygous case) or two (heterozygous case) alleles and equal coverage (the
amount a given allele is represented in the sample) of said alleles on any STR loci
used. However, this is not an ideal world; the profile can suffer from stutters, drop-
ins, drop-outs, and pull-ups, as well as other artefacts. We will only consider the
artefacts concerned with the PCR process. Furthermore, the alleles produced by an
electopherogram are obtained as the number of repeated tetranucleotides only. It
does not take into account that a 7-repeat could be a compound repeat sequence of
4 then 3 or 5 then 2 (other combinations of 7 are also permitted), the resolution is
simply not high enough to make that kind of distinction, which is one of the reasons

why we turn to next-generation sequencing.
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1.4 Artefacts of PCR Amplification

A stutter (in literature also referred to overstutter) is a peak at position n — j bp,
for j € N\{0}, where a true allele (or parent allele) was observed at n bp. However,
when we say stutter, it will refer to a peak at n — motif length bp, hence a double
stutter will refer to n — 2 - motif length bp, and a half stutter n — 0.5 - motif length
bp (remember that when we say motif length we assume it to be a tetranucleotide).
The peak found at a stutter position will have reduced coverage to that of its parent
allele (generally the stutter to parent coverage ratio is around 5—10%). Backstutters
(also referred to as a forward-stutters) can also occur, however they are not as likely,
and are defined in a similar manner, found at n + motif length bp. We can then

define double and half backstutters as before.

Allele drop-ins (false positives) occur as additional alleles that are observed in the
DNA profile. An allele drop-in can be from sporadic contamination of the sample
DNA, which gets amplified during the PCR process along with everything else. That

is, drop-ins may not be a direct artefact of the PCR process itself.

Allele drop-outs (false negatives) presents as an allele in the sample that fails to
amplify, either at all or sufficiently enough to exceed a pre-set detection threshold.
Null alleles, manifest in a similar way to allele drop-outs, occur because of a muta-
tion in the primer-site used to amplify the sample, the consequence being that the
Tag-enzyme cannot bind to the DNA fragment and therefore the fragment fails to
amplify.

Heterozygote (peak) imbalance, one allele is amplified preferentially compared the
other, creating a difference in peak heights between two alleles. This imbalance
will occur more often in case with low amounts of template DNA, due to binomial
sampling [4]. Furthermore, the shorter of two alleles on an heterozygous locus is
more efficiently amplified than the larger fragment, called preferential amplification.
Preferential amplification is caused by either enzyme replication failure or increased

stuttering of longer fragments, as shown in [5, 6] and in Chapter 3.
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1.5 Next-generation Sequencing

Next-generation sequencing (also called second-generation sequencing (SGS) or mul-
tiple parallel sequencing (MPS). The name next-generation sequencing when describ-
ing second generation sequencing, might be a bit misleading, as third-generation
sequencing (TGS) has already been developed [7]) was first introduced in 2003 by
the 454 company (now Roche-454). It allows rapid, high-throughput sequencing of
short sections of DNA. NGS offers the resolution of, which CE does not, DNA base
resolution. This implies that by using NGS instead of CE to create a DNA profile,

it is possible to obtain a profile with higher discriminating power.

NGS has two major applications de novo sequencing and resequencing. In de novo
sequencing the genome of an organism is sequenced for the first time. Whereas,
in resequencing projects, the genome, or parts thereof, are sequenced only where a
reference sequence is available. The resequenced samples are then aligned to the
reference using an alignment tool. In forensics genetics resequencing is the most

common approach [8]. However, alignment is not always necessary.

Generally alignment in the case of STR regions is quite difficult, as the regions
by nature are highly repetitive (alignment in general can be difficult) and if the
situation is as seen in Figure 1.5 (i.e. we do not see both the forward and reverse
primers or flanking regions), we do in general not know how many repeats occur in
between. In order to avoid this situation we will stick to regions, where the total bp
length (from the beginning of the forward primer to the end of the reverse primer)

will be less than the bp maximum of the machine used.

Forward Primer Forward Flank AATG AATG AATG AATG AATG

AATG AATG AATG AATG AATG Reverse Flank Reverse Primer

Figure 1.5: Two reads with the same repeat pattern, but only containing,

either the forward or reverse primer, of the same locus.

There are a number products on the market that achieves this high-throughput
sequencing and they achieve it in slightly different, yet similar ways. The machines
available to the forensic geneticists at the University of Copenhagen are the Roche-
454 (454), LT-IonTorrent PGM (IonTorrent), and Illumina MiSeq (Illumina). Their
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maximum bp read lengths are 600, 400, and 2 x 250, respectively. In general the
work flow for NGS can be seen in Figure 1.6 (inspired by [9, Figure 2]). That is, the
DNA template is prepared for use, a library is build of the sample, DNA strings are
individually amplified (clonal amplification), and the DNA is sequenced. In order

to show how the methods differ, we will add a little more detail.

/ DNA-template /

L DNA Preparation }

{ Library Build }

|

Roche or IonTorrent Illumina

L Emulsion PCR} { Bridge PCR }

Amplification :

Clonal

Roche IonTorrent

Next-generation : : Semi-conductor : B
;| Pyrosequencing Sequencing-by-Synthesis |:

Sequencing Sequencing

/ Output File /

Figure 1.6: A NGS work flow, given the Roche, IonTorrent, or Illumina,

sequencing machines.



CHAPTER 1. INTRODUCTION

1.5.1 Roche-454

In the 454, the DNA molecules are amplified inside a water-in-oil emulsion (the mix-
ture of two or more liquids that are normally immiscible) PCR. Each water droplet
acts as a microreactor containing the PCR reagents and ideally a single primer-
coated bead with a single DNA fragment. Hence, multiple PCRs can be performed
simultaneously. After the emulsion breaks, the beads are covered in thousands (or
millions) of copies of the original DNA fragment. The beads are then placed in
picoliter-volume wells containing the sequencing enzyme (DNA polymerase). The
454 sequencing process is a parallelised version of pyrosequencing (parallelised as it

can be run on each bead) [8, 10].

The pyrosequencing approach uses unmodified A, T, G and C — dNTPs and add
them sequentially to the growing complementary DNA strand. If a complementary
dNTP is introduced to the next unpaired nucleotide in the original DNA strand,
it is incorporated (pyrophosphate and HT ions are released) into the complemen-
tary strand by the DNA polymerase. In the case of homopolymer repeats, multiple
nucleotides will be incorporated in a single cycle, which leads to a larger amount
of pyrophosphate (and hydrogen ions) being released. Through an enzymatic pro-
cess light is emitted (the amount of light emitted is proportional to the amount of
pyrophosphate released), and is then recorded in a pyrogram, as shown in Figure
1.7.

1.5.2 Life Technology IonTorrent PGM

The IonTorrent is based on the Ion-semiconductor sequencing (ISS) method [11].
The technique is similar to that of pyrosequencing; microwells on a semiconductor
chip containing multiple copies of a single template DNA strand (obtained through
PCR), are sequentially flooded with unmodified A, T, G and C dANTPs. However,
the techniques differ in their detections method. ISS, instead of detecting the py-
rophosphate, uses a hypersensitive ion sensor to detect the release of the hydrogen
ions. As in pyrosequencing, the amount of hydrogen ions released corresponds to a

proportionally higher electronic signal produced by the ion sensor.

10
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Polymerase
C y

Sl 7 er 4 Nucleotide sequence
2 AL T 0aAGaaMe ‘

ey Sl g LT G [ A GG CC T
T CAGaoer 3

N

L] PPI N Sulfurylase
T &
ATP =~

Apy-r';se ' Luciferase

C T A G c T

Nucleotide added

Figure 1.7: Pyrosequencing uses unmodified dNTPs, and try to add them sequen-
tially to growing complementary DNA strand. If a ANTP is incorporated pyrophos-
phate is released, through an enzymatic process light is emitted, and then recorded

as a pyrogram.

1.5.3 Illumina MiSeq

The MiSeq is based on Illuminas TruSeq sequencing method, sequencing-by-synthesis
method [12]. The DNA molecules (and primers) are attached to a slide and am-
plified using PCR, to form DNA clusters. A single fluorescently labelled dNTP is
added to the nucleic chain. Each nucleotide label then servers as a terminator for
polymerisation, i.e. after a nucleotide is incorporated, the fluorescent dye is imaged
in order to identify the base. The dye is then chemically removed and the next cycle

begins [13]. A schematic of the process is shown in Figure 1.8.

All three methods are still depended on PCR amplification to build the library
of the DNA template, i.e. it follows that they will all suffer from stuttering as
explained above. Furthermore, NGS is, as CE or PCR, not perfect and suffers from
misreads, which is why a quality score is computed for each called base. Misreads
are just one artefact of the NGS process, we will introduce artefacts as they present
themselves through the ongoing data analysis. A more comprehensive review of

NGS’s applications in forensic genetics can be found in [9].
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lllumina Sequencing Technology
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Figure 1.8: A diagram describing Illumina’s TruSeq sequencing method. The sample
DNA is attached to a slide and amplified to form clusters. Fluorescently labelled
dNTPs are added to the growing complementary DNA strand and the fluorescent

dye is imaged in order to identify the base.

1.5.4 Data Management

Data analysed in this thesis are sequenced using the IonTorrent, the 454, and Illu-

mina MiSeq. The data in general comes in two parts:

(i) Dilution series: The dilution series is a succession of sequencing runs halving
the sample DNA with each run. Starting at 2ng and ending at 0.05ng, from
two different donors, F and H. Donors for which we know the exact repeat
sequence, alleles, and stutters for every loci used (these true values are seen in
appendix E). Machines used: IonTorrent PGM.

(ii) Reference files: In the case of the reference files we do not know the true
profile. Machines used: Ion PGM, Illumina MiSeq, and the Roche 454.

One set of loci used for the IonTorrent data includes CSF1PO, TPOX, D3S1358,
D5S818, D16S539, D7S820, D8S1179, THO1, vWA, and AMELX/AMELY, also
called the STR-10plex. The 454 is generally used for loci that tend to have longer
alleles, such as locus D12S391 or D21S11.

12



1.5. NEXT-GENERATION SEQUENCING

The output format of the 454 is a FASTA (. £na) file and a quality (. qual) file, while
the TonTorrent and Illumina Systems produces what is called a FAST(Q (. fastq or
.£q) file (a combination of FASTA and quality file). Furthermore, some of the

TIonTorrent reference files come in a .bam-format.

The FASTA format is simply a string, where each character represents a nucleotide.
The quality file stores a quality score for each nucleotide in the sequence. FASTQ
stores both a sequence and its quality score. Each sequence and corresponding

quality score is represented using four lines as follows:

@title (plus optional description)
Sequence line

+optional repeat of title

Quality line

The first and third line is used as identification, optionally they may also contain
a description of the sequence, i.e. the locus, the length of the sequence, et cetera.
The second and fourth line contains, the sequence in a FASTA format and the
quality of the sequence, respectively. The quality score is calculated in different
ways depending on the machine used to sequence the DNA. The quality scores will
be defined in section 2.1. Until then, we will not concern ourselves with the quality
of the read, just the read itself.

1.5.5 Accessing the data with R

The FASTQ format can easily be read into R using the ShortRead package (more
specifically the readFastqg-function) available through Bioconductor [14]:

> LT _Dil_002_F_2ng <— readFastq(file, quality="Auto")
> LT_Dil_002_F_2ng

class: ShortReadQ

length: 286339 reads; width: 8..360 cycles

The nomenclature used in the above code breaks down as follows:

LT: Life Technology (makers of the lonTorrent).

13
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Dil: Dilution; it is part of a dilution series.
002: its a priori designated number.

F: the donor of the DNA.
2ng: the amount of sample DNA used.

The readFastg-function creates a ShortReadQ object containing the sequenced
strings, the length of each string (called width) and corresponding quality of the
sequences, as well as an object containing the title attached to each sequence. They

are accessed using the sread, width, quality, and id functions respectively.

> sread (LT_Dil_002_F_2ng) [1:5]

A DNAStringSet instance of length 5
width seq

] 11 CTATCATCCAT

] 11 CTATCATCCAT

] 11 CTATCATCCAT

] 11 CTATCATCCAT

] 32 CCACTGGGCGACAGAGTGAGACTCAGTCTICAA

a s w N

[
[
[
[
[
> quality (LT_Dil_002_F_2ng) [1:5]

class: FastqgQuality
quality:

A BStringSet instance of length 5

width seq

[1] 11 >:9::/,40,,
[2] 11 ;658>4++ (++
[3] 11 /e66;;8//(./
[4] 11 955//++27 ++
[5] 32 /(////;/=>R222RRQARC<::://, 11y

The objects created by these functions are DNAStringSet and BStringSet objects
(excluding the width function) belonging to the BioStrings package (also found on
Bioconductor). The BioStrings package contains functions optimized for working

with DNA/RNA strings and will be utilized throughout the thesis.

The Roche files contains 24 profiles each, we load them by first setting the directory,
using the RochePath-function, to a pair of (. fna,.qual) files (Note that each folder
should only contain one . fna file and corresponding . qual file). Once the directory

is set, there are multiple function that can be used to read from a RochePath object,
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1.6. DNA PROFILING

we will use the read454-function, as it creates a ShortReadQ object exactly like
the readFastg-function. In order to identify the 24 samples, we use the multiplex
identifiers (MID), included with each file, creating 24 shortReadQ objects per Roche
directory. However, for the most part, the data used in this project will be from
the Ton Torrent PGM, as Roche has announced that support for the 454 will be

discontinued from 2015.

Finally, the .bam files; the .bam file format is a binary format for storing sequencing
data. Each file contains 16 profiles, in order to separate them into . fastgqg files, we
have used the SamToFastq java command line tool from Picard [15, Samtools].
The SamToFastq tool can look in the header of the .bam file and separate the file
accordingly. After the files are separated into . fastq files, we can load them into

R as described above.

1.6 DNA Profiling

DNA evidence used in forensic genetic case work can be split into two categories:
DNA obtained at crime scenes and paternity /reunification cases. The creation of
a DNA profile is normally more difficult in the case of the former, as the sample
may only contain small amounts of DNA (referred to as low template DNA), DNA
from multiple contributors (DNA mixtures), or the DNA may suffer general con-
tamination or degradation. The analysis of a DNA profile will fall into one of two
types: evaluating the strength of evidence for one hypotheses over another and de-
convolution of a DNA profile. In general the strength of evidence, comparing one
hypothesis, in legal casework the prosecutions hypothesis, H,, versus hypothesis of
the defence, Hq, is usually represented by the likelihood ratio:

LR _ L) _ PEIH,) o

L(Ha)  P(E[Ha)

where £ is the evidence. In e.g. a paternity case, H, would claim a man, K, as the
father of the child, while H, claim that either a different man, K5, or an unknown
man, U, as the father. The numerator and denominator can be decomposed as
P(EIH) = >, P(E|g)P(g|H), where g is given genotype, i.e. we sum over all possible
genotypes, or combination of genotypes. It follows that the sum can become very
large. The probabilities of interest, in the decomposed numerator/denominator,

are the probability of evidence given the genotype, P(£|g), as P(g|H) is provided.
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Deconvolution of a DNA mixture is the identification of DNA profile(s) of one or
multiple unknown contributors to the mixture. That is, we try to extract likely DNA
profiles of potential perpetrators from a mixed sample (DNA profiles for unknown

contributors found in this manner can then be run against a DNA database).

As the application of NGS is very new in this context, we will start at the beginning.
That is, in the remainder of this section, we consider the identification of loci and
alleles, examine the reverse complement, define a simple method creating DNA
profiles for uncontaminated single contributor sample, and we will end this chapter

by more clearly defining the objective of this thesis.

1.6.1 Identifying Loci and STR regions

The first challenge is to identify the loci, the alleles on each locus, and the allele
coverage. To identify the locus, L, of a given read S; = {b;1, bz, ..., bin, }, we will
use the flanks seen in Table 1.1. These flanks have the property of being directly
adjacent to the repeated regions (i.e. there is no offset between the flanks and the
STR region), with the exception of the flanks for D151656 and PentaD. The flanks
were identified using the STRait Razor Perl software [16].

We will only consider reads where both the forward and reverse flanks are identified,
as well as reads, where a given locus is not uniquely identified (i.e. more than one
locus has been marked as a match for a given read, implying that the read is too

noisy for further processing). It thereby follows that a locus L can be defined as:
L={S|Fr,Fr €S Fr<Fr,S¢ L VL#L} (1.2)

The condition Fr < Fgr, seen in the definition, is used to indicate that the last
character of the forward flank, F'z, is seen before the first character of the reverse
ﬂank, F’R

As both strands of the sample DNA are sequenced, we should also consider the so
called reversed complements of the flanks. The reverseComplement-function from
BioStrings makes is easy to create these reverse complements from Table 1.1.
However, for now we will ignore the reverse complements, approximately halving

the amount of DNA we would otherwise use.
We see that the gender specific sequences AMELX/AMELY are not a part of Table
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1.1 and is therefore not considered (bringing us down to nine loci in the 10plex).
Furthermore, D15S1656 and PentaD are not a part of the 10plex (if they were in-
cluded, we would have to identify the repeated sequence within the region enclosed
by the corresponding flanks), i.e. it follows, that when trying to find alleles in the
IonTorrent data, we can then divide the length of the identified reads by the motif
length (this is allowed as all loci in the 10plex have the direct adjacency property)

and thereby calculate an allele frequency table for each locus.

Table 1.1: Autosomal STR loci detected by STRait Ra-
zor as seen in [16, Table 1]. The flanking sequences are

directly adjacent to the repeated region, with the excep-

tion of the flanks for D1S1656 and PentaD.

Locus Forward Flank Reverse Flank

CSF1PO | GATAGATAGATT AGGAAGTACTTA
TPOX GAACCCTCACTG TTTGGGCAAATA
D2S441 TCTATGAAAACT TATCATAACACC
D3S1358 | AGGCTTGCATGT ATGAGACAGGGT
D5S818 ATTTATACCTCT TCAAAATATTAC
D13S317 | AGATGATTGATT ATGTATTIGTAA
D18S51 TCCTCTCTCTTT GAGACAAGGTCT
D16S539 | GACAGACAGGTG TCATTGAAAGAC
D7S820 GAACGAACTAAC GACAGATTGATA
D8S1179 | CACTGTGGGGAA TACGAATGTACA
THO1 CCCTTATTTCCC TCACCATGGAGT
vWA GACTTGGATTGA TCCATCCATCCT
D21S11 ATAGATAGACGA AGGCAATTCACT
FGA GAAAGGAAGAAA CTAGCTTGTAAA
D2S1338 | GGATTGCAGGAG AGGCCAAGCCAT
D19S433 | AAGATTCTGTITG AGAGAGGTAGAA
PentaD TTTATGATTCTC TTGAGATGGTGT
PentaE TCCTTACAATTT GAGACTGAGTCT
D10S1248 | TATTGTCTTCAT ACTCACTCATTT
D12S391 | AAATCCCCTCTC ACCTATGCATCC
D1S1656 | TAAACACACACA CATCATACAGTT
D22S1045 | TATTTTTATAAC GAGACTACTATC
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Locating the flanking regions has been implemented in R, an implementation based
on a function made by Mikkel Meyer Andersen. The function outputs the sequence
and quality-reads matched to each loci and versions trimmed to only included the
region between the flanks (from this point forth the notation S; will indicate such a

string).

In general we can then define a given allele as a realisation of the stochastic variable
L. We will denote an allele as A;(L) or A; if the locus is either not important or clear
from the context. The frequency of and allele A; is then given by |A;|. Figure 1.9
shows the frequencies corresponding to locus D16S539, for the LT_Dil_002_F_2ng

sample.

D16S539
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Figure 1.9: A histogram representing the frequency table of the D165539 locus
for the LT_Dil_002_F_2ng sample.

Looking at Figure 1.9, we would, based on frequency, also called the coverage, guess
that F has alleles at 11 and 12 on the D165539 locus (which is in agreement with
the true values). To obtain the remaining genotypes in a similar manner, we need
to account for whether the genotype is heterozygous or homozygous. In the case of
sample LT_Dil_002_F_2ng, we see in Figure 1.9 that the allele coverage of the true
alleles is very high, compared to the remaining candidates. That is we only accept

candidates with high coverage. The DNA-profile for sample LT_Dil_002_F_2ng
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can be seen in Table 1.2.

Comparing the genotypes in Table 1.2 with the true values, we see that they are
all the same with the exception of vVWA, which according to Table E.1 should be
genotype 15,18 (there is in fact no error, it comes down to nomenclature, see e.g.
STRBase [17], we will in this thesis refer to its actual length and account for the
difference through-out our implementations). Furthermore, from this point onwards
all loci, outside gene coding regions, will be referenced using their chromosome

designation only, i.e. D16S539 becomes D16.

Table 1.2: The DNA profile for sample LT_Dil_002_F_
2ng determind based on the frequency of alleles at each

locus.

CSF1PO TPOX D3S1358 D5S818 D16S539 D7S820 D8S1179
Allele 1 | 10 8 14 9 11 8 12
Allele 2 | 12 17 12 12 10 13

THO1 vWA
Allele 1 | 7 17
Allele 2 | 9.3 20

The Reverse Complement

Up until this moment we have ignored the reverse complement and as evident from
Table 1.2 it was easy enough to find the DNA-profile, without using the reverse

complement strings.

