
Unifying STM and Side Effects in Clojure

By Daniel Rune Jensen, Søren Kejser Jensen & Thomas Stig Jacobsen
dpt1010f15, Spring 2015, Aalborg University

09-06-2015

0.0 Titlepage 3

The Faculty of Engineering and Science
Computer Science 10th term
Address: Selma Lagerlöfs Vej 300

9220 Aalborg Øst
Phone no.: 99 40 99 40
Fax no.: 99 40 97 98
Homepage: http://www.cs.aau.dk

Project title:
Unifying STM and Side Effects in
Clojure

Subject:
Clojure, Side Effects, and Software
Transactional Memory

Project periode:
Spring 2015

Group name:
dpt1010f15

Supervisor:
Lone Leth Thomsen

Group members:
Daniel Rune Jensen
Søren Kejser Jensen
Thomas Stig Jacobsen

Copies: 2

Pages: 126

Appendices: 5

Finished: 09-06-2015

Abstract:

In this project constructs were imple-
mented into Clojure for handling side-
effects in Software Transactional Memory
(STM) transactions and for more explicit
transaction control based on transactional
data. Clojure’s runtime and STM imple-
mentation were investigated and explored
in a series of experiments that resulted
in the implementation of an event han-
dling system for side-effect handling and
constructs for explicit data-based trans-
actional control. The implemented con-
structs were evaluated through use cases.
A part of the transactional control con-
structs were overlapping in terms of func-
tionality with existing Clojure constructs.
This part was usability evaluated using two
metrics and a subjective discussion of im-
plementations of the Santa Claus problem.
The usability evaluation found a decrease
both in terms of lines of code and develop-
ment time. Furthermore the concurrency
model of Clojure were found to be more
explicit and expressive with the added con-
structs. The project concludes that the
added constructs eases the development of
concurrent programs but a larger usabil-
ity evaluation and a performance evalua-
tion should be done to validate the result.

http://www.cs.aau.dk

0.0 Preface 5

Preface
The source code developed during this project is available for download at
the following URL: https://github.com/eXeDK/dpt1010f15 and can be
found on the CD attached this report. This project is a continuation of
work done in our previous semester project, where concurrency in multiple
functional programming languages were evaluated.

Prerequisites

Intermediate knowledge of programming in Clojure, as well as basic under-
standing of Clojure’s Software Transactional Memory (STM) implementa-
tion is recommended as the problems stems from the existing STM imple-
mentation, and the solutions presented in the report have been implemented
in Clojure.

Citation

Citation numbers in square brackets are used throughout the report as ref-
erences to existing work. A bibliography at the end of the report contains a
detailed description of these sources and information on how to obtain them.
Two styles of citation are used. The first style is when a citation is before
a punctuation mark which means the citation is only associated with the
current line. The second style is when a citation is after a punctuation mark
at the end of a paragraph then it is associated with the entire paragraph.

Formatting of diagrams

Architectural diagrams show classes and types as square boxes, functions
and methods as boxes with rounded corners and method names are prefixed
with a punctuation mark.

Formatting of source code

Source code examples are presented throughout the report and may have
been formatted differently in order to fit page width, compared to the orig-
inal code. Source code references in this rapport are written with the fol-
lowing highlighting:

• Namespace, Class or Type

• Function or Method

• Variable, Binding or Parameter

https://github.com/eXeDK/dpt1010f15

6

Definitions

The following definitions are used in the rapport.

Clojure Clojure version 1.6, since it is the most recent stable release at the
time of writing.

Clojure Runtime The Java archive produced by compiling Clojure, it con-
tains a Clojure part accessible by Clojure developers, and a inaccessible
Java part containing the scanner, compiler, data structures, etc.

Side-effect A function performs side-effects if it in addition to returning a
value, also manipulates state outside of the function scope.

Transaction A STM transaction in the sense of Clojure’s STM implemen-
tation.

Transactional Code Code that can be safely executed multiple time in-
side a transaction.

Non-Transactional Code Code that can be safely executed once inside a
transaction.

Transaction Control Functionality allowing a developer to manually con-
trol a transaction for example to block, abort or terminate a transac-
tion.

Abort A transaction that stop execution, for example due to conflicts with
a another transaction and allows the implementation to re-execute.

Terminate A transaction that aborts and is prevented from being re-
executed through some means.

8

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Problem Statement . 13
1.3 Project Approach . 14

2 Clojure 17
2.1 Clojure Macros . 17
2.2 The Clojure Runtime Overview 18
2.3 Software Transactional Memory 19
2.4 LockingTransaction and Ref 22

2.4.1 Metadata . 23
2.4.2 dosync . 24
2.4.3 deref . 27
2.4.4 alter and ref-set . 29
2.4.5 commute . 30
2.4.6 ensure . 32
2.4.7 blockAndBail . 34
2.4.8 barge . 34

2.5 Exploration . 35
2.5.1 Examples . 35
2.5.2 Defer . 37
2.5.3 Compensate . 38
2.5.4 Irrevocability . 39
2.5.5 Transactional Control 39
2.5.6 Discussion and Insight 40

3 Implementation 43
3.1 Event Handling System . 43

3.1.1 Clojure implementation 44
3.1.2 Java implementation 47

3.2 Transaction Control . 51
3.2.1 Clojure Implementation 52
3.2.2 Runtime Implementation 53
3.2.3 STMBlockingBehavior Implementation 55
3.2.4 LockingTransaction Implementation 57

3.3 Summary . 61

10 CONTENTS

4 Evaluation 63
4.1 Event Handling System . 63
4.2 Transactional Control . 66

4.2.1 Or-else and Terminate 66
4.2.2 Retry . 67

4.3 Summary . 73

5 Reflection 75
5.1 Effect of the added constructs 75
5.2 Usability Evaluation . 76
5.3 Performance Evaluation . 76
5.4 Approach . 77
5.5 Implementation . 77

6 Conclusion 79
6.1 Future Work . 81

Bibliography 83

A Experimental Designs 87
A.1 Defer . 87

A.1.1 After-commit . 87
A.1.2 Lazy Evaluation . 90

A.2 Compensate . 94
A.2.1 Undo . 94

A.3 Irrevocability . 96
A.3.1 Check-Run . 97

A.4 Transaction Control . 99
A.4.1 Retry, Or-else and Terminate 99

B Experimental Implementations 103
B.1 After-Commit . 103
B.2 Lazy Evaluation . 106
B.3 Undo . 109
B.4 Check-Run . 110
B.5 Transaction Control . 111

B.5.1 Clojure Implementation 112
B.5.2 STMBlockingBehavior Implementation 112
B.5.3 LockingTransaction Implementation 113

C Dosync-ac Design Options 117

D The Santa Claus Problem 123

E Project Summary 125

CHAPTER 1
Introduction

The general development in CPUs goes in the direction of adding more com-
putation threads to the processor instead of increasing the clock frequency.
One could say that “the free lunch is over”, referring to the article by the
same name written by Herb Sutter [1] which foresaw this development in
2005 where the free performance gain from higher CPU frequencies halted
and instead started adding more computational threads, making the job
of the developer harder due to the need for managing multiple threads of
execution with non-deterministic interleaving [2].

Functional programming has been on the rise in the recent years, with
multiple functional programming languages being ranked increasingly higher
on the Tiobe Index [3]. Functional languages simplify parallel programming
by defaulting to immutable data structures, ensuring data can be shared
between multiple threads without any risks. Most functional programming
languages do however provide access to mutable state for use in for example
communication between multiple threads [4, 5].

This chapter explains the motivation for this project in Section 1.1 and
defines the problem we will try to solve in Section 1.2. This is followed by
Section 1.3 that describes how the problem is approached in order to arrive
at a solution for the specified problem.

1.1 Motivation

Our 9th semester project named “Performance and Usability Evaluation of
Concurrency in Modern Functional Programming Languages” [6] showed
through a usability evaluation, that the implementation of the Software
Transactional Memory (STM) in Clojure lacks constructs for allowing side-
effects such as API or database calls inside transactions as they cannot
be rolled back if the transaction retries. Furthermore it showed that Clo-
jure lacks constructs for controlling when transactions abort and blocking
of threads from further execution. This is a problem because Clojure then
depends on its interoperability with Java to use the monitors found on all
Java Objects and the constructs from the java.util.concurrent package

12 Introduction 1

to control the execution of threads. These constructs nearly all depend on
side-effects to operate, making them incompatible with Clojure’s implemen-
tation of STM and forces the use of exceptions to make transactions abort.

The limitations of Clojure’s STM implementation are what is addressed
in this project. In our earlier work [6] we identified several different use cases
where we find the existing concurrency constructs and the STM implemen-
tation in Clojure insufficient:

• Any use of side-effects such as prints, file operations etc. cannot be
performed transactionally as they are not supported by the STM im-
plementation

• Interoperability with Java constructs through side-effects requires the
use of locks to be synchronised as only changes to the Ref type is
supported as part of Clojure’s STM implementation

• It is not possible to use the return value of a side-effect. Side-effects
in STM can be executed using agents in Clojure, but agents execute
asynchronously after the transaction has completed.

• Synchronous side-effects are possible by waiting on an agent to finish
processing using await, this leads to unnecessary blocking as it waits
for all actions dispatched thus far, not just the one sent from the caller
of await.

• The lack of synchronisation constructs including transaction control,
makes it impossible to block threads until data is ready for processing,
forcing the use of agents or Java interoperability for blocking threads.

1 (def keys-ref (ref []))
2 (def rows-ref (ref vector-of-rows))
3

4 (dosync
5 (let [row (first (deref rows-ref))
6 next-key (database-insert row)]
7 (alter keys-ref conj next-key)
8 (alter rows-ref rest)))

Listing 1.1: Inserting database rows and returning keys

A simple example that shows the problems with combining side-effects
with STM can be seen in Listing 1.1. The example performs parallel inser-
tion of rows into a database and stores the returned keys. The transaction
starts by inserting a row into a database in Line 6 and then appends the key
to a vector in Line 7, before removing the inserted row from the vector on
Line 8.

1.2 Problem Statement 13

Exclusive access are acquired through alter to ensure both insertion
of the row and updating the vectors are performed atomically, without
other threads interleaving. A problem with calling alter in Line 7 and Line
8 is that it can cause the transaction to abort while having executed the
database operation which cannot be rolled back by the transaction.

This is not acceptable behaviour because it means a row would be added
to the database multiple times depending on when the transaction aborts,
resulting in the key would be added multiple times to the vector. Locks
would remove the problem of multiple executions because locks only allow
for one thread inside a critical section ensuring conflicts are not possible.
The use of locks would however also introduce the possibility of deadlocks,
therefore the use of STM is favourable.

Restructuring the example seen in Listing 1.1 to use agents to perform
the side-effect would not be possible, as performing the database operation
inside an agent would not allow the transaction to return the resulting key
since messages to agents are sent after a transaction commits. Creating
another transaction for updating the vector with the key would allow op-
erations to be performed, but would not ensure that the vector of rows and
vector of keys were updated atomically together.

Furthermore, since agents execute asynchronously it is necessary to wait
for the agent to finish executing using the function await before reading the
resulting value, however we can only wait until all functions sent to the agent
have been executed, meaning that other threads might have overwritten the
result of our original computation before we could read it.

1.2 Problem Statement
Clojure contains limited functionality for handling side-effects in STM trans-
actions and depends on its interoperability with Java to control the execution
of threads.

The existing Java constructs used to control the execution of threads are
incompatible with the STM implementation of Clojure because they depend
on side-effects that are not transactional safe, forcing the use of exceptions
to make transactions abort before synchronisation is performed.

A solution to this is to allow side-effects to be executed inside transac-
tions in a transactional safe manner and to introduce constructs that give
more control over the execution of threads and better means to abort trans-
actions. Such a solution can be used to supplement Clojure existing solution
for controlling the execution of threads and forcing transactions to abort.

The following questions needs to be answered to take steps towards these
solutions for allowing transactional safe side-effects and transaction control.

• How does the STM implementation of Clojure interact with the rest
of the language and implementation?

14 Introduction 1

• How does Clojure handle the use of side-effects in transactions and
what are its limitations?

• How is it possible to introduce the use of side-effects in transactions
in Clojure’s STM implementation?

• How is it possible to introduce the use of transaction control in Clo-
jure’s STM implementation?

• How does the introduction of these concepts into Clojure’s STM im-
plementation affect the STM implementation in terms of functionality
and usability?

1.3 Project Approach

The approach of this project is influenced by our 9th semester project [6]
that gave us general knowledge about concurrent programming in functional
programming languages, enabling us to start prototyping and experimenting
earlier.

The scope of this project is to enable the use of side-effects and transac-
tion control in Clojures STM transactions, therefore we will not focus on the
use of existing constructs not part of Clojure’s STM implementation such
as agents and external libraries core.async.

We will start by looking at the Clojure runtime and the STM implemen-
tation to gain an understanding of what is possible in the existing structure
and how the STM implementation interacts with the rest of the language.
We will take advantage of the knowledge gained from our earlier work and
perform experimental implementations. The idea with these experiments is
to get a better understanding of Clojure’s STM implementation. This un-
derstanding of the STM implementation will enable us to develop solutions
to solve the presented problems, and how side-effects and transaction con-
trol can be supported by the current implementation. Based on the analysis
of Clojure’s STM implementation, we will compare our experimental imple-
mentation with existing solutions presented in the literature, and develop
suitable constructs for handling side-effects and perform transaction control.
We will then implement these constructs into Clojure’s STM implementa-
tion and evaluate the added constructs in terms functionality, usability and
influence of the constructs on Clojure’s overall model of concurrency.

To summarise, the following items have been chosen as our approach to
reach the two solutions.

• Analyse Clojure’s runtime and STM implementation

• Experiment with possible solutions for side-effects and transaction con-
trol

1.3 Project Approach 15

• Compare the experiments to the literature about STM, side-effects
and transaction control

• Implement constructs for the use of side-effects in transactions

• Implement constructs for transaction control

• Evaluate the implemented constructs in terms functionality and us-
ability

• Compare the concurrency model of the existing STM implementation
of Clojure to the model of the same implementation with these added
constructs

We argue that this approach increases the chances that the solution is
more fitting for Clojure by taking a starting point in the STM implementa-
tion. This means that we will not rely on existing solutions made for other
platforms in the literature before we start these experiments. Because of
this some of the experiments may overlap with existing solutions found in
the literature.

The alterations made to the Clojure runtime will be made as non-
intrusive as possible and with efficient data structures and algorithms in
mind, therefore a performance evaluation of the STM implementation be-
fore and after the additions of the constructs will not be performed.

The report is structured as follows, Chapter 2 analyses, explains and
explores the relevant parts of Clojure and its STM implementation. Chapter
3 documents the complete solution constructed based on the analysis and
exploratory experiments. The implementation will be evaluated in Chapter
4, ending the report with a discussion in Chapter 5 and conclusion in Chapter
6 which also contains ideas for future work on the subject.

16 Introduction 1

CHAPTER 2
Clojure

This chapter will provide the needed theory to read the rest of the report. We
start by giving an in-depth description of Clojure’s capabilities of Clojure’s
macros in Section 2.1. Then an overview of Clojure’s runtime in Section 2.2
is provided. Last we given an overview of Clojure’s STM implementation in
Section 2.3, followed by an in-depth description of each of the components
in Clojure’s STM implementation in Section 2.4.

2.1 Clojure Macros
Clojure inherent a powerful macro system from it being a Lisp variant where
data and code both are symbolic expressions. This allows the same syntax
to be used for both functions and macros even though there are semantic
differences between them. These differences will be described in this section.
[7]

Function: defined using fn, defn or defn-, accepts values as input, returns
values as output, and is executed at run time.

Macro: defined using defmacro, accepts code as input, returns code as
output, and is executed at compile time.

Because macros are expanded at compile time they allow Clojure to be
expanded with additional constructs without changing the runtime. Names-
pace lookup for symbols is automatic inside macros using Clojure’s syntax
quoting. This syntax quoting is an extended version of Lisp’s traditional
quoting that allows for additional reader macros. [8]

Similar functionality can be constructed using functions but the code
that is used as input must be quoted by the developer. If no quoting was
done then the code would be evaluated and the return value would be passed
to the function.

Returning code from a function after it has been transformed is also
problematic. A lambda function could be returned, which the developer
then must execute manually. Alternatively the code could be executed by

18 Clojure 2

the function instead of being returned, the code would then execute in the
scope of the function. Some overhead is added by each code transformation
because functions are executed at runtime. Macros, on the other hand, are
expanded at compile time which removes the runtime cost entirely.

Clojure’s macros provide two additional variables. The first variable is
called &env and provides a map with all lexically scoped bindings. The second
variable is called &form and provides the original form of the macro before
it was expanded. Clojure does not provide any capabilities for capturing the
current lexical scope on runtime which means that only non-local vars can
be resolved by a function.

Function: provides dynamic lookup of non-local vars as they are stored by
the Namespace class in the runtime.

Macro: automatically captures any lexically scoped bindings created as a
parameter, through a with-local-vars or a let binding, and provides
dynamic lookup of non-local vars.

In summary, macros provides access to all symbols in the scope where
they are expanded, and allows new syntax to be created without changing
the Clojure runtime. Macros however cannot be used to manipulate data
provided at runtime, such as a text file or data from a database, as they are
expanded before such data is provided to the program. Data manipulation
is done by functions, which are executed at the programs runtime, and
provides an interface unsuitable to manipulating code due to the additional
quoting and lack of accesses to locally scoped variables.

2.2 The Clojure Runtime Overview
The source code of the Clojure runtime is divided into two parts, one part
is written in Java the other is written in Clojure, each part is compiled in
its own phase of the compilation of the runtime. The Java part is compiled
first and contains code for the core of Clojure, for example reading Clojure
source code and translating it into Java bytecode which is able to be run
on the Java Virtual Machine (JVM). The second part of the compilation
phase is to compile the Clojure part of the runtime with the now compiled
Java part of the runtime. The Clojure part of the runtime contains all of the
function implementations of the language, these serve as Clojure’s standard
library and provide an interface for the underlying Java parts of the runtime.
Finally, both parts are compiled into a single Java Archive (JAR) file that
is the Clojure runtime.

An overview of the runtime and the main parts of it can be seen in
Figure 2.1. Here the two parts of the runtime are illustrated by the two
larger blocks with their content shown inside.

2.3 Software Transactional Memory 19

Figure 2.1: Overview of the Clojure runtime structure

2.3 Software Transactional Memory
The implementation of Clojure’s STM ensures that operations on transac-
tional data can be safely interleaved by providing guarantees of atomicity,
consistency and isolation. Atomicity means that all or none of the opera-
tions in a transaction are executed. Consistency means that the transaction
has the same view of the transactional data through the entire transaction.
Isolation means that operations performed by a transaction is not visible to
other transactions before it commits.

The STM implementation in Clojure is based on Multi Version Con-
currency Control (MVCC) where each transaction sees its own version of
the transactional variables used. MVCC is used by major databases and
has been an active research area in more than 30 years and is the basis
for the STM implementation found in Clojure. The use of transactions in
databases and the notion of snapshot isolation is carried over from the world
of databases into the world of concurrency control in programming languages
with the use of MVCC. [9]

In Figure 2.2 an example of a MVCC system with multiple concurrently
executing transactions is seen. The transaction T1 is started at time t1 and
will therefore have precedence compared to both T2 and T3 if they all need a
write lock to the same transactional variable. The three transactions T1, T2
and T3 will all start with the same snapshot since no transaction will commit
between t1 and t2 in this example. If T1, T2 and T3 need to modify the same
transactional variable they will need to be executed in serial whereas T4 is
able to run concurrently with T1, T2 and T3 if either of them abort, given
that it does not modify a transactional variable changed in any of T1, T2 or
T3. The notion of transactions and serialisability is also found in the domain
of databases where it originates [9].

20 Clojure 2

Figure 2.2: An example of MVCC with multiple concurrent transactions

All functionality related to STM is located in the LockingTransaction
class found in the Java part of the runtime. It is responsible for holding
transaction specific values of transactional variables which are instances of
the class Ref. It is the responsibility of the LockingTransaction class to
ensure serialisability using its implementation of MVCC. The MVCC imple-
mentation found in Clojure uses timestamps on transactions to determine
which transaction is allowed to commit in case of a conflict between trans-
actions.

A Ref contains information about the version of the value it holds for
other transactions to know if they need to abort in order to maintain serial-
isability. This check of versions happens whenever a Ref is read or written
for the first time in a transaction and on commit time of each transaction.
When a transaction commits it will ensure that it holds the appropriate
locks for writing its local transactional values to the global version of the
Refs.

The interface for Clojure’s STM implementation is provided by six dif-
ferent macros and function, shown in Listing 2.1. To start a new transaction
in Clojure the dosync macro is used. dosync takes an arbitrary number of
expressions as input and executes all the expressions as one atomic trans-
action. Transactions should be short in execution time and the operations
must be side-effect free because they might abort and re-execute [9]. This
results in the side-effect being executed multiple times. Clojure’s STM im-
plementation provides the io! macro that can be added to a function to

2.3 Software Transactional Memory 21

1 (dosync & body)
2 (io! & body)
3

4 (deref ref)
5 (ensure ^clojure.lang.Ref ref)
6

7 (alter ^clojure.lang.Ref ref fun & args)
8 (ref-set ^clojure.lang.Ref ref val)
9 (commute ^clojure.lang.Ref ref fun & args)

Listing 2.1: Signatures for the Clojure STM functions

make it thrown an exception if the function is executed inside a transaction,
this is to indicate that this part of the code is not transactional safe.

Since Refs are transactional they are only allowed to be modified in-
side a transaction, otherwise the operation will cause an exception to be
thrown. Based on the function executed on a Ref inside the transaction,
the transaction will automatically acquire the correct type of lock needed.
Clojure provides the following four functions for manipulating Refs inside a
transaction.

ensure: protects the Ref from being changed by another transaction, but
leaves the current value intact.

alter: executes a function with the current value of the Ref as it’s first
argument, and assigns the Ref to the return value.

commute: equivalent to alter but expects the function to be commutative,
and allows another transaction to change the same Ref using commute.

ref-set: assigns a Ref to a specific value, and has the same abort semantics
as alter due to shared implementation.

Depending on how these function are interleaved, some transactions
might need to abort due to conflicts with other transactions. The semantics
for when and why a function forces a transaction to abort can be seen in
Table 2.1. The tables show T1 on the left and T2 on the top, each field is
annotated with nothing if the functions executed by both can be executed
without forcing either to abort, an E if T2 to forced to abort when it executes
it function, and an C if T2 will be forced to abort when it tries to commit.

22 Clojure 2

T1

T2 Deref Ensure Commute Alter Ref-Set

Deref
Ensure C E E
Commute
Alter E C E E
Ref-Set E C E E

Table 2.1: Overview of when transactions abort based on when the functions
are executed, the function on the row (T1) are executed before the function
on the column (T2), (E) is an abort when the function is executed and (C)
when the transaction of the last function tries to commit

2.4 LockingTransaction and Ref
In this section the details of the LockingTransaction class and the Ref
class, mentioned in Section 2.3, will be described to give a better under-
standing of the STM implementation found in Clojure. The architecture
tecture of Clojure’s STM implementation, can be seen in Figure 2.3.

Figure 2.3: The architecture of the STM implementation in Clojure

2.4 LockingTransaction and Ref 23

2.4.1 Metadata

Both LockingTransaction and Ref contains meta-data to help the STM
implementation in handling transactional values, transaction precedence etc.
An instance of LockingTransaction corresponds to a transaction, therefore
the meta-data belonging to a transaction is set on the transactions instance
of LockingTransaction. A transaction contains the following meta-data

Info info Instance of the Info type which contains the status of the trans-
action, the starting point of a transaction represented as a globally
unique number and a Java CountDownLatch

long startPoint A globally unique number to represent at what point in
time the transaction started. A higher value for startPoint indicates
a newer transaction.

long startTime A time stamp created by System.nanoTime, indicating at
what time the transaction was started

long readPoint A globally unique number to represent at what point in
time the current transaction started. It is equal to startPoint if the
transaction have not aborted at least once

ArrayList<Agent.Action> actions The actions which will be dispatched
when the transaction has committed. An action is a function dis-
patched to an agent.

HashMap<Ref, Object> vals The transactional values for all Refs in the
transaction

HashSet<Ref> sets The set of Ref instances that ref-set or alter have
been called on

TreeMap<Ref, ArrayList<CFn» commutes Commutative operations for Refs
in the transaction added by using commute

HashSet<Ref> ensures The set of Ref instances that ensure have been
called on to make sure that the value of the Ref instances will not
change as long as the transaction is running

The Info type contains meta-data for ordering transactions. This is
used as a reference in Ref as well as for comparing the age of transactions.
Info contains the following meta-data:

AtomicInteger status Contains the numerical representation of the fol-
lowing states: RUNNING, COMMITTING, RETRY, KILLED, COMMITTED

24 Clojure 2

long startPoint Contains the globally unique numerical identifier of trans-
actions, the higher the startPoint the newer the transaction, it is
equal to startPoint on LockingTransaction

CountDownLatch latch The CountDownLatch is used for allowing transac-
tions to block while waiting for another transaction to execute, thereby
unlocking the write lock for a Ref

Refs also contains meta-data to handle transactional values and to enable
locking. The tvals meta-data on a Ref is a doubly linked list containing
the history of the Ref, the maximum size of the linked list is defined by
maxHistory, hereafter the oldest entry in the linked list is replaced by a
new entry, maintaining the size of the linked list to maxHistory. The type
TVal represents an entry in a doubly linked list containing a transactional
value and its committed point in time.The meta-data in Ref is described
below:

TVal tvals Contains a doubly linked list of historic values for the Ref.
tvals points to the newest transactional value

AtomicInteger faults Contains the number of read faults happened to
the Ref. A fault happens if no value of a Ref is valid for a given trans-
action. For example is no value for the Ref exists in the transaction’s
snapshot.

ReentrantReadWriteLock lock Contains a lock to be used requiring a write
lock on a Ref

LockingTransaction.Info tinfo Contains a reference to the transactional
info of the transaction currently holding the lock for the Ref

long id : Contains a globally unique numerical identifier of the Ref, this is
used comparing Refs

int minHistory Contains the minimum number of elements in tvals

int maxHistory Contains the maximum number of elements in tvals

2.4.2 dosync

The dosync macro is the transactional block in Clojure. All code inside a
dosync block is executed together as a transaction.

The dosync method, seen in Listing 2.2 on Line 1, takes a list of expres-
sions as argument and calls the macro sync with the same expressions as
argument. The sync macro then calls the method runInTransaction on the
LockingTransaction class with the expressions it was given as the argument
body inside a function on Line 6. The runInTransaction method creates

2.4 LockingTransaction and Ref 25

1 (defmacro dosync [& exprs]
2 `(sync nil ~@exprs))
3

4 (defmacro sync [flags-ignored-for-now & body]
5 `(. clojure.lang.LockingTransaction
6 (runInTransaction (fn [] ~@body))))

Listing 2.2: Signatures for the Clojure dosync and sync

a new transaction by creating a new instance of LockingTransaction and
starts executing the expressions in the transaction by calling the run method
with the function containing all the expressions.

1 for(int i = 0; ! done && i < RETRY_LIMIT; i++) {
2 try {
3 ...
4 } catch(RetryEx ex) {
5 // Ignore this so we retry rather than fall out
6 } finally {
7 ...
8 }
9 }

10 if(! done)
11 throw Util.runtimeException("Transaction failed after reaching retry limit");

Listing 2.3: The structure of the run method in LockingTransaction

The run method on LockingTransaction is used for the execution of
transactions and interacts with almost all other parts of Clojure’s STM
implementation. The run method contains a large for-loop with a try
block inside which takes care of the retry functionality, this structure can
be seen in Listing 2.3, and the flow between the major parts of run can be
seen in Figure 2.4. Figure 2.4 will be revisited in Chapter 3 with the added
constructs. In Line 1 the variable done is checked if true and the variable i is
checked if below the maximum number of retries allowed for a transaction.
done is a boolean indicating whether or not the transaction is done, the
variable i contains the number of transaction retries. The try block started
in Line 2 is used for the execution of the expressions inside a transaction.
If a transaction encounters an error or some state which requires a retry an
instance of the RetryEx error is thrown, this error is caught in Line 4.

26 Clojure 2

Figure 2.4: The major parts of the run method, squares show parts that
can be re-executed, while rounded squares cannot

The finally block seen in Line 6 takes care of unlocking any locks
acquired while executing the transaction and if the transaction was executed
successfully Watchers are notified and Agent actions are dispatched. If the
for-loop reaches the limit of retries allowed without executing successfully
a RuntimeException is thrown in Line 11. The code inside the try-block
in Listing 2.3 on Line 3 is replaced with “...” to highlight and explain some
of the code in their own Listings in the following.

1 getReadPoint();
2 if (i == 0) {
3 startPoint = readPoint;
4 startTime = System.nanoTime();
5 }
6 info = new Info(RUNNING, startPoint);
7

8 ret = fn.call();

Listing 2.4: Starting time and point is assigned in the run method

In Listing 2.4 the transaction metadata about starting time and point
is assigned, this can be seen in Lines 1 to 6. In Line 8 the transaction is
executed and the return value from the last expression is assigned to ret.
When executing Line 8 the underlying code can throw a RetryEx which
will result in a retry of the transaction. The next step for the execution

2.4 LockingTransaction and Ref 27

of the transaction is to commit the transaction, making the changes of the
transactional values global.

First commutative operations are handled by looping through the Java
HashMap commutes and ensures that no other transaction has any exclusive
lock on the Ref after the transaction committing was started. If ensure was
called after the transaction was started the transaction has to be restarted
since calling ensure on a Ref guarantees that the Ref will not change as
long as the transaction is still running. If another transaction T2 has started
and taken a lock on the Ref which T1 is trying to commit, T1 will try to
barge in on T2.

Next the write locks needed for modification of the Ref instances which
have been called ref-set or alter on are acquired if possible or the trans-
action aborts. Before committing the transaction values to the global state,
assigned Validators for Refs are run. When committing the transaction all
the transactional values in the transaction are made global by altering the
metadata of the Refs both in terms of the value and the point of committing
the value. After the transaction has committed the done variable is set to
true and the status of the transaction is set to COMMITTED.

At this point all that is left is to clear up after the transaction in the
finally block also seen in the structure of the run method earlier. In the
finally block all locks are unlocked in order for other transactions to acquire
the locks needed for committing themselves. If executing the finally block
after the transaction committed successfully then the Watchers are notified
of the update to Ref being watched. The actions sent to Agents inside the
transaction will also be dispatched, this first happens at commit time to
avoid actions to be dispatched multiple times by transactions retrying.

2.4.3 deref

The function deref takes one argument as seen in Listing 2.1 in Line 4.
The argument can be either a Ref, Var, Atom, or Agent, in this section
we will describe how deref operates the function is applied to a Ref, the
implementation for the other data types are not described as these are not
transactional value and therefore outside the scope of the project. If deref
is called within a transaction it returns the in-transactional value of the
Ref, otherwise it returns the most recently committed value. When deref
is called it checks if the given argument is of type Ref before calling the Java
method deref on the Ref instance.

28 Clojure 2

1 public Object deref(){
2 LockingTransaction t = LockingTransaction.getRunning();
3 if(t == null)
4 return currentVal();
5 return t.doGet(this);
6 }

Listing 2.5: The deref Java method in the Ref class

The method deref is found in the Ref instance and can be seen in Listing
2.5. It tries to get the currently running LockingTransaction instance by
calling getRunning on Line 2. If there is no running transaction then it
calls currentVal in Line 4 which returns the latest committed value of the
Ref instance because it was not called from a transaction and therefore has
no transactional values. But if it was called from a transaction then it calls
doGet through the LockingTransaction instance with the Ref instance as
argument in Line 5. In case of ensure the method deref will always be
called from a transaction which means it will always call doGet.

1 Object doGet(Ref ref){
2 if (! info.running())
3 throw retryex;
4 if (vals.containsKey(ref))
5 return vals.get(ref);
6 try {
7 ref.lock.readLock().lock();
8 if (ref.tvals == null)
9 throw new IllegalStateException(ref.toString() + " is unbound.");

10 Ref.TVal ver = ref.tvals;
11 do {
12 if(ver.point <= readPoint)
13 return ver.val;
14 } while ((ver = ver.prior) != ref.tvals);
15 } finally {
16 ref.lock.readLock().unlock();
17 }
18 ref.faults.incrementAndGet();
19 throw retryex;
20 }

Listing 2.6: The doGet Java method in the LockingTransaction class

The method doGet can be seen in Listing 2.6. The first thing the method
does is to check if the transaction is in a running state in Line 2. If the Ref
instance is in the set of in-transactional values, vals, on Line 4 then this
value is returned. If this is not the case then the method starts a try block

2.4 LockingTransaction and Ref 29

and tries to get the read lock of the Ref instance in Line 7. On line 8
the method checks if the Ref instance itself contains a value, before it goes
through all values in the Ref’s internal history in a loop on Line 11, where
it will return the first committed value contained in the Ref instance that
was earlier later or at the same time as the current transaction was started.
The finally block on Line 15, ensures that the read lock for the Ref is
removed from the it. This means that when a value is found and returned
in Line 13 a committed value for the Ref instance has been returned by
deref. If no value was returned a fault counter will be incremented in Line
18 and the transaction will abort. Faults are used by LockingTransaction
to determine when a Ref should increase the size of its history. Increasing
the history for a Ref, increases the window where snapshot isolation can be
provided, as transactions started before the oldest committed value will be
forced to abort due to them breaking consistency when deref is called for
the Ref.

2.4.4 alter and ref-set

The two functions alter and ref-set will be described together because
they are both implemented in terms of doSet and have the same abort
semantics as seen in Table 2.1.

The alter function takes three arguments as seen in Listing 2.1 on Line
7 where the signature for the function is shown. The first argument is the
ref argument, the second argument is the function which is executed on the
value of the Ref with the arguments specified.

1 public Object alter(IFn fn, ISeq args) {
2 LockingTransaction t = LockingTransaction.getEx();
3 return t.doSet(this, fn.applyTo(RT.cons(t.doGet(this), args)));
4 }
5 public Object set(Object val){
6 return LockingTransaction.getEx().doSet(this, val);
7 }

Listing 2.7: The alter and set Java method in the Ref class

The alter function invokes the alter method on the instance of Ref
passed as the argument ref. The source code for the alter method in the
Ref class can be seen in Listing 2.7. The method takes two arguments, an
IFn which is an interface representing a Clojure function in the Java part
of the runtime and an ISeq which contains the arguments for the IFn. The
instance of the currently running transaction is obtained by calling getEx
on LockingTransaction on Line 2. Hereafter doSet is called with the Ref
and the return value of fn as arguments. The function fn is called with the

30 Clojure 2

current value of the Ref, then followed by the arguments specified by the
developer. In Listing 2.7 on Line 5 the method set found in Ref can be
seen, it is called by ref-set. It it very similar to alter but instead of using
the return value from a function as argument to doSet, set uses the value
found in the argument val.

1 Object doSet(Ref ref, Object val) {
2 if (! info.running())
3 throw retryex;
4 if (commutes.containsKey(ref))
5 throw new IllegalStateException("Can't set after commute");
6 if (! sets.contains(ref)) {
7 lock(ref);
8 sets.add(ref);
9 }

10 vals.put(ref, val);
11 return val;
12 }

Listing 2.8: The doSet Java method in the LockingTransaction class

In Listing 2.8 the method doSet can be seen which handles setting
the value of a Ref in a specific transaction. doSet checks in Line 2 that
transaction is still running, if not the transaction is forced to retry. This
check is necessary due to possible interleaving problems. The method then
checks if the Ref has already been used in a commute operation, if so an
IllegalStateException is thrown in Line 4 since an alter or a ref-set
operation is not allowed after a commute operation has been executed on
the same Ref. This is because commute breaks the consistency of the trans-
action to provide a higher degree of concurrency compared to alter and
ref-set as described in Section 2.4.5. On Line 6 the instance property
sets is checked whether or not it already contains the Ref found in the
argument to doSet to check that the transaction have the necessary locks.
In Line 7 the transaction will try to get the write lock for the Ref that is
added to the LockingTransaction instances sets property. If the write
lock is not acquired then the transaction aborts. Finally the new value of
the Ref in the transaction is set by adding the Ref and the value val to the
instance property vals which is a Java HashMap containing tuples of Refs
and Objects. The new value of the Ref is finally returned by doSet.

2.4.5 commute

The commute function takes the same three arguments as alter as seen
in Listing 2.1 on Line 9, as it performs the same operations but allows
commutative updates as described in Section 2.3.

2.4 LockingTransaction and Ref 31

1 public Object commute(IFn fn, ISeq args) {
2 return LockingTransaction.getEx().doCommute(this, fn, args);
3 }

Listing 2.9: The commute Java method in the Ref class

The commute function invokes the commute method on the instance of
Ref passed as the argument ref. The source code for the commute method
in the Ref class can be seen in Listing 2.9. The method takes two argu-
ments, a function IFn and an ISeq which are arguments for the function
passed as IFn. The method gets the currently running transaction using
getEx on LockingTransaction, and then calls doCommute on the returned
transaction with the Ref instance, and the function and arguments passed
by the developer.