That being said, in some cases when not including the reverse complement strings
we can create a huge allele imbalance, as seen in panel (a) of Figure 1.10, showing
the D3 locus for contributor H. H should have a 17,18 genotype on this locus, yet
the coverage of allele 18 is very low. However, looking at panel (b) of the same
figure, we see that by including the reverse complement, the coverage of allele 18

increases dramatically.

In Figure 1.11, we have split each allele into its reverse complement and non-reverse-

complement, to see what proportion of the alleles we can attribute to the non-
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reverse-complement and reverse complement respectively. In the case of allele 17
the percentage of reverse complement reads (RC%) is 4.5%, while allele 18 has an
RC% of 94%.

It follows that in order to avoid creating artificial allele imbalance we should, and

will with the exception of Chapter 2, always include the reverse complement.
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Figure 1.10: A histogram representing the frequency table of the D3 locus for
the LT_Dil_020_H_2ng sample, where the reverse complement strings were

not included and included in panel (a) and (b) respectively.
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Figure 1.11: A histogram representing the frequency table of the D3 lo-
cus for the LT_Dil_020_H_2ng sample. The histogram includes both the
non-reverse-complement strings, coloured in red, as well reverse complement

strings, coloured in blue.
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1.6.2 Single Contributor Samples

If we know that the DNA sample contains a single contributor and is otherwise
uncontaminated, identification is fairly simple, even with small amounts of input
DNA (in this case 50pg). As we see in Figure 1.9 the true alleles will stand out.
That is, all we really need to figure out is whether or not a locus is hetero- or
homozygous. Therefore, we introduce a heterozygosity threshold, ¢, a real number
on the interval [0, 1], which we multiply by the maximum coverage on a given locus.
The DNA profile, seen in Table 1.2, is in fact created using ty = 0.5. We have
no justification for choosing a threshold of 0.5 and we will therefore calibrate the
threshold.

Calibrating the Heterozygosity Threshold

We will examine the drop-in and drop-out rate for a series of thresholds ranging
from 0.01 to 1. Figure 1.12 shows the drop-in and drop-out rate for every potential
threshold, stratified on the amount of initial DNA (ng) used.

To find the optimal threshold, we would like to minimise the number of false positives
(FP) and false negatives (FN). This is part of decision theory, known as minimising
competing goals. The easiest way to achieve this goal, is to enforce a constraint on
one of the variables and then minimise w.r.t. the other, i.e. minimising FN subject
to FP < a. It can be shown, see [18, Appendix A], that the optimal threshold is the
first instance where FP is smaller than «. These thresholds can be seen, marked in
black, in Figure 1.12, for &« = 0. We choose to constrain FP in this manner, as a
drop-in would be more difficult to explain, than a drop-out. In order to understand

why, we first need to examine how a drop-in can occur:

(i) Contamination: Two or more observed alleles that come from a single indi-

vidual.

(ii)) Allele drop-in: Two or more observed alleles that come from a multiple

individuals.

The problem is that these two are indistinguishable from one another. That is, when
a drop-in occurs we will not know whether we are working with a contaminated

profile or a mixture of multiple profiles.
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Figure 1.12: The drop-in and drop-out rates, stratified on the amount of
DNA used in the initial PCR amplification. The black dot represents the first

threshold, where the drop-in is equal to zero.

The overall heterozygosity threshold, ¢y, will be taken to be the maximum of these

thresholds rounded to the nearest 0.05, which in this case implies ¢y = 0.35.

1.7 Obstacles, Objective, and Overview

It is readily evident that the method presented above would not work in the case of
multiple contributor samples. Even a contamination causing a large drop-in would
pose a problem (the drop-in would not even have to be that big just larger than 0.35
times the maximum allele coverage). That is, we need a more comprehensive model
to assess P(€|g). In order to do so, we need to examine the process with which the

data was generated.
First off all, we know that the NGS work flow still relies on the PCR amplification,
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when building the library for sequencing. Therefore, it follows that our data will

suffer the same fate as data generated using CE, i.e. stutters.

Second off, until now we have treated the NGS process as being error free. However,
we know that this is not true. The errors introduced during the sequencing process
(whether it is do to the actual sequencing or the emPCR process is not entirely

clear) can be broken down as follows:

List 1.7.1

(i) A base is miscalled
(ii) A base is skipped (or deleted)

(iii) A base is inserted

Errors of the type, seen in List 1.7.1 item (ii) or (iii), are both referenced to as
indel’s (a combination of the two words insertion and deletion). The effect of item
(i) can be seen in Figure 1.13, where we see the coverage of the observed strings with
repeat length 12 of locus D16, shown in order of prevalence. We see an abundance

of one particular string and a sea of different strings of similar length.

The effect of item (ii)-(iii) can be seen in Figure 1.9, as e.g. the small top seen at
allele 12.1. Even though this type of error is, as mentioned, called an indel, we
will refer to this particular phenomenon as a left or right shoulder depending on
whether the peak is seen on the left or right hand side of the allele, respectively (in
this particular case 12.1 is the right shoulder of 12).

The main objective of this thesis will not be to assess P(€|g), primarily because
NGS is still in its infancy. That is, not a lot of groundwork has been done trying to
account for the errors arising, new or old, within the NGS framework. Our primary
objective is to lay the foundation for future work in paternity and crime scene cases

using NGS. The general structure of the thesis looks as follows.

I will look further into the quality of these erroneous reads in Chapter 2, in order
to assess if the quality can be used to handle such reads. The relationship between
stutters or shoulders and the parent allele (the allele from which they were created) is

investigated in Chapter 3, to confirm the hypothesis that the longest uninterrupted
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stretch, as a predictor for this relationship. That is, I will consider the systematic
noise before I cast a light on the more general noise.
the general noise generated by the NGS process, with the aim of removing non-
systematic noise from our data. A consequence of the methods of removal developed
in Chapter 4 is that allele drop-outs are introduced. The probability of a drop-out
occurring is considered in Chapter 5, where I also impose a distribution upon the

coverage. Finally I have, in Chapter 6, added a few concluding remarks, including

Locus D16: Repeat Length 12
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Figure 1.13: The coverage of unique strings with repeat length 12, of locus
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D16, shown in order of prevalence (from most to least prevalent). Further-

more, the ordinate-axis is shown on log;g-scale.

comments on refinements, extensions, and future work.
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CHAPTER

TWO

QUALITY ANALYSIS

Sequencing is not perfect, which is why a quality score is assigned to the read of
every base. We will start by identifying all unique strings, U;, of every allele, A;(L),
on a locus L (i.e. U; C A;(L)). For each string u € U;, we define indices for the
strings corresponding to u as Z, = {i | S; € U;,S; = u} and the set of strings as
{Si}iez,, or S, for short.

If we think back to Figure 1.13, showing the unique strings of allele 12 on locus D16,
we see a high prevalence of one particular string, and then a lot of strings, with very
low coverage. Figure 2.1 shows the top and bottom four, most prevalent strings,

seen in Figure 1.13.

A way we could handle these erroneous reads, would be to set a coverage threshold,
treating strings with coverage lower than said threshold as noise, removing them
from further analysis. Doing so, however, we could end up removing a lot of data,
depending on the threshold. If the threshold is, e.g. 25 we would on allele 12, seen
above, lose 572 reads. In situations with low coverage across an entire locus, that
might be devastating. Another way to handle such reads, would be to use the quality
of a sequence as a weight when defining the measure used to access potential alleles.

However, first we formally introduce quality scores.
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String Coverage

GATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATA 4031
GATAGATAGATAGATAGATAGATAGATAGATAGATAGGTAGATAGATA 24
GATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGGTAGATA 20
GATAGATAGATAGGTAGATAGATAGATAGATAGATAGATAGATAGATA 18

GATAGATAGATAGATAGATAGATAGTTGGATAGATAGATAGATAGATA
GTTAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATGGATA
GATAGATAGATAGATAGATAGATAGATAGATAGATAGATGGATGGATA
GATAGATAGATAGATAGATAGATAGATGGATAGATAGATAGATATATA

=

Figure 2.1: The top and bottom four, most prevalent strings, and their cov-
erage. The differences between the most prevalent string and the remaining
strings, are shown marked red. Furthermore, the corresponding true base calls

are marked as blue in the most prevalent string.

2.1 Quality Scores

The quality score can be represented in different ways depending on the typing
technology. In general there are two different ways the quality can be calculated,
the Phred and Soleza methods [19]. The typing machines used for this thesis uses
the Phred method, and therefore we will only formally introduce that method.

Definition 2.1.1
The Phred quality score (PQS), QY™ is defined using the estimated proba-
bility of error, P:

Q" = —10log,, (P) (2.1)

The probability of error is usually estimated by a pre-computed lookup-table, which
is distributed with the machine in question. The estimated probability of error uses
n (in the case of the IonTorrent PGM, n = 6 [20]; Ewing and Green, introduced
an algorithm for creating such a lookup-table, suggested n = 4 [21]) predictors of
local quality, to find the corresponding quality score in the lookup-table [20-22].
In the case of Ion Torrent, Py and P5, are based on the noise of the surrounding

bases, creating a kind of moving average across the quality. Furthermore, P; and
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P3, penalise the residual, i.e. the difference between the actual and predicted flow

values [20].

The Soleza quality score (SQS), Q%' is given in a similar manner to that of PQS:

P
Q%™ = —10logy, (1_P> : (2.2)

It follows from definition 2.1.1 that if a base is assigned a PQS of e.g. 30, the
probability of that base being called incorrectly is 1073, in fact a quality score of
j % 10, corresponds to 1077 probability of error, for every j. The full range of the

quality (depending on the score and encoding type) can be seen in Table 2.1.

Even though the two quality scores differ as shown in Figure 2.2, they are equivalent

and conversion between the two is fairly easy, as we see in the following remark.

Remark 2.1.2
(1) Given a SQS it can be converted to a PQS as follows:

QP! = 10log,, (1097/10 4 1) (2.3)

(2) Given a PQS it can be converted to a SQS as follows:

Q%' = 10log,, (109™/10 — 1) (2.4)

Furthermore, it is not just the scoring methods that are different, their encoding
methods differ as well. Ideally the quality scores are stored as a single character
per base. The three standard encoding types are called Sanger, Solexa (and early
[lumina) and Illumina (as Illumina changed from using SQS to PQS, they changed
encoding style as well). All three methods are encoded using ASCII. The range of
said encoding methods are seen in Table 2.1, as well as the corresponding quality

range.

Even though encoding the quality in this manner might seem unnecessary, it is a
way to store what might be double digit number using only one character. Note

that as the quality can only be integers we have discretised the probability of error
P.
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Table 2.1: The encoding and quality ranges for the three

encoding methods.

ASCII Range Quality Range

Sanger (33,126) (0,93)

Solexa (59, 126) (—5,62)

[llumina (64, 126) (0,62)
> Method
% Phred
8‘ 0- — Solexa

0.00 0.25 Pro%;glmy 0.75 1.00

Figure 2.2: The behaviour of Phred and Solexa quality scores given the esti-

mated probability of error.

2.2 Quality Assessment of Strings

We will start by assessing the difference in quality, between the most common vari-
ants of a specific allele, by observing the quality of an entire sequence. More precisely
given a trimmed sequence read (i.e. a sequence containing only the STR region)
S; = {bi1, bia, ..., bin, } with corresponding quality scores Q;. = {qi1, gi2-..}, we define

the quality of the entire sequence read as:

1Si 1/155]
Q(S;) = (1:[ Qij) : (2.5)
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2.2. QUALITY ASSESSMENT OF STRINGS

Using the Z,, we identify the the ten most common strings for each allele on, e.g.
the D16 locus, and plot it against the Q(.S;) as shown in Figure 2.3. The choice of

locus D16 is completely random.

10 1 111
%-3754 2 2 1 1 1 1 1 1 390922 19 17 16 16 14 14 14 13 8 4 3 1 1 1 1 1 1 1

T T?ﬁ@f@f* L

s s § o 0 1 2 3 4 5 & 7 & o 1 1 2 3 4 5 &
113 12 121
%-8 4 2 1 1 1 1 1 1 1 403124 20 18 18 18 16 16 16 14 21111 2 1 1 1 1 1 1 1

;e TW"Q%@Q ILIESEEEE,

20-

’13
©-49 1 1 1 1 1 1 1 1 1

=t L LLL

: | : Lo Coverage Rank Index
Figure 2.3: Boxplots of (s, on locus D16 for the top ten most common strings
in each allele. Alleles with very little coverage has been excluded, as they

would show nothing of use.

From Figure 2.3, we see that the alleles with low coverage (alleles 11.1, 11.3 and
12.1) decrease in mean quality, as we go from most prevalent to 10th most prevalent
string. The alleles with high coverage (alleles 11 and 12), however, seems more
steady, contrary to what we had hoped. Furthermore, the deviation on low coverage
alleles, is higher and more unstable than the high coverage ones and then there are
alleles 10 and 13. Allele 10,13 both seem to be somewhere in between (it is what we

will later classify as a stutter and a backstutter of allele 11 and 12. respectively).

A reason why we do not see a downward trend on the high coverage alleles, could
be a consequence of us only looking at the top ten most common strings. Therefore,
we will look at the top 50 strings for the true alleles, however, as seen in Figure 2.4

the mean and deviance is still very consistent.

In order to more fully understand what is going on, we introduce and examine the

second dimension of quality, the quality of bases.
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Figure 2.4: Boxplots of Q)g, for alleles 11 and 12 on locus D16 for the top 50
most common strings in each allele. Furthermore the maximum number of

base mismatches of the top 50 strings..

2.3 Quality Assessment of Bases

Given n strings, Si, ..., Sy, of similar length m, S; = {b;, ..., bim}, we can define
the quality of a given base B; = {by;,....,bn;}, as Q.; = {qj, .-, qn;}. That is, we
can describe quality in two dimensions. As we did for sequences we can define the

quality of a base as:
|B;| /1Bl
Q(B)) = (H %’) : (2.6)
i=1

The first quality dimension represents the sequences themselves and with the second
representing the bases, as shown in Table 2.2. As we can not, by visual inspection,
obtain any information from the first dimension, as seen in Section 2.2, we will

examine the second dimension.

The representation seen in Table 2.2 gives rise to a quality matrix @); the (i, j)-th
entry of the matrix is quite naturally given by the quality of b;;, i.e. Q(b;;) (or g;;).

Using the second quality dimension, we will look at the quality of mismatching reads
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2.3. QUALITY ASSESSMENT OF BASES

between strings of the same allele, as illustrated in Figure 2.1, by the red and blue
labelled bases. Note that given two identical reads S;, Sx € u the quality of a base,

even though they are identical per definition of u, is not necessarily equal.

Table 2.2: The two dimensions of quality. The first rep-
resented through the strings and the second given by the

bases.

By -+ Bn | Q(S)
Sl bll e blm
52 b21 e me
Sn bnl bnm
Q(B))

To be more precise, we will chose a reference sequence u, € U;, it will be chosen
as the most prevalent sequence of that length. That is, we choose u,, such that
|Zy,| > |Zu|, Yu € U;\{u,}. We then compare the geometric mean quality of bases
for all S; € S,,, with the quality of bases in S; € S, Yu € U;\{u,}. Given rise to
the quality ratio (QR) defined as:

Q(Bj;Iuk)
Q(Bj;Iw«) 7

where Q(Bj;-) is the geometric mean quality of B;, as seen in Equation (2.6),

QR(Bj;ux) = (2.7)

but restricted to the indices provided as the second argument, ie. Q(B;;Z,,) =

]z,
(HiEIuk q'ij) *
the bases that mismatch, i.e. Z,, ., = {j | bxj # brj, bk; € ug, by; € u,}. For such j,

. Furthermore, we can restrict j to be in the set containing exactly

we can define the quality mismatch ratio (QMR) in a similar manner, and denote
it by QMR(Bj; ui). Note that a QR (or QMR) equal to one, indicates no difference
between the quality of the reference and the tested sequence, we would hope that
mismatched bases have a lower quality than the reference, i.e. that the QR is strictly

less than one.

Using the QR and QMR, we examine the difference in quality of bases, between the
most prevalent sequence and all the other sequences variants of similar length (we

will restrict ourselves to the ten most prevalent). Figure 2.5, shows the QMR of the
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nine most prevalent sequences (excluding the reference sequence) of each allele at
locus D16.

Sequence Rank 2 3¢ 4+5¢6-°7 8 9 10

10 11 11.1
2.0-
iL5=

1.0

0.5-

11.3 12 12.1

Mismatch Ratio
S B N
(6} o [6)] o
1 1 1

.....

Quality

13

Base Index

Figure 2.5: The QMR of the ten most prevalent sequences on each allele at
D16, plotted against the base, at which it mismatched.

From the figure we see that the higher coverage alleles (10, 11, 12, and 13) in general
have few mismatches between the reference and the second-to-tenth most prevalent
sequences. Furthermore, we see that the QMR for the high coverage alleles, is pretty
evenly distributed around one. Looking at the plots regarding the low coverage
alleles (11.1 11.3, and 12.1), we see that there is not much sense in handling them
in this manner. The reason being that these alleles occur mostly do to indels. An
11.3 might be a 12 missing a base, however, as it is not the same base being skipped

every time, choosing the most prevalent string as reference does not make any sense.

In order to further examine what is happening we will examine the QR of allele 12,
shown in Figure 2.6, we see that QR of mismatched bases (indicated by blue points)
is generally lower than the QR of matched bases. With that being said it is not
always the case, in some cases the dip in quality happens to one of the surrounding

bases. This is generally caused by the way the probability of error is estimated, as
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discussed in Section 2.1.

Allele 12
2 3 4
13-
1.1-
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5 6 7
S13-
<
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211 Match
‘© -+ Mismatch
309
0.7-
8 9 10

13-

11-

0.9-

0.7= v i i

Figure 2.6: The QR of the second to eleventh most prevalent sequences on the
12 allele (the most prevalent string is used as the reference sequence), plotted
against the base. Blue points indicates a mismatch, whereas the red points
indicates a match, between the base of a given sequence and the reference

sequermnce.

Table 2.3: The difference in geometric mean of the qual-
ity between matched and mismatched bases, for the alle-
les of locus D16.

Allele 10 11 12 13

Match Quality 31.69 31.33 31.33 31.94
Mismatch Quality | 31.06 28.11 26.67 28.82

Difference 0.63 321 466 3.12

If we look at the difference in geometric mean between matched and mismatched
bases, shown in Table 2.3, we see that there is a decrease in quality of only 4.66 on
allele 12, and with the low number of mismatched bases (e.g. one base in 48, when
looking at the second most common string found on allele 12), implies that the

quality of the entire string, as defined by Equation (2.5), will remain quite stable.
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One solution might be to assign the minimum base quality as the quality of the
entire string. However, as seen in Figure 2.7, the quality is so stable that it would

not make a difference.

10 11

375 4 2 2 1 1 1 1 1 1 3909 22 16 14 14 14 13

=T _$$wé;*$5¢ﬁ

10-

‘ 8 5 10 1 2 3 5
12 13
4031 24 20 18 18 18 16 16 16 14 49 1 1 1 1 1 1 1 1 1

B

Qs,

10-

' ' ' ' ' '
4 5 6 8 2

) Cove;;ge Rankllndex

Figure 2.7: Boxplots of Qs, = min{Q(b;;) € S;} on locus D16 for the ten
J

most prevalent strings in each allele. Alleles with very little coverage has been

excluded, as they would show nothing of use.

Why does the quality remain so stable? The answer to that question is that we are
already restricting the quality. To understand why, we will look more generally at

the behaviour of the quality scores, specifically the concept of preferential detection.

2.4 Preferential Detection

The principle of preferential detection is quite similar to that of preferential ampli-
fication (see Section 1.3), in contrast to preferential amplification, the problem does
not stem from the PCR amplification of the template DNA, but from sequencing
of the amplified sample. During sequencing the probability of error increases (i.e.
the quality decreases) with each called base as seen Figure 2.8. That is, we face a
similar consequence to that of preferential amplification; the coverage (and quality)

of longer alleles will be smaller (and worse) than those of shorter ones.
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Figure 2.8: The average quality of all bases of the LT_Dil_002_F_2ng, LT
_Dil_004_F_05ng, and LT_Dil_007_F_005ng samples plotted against the
base. The gray ribbon indicates mean +/— standard deviation of sample

LT_Dil_002_F_2ng.

The effect of preferential detection, on samples LT_Dil_002_F_2ng, LT_Dil_004
_F_05ng, and LT_Dil_007_F_005ng, can be seen in Figure 2.8, as the red, green,
and blue lines, respectively. The figure shows that average quality of a given base
for each sample, and we clearly see the downward trend we would expect and we see
that average quality is fairly stable even across samples. Furthermore, the standard
deviation of the LT_Di1_002_F_2ng sample, indicated by the gray ribbon, seems
quite stable, with the exception of the area around 40-80 bases, and the very last
60 bases. The former is quite interesting, while the later is most likely do to the low

number of observations.

If we look at the base quality of the two alleles on the vWA identified reads (we
choose this locus, as it in general has long alleles and the difference between the
two alleles of our reference profile is large compare to the rest) using the LT_Dil_
002_F_2ng sample, we see, in Figure 2.9, that the quality drops with each base for
both alleles. Furthermore, we see that the longer allele drops faster than the shorter

allele.
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Figure 2.9: The quality plotted against the base. The red points indicate the

average quality of a given base and the red line represents a robust linear fit

(rlm) of the average quality.

The drop in quality between the two alleles, seen in Figure 2.9, is less than a point,
which is not much compared to what is seen in Figure 2.8. In order to more fully
understand what is going on, we need to consider exactly how we have identified
the loci in Section 1.6. When we identify the loci, we do it based on the flanking

regions seen in Table 1.1, because of this, the three statements of List 2.4.1 holds

true.

List 2.4.1

(i) All flanks (both forward and reverse) are twelve bases long.

(ii) We only include reads where we have identified both the forward and

reverse flank.

(iii) We only allow one mismatched base in both the forward and reverse flank.

As we for the moment are not including reverse complement, List 2.4.1 items (i)-(iii),

imply that eleven out of twelve bases, in the reverse flank, has to be called correctly.
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That is, the bases in the reverse flank, of included reads, needs a probability of error
low enough to have at most a single mismatch. Thus we are implicitly restricting
the quality already. This fact is demonstrated in Figure 2.10, where we see exactly
just how little we on average use of the reads on a given locus and thus more fully

answering the question posed at the end of Section 2.3.
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Figure 2.10: The average quality of allBgi;ses of the LT_Dil_002_F_2ng sam-
ple plotted against the base. The red line indicate that the quality was av-
eraged across all reads, whereas the blue line is only averaged using reads
identified as belonging to the vWA locus. The first vertical bar (seen from
the left) indicate the average end of the forward flank, of all reads on the
vWA locus. The last two vertical bars and the corresponding shaded areas
indicates average beginning of the reverse flank, +/— standard deviation, of
the reverse flank, for allele 17 (orange shaded colour) and 20 (blue shaded

colour), respectively, on the vWA locus.

Figure 2.10 also shows that, within the window created by the horizontal bars, the
average quality, of the vWA identified reads, is on average high compared to the
average quality of all reads. Another consequence of preferential detection, that is
also illustrated in figure, is that we might not catch as many of the longer of the

two alleles on a heterozygous locus, creating an imbalance.
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For us to examine this imbalance, we will use the alleles 17 and 20 from locus vIWA
and the LT_Dil_002_F_2ng sample as before and start by identifying the alleles
using the true sequences and the flank regions. We will then trim elements from
the reverse flank one at a time (from last till first), finding the coverage of the two
alleles each time, we do this 13 times (one for each base in the reverse flank plus
one where no trimming occurred), which is also illustrated in Figure 2.11. Using the
coverage we calculate the heterozygote balance in all 13 cases, the coverage of allele

20 over the coverage of allele 17. The coverage and H, can be seen in Table 2.4.

Table 2.4: The heterozygote balance given the number of
bases cut from the reverse flank, as well as the coverage
for both allele 17 and 20 on the vWA locus.

Number of Coverage Coverage Heterozygote
Trimmed Bases Allele 17 Allele 20 Balance

0 7062 5723 0.8104
1 7092 5749 0.8106
2 7927 7906 0.9974
3 7935 7911 0.9970
4 7965 7943 0.9972
) 8053 8088 1.0043
6 8076 8114 1.0047
7 8090 8123 1.0041
8 8126 8150 1.0030
9 8156 8182 1.0032
10 8186 8210 1.0029
11 8198 8225 1.0033
12 8286 8366 1.0097

As seen in Table 2.4, the heterozygote balance tends towards one as we trim more and
more of the reverse flank (the biggest change in H;, happens when trimming exactly
two bases). Furthermore, we see that the coverage of allele 17 with untrimmed
reverse flank is lower than that allele 20 with 12 trimmed bases, even though they

are of the same base length, which is quite curious.

In conclusion we are already restricting the quality, just by locating the STR region
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Run# Forward Flank STR Region Reverse Flank
1 123456789 101112 1234567891011 12
2 123456789101112 1234567891011

13 1234567891011 12

Figure 2.11: An illustration of the trimming experiment performed on the
reverse flank. The length of the STR region in our case is 17 and 20, respec-
tively, with a motif length of 4. We start by not trimming any bases from the
reverse flank, finding the coverage of the entire sequence including forward
flank, the true sequence (for both allele 17 and 20), and the reverse flank. We
then, at the start of the second run, trim the reverse flank removing the last
base and find the coverage of the entire sequence as before, but using this new
trimmed reverse flank. We continue in this fashion until we have removed all
bases in the reverse flank, 13 runs in total. Furthermore, at no point during
this process do we allow any mismatches, in either the forward flank, allele

sequence, or the (trimmed) reverse flank.

of every read. It follows that the remaining reads are of a fairly high quality and
therefore even when a base is called incorrectly, the drop in quality will not be
much when averaged across an entire read. Therefore, we need a more sophisticated

method comparing two unique strings of similar length.

2.5 Comparing Unique Strings of Similar Length

The following ideas are based on the observations made in Section 2.3, more specifi-
cally the dip in quality observed surrounding the miscalled base in Figure 2.5. First
assume that we have m strings of similar length and we would like to determine
the probability that two given strings are equal. A more accurate description of the
assumptions can be seen in List 2.5.1. Note that we use the probability of error
instead the quality, as we want the probability that two strings are equal it seems
more appropriate to use the probability of error (though in reality using the quality

would be equivalent).
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List 2.5.1
(i) We observe m-strings 1, Sa, ..., S, Of similar length, such that s; € Ap(n),

where Ay (n) is all possible alleles on locus L of length n.

(ii) We know the indices for which these strings mismatch, the set of these
indices is defined like so: Z; ; = {k | by, # bjk, Vbir € s;, b1 € s;}.

(ili) We know the probability of errors P, ; corresponding to the strings s; and

Sj.

We define the neighbourhood surrounding the jth base of the ith string, b;;, as:

0(j,t) ={h:h#jh € [max{l,(j —t)};min{(j +1),n}]}. (2.8)

That is, a base b;, is considered a neighbour to b;; if and only if h € 9(j,-). We
will generally choose ¢t = 5, because of the way the probability of error is estimated
by the basecalling algorithm, see Section 2.1. We will write 0(j) instead of 9(j, ),
when the value of ¢ is either clear from the context, or not important. Furthermore,

we define an extended neighbourhood as 9(j,t) = 9(j,t) U {j}.

Given List 2.5.1 items (i)-(iii), we propose that the probability of two strings being
equivalent can be calculated, as the product of the probability of two bases being
equivalent. We do so because the probability of two strings being equivalent can be

seen as the joint probability that the bases are equivalent. That is:

P(Sk = si | sk # SisTii, Pri) = [] P(Bij = bij | Pe)

J€Ly 5
= [ P(B, is called in error | Py, h € d(5))
JE€L i
= W; H Pi(7), (2.9)
J€Lk i

where the probabilities Py(j) will be calculated as:
arg max {th}
Pun heo(g) ([h—jl+1

> (=)

hed(j)

Pr(j) = (2.10)
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A graph of the penalised probability Py, /(|h — j| 4+ 1) as a function of A is shown in
Figure 2.12. Furthermore, the weights w;, seen in Equation (2.9), will be given as

follows:

Pi
O + 0
where ¢; is the coverage of string j. That is, the weight w; is an indication of our

(2.11)

Ww; =

belief in s; compared to Sy.

OISIE

Distance Adjusted Probability

0.25p-

1 1 1 1 1
=5 =4 -3 -2 -1 +1 +2 j+3 i+4 +5

j
Base Index

Figure 2.12: The function used to penalise the probability as a function of the

distance between the current base j and the elements of the neighbourhood.

In order to examine this approach, we will use the two most prevalent strings of
repeat length 20 on locus VWA of the LT_Dil_002_F_2ng sample. We will call
these two strings s; and s;. The coverage of the two string is 102 and 11626,

respectively. The strings are given as follows:

s1: ...TCTG TCTG TCTA TCTA TCTA..., Coverage: 102
Sg: ...TCTG TCTG TCTG TCTA TCTA..., Coverage: 11626

Note that we have truncated the strings, and coloured the mismatching base, which

is base 5 = 20.

The probabilities in the neighbourhood of the mismatching base can be seen in
Table 2.5. The table shows the probability and adjusted probability for an extended
neighbourhood 0(j) setting ¢t = 5 in Equation (2.8). We see from the table that
using the adjusted probability we swift the max probability from 7 + 1 to j for ss.
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Table 2.5: The adjusted and non-adjusted probability of
error of the neighbourhood 9(j) using t = 5 for the two

strings s; and ss.

$1 7—5 - J—1 ¥ J+1 -+ 545
Prob. 6.3e-04 --- 1.3e-03 1.6e-03 1.3e-03 --- 6.3e-04
Adj. Prob. 1.1e-04 --- 6.3e-04 1.6e-03 6.3e-04 --- 1.1e-04

52
Prob. 6.3e-04 --- 7.9e-04 7.9e-04 1.0e-03 --- 7.9e-04
Adj. Prob. 1.1e-04 --- 4.0e-04 7.9e-04 5.0e-04 --- 1.3e-04

It follows from the probabilities given above and Equations (2.9), (2.10), and (2.11),

we obtain the following results:

]P(SQ = 81|51 §£ SQ,ILQ, PLQ) ~ 0.002

(2.12)
P(Sl = 82|81 7& SQ,ILQ,PLQ) ~ 0.362

We see that the probability that s; is actually a variation of sy is just above 36%,
and is more than a hundred times more likely than s, being a variation of s;. These
results are highly depended on the choice of neighbourhood, using e.g. t = 2 would
in Equation (2.12) yield probabilities of 0.003 and 0.456, respectively. Note that
from this point fourth we will generally not use s to represent a string, in favour of

a, as to avoid confusion when referring to samples.

How can we use this probabilities? We could augment the coverage using the prob-
abilities as weights. An idea first mentioned in the beginning of Chapter 2. Or if
the probability that one string is a variation of another is above some threshold
Tprob, €.g. 0.05, we could simply remove it from further consideration. In a mixture
scenario the probability could help identify whether a string is due to an error in
the NGS process or another contributor besides the primary donor. We will let the
subject lie for now, in order to take a closer look at some of the systematic noise

generated by the NGS workflow, namely stutters and shoulders.
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THREE

STUTTER ANALYSIS

We know from Section 1.4 that amplifying the template DNA using PCR creates
stutters in the amplified samples. A consequence of this phenomenon is that, if the
difference between the two alleles is one, then the observed coverage at the smaller

of the two alleles contains stutter from the larger allele, after amplification.

In order to be more accurate, if we let A; and A;,; be the alleles before amplification,
with stutter frequencies & and &, 1, respectively. Let the coverage of A;, before PCR
amplification, be denoted as ng(O), then the observed coverage, of A;, in the (c+ 1)th
cycle is !

(2

=(1- 52-)9050) + &HQOEi)l. The concept is illustrated in Figure 3.1.

Another thing worth noting is that we, because of NGS, have an additional condition,
namely that the strings of the two alleles needs to be equivalent, in order for them to
stack as seen in Figure 3.1. Equivalence in this context is more specifically defined
as follows: let a; and a;;; be the true strings of allele A; and A; 1, respectively,
then a; and a;y; are equivalent, if the stutter of a;,; is equal to a;. This additional

condition implies that the situation illustrated in Figure 3.1 will not be as common
in NGS as it was in CE.

In the context of assessing P(€|g) and the possibility of multiple contributors, assume
that A; and A; are the true alleles. If j —1 > ¢ and we observe j — 1, we then

need to identify whether the coverage ¢,_; is primarily caused by stutter from A; or
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i1
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Figure 3.1: A simple illustration of the observed coverage of A; and A;, after

(¢ + 1) cycles of PCR amplification. The orange and blue colours indicates
(c (

contribution from ¢; ) and <pic), respectively. The arrows indicate stuttering

with frequency &; and & for A; and A;,4, respectively.

another contributor to the sample. Therefore, we would like to estimate the stutter
frequency &, also known as the stutter ratio. The stutter ratio, SR, is defined as

follows:
SR = @Stutter. (31)

PParent

We know from Section 1.4 (more specifically [5, 6]), that stuttering increases with
allele length, i.e. the stutter ratio increases, this at least holds for simple repeat
patterns. However, when working with a compound (or complex) repeat or a mi-
crovariant, it has been hypothesised that stutter ratio is more correlated with the

the longest uninterrupted stretch (LUS) [5].

The LUS is defined as the longest stretch of simple repeats within the allele. When
using CE, one would have to make an educated guess at the value of the LUS, as
only the fragment lengths are observed. However, as we, by using NGS, have base
resolution, we can actually calculate the LUS explicitly. Figure 3.2 and 3.3 shows

the SR against allele length and LUS, respectively.
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Figure 3.2: Boxplots of stutter ratio against the number of total repeats in

the parent allele for all loci in the IonTorrent and Roche reference files.
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Torrent and Roche reference files.

We will use the IonTorrent and the Roche reference files described in Section 1.5.4.

We specifically want to include the Roche files in this analysis, as the loci used

20



generally contain longer alleles. In order to illustrate the difference between allele
length and LUS, we have, in Figure 3.4, shown a boxplot of the SR against both
potential explanatory variables, for the THO1 locus (recall, as mentioned in Section

1.2, that ~ 34% of the Danish population have the 9.3 microvariant on this particular

locus).
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Figure 3.4: Boxplots of stutter ratio against the number of total repeats in

the parent allele and LUS, respectively, for the THO1 locus.

Figure 3.4 shows that the relationship between the SR and LUS is fairly linear, with
an R? = 0.7075. That would hold for allele length as well, if we disregarded allele
9.3, however, as it stands it achieves an R? = 0.0403. The median of the SR, on
allele 9.3, is more in line with that of allele 6. The LUS of allele 9.3 is in fact 6, as
[AATG|gATG[AATG];3. This is why LUS has been proposed as better predictor of
SR, than allele length.

In order to better describe this relationship, we fit two simple linear models, and as
this relationship is locus dependent, see e.g. [6, 23], the models we are considering

take the following form:
log (SRU) — 6@',1 + ﬁi,inj —+ 81']', (32)
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where €;; ~ N (O, ij), 1=1,...,k, j =1,...,n;, with k being the total number of loci,
and n; the number of observations on locus ¢, making X;; the j’th covariate (allele
length or LUS) of the ¢'th locus, and SR;; the stutter ratio of the corresponding
allele. We fit the logarithm of SR;;, because a sum is generally easier to fit than a
quotient. Note that we do not weight the variance using 1/@paent j, as suggested by
[24, Section 2.2]. The intercept and slope estimates of the two models, can be seen

in Table 3.1.

Table 3.1: The intercept and slope estimates for each

locus of the allele and LUS covariate models.

Allele Length LUS
Locus Intercept SE  Slope SE | Intercept SE  Slope SE
CSF1PO -4.7817 0.1246 0.1757 0.0112 -4.7946 0.1246 0.1770 0.0113
TPOX* -5.9936 0.0795 0.2470 0.0086 -5.9936  0.0795 0.2470 0.0086
D3S1358 -5.1203  0.0983 0.1685 0.0052 -4.5963 0.1619 0.2136 0.0129
D5S818 -5.1881 0.1687 0.2190 0.0146 -5.0053  0.1774 0.2035 0.0154
D16S539* -5.2934  0.1042 0.2228 0.0093 -5.2934  0.1042 0.2228 0.0093
D7S820%* -5.2546  0.1001 0.2136  0.0099 -5.2546  0.1001  0.2137 0.0099
D8S1179 -3.5951 0.1322  0.0747 0.0103 -4.4014 0.1779 0.1546  0.0156
THO1 -4.2860 0.1424 0.0248 0.0174 -6.1276  0.0804 0.3002 0.0117
vWA -4.8717 0.3739 0.1267 0.0202 -4.5482 0.1001 0.1766 0.0086
D21S11 -2.9706 0.3130 0.0242 0.0079 -3.3428 0.1733 0.1139 0.0149
D12S391 -3.9636 0.0932 0.0915 0.0035 -2.8099 0.0602 0.1034 0.0049

*Loci with equal parameter estimates implying that the loci contains only

simple repeats.

We see, by looking at the estimates in Table 3.1, that the estimates for some of
the loci (marked with an asterisk) are the same, implying that the allele length and
LUS on these loci are identical, i.e. the sequences on those alleles consists of entirely

simple repeats, where the LUS and parental allele designation coincide.

In order to examine the fitted model, we have plotted the residuals and made a

QQ-plot of the residuals, in Figure 3.5 and 3.6, respectively.

Looking at Figure 3.6, we see that the distribution of the residuals have very heavy
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tails, which is also seen in [23, Figure 3|. In order to account for the heavy tails we
will try to fit a mixture model with equal mean, and a gamma-model using log as a

link function, in accordance with [24].

Residuals

) ) ) )
0 10000 20000 30000 40000
Parent Coverage

Figure 3.5: Residuals against coverage. The red and blue points indicates a

model using allele length and LUS as explanatory variable respectively.
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« LUS

Sample

| | |
- 0 2
Theoretical

Figure 3.6: Q-Q plot of the residuals. The red and blue points indicates a

model using allele length and LUS as explanatory variable respectively.
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CHAPTER 3. STUTTER ANALYSIS

3.1 The Mixture Model

The mixture model will consist of two variance components, €1y ~ N (0, 022(1)> and

gi2) ~ N (O, Ufj(z)), with a mean given by:

i = P + Baitij. (3.3)
Given these two components, the mixture model is given by:
SRij = pij + (1= 2)eii0) + 28452, (3.4)

where z € {0,1} and P(z = 1) = 7. Let ¢y, (y) denote the normal distribution with
parameters 0 = (1, af(k)), then the density of SR;; is given by:

gw(SRy;) = (1 — m)de, (SRi;) + w¢a,(SRij), (3.5)

where W = (5,07, 05y). However, fitting the variance parameters using max-
imum likelihood under this model would be rather difficult, as the log-likelihood

function of ¥, given n; observations on the 7th locus, would look as follows:

(W SR,) = S log (1 — m)a, (SRyy) + w66, (SR,)) (3.6)

j=1
If we somehow knew the value of z;, everything would be easier as z; = 0 would
imply SR;; ~ N (uij,af(l)) and z; = 1 would imply SR;; ~ N (,uij,af(z), yielding
the following likelihood function:

2

L(¥; SRy, z) = [[ (1 — )¢, (SRij)) 7 (n¢0,(SR))™ ,

j=1
given this likelihood function the log-likelihood is greatly simplified:

Uz

((P; SRy, z) = Z(l — zj)log (¢e, (SRij)) + zjlog (pe, (S Rij))
=t (3.7)
+> (1= z)log (1 — m) + z;log ().

i=1
However, the values of z; are unknown; we will proceed in an iterative fashion, by

substituting z; with its conditional mean given ¥ and SR;;:

where W* is the current parameter estimates (z;" is also called the responsibility
of component two for observation j). We will then maximise the parameters of ¥
using z7. This procedure is known as a special case of the expectation-maximisation

(EM) algorithm.
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3.1. THE MIXTURE MODEL

3.1.1 A Special Case of the EM Algorithm

We will only need a special case of the algorithm; as we have a two component
Gaussian mixture model, the algorithm simplifies. The algorithm, seen in Algorithm
3.1.1, simplifies even further in our case, as the mean value structure is assumed to
be identical in both components. We return to the general EM-algorithm in Section
5.3.

Algorithm 3.1.1 (Special case of the EM Algorithm.)

(1) Make initial guesses of the parameters in W* = (fi;j, 671y, G7j(2), )
(2) E-step: Calculate the responsibilities z7.

(3) M-step: Calculate the weighted means, variances, and mixing probability

using the updated responsibilities.
(4) Repeat steps (2) and (3) until |[((¥*; SR;, z*) —{(¥; SR;, z)| < €, where
((P*; SR;, z*) and /(¥; SR;, z) are the log-likelihood functions, using

the current and previous parameter estimates, respectively.

All there is left is to calculate the updated parameters in the E- and M-steps,

respectively.