1 Object doCommute(Ref ref, IFn fn, ISeq args) {
2 if (! info.running())
3 throw retryex;
4 if (! vals.containsKey(ref)) {
5 Object val = null;
6 try {
7 ref.lock.readLock().lock();
8 val = ref.tvals == null ? null : ref.tvals.val;
9 } finally {

10 ref.lock.readLock().unlock();
11 }
12 vals.put(ref, val);
13 }
14 ArrayList<CFn> fns = commutes.get(ref);
15 if (fns == null) {
16 commutes.put(ref, fns = new ArrayList<CFn>());
17 }
18 fns.add(new CFn(fn, args));
19 Object ret = fn.applyTo(RT.cons(vals.get(ref), args));
20 vals.put(ref, ret);
21 return ret;
22 }

Listing 2.10: The doCommute Java method in the LockingTransaction class

In Listing 2.10 the method doCommute can be seen which executes the
commute function, and sets the resulting value as the transactional value for
the Ref in the currently running transaction. Like doSet, doCommute checks
on Line 2, that the transaction is currently running. The method then
checks if the Ref has an existing transactional value in the vals HashMap as
described in Section 2.4.4, this is on Line 4. If no transactional value exists

32 Clojure 2

then the method tries to get read locks to read and set the most recent value,
or null if the Ref does not contain a value, as the transactional value. This
means that commute will break consistency by using the most recent value
if it is newer than the transaction.

The method then checks if any other function have been executed on
the Ref using commute on Line 14. If other functions have been called with
the Ref as input then this commutes function and arguments is added to
the existing list. These commute functions are executed again with the most
recently committed value when the transaction enters commit state. This
enables commutative modifications of the Ref through commute.

Finally the transactional value is updated by executing the function
passed to commute with the Ref and any additional arguments, this can
be seen on Line 19. The resulting value is stored as the new transactional
value in the vals HashMap, overwriting the value extracted from the Ref
earlier in the method. The updated value is finally returned to the caller,
allowing it to be returned by commute inside the dosync block.

2.4.6 ensure

The function ensure takes one argument shown by its signature seen in
Listing 2.1 on Line 5. First ensure calls the Java method touch on the
Ref instance to protect it from modification by other transactions. ensure
then it calls the Java method deref to return the transactional value of the
same Ref, deref was described in Section 2.4.3. The purpose of ensure is
to protect Refs from writes by other transactions without modifying them
while allowing more transactions to call ensure on the same Ref instance
concurrently. This gives a higher degree of concurrency compared to using
alter to protect Refs as more transactions can call ensure on the same
Refs at the same time where alter gives one transaction exclusive access.

1 public void touch(){
2 LockingTransaction.getEx().doEnsure(this);
3 }

Listing 2.11: The touch Java method in the Ref class

The method touch can be seen in Listing 2.11. It calls doEnsure with
the Ref instance as argument. The currently running LockingTransaction
instance is acquired by calling the method getEx on Line 2. doEnsure is
then called through the LockingTransaction instance with the Ref instance
as argument.

2.4 LockingTransaction and Ref 33

1 void doEnsure(Ref ref) {
2 if (! info.running())
3 throw retryex;
4 if (ensures.contains(ref))
5 return;
6 ref.lock.readLock().lock();
7

8 if (ref.tvals != null && ref.tvals.point > readPoint) {
9 ref.lock.readLock().unlock();

10 throw retryex;
11 }
12

13 Info refinfo = ref.tinfo;
14

15 if (refinfo != null && refinfo.running()) {
16 ref.lock.readLock().unlock();
17

18 if (refinfo != info) {
19 blockAndBail(refinfo);
20 }
21 } else {
22 ensures.add(ref);
23 }
24 }

Listing 2.12: The doEnsure Java method in the LockingTransaction class

The method doEnsure can be seen in Listing 2.12. The first thing the
method does is to check if the transaction is running in Line 2. After that it
checks if the Ref instance already is in the set ensures that contains ensured
Refs in Line 4. If the instance is found in the set then the Ref instance is
already ensured the function returns. Otherwise a read lock is acquired on
the Ref instance as seen in Line 6. In Line 8 the Ref is checked if it already
contains a transactional value and that the value is older than the start
point of the transaction, otherwise the transaction is forced to retry. The
transactional information of the Ref instance is then retrieved in Line 13.
After that the function checks if the Ref instance exists and checks if its
already used in another transaction as seen in Line 15. If used by another
transaction the transaction will throw its read lock and call blockAndBail
in Line 19. If the Ref is not used by another transaction the instance of the
Ref is added to the set of ensured Refs in Line 22. This means that the Ref
is now protected against modifications from other transactions by the STM
implementation.

34 Clojure 2

2.4.7 blockAndBail

1 private Object blockAndBail(Info refinfo){
2 stop(RETRY);
3 try {
4 refinfo.latch.await(LOCK_WAIT_MSECS, TimeUnit.MILLISECONDS);
5 } catch(InterruptedException e) {
6

7 }
8 throw retryex;
9 }

Listing 2.13: The blockAndBail Java method in the LockingTransaction
class

The method blockAndBail is called from the method doEnsure de-
scribed in Section 2.4.6 and the method lock. This method is called when
the current transaction has to wait on another older transaction because it
needs a specific lock of one of its Ref instances. It will either wait until the
transaction that is blocking has stopped or waits a predefined amount of
time defined by Clojure’s STM implementation before aborting. The cur-
rent transaction will remain blocked until its latch to reaches 0 in Line
4.

2.4.8 barge

1 private boolean bargeTimeElapsed(){
2 return System.nanoTime() - startTime > BARGE_WAIT_NANOS;
3 }
4

5 private boolean barge(Info refinfo){
6 boolean barged = false;
7 if(bargeTimeElapsed() && startPoint < refinfo.startPoint){
8 barged = refinfo.status.compareAndSet(RUNNING, KILLED);
9 if(barged)

10 refinfo.latch.countDown();
11 }
12 return barged;
13 }

Listing 2.14: The barge Java method in the LockingTransaction class

The method barge is called in the method run described in 2.4.2 and
the method lock. This method is called when the current transaction needs

2.5 Exploration 35

a Ref instance that currently is locked by another transaction. barge forces
the other transaction to abort if the current transaction is older and have
been alive for more then a static threshold defined by Clojure, the static
threshold is checked by the method bargeTimeElapsed which can be seen
as part of Line 7. It aborts the other transaction by setting its status to
KILLED as seen in Line 8 and then signaling to other waiting transactions
that it has been killed by counting down its latch to zero in Line 10. The
call to countDown is needed to ensure that the barged transaction is killed
even though it is blocked.

2.5 Exploration
The analysis of Clojure’s STM implementation, described in this chapter,
served as the base of a series of experiments that were conducted to deter-
mine how side-effects can be used in a transactional safe manner and how
transaction control can be used to avoid to depend on synchronisation con-
structs such as Java mutexes or semaphores. This series of experiments,
further described in Appendix A and B, were carried out without relying on
the literature as this would allow for ideas that favoured Clojure’s STM im-
plementation and were compared with solutions presented in the literature
to relate the experiments to the literature. This section start by describing
three examples used to evaluate each experiment, followed by a description
of each of the general approaches, found in the literature and a summary of
the experiments that were carried out using the described approach. At the
end of the section it will be discussed if it is possible to combine the exper-
iments into a unified solution and thereby gaining all of the advantages of
the individual experiments.

2.5.1 Examples

To evaluate and compare the different methods for performing side-effects
in transactions we created three examples, one representing each of the first
three limitations of Clojure STM implementation as described in Section
1.1. Each example is created to be the smallest possible showcase of each
problem. The last two limitations are not covered by our examples, as they
refer to Agents which is not used in any experiment and refer to transaction
control which cannot be compared to methods for performing side-effects in
transactions. The merit of adding transaction control to Clojure will instead
be evaluated as part of our entire implementation in Section 4.

The first example in Listing 2.15 describes a transaction with a counter
that must be printed in Line 4 before it is increased or set to zero if it
reaches ten. In Clojure, this example will always print the value of the
counter each time the transaction executes even if it retries, this is not the

36 Clojure 2

1 (def counter-ref (ref 0))
2

3 (dosync
4 (println (deref counter-ref))
5 (if (< counter-ref 10)
6 (alter counter-ref inc)
7 (ref-set counter-ref 0)))

Listing 2.15: Printing counter to standard output stream

desired behaviour as it should only print the value if the counter is increased
or set to zero.

1 (def arraylist-ref (ref (java.util.ArrayList.)))
2 (def log-ref (ref (writer "log.txt" :append true)))
3

4 (dosync
5 (alter arraylist-ref .add 0)
6 (alter log-ref .write "Added 0 to arraylist-ref"))

Listing 2.16: Modifying ArrayList and logs

The second example in Listing 2.16 describes a transaction that first
adds an element to an ArrayList in Line 5 and then logs that it did it in
Line 6. These two actions are side-effects that should only happen together
or not at all. In Clojure, this example will try to execute the first alter
in Line 5 and then the next in Line 6. This is not acceptable behaviour
because an element could be added to the ArrayList without the logging
taking place.

1 (def keys-ref (ref []))
2 (def rows-ref (ref vector-of-rows))
3

4 (dosync
5 (let [row (first (deref rows-ref))
6 next-key (database-insert row)]
7 (alter keys-ref conj next-key)
8 (alter rows-ref rest)))

Listing 2.17: Inserting database rows and returning keys

The third example in Listing 2.17 describes a transaction where a vector
of database rows are inserted into a database on Line 6, the function returns
the key assigned to the row from the database which is inserted a vector on

2.5 Exploration 37

Line 7, and last the row inserted are removed from the list of rows on Line
8. The primary aspect of the example is that it both consumes elements
from a Ref, performs a side-effect, and then adds the result to a Ref with
the result requiring the same order as produced from the input. This is not
possible with STM in Clojure, as either of two alter function can cause the
transaction to abort, which in turn would execute the insertion of the same
row into the database multiple times.

2.5.2 Defer

Defer [10] is an approach which postpones the execution of code with side-
effects to take place after the transaction is ensured to commit. This ap-
proach has been studied in [11, 12, 13, 14]. The Defer approach has been
achieved by implementing a two-phase commit where the transaction’s com-
mit operation is split into a validate and a finalise step. The developer is
able to specify code that is executed in between the two steps. The defer
experiments have been described in Section A.1. Two defer experiments
were performed, called After-Commit in Section A.1.1 and Lazy Evaluation
in Section A.1.2.

After-Commit is a macro named dosync-ac that is capable of execut-
ing code synchronously after a transaction commits, with additional earlier
versions shown in Appendix C. The solution does not allow additional oper-
ations compared to using Clojure’s agents for side-effects as both executes
outside a transaction, but is synchronous while agents are asynchronous.
Furthermore an agent require any function it executes to accept the agent’s
current value as the first argument. Overall dosync-ac simplifies Clojure’s
existing approach to side-effects, but it does not solve all problems as all
side-effects must be packaged and executed after the transaction has fin-
ished, meaning that transactional values cannot depend on the result of
side-effects.

After-Commit is different compared to other defer approaches found in
[11, 12, 13] because these approaches only have their code execution post-
poned until before the finalisation step whereas After-commit is executed
after the finalisation step. This is a limitation because other concurrent
transactions can be interleaved and commit a value to the Ref before After-
commit is executed.

The second defer experiment is to use lazy evaluation to delay the evalu-
ation of expressions that perform side-effects until the transaction is guaran-
teed to commit. The use of lazy evaluation is found in other languages like
Haskell [15] whose use of thunks was the inspiration for our own implemen-
tation. The solution allows the developer to mark expressions for execution
just before the transaction commits, at a time where it is certain that the
transaction will commit. This allows the developer to use side-effects, and
write to any Refs where the write-lock already has been acquired, which

38 Clojure 2

in most cases is performed automatically by the macro le. However the
solution is not without problems since the developer must manually specify
Refs that are modified within functions called by a lazy expression. This
is due to the fact that changing the value of a Ref without acquiring the
write-locks before the execution could make the transaction abort, removing
the advantage of lazy expressions. While both lazily and strictly evaluated
expression can be interleaved in the code, it can be complex to reason about
the execution order when some expressions are delayed and some are not,
a problem made more clear when expressions use data computed by other
expressions.

Lazy evaluation is similar compared to the defer approaches found in
[11, 12, 13] where the is executed in-between the validation and finalize
step. It is similar because we make sure we have all necessary locks before
executing code.

2.5.3 Compensate

The approach to side-effect handling called Compensate [10] reverts a side-
effect which just has been done by the transaction. Compensate does this by
letting the developer specify compensation code, that is then executed when
a transaction fails to commit. This approach is described in [11, 12, 13, 14].
The compensate experiment named Undo for allowing side-effects is pre-
sented in Section A.2.

Undo allows the developer to specify code that will be executed if the
transaction aborts. The idea is that this code should be able to compen-
sate for side-effects executed by the aborting transaction. The experiment
provides macros for adding expressions and functions to be executed if the
transaction aborts. The functions are executed as part of the transaction so
Refs can be modified if needed. The problem of acquiring write-locks is not
present in this solution, as Refs must have been changed by the transaction
before there is anything to undo, so the needed write-locks have already
been acquired for removing previous changes. However not all side-effects
can be removed through additional code, such as for example a statement
printed to the screen. Other operations like a call to the database could be
too expensive to apply and remove multiple times.

Undo is similar to [11, 12, 13] as they all allow the execution of code when
a transaction aborts. This is in all cases done to compensate for a previously
executed side-effect. [11] is slightly different because they additionally gives
the possibility to not just compensate but to make an aborted transaction
commit successfully by modifying the state of the transaction.

2.5 Exploration 39

2.5.4 Irrevocability

A third approach to controlling side-effects in transactions is to introduce
Irrevocability [10] which can be seen as a promise to the developer that the
transaction will commit without retrying. This is a widely known approach
and has been researched in [16, 17, 18, 19, 20]. In Section A.3 the irrevocable
experiment named Check-run is presented.

The idea behind Check-Run is to use a lazy expression for an entire
dosync block. The experiment was implemented by utilising a single lazy
evaluation expression containing the content of the body argument sent to
the dosync-checked or the dosync-checked-ref macro. This hides the
problem of reasoning about interleaved lazily and strictly evaluated expres-
sions, by providing a uniform abstraction where every expression is eval-
uated lazy. This allows the developer to both use side-effects and modify
transactional data, without concern for the transaction aborting. Check-run
inherits the problem from lazy expressions, of acquiring locks for functions
that modify Ref instances not directly referenced in the transaction. The
solution is implemented with the same utility to extract Refs as the macro
le, which is unable to extract Refs not available directly in the Clojure code,
for example a Ref changed by a function call must declared manually.

Check-Run is similar to what has been researched in [16] as it allows
more than one irrevocable transaction to run at a time if they are not con-
flicting. Check-run is therefore different compared to [17, 18, 19, 20] because
they only allow one irrevocable transaction to run at a time. Multiple ir-
revocable transactions are possible concurrently with Check-Run. This is
quite different compared to relying on a global lock to see if any irrevoca-
ble transaction is currently running as done in [18, 20]. A more aggressive
approach compared to Check-Run is presented in [19] where the authors
abort all other transactions if they conflict with the irrevocable transaction.
A more passive approach compared to Check-Run is presented in [17] that
waits until all conflicting transactions have finished and blocks the creation
of new transactions before the irrevocable transaction has been executed.

2.5.5 Transactional Control

The concept of Transaction Control makes it possible to control a transac-
tion’s behaviour. A transaction can be forced to have a specific behaviour
when it encounters an explicit construct. These behaviours include that a
transaction can be forced to abort by using the construct retry [11, 16, 21],
to wait for a condition [22] or to executive a different operation or-else if
the first would force the transaction to aborts [21].

The experiment is presented in Section A.4 and allows the developer to
explicitly control the execution of the transaction. This solution is known
from Haskell [21] where the retry and orElse constructs are used. The con-

40 Clojure 2

structs and their utilisation are known so our experimentation focused on
how the two constructs could be implemented in Clojure. We implemented
both the retry and or-else function for use in Clojure, in addition to im-
plementing retry-all which allows the transaction to block until all Refs
have been written to, instead of just one of them like in Haskell. We also
implemented terminate which aborts a transaction, and prevents it from
retrying. These constructs do not allow for side-effects to be used with trans-
actions, but gives the developer direct control over the transaction, removing
the need for synchronising through side-effects such as exceptions and Java
monitors which is currently needed in Clojure, if a transaction should abort
before it completes. The experiment complements a solution for allowing
side-effects in transactions by removing the need for some side-effects.

This retry approach is similar to what have been researched in [11, 16,
21]. In [21] the retry construct blocks the transaction from further execution
until one of the references used in the transaction changes. This is similar
to what retry can do if its called with no arguments. In [16] the retry
construct causes the transaction to retry without blocking on variables or
looking for changes in-transactional variables. retry deliberately avoids this
to only execute the transaction again if changes in-transactional variables
have happened. The approach in [11] gives the developer the opportunity
to execute code in between the validation and finalisation step where it is
possible to specify that the transaction should retry. The or-else approach
that was taken here is similar to what was presented in [21] where the imple-
mentation could choose one of two functions, instead of a list of expressions
as in our experiment.

2.5.6 Discussion and Insight

All of the described experiments allowing side-effects to be used in a transac-
tion have pros and cons. The defer experiment After-commit is not executed
as part of the transaction, a problem solved in the Lazy expressions exper-
iment, but using Lazy expressions requires that locks for Refs are acquired
beforehand. The irrevocable experiment Check-run allows both side-effects
and modification to transactional code, but requires the developer to specify
what Refs are used in some cases. The compensation based solution is not
capable of undoing all side-effects and could be computationally expensive,
but cannot fail due to the developer not specifying the correct Refs. While
transactional control supplements the other experiments, it does not help to
execute side-effects inside a transaction.

It has been shown that the approaches can be combined to give the best
of both worlds, as side-effects in a transaction can both be deferred but also
compensated as has been done in [12, 13, 14]. In [16] the authors showed
that the combination of irrevocable transactions and explicit transaction
retry construct is counter intuitive because if a retry operation occurred

2.5 Exploration 41

in an irrevocable transaction it would tell the system to abort a transaction
that cannot abort.

Based on this insight and our experimental implementations, a generic
event handling system will be implemented and described in Section 3.1. The
event handling system will combine the three above mentioned experiments
to allow side-effects in transactions. Especially the implementation of lazy
evaluation and the introduction of Thunks made it clear that a generic event
handling system would be able to satisfy our needs since a Thunk is nothing
more than a subroutine with memorisation executed by a specific event, in
this case at the time of commit for a transaction. The use of Thunks from
lazy evaluation can be reused when executing events in the more generic
event handling system. What then needs to be added in the Java part of
the Clojure runtime is storage and execution of events in a generic way,
in addition to a way to add events to Clojure programs. Such facilities
would allow the developer to create his/her own events and the runtime to
have some built-in events for when for example a transaction commits. The
experiments were needed to arrive at the generic event handling system as
a solution to the handling of side-effects as the literature on the subject do
not suggest a similar generic approach.