The E-Step:

The responsibilities are easily calculated as:

P(SRy;|Z; = 1, %)P(Z; = 1|¥*)
P(SR;; |0

Toa, (S i)
(1 —7)¢o, (SRij) + e, (SRij)

The M-Step:

Inserting the density functions ¢g, and ¢g,, in log-likelihood function seen in Equa-
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CHAPTER 3. STUTTER ANALYSIS

tion (3.7), yields:

U(U;SR;, z) x i {—(1 — %)

( ]2 MJ) +log(0§(1))]

i=1 2 %i(1)
zj | (SRij — ij)? 2

+3_(1 = z)log (1= 7) + zlog (x)

We then maximise the log-likelihood function, with respect to the parameters of ¥,

by differentiating Equation (3.8), with respect to each of the parameters:

: — T T _
The mean can be written on vector form as p;; = @;;8;, where x;; = [l z;;] and

Bi = [B1i B2]". Furthermore, from the chain-rule we know that:
OU(W; SR, z) (0w 0U(¥; SR, 2)

0B B 0B; Op;

We therefore start by computing 0¢(W¥; SR;, z)/0p;:
8€<‘I’,SRZ,Z) (1 —Zj) Zj
Ot zg: % Yy T
1

-2 2 Z ((1 - Zj>ai2(2) + Zjai2(1)> (SRij - Mz‘j)-

i) %i2)

. (3.9)

T
75

Inserting the result above and du;/08; = x;., in Equation (3.9) we see that (written

in matrix form):
0= X"Z(SRi— B,),

where Z is a diagonal matrix with ((1 - zj)af@) + zja?(l)) as entries. It follows that

the estimate of 3; become:

B;=(X"7*X)"'X"Z*SR,. (3.10)
The variance estimates 77,, and 77, found as follows:

0U(W: SR, 2) iu_zj)( 1 +(SR”_M)2>

2 T 5 2 4
aai(l) j=1 202’(1) 2‘%’(1)
1o 1o
= — > (—z)+ > (1 —2)(SRy; —py)* (3.11)
205y i3 2054y i3
0o? - sz (202 + 2j04 :
i(2) j=1 i(2) i(2)
1 & 1 &
= — > 24+ —— (SR — )% 3.12
20?(2);'2]"‘20?(2);'21( i — Mij) ( )

26



3.1. THE MIXTURE MODEL

setting Equations (3.11) and (3.11) equal to to zero and multiplying them by 20;.1(1)

and 207, respectively, we obtain estimates of 0,y and o7,:

o (1= 2) (SRy; — i)

Oi1) = (3.13)
ZJ: L= ZJ
"i2f (SR — fig)”
AZQ(Z) _ Z]_l i (n J /“L]) (314)
Zj;1 Z}'k
The mixture parameter 7 is found fairly easily as:
o(¥; SR;, z) Z_ i_z—ﬁ—i-ﬂzj—kzj—ﬁzj_z Zj—m
on . 1—7T 7T_j (1 —m) —j 7(l—m)’
implying that the estimate of 7 is:
T=>» -1 (3.15)
j=1 "

Fitting the model using the EM algorithm, we use the regmixEM-function from the
mixtools package. The regmixEM-function takes a parameter arbmean, that if set
equal to FALSE assumes that the regression coefficients of the two components are

equal. The parameter estimates can be seen in Tables 3.2 and 3.3.

Table 3.2: The parameter estimates of the Gaussian mix-

ture model, using allele length as explanatory variable.

Locus m; Intercept  Slope i Oio

CSF1PO | 0.7465 -4.7868 0.1762 0.1535 0.2002
TPOX 0.5435 -5.9936 0.2470 0.1752 0.1752
D351358 | 0.6516 -5.1516 0.1704 0.1764 0.3244
D5S818 | 0.7811 -5.1658 0.2162 0.0492 0.2020
D16S539 | 0.8568 -5.2849 0.2214 0.1185 0.3383
D75820 | 0.8803 -5.2874  0.2162 0.0794 0.2272
D8S1179 | 0.5389 -3.5647 0.0694 0.1369 0.3211
THO1 0.8009 -4.2860 0.0248 0.3908 0.3908
vWA 0.6626 -5.1531 0.1398 0.1274 0.8238
D21S11 | 0.5061 -3.2585 0.0314 0.2212 0.4168
D12S391 | 0.9947  -3.8980 0.0891 0.2112 1.1353
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Table 3.3: The parameter estimates of the Gaussian mix-

ture model, using LUS as explanatory variable.

Locus m; Intercept  Slope Oil Oio

CSF1PO | 0.6734  -4.8013 0.1776 0.1486 0.1969
TPOX 0.5226 -5.9936 0.2470 0.1752 0.1752
D351358 | 0.5849 -4.6074 0.2147 0.3251 0.4143
D5S818 | 0.7086 -5.0891 0.2094 0.0575 0.2271
D16S539 | 0.8568 -5.2849 0.2214 0.1185 0.3383
D7S820 | 0.8811 -5.2879 0.2164 0.0793 0.2271
D8S1179 | 0.7037  -4.4604 0.1557 0.1186 0.3886
THO1 0.5209 -6.1352 0.3006 0.1583 0.2219
vWA 0.75564  -4.5771 0.1720 0.1287 0.6021
D21S11 | 0.5936 -3.3270 0.1124 0.2137 0.3700
D125391 | 0.8991 -2.8796 0.1084 0.2017 0.4904

Figure 3.7 shows QQ-plots of the residuals with respect to the two mixture models.

The QQ-plots looks very similar.

log Mixture
Models

Allele
« LUS

Sample

=)=

| |
-2 0 2
Theoretical

Figure 3.7: QQ-plot of the residuals, with respect to the mixture models using
allele length (red) and LUS (blue).
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3.2. THE GAMMA MODEL

3.2 The Gamma Model

The gamma model assumes that SR;; ~ ['(c;,n;;), where o;; and n;; are the shape
and scale, respectively. Note that the scale is sometimes denoted as [, however,
we have chosen 7, as to avoid confusion w.r.t. the regression coefficients. Given
SRy ~ T(aij, nij), we have E [SRy;] = aumy; and Var [SRy;] = ayn;;. This gives rise
to the mean/dispersion parametrisation, where E [SR;;] = p;; and Var [SR;;] = p;;¢.
It is evident from this representation, that the gamma model can be used to capture
over dispersion in the data. Furthermore, when fitting the model, we will use the

logarithm as a link function for the gamma distribution. That is,
log (11i7) = E[log (SRij)] = Bi1 + Bi2Xij,

where X;; is once again either the observed allele length or the LUS. Using a log-link
implies that the variance will equal exp (8;1 + (i 2X;;) ¢. The two gamma models
are easily fitted using the glm-function in R, and the intercept, slope, and dispersion

are seen in Table 3.4.

Table 3.4: The intercept, slope, and dispersion estimates

for each locus of the allele and LUS covariate gamma

models.
Allele Length LUS
Locus Intercept  Slope ¢ | Intercept  Slope [0)
CSF1PO -4.7762  0.1765 0.0285 -4.7886  0.1777 0.0283
TPOX -5.9644 0.2455 0.0314 -5.9644 0.2455 0.0314
D3S1358 -5.1182  0.1705 0.0812 -4.3668 0.2008 0.1367
D5S818 -5.2070  0.2221 0.0345 -4.9001 0.1960 0.0464
D16S539 -5.3087 0.2255 0.0337 -5.3087 0.2255 0.0337
D7S820 -5.2624  0.2168 0.0490 -5.2626  0.2168 0.0490
D8S1179 -3.6067 0.0783 0.0787 -4.3958 0.1566 0.0732
THO1 -4.3887 0.0475 0.1780 -6.1052  0.2997 0.0417
vWA -3.5738 0.0629 0.3452 -4.5499 0.1818 0.1831
D21S11 -2.7404 0.0198 0.1344 -3.3900 0.1223 0.1123
D12S391 -3.8651 0.0887 0.0505 -2.6780 0.0951 0.0636
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We see from Table 3.4, that by using the LUS instead of the allele length, we lower

generally lower the dispersion parameter, on loci such as THO1, vWA or D21.

3.3 Comparing the Stutter Models

In order for us to compare the models discussed above, we will examine the mean
square error (MSE). The MSE will be locus specific, as we saw in Table 3.1 that
the models will equivalent on some of the loci. Furthermore, we will exploit that
we know the references are of Danish origin, and that we know the allele frequency
within the Danish population, these frequencies have been provided by Susanne
Lunge Friis (the results have not yet been published and are therefore not included
in this thesis). That is, we are looking at an expected MSE (EMSE), of locus L,

defined as follows:

EMSE; = Y pu, (SRu; — SRy;) . (3.16)

JeA(L)
where py; is the observed allele frequency in the population, A(L) indicates observed
alleles on locus L, S_RLj is the median of SR across the jth allele on locus L.
Furthermore, @Lj will be the predicted value of jth allele on locus L, using either
the allele length or the LUS. As the LUS of an allele can take multiple values, we

will use the mean across the allele.

Table 3.5, shows that for loci where the LUS and allele length differ greatly, i.e.
THO1 and vWA, we can achieve a smaller error, by using the LUS. Furthermore, we
do not see much difference in EMSE between the simple linear model, the Gaussian

mixture model, or the gamma model.
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Table 3.5: The EMSE of the linear models and Gaussian
Mixture Models using allele length and LUS as covari-

ates.

Simple Linear Model Mixture Model Gamma Model

Locus Allele LUS Allele LUS Allele LUS
CSF1PO | 2.912e-03 2.917e-03 | 2.912e-03 2.921e-03 | 3.214e-03 3.246e-03
TPOX 6.272e-04 6.272e-04 | 6.272e-04 6.272e-04 | 1.043e-03  1.043e-03
D3S1358 | 8.355e-03 1.162e-01 | 5.753e-04 6.763e-03 | 1.081e-02 1.744e-01
D5S818 | 1.137e-02 1.171e-02 | 1.052e-02 1.101e-02 | 1.322e-02 1.358e-02
D16S539 | 6.100e-03 6.100e-03 | 4.414e-03 4.414e-03 | 6.870e-03 6.870e-03
D7S820 | 3.391e-02 3.390e-02 | 1.724e-02 1.721e-02 | 3.354e-02 3.355e-02
D8S1179 | 1.917e-02 1.300e-02 | 5.292e-03 3.356e-03 | 2.451e-02 1.838e-02
THO1 9.235e-02  4.026e-03 | 9.235e-02 4.163e-03 | 6.978¢-02 3.755e-03
vWA 5.094e-01 2.256e-01 | 5.451e-01 2.655e-01 | 4.305e-01 2.052e-01
D21S11 | 2.048e-01 1.341e-01 | 2.069e-01 1.353e-01 | 1.933e-01 1.182e-01
D12S391 | 3.254e-01  3.505e-01 | 3.295e-01 3.425e-01 | 3.372e-01  3.692e-01

3.4 Shoulders

We will start out by treating the shoulders, as we did the stutters, namely by
assuming that there is a linear relationship between the shoulder ratio (defined in
analogue to Equation (3.1), using shoulder coverage). Figure 3.8 shows boxplots of
the the shoulder ratio plotted against the parent allele length, for each locus in the

TonTorrent data.

As seen in Figure 3.8 the relationship between the shoulder ratio and the parent
allele length is maybe not as clear, or non-existing. Furthermore, we see on the
reference files, as on the dilution series, that the shoulder ratio on the CSF1PO

locus, is a lot higher than any other locus.

As the figure does not show use anything, other than the difference in shoulder ratio
between loci is substantial, we will set locus depend thresholds, based on the median

shoulder ratio plus three times the standard deviation. The resulting thresholds can
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be seen in Table 3.6 and are represented by the blue line in Figure 3.8.
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Figure 3.8: The shoulder ratio plotted against the allele length of the par-

ent string, for each locus on the lIon PGM reference samples. The blue line

represents the locus specific thresholds seen in Table 3.6.

Table 3.6: The locus specific shoulder thresholds.

CSF1PO TPOX D3S1358 Db5S818 D16S539 D7S820 D8S1179

THO1  vWA

0.2267 0.0455

0.0269  0.0875 0.0383

0.0196

0.0767 0.0474 0.1067
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CHAPTER

FOUR

NOISE ANALYSIS

The easiest way to deal with the observed noise, i.e. the insertion, deletions and
erroneously called bases, would be to simply enforce a threshold upon the coverage,
limiting ourselves to strings with a coverage above the threshold. The concept is
well known from CE, where the threshold of 50 RFU (relative fluorescence units).
The reason we enforce a threshold is that, in a mixture scenario, we would otherwise
have to account for the observed drop-ins (which would be numerous, even with some
being classified as stutters or shoulders) by allowing for a large number of unknown
contributors. In a naive approach to creating such a thresholds, one removes every
string with 5%-10% of the total coverage of a given locus. However, we would instead

like to model the string coverage on a given locus.

As the coverage of a string, is just a synonym for the number of occurrences of said
string, we will use the negative binomial distribution. We use the negative binomial
and not the Poisson distribution, as the Poisson distribution assumes that the mean
and variance are equal. If we look at the coverage counts on a given locus, we will

see an abundance of one’s, as evident from in Table 4.1.

Our approach to modelling the noise, will therefore resemble modelling data with
excess zero’s, i.e. zero-inflated count models (in our case the zero-inflated negative
binomial (ZINB) model [25]), which we will extend to a k-inflated negative binomial
model, specifically using k = 1.
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Table 4.1: The counts of coverages on the CSF1PO locus

of the LT_Di1_002_F_2ng sample.

Coverage 1 2 3 4 5 6 7 8 9 10 11 12 13

Count 508 62 37 26 12 15 12 7 3 5 5 10 6

14

Coverage 15 16 17 18 19 20 21 22 25 26 27 32 33 34

Count 3 4 6 1 3 d 4 1 1 2 2 1 2

Coverage 35 44 49 60 64 133 159 170 183 224 414 699 6882 8196

Count 1 1 1 1 1 1 1 1 1 1 1 1 1

1

4.1 k-Inflated Negative Binomial Model

The general idea of the k-inflated negative binomial (KINB) model, follows directly
from the ZINB, that is it is a two component mixture model. The first compo-
nent models the excess frequency of k’s, while the second component models the
remainder according to a negative binomial distribution. It should be noted, that
the second component also generates k’s, i.e. the word ezcess, used when describing
the first component should be taken quite literally in this context. Furthermore, we
assume that k is the smallest possible value. The two components can be described

more precisely as follows:

7+ (1 —7m)f(k;0,N), ifx =k

(L—m)f(z;0,)), if x>k (4.1)

flz;0,\, 7, k) = {
where z is a non-negative integer, A is the mean, € is the shape parameter (sometimes
referred to as the dispersion parameter), 7 is the mixture parameter, and f(-;6,\)
is the probability mass function (pmf) of the negative binomial distribution. We
will use the mean parametrisation, i.e. it follows that we use the following pmf the

negative binomial distribution:

‘ 0 \'TO+2)( x \°
f(m’g’”:@ﬂ) 210(0) <0+/\> ' (42)

A consequence of the restriction x > k is, that we are not only looking at a k-inflated

model, but also a £ — 1 and k truncated model, for x = k and z > k, respectively.
That is, we have to substitute f(z;0, A, k) with g(z;0, A, k), where g is the truncated
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distribution function (tdf) given as follows:

f(@:0,))

9(x:0, A\, k) = P(z]z > k) = 1= F(k:0,3)

(4.3)

where F'(+;0, ) is cumulative density function (cdf), of the negative binomial distri-
bution. The cdf of the negative binomial distribution can be written as F'(k; 0, \) =
1 -1 (k+1,0), where I

A0 A+60
see Appendix Section A for more details.

(k + 1,0) is the regularised incomplete beta function,

4.1.1 Implementation of the KINB Method

We will consider two implementations of the KINB method: A direct maximum
likelihood approach and what we will call the weighted fractile method, maximising
the parameters based on two fractiles of the distribution, to isolate the extreme

values (the alleles, stutters, and other systematic noise).

The Maximum Likelihood Approach

The first implementation of KINB (the kinb-function), is based on the zeroinfl-
function from the pscl-package. The kinb-function, can handle truncation through
the truncation-argument. If TRUE the log-likehood function is truncated as seen in
Equation 4.3. The zeroinfl-function uses the optim-function with a pre-calculated
gradient function of the log-likelihood, which as a consequence of the extension and
truncation has to be recalculated. The log-likelihood of the truncated KINB model

can be written as follows:

00, A ma k) = 3 log(r+(1—m)f(k:6, )
B it (4.4)
+i;¢klog((1 —)) + log (M)

We can expand Equation (4.4), using the pdf of the negative binomial distribution
and differentiate with respect to the parameters 6, A, and w. We split the differen-
tiation into two parts, i.e. for z; = k and z; # k, creating a vector for each case, the
gradient then becomes the sum of these two vectors. We will begin with the simpler
case, r; # k:
(O N, 524, k) 0+x; =z O
= [log (

o I I U W3

I (k;+1,0)>}

A
A+0
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MO, N\, ;24 k)
00

o 5 log (D0 + )]

— s los O] - 5 flog (1.1, (6 +1.0))]

=log(#) —log (0 + )+ 1—

86(9,)\,7r;x¢,k)__ 1
or o 1l-n

For x; = k we need to differentiate the logarithm of sums:

oUO, N\, w2, k) exp(log (1 — ) +log (f(k;0,)))) ( 0+k k:)
O 7w +exp(log(1—7)+log (f(k;0,))))

B ESED

U0, N\, m;xi, k) exp(log (1 —7) +1log (f(k;0,1)))

00 7w +exp(log (1 —m)+log(f(k;0,))))
X {log (0) —log (0 + X)) +1— z::—_]; + (‘368 [log (T'(0 + k))] — 889 [log (F(Q))]}
(1 _exp (log (1 — ) + log (f (0, A))))
o0, N\, m; 2, k) 1—m

on ~ m+exp(log(l—7)+log(f(k;0,N))

The only thing missing is to insert the derivatives of log (I'(d + k)), log (I'(6 + x;)),
and [ 2 (k4 1,0). Neither of these expressions is easily differentiated, however,
the derivative of the logarithm of the gamma functions, is a well known function
known as the digamma function and approximations of the digamma function has
been implemented in R. As for the derivatives of the incomplete regularised beta

function, I » (k+ 1,0), they can be found in Appendix A.

A
A+6
The Weighted Fractile Approach

The weighted fractile approach will be implemented using an EM mixture model
angle. The log-likelihood function of the KINB model, seen in Equation (4.1), can

also be written as a mixture model, in accordance with [26], as follows:
O\ mx,z) => zlog(m)I[z; =k|+ (1 — z)[log (1 — m) f(z:;0,))]  (4.5)
i=1

Maximising the log-likelihood, we turn to the EM-algorithm and therefore take a
closer look at the E- and M-step.
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E-Step:
Using Equation (4.5) we can find z*, as we did in Section 3.1.1:
7l [z; = k]
*=E [z, 0,\ 7] = 4.
e e o B T [E Y o
M-Step:

The parameter 7 is updated by maximising the m-restricted log-likelihood function
Cr =30 zilog (m) L [z; = K]+ (1—2z;)log (1 — m). It follows that the derivative w.r.t.
T is:

oly Az, =k 1— 2z

"z
o = 2 -

T l1—m

1]1 [J]Z = ]{7] — 7TZ,‘]I [ZEZ = ]{?] — T+ T
(1l —m)
=2 (1 —m)

implying that the estimate of 7 is:

I

P 2 [z = k]

=1~

i 1= 21z # k]

T = (4.7)
In order to find § and A, we could maximise ¢y, = >1* | (1 —2;)log (f(x;; 0, \)), with
respect to @ and A. However, as the aim is noise filtering and we want to isolate
the high coverage strings, we fit the parameters A and 6 based on two fractiles. The
fractiles will be weighted by 1 — 2 in accordance with ¢y x. The fractiles used for
fitting the model is given as pair ¢ = (Giower, Gupper)- AS a consequence, we are no
longer working with the MLE of the parameters. That is, we are no longer ensured

non-decreasing log-likelihood values in the iterations of the EM-algorithm.

The lower fractile will be set to 0.1, as the excess one’s are already handled by the
first component, and we will use 0.9 for the upper fractile. The upper fractile was
found by experimenting with different values choosing what seemed the most appro-
priate. We then calculate the corresponding weighted fractiles g* = (qjp,ers Gurpper)

based on our data, and minimise the following function, using solnp in R:

Bower Tpper 2
L<qw7q7/\79) = ([{ Z f(Zu/\78)} — Qlower { Z f(Z,/\,Q)} _QUpper]) s
=1 i=1

where f(-; A, 0) is the density of the negative binomial distribution. Analogous to
the non-mixture approach we switch f(-; X, 8) with f(-;X,0)/1\/ 040/ (k,0), ie. the

_|_

truncated negative binomial distribution.
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We have in Appendix B examined how well these two methods estimate the pa-
rameters of simulated one inflated (and zero truncated) negative binomial data.
We examine both a truncated and non-truncated kinb-function, as well as a trun-
cated weighted fractile function, called fitnbinom.weighted.truncated. A non-
truncated version of the weighted fractile method has also been implemented, the
fitnbinom.weighted-function, and tested. However, we have not included it in

this project, due to inferior performance.

4.2 Noise Threshold

Using the estimates of the mean and size parameters (A and 6 respectively), obtained
from the kinb-method, we will create a noise threshold, ™"  in order to filter out
anything that is noise components and not observations caused by more system-
atic mechanisms. The threshold will be based on a quantile, of the corresponding

distribution, plus some scalar, s € Ny, times the standard deviation:

. )\2 1/2
tklnb:q+8</\+9> 7

where the quantile ¢ is depends on a probability p € [0.9,0.99995], as well as the
parameters 0 and . Likewise we create a threshold t*f based on the parameters 6

and \ estimated using the weighted fractile method.

We calibrate the thresholds indirectly, by calibrating the parameters s and p. The
parameters will be chosen such that the number of drop-ins are as low as possible

in accordance with Section 1.6.2. We can divide the drop-ins into four types as seen
in List 4.2.1.

List 4.2.1
(i) Stutters

(ii) Shoulders (high coverage .1 or .3 strings seen around an allele)
(iii) Strings of similar length as the true alleles

(iv) General noise
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We do not care if stutters or shoulders pass through the noise threshold, as they
are systematic errors for which we can account. A drop-in of type (iii) could be:
(1) a homozygote with two different strings, (2) a string from another contributor
in the case of DNA mixtures, or (3) a variation on the true allele (i.e. a string with
an erroneously called base(s)). The calibration of the parameters will still be based
on achieving as few drop-ins as possible, but we will allow drop-ins of type (i)-(iii),
leaving general noise (iv), from this point forth referred to as adjusted drop-ins.
We have already proposed solutions for types (i)-(iii), in Chapter 3 and Section 2.5,

leaving general noise.

If ties occur we take p and s to be the smallest values possible. Furthermore, as
there is still quite a difference in coverage between loci, these parameters will be

locus specific.

Calibrating the thresholds

We create a grid for both p = 0.9,0.95,0.99,0.995, ...,0.99995 and s = 0,0.1,0.2, ..., 15.
Furthermore, we do this for the entirety of the dilution series, and take the p; and

51, as the maximum value across samples.

Table 4.2: The calibrated scalar and probability parame-
ters, for both the KINB and weighted fractile thresholds.

KINB Weighted Fractile

Locus ST, DL St DL

CSF1PO 0 0.9999 13.9 0.99995
TPOX 0 0.9950 6.5 0.99995
D3S1358 0 0.9999 5.9 0.99995
D5S818 0 09995 3.3 0.99995
D16S539 0 0.9999 1.1 0.99995
D75820 0 0.9950 5.9 0.99995
D8S1179 0 0.9900 0.0 0.99000
THO1 0 0.9900 0.0 0.95000
vWA 0 0.9995 8.8 0.99995
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The calibrated values p;, and 57, can be seen in Table 4.2, for both the t*"* and
t"f. We see that 5, for the kinb-method is calibrated to zero for all loci, i.e. the

threshold t<"" is based on the quantile alone.

Using the calibrated values, s;, and pr,, we can recalculated the drop-in and drop-out
rate for each sample. The resulting thresholds and rates can be seen in Table 4.3,
for sample LT_Dil_002_F_2ng. Note: string drop-ins, refers to drop-ins of List
4.2.1 type (iii).

We see from Table 4.3 that the some of the thresholds, the once corresponding
to locus D5 and vWA in particular, are quite similar even though their calibrated
parameters are different. Furthermore, the thresholds for sample LT_Dil1_002_F_2

ng can be seen in Figure 4.1, for the TPOX locus.

The total number of drop-ins and drop-outs per file can be seen in Table 4.4. We see
that we impose three drop-outs using kinb, but eight drop-outs (with three locus
drop-outs) using the weighted fractile method. The coverage of the alleles dropping
out using the kinb-method ranges 37 to 125 with a median of 67, which makes the
drop-outs quite understandable. The coverage range of the dropped alleles using
the weighted fractile method, is 37 to 402, with a median of 172. Furthermore, we
see that seven of seven adjusted drop-ins found with the kinb-method, occur on
the same file, actually on the same locus (CSF1PO), and as seen in Figure 4.2, this
particular locus has a lot of .3 strings with higher coverage than we would expect.
In fact 18 of the 19 adjusted drop-ins seen with weighted fractile method occur as .3
on the CSF1PO locus as well. These .3 strings are an artefact of the PCR process,
and we might have to adjust the threshold on this locus in general to ensure that

such drop-ins do not occur.

Comparing our approach to the more naive method described in the introduction of
the chapter, setting a threshold at 5% of the total coverage on a given locus yields:
0 drop-outs, 32 drop-ins, and 0 adjusted drop-ins. We see that this way imposes no
drop-outs and has no adjusted drop-ins, yet also includes very little of the systematic
noise (only 32 drop-ins on a total of 216 loci). That is, if one would like to include
the systematic noise in ones evaluation, for the reasons mentioned in the beginning
of Chapter 3, our method would be preferred, if not, the naive approach seems like

a fair choice.
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Table 4.3: The t¥"® and t*! thresholds, as well as the
number of drop-ins (all types) and drop-outs, for the LT
_Dil_002_F_2ng sample using the calibrated sy, and py,
parameters. Each row of the four rightmost columns,

sums to the value of Drop-in in the corresponding row.

k-inflated Negative Binomial Model

‘ Adjusted
Locus t5i"b - Drop-out  Drop-in  String Stutter Shoulder )
Drop-in
CSF1PO | 256.00 0 2.00 0.00 2 0 0
TPOX 89.00 0 2.00 0.00 1 1 0
D3S1358 | 275.00 0 2.00 0.00 2 0 0
D5S818 | 185.00 0 2.00 0.00 2 0 0
D16S539 | 271.00 0 1.00 0.00 1 0 0
D7S820 | 103.00 0 2.00 0.00 2 0 0
D&8S1179 | 62.00 0 7.00 1.00 1 5 0
THO1 50.00 0 0.00 0.00 0 0 0
vWA 164.00 0 2.00 0.00 2 0 0
Weighted Fractile Negative Binomial Model
Adjusted
Locus t"f Drop-out Drop-in String Stutter Shoulder
Drop-in
CSF1PO | 183.59 0 3.00 0.00 2 1 0
TPOX 162.77 0 2.00 0.00 1 1 0
D3S1358 | 203.23 0 2.00 0.00 2 0 0
D5S818 | 175.43 0 2.00 0.00 2 0 0
D16S539 | 143.79 0 2.00 0.00 1 1 0
D7S820 82.41 0 2.00 0.00 2 0 0
D&8S1179 | 46.00 0 9.00 2.00 1 6 0
THO1 9.00 0 4.00 0.00 2 2 0
vWA 250.84 0 2.00 0.00 2 0 0
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Figure 4.1: The coverage of all strings on locus TPOX, including the ¢¥nP
and t"! thresholds, for the LT _Dil_002_F_2ng sample. Furthermore, the

ordinate-axis is shown on the logig-scale.
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Table 4.4: Total number of drop-ins and -outs, for each

sample using the calibrated s, and p; parameters.

One-inflated Negative Binomial Weighted Fractile
Drop- Drop-  Adj. Locus | Drop- Drop-  Adj. Locus
Sample ) ) . .
out in Drop-in  Drop-out | out in Drop-in  Drop-out

002 F 2000pg 0 20 0 0 0 28 0 0
003 F 1000pg 0 13 0 0 0 24 0 0
004 F 500pg 0 16 0 0 0 25 0 0
005 F 200pg 0 11 0 0 2 19 0 1
006 F 100pg 1 15 0 0 2 29 1 1
007 F 50pg 0 21 0 0 0 33 0 0
008 H 2000pg 0 21 0 0 0 31 1 0
009 H 1000pg 0 17 0 0 0 29 0 0
010 H 500pg 0 17 0 0 0 27 0 0
011 H 200pg 0 22 0 0 0 30 0 0
012 H 100pg 0 19 0 0 0 29 0 0
013 H 50pg 0 18 0 0 0 33 0 0
014 F 2000pg 0 20 7 0 0 40 10 0
015 F 1000pg 0 6 0 0 0 17 0 0
016 F 500pg 0 ) 0 0 0 20 0 0
017 F 200pg 0 7 0 0 0 19 0 0
018 F 100pg 0 4 0 0 2 14 0 1
019 F 50pg 0 6 0 0 0 21 0 0
020 H 2000pg 0 10 0 0 0 24 0 0
021 H 1000pg 0 10 0 0 0 23 0 0
022 H 500pg 0 23 0 0 0 46 7 0
023 H 200pg 2 0 0 0 8 4 0 3
024 H 100pg 0 9 0 0 0 19 0 0
025 H 50pg 0 7 0 0 0 16 0 0
Total 3 317 7 0 14 600 19 6
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Figure 4.2: The coverage of all strings on locus CSF1PO, including the ¢¥n®

threshold,

Note: the ordinate-axis is

_014_F_2ng sample.

for the LT _Dil 014 F 2n

shown on the log;g-scale.
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CHAPTER

FIVE

PROBABILITY OF DROP-OUT

In Chapter 4 we, due to applying a threshold, induce drop-outs in data that other-
wise would not have had any drop-outs. The goal in this chapter is to estimate the
probability of such a drop-out occurring. In order to achieve this goal, we first exam-
ine the heterozygote balance, Section 5.1, in hopes of finding a possible explanatory
variable. Using what we learn in Section 5.1, we further define the probability of
drop-out in Section 5.2. Noting that we have missing information, we introduce,
apply, and implement a version of the general EM-algorithm in Sections 5.3-5.1 and

finally estimate the probability of drop-out in Section 5.6.

5.1 Heterozygote Imbalance

To examine the imbalance between two alleles, we will genotype the entirety of our
dilution series (in accordance with Section 1.6), and then observe the relative height

between the two peaks of a heterozygote, known as the heterozygote balance, Hy:

H, = PHMW

) 5.1
WPLMW ( )

where HMW and LMW refers to the highest and lowest molecular weight alleles,
respectively, and ¢ is the coverage. There is another common way of defining Hy:

H} = Qsmaller/ Pilarger, Which ensures that H; € [0, 1]. However, Equation (5.1) offers
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more detail, as its definition is fixed (the HMW is always the numerator) and it is

therefore preferred, for further explanation see [27, Section 5.1].

Hp

| | | I
0 5000 10000 15000
Average Allele Coverage

Figure 5.1: The heterozygote balance against the average coverage of the

alleles or more specifically (pavw + pLvw)/2.

The shape, seen in Figure 5.1, is not what we have come to expect from CE, which
has of a more trumpet shape, see e.g. [27, Figure 1]. That is, we would normally
expect an increase in variability, as the amount of DNA decreases. This seems to
indicate that the coverage is not be an apt indicator for the amount of input DNA,
which is even more evident when plotting the average allele coverage against the

amount of DNA| as seen in Figure 5.2.

The simple answer is that between the PCR and the emPCR processes, the sample
is normalised yielding approximately the same amount of sequences across a sample
no matter the amount of input DNA. In order to more fully understand, we need
to consider how we have sequenced the dilution series. Each series ranging from
2ng to 0.5ng has been sequenced on a single chip, using MID’s to identify the
samples. The sample is then normalised based on these MID sequences. That is,
we select approximately the same amount of reads per MID. It thereby follows that
the coverage is not a good indicator for the amount of input DNA. Note in the case

of IonTorrent the MID’s are named barcodes.

However, even with MID sampling (normalisation), theoretically as the amount
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Figure 5.2: The observed average allele coverage against the amount of DNA

(ng), of both dilution series from contributors F and H.

of input DNA decreases, the variability of the heterozygote balance should still
increase. We will examine this hypothesis using simulated data. We can simulate
the PCR process by using the binomial sampling model first introduced in [4]. Given

n copies of input DNA, the sampling process can be broken down as follows:

(i) mo DNA copies are extracted for PCR amplification. This process is simulated

by a binomial model, and a molecule is selected with probability maiquot-

(ii) The PCR process is also simulated using a binomial model, where the number

of DNA copies in cycle ¢ is given as:

ny = ne—1 + Bin (ny_1, Tporess) »

where Tpogess indicates the PCR efficiency, which in [4] is assumed to continue

throughout the PCR process, i.e. independent of cycle number.

The values of the parameters, Taiquor and Tpore sy, Will be chosen in accordance with
[4]. That is, Taiquet = 20/66 and mpepgesr = 0.8. The amount of DNA copies and
the number of PCR cycles, will be 1000 and 25, respectively. Furthermore, we dilute
the sample 6 times, replicate the entire experiment a thousand times, and assume

we have 9 loci (as we would with a 10plex sample), denoted by L.
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As an extension of the process described in [4], we add on MID sampling as a final
step. In order to simulate the MID sampling, we first calculate, given nyyp, the
number of samples per MID, MID;,, sampling from a gamma distribution with
shape and scale equal nyp and one, respectively. The number of reads, MID ;p,
gets distributed among the L loci using a multinomial distribution with size equal
to MID,p;, and probability vector wpcrrocustff- The TpcrLocusefs Vector indicates
the proportion of MID,,, assigned to each locus. These proportions are found, for
a given locus [, by dividing the number of reads of locus [ by the total number of

reads.

Input: N, Taliquotr TPCReffr TWPCRLocusEffr T, nDuip, DNAg, L, and d.
replicate N time (s)
for i from 0 to d
— DNA,
DNA = round(2)
for 1 from 1 to L
for a from 1 to 2
ny, = Bin (DNA, Tatiquot)
for j from 1 to t

_ 1 : 1
%@"nyma+Bln@ymmﬂﬂmdﬁ

end
MIDyeads,i = ni,l + né,Q
end
MIDehip = I (nup,1)
MIDreads = ».; MIDreads,
MID,pip s = Mult(MIDchip, TPCRLocusEff)
for 1 from 1 to L
for s from 1 to MIDéan
MIDsampie = U (1,MIDL,,4,)
alleleg; = MIDsample < n;l

end

1
Y..allele,

l
chip

Coveragea
Coverageé = MID - Coveragea
end
Hb,; = Coverage,/Coverage;
end
Output: N replicates of the simulated heterozygote balance for every

dilution d.

Listing 5.1: Pseudo code simulating the PCR and MID sampling process.
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Figure 5.3: Hp against the amount of DNA | of data simulated using a variation
of the binomial PCR sampling model [4], modified to include MID sampling.

The ordinate and abscissa-axis is shown on a logjg-scale. The red dashed line
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We then sample the coverage of both alleles for each locus and calculate the het-
erozygote balance. The pseudo code for everything discussed above can be seen in
listing 5.1. The simulated H;, can be seen in Figure 5.3. The figure shows that the
hypothesis should hold, i.e. as the amount of input DNA decreases, the variability
of the heterozygote balance increases. An observation further supported by Figure

5.4 showing the standard deviation of H, plotted against the amount of DNA.

5.2 Probability of Drop-out

One of the consequences of using a noise threshold, as seen in Section 4.2, is the
introduction of more drop-outs (as a drop-out may occur when an allele fails to
amplify or when the coverage is below some preset threshold 7'). By imposing a
threshold 7" = 250 on our simulated data, we can calculate the drop-out frequency
P(D). Note that the choice of this threshold value is based solely on values produced

by the simulations.

0.6-

0.4-

P(D)

0.2-

0.0- e rmemme ama —

q 0 o o
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DNA

Figure 5.5: The probability of drop-out plotted against the amount of template
DNA for simulated data.

1000 ~

Plotting P(D) against the amount of template DNA, seen in Figure 5.5, we see
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5.2. PROBABILITY OF DROP-OUT

that the probability of drop-out decreases when the amount of DNA increases. We
have combined this fact with the information observed in Figure 5.4, plotting the

probability of drop-out against sd (Hy), shown in Figure 5.6.

0.6-

0.4-

P(D)

0.2-

S 3
Sl —

sd(Hy)

Figure 5.6: The probability of drop-out plotted against the standard deviation

of the heterozygote balance. The abscissa-axis is shown on a logjp-scale.

Figure 5.6 shows that as the probability of drop-out increases so does the standard
deviation of the heterozygote balance. With that being said, this only holds if we
use the complete information, ¢, when calculating the standard deviation. However,

the given a threshold 7', we do not observe ¢, but C' defined as follows:

if o >T
c={ " 7= (5.2)
0, otherwise.

The definition of C' and relationship between P(D) and sd (H,), implies that the

probability of drop-out can be written like so:
P(D)=P(C =0 | sd(Hp)). (5.3)

In order to obtain an estimate of sd (H,) based on the complete information, ¢,
rather than only the observed information, C', we once again turn to the EM-

algorithm. We will not estimate sd (H,) directly. Instead we choose a distribution
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CHAPTER 5. PROBABILITY OF DROP-OUT

for the complete coverage, p, and impute the missing coverage. The main justi-
fication is that if just one allele, on a given locus, is not observed then H, is not
observable. That is, by trying to impute H, directly, we would ignore perfectly good

information.

5.3 The General EM-Algorithm

Until now we have only used the EM-algorithm the parameters in finite mixture
models in order to impute indicator variables. However, another frequent use of
the EM-algorithm, is to estimate the parameters of a model, when some of the

observations are either missing or unobservable [28, 29].

We denote the full data by Y and define it such that Y = (Yyps, Yinis), where Yo
and Yy denotes the observed and missing data, respectively. Furthermore, we will
assume that our data is missing at random (MAR), see e.g. [30], as opposed to
missing completely at random (MCAR) or missing not at random (MNAR). The
implication of MAR is that the likelihood of the complete data can be decomposed

as follows:

fy (Y;0) = fy (Yobs, Ymis; 0) = frin. (Yobs; @) [imiclyone (Ymis[Yobs; @) (5.4)

That is, given the observed data, the missing data is independent of the observed
data (i.e. they are conditionally independent). The general EM-algorithm [31], is
shown in Algorithm 5.3.1.

Algorithm 5.3.1 (The EM Algorithm.)

(1) Make initial guesses of the parameters 6(*)
(2) E-step: At the jth iteration, compute:
q(6 | 69) =E [£(8) | Yos, 69|
(3) M-step: Determine the new estimate 80U+ as:
Ut = argmgx{q(gle(j))}
(4) Repeat steps (2) and (3) until convergence, i.e. until L(@U+Y) — L(9W)) <

€o
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5.3. THE GENERAL EM-ALGORITHM

A consequence of using this approach is that we need the distribution of the complete
data. If the distribution of the complete data belongs to the exponential family, the
calculations in the E-step of the algorithm simplifies greatly. To be more precise it
simplifies to calculating the expectation of the sufficient statistics of the complete
data. A nice feature of the EM-algorithm is, that it creates a non-decreasing series

of likelihoods. Our proof follows that seen in [28].

Proof: (Non-decreasing Likelihood)
We assume that the data is MAR, and it follows by Equation (5.4) that the log-

likelihood of the observed data can be written as follows:

6(0, yobs) = E(Oa y) - log (f(Ymis|yobs; 0)) . (55)

If we then take the mean of the above equation w.r.t. Y, given the incomplete

data yons and the current parameters ), we have:
0(0; Yons) = Ey, ... {6(0; Y) — 10g (f (Yauis|Yobs; @) | Yobs, 0(1)}
= /é(e’y)f (ymis|yobs; 0(3)) dymis
- /lOg (f(ymis|yobs; 0)) f (ymis|yobs; 00)) dymis~

The first term in this last equation is clearly ¢(8|6V)), the last term we will define

as H(6])0Y)). Before we continue it is worth noting the following:

7
oo ( i ) e

( ymls Yobs; )
f ymls‘yobs;

) (ymis|yobs; 0(])> dymis)
= 0.

We have here used Jensen’s inequality of convex functions and that a density function
integrates to 1. Furthermore, this inequality holds for all 8. Given a sequence of

parameter estimates, we have:

00U — (0D = {q (g(ﬁl)’g(ﬁ) —q (g(ﬂwm)] _ [H (9(j+1)|9(j)) —H (9(j>‘9(j)>}
> [q (899169 — ¢ (69]09)]

where we have used that H (§0)]0W) > H (§U]91)). As @U+1) is found by

YUY = arg max q(010Y)),
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CHAPTER 5. PROBABILITY OF DROP-OUT

it follows that
q (9(j+1)|9(j)) > g (9(3‘)’9(3‘))
which implies:
g(g(ﬂl)) > g(g(j))'
That is, the EM-algorithm ensures that the likelihood is non-decreasing. U

One disadvantage of using the EM-algorithm, as seen in [31], is that the convergence
is linear with a rate proportional to the amount of observed data, i.e. the more

missing data, the slower the rate of convergence.

5.4 The Distribution of the Complete Coverage

We will, for the choice of distribution, seek inspiration in the work which has been
done in DNA profiling with regard to CE, in particular [32-34]. That is, we assume
(in contrast to [32-34]), that the coverage follows a gamma distribution and not
the florescent intensities (peak heights). As seen in Figure 5.7, showing a gamma
QQ-plot of the coverage (from the dilution series), this assumption is not entirely
unfounded. The QQ-plots corresponding to the remaining samples, as well as QQ-

plots for the simulated data, can be seen in Appendix D.

In particular for a sample s, locus [, and allele a, we assume that the coverage
Ysia ~ I'(as,mg), and that the number of alleles on locus [ is given by n;. We let
both parameters be dependent on the sample as this method of imputation should
hold on a sample by sample basis. Generally we drop the sample index s when it is

clear from context. That is, the pdf of ¢, is given as:

niT(a)

Furthermore, as we remove coverage below a threshold T, the distribution of the

9(Pra; 0, m) =

complete coverage looks as follows:

flesam) =TI 9(owam) [I GT;am),

a:SDlaZT CLZnga<T
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5.4. THE DISTRIBUTION OF THE COMPLETE COVERAGE

Gamma QQ-Plot: Real Data — DNA: 2ng — Contributor: F

10000 - —

Sample

1 1 1
7400 7500 7600
Theoretical

Figure 5.7: A Gamma QQ-plot of the coverage in sample LT_Dil_002_F_2ng.