42 Clojure 2

CHAPTER 3
Implementation

The implementation of the more generalised event handling system idea,
seen in Section 2.5, will be described in detail in this chapter. Information
on how to obtain the code is described in the preface.

3.1 Event Handling System
This section will describe the implementation of the event handling system
starting by describing the interface available to the developer, followed by
a detailed explanation of its implementation. The event handling system
is based on the generalisation of the experiments described in Section A.1,
A.2 and A.3. The main idea is to allow the developer to specify code that
will be executed when a defined event happens. The event handling system
allows the developer to create events that can be used to cause code to be
executed. Examples of useful events in an STM implementation could be
when the transaction commits or aborts.

Figure 3.1: The architecture of the event handling system

44 Implementation 3

The following notion will be used for the event handling system, as it
matches the terminology used in Java; When an event happens during ex-
ecution time it is said that the event is notified since the event listeners,
specified code waiting to be executed, are notified that they should execute.
References to data structures must be stored inside Refs and accessed via
alter, commute, ensure or ret-set if the developer wishes to modify the
data structures despite the reference itself never being modified. This al-
lows Clojure’s STM implementation to synchronise access to them between
threads.

The interface is written in Clojure as an extension to the Clojure part of
the runtime, while the implementation is developed as an extension to the
Java part of the runtime. An overview of the event handling system archi-
tecture is shown in Figure 3.1 where methods in the Clojure part is displayed
in the upper rectangle and the lower rectangle contains Java methods en-
capsulated in the class EventManager.

3.1.1 Clojure implementation

The interface of the event handling system consists of three parts, an inter-
face for the general system, an interface for the STM event handling system
and an interface for the events added to Clojure’s STM implementation. The
STM event handling system allows the use of events inside of transactions
in a transactional safe manner, these events are private to each transaction
and therefor also removed when a transaction has committed. Notifying and
creating listeners for non-transactional safe global and thread local events
are not allowed inside of transactions.

The three parts of the interfaces can be seen in Listing 3.1. The gener-
alised event handling system supports almost the same functionality inside
and outside transactions, but the functionality are differs since the STM
versions of the functions are the only ones allowed inside of transactions
to ensure events are used in transactional safe manner. Using one of the
two functions listen and stmListen shown on Line 2 and 12, it is possi-
ble to listen for an event to be triggered, resulting in the code given to the
listener as argument being executed. The two functions take three argu-
ments; event-key which is the event key to listen for, event-fn which is
the function to execute when event is triggered and event-args which is
the arguments for event-fn. The function listen-with-params on Line 3
provides the developer with more control over the different semantics for the
event, compared to using listen. listen-with-params has two additional
arguments; thread-local which specifies whether or not the event should
be thread local if true or global if false, and delete-after-run which
specifies if the event listeners should be deleted after the event was trig-
gered for the first time. The function stm-listen-once on Line 13 enables
the developer to delete the event listeners after the event has been triggered

3.1 Event Handling System 45

1 ; Interface for use of events outside transaction
2 (listen event-key event-fn & event-args)
3 (listen-with-params event-key thread-local delete-after-run event-fn & event-args)
4

5 (notify event-key)
6 (notify event-key context)
7

8 (dismiss event-key event-fn dismiss-from)
9 (context)

10

11 ; Interface for use of events inside transaction
12 (stmListen event-key event-fn & event-args)
13 (stm-listen-once event-key event-fn & event-args)
14

15 (stm-notify event-key)
16 (stm-notify event-key context)
17

18 (lock-refs func & body)
19

20 ; Interface for the events in the STM implementation
21 (on-abort & body)
22 (on-abort-fn event-fn & event-args)
23

24 (on-commit & body)
25 (on-commit-fn event-fn & event-args)
26

27 (after-commit & body)
28 (after-commit-fn event-fn & event-args)

Listing 3.1: The interfaces for the event handling system

once. Events created inside a STM transaction cannot be defined as non-
transactional to ensure the same event listener is not created multiple times
due to the transaction aborting.

For triggering an event and notifying any listeners to a specific event
the functions notify and stm-notify on Lines 5 and 15 are used. Both
functions are overloaded on the number of arguments. If the functions are
called with only the event-key argument the event is triggered with no
additional context, if also the context argument is given this context will
be available inside the functions listening. The context argument can be
any data, and this data is then made available for use inside the event
listeners. In an event listener the context is retrieved through a function
named context, as seen on Line 9, instead of being added as an extra
argument to the listener as done by Clojure for Agent’s current value, to
not make developers add an extra argument to a function for when it is used
as a event listener. To remove a function from a specific event the function
dismiss seen on Line 8 is available. dismiss takes three arguments, first

46 Implementation 3

the event-key and event-fn are specified identify what function should be
removed from which event. Thirdly the argument dismiss-from specifies
whether the event-fn is to be removed from the thread local event, the
global event or both. dismiss cannot be used to remove a transactional
event and no stm-dismiss is implemented to encourage small transactions,
further discussion of this decision is found in Section 5.5.

The events added to Clojure’s STM implementation are a way to lis-
ten for events triggered by the STM implementation itself when a transac-
tion is guaranteed to commit, but still running, by using on-commit and
on-commit-fn, after it has been committed by using after-commit and
after-commit-fn or it have aborted by using on-abort and on-abort-fn.
Each pair differs only in which events they listens for, and the only difference
between the macro and the function in each set is that the macro takes a
list of expressions as argument, while the function takes another function
and arguments for it. The macros on-commit, after-commit and on-abort
all take a single argument which is the body of expressions to be run when
the event is triggered. The functions on-commit-fn, after-commit-fn and
on-abort-fn all take two arguments; event-fn specifies which event to call
when the event is triggered and event-args the arguments for the func-
tion to be called. Both are provided to allow the developer to use the most
appropriate syntax for the problem at hand.

1 (defmacro lock-refs
2 [func & body]
3 ; Extracts the lexical scoped symbols from the environment
4 (let [lexically-scoped-bindings (keys &env)
5 locking-fn (case func
6 ensure #(ensure %)
7 commute #(commute % identity)
8 alter #(alter % identity)
9 (throw (IllegalArgumentException. "func must be ...")))]

10 `(do
11 (doseq [r# (extract-refs '() '~body ~@lexically-scoped-bindings)]
12 (~locking-fn r#))
13 ~@body)))

Listing 3.2: The lock-refs function

The macro lock-refs seen in Listing 3.2 enables the developer to get
the access type specified in argument func, alter, commute, or ensure, on
all extractable Refs inside the argument body. In Line 4 the keys of the &env
Map are extracted and are bound to the symbol lexically-scoped-bindings.
&env are provided as a special symbol inside defmacro, and provides access
to lexically scoped symbols from where the macro are expanded as these sym-
bols are not available through resolve. The function defining what accesses

3.1 Event Handling System 47

should be acquired is bound to the variable locking-fn in Line 5. In Line 11
the Refs are extracted from body using the helper function extract-refs
which iterates through the expressions in body to resolve and extract any
additional Refs not lexically bound. lexically-scoped-bindings are also
passed to the function for the lexically scoped Refs to be combined with
those extracted by extract-refs, so the resulting list contains all Refs di-
rectly accessible in the code. Finally in Line 12 the locking-fn function
is called on all the Refs found, both lexically bound and extracted by the
function extract-refs.

3.1.2 Java implementation

All of the functions described above calls directly into the Java class EventManager
as can be seen in Figure 3.1.

1 public static EventFn listen(Keyword key, IFn fn, ISeq args,
2 boolean threadLocal, boolean deleteAfterRun) {
3

4 if (LockingTransaction.isRunning()) {
5 throw new IllegalStateException("Listen is not allowed in
6 a transaction, use stmListen");
7 }
8

9 Map<Keyword, ArrayList<EventFn>> eventMap = (threadLocal) ?
10 EventManager.threadlocalEvents.get() :
11 EventManager.globalEvents;
12

13 EventFn listenerEventFn = new EventFn(fn, args, deleteAfterRun);
14

15 synchronized (eventMap) {
16 if (! eventMap.containsKey(key)) {
17 eventMap.put(key, new ArrayList<EventFn>());
18 }
19 eventMap.get(key).add(listenerEventFn);
20 }
21 return listenerEventFn;
22 }

Listing 3.3: The listen Java method in the EventManager class

The functions listen and listen-with-params both call the static
method listen on the EventManager which can be seen in Listing 3.3.
If the method is called when executing a transaction the method will throw
an IllegalStateException as seen in Line 6 since listen is not transac-
tional safe, due to it not preventing the same event being added multiple
times if the transaction abort. Next the correct Java Map is selected based
on whether or not the event listened for is thread local or a global event, this

48 Implementation 3

happens in Line 9. The key of the Map is an instance of the class Keyword
and the value for each entry is a Java ArrayList containing instances of the
type EventFn which encapsulates an event listener function with arguments.
A new instance of EventFn is initialised in Line 13.

The function then enters a block synchronized on the Map, this is to
synchronise access to the Map with global events, as using an internally
synchronised data structure would allow a race conditions between the check
on Line 16 for if the Map already contain an ArrayList for the given key
and the time an empty list is added. The synchronized block is also used
for the thread local Map, as it allows for a simpler implementation then
using additional branching and performance benchmarks out of the scope
of this project would be needed to determine which is preferable in terms
of performance. The function then adds the EventFn to the ArrayList
indicated by key, this is done on Line 19, before returning the EventFn on
Line 21.

1 public static void notify(Keyword key, Object context) {
2

3 if (LockingTransaction.isRunning()) {
4 throw new IllegalStateException("Notify is not allowed in
5 a transaction, use stmNotify");
6 }
7 synchronized (EventManager.globalEvents) {
8 EventManager.runEvents(key, EventManager.globalEvents, context);
9 }

10 EventManager.runEvents(key, EventManager.threadlocalEvents.get(), context);
11 }

Listing 3.4: The notify Java method in the EventManager class

When calling the function notify the static method notify on the
EventManager class will be called, this method can be seen in Listing 3.4.
This method takes only two arguments, the key which specifies which event’s
listeners should be notified, and context which is made available through
the function context described earlier. As with listen, notify is not safe
to use in transactions, therefore an IllegalStateException is thrown in
Line 5 if the method is called while executing a transaction. This is a design
choice to ensure only events added doing the transaction are executed, and
the developer not accidental executes a non transactional safe global event.
If not in a transaction, all listeners both thread locally and globally will be
notified in Line 8 and 10.

The functions stm-listen and stm-listen-once call the static method
stmListen in the EventManager class. The stmListen method is very sim-
ilar to the listen method, therefore its source code will not be shown here.
The difference between stmListen and listen is that the Map from the

3.1 Event Handling System 49

event key to the ArrayList of EventFns are stored on the currently running
transaction instead of in the EventManager itself. The function stm-notify
which calls the static method stmNotify in the EventManager class is sim-
ilar to notify which is why the source is not shown here. The difference
between the two is similar to the difference between listen and stmListen
where the Map from the event key to the ArrayList of EventFns, are stored
as an instance variable on LockingTransaction and not on EventManager
itself, binding the event listeners to the currently running transaction and
only to that single transaction.

1 static void runEvents(Keyword key, Map<Keyword,
2 ArrayList<EventFn>> events, Object context) {
3

4 if (events.containsKey(key)) {
5 ArrayList<EventFn> toDeleteAfterRun = new ArrayList<EventFn>();
6 EventManager.context.set(context);
7

8 for (EventFn fn : events.get(key)) {
9 fn.run();

10

11 if(fn.deleteAfterRun()) {
12 toDeleteAfterRun.add(fn);
13 }
14 }
15

16 EventManager.context.set(null);
17 events.get(key).removeAll(toDeleteAfterRun);
18 }
19 }

Listing 3.5: The runEvents Java method in the EventManager class

In Listing 3.5 the method runEvents can be seen. runEvents is called
by the methods notify and stmNotify in EventManager and it sets the
context and executes the event listener functions. The methods checks if
there are any events to be executed by checking if the argument events
contains an entry for the key specified as seen in Line 4. In Line 5 an empty
ArrayList is initialised for holding EventFns that should be removed from
the event after it has been executed. The class property context which is set
in Line 6 is thread local to ensure that triggering events concurrently does
not result in faulty behaviour where event listeners would see the context
of another event. On Line 8 a for-loop iterates through the list of EventFn
instances, the body of the loop executes each listener as shown on Line 9
and adds them to an ArrayList of EventFns if they should be removed
from the list of events after all event listeners have been run. The reason for
the toDeleteAfterRun ArrayList and first removing the EventFns after

50 Implementation 3

all event listeners have been run is that trying to alter an ArrayList while
looping through it will cause an ConcurrentModificationException. After
all event listener functions have been run the thread local class property
context are set to null in Line 16 to ensure the information is not accessible
after the events have been run, and finally event listeners to be deleted are
removed in Line 17.

1 public static void dismiss(Keyword key, EventFn eventFn,
2 Keyword dismissFrom) {
3

4 if (LockingTransaction.isRunning()) {
5 throw new IllegalStateException("Dismiss is not allowed in
6 a transaction, events are dismissed with the transaction");
7 }
8

9 if (dismissFrom != DISMISSALL &&
10 dismissFrom != DISMISSGLOBAL &&
11 dismissFrom != DISMISSLOCAL) {
12 throw new IllegalArgumentException("The dismissFrom keyword
13 must be either :all, :global or :local");
14 }
15

16 if (dismissFrom == DISMISSALL dismissFrom == DISMISSGLOBAL) {
17 synchronized (EventManager.globalEvents) {
18 if (EventManager.globalEvents.containsKey(key)) {
19 EventManager.globalEvents.get(key).remove(eventFn);
20 }
21 }
22 }
23

24 if (dismissFrom == DISMISSALL dismissFrom == DISMISSLOCAL) {
25 if (EventManager.threadlocalEvents.get().containsKey(key)) {
26 EventManager.threadlocalEvents.get().get(key).remove(eventFn);
27 }
28 }
29 }

Listing 3.6: The dismiss Java method in the EventManager class

The static method dismiss in the EventManager class can be seen in
Listing 3.6. Just like the methods listen and notify in the EventManager
class dismiss is not safe to use in transactions. Therefore an IllegalStateException
will be thrown in Line 6 if the method is called when executing a transac-
tion. In Line 9 the validity of the dismissFrom argument is checked to one
of the three valid values; DISMISSALL, DISMISSGLOBAL or DISMISSLOCAL.
The dismissFrom argument specifies if the value of the eventFn argument
should be removed from both the local thread event and/or the global event.

3.2 Transaction Control 51

Figure 3.2: The major parts of the run method with the addition of the
event handling system, squares show parts that can be re-executed, while
rounded squares cannot, dashed lines indicate the added events

Events are added to the STM implementation in the run method on
LockingTransaction, the updated flow run can be seen in Figure 3.2. The
dashed, rounded squares are the events added to the STM implementation.
The on-commit event is executed right before the Refs are updated and
the transaction commits its changes to the transactional values. The on-
abort event is executed when the transaction is forced to abort and the
after-commit event is executed when actions to Agents are dispatched.

3.2 Transaction Control
This section will describe the implementation of the transaction control sys-
tem starting by describing the interface available to the developer, followed
by a detailed explanation of its implementation. An overview of the imple-
mentation can be seen in Figure 3.3. The design and implementation is a
continuation of the experimental design shown in Section A.4, and our ex-
perimental implementation described in Section B.5. The implementation
consists of three parts. The first part is a set of Clojure functions in the
Clojure part of the runtime described in Section 3.2.1 and can be seen in
the figure as the upper rectangle named Clojure. The second part is an the
interface to the Java part of the runtime in the class RT, it is described in
Section 3.2.2 and can be seen in the figure as a rectangle named Runtime
(RT). The third part is the Java methods in the LockingTransaction class
and the STMBlockingBehavior class found in the Java part of the runtime
described in Section 3.2.4 and can be seen in the figure as the rectangles

52 Implementation 3

named LockingTransaction and STMBlockingBehavior.

Figure 3.3: The architecture of the transactional control system

3.2.1 Clojure Implementation

The implementation of the Clojure interface for transaction control be seen
in Listing 3.7.

The functions retry and retry-all can be seen in Listing 3.7 on Line
1 and Line 6 respectively. They provides the same interface but have dif-
ferent semantics. Both block until a set of specified Refs are written to by
another transaction, retry block until any of the Refs are written to, while
retry-all block until all the Refs in the set are updated. Both functions
have three overloads based on the number of arguments given to the function.
When no arguments are given the functions will block based on the Refs
read in the transaction. When the function is given one argument it must
be a Ref or a list of Refs and the function will block on the specified Ref
or Refs. The last overload takes both Refs, a function returning a boolean
and arguments for the function. The function is executed when either one
or all of the Refs are written to, depending on if retry or retry-all are
used. If the function evaluates to True the transaction is unblocked, and if
the function returns False the system waits until one or all Refs have been
written to again.

The or-else function is implemented in Clojure in Listing 3.7 on Line
11. The function takes a list of expressions where it will try to execute

3.2 Transaction Control 53

1 (defn retry
2 ([] (RT/stmBlocking nil nil nil false))
3 ([refs] (RT/stmBlocking refs nil nil false))
4 ([refs func & args] (RT/stmBlocking refs func args false)))
5

6 (defn retry-all
7 ([] (RT/stmBlocking nil nil nil true))
8 ([refs] (RT/stmBlocking refs nil nil true))
9 ([refs func & args] (RT/stmBlocking refs func args true)))

10

11 (defn or-else
12 [& body] (RT/stmOrElse body))
13

14 (defn terminate
15 [] (RT/stmAbort))

Listing 3.7: Clojure functions for the retry, retry-all, or-else and
terminate constructs

them in the given order until one of them executes without forcing the
transaction to retry. The function allows the developer to specify a fallback
for operations that do not succeed, instead of continuously aborting the
transaction until one specific statement succeeds.

Finally terminate is implemented on Line 14 in Listing 3.7. This func-
tion makes it possible to terminate a transaction by aborting it without
any re-executing. One use of this function is to combine terminate with
or-else to skip a STM transaction if a resource is unavailable and using it
would force the transaction to abort.

3.2.2 Runtime Implementation

The class RT was extended with transactional control methods for construct-
ing the necessary data structures, RT was extended as the class serves as a
interface for the Clojure part to the Java part of the code. The RT class
functions as a facade pattern and serves to hide the internal implementation
of Clojure runtime from the standard library, providing operations such as
the conversions of data structures between Clojure and Java.

54 Implementation 3

1 static public void stmBlocking(Object refs, IFn fn, ISeq args,
2 boolean blockOnAll) throws InterruptedException {
3

4 HashSet<Ref> convertedRefs;
5 if (refs instanceof Ref) {
6 convertedRefs = new HashSet<Ref>();
7 convertedRefs.add((Ref) refs);
8 } else {
9 convertedRefs = new HashSet<Ref>((Collection) refs);

10 }
11 LockingTransaction transaction = LockingTransaction.getEx();
12 transaction.doBlocking(convertedRefs, fn, args, blockOnAll);
13 }

Listing 3.8: The stmBlocking Java method in the Runtime RT class

The method stmBlocking implemented in the RT class is used by retry
and retry-all. It can be seen in Listing 3.8. The method takes four ar-
guments as seen in Line 1. The method checks if the refs argument is an
instance of Ref in Line 5. If this is true then a new HashSet is created
in Line 6 and the Ref instance is added to the HashSet in Line 7. If the
refs argument is not an instance of Ref then it must be a Collection
of Ref instances. A new HashSet is created from this Collection as seen
in Line 9. Having a HashSet of Ref instances we get the currently run-
ning transaction on Line 11 before calling the method doBlocking on the
LockingTransaction object on Line 12. Using a HashSet ensures that no
duplicate Refs are present in the collection used to check if a thread should
be unblocked.

1 static public Object stmOrElse(ISeq body) {
2 ArrayList<IFn> fns = new ArrayList<IFn>((Collection) body);
3 if (fns.isEmpty()) {
4 return null;
5 }
6 LockingTransaction transaction = LockingTransaction.getEx();
7 return transaction.doOrElse(fns);
8 }

Listing 3.9: The stmOrElse Java method in the Runtime RT class

The implementation of stmOrElse can be seen in Listing 3.9, and takes
a single argument called body. The method or-else must be called with a
list of functions as argument. The currently running transaction is acquired
in Line 6 before calling the method doOrElse with the list of functions as
argument on the acquired LockingTransaction instance in Line 7.

3.2 Transaction Control 55

1 static public void stmAbort() throws Exception {
2 LockingTransaction transaction = LockingTransaction.getEx();
3 transaction.abort();
4 }

Listing 3.10: The stmAbort Java method in the Runtime RT class

The stmAbort function takes no arguments and can be seen in Listing
3.10. It gets the currently running transaction on Line 2 before calling the
method abort on the acquired LockingTransaction instance in Line 3.

3.2.3 STMBlockingBehavior Implementation

The concept of blocking threads based on a set of Refs is introduced in
the abstract class called STMBlockingBehavior. A blocking behavior is
used to block a thread based on a set of Refs. Each behavior has different
semantics but they all extend the STMBlockingBehavior. We have defined
four different blocking behaviors which have the following semantics:

STMBlockingBehaviorAny Blocks the thread until any Refs defined
have been written to by other transactions

STMBlockingBehaviorFnAny Blocks the thread until any Refs defined
have been written to by other transactions, then the defined function
is executed and if it returns true the thread unblocks

STMBlockingBehaviorAll Blocks the thread until all Refs defined have
been written to by other transactions

STMBlockingBehaviorFnAll Blocks the thread until all Refs defined
have been written to by other transactions, then the defined function
is executed and if it returns true the thread unblocks

All blocking behaviors are child classes of the abstract super class
STMBlockingBehavior which defines the interface of the child classes. The
constructor of the class is found in Listing 3.11 on Line 6. The constructor
takes two arguments refSet which is a Set of Refs, and blockPoint which
is the readPoint of the transaction where retry was called, providing a
relative timestamp to other transactions. Both arguments are assigned to
instance variables on Line 7 and Line 8 respectively. Lastly the initialisation
of a CountDownLatch on Line 9 is performed. A CountDownLatch is a Java
class which has the same functionality as a barrier but cannot be reset, it is
to block the thread if necessary as it depends on how threads are scheduled.

The class contain three methods await on Line 12, handleChanged
method is seen 18, and the abstract method shouldUnblock on Line 24.

56 Implementation 3

1 abstract class STMBlockingBehavior {
2 protected Set<Ref> refSet;
3 protected CountDownLatch cdl;
4 protected long blockPoint;
5

6 STMBlockingBehavior(Set<Ref> refSet, long blockPoint) {
7 this.refSet = refSet;
8 this.blockPoint = blockPoint;
9 this.cdl = new CountDownLatch(1);

10 }
11

12 void await() throws InterruptedException {
13 if (! shouldUnblock()) {
14 this.cdl.await();
15 }
16 }
17

18 void handleChanged() {
19 if (shouldUnblock()) {
20 this.cdl.countDown();
21 }
22 }
23

24 abstract protected boolean shouldUnblock();
25 }

Listing 3.11: The abstract super class for the specific blocking behaviors

The abstract method shouldUnblock is overridden by subclasses to return a
boolean indicating if the instance of STMBlockingBehavior should unblock
now. await is called by LockingTransaction to maybe block the trans-
action, as changes to the Refs passed to retry might have been changed
between the time the STMBlockingBehavior was created and await is in-
voked. handleChanged is called by other transaction after they have com-
mitted, checking if the instance of STMBlockingBehavior should unblock
because of the changes caused by the calling transaction.

The shouldUnblock function is implemented by subclasses since their
blocking semantics are different. Each implementation of STMBlockingBehavior
check if a Ref have been changed by comparing blockPoint to tvals.point,
which indicates at what time the Ref was written to last. The implementa-
tion iterates through each Ref it is blocked on. This is a difference from the
experimental implementation Section B.5, as it iterates through the set of
Refs changed by the transaction trying to unblock STMBlockingBehaviors.

This change was made as the experimental implementation could dead-
lock, as await did not check for updates to Refs between the instance of
STMBlockingBehavior being created and the time await is called. Instead

3.2 Transaction Control 57

of checking for changes using both point on Ref, and the set of Refs pro-
vided by a transaction when it commits, is point used for both. The change
also tunes the implementation for use where each STMBlockingBehavior
only blocks on a single or a few Refs, which we see as the most common use
case.

3.2.4 LockingTransaction Implementation

The four subclasses of STMBlockingBehavior are used by methods defined
in LockingTransaction which will be described now. First we will go
through the three parts of retry and retry-all, then the implementation
of or-else and last the terminate implementation is described.

1 void doBlocking(HashSet<Ref> refs, IFn fn, ISeq args,
2 boolean blockOnAll) throws InterruptedException, RetryEx {
3

4 if (! info.running()) {
5 throw retryex;
6 }
7

8 if (refs == null) {
9 refs = new HashSet();

10 refs.addAll(this.gets);
11 }
12

13 if (blockOnAll) {
14 if (fn != null) {
15 this.blockingBehavior =
16 new STMBlockingBehaviorFnAll(refs, fn, args, this.readPoint);
17 } else {
18 this.blockingBehavior =
19 new STMBlockingBehaviorAll(refs, this.readPoint);
20 }
21 } else {
22 if (fn != null) {
23 this.blockingBehavior =
24 new STMBlockingBehaviorFnAny(refs, fn, args, this.readPoint);
25 } else {
26 this.blockingBehavior =
27 new STMBlockingBehaviorAny(refs, this.readPoint);
28 }
29 }
30 LockingTransaction.blockingBehaviors.add(this.blockingBehavior);
31 throw retryex;
32 }

Listing 3.12: The doBlocking Java method in the transaction
LockingTransaction class

58 Implementation 3

The method doBlocking, seen in Listing 3.12, adds the correct blocking
behavior to the transaction which makes the transaction block when it re-
tries. On Line 4 it checks whether the transaction is in a running state, if not
the transaction is forced to retry by throwing retryex which is an instance
of the RetryEx exception, this can happen if a transaction is barged. If the
refs argument is null it means that it should block on all Ref instances
dereferenced in the transaction, therefore refs is assigned to a new HashSet
containing all gets, the set of dereferenced Ref instances. The argument
blockOnAll, in Line 13, decides if the doBlocking method must wait for
changes in any or all Ref instances given in refs. If a function is given to
doBlocking a blocking behavior based on the function is initialised, this is
checked on Line 14. The Lines from 13 to 29 initialises the correct block-
ing behavior based on the arguments blockOnAll and fn. On Line 30 the
blocking behavior is added to the global Collection of blocking behaviors
across all transactions that is used to unblock the correct transactions when
a transaction commits.

The implementation uses a Set backed by a ConcurrentHashMap as
an instance implementing the Collection interface, this guarantees effi-
cient thread-safe addition and removal of STMBlockingBehaviors from the
Collection. Using a Set however does not guarantee fairness when iter-
ating through the entries of the Collection this could lead to starvation
of blocked threads. Alternatively a ConcurrentLinkedQueue could be used
as it also implements the Collection interface, ConcurrentLinkedQueue
guarantees that the oldest entry is handled first and allows thread safe re-
moval of any elements in the queue.

Last the transaction is forced to retry by throwing the instance of RetryEx
in retryex on Line 31. The act of blocking and unblocking based on
a STMBlockingBehavior is implemented as part of the run method on
LockingTransaction, these changes to the flow are shown at the end of
the section in Figure 3.4

1 if (this.blockingBehavior != null) {
2 this.blockingBehavior.await();
3 LockingTransaction.blockingBehaviors.remove(this.blockingBehavior);
4 this.blockingBehavior = null;
5 }
6 gets.clear();

Listing 3.13: If the transaction has a blocking behavior then it must wait
for it to resolve.

In Listing 3.13 code from LockingTransaction is shown. The code is
the first part of the transaction’s run method and checks if the transaction

3.2 Transaction Control 59

has a blocking behavior set on Line 1. If so, the transaction is on Line
2 forced to block until the CountDownLatch in the blocking behavior is
counted down to zero where it will unblock. After the transaction has been
unblocked it will remove its blocking behavior from the global set of blocking
behaviors across all transactions and then set the blocking behavior of this
transaction to null on Line 3 and 4. Before executing the transaction the
set of dereferenced Refs will be cleared on Line 6.

1 for (STMBlockingBehavior blockingBehavior :
2 LockingTransaction.blockingBehaviors) {
3 blockingBehavior.handleChanged();
4 }

Listing 3.14: Notify all blocking behaviors in other transactions with which
Refs have been written to by the committed transaction

When the transaction has committed it notifies all blocking behaviors
in the global set of blocking behaviors that Refs was written to by calling
handleChanged on each STMBlockingBehavior on Line 3 in Listing 3.14.

Iterating through the Collection and unblocking STMBlockingBehaviors
is purposely not done atomically, in order to avoid unnecessary delay when
a thread is unblocked. This is important for instances of the classes
STMBlockingBehaviorFnAny and STMBlockingBehaviorFnAll as they exe-
cute a user defined function to test if the should unblock, this function can
contain references to global state that might be changed between each call
to handleChanged.

1 void doOrElse(ArrayList<IFn> fns) {
2

3 this.orElseRunning = true;
4 for (IFn fn : fns) {
5 try {
6 fn.invoke();
7 return;
8 } catch (RetryEx ex) {
9 // We ignore the exception to allow the next function to execute

10 }
11 }
12 this.orElseRunning = false;
13 throw retryex;
14 }

Listing 3.15: The doOrElse Java method in the transaction
LockingTransaction class

60 Implementation 3

The doOrElse method, seen in Listing 3.15, takes a single argument fns
that is an ArrayList of IFn instances. An object that implements the inter-
face IFn is a function in Clojure. The methods starts by setting the variable
orElseRunning to true, forcing calls to blockAndBail to simply throw a
RetryEx exception instead of blocking the transaction, as the transaction
does not need to wait for a resource to be available when or-else is used.

The method then iterates through the functions given as fns, this is
shown on Line 4 where each function at hand is executed using the invoke
method on Line 6. If the function is executed without throwing a RetryEx
exception then doOrElse will return. Otherwise the RetryEx exception
will be caught and ignored which will allow the next function in fns to
be executed. If no functions in fns is able to execute without throwing
a RetryEx exception then doOrElse will throw the RetryEx instance in
retryex to force the transaction to retry.

1 void abort() throws AbortException{
2 EventManager.stmNotify(LockingTransaction.ONABORTKEYWORD, null);
3 stop(KILLED);
4 throw new AbortException();
5 }

Listing 3.16: The abort Java method in the transaction
LockingTransaction class

The abort method, seen in Listing 3.16, takes no arguments and termi-
nates the currently running transaction. When a transaction terminates it
needs to trigger the event handling system to execute the functions wait-
ing to be notified on the LockingTransaction.ONABORTKEYWORD keyword
on Line 2. Stopping a transaction in Clojure is done by calling the stop
method on Line 3 with the constant KILLED. Finally the method throws an
AbortException which forces the transaction to not execute again after the
transaction have ended.

The changes to the flow of the run method on LockingTransaction
due to the addition of transaction control can be seen in Figure 3.4. If the
transaction contains a blocking behavior it should be blocked, this is checked
in the first part of run. When the transaction has committed, other blocked
transactions are notified with the changes of the committed transaction and
possibly unblocked. If terminate is executed the AbortException is caught
in the added catch block.

3.3 Summary 61

Figure 3.4: The major parts of the run method with the addition of trans-
action control squares show parts that can be re-executed, while rounded
squares cannot, dashed lines indicate the added parts

3.3 Summary
In this chapter the implementation of a generic event handling system as well
as constructs for transaction control into Clojure has been presented. This
altered version of Clojure will be from here on be referred to as dptClojure.

This is done to easily differentiate between the two versions in the follow-
ing sections where Clojure and dptClojure will be evaluated and compared
to each other.

62 Implementation 3

CHAPTER 4
Evaluation

An evaluation of our implementation seen in Chapter 3, will be described
in this chapter. The event handling system described in Section 3.1, will be
evaluated based on functionality in Section 4.1 by presenting cases where
the added constructs of the event handling system allow for operations in
dptClojure that was not possible in Clojure’s STM implementation as the
system have no equivalent in Clojure. The transactional control constructs
described in Section 3.2, will be evaluated both on functionality and usability
in Section 4.2 by first presenting cases where the added constructs allow
operations not possible in Clojure’s STM implementation. This evaluation
will continue with a usability evaluation of the retry constructs based on the
Santa Claus problem [23], as Clojure already contains constructs that allow
for comparable functionality the benefits of dptClojure were not trivial to
see. This will be followed by a summary in Section 4.3 that also evaluates the
abstract concurrency models underlying Clojure’s STM implementation by
comparing the difference in this model between Clojure and dptClojure.

4.1 Event Handling System
The event handling system introduces the constructs described in Section
3.1. These constructs allow the developer to create events, to trigger events
to notify listeners, and to listen for created events and events built into
Clojure’s STM implementation. By listening for events triggered by the
STM implementation itself, it is possible to add code which will be executed
when a transaction either commits, after it commits or when a transaction
aborts.

Because the event handling system provide the same functionality as
the experimental designs summarised in Section 2.5, will we use the same
examples to showcase how the event handling system enables the use of
side-effects in transactions. The first example prints the value of a Ref and
before it tries to update its value which may force the transaction to abort.
The second example updates the contents of an ArrayList and then writes
a line to a log, both operations might make the transaction abort. The third

64 Evaluation 4

example inserts rows into a database and add the keys of the rows to a list
of keys.

The three examples presented in Section 2.5.1, are implemented here
using the event handling system instead of the specialised functions used in
the experiments. They show how it is possible to use the event handling
system in dptClojure to execute side-effects inside transactions, using STM
as the synchronisation mechanism for mutable data structures and external
effects, functionality not possible in a transactional safe way in Clojure’s
STM implementation.

1 (def counter-ref (ref 0))
2

3 (dosync
4 (after-commit (println (deref counter-ref)))
5 (if (< (deref counter-ref 10))
6 (alter counter-ref inc)
7 (ref-set counter-ref 0)))

Listing 4.1: Use of the event handling system for printing to the standard
output stream after the transaction has committed

In Listing 4.1 the example of printing the value of the variable counter-ref
is written using the after-commit function from the event handling system,
after-commit is used as the value of the Ref is extracted, and there is no
need to ensure that the Ref does not change between the call to alter and
the value Ref being printed.

1 (def arraylist-ref (ref (java.util.ArrayList.)))
2 (def log-ref (ref (writer "log.txt" :append true)))
3

4 (dosync
5 (on-commit (lock-refs alter
6 (alter arraylist-ref .add arraylist-ref 0)
7 (alter log-ref .write "Added 0 to arraylist-ref"))))

Listing 4.2: Use of the event handling system for modifying ArrayList and
logs

The second example is shown as Listing 4.2 where the use of the on-commit
function can be seen together with the lock-refs function. The function
passed to on-commit is executed as part of the transaction, making it nec-
essary to use lock-refs to ensure that the necessary locks are acquired.
The function lock-refs is implemented as a separate feature to ensure the
developer has full control of when automatic locking of Refs are performed.

4.1 Event Handling System 65

1 (def keys-ref (ref []))
2 (def rows-ref (ref []))
3

4 (dosync
5 (on-commit (lock-refs alter
6 (let [row (first (deref rows-ref))
7 next-key (database-insert row)]
8 (alter keys-ref conj next-key)
9 (alter rows-ref rest)))))

Listing 4.3: Insert rows into a database and return the key

The third example is shown in Listing 4.3, similar to the second example
the on-commit function is used together with the lock-refs function. Lock-
ing the Refs ensure that the database insert operation is only executed if we
can guarantee write access to the locks needed, otherwise the transaction
will abort before the row is inserted.

The functionality of listening for events in the STM implementation
is not possible without these added constructs and gives the developer a
way to use side-effects in a transactional safe manner. Furthermore, the
introduction of a generic event handling system enables the developer to
write event listeners for events both in the Clojure runtime and in Clojure
outside of the runtime created by the developer. The implementation allows
a context to be provided for an event listener. As an example, the on-commit
event provides the set of Refs that the transaction had written to, this
context is accessible through the function context in the scope of an event
listener.

The last special event provided by the event handling system is on-abort,
which is not shown with an example since the three examples shown above
were simpler to implement using after-commit and on-commit. The on-abort
event allows code to be executed when a transaction aborts, this functional-
ity is currently not present in Clojure’s STM implementation. The on-abort
event makes it possible to roll-back side-effects on for example a mutable
data structure.

The three examples all use the special event functions directly inside of
the transactions, but they could also be embedded into data structures to
make the data structures STM aware. For example by making an extended
version of the Java data structure ArrayList that undoes operations if the
transaction aborts using on-abort or waits with operations until commit
time with on-commit.

The primary reason for implementing the event handling system was
to allow Clojure’s STM implementation to provide built-in events, but it
also provides a platform for Clojure developers to use events in their own

66 Evaluation 4

programs, a functionality not present in Clojure. A usability evaluation of
the event handling system has not been performed since the system has no
counterpart in Clojure, and only adds additional functionality.

4.2 Transactional Control
The transactional control constructs described in Section 3.2, allows the de-
veloper to control the behaviour of transactions. The methods or-else and
terminate will be evaluated in Section 4.2.1, while retry will be evaluated
in Section 4.2.2.