The dashed blue lines indicates a point-wise 95%-confidence envelope.

where (G, is the cdf of a gamma distributed random variable. We have assumed that
the alleles are independent and if we further assume that the loci are independent,

then the likelihood is nothing but the product of f(¢;; o, m):
Ly(a,my9) = [[ £l am). (5.6)
1

Again we drop the subscript s, when it is clear from context. Note that if we have L
loci this will yield L + 1 parameters to be estimated, as 7 = (11, ...,m)7, contains L
parameters, and we have a single a. For single contributor samples each locus will
consist of zero to two alleles, some that needs to be imputed, for these loci the true
value of n; will be difficult to ascertain. Therefore, we will take a slightly different
approach, we will maximise the profile likelihood. However, first a few notes on the

the E-step in our particular application.
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CHAPTER 5. PROBABILITY OF DROP-OUT

5.4.1 The E-Step

As the gamma distribution is an exponential family, we only need the sufficient
statistics in the E-step of the algorithm. The sufficient statistics for the gamma-
distribution are Y";log (y;) and Y, y;. The expectation of the sufficient statistics

given « and 7; are found as follows:

E [Z @la|a7nl] = Z Pla + Z E [Splahpla < Taa777l] (57)

axpia>T aspia<T

Elzlog«om) ra,m]: S log () + 3 Eflog(v) low < Toavn]  (5:8)

a:pie 2T a:p<T

The expected values, seen in Equations (5.7) and (5.8), can be further simplified, in
accordance with [35]. We will start with Equation (5.7):

T
E [vwlpie <T,0,m) = /0 01.9(Pra; Pra < Ty, m)dprq

T
/0 1a9(Pra; @, M) dpiq
B G(Tv a?”l)

[ ghaion(-52)¢
———prexp | =2 | dpa
o 7fT(a)” m )’
T 1 a—1 @la)

o w exp | —— | dyi,
) 7 T(a)” ( w )"

T/m

/ u“exp (—u) du

0

T/my 1
/ u® exp (—u) du
0

Y(a+1,T/m)
v, T/m)

The second to last equality holds by substituting u = x/n;. Furthermore, v denotes

="M

=1 (5.9)

the lower incomplete gamma function, using the notation of [36]. A simplified version

of Equation (5.8) can be found in a similar manner:

T
E [log (v1) |¢1a < T, a,mi] = /0 log (¢1a) 9(P1a; Y1a < T, m1)dpra
T
/ log (1a) ¢fy texp <—%) dpia
_ 70 Y
T
P texp (—%> dia
0 m

T/m 1
/ log (um) u® “exp (—u) du
_Jo
’Y(OK,T/T]l)

90



5.4. THE DISTRIBUTION OF THE COMPLETE COVERAGE

1 T/m O a1
= log () + 7()/0 (u exp (—u)) du

aaT/nl 670{
1 0
= log () + W%V(Q,Tﬂ?l)- (5.10)

Implementation of the Lower Incomplete Gamma Function

Some care has be taken when implementing the incomplete gamma functions, as
large values of either a or T'/m;, will correspond to very large values of the lower
~-function. In fact for a-values of 170 and above, v yields a value larger than 103'°
which in R results in an Inf-value (recall that 7, and thereby the upper limit 7'/n,
in our case, will depend heavily on «). That is, for implementation purposes, we use
the regularised lower incomplete gamma function and its derivatives (which quite

conveniently is implemented in R):

ijmnzd;mem» (5.11)

The consequence being that the implementations of Equations (5.9) and (5.10),

looks as follows:

I(o+1) Pla+1,T/n)
E [@la’@la <T, a,m] =1 F(Oé) P(a T/??l)

P(Oé + 17 T/77l)

P(Oé, T/nl)
The last equality holds, as if the difference between I'(t + k) and I'(¢) is an integer,
k € Z, we can use the identity I'(t + 1) = tI'(¢) recursively. We will exploit this

fry ’]7[0[

fact even further, when we estimate the standard deviation. In order to implement

Equation (5.10), first note that the derivative of Equation (5.11) w.r.t. « is:

ap(a7T/77l) _ 0 V(Q’T/nl)

O da I'(a)
_ 1L (e, T/m) _T'(a)
Dividing Equation (5.12) by P(a,T/n;) we have:
L 0Pt/ L oeTw T@ o
P(a,T/m)  Oa v T/m)  Oa (o) '

That is, using Equation (5.13) we can rewrite Equation (5.10) as follows:

L 0P(eT/ny)  I'(a)

E [log (¢1a) [01a < T, ct, ] = log (m) + Ple,T/n)  a T(a)

91



CHAPTER 5. PROBABILITY OF DROP-OUT

5.4.2 The M-Step

In the M-step, for the tth iteration of the algorithm, we could use Newton-Raphson

to solve the following score equations, see [35]:

F/(a(tﬂ))
mlog (") ~ gy TR ;10% (1) [a®,n{”| =0

(t+1) 1
o 6 @ _
- (t+1) + (t+1) QE [Z cpla|a( )a m ‘| =0
m (7]1 ) a

These equations can be found by simply differentiating log of Equation (5.6) for «
and 7, respectively. However, we will instead exploit that we know that the MLE

of n;, is given as:

E S, euala®,n”)]

no

(5.14)

m=

That is, we can represent the log-likelihood of Equation (5.6) solely using the shape
parameter, yielding the profile log-likelihood:

ly(a;0) =) —ma {log (JE [Z Prala®, nl(t)]> —log () — log (ny) + 1}
: ¢ (5.15)

— mylog (T'(a)) + (o — 1)E lz log (p1a) o, m(t)]

We maximise ¢, with respect to o and then update the scale parameter using Equa-
tion (5.14). Another approach would be to use a modification of the EM-algorithm
called the Expectation-Conditional-Maximisation algorithm (ECM-algorithm), see
e.g. [28, 37].

In order to maximise ¢,, we use the optim-function in R, specifically we will use the
BFGS-method (the Broyden—Fletcher—Goldfarb—Shanno algorithm [38-41]). That is,

we need the gradient of ¢,, which is given as:

21,5 (2 [ o] s o)
. Da)
I(c)

e [Z log (¢1a) o), m(t)] '

We have, in Appendix C, examined this implementation on simulated gamma dis-
tributed data. The implementation performs fairly well overall and we therefore

continue onwards.
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5.5 Estimating the Standard Deviation of the Het-

erozygote Balance

As we now have the imputation of the complete coverage in place, we turn our
attention to its use in estimating the standard deviation of H,. In general the

sample variance of Hj, is given as:

2(H,) = iz (%HMW) _ (22 ‘Pl,HMW) ‘ (5.16)

.\ PLLMW . PLLMW

An unbiased estimate can be obtained in the usual fashion, multiplying s? by
L/(L —1). We see that the sample variance not only depends on ¢, but also 1/¢,
¢?, and 1/p?. In order to obtain a more accurate estimate we therefore compute
the conditional expectation of these remaining variables, using the final parameter

estimates of the EM-algorithm, n* and a*:

1 ] 7(04*—17T/771*)
E|— |a*n|=n - 5.17
L% | 1 (e T ) (5:-17)
E|¢p, | o nf| =n - (5.18)
[ : T (e, T )
1 * *- *7 Oé* - 27T 77*
E[2|a,m _ g2 =2 1/0) (5.19)
D ] v(or, T /nyf)

These are found analogous to that of E [¢i|a*, 7], and are implemented in the
same way, i.e. using the regularised lower incomplete gamma function. Define, using

Equation (5.9), C; as follows:

(5.20)

la —

.} Cla if Cpy > T
E [@ialpia < T, 0", 7], else

Furthermore, we define 1/C5,, C}.?, and 1/C;,?, using Equations (5.17), (5.18), and

la la >

(5.19), respectively.

Given these expressions we can now also estimate sd (H,). However, before we
continue, note that if both alleles on a locus are missing H, = 1, as the imputed
values are equal for all alleles on a give locus. As we have seen in Figure 5.3, Hj, is
centred around 1, i.e. imputing a value of 1 might result in underestimation of the
standard deviation. Therefore, we examine the effect of the three types of removal,
seen in List 5.5.1.
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CHAPTER 5. PROBABILITY OF DROP-OUT

List 5.5.1

(i) No removal

(ii) Outer removal: Dropped loci are removed before coverage imputation.
That is, they will not have any influence on the parameter estimates of n

and a.

(iii) Inner removal: Dropped loci are used in the imputation of coverage, but
removed when estimating the standard deviation. That is, the they will
have influence on the parameter estimates of n and «, but not directly on

the standard deviation.

Removal Type None E Quter Inner

sd(Hy) — Imputed sd(Hy)

om————e 0w s o mes ¢ 0 0@ o
weon
»mnens 0o wmsce osce o

o ; l;i I L

1 1 1 1
16 31 62 125 250 500 1000
DNA

Figure 5.8: The estimation error of sd (Hp), for outer, inner, and no removal

of dropped loci.

Figure 5.8 shows the estimation error, for each dilution of our simulated data, and
all three removal types used (no-removal included). Furthermore, we only use the

replicates where a locus drop out is observed, as the three methods would be equal on
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every other replication. The figure shows that all three methods underestimates the
standard deviation for small amounts of DNA. However, the outer removal method
gets very close to true standard deviation as the amount of DNA increases. Hence,

we will choose the outer removal method.

The fact that all three methods underestimate the standard deviation for smaller
amounts of DNA is not surprising, as both the number of drop-outs and the standard
deviation increases when the amount of DNA decreases. The fact that our method
underestimates the standard deviation is further supported by the Bland-Altman
inspired plot (difference versus average plot), seen in Figure 5.9. The plot includes

only values imputed using the outer removal and shows a clear increasing trend.

sd(Hy) — Imputed sd(Hy)

2 3

1
(sd(Hp) + Imputed sd(Hy))/2

Figure 5.9: A Bland-Altman plot (the difference plotted against the average)

of the true and imputed standard deviation.
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5.6 Estimating Probability of Drop-out

In order to model P(D) we will use logistic regression. That is, given the estimated

standard deviation, P(D) is logit-linear:

logit (P(D)) = f + Bilog (sd (H,)) , (5.21)

Before we fit the model note that the Bland-Altman plot, Figure 5.9, further shows
that the order of underestimation increases as the standard deviation increases. The
consequence is, as seen in Figure 5.10, that log of the estimated standard deviation
has a steep incline (steeper than the true standard deviation, as evident by panel (b)
showing a violin plot). That is, using a log-transformation of the standard deviation

might be suboptimal when estimating the probability of drop-out.

(a) (b)

Imputed No - Yes Imputed FALSEZTRUE
o L
S —
0- —. 0- —
— —
_ —
a =
5 S ) T =
g g
K e ee— E’*l ___<>__
2- _s
- <‘/\
——— —3- < >
-3- 1 1
— o = :
=) = S = o = ~
log(sd(Hy)) log(sd(Hs))

Figure 5.10: Panel (a) shows logit of the probability of drop-out against log of
the standard deviation. The red and blue points correspond to the true and
estimated standard deviation, respectively. Panel (b) is a violin plot showing
the density for logit P(D).

Therefore, we would like to choose a more appropriate transformation, if such a
transformation exists, and in order to do so we will examine Box-Cox transforma-
tions [42], of sd (H,). Given A a Box-Cox transformation is defined as:

A

-1
NI B e RS ol

log (y;), fA=0

(5.22)
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5.6. ESTIMATING PROBABILITY OF DROP-OUT

The parameter A is estimated using the profile likelihood function, once the MLE of
A is found we choose an appropriate value within (or close to) the 95% confidence
interval (CI). The CI is created using the fact that two times the log-likelihood
ratio asymptotically follows a x? distribution with one degree of freedom. The Box-
Cox transformations can be extended to a two parameter version which includes
an offset. Furthermore, as seen in our definition of the Box-Cox transformation,
Equation (5.22), the transformation is normally performed on the response variable
adjusting for any possible covariates. However, we will use it for our covariate and
adjust using the response. Note that from this point forth, any P(D) = 0 has been
excluded when fitting P(D), as they would not occur in reality.

-19395 -

-19400 -

log-Likelihood

—-19405 -

-19410 -

1 1 1 1 1
-0.40 -0.35 -0.30 -0.25 -0.20
A

Figure 5.11: .The profile log-likelihood of Box-Cox transformed standard de-
viation adjusted with the probability of drop-out. The black, blue, and red
dashed lines indicate the MLE, lower/upper bound of the 95%-CI, and the
range of the 95%-CI, respectively.

The profile likelihood of the Box-Cox transformed sd (H,) is seen in Figure 5.13. We
have adjusted the profile likelihood using logit of P(D). The MLE (the black dashed
line) is -0.293, and the lower/upper bound of the 95% CI (the blue dashed lines)
are -0.325 and -0.261, respectively (all rounded to 3 digits). There does not seem to

be any appropriate values within the CI, we therefore venture slightly outside and
choose A\ = —1/3.

Using the value A = —1/3, we will fit a logistic model to P(D) using sd (H,)™/?
as a covariate. The superscript encased in parentheses indicates that the variable

has undergone a Box-Cox transformation with the given value, in accordance with
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Equation (5.22).

(b)

' ' ' '
1 0 5 4

3 2 3 2
Sd(Hy,) ) Sd(H,) )

Figure 5.12: Panel (a) shows the logit transformed probability of drop-out
against the Box-Cox transformed imputed standard deviation of the heterozy-
gote balance. The blue line is the regression line with respect to the estimated
parameters 3y ~ 0.5216 and [; ~ 0.9551. Panel (b) is nothing but panel (a)

transformed using the inverse link function (the logistic function).

In order to estimate the parameters in Equation (5.21), we fit a generalised linear
model (GLM) with a binomial family using logit as a link-function. The parameters
are estimated as By ~ 0.5216 and (3 =~ 0.9551. We have, in Figure 5.12, plotted
logit (P(D)) against sd (H,)™/®. The blue line is the regression line with respect
to Bo and Bl. The mean square error (MSE) of the fitted logistic regression model
is &~ 0.1817. Note that the MSE is, when the response variable is dichotomous,

sometimes referred to as the Brier score.

We are, to be more precise, trying to fit a sigmoid curve and logistic regression is
not the only way to achieve such a noble goal. Therefore, in order to see if the
fit can be improved, we will also try a couple of the other link-functions available
for the binomial family, namely the probit and the complementary log-log (cloglog)
functions, as well as, a five-parameter logistic (fpl) regression model [43]. The logit,
probit, and cloglog-functions all have the same disadvantage, that the curve is always

symmetric, a disadvantage the fpl-model does not share.

The fpl-model transforms the covariates using the following non-linear function:

P2 — D1
1+ f(X)exp (p3(ps — X)) + (1 — f(X))exp (ps(ps — X))

fpl(X,p) =p1 + (5.23)
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where f and C are given as follows:

1
X P—
T = e Com = X))
2P,
|P3 + Ps|’

The parameters p are interpreted as follows:

e pp and p, controls the lower and upper asymptote, respectively.

e p3 and ps controls the curvature below and the above the infliction point,

respectively.

e p4 controls the position of the infliction point.

The fpl-model, Equation (5.23), simplifies in our case as we are dealing with prob-
abilities, i.e. p; = 0 and py = 1. Furthermore, it is easy to see that the curve is
symmetric if p3 = ps (for more information see e.g. [44, 45]). In order to fit the

model we will use the nls-function in R.

We will compare the four models using cross-validation (CV) in order to examine
their predictive properties. Figure 5.13 shows the P(D) against sd (Hb)(_l/ % for all
four models fitted on the training set. We will compare the area under the curve
(AUC) and Brier score for each model. Note that we have used sd (H,)" "% as
a covariate in all four models. We see that the only real difference between the
glm based models and the fpl-model, is that the fpl-model bends toward the upper

asymptote very early, comparatively.

The Brier score and AUC for both the training and validation sets, are shown in
Table 5.1, as well as the BIC for each model. We see that the BIC for the fpl-model
is around 3000 larger than the BICs w.r.t. the glm based models. Focusing only on
the glm-based models, we see that the probit-model has the lowest BIC and Brier
score on the validation set, with the logit-model close behind. We see that the fpl-
model achieves the smallest Brier score on the validation set and would therefore be
our model of choice, though it would seem, based on the BIC, that it comes at the

cost of added complexity.

The Brier score, of the fpl-model, on the test set is &~ 0.1816. We note that the
AUC is very consistent across all four models, given the data, and we see why in

the Brier score, the models predictive properties are virtually identical, making the
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Model Logit — Probit — cloglog fpl

0.6 -

P(D)
N\

0.2-

=2
ga(Hb)(—1/3)
Figure 5.13: The probability of drop-out plotted against the Box-Cox trans-

formed estimated standard deviation, from the training set. The curved lines

represent the four models discussed in this section, fitted on the training set.

added complexity introduced by the fpl-model very unnecessary. We will therefore

choose the regular logistic regression model.

Table 5.1: The training and validation errors of all four
models discussed in this section. The tinted cells show

the smallest validation errors.

Training Set Validation Set

Model BIC  Brier Score AUC Brier Score AUC

logit 79,072 0.1813 0.6708 0.1827 0.6687
probit 79,056 0.1812 0.6708 0.1826 0.6687
cloglog 79,152 0.1815 0.6708 0.1829 0.6687
fpl 82,319 0.1809 0.6708 0.1824 0.6687

The test Brier score of the logit-model is ~ 0.1819, i.e. the difference in test error,
between the logit and fpl model, is less than 1%. The AUC of the logit-model based
on the test set is approximately 0.6712, and the corresponding ROC curve can be

seen in Figure 5.14.
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An AUC of 0.6712 is not considered good, though it is better than random guessing.
If we choose a classification rule of 0.5, then the percentage of correct classifications
is 73.38%, which is close to one minus the percentage of drop-outs in the data, at

73.47%.

1.00 -

0.75 -

Sensitivity
o
3
1

0.25-

1
0.00 0.25 0.50 0.75 1.00
1 - Specificity

Figure 5.14: ROC curve, based on the test set, for the logit-model. The
dashed line is an indication of guessing randomly. The AUC is 0.6712.

There are two things left noting. First, the coefficients B, are here not dependent
on locus, which works with the simulated data, but for the real data the coefficients
would most likely be locus dependent. Second, we know from Figure 5.4, that
the standard deviation decreases when the amount DNA increases, i.e. using the
method, described in Sections 5.3-5.5 imputing the standard deviation, we are able

to estimate the amount of DNA, which may be useful when handling mixtures.
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CHAPTER

SIX

EPILOGUE

This chapter will start with a short recap of the thesis, the aim, problems, and
possible solutions, presented, as well as how these fit together. We then comment
on a few of the presented methods and a possible extension of the LUS. We end the

chapter listing and describing potential future work.

6.1 Recap

The general aim of the thesis has been to investigate the statistical variation of short
tandem repeat (STR) next-generation sequencing (NGS) data in a forensic genetics
framework. The variation is examined as a prelude to future work evaluating the
strength of evidence when comparing two hypothesis, LR = P(E|H,)/P(E|Ha), or
deconvoluting a DNA profile. We introduce a method for extracting the STR-regions
from the NGS data, using directly adjacent flanking regions. If the sample is known
to contain only one contributor and is otherwise uncontaminated creating a profile
is simple. We show that the DNA profile can be obtained using a heterozygote
threshold, which determines whether a locus is homo- or heterozygous, based on
the most prevalent string on the locus. The threshold was calibrated such that the
number of drop-outs is minimised given that the number of drop-ins is equal to

zero. This method is, however, only apt in this specific case. That is, to find a more
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general estimate of P(E|H), we needed to thoroughly inspect the noise, systematic or
otherwise. However, before doing so, we took a look at the string quality generated,

when using NGS.

The quality of a called base is an indication of the probability of error associated
with the call. That is, if the quality is low we expect that the probability of the base
being called erroneously is high. We show that the quality of our locus identified
reads is fairly stable, as a consequence of the way we have identified them, and
conclude that further restriction of the reads is therefore unnecessary. Furthermore,
we have introduced a method of assigning probability to two strings of similar length
being equal, based on the quality and the bases in which the strings mismatch. This
method may prove useful if multiple strings of similar length slipped through a noise
threshold.

Stutters and shoulders is some of the more systematic noise encountered in the data.
Stutters is an old favourite generated by the PCR amplification process, while shoul-
ders seems to a product of NGS. It has been shown previously that the stutter ratio,
OStutter/ PParent, 1S highly dependent on the length of the parent allele. Furthermore,
it has been assumed, and somewhat verified, that the longest uninterrupted stretch
(LUS) was a better predictor, than the allele length. A hypothesis for which we
have now provided extra evidence. We have fitted simple linear models, gaussian
mixture models, and gamma models of the stutter ratio versus both allele length
and LUS. These models have clearly shown that, the LUS out performs allele length,
for loci with non-simple repeat patterns. Furthermore, we have determined that the
shoulders are fairly stable versus the allele length and the creations of a threshold to
subsequently remove or identify potential shoulders is set at the median plus three

times the standard deviation (the threshold is shown to be highly locus dependent).