4.2.1 Or-else and Terminate

The function or-else allows the developer to specify multiple functions to
execute sequentially and return the value of the first function that completed
without trying to abort the transaction. If no functions are able to complete
execution without the transaction trying to abort, the transaction aborts.
The terminate function allows the developer to abort a transaction without
re-executing it, letting the executing thread continue instead of re-executing
the transaction. An example that uses both functions can be seen in in
Listing 4.4.

1 (dosync
2 (execute-db-operation
3 (or-else
4 (alter dbc-one identity)
5 (alter dbc-two identity)
6 (alter dbc-three identity)
7 (terminate))))

Listing 4.4: Or-else and terminate example

In this example a thread tries to execute an operation on a database if
a database is available, otherwise the thread continues its execution. The
method or-else in Line 3 is used to alter one of three database con-
nections. If no database connections could be acquired it terminates the
transaction by calling terminate in Line 7 and the thread will continue. If a
database connection is acquired its value is returned to execute-db-operation.
As the function or-else introduces functionality that do not exist in Clo-
jure’s STM implementation, it will be evaluated as no constructs in Clojure
that it can be compared with.

The terminate function can be emulated with the use of exceptions as
shown in Listing 4.5. Here a try/catch block was put around the dosync
block in order to catch an exception named TerminateException. This

4.2 Transactional Control 67

construction allows code inside the transaction to throw this exception which
then terminates the transaction, Clojure aborts transactions if an exception
is thrown, and the use of a specific exception ensures that another exception
does not trigger this behaviour.

1 (dosync
2 (execute-db-operation
3 (or-else
4 (alter dbc-one identity)
5 (alter dbc-two identity)
6 (alter dbc-three identity)
7 (terminate))))

1 (try
2 (dosync
3 (execute-db-operation
4 (or-else
5 (alter dbc-one identity)
6 (alter dbc-two identity)
7 (alter dbc-three identity)
8 (throw TerminateException))))
9 (catch TerminateException te))

Listing 4.5: Or-else using dptClojure (left), and Clojure (right)

Based on Listing 4.5, it is trivial to see that the use of terminate sim-
plifies the operation of forcing a transaction to abort without allowing it to
retry. This is due to terminate removing the need for an exception handler
around the dosync block, and the need for defining a unique exception to
prevent conflict with other Java exceptions.

4.2.2 Retry

The methods retry and retry-all allows the developer to specify that a
transaction must abort and first re-execute on change in either one or all of
the specified Ref instances.

1 (def updated-ref (ref 0))
2 (def static-ref (ref 10))
3

4 (dosync
5 (if (== (deref updated-ref) (deref static-ref))
6 (ref-set updated-ref 0)
7 (retry updated-ref)))

Listing 4.6: Retry example

An example of using retry is shown in Listing 4.6. Here updated-ref is
set to zero when it reaches ten. The incremental changes to updated-ref are
done by other transactions. retry is used in Line 7, to block the transaction
until updated-ref is modified. Since static-ref in this scenario is never
updated outside the shown transaction, waiting on both Refs will result in
a deadlock. Therefore we only call retry with updated-ref.

The retry function provides functionality that can be replicated by a
developer in the current STM implementation of Clojure. The transac-

68 Evaluation 4

tion can be terminated with an exception like and then the executed again
through recursion. The synchronisation aspects of retry and retry-all
can be achieved using constructs from java.util.Concurrency, which con-
tains synchronisation constructs such as semaphores and synchronised data
structures.

As emulating retry and retry-all is more complex and requires the use
of Java synchronisation constructs, it is not trivial to see that it provides a
simpler way for performing synchronisation of threads. Instead we perform
a usability evaluation, described in Section 4.2.2 to evaluate which of the
two synchronisation methods is simplest to use.

Usability evaluation

The usability evaluation consists of two implementations of the Santa Claus
Problem [23], as it is a well known problem for working with concurrency
and synchronisation. The Santa Claus problem is seen as a representation
of a real world concurrent program because of the amount of synchronisa-
tion needed for a correct implementation. Furthermore we have developed
solution for the problem before in our 9th semester project [6]. The Santa
Claus Problem is described in Appendix D. The first implementation will
use dptClojure’s STM implementation and the second implementation will
be created using only Clojure’s constructs.

The two implementations will be compared based on the following met-
rics.

Lines of code (LOC) How many LOC the implementation consists of while
ignoring empty lines and comments.

Development time How much time was spend on creating the implemen-
tation.

LOC will be used as a measure as it will make the resulting code com-
parable to existing research [24, 25, 26] even tough LOC in itself is not that
informative it does give an indication of how much code is needed to use the
constructs of the language. We have chosen to ignore comments and empty
lines as LOC because they are not a direct part of the program because
there is no requirements to their use and its entirely up to the developer
where they are used.

A short program on its own is not guaranteed to have been easy to
write which is why development time is also included because it shows how
efficiently the developer can create solutions with the constructs available.
A combination of LOC and development time is therefore a good indicator
on programming languages usability because a language that allow for short
development time is efficient to develop, and a small program gives less

4.2 Transactional Control 69

to reason about for modification and that the language support expressive
constructs. [26]

However it have been shown that metrics alone is unreliable in deter-
mining how challenging language constructs are to use [25]. Therefore a
subjective discussion about disadvantages and advantages of the two imple-
mentations will help give a more complete picture of the usability of the
added language constructs.

To ensure a fair comparison between the results of the two implemen-
tations in regards to LOC and development time the two implementations
were developed by the same developer. The developer already knew the
Santa Claus Problem and had implemented solutions for it before in Clo-
jure as well as other functional programming languages. The developer had
experience using the constructs added in this project as well as using similar
constructs found in Haskell.

The implementation with the added constructs was developed first to not
give this implementation any upper hand compared to the implementation
of the solution without the added constructs. Additionally the developer
had earlier developed a solution for the Santa Claus problem using locks
and semaphores giving that implementation somewhat of an advantage in
terms of development time since the developer had experience with writing
the exact same solution.

Usability evaluation outcome

The results of the usability evaluation are presented in this section, with both
metrics and the subjective discussion of the implementations with direct
comparison between the two implementations.

As explained the implementations were evaluated using two metrics
namely, LOC and development time. The results for development time
are rounded to the nearest quoter to make comparison simpler by removing
insignificant detail, are shown below in Table 4.1.

Lines of Code Development time
With extensions 56 2 hours
Without extensions 74 4 hours
Percentage Difference 24.3 % 50 %

Table 4.1: The results of the usability evaluation based on the two chosen
metrics, lines of code and development time rounded to the nearest quoter

The implementation of dptClojure performed better both in terms of
LOC and in terms of development time compared to Clojure. The re-
duced number of LOC is the result of the addition of the constructs for
retry in dptClojure, instead of throwing exceptions and synchronising with
a Semaphore and CyclicBarrier .

70 Evaluation 4

Figure 4.1: Architecture of Santa Claus Problem implementation. Arrows
indicate function calls. Lines indicate data structure access.

The two implementations are quite similar but differ in how the concur-
rency is done. An architectural overview of the implementations can be seen
in Figure 4.1. The implementation consists of a single thread, santa, that
infinitely executes the santa function. Nine threads representing the rein-
deers executes the worker function and waits in the reindeer-queue, while
thirty threads representing the elfs executes the worker function and three
at a time waits in the elf-queue. With the added constructs there is no
need for semaphores or barriers for ensuring the correct behaviour, instead
the retry functionality is used. Below selected parts of the implementations
are compared to each other to show they are similar in behaviour but differ
in syntax as a result of the added constructs.

1 (defn worker [wid queue-ref max-sleep max-queue sleep-ref]
2 (sleep-random-interval max-sleep)
3 (dosync
4 (let [queue-length (count (deref queue-ref))]
5 (if (< queue-length max-queue) (goto-santa wid queue-ref) (retry))
6 (when (== (inc queue-length) max-queue)
7 (santa-wake sleep-ref))))
8 (recur wid queue-ref max-sleep max-queue sleep-ref))

Listing 4.7: The worker function with extensions

4.2 Transactional Control 71

In Listing 4.7 the worker function of the implementation with the added
constructs is shown. In Line 1 the function takes five arguments; wid is the
worker ID, queue-ref is the Ref for the appropriate queue based on the
worker type, max-sleep defines the maximum number of seconds the worker
is allowed to sleep, this is also defined by the worker type. max-queue defines
the maximum number of elements allowed on the queue in queue-ref before
waking up Santa. Finally the sleep-ref argument defines the Ref holding
the state whether or not Santa is asleep. In Line 2 the function will sleep
a random number of seconds with a maximum defined by max-sleep. The
transaction used by the worker is started in Line 3 and the length of the
appropriate queue for the worker type is bound to queue-length in Line
4. In Line 5, based on the length of the queue the worker will either call
the function goto-santa if the queue is not yet full or call retry if the
queue is full. By calling retry the worker will block until the queue altered,
otherwise the function goto-santa is called which will add the worker to the
queue and block the thread using retry until the queue is cleared by Santa
if the worker is already in the queue. If the queue fills up as a result of the
worker calling goto-santa, the worker will call the function santa-wake
in Line 7. The santa-wake function will wake up Santa by altering the
sleep-ref Ref if he is asleep, otherwise worker will call retry and block
until either max-queue or sleep-ref is altered. Finally the function will
call itself recursively in Line 8.

1 (defn worker [wid queue-ref max-sleep max-queue sleep-sem
2 worker-sem worker-barrier]
3 (sleep-random-interval max-sleep)
4 (try
5 (dosync
6 (let [queue-length (count (deref queue-ref))]
7 (if (< queue-length max-queue)
8 (goto-santa wid queue-ref)
9 (throw (java.lang.IllegalStateException.)))))

10 (catch java.lang.IllegalStateException ise
11 (.acquire worker-sem 1)
12 (.await worker-barrier)))
13 (recur wid queue-ref max-sleep max-queue sleep-sem
14 worker-sem worker-barrier))

Listing 4.8: The worker function without extensions

In Listing 4.8 the implementation of the same worker function imple-
mented using Clojure is shown. The function takes more arguments com-
pared to the implementation with the added constructs because of the need
for additional concurrency constructs to achieve the same behaviour. In-
stead of using a Ref for the state of whether or not Santa is sleeping a Java

72 Evaluation 4

Semaphore is used. A Semaphore is used for blocking the workers together
with a Java CyclicBarrier. Both are needed to prevent a race condition,
where one worker decrements the Semaphore multiple times leading to a
deadlock.

1 (defn start-workers [queue-ref max-sleep max-queue sleep-sem
2 worker-sem worker-barrier number]
3 (add-watch queue-ref :key (fn [_key _ref old-state new-state]
4 (when (== (count new-state) max-queue)
5 (santa-wake sleep-sem))))
6 (doseq [wid (range 0 number)]
7 (.start (Thread.
8 (fn [] (worker wid queue-ref max-sleep max-queue sleep-sem
9 worker-sem worker-barrier))))))

Listing 4.9: The interfaces for the event handling system

In the Clojure implementation watchers are used to call santa-wake
when the size of one of the queues are altered and maybe filled. The ad-
dition of the watchers are done in the function start-workers which is a
helper function for starting all workers. The start-workers function of the
implementation without the added constructs can be seen in Listing 4.9,
the function exists in both implementation to start the worker threads, in
the Clojure version a watcher is also set to execute code when a transaction
commits. Setting the watcher can be seen on Line 3 where a watcher is
set for the Ref queue-ref, which is the queue for either reindeers or elfs
depending on what set of threads are being started, the function executed
by the watcher checks on Line 4 the size of the queue and if the queue is full
santa-wake will be called in Line 5.

Implementing the overall structure of the two version proved to be very
similar, and the time spent for each was nearly the same. However the time
spent ensuring that the Clojure implementation did not cause a deadlock
were higher. Primarily correcting the race condition caused by the lack of a
Barrier, increased the development time for the Clojure version. In general
reasoning about when threads reached a specific place in the code to interact
with a Semaphore or Barrier and the current state of each thread proved to
be a challenge, which required the assistance of a debugger to ensure that the
implementation was correct. Synchronisation in terms of data proved much
simpler to comprehend, since the synchronisation constructs were added
to ensure that data was in a specific state before another operation was
executed, which could be expressed directly using retry.

4.3 Summary 73

4.3 Summary
The underlying concurrency model of Clojure’s and dptClojure’s STM im-
plementation is evaluated based on the approach taken in [27]. By model we
mean the functionality provided by each implementation, without concern
for any implementation details. The approach evaluates the model by look-
ing at the following different characteristics and is useful to reason about
how the overall behaviour of the underlying concurrency model has changed
by implementing these new constructs.

Implicit or Explicit Concurrency A model provides implicit concurrency
if concurrency is provided as part of the model itself and requires no
additional work by the developer. A model provides explicit concur-
rency if it requires the developer to manually add additional constructs
such as locks and semaphores.

Fault Restricted or Expressive Model A fault restricted models pre-
vents the developer from making errors by only providing high level
access to the constructs of the model. An expressive model gives low
level access to each part of the model, but expects the developer to
ensure each part is used correct.

Pessimistic or Optimistic Model A pessimistic model only allows the
amount of concurrency that can be performed without conflicting reads
or writes. An optimistic model maximizes the amount of concurrency,
at the cost of requiring a method for handling conflicts.

Automatic or Manual Parallelisation An automatic model uses the com-
piler or runtime to automate the parallelisation of the code with no
additional work by the developer. A manual model requires the devel-
oper to add additional constructs and to create additional threads to
execute code concurrently.

The two models are weighted on a five step scale that spans from one
side of the contrasting concurrency criteria to the other. By the addition of
the constructs described in this project, the concurrency of the underlying
model has become more explicit and expressive as can be seen in Figure 4.2.
The evaluation of the concurrency model of Clojure before the addition of
constructs was done in [6] were the individual scorings are explained.

As described in Section 4.1 the addition of the generic event handling
system enables the developer to listen for events in for example the STM
implementation. This gives the developer a lower level of access to the
STM implementation, thereby increasing the expressiveness of the model.
The introduction of functions for automatic locking of Refs if needed also
increases the degree of explicit concurrency in an indirect way.

74 Evaluation 4

Figure 4.2: Evaluation of the model underlaying Clojure’s and dptClojures’s
STM implementation, the evaluation model was presented in [27]

The addition of the constructs for transactional control described in Sec-
tion 4.2 makes the underlying model more expressive by allowing the devel-
oper to manually control transactions instead of controlling transactions by
for example altering Refs. Besides forcing a transaction to abort and block
until the alteration of one or more Refs with different semantics it is now
possible to terminate a transaction explicitly, and it is possible to execute
the first possible of multiple functions.

Both of the additions adds some explicitness and some expressiveness to
the model, but are described in the way above to ease the explanation of why
the model of dptClojure is different compared to the model for Clojure.

CHAPTER 5
Reflection

This chapter will discuss and reflect on the choices made in this project.
First the effect of adding constructs for handling side-effects in transactions
and constructs for transaction control will be discussed. Hereafter the us-
ability evaluation will be discussed followed by considerations about how a
performance evaluation of dptClojure could be done. The chapter is closed
of with a discussion of the project approach as well as some considerations
for the implementation of dptClojure.

5.1 Effect of the added constructs
dptClojure extends Clojure with support for transactionally safe side-effects
and transactional control. Allowing side-effects in transactions make STM
similar in capabilities to locks, as a transaction can synchronise both access
and external effects. We argue that this makes using transactions a simpler
task for developers already knowledgeable about lock based concurrency,
as the same capabilities are provided by the synchronisation mechanism,
with only the underlying semantics changed. A negative aspect of this is
that developers might use STM as a direct composable substitute for locks.
Which can lead to waste of CPU cycles if a developer expects other threads
to wait until a thread is finished with a critical section as this is not the case
with STM.

The addition of transactional control introduces a completely alternative
way to think about synchronisation, as the synchronisation is now based on
changes to transactional data instead of a position in the code. While the
evaluation shows that the use of transactional control can lead to smaller
programs and shorter development times, it does require a change in how the
developer thinks about performing synchronisation which could be difficult
if the developer already is experienced in developing programs using the
classic synchronisation constructs.

76 Reflection 5

5.2 Usability Evaluation
The usability evaluation is performed using a single test person with exten-
sive knowledge about both the language constructs and how to use them for
synchronisation. This prevents having to learn to use the constructs from
influencing the evaluation, and lets us evaluate how the constructs perform
for building actual applications. However the evaluation does not give an
indication of how much time is needed to acquire such familiarity with the
constructs, and if the time spent learning to use this alternative method
of synchronisation is acceptable compared to the decrease in development
time, especially if a developer already is familiar with synchronisation using
locks. Also as the usability evaluation is based on only one developer and
one test problem, the results could, when compared to other evaluations be
an seen as an outlier.

5.3 Performance Evaluation
We decided that performance was of secondary priority in the project, and
that the addition of functionality was in focus and not its optimisation. How-
ever if one were to perform a performance evaluation of the implementation,
multiple aspects would have to be evaluated.

• Does the additional functionality impact performance for programs
where it is not used?

• Does the use of the added functionality add overhead compared to the
alternatives?

• Does the added overhead make the added functionality unaffordable
in terms of running time

The first question could be answered by implementing two test programs;
one synchronising a large set of transactional values in a few transactions
and the second synchronising a very small test of transactional values in a lot
of transactions and then comparing if there are a performance difference be-
tween Clojure and dptClojure. The second question would require the same
programs with side-effects and need for synchronisation between threads to
be implemented. dptClojure should only use STM for both synchronising
data, side-effects and threads, while the Clojure version would have to use
a combination of STM and components from java.util.Concurrency to
implement equivalent functionality.

5.4 Approach 77

5.4 Approach
The approach of the project has been different than our other projects as it
succeeds the work from our 9th semester project [6]. The knowledge gained
from our previous project [6] made it possible for us to start experimenting
with solutions to the problems of the project, without the need for famil-
iarising us with the domain beforehand. We therefore decided to take an
experimental approach to the problem in order to get an understanding of
Clojure’s internal implementation.

These experiments and their implementation helped give an overview of
Clojure’s runtime and STM implementation. Instead of starting the project
with an extensive literature study of the subject we were able to gain an
overview of the problems and how possible solutions relate to each other
and to Clojure’s STM implementation. This overview were easier to gain
by looking at the connection between each solution’s implementation com-
pared to only reading the literature which only explains the concepts of the
solutions.

Starting with an in-depth analysis of literature about methods for com-
bining side-effects and STM would probably have removed the need for the
experimental design and implementation phase, as the method developed
as part of this could be found in the literature. However this would proba-
bly also have made the time spent analysing Clojure’s implementation and
LockingTransaction much longer, and made the final solution implemented
of lesser quality, as the experimental implementation helped to gain knowl-
edge about subtleties in Clojure’s STM implementation.

5.5 Implementation
The use of context in the event handling system is limited in the events
added for on-commit, after-commit and on-abort. Context is only pro-
vided for the event listeners registered for the on-commit event, the context
provided is a Clojure PersistentHashSet containing all the Refs is used in
the transaction. By providing a PersistentHashSet the system is guaran-
teed that the Refs are not altered by the event listener function. However
it would be possible to provide context to the event listener function that
enables behaviour like the one presented in [11] where context can be used
to change the behaviour of a transaction inside an event listener function. In
general the use of context in event listener functions show a great potential
for giving the developer more power over and information about the STM
implementation. Because of time constraints and the relative simplicity of
the concept of context we have not added context for more events and leave
this to be explored in future work.

We have identified a problem with retry when the Ref being blocked on

78 Reflection 5

by the transaction is not updated by another transaction, then the trans-
action being blocked will never be unblocked. A solution to the problem
would be to let the developer specify a maximum time a transaction may
be blocked by a specific blocking behavior. We have however decided not to
add this functionality as we see the problem as a result of missing updates
to the Ref being blocked on and thereby something up to the developer to
fix.

The function dismiss is used to remove an event listener function from
a specific event and can by choice not be used to remove event listener
functions added to STM events. Furthermore we have chosen not to im-
plement an STM version of dismiss as we encourage small transactions.
Small transactions have a smaller possibility to conflict with other transac-
tions as their running time as well as the number of locks needed to commit
are smaller, therefore we encourage small transactions to avoid conflicts [9].
With smaller transactions the need for both adding and then removing event
listener functions as very little therefore we have chosen not to implement
this functionality.

The implementation of the constructs in dptClojure have been tested
using unit testing. The tests have been written to fully cover the code with
both a single and multiple transactions. Besides unit testing we have also
been using pair programming as well code reviews to ensure the implemen-
tation contains as few bugs as possible from the start.

CHAPTER 6
Conclusion

STM in Clojure provides a composable and deadlock free alternative to locks
for synchronising concurrent programs, but does not provide functionality
for handling side-effects, and allows no manual control over each transaction
for synchronisation of threads. The general problems with Clojure’s lack of
this functionality was determined through an extensive evaluation of both
performance and usability of parallel functional programming languages and
their concurrency models in our earlier work [6].

In this project we have implemented constructs allowing the use of side-
effects and transaction control in STM transactions into the programming
language Clojure, the extended language we have dubbed dptClojure. The
constructs were developed based on an extensive analysis of the Clojure
runtime and STM implementation, and multiple experiments about how
methods for handling side-effects in transactions could be performed.

The experimental designs were implemented in Clojure’s STM imple-
mentation, together with constructs for transaction control inspired from
Haskell, to understand how such functionality could be enabled in Clojure’s
STM implementation. Based on the experimental design and their imple-
mentation a unified event handling system was developed and implemented
in Clojure with minimal changes to the existing STM implementation, en-
abling the use of side-effects in transactions by ensuring the side-effects are
executed only if a transaction is in a specific phase. Constructs for transac-
tion control were added and extending those inspired by Haskell, allowing
the developer to not only block a transaction based on transactional data,
but also specify a function for determining the state of said data and check
if the transaction should unblock.

We evaluated the capabilities of the event handling system using the
three minimal examples, and we showed the event handling system could be
used to solve all problems represented by the examples. Transaction con-
trol was evaluated by demonstrating the effect of the added functionality
in Clojure as the concepts and what they solve were known from Haskell.
For the constructs that provided alternatives to existing Clojure functional-
ity the constructs were evaluated using a usability evaluation based on the

80 Conclusion 6

Santa Claus problem, with two metrics and a subjective discussion. This
evaluation showed a decrease both in terms of Lines Of Code (LOC) and in
terms of development time, and subjectively the added constructs helped to
create a simpler implementation.

To summarise the project we revisit the problem statement found in
Section 1.2, describing the questions of the project and defining tasks we
need to do to answer the questions.

How does the STM implementation of Clojure interact with the
rest of the language and implementation?

In Chapter 2 Clojure’s runtime as well as its STM implementation has been
described in detail. This in-depth description gives an overview of how Clo-
jure interacts with the STM implementation through the language’s func-
tions, constructs and types.

How does Clojure handle the use of side-effects in transactions
and what are its limitations?

The way to use side-effects in a transactional safe manner in Clojure is
through the use of agents. agents have multiple limitations since the ex-
ecution of agents are asynchronous and the return value of side-effects are
therefore not accessible inside the transaction. These limitations are de-
scribed in greater detail in Section 2.3 and 2.4.

How is it possible to introduce the use of side-effects in transac-
tions in Clojure’s STM implementation?

Through an exploration of Clojure we have experimented with multiple so-
lutions to introduce the use of side-effects in transactions in Clojure’s STM
implementation. Together with this exploration we have studied the liter-
ature of the subject and generalised our experiments to a event handling
system for introducing the use of side-effects in transactions in Clojure’s
STM implementation. A summary of the these explorations can be found
in Section 2.5.

How is it possible to introduce the use of transaction control in
Clojure’s STM implementation?

We implemented constructs for transaction control into Clojure inspired
from Haskell, first as a part of the experiments early in the project. This ex-
perimental implementation was then extended in dptClojure. Transactional
control was introduced by the addition of multiple constructs into Clojure
and blocking behaviors into the STM implementation. A description of the
implementation can be found in Section 3.2.

6.1 Future Work 81

How does the introduction of these concepts into Clojure’s STM
implementation affect the usability of the STM implementation?

The usability of the addition of transaction control is evaluated in Section
4.2. Only the addition of transaction control was usability evaluated since
transaction control is possible in Clojure but only by using abuse existing
constructs in Clojure. We evaluated the usability by implementing the Santa
Claus problem and two metrics, LOC and development time. The usability
evaluation found a decrease both in terms of LOC and in terms of devel-
opment time, furthermore a subjective evaluation of the implementations
found that the added constructs for transaction control helped create sim-
pler implementation of the Santa Claus problem. The effect of adding the
event handling system in terms of usability has not been evaluated in this
project as the event handling system introduces new functionality, there-
fore it is impossible to compare the new constructs to any existing ones in
Clojure.

Concluding Remarks

By answering the questions stated in the problem statement we have created
an extended version of Clojure called dptClojure which contains new con-
structs for handling the use of side-effects in transactions in Clojure’s STM
implementation as well as constructs for more explicit transaction control.

6.1 Future Work
This section will discuss possibilities for future avenues of research in relation
to dptClojure.

Twilight STM The event handling system of dptClojure introduced the
use of contexts in event handling functions. A context is information pro-
vided by the thread notifying an event. This functionality is currently only
used to inform the on-commit event about which Refs that can be changed
while being guaranteed that the transaction will not abort. However we see
the possibility of adding more detailed control over the transaction, similar
to what is provided in Twilight STM [11] by the use of contexts. This could
be achieved by creating an API for interacting with the transaction through
an interface into LockingTransaction made accessible as an object instance
through the context provided to the on-commit and on-abort events.

Evaluation The evaluation of dptClojure could be extended with a more
detailed evaluation of the usability of dptClojure as mentioned in the dis-
cussion in Section 5. A larger usability evaluation using multiple examples
and more developers could be conducted to evaluate whether the transaction

82 Conclusion 6

control constructs are preferable in general and not just for developers with
extensive knowledge about the constructs and the Santa Claus problem.

Additionally an evaluation of how much overhead and how the perfor-
mance characteristics change when comparing dptClojure to Clojure’s STM
implementation could be useful to see if dptClojure is be a relevant alter-
native to Clojure. How a performance evaluation could be performed is
described in Section 5.3.

Bibliography
[1] Sutter, Herb. The free lunch is over: A fundamental turn to-

ward concurrency in software. http://www.gotw.ca/publications/
concurrency-ddj.htm.

[2] Lee, Edward A. The Problem with Threads. Technical Re-
port UCB/EECS-2006-1, EECS Department, University of California,
Berkeley, Jan 2006. The published version of this paper is in IEEE
Computer 39(5):33-42, May 2006.

[3] TIOBE Software: Tiobe Index. http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html, 2015. Accessed: 05-03-2015.

[4] Totoo, Prabhat and Deligiannis, Pantazis and Loidl, Hans-Wolfgang.
Haskell vs. F# vs. scala: a high-level language features and parallelism
support comparison. In Proceedings of the 1st ACM SIGPLAN work-
shop on Functional high-performance computing, pages 49–60. ACM,
2012.

[5] Clojure Concurrent Programming. http://clojure.org/
concurrent_programming. Accessed: 05-03-2015.

[6] Jensen, Daniel Rune AND Jensen, Søren Kejser AND Jacobsen,
Thomas Stig. Performance and Usability Evaluation of Concurrency
in Modern Functional Programming Languages. Technical report, De-
partment of Computer Science, Aalborg University, 2015. https:
//github.com/eXeDK/dpt908e14/blob/master/Report.pdf.

[7] Clojure.Org Macros. http://clojure.org/macros. Accessed:
04-05-2015.

[8] Clojure.Org Macro Characters. http://clojure.org/reader#The%
20Reader--Macro%20characters. Accessed: 04-05-2015.

[9] Kalin, M. and Miller, D. Clojure for Number Crunching on Multicore
Machines. Computing in Science Engineering, 14(6):12–23, Nov 2012.

[10] Baugh, Lee and Zilles, Craig. An analysis of I/O and syscalls in critical
sections and their implications for transactional memory. In Perfor-
mance Analysis of Systems and software, 2008. ISPASS 2008. IEEE
International Symposium on, pages 54–62. IEEE, 2008.

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://clojure.org/concurrent_programming
http://clojure.org/concurrent_programming
https://github.com/eXeDK/dpt908e14/blob/master/Report.pdf
https://github.com/eXeDK/dpt908e14/blob/master/Report.pdf
http://clojure.org/macros
http://clojure.org/reader#The%20Reader--Macro%20characters
http://clojure.org/reader#The%20Reader--Macro%20characters

84 BIBLIOGRAPHY

[11] Bieniusa, Annette and Middelkoop, Arie and Thiemann, Peter. Actions
in the Twilight: Concurrent irrevocable transactions and inconsistency
repair (extended version). Technical report, Technical Report 257, In-
stitut für Informatik, Universität Freiburg, 2010.

[12] Harris, Tim. Exceptions and side-effects in atomic blocks. Science of
Computer Programming, 58(3):325–343, 2005.

[13] McDonald, Austen and Chung, JaeWoong and Carlstrom, Brian D and
Minh, Chi Cao and Chafi, Hassan and Kozyrakis, Christos and Oluko-
tun, Kunle. Architectural semantics for practical transactional memory.
ACM SIGARCH Computer Architecture News, 34(2):53–65, 2006.

[14] Volos, Haris and Tack, Andres Jaan and Goyal, Neelam and Swift,
Michael M and Welc, Adam. xCalls: safe I/O in memory transactions.
In Proceedings of the 4th ACM European conference on Computer sys-
tems, pages 247–260. ACM, 2009.

[15] Haskell Community. Thunk. https://wiki.haskell.org/Thunk.

[16] Welc, Adam and Saha, Bratin and Adl-Tabatabai, Ali-Reza. Irrevocable
transactions and their applications. In Proceedings of the twentieth an-
nual symposium on Parallelism in algorithms and architectures, pages
285–296. ACM, 2008.

[17] Blundell, Colin and Lewis, E Christopher and Martin, Milo. Unre-
stricted transactional memory: Supporting I/O and system calls within
transactions. 2006.

[18] Spear, Michael and Michael, Maged and Scott, Michael. Inevitability
mechanisms for software transactional memory. In 3rd ACM SIGPLAN
Workshop on Transactional Computing, New York, NY, USA, 2008.

[19] Olszewski, Marek and Cutler, Jeremy and Steffan, J Gregory. Ju-
doSTM: A dynamic binary-rewriting approach to software transactional
memory. In Proceedings of the 16th International Conference on Par-
allel Architecture and Compilation Techniques, pages 365–375. IEEE
Computer Society, 2007.

[20] Rossbach, Christopher J and Hofmann, Owen S and Porter, Donald E
and Ramadan, Hany E and Aditya, Bhandari and Witchel, Emmett.
TxLinux: Using and managing hardware transactional memory in an
operating system. In ACM SIGOPS Operating Systems Review, vol-
ume 41, pages 87–102. ACM, 2007.

[21] Harris, Tim and Marlow, Simon and Peyton-Jones, Simon and Her-
lihy, Maurice. Composable Memory Transactions. In Proceedings of

https://wiki.haskell.org/Thunk

BIBLIOGRAPHY 85

the Tenth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’05, pages 48–60, New York, NY, USA,
2005. ACM.

[22] Smaragdakis, Yannis and Kay, Anthony and Behrends, Reimer and
Young, Michal. Transactions with isolation and cooperation. In ACM
SIGPLAN Notices, volume 42, pages 191–210. ACM, 2007.

[23] Trono, John A. A new exercise in concurrency. ACM SIGCSE Bulletin,
26(3):8–10, 1994.

[24] Markstrum, Shane. Staking claims: a history of programming language
design claims and evidence: a positional work in progress. In Evaluation
and Usability of Programming Languages and Tools, page 7. ACM, 2010.

[25] Luff, Meredydd. Empirically investigating parallel programming
paradigms: A null result. In Workshop on Evaluation and Usability
of Programming Languages and Tools (PLATEAU), 2009.

[26] Nanz, Sebastian and West, Scott and Soares da Silveira, Kaue and
Meyer, Bertrand. Benchmarking usability and performance of multicore
languages. In Empirical Software Engineering and Measurement, 2013
ACM/IEEE International Symposium on, pages 183–192. IEEE, 2013.

[27] Damborg, B. and Hansen, A.M. A Study in Concurrency. Aalborg
University. Department of Computer Science, 2006.

86 BIBLIOGRAPHY

APPENDIX A
Experimental Designs

This appendix will present experiments that were performed to explore and
investigate Clojure’s STM implementation. The experiments either focus on
allowing the use of side-effects in transactions or introducing control of the
transactions in order to avoid execution of side-effects. The sections A.1, A.2
and A.3 will focus on the use of side-effects in transactions whereas Section
A.4 will focus on transaction control. Transaction control is a means to syn-
chronise based on the state of data instead of through function side-effects.
References to data structures must be stored inside Refs and accessed via
alter, commute, ensure or ret-set if the developer wishes to modify the
data structures despite the reference itself never being modified. This al-
lows Clojure’s STM implementation to synchronise access to them between
threads.

We created three examples to illustrate how the different side-effects are
handled by the before mentioned experiments, the examples are documented
in Section 2.5.1. These examples will be discussed in correlation with each
experiment. Implementation details of these experiments have been docu-
mented in Appendix B.

A.1 Defer
Defer is an approach which postpones the execution of code with side-effects
to take place when the transaction no longer can abort. We have performed
two experiments from this category.

A.1.1 After-commit

The dosync-ac macro extends the dosync macro found in Clojure with a
block of code to execute synchronously after the transaction has completed.
This allows side-effects to be executed in the same manner as using an agent
but synchronously and without having to take the agent’s current state into
account. Implementation details of After-commit can be seen in Appendix
B.1. The entire implementation is created using macros allowing it to be
used as a library, without changes to the Clojure runtime.

88 Experimental Designs A

1 (send a f & args)

Listing A.1: Clojure agent send example

Multiple design ideas for After-commit are discussed in Appendix C. We
chose to implement the macros based on the structure of the existing send
function in Clojure. The send function is used to send a function to an
agent and can be seen in Listing A.1. The function send sends an agent
a a function f with arguments args. This is very similar to what we want
to achieve as we want to “send” functions with arguments to be executed
after the transaction has committed. We will apply the same idea for the
other experimental implementations of this project as it is most similar to
Clojure’s own functions in general. The implemented After-commit macro
seen in Listing A.2.

1 (dosync-ac & body)
2

3 (ac & body)
4 (ac-fn func & args)
5 (ac-fn-set ref-set-map func & args)

Listing A.2: After-commit signatures

The solution consist of an extended version of the dosync macro which
can be seen on Line 1 in Listing A.2 and is named dosync-ac. The dosync-ac
macro has the same signature as the original dosync macro, however it can
store functions and expressions for later execution. The other three macros
shown in Listing A.2 all allows the developer to store code for executing
synchronously after the transaction commits. The first macro ac takes a
list of expressions as argument, it can be seen on Line 3. The second macro
ac-fn takes as its first argument a function and a list of arguments as its
second argument as seen in Line 4. The signature for the last macro named
ac-fn-set can be found in Line 5 and like ac-fn it accepts a function and ar-
guments but makes it easier to call ref-set on any Refs passed arguments,
allowing both consumption and resetting of Refs in the same expression.
The three examples described in Secion 2.5.1, are each implemented using
dosync-ac to evaluate it’s capabilities.

An implementation of the first example using dosync-ac can be found
in Listing A.3. The example shows the use of ac-fn on Line 6, to print the
value of a Ref after the transaction commits. Simply using deref on the
Ref after the transaction commits does not guarantee the in-transactional
value, as other transactions might have written to the Ref after the trans-

A.1 Defer 89

1 (def counter-ref (ref 0))
2

3 (dosync-ac
4 (if (< (deref counter-ref) 10)
5 (ac-fn #(println "counter-ref:" %)
6 (alter counter-ref inc))
7 (ac-fn-set {counter-ref 0}
8 #(println "counter-ref:" %) counter-ref)))

Listing A.3: After-commit printing to standard output stream

action committed but before the print. If the value reaches ten the value is
printed and afterwards set to zero by ac-fn-set in Line 8. The value is first
extracted so it can be printed, afterwards the value is set to zero by indexing
the hash-map given as argument with any Refs in the list of arguments. The
macro ac is not used in this version of our running example, as it performs
the same functionality as ac-fn but takes a list of expressions instead of a
function, which was subjectively simpler as it allowed the result of alter
to be passed directly as an argument instead of having to be bound to a
symbol using a let binding. Using ac reduces the amount of boilerplate
code necessary compared to ac-fn since the expressions do not have to be
encapsulated in a function.

1 (def arraylist-ref (ref (java.util.ArrayList.)))
2 (def log-ref (ref (writer "log.txt" :append true)))
3

4 (dosync-ac
5 (alter arraylist-ref identity)
6 (alter log-ref identity)
7

8 (ac
9 (.add (deref arraylist-ref) 0)

10 (.write (deref log-ref) "Added 0 to arraylist-ref")))

Listing A.4: After-commit modifying ArrayList and logs with possibility
to give inconsistent snapshots

The second example is found in Listing A.4. This example also shows
how ac can be used to execute code after the transaction have commit-
ted. First references to an ArrayList in Line 1 and a BufferedWriter in
Line 2 are created. The After-commit transaction is started on Line 4 by
dosync-ac followed by calling alter on the two before mentioned references
and therefore getting write locks for the two Ref instances. An After-commit
block defined by ac in Line 8 executes its content that consists of adding

90 Experimental Designs A

an element to arraylist-ref and a write to log-ref after the transactions
commits. There are two problems with the example in Listing A.4. The first
problem is that the write locks of the two Ref instances are dropped when
the transaction commits and the second problem is that the After-commit
block is executed after the transaction have committed which means that
the alter, ref-set and commute functions cannot be used. This means
that other transactions risk modifying the same references concurrently as
the After-commit block.