We have seen that STR NGS data, because of the miscalled bases and insertion-
s/deletion (indels), suffers from plenty of strings with very little coverage. In par-
ticular we see a lot of strings occurring only once in the data. We have therefore
considered a negative binomial (NB) model, as the coverage of a string can be seen
as over dispersed count data, in order to model this sort of general noise. We
have observed that the data suffers from both one-inflation and zero-truncation
and have because of this fact modified the NB model to account for this kind of
data. Therefore, we have generalised the concept as a k-inflated negative binomial

(KINB) model, and introduced two approaches to estimating the parameters of such
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a model. Using quantiles of the KINB model, we have created a sample and locus
specific threshold differentiate the general noise from alleles and more systematic

noise (such as stutters and shoulders).

With the introduction of a noise threshold, we inadvertently create drop-outs in
our data. In order to examine the probability of such a drop-out occurring, we
investigate the imbalance of the alleles on a heterozygous locus. We simulate allele
coverage, by first simulating PCR amplification using binomial sampling and then
add what we call chip sampling, or MID sampling, to represent the NGS process.
We observed that we cannot use the coverage as a predictor for the probability of
drop-out, however, that the standard deviation, of the heterozygote balance (de-
fined as the coverage of the high molecular weight allele over the coverage of the
low molecular weight allele), increases with the probability of drop-out. However, it
only holds if no threshold is imposed. That is, we need the complete coverage, which
we would not. Therefore, we turned to the expectation-maximisation (EM) algo-
rithm to impute the standard deviation of the complete coverage. The consequence
being that the distribution of the complete coverage is needed. We have chosen the
gamma distribution, inspired by the work which has been done in capillary elec-
trophoresis. The imputed standard deviation was then used as the covariate in a

logistic regression model, estimating the probability of drop-out.

6.2 Comments

6.2.1 String Coverage with Artefacts

The following is heavily inspired by [34]. First note that we can decompose the
(0) )

la

coverage of a string, ., directly after PCR, as ¢, = + <pl(;). Assume that gpl(g

and gogj) are independent, then:

90[(2) ~ F(a(l - ga)777l)7 Spl(;) ~ F(O[fa, nl)v

where &, is the stutter ratio of allele a given the LUS of a. It therefore follows that,
if the string allele @ and the string of the stutter belonging to a + 1, then:

0 s
Pla = Sﬁz(a) + %((iﬂ)-
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This only includes the stutter of (a+ 1), however, one could also consider the double
stutter of (a + 2), triple stutter of (a + 3) et cetera. As we have assumed the alleles

are independent, ¢, is still gamma distributed:

1o~ T ({1 = &) + &asny}om) -

Note that when calculating the probability of the evidence given a hypothesis, geno-
types are provided. It is customary in CE to multiply the shape by n;,, which
indicates the number of alleles of type a on locus [, i.e. nj, € {0, 1,2} (ny, is related
to n; seen in Chapter 5, as n; = >, ny,), and we will use ny, in a similar manner, by
defining g;, = I[ny, > 0]. Using the probability of drop-out, found in Chapter 5, we

can write the conditional likelihood of (', as:

Q(Cm; Oé{(l - 5a)91a + f(a+1)gl(a+1)}a 771), it Cig > T
1

Lla(% M, &; Clas g) = otherwise

1 +exp (50,5 + 51,5551(1%)(_1/3)) 7
The probability of the evidence conditioned on a given hypothesis H is then:

Loo:P@my:Z(HIU@mwfm%gﬂP@W)

This is a very short overview of how the artefacts discussed in the thesis, could be

weaved together in a fashion nearly identical, to what has been done in CE, [32-34].

6.2.2 Expanding the LUS

The stutter ratio calculated in Chapter 3, is found using the sum of the coverage

for every true stutter of a given allele. If our allele sequence takes the form:
[AATGJ1o[GTTA|L[AATG],, (6.1)

some of the possible stutter variations include:

(i) [AATGo[GTTAL[AATC],
(ii) [AATG]10|GTTAJ5[AATG],

(iii) [AATG];o|GTTA][AATG],
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and most likely in that order of prevalence. We are not guaranteed that our sequence
will stutter so nicely. In reality we hypothesise that any tetra-nucleotide within the
allele sequence can stutter. Given our allele sequence [AATG|;o[GTTA]L[AATG],,
it could stutter at AATG, ATGA, TGAA, GAAT, GGTT etc.

Until now these have all been attributed to the same LUS (i.e. 10 in this case). How-
ever, given that the stuttering unit might not come from the LUS, we would like to,
instead of lumping all the observed variations together, consider them individually.

That is, given a sequence A we do the following:

o We use the pairwiseAlignment-function in order aligning all strings four
bases shorter than A4, to A. We use the function in such a way that all strings
missing exactly four consecutive bases achieves a unique score. We classify

these as true stutters of A.

o Assuming that we have m true stutters Sy, Ss, ..., S, we calculate the stutter

ratios for all m stutters all w.r.t. the coverage of A.

o We find the actual missing unit of S;, in the parent A, for every i = 1,...,m,

and then its repeat unit length (RUL) within the parent.

The RUL is nothing but a finer version of the LUS. If the allele in Equation (6.1)
looses e.g. unit AATG its observed parent RUL is either 10 or 2, depending on where
the missing unit is found, while the LUS is always 10. The hypothesis is, as in the

case of the LUS, that the stutter ratio will increase as the RUL increases.

The score created by pairwiseAlignment depends on the number of matches, if
the function has to open a gap (gapOpening), and if the function has to extend a
gap (gapExtension). The score increases by one if two bases match and decreases
every a gap has to either opened or extended (there should be a penalty on both).
We use a penalty of six for opening a gap and 1 for extending a gap, i.e. the score
of a true stutter S; equals the number of bases in §; minus ten. Note that in order

to avoid mismatched bases, we set the penalty for mismatching extremely high.

In Table 6.1, we see the RUL tabulated against the LUS, the tinted cells indicate
that the two are equal (i.e. the diagonal of the table). We see that a lot of the
missing units actually has an RUL of 1, or an RUL in the 6-9 range. Figure 6.2,

shows heatmaps of the corresponding tabulations for every locus. That is, the
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heatmap under facet D12 corresponds to Table 6.1. We see that for most of our
loci the RUL will correspond to the LUS. This could indicate a simple repeat STR
structure. However, looking at D3 or D21, we see a distinct circular pattern above

the diagonal.

Table 6.1: The RUL against the LUS of locus D12. The
tinted boxes indicates RUL equal to LUS.

LUS

7 8 9 10 11 12 13 14 15 16 17

112 1 28 25 8 151 128 99 45 20 2
200 0 0 1 0 0
310 0 0 0 0
410 1 0 0 0 1 0 0
500 10 0 1 3 29 15 8 0 0 0
616 13 35 20 92 92 58 24 4 1 0
715 1 15 29 14 27 29 22 1 1 0

L 8]0 14 0 6 14 20 22 4 2
= 9/0 0 50 4 21 28 28 26 14 1
10/0 0 05 2 3 4 7 2 0 0
110 0 0 0 122 1 0 0 0
1200 0 0 0 0179 0 3 0 0 0
13/0 0 0 0 0 0 150 0 0 0
4/0 0 0 0 O O 0 114 0 0 O
5/0 0 0 0 0 O 0 05 0 0
6(0 0 0 0O 0O O O 0 0 20 0
17/0 0 0 0 O O O 0O 0 0 3

Figure 6.1 shows the stutter ratio plotted against observed parent RUL. We see
that, for loci containing shorter RUL, the relationship still seems linear. However,
looking at D3 and D12 we see more ambiguous, with a lot of outliers, and for vWA
and D21, we see an enormous variation for long RUL’s. However, Figure 6.1 shows,
that the stutter ratio increases as the RUL increases, as hoped though it seems that

the relationship between RUL and stutter ratio is not linear as in the case of the
LUS.
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Figure 6.1: Boxplots of stutter ratio against the observed parent RUL, for

every loci in the IonTorrent and Roche reference files.
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Figure 6.2: Heatmaps corresponding to tabulations of RUL against LUS, for

every locus.

6.2.3 Using Profile-likelihood in the EM-algorithm

As the profile likelihood is not a true likelihood function, the choice of using a profile
likelihood in the maximisation step of the EM-algorithm, is unconventional. The
EM-algorithm and profile likelihood are no strangers, the profile likelihood can be
used in the creation of standard errors and confidence intervals, for the parameter
estimates, yet has not been used for estimating the parameters. We would have to
show that the profile likelihood is concave, for a given iteration of the algorithm,
ensuring a local maximum is found when maximised, thereby yielding a proper

EM-algorithm.
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Another approach to estimating the parameters of the gamma distribution, as men-
tioned in Section 5.4.2 and generally introduced in [37], is to substitute the maximis-
ing step, with a conditional-maximisation step. That is, assume we after t iterations
have parameter estimates, 8, then in the (¢ 4 1)th iteration the parameter 0§t+1)

is estimated, given the parameters 092

6.2.4 The KINB Methods

The implementation of the KINB methods, both the maximum likelihood (ML)
approach (which we through-out the thesis refer to as the kinb-method) and the
weighted fractile method, could use some work, particularly the weighted fractile
method. The only real problem with the ML approach is the drop-ins occurring on
the CSPOF1 locus, the solution could be as simple as adjusting the threshold to
compensate, for this particular locus, and maybe provide both adjusted and non-

adjusted classifiers.

The problem with the weighted fractile function on the other hand, is that the
estimate of the mean value parameter, A, very poor when the size parameter is
close to zero, as seen in Appendix B. However, looking at the density plot in Figure
6.3, we see that the density of the negative binomial distribution using both true
and estimated parameters, of the simulated data from Appendix B, looks virtually

identical.

So why does the shape of the density seem that closely related? In order to under-
stand why, we take a closer look at negative binomial distribution. In Section 4.1, we
introduce the pmf of the negative binomial distribution by its mean representation,

it is however more generally defined as follows:

f(k;p,6) = <k - Z i 1)19’“(1 -,
where p is the probability of success and 6 is the number of failures until the experi-
ment is stopped. The mean \ is given as pf/(1—p), which implies that p = \/(A+6).
It follows, that when the true size parameter is close to zero, or when the true mean
is much larger than the size, the probability of success is close to 1. This is an
important observation, as a higher probability of success would yield an increase in
the number of extreme observations, and when modelling the noise we see a lot of

extreme values (alleles, stutters, and shoulders).
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True Mean: 1
Estimated Mean: 9.82
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Figure 6.3: The density of the negative binomial distribution, using both the

true parameters and parameters estimated using the weighted fractile method.

In general the weighted fractile method has a tendency to overestimate the size
parameter (the median is approximately 70 times the true size value), therefore in
order to ascertain a higher probability of success, the the weighted fractile function
tries to compensate by increasing the estimated mean value. Figure 6.4, shows that
the relationship between the true and the estimated mean value is fairly linear. An

observation which we might be able to use, to adjust the weighted fractile method.
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Figure 6.4: The estimated mean plotted against the true mean of simulated
negative binomial data, with a true size parameter of 0.01, 0.1, and 1. The
blue line and gray band, are a robust linear model fit and the accompanying
standard error, respectively. The red line is a loess-fit, and the gray dashed

line indicates a one-to-one fit.

6.3 Future Work

This section will serve as a short introduction to potential future work based on the
this thesis.

Modelling String Coverage with Artefacts and Mixtures:

A way of incorporating artefacts has already been discussed above, in Section 6.2.1.
The addition of mixtures, introduces another parameter ¢;, indicating the fraction
of the coverage belonging to individual i. The artefact adjusted model discussed
in Section 6.2.1, is a convenient extension based on previous work in CE, more

appropriate methods may yet be discovered.

Development of R-package
This is, probably, the easiest of our proposals, as most of the code is already written,
though some could benefit from an overhaul (or conversion to C++) to optimise its

speed.
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Examination of RUL

The first question regarding the RUL is, do we even need a refinement of the LUS?
From a purely statistical standpoint, it will depend on the predictive performance
of the RUL compared to the LUS. We see from Figure 6.1, that the relationship
between the stutter ratio and the RUL is not necessarily linear, which implies a
possible increase in model complexity. From a more practical standpoint, the gain

obtained by this further refinement, is most likely not that substantial.

Verification of the EM-Algorithm using Profile-likelihood

As mentioned in Section 6.2.3, we need to prove that the use of a profile-likelihood
in the M-step of the EM-algorithm, still ensures a non-decreasing likelihood. This
is achieved by showing the profile-likelihood is concave for every iteration of the

algorithm.
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APPENDIX

A

THE INCOMPLETE REGULARISED BETA FUNCTION

This chapter will contain a short look at the incomplete regularised beta function,
including derivatives thereof, which we will need in the main thesis. The beta
function (sometimes also referred to as the Euler function of the first kind) is given

B(a,b) = /01 N1 — ) dt, (A1)

where a,b € R and a,b > 0. The beta function is a symmetric function and can be

written as a product of gamma functions:

[(a)L(b)

B(a,b) = ——= A2
(@) = F (A.2)
where the gamma function takes is usual form:
[(t) = /OO o lexp (—x) dz. (A.3)
0

The beta function can be extended to an incomplete beta function defined as follows:
B(z;a,b) :/ 11 (1 — £) Lt (A.4)
0

We see that the beta function is a special case of the incomplete beta function
with x = 1. The incomplete regularised beta function (also called regularised beta

function) is a regularisation of the incomplete beta function, using the beta function.
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APPENDIX A. THE INCOMPLETE REGULARISED BETA FUNCTION

That is, the regularised beta function is given as:

B(z;a,b)

I.(a,b) = Blab)

(A.5)

In Section 4.1.1, we need the derivatives of a regularised beta function, where z =
/\%9, a =k, and b = 6, with respect to A and 6. Furthermore, we take the logarithm
of the regularised beta function. The derivative w.r.t. \ is:

a(i {log (1 s (k, 0))} 68)\ [log (B (AjreM)ﬂ

1 0 A
B2 50) 02 ltie)] oo

The derivative w.r.t. the # parameter is found as follows:

889 [log (1 « (K, 9))] {fe [log (B (AA ik 9)) ~log (B (k,&))]

) ; B (535 k.0)] SH[B (k,0)]

B(2,h0)  B(hD)

(A7)

The derivatives of the incomplete beta functions, with respect to A and 6, are given

as follows:
3, A 0 01
eﬁ%Mw%@—mA D

A k—1 A 0—1 0
:<)\+9) (1_>\+9> (A +0)2
)\kflee

(A F )k

(A.8)

The derivative w.r.t. 8 is a bit more complicated as the integrand also depends on

0:

D (A N9 B e
89B< ,k,9>_89/ =11 — )0y

0—-1 A
A A k-1 61
= 1-— log (1 —
<A+9> ( A+6> ()\+9)2+/0 F (1=t log (1 ) dt

)\kee )\+<9 k—1 0—1
= ()\+9)k+e+/ #71(1 — )" Mog (1 — t) dt (A.9)
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All that remains is to calculate the derivative of the beta function:

0 9 [T(K)T(8)
20> * 0 =5 lr(m@)]
CT(RIO) TGO (k+0)

C T(k+0) L(k + 6)?

~ T(k)D(0) <F’(0) _ I'(k +6’)>
S T(k+0) \T(®) Tk+0)

s (A.10)

We include the last equality as it will simply Equation (A.7). We will have solve the
last integral in Equation (A.9) numerically, and as it is a one-dimensional integral
we can use the integrate-function in R. Furthermore, I''(z)/I'(z) is the digamma

function, and is already implemented in R.
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APPENDIX

B

NOISE SIMULATTON

We want to carry out a simulation study of our homebrew functions for modelling
noise, in order to investigate how well they perform. First, however, a comment on

the implementation of weighted fractile method.

As we in our data have extreme outliers, with respect to the noise distribution, i.e.
the coverage of the true alleles, the density values under the noise model of these
outliers would be very small. In fact, the density is so small in these points that it
is assigned a value of zero. The consequence being that either z*, seen in Equation
(4.6), is divided by zero or we take the logarithm of zero when calculating the log-
likelihood, resulting in NaN and —Inf values, in R, respectively. The first case would
result in an error, where the latter would make the log-likelihood function diverge
to negative infinity. In order to avoid these consequences, we restrict the values
used when calculating the log-likelihood to values smaller than the 99%-fractile.

Furthermore, we ensure that the upper quantile, gpper, used is smaller than the
99%-fractile.

We will generate one inflated negative binomial data, using different values of the
sample size, mean, and size parameters (N, A, and 0, respectively), and fit the
parameters using the kinb (both truncated and non-truncated, to examine the
difference) and weighted.fractile methods. We will not use different values of

the mixing parameter, m, as previous simulations have already shown that 7 is well
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APPENDIX B. NOISE SIMULATION

estimated by all three methods. The data is simulated as follows:

(i) The amount of excess one’s is calculated using a binomial distribution with 7
as the probability of success in each trial and N as the number of trials. That

is, ning ~ Bin (N, ), leaving an effective sample size neg = N — njug.

(ii) We then sample from a negative binomial distribution with parameters A and
0, i.e. x; ~ NegBin(\,0), where i = 1,... ne. Note: we use the mean

representation of the negative binomial distribution.

The process in items (i)-(ii) will be replicated ten times. The total number of unique
strings per locus range somewhere between 400 and 2,000 reads. Based on previous
simulations and estimates of noise seen in the files from dilution series, we know
7 € [0.5;0.7], A € [2;7], and 6 € [0.001; 2]. Therefore, we let N € {500, 1,500, 2,500},
7 =0.6, A\ ={1,2,...,10}, and # € {0.01,0.1,1}. The median and standard error
of the parameter estimates can be seen in Tables B.1 - B.3, (though these tables are
rather large, making it difficult to glean any relevant information, they have been

included for the sake of completeness).

Figure B.1 shows boxplots of the difference between the true mean value and the
estimate of the mean, d(X) =\— 5\, plotted against the true mean, A, shown for the
three sample sizes, N = 500, 1,500 and 2,500. We see that as the true mean increases
the difference, d(:\)7 and the variance of the /A\—estilrnates7 using the weighted fractile
method, increases. We see this effect across all three sample sizes, in fact we do
not see any difference between the three different sample sizes for either of the three

methods used.

As the sample size does not seem to have an effect on the mean, we have tried strat-
ifying on the values of the true size parameter instead, the resulting boxplots can
be seen in Figure B.2. The figure shows that the smallest size parameter 0.01, has
a huge effect on the mean estimates of the weighted fractile method. Furthermore,
we also see that the weighted fractile method has a general tendency to overesti-
mate the mean parameter, whereas the KINB methods generally underestimates the

parameter.

-~

The difference between the true size parameter and the estimated parameter, d(0) =
0 —6 is worse when the mean parameter, ), is close to 1, as seen in Figure B.3, which

makes sense as our data is one inflated implying that the two mixtures would be
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harder to tell apart. Furthermore, we see as we increase the size parameter the
variation gets worse as well, which leads to the extreme difference of -713.32 for the
truncated KINB method.

-~

Figure B.4 shows the difference d(f) plotted against the sample size, in order to
show that the extreme values for # = 1, is not a product of a small sample size, but

is purely affected by the true 6 parameter.

In general we do not see much difference between the two KINB methods, though it
does seem that the truncated version gets closer to the true size parameter than the
non-truncated KINB. As the mean increases the variance of d(é) seems to decrease
all three methods (or at the very least stabilise). All three methods overestimate

~

the size, however as the mean increases, the absolute difference, |d(6)|, decreases.

We see that when estimating the size the truncated methods are clearly superior to
the non-truncated. We have not included a non-truncated version of the weighted
fractile method in this chapter, even though it has also been examined, as it generally
performs worse than the non-truncated kinb-function and the truncated weighted

fractile function, when estimating the size and mean respectively.
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Method E] KINB E Non-truncated KINB E] Weighted Fractile
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Figure B.1: The difference between the true mean parameter and the esti-
mated mean parameter, d(/A\) =)\— /A\, plotted against the true mean )\, for

each sample size N.
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Figure B.2: The difference between the true mean parameter and the esti-
mated mean parameter, d(/A\) =\— 3\, plotted against the true mean )\, for

value of the true size parameter 6.
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Figure B.3: The difference between the true mean parameter and the esti-
mated mean parameter, d(é) =0 - 5, plotted against the true mean A\, for

value of the true size parameter 6.
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Figure B.4: The difference between the true mean parameter and the esti-
mated mean parameter, d(@) =60-— 5, plotted against the true size 6, for each

sample size N.
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Table B.1: The median and the standard error of the parameters

estimated using the kinb-function.

KINB
N =500
6 =0.01 0=0.1 =1
AA SE 7 SE A SE 6 SE p) SE 7 SE
1 29859 0.0349 0.2910 0.0215 1.7189 0.0293 0.6790 0.0429 0.9211 0.0322  5.3488  70.9295
2 34778 0.0652 0.2344 0.0105 2.1851 0.0329 0.5529 0.0229 1.2708 0.0160 2.7165  0.1456
3 3.7393 0.0429 0.1926 o0.0077 2.3530 0.0294 0.4964 o0.0177 1.6100 0.0257 1.1188  0.0592
4 3.9484 o0.1222 0.1841 o0.0075 2.6212 0.0508 0.4142 0.0230 1.7025 0.0299 0.9257  0.1153
5 4.1409 0.0555 0.1905 0.0080 2.6990 0.0530 0.3575 0.0209 1.8813 0.0313 0.9592 0.0884
6 4.2144 o0.0724 0.1622 0.0118 2.8757 0.0446 0.3838 0.0209 2.1434 0.0247 1.0581  0.0330
7 4.7489 0.1823 0.1651 0.0073 2.8397 0.0341 0.3433 0.0251 2.1772 0.0340 0.8235  0.0441
8 4.7701 o0.0746 0.1613 0.0090 3.0259 0.0431 0.3428 0.0153 2.2224  0.0200 0.9212  0.0642
9 4.8344 o0.0660 0.1813 o0.0106 3.0868 0.0468 0.3214 0.0115 2.3070 0.0151 0.8439  0.0492
10 4.9659 o0.0748 0.1764 0.0098 3.1825 0.0248 0.3049 0.0218 2.3993 0.0147 0.8961  0.0464
N = 1500
6 =0.01 0=0.1 =1
A A SE ) SE h) SE 7 SE p) SE ) SE
1 3.0102 o0.0261 0.3079 0.0062 1.5864 0.0065 0.9351 0.0224 0.9215 0.0141 25.9498  4.7805
2 3.6444 0.0720 0.2628 0.0100 2.0104 0.0367 0.5631 0.0249 1.1930 0.0132 1.9412  0.0329
3 4.0024 0.0693 0.2445 o0.0121 2.3772 0.0319 0.3993 0.0092 1.4063 0.0130 1.5050  0.0438
4 4.2832 0.0651 0.2198 0.0063 2.5341 0.0453 0.4133 0.0221 1.6048 0.0300 1.1796  0.0393
5 4.4846 0.0606 0.2071 0.0068 2.6525 0.0277 0.3699 0.0139 1.7557 0.0174 0.9602  0.0545
6 4.7429 o0.0581 0.1913 0.0053 2.6968 0.0369 0.3645 0.0081 1.8873 0.0255 0.8408  0.0595
7 4.7966 0.0799 0.1911 o0.0052 2.9287 0.0317 0.3624 0.0085 2.0182 0.0422 0.9080  0.0694
8 4.8268 0.0819 0.1688 0.0066 3.0332 0.0346 0.3495 o0.0075 2.3134 0.0221 0.8710  o0.0727
9 5.0661 02354 0.1696 0.0099 3.1311 0.0214 0.3251 0.0074 2.3783 0.0276 0.8940  0.0740
10 5.0868 o0.1277 0.1744 o0.0102 3.1195 0.0378 0.3218 0.0064 2.4446 0.0320 0.8779  0.0869
N = 2500
f# =0.01 f=0.1 =1
A A SE 6 SE hY SE 0 SE p SE 6 SE
1 3.0083 0.0399 0.2693 0.0120 1.7213 0.0101 0.6563 0.0100 1.0008 0.0050  5.4638  0.1463
2 3.4869 0.0354 0.2275 0.0078 2.2107 0.0350 0.5403 0.0311 1.3336 0.0153 2.5462  0.0626
3 3.7428 0.0273 0.1953 0.0061 2.3640 0.0098 0.5278 0.0126 1.6128 0.0223 1.1938  0.0345
4  3.8982 0.0445 0.1701 o0.0071 2.4640 0.0149 0.3803 0.0065 1.6491 0.0249 1.0194  0.0260
5 4.1994 0.0342 0.1955 0.0051 2.8481 0.0483 0.3947 0.0075 1.9164 0.0139 0.9524  0.0250
6 4.3018 0.0833 0.1820 0.0076 2.8638 0.0340 0.3646 0.0069 2.0719 0.0207 0.9276  0.0385
7 49143 0.0958 0.1818 0.0067 3.0566 0.0599 0.3701 0.0184 2.2792 0.0245 0.9770  0.0346
8 5.0082 0.0867 0.1970 0.0063 3.0779 0.0383 0.3268 0.0071 2.2230 0.0242 0.9233  0.0349
9 5.1020 0.6804 0.1748 0.0222 3.0917 0.0221 0.3065 0.0069 2.3100 0.0092  0.8791  0.0121
10 4.9826 o0.2766 0.1741 o0.0107 3.1341 0.0185 0.2953 0.0074 2.3789 0.0056 0.8754  0.0147
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Table B.2: The median and the standard error of the parameters

estimated using the non-truncated kinb-function.

Non-truncated KINB

N =500
# =0.01 6 =0.1 =1
A A SE 0 SE h) SE 0 SE h) SE 7 SE
1 3.2696 0.0235 0.6891 o0.0181 1.8507 0.0175 1.9192 0.1189 1.1594 0.0108 10.6096 0.5879
2 39847 0.0597 0.5421 o0.0115 2.3240 0.0311 1.1310 0.0362 1.4342 0.0137 8.0284  0.9492
3 4.2111 o0.0670 0.4831 0.0095 2.5820 0.0329 0.9541 0.0193 1.6713 0.0293 2.9232  0.2310
4 45211 o0.0714 0.4575 0.0142 2.8906 0.0362 0.8745 0.0228 1.8468 0.0253 2.8339 0.1510
5 4.7362 0.0447 0.4444 0.0090 3.0101 0.0449 0.7797 0.0231 2.0123 0.0220 2.4995 0.1532
6 4.8427 0.0614 0.4395 0.0081 3.1703 0.0402 0.7767 0.0240 2.1129 0.0239 2.0874  0.0597
7 49141 o0.0613 0.4082 0.0083 3.2577 0.0392 0.7425 0.0232 2.2580 0.0324 1.7559  0.0576
8 5.0574 o0.0582 0.4036 0.0081 3.3024 0.0327 0.7112 0.0197 2.3532 0.0203 1.9194 o0.0719
9 5.1477 o.0716 0.3902 0.0096 3.4059 0.0392 0.6990 0.0180 2.4287 0.0243 1.5793  0.0650
10 5.2539 0.0848 0.3936 0.0100 3.5571 0.0464 0.6704 0.0198 2.5423 0.0185 1.6090 0.0448
N = 1500
0 =0.01 0=0.1 =1
A A SE 0 SE h\ SE 0 SE h) SE ) SE
1 3.3511 o0.0386 0.6781 0.0102 1.8732 0.0211 1.9675 0.0736 1.0646 0.0228 75.3268 7.4097
2 4.0216 0.0263 0.5216 o0.0110 2.4793 0.0408 1.0950 0.0465 1.5391 0.0163 2.9878  2.3632
3 4.3133 0.0276 0.4792 0.0066 2.5569 0.0229 0.9786 0.0167 1.6876 0.0118 2.6800 0.0823
4 45257 0.0436 0.4566 0.0046 2.8326 0.0368 0.9015 0.0139 1.8259 0.0185 2.8129  0.0463
5 4.7235 0.0291 0.4395 0.0056 3.0542 0.0438 0.7800 0.0165 1.9167 0.0100 2.4929  0.0625
6 4.7804 0.0258 0.4219 0.0058 3.1549 0.0328 0.7760 0.0147 2.0653 0.0110 2.1391  0.0398
7 4.8874 0.0368 0.4161 0.0029 3.2349 o0.0210 0.7324 0.0145 2.1708 0.0137 2.0212  0.0250
8 5.0678 0.0355 0.4016 0.0067 3.3726 0.0311 0.7113 0.0060 2.2829 0.0132 1.9002  0.0233
9 5.1373 0.0414 0.3998 0.0040 3.4943 o0.0210 0.6724 0.0110 2.4136 0.0213 1.8448 0.0318
10 5.3464 0.0421 0.3867 0.0069 3.4648 0.0248 0.6698 0.0094 2.4801 0.0220 1.7561  0.0356
N = 2500
# =0.01 0 =0.1 =1
A A SE 0 SE p SE 7 SE hY SE 6 SE
1 3.3499 0.0296 0.6389 0.0062 1.8822 0.0128 1.7603 0.0300 1.1826 0.0050  9.9395 0.1992
2 3.9448 0.0397 0.5361 0.0050 2.3725 0.0303 1.1712 0.0237 1.4656 0.0070 7.9949  0.3042
3 4.2683 0.0411 0.4843 0.0059 2.6097 o0.0125 0.9811 0.0178 1.6702 0.0136 3.5427  0.1280
4 44089 o0.028 0.4609 0.0061 2.8043 0.0260 0.8811 0.0098 1.8245 0.0167 2.9538 0.0817
5 4.7542 0.0310 0.4336 0.0031 2.9848 0.0233 0.8123 0.0065 2.0311 0.0086 2.5022 0.1118
6 4.8981 0.0543 0.4268 0.0040 3.1057 0.0212 0.7697 0.0091 2.1238 0.0189 1.8341 0.0564
7 49966 0.0454 0.4098 0.0031 3.2201 0.0218 0.7416 0.0057 2.2338 0.0123 1.8285  0.0370
8 5.0951 0.0488 0.4109 0.0046 3.3082 0.0327 0.7095 0.0098 2.3515 0.0209 1.7709  0.0235
9 5.1957 0.0379 0.3937 0.0039 3.3919 o0.0075 0.6891 0.0095 2.4723 0.0223 1.7072  0.0383
10 5.3684 0.0287 0.3879 0.0025 3.4780 0.0394 0.6750 0.0067 2.5164 0.0102 1.6769 0.0425
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Table B.3: The median and the standard error of the parameters

estimates using the weighted fractile method.

Weighted Fractile

N =500
f# =0.01 6 =0.1 =1
A A SE 6 SE h) SE ) SE p) SE 0 SE
1 9.2881 02828 0.1633 0.0182  6.3988 0.1853 1.9638 0.3834 2.8097 0.0779 100.0001  0.0000
2 16.0940 o0.6604 0.1010 0.0090 7.9388 0.2558 0.9190 0.0495 3.6141 0.1303 5.0158  1.6526
3 23.0441 o0.8704 0.1002 0.0060 7.3691 0.3355 0.3773 0.0543 5.7351 0.1712 6.2608 0.4154
4 27.6139 1.4e645 0.0937 0.0075 7.7448 0.2721  0.2685 0.0432 6.2108 0.1930 3.5996  0.4362
5 34.0411 1.7084 0.1020 0.0081 8.7946 0.2733 0.2640 0.0351 6.3351 0.1369 1.8477  0.2634
6 35.7828 2.0285 0.0945 0.0084 8.3256 0.3510 0.1263 0.0369 7.1166 0.0996 1.3715  0.0299
7 43.5811 1.9516 0.0809 0.0086 8.9729 0.2866 0.1462 0.0144 T7.5766  0.1547 1.1964 0.0401
8 52.8507 3.4059 0.0894 0.0077 10.3033 0.2989 0.1743 0.0185 7.6016 0.0923 1.0950 0.0311
9 583091 3.0651 0.0948 0.0208 11.2115 0.3867 0.1431 o0.0171 7.8308 0.2976 0.8086  0.0705
10 63.3892 4.2044 0.0820 0.0059 11.1059 0.3782 0.1398 0.0125 7.8713 0.0660 0.7451 0.0338
N = 1500
6 =0.01 0=0.1 =1
A h) SE 0 SE h) SE ) SE p) SE 7 SE
1 10.2590 0.2239 0.1438 0.0082 6.2110 0.1452 1.8450 o0.1145 3.0481 0.0795 100.0001 0.0000
2 17.1514 0.5062 0.1027  0.0060 8.4423 0.2149 0.9586 0.0290 4.0224 0.1444 4.6810 2.5445
3 229450 0.6046 0.0971 0.0039 7.5891 0.2681 0.4298 0.0443 5.5226 0.2035 5.7583  0.4983
4 26.4544 0.8424 0.0917 0.0038 7.8798 0.5072 0.3677 0.0441 6.7552 0.2313 4.3293  0.2994
5 33.4447 o0.8566 0.0926 0.0027  8.3707 0.1922 0.2572 0.0207 6.2113 0.0974 1.8461 0.0640
6 39.5903 1.3924 0.0935 0.0040 8.6808 0.2017 0.2168 0.0141 7.0445 0.0811 1.3931 0.0311
7 43.1789 1.1445 0.0906 0.0023 9.1741 0.1703 0.1537 0.0098 7.6091 0.1029 1.1961 0.0313
8 47.6546 1.1962 0.0805 0.0035 9.7857 0.1976 0.1289 0.0148 7.5717 0.0781 1.0177  0.0260
9 50.5247 1.0625 0.0868 0.0034 11.5347 0.2036 0.1403 0.0073 7.8370 0.0500 0.8608  0.0296
10 60.1438 1.7283 0.0792 0.0025 11.3963 0.1883 0.1376 0.0086 7.9448 0.2781 0.7857  0.0495
N = 2500
=0.01 0 =0.1 =1
A hY SE 6 SE p SE 6 SE hy SE 0 SE
1 10.2261 0.1504 0.1430 0.0069 6.4773 0.0720 1.6538 0.2644 2.8097 0.0779 100.0001  0.0000
2 16.5792 0.3424 0.1069 0.0056 8.6740 0.2688 0.9453 0.1052 4.0234 0.1443 4.6963 2.5517
3 22.2492 0.4722 0.1006 0.0041 7.7892 0.2506 0.5422 0.0265 5.7351 0.1487 6.5147 0.4372
4 285206 04776 0.0959 0.0023 7.8685 0.0776 0.2983 0.0170 6.7619 0.1606 4.3738 0.3195
5 34.2358 0.6748 0.0889 0.0028  8.1960 0.1683 0.2183 0.0136 6.2186  0.0609 1.8461  0.0402
6 40.0952 1.3766 0.0823 0.0024 9.0602 0.0943 0.1895 0.0071 7.0501 0.0632 1.3812  0.0235
7 44.9317 1.2992 0.0841 0.0032 9.3134 0.1310 0.1735 0.0075 7.8766 0.0689 1.1649 0.0173
8 48.1110 1.0018 0.0850 0.0031 10.3209 0.2360 0.1512 0.0049 7.6049 0.0825 0.9833 0.0283
9 54.0522 1.3015 0.0718 0.0024 10.9490 o0.1613 0.1450 0.0075 7.8125 0.0314 0.8552  0.0158
10 61.7173 0.88901 0.0783 0.0017 11.9694 0.3135 0.1437 0.0059 8.0425 0.0230 0.7464 0.0120
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APPENDIX

C

EXAMINING THE EM-IMPLEMENTATION USING
SIMULATED GAMMA COVERAGE

In order to examine the performance of our implementation of the EM-Algorithm,
we will simulate data from the a gamma distribution, trying to emulate the real data,
using multiple loci. That is, we will have three, nine, and twenty loci (L1, Lo, and
Ls, respectively), each locus containing two observations. The true a parameters
used to simulate the gamma distributed data are {350, 1,500, 3,500}, creating nine
simulated datasets. Furthermore, we use three distinct {n,;}3_, vectors, one for each
L;, the vectors are created drawing L; observations from a normal distribution with
1 =0.9 and o = 0.2. The values for p and o were chosen to recreate allele and locus

drop-outs.

After the data is simulated, we truncate it using a threshold equal to 250, 1,000, and
2,500, respectively. Furthermore, we replicate this process 1, 000 times, and estimate
the parameters using both no removal and outer removal of dropped loci (we do not
need to include inner removal in our evaluation, as the parameter estimates would
be the same as no removal). We do this to examine the effect, on estimating the

shape-parameter, when dropped loci are removed.

For the moment we will just concern ourselves with the case where a = 350, and nine,

Lo, loci. Figure C.1 panel (a), shows quite clearly that the shape parameters are the
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SIMULATED GAMMA COVERAGE

same using both removal types. As a consequence the 1 parameters would be equal.
Wherein lies the difference between the types? As seen in panel (b) the number of
iterations needed to achieve the estimates differs greatly, when the number number
of dropped loci is larger than zero. In fact we benefit by removing the dropped loci
before estimating the parameters, as the median number of iterations drops from 51
to 2. Furthermore, the average absolute error of the estimated shape parameter is

approximately 18.26.

() (b)

Type None —— Outer

Number of Iteration

A 500
Ohone Replicate

Figure C.1: Panel (a) shows the shape parameters estimated using no removal
plotted against the shape parameters estimated using outer removal. The blue
line shows a one-to-one relationship. Panel (b) shows the number of iterations
needed to converge for no removal and outer removal, here shown in red and
blue, respectively. The two panels show data simulated using o = 350 and

number of loci equal to L.

We see, in Figure C.2, a boxplot of the estimation error regarding the scale param-
eter, stratified for each locus. The estimation error looks fairly consistent, with the
exception of locus 8, though this could be a consequence of loci having been dropped
(944 out of 1,000). We see that it makes quite a difference whether locus is dropped
or not, in fact it seems algorithm tends to underestimate the the scale when the
locus does drop. From this point fourth, we will not limit ourselves to o = 350 and

nine, Lo, loci.

In Figure C.3 we see boxplots of the relative shape error against the true a parame-
ter. We see that the median relative shape error stays consistent, given the number

of loci, though the inter-quantile range shrinks.

Figure C.4, shows the scale estimation error against the true scale parameter. From
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Figure C.2: A boxplot showing the estimation error 1, — 7;, for each locus
[. The estimation error when the locus is drop and not-dropped is coloured
using red and blue, respectively. The number shown at locus 6, and 8, is the
total number of dropped loci out of 1000 replications. The data simulated

using a = 350 and number of loci equal to Ls.

Number Of Loci B 3 B8 9 ES 20

0,5 =

0.00 -

=3

e

o
|

Relative Shape Error

1 1 1
350 1500 3500

a
Figure C.3: A boxplot of the relative shape error against the true shape
parameter. The number of loci is shown in red, green, and blue, for 3, 9, and

20 loci, respectively.

the figure we see that the standard deviation of the scale estimation error increases

with the true parameter, as does its median. Furthermore, we see that the absolute

AT
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error is fairly consistent across all three number of loci.

01- %
0.0-
—0.1-

=0 2=

0.1-

—0.2-

N
m=n

—0.2-
1 1
0.8 1.0 12

ull
Figure C.4: Boxplots of the scale parameter estimation error against the true

scale parameter.

As a last note, it is a bit troubling that the shape parameter does not change,
dependent on the removal type and on further inspection we see that the shape
parameter rarely change from the initial chosen value (most likely do to the use of
the profile-likelihood in the M-step), the algorithm just adjusts the scale parameter.
Therefore, we need to choose the shape parameter with care, in a way which makes
sense. We choose the to set it as the mean, of the observed coverage across all
loci. That is, the shape will act as a sample mean and the scale will then adjust

accordingly.
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APPENDIX

D

GAMMA QQ-PLOTS OF REAL AND SIMULATED DATA

Gamma QQ-Plot: Real Data — DNA: 2ng — Contributor: F Gamma QQ-Plot: Real Data — DNA: 1ng — Contributor: F
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Gamma QQ-Plot: Real Data — DNA: 0.1ng — Contributor: F Gamma QQ-Plot: Real Data — DNA: 0.05ng — Contributor: F
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Gamma QQ-Plot: Real Data — DNA: 2ng — Contributor: F Gamma QQ-Plot: Real Data — DNA: 1ng - Contributor: F
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Gamma QQ-Plot: Real Data — DNA: 0.5ng - Contributor: H Gamma QQ-Plot: Real Data — DNA: 0.2ng — Contributor: H
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Figure D.1: Gamma QQ-plots of the coverage for each sample in the dilution
series. The solid line is a straight line through the first and third quartile.

The dashed lines are point-wise 95%-confidence envelopes.

In Figure D.1, we see gamma QQ-plots of the allele coverage for every sample of
our dilution series. We see that on eight out of twenty-four plots, a few of the
more extreme observations does not necessarily adhere to the assumption that the
coverage is gamma distributed. We have examined these observations in order to
find any communality. Table D.1 shows the number of extreme observations for
each locus and it would see the extreme observations tend to occur on locus D16

and vWA.

Table D.1: The number of extreme observations for each

locus.

CSF1PO D16S539 D3S1358 D5S818 D7S820 D8S1179 THO01 vWA

0 14 2 4 1 0 6 13
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Gamma QQ-Plot: Simulated Data — DNA: 1000 Gamma QQ-Plot: Simulated Data — DNA: 500
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Figure D.2: Gamma QQ-plots of the coverage given the input DNA from the
simulated data. The solid line is a straight line through the first and third

quartile. The dashed lines are point-wise 95%-confidence envelopes.
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In Figure D.2, we see gamma QQ-plots for the simulated coverage, one for each
dilution. We can aggregate in this manner as samples of our simulated data will
have approximately the same shape, given the dilution. The plots generally show

good fits, maybe with the exception of the plot w.r.t. the smallest amount of input

DNA.
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APPENDIX

E

DILUTION SERIES REFERENCES

Table E.1: The reference profile of the dilution series for contributor
F.

Allele Length Locus Zygotic

1 1  AMELX
1 1 AMELY

11 44 D16S539

Heterozygotic
12 48 D16S539

12 48 D5S818

Heterozygotic
9 36 D5S818

12 48 D8S1179

Heterozygotic
13 52 D8S1179

8 32 TPOX Homozygotic
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Table E.2: The reference profile of the dilution series for contributor
H.

Allele Length Locus Zygotic

1 1 AMELX

9 36 D16S539 Homozygotic

10 40 D5S818

Heterozygotic
12 48 D5S818

13 52 D8S1179
15 60 D8S1179

11 44  TPOX
8 32 TPOX

Heterozygotic

Heterozygotic
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