The third example is not implemented as it requires multiple transac-
tions, one to first extract the row and call the database, and a second to
append the key to the result list. This creates the same problems already
shown by the second example, where the ordering of the resulting list of keys
are not guaranteed to match the original list of rows due to the possibility
of inserts being interleaved.

The pros and cons of After-commit can briefly listed below:

Pro: Can be added as a library without any modification to Clojure

Pro: Alternative to existing agent model, executes synchronous

Con: Side-effects does not execute in a transaction

A.1.2 Lazy Evaluation

Another method for controlling side-effects in transactions is to introduce
lazy evaluation. By lazy evaluation we mean that specified expressions will
wait until just before the commit step before being executed. This is done
by making sure we have the correct set of locks before we execute the lazy
evaluated expressions right before the transaction commits, this ensures that
no abort will occur as all necessary locks already have been gathered. This
allows a combination of non-transactional and transactional expressions in
the same transaction. The result of a lazily evaluated expression can only
be used in other lazily evaluated expressions since they are evaluated when
the transaction commits. Strictly evaluated expressions return values can
be used in both strictly and lazily evaluated expressions. The use of lazy
evaluation is done through the interface shown in Listing A.5.

1 (le & body)
2 (ler refs & body)

Listing A.5: Lazy-evaluation interface

These two macros take a body of expressions and create a Thunk for
later execution. This is similar to how Haskell implements lazy evaluation

A.1 Defer 91

[15]. The macro le only takes a list of expressions as argument as it scans
the expressions and extracts all Refs directly in the expressions, in addition
to the functions used to altering their state. It is necessary as any locks on
Refs needs to be acquired by the system when the Thunk is created, this
ensures that all changes to the Refs can be performed without problems
when the lazy expression is evaluated. The le macro extract the Refs using
the access to vars and lexical bindings described in Section 2.1.

The macro ler creates the same lazy expression as le but allows the
developer to pass Refs as an argument. Passing a Ref as an argument is
required the Ref is modified from within a function that is called from the
lazy expression block. This is necessary because the macro does not have
access to the code of the function. No alternate version of the dosync macro
is necessary because executing expressions before a transaction commits, re-
quires changes to the Clojure runtime so the expression is stored by the
runtime instead of a list created by an alternate dosync macro. Lazy ex-
pressions are executed as part of the transaction and therefore have access to
the in-transactional values of Refs. This makes versions of le and ler that
takes a function and corresponding arguments not necessary as the ability
to store values are covered by the access to the in-transactional values.

1 (def counter-ref (ref 0))
2

3 (dosync
4 (le (println (deref counter-ref)))
5 (if (< counter-ref 10)
6 (alter counter-ref inc)
7 (ref-set counter-ref 0)))

Listing A.6: Lazy evaluation printing to standard output stream

An example of using le to implement the first example can be seen
in Listing A.6 where a Ref is changed and then printed if the transaction
commits. All Refs write locks are extracted by le to ensure that the lazy
expression can be executed without the transaction is aborted.

The second example can be seen in Listing A.7. Two references to an
ArrayList and a BufferedWriter are created in Line 1 and 2. The lazy-
evaluated block defined by le in Line 5 executes its content that adds an
element to arraylist-ref and writes a string to log-ref when the trans-
action has all the necessary write locks.

The third example in Listing A.12 describes a transaction where a vector
of database rows are inserted into a database on Line 6, the function returns
the key assigned to the row from the database which is inserted into a vector
on Line 10, and last the row inserted are removed from the list of rows on
Line 11. The example ensures that the side-effect is executed transactionally

92 Experimental Designs A

1 (def arraylist-ref (ref (java.util.ArrayList.)))
2 (def log-ref (ref (writer "log.txt" :append true)))
3

4 (dosync
5 (le
6 (alter arraylist-ref .add 0)
7 (alter log-ref .write "Added 0 to arraylist-ref")))

Listing A.7: Lazy evaluation modifying ArrayList and logs

1 (def keys-ref (ref []))
2 (def rows-ref (ref []))
3

4 (dosync
5 (le (let [row (first (deref rows-ref))
6 next-key (database-insert row)]
7 (alter keys-ref conj next-key)
8 (alter rows-ref rest))))

Listing A.8: Inserting database rows and returning keys

safe, by taking exclusive locks for both Refs before executing the side-effect
on Line 6, thereby ensuring that the transaction will not abort when the
Refs are updated.

A short list as pros and cons for the experiment can be seen below.

Pro: Safely execute side-effects inside transactions after getting the neces-
sary locks

Con: Modification of Clojure is necessary

Con: The developer must be aware of what Refs are changed

Con: Separates execution into two stages, with no standard rules for passing
of data

Lazy Evaluation Exception Handling

Using the lazy evaluated expressions documented in Section A.1.2, allows
functions with side-effects to be executed safely inside a transaction. How-
ever exceptions need to be handled explicitly as they would otherwise cause
the transaction to abort, we experimented with a few methods for handling
exceptions each with their own strength and weaknesses.

A.1 Defer 93

Suppressed Exceptions The first method was to simply catch and store
exceptions until the le block was queried for its result by deref, a behaviour
already used by Clojure for futures and agents. The system could be ported
directly for use with le, but have a few drawbacks despite ensuring that the
le function executes without allowing the transaction to abort.

Suppressing exceptions terminates the execution of the le function that
threw it, which allows execution of the next le function to start despite
the first having failed. If a le has thrown an exception and is dereferenced
by another le function the exception is propagated and terminates this
function as well. This allows for situations where only some side-effects are
executed without any notification to the developer about the not executed
side-effects. If a le function is dereferenced outside a lazy expression the
entire transaction is terminated due to the value not having been computed
yet, and exceptions are allowed to propagate outside a dosync block in
Clojure.

Checked Exceptions Another solution was to enforce exception handlers
to be created for all exceptions declared by a le function, similar to checked
exceptions in Java. The solution would guarantee all le to execute unless the
developer purposely re-threw an exception, which would allow the developer
to force a transaction to terminate with some side-effects already executed.

Clojure however wraps checked exceptions thrown by Java code with
unchecked java.lang.RuntimeException and does not utilise checked ex-
ceptions for Clojure code, so Clojure functions do not declare what excep-
tions they might throw by default. A system to check for possible exceptions
thrown by a function would have to be built on top of Clojure for this method
of exception handling to be used. An alternative implementation could re-
move the need for such a framework by requiring the developer to declare
an exception handler general enough to catch all exceptions around all le
functions, it would then be the developer’s task to know which exception
a function can throw and how each should be handled. Using checked ex-
ceptions or a forced exception handler would force developers to implement
appropriate exception handlers for all possible kind of exceptions a given
body of code can throw, adding additional complexity to the code.

Wrap in LazyEvalException The last solution we evaluated was to
catch all exceptions thrown by an le function and wrap the exception in a
LazyEvalException. This makes it clear to the developer that the exception
was raised inside the le function and will have to be handled for the code to
execute correctly. Any instances of RetryEx are caught in le and wrapped to
prevent the transaction from aborting, this lets the developer know the that
the execution of the le block failed. This prevents multiple executions of le
functions implicitly, and makes it clear to the developer that an undeclared

94 Experimental Designs A

Ref was encountered.
Wrapping exceptions does still allow a le function to execute some of

its statements before being terminated, creating a situation with only some
side-effects executed. This is similar to the problems with suppressing ex-
ceptions, but with the opposite result. Instead of hiding the problem from
the developer, is it made clear that changes must be made to the le function
for the code to operate correctly.

This provides a compromise between the other two solutions. It forces
the least amount of work from the developer using le, no extra work is
needed if no exceptions are thrown, matching exception handling in Clojure
in general. At the same time this solution makes it clear to the developer
if any exceptions were raised inside the le function, instead of hiding the
problem. Due to this compromise, we decided subjectively this solution were
the best.

A.2 Compensate
Compensate reverts a side-effect which just has been executed by the trans-
action if the transaction abort. This ensures that when a transaction com-
mits, the side-effects have only been executed once effectively.

A.2.1 Undo

Undo allows the developer to specify a function or expression to ensure
that in case of an abort, the changes performed by the transaction are
rolled back before aborting the transaction. Undo does thus not require
any changes to the existing code executed as part of a transaction, but
requires the programmer to specify the needed additional code for rolling
back side-effects. A drawback of this approach is that it can add additional
execution time to the program, if expensive operations have to be done and
undone multiple times, if they can be undone at all as with for example
database queries. The signature for the experimental implementation of the
idea can be seen as Listing A.9.

1 (dosync-undo & body)
2

3 (undo & body)
4 (undo-fn func & args)

Listing A.9: Undo signature

Undo consists of three macros. First an extended version of dosync
named dosync-undo, seen on Line 1, which allows for the specification of

A.2 Compensate 95

code that will be executed when the transaction aborts. The two other
macros allow the developer to specify code to be executed on abort, these
can be seen on Line 3 and 4. The macro undo takes a list of expressions
while undo-fn takes a function and corresponding arguments.

1 (def counter-ref (ref 0))
2

3 (dosync-undo
4 (println (deref counter-ref))
5 (undo (println "Ignore previous println"))
6 (if (< counter-ref 10)
7 (alter counter-ref inc)
8 (ref-set counter-ref 0)))

Listing A.10: Undo printing to standard output stream

An example of the Undo is shown as Listing A.10. Undo is not suitable
for handling printing inside a transaction, as the printed statement cannot
be undone. Instead the developer can compensate for the print action as seen
in Line 5. Any code to be executed when the transaction aborts needs to
be registered before the transaction actually aborts, which is why the undo
macro is placed on Line 5, before the two branches calling alter starting
on Line 6.

1 (def arraylist-ref (ref (java.util.ArrayList.)))
2 (def log-ref (ref (writer "log.txt" :append true)))
3

4 (dosync-undo
5 (let [element (Integer. 0)]
6 (alter arraylist-ref (.add element))
7

8 (undo
9 (alter arraylist-ref #(.remove % element)))

10

11 (alter log-ref (.write log-ref "Added 0 to arraylist-ref"))))

Listing A.11: Undo modifying ArrayList and logs

A second example is shown as Listing A.11 which shows that it is possible
to compensate for the side-effect of adding an element to the ArrayList that
can be seen in Line 6. This is compensated by undo in Line 8 as it removes
the just added element if the transaction aborts. The expression captures the
Integer object defined by symbol element, which allows it to use reference
equality to remove it from the list without risk of deleting elements added
by other transactions. The last line in the transaction that writes to a log

96 Experimental Designs A

does not need to be supported by a roll-back because alter aborts before
executing the function and not when the transaction commits like commute.

1 (def keys-ref (ref []))
2 (def rows-ref (ref vector-of-rows))
3

4 (dosync
5 (let [row (first (deref rows-ref))
6 next-key (database-insert row)]
7 (undo
8 (database-remove next-key))
9

10 (alter keys-ref conj next-key)
11 (alter rows-ref rest)))

Listing A.12: Inserting database rows and returning keys

The third example in Listing A.12 describes a transaction where a vector
of database rows are inserted into a database on Line 6, the function returns
the key assigned to the row from the database, a function for removing the
inserted row is then registered on Line 8 to ensure the transaction does not
leave side-effects if updating the Ref’s fail. The key is then inserted into a
vector on Line 10, and last the row inserted are removed from the list of
rows on Line 11. Implementing the example using Undo create some unde-
sired behavior, first if the update and removal operations are not executed
in the same database transaction would it allow other queries to see a row
that the STM transaction might delete. Also applying multiple insert and
remove operations on the database adds an unnecessary additional load to
the database.

A short list advantages and disadvantages for the experiment is presented
below.

Pro: Minimal changes to the transactional code

Pro: Can be added as a library without any modification to Clojure

Con: The state of the side-effects needs to be recorded in order to only
compensate for executed side-effects

Con: Some operations can be expensive to compensate for

Con: Some operation cannot not be compensated for

A.3 Irrevocability
Irrevocability can be seen as a promise to the developer that the transaction
will commit without aborting, therefore side-effects can be executed safely.

A.3 Irrevocability 97

A.3.1 Check-Run

This experiment of introducing irrevocability in Clojure is dubbed Check-
Run. The idea is to simulate the execution of the code in the transaction
without performing any operations, checking for any operation that could
potentially force the transaction to abort before actually executing it. In the
check phase, any needed write locks are taken by the transaction. If some
write locks cannot be taken the transaction will follow the normal abort se-
mantics for a transaction, continuing to check the code until all write locks
needed are captured by the transaction and may abort during the check
phase. When all locks are acquired the transaction code is executed. The
transaction is guaranteed to commit as all locks have been taken and thereby
avoiding a possibility for a abort when actually executing the transaction
code. The interface of Check-Run is shown in Listing A.13.

1 (dosync-checked & body)
2 (dosync-checked-ref refs & body)

Listing A.13: Check-Run signature

The two macros use Clojure’s dosync macro and performs the check step
before executing the transaction. The difference between the two presented
macros is that dosync-checked extracts all Refs from inside the code block.
This operation adds additional runtime cost, and ref’s modified by functions
cannot be extracted as Clojure does not provides a means to get the Clojure
source code of functions in macros or other functions. This problem is
solved by providing another macro dosync-checked-refs that allows the
developer to pass a list of Refs or a dictionary of a Ref as key and a function
as the value. If a list is passed then alter is used to get a write lock on all
Refs. A dictionary can be given with alter or commute depending on what
level of write protection the developer wants.

1 (def counter-ref (ref 0))
2

3 (dosync-checked
4 (println (deref counter-ref))
5 (if (< counter-ref 10)
6 (alter counter-ref inc)
7 (ref-set counter-ref 0)))

Listing A.14: Check-run printing to standard output stream

An example of using dosync-checked to implement the first example
can be seen in Listing A.14 where a var containing a Ref is changed and

98 Experimental Designs A

then printed inside a transaction. The dosync-checked macro extracts any
Refs as described above and takes a write lock on these Refs to ensure that
the transaction can be executed without retrying.

1 (def arraylist-ref (ref (java.util.ArrayList.)))
2 (def log-ref (ref (writer "log.txt" :append true)))
3

4 (dosync-checked
5 (alter arraylist-ref (.add 0))
6 (alter (.write log-ref "Added 0 to arraylist-ref")))

Listing A.15: Check-run modifying ArrayList and logs

Another example of Check-Run is shown in Listing A.15, here the second
example is implemented. On Line 1 and 2 two references are created to an
ArrayList and a BufferedWriter. The Check-Run block is defined by
dosync-checked in Line 4 which carries out the addition of an element to
the referenced java.util.ArrayList and writes a string to a log file.

1 (def keys-ref (ref []))
2 (def rows-ref (ref vector-of-rows))
3

4 (dosync-checked
5 (let [row (first (deref rows-ref))
6 next-key (database-insert row)]
7 (alter keys-ref conj next-key)
8 (alter rows-ref rest)))

Listing A.16: Cehck-run inserting database rows and returning keys

The third example in Listing A.12 describes a transaction where a vector
of database rows are inserted into a database on Line 6, the function returns
the key assigned to the row from the database which is inserted a vector
on Line 7, and last the row inserted are removed from the list of rows on
Line 8. The example ensures that the side effect is executed transactionally
safe, by taking locks for both Ref’s before executing the side-effect on Line
6, thereby ensuring that the transaction will not abort when the Ref’s are
updated.

Pro: Works like a normal dosync block but allows side-effects by getting
the necessary locks before execution of the transaction code

Con: The developer must be aware of what Refs are changed

Con: Modification of Clojure is necessary

A.4 Transaction Control 99

A.4 Transaction Control
The concept of Transaction Control makes it possible to control a transac-
tion’s behaviour by the use of explicit constructs. We have performed two
experiments from this category.

A.4.1 Retry, Or-else and Terminate

As a supplement to implementing ways to support the use of side-effects
in STM transactions, some of the side-effects used for synchronisation can
be removed by implementing constructs for synchronising threads based di-
rectly on the state of the data in Refs. Two such functions named retry
and orElse already exist in Haskell [21]. The retry functions allow the
developer to abort a transaction and block the thread executing the trans-
action based on the Refs in the transaction. The or-else function allows
multiple STM operations to be chained together. The execution of this chain
will only go to the next operation if the current operation would make the
transaction abort. The signatures for the two functions and their overloaded
versions can be seen in Listing A.17.

1 (retry)
2 (retry refs)
3

4 (retry-all)
5 (retry-all refs)
6

7 (or-else & body)
8

9 (terminate)

Listing A.17: Retry and or-else signatures

Two different functions are created for blocking the execution of a trans-
action, the first is named retry and the second retry-all. retry blocks
a transaction until a single Ref is changed, while retry-all waits until all
Refs given as argument have been written to by other transactions. The ver-
sions of the two functions without any arguments, blocks the thread based
on the Refs that were dereferenced during the transaction, a behaviour that
matches the implementation in Haskell at the time of writing. The second
version takes a sequence of Refs as argument, and blocks until either one
or all of them have been written to. This allows the developer to wait on
changes to a subset of Refs dereferenced in the transaction, or Refs that
had not been dereferenced in the transaction at all. This extension of retry
and retry-all is natural since the methods in the Java part of the runtime

100 Experimental Designs A

implementing retry and retry-all takes a set of Refs, making it trivial to
allow the developer using retry or retry-all to specify a set of Refs.

The or-else function combines multiple expressions inside a STM trans-
action and executes them one at a time until one executes without aborting
the transaction, the result of this expression is then returned. If all ex-
pressions forces the transaction to abort, then the entire transaction aborts.
The function allows the developer to specify a fallback for operations that
may not succeed, instead of continuously aborting the transaction until one
specific statement succeeds.

Lastly the terminate construct allows the developer to terminate the
transaction, preventing it from retrying. One use of this function is to
combine terminate with or-else to skip a STM transaction if a resource
is unavailable and using it would force the transaction to abort.

1 (def updated-ref (ref 0))
2 (def static-ref (ref 10))
3

4 (dosync
5 (if (== (deref updated-ref) (deref static-ref))
6 (ref-set updated-ref 0)
7 (retry updated-ref)))

Listing A.18: Retry example

As transaction control does not allow the use of side-effects directly can
it not be used to implement the examples described in Section 2.15, instead
examples specific for transaction control was created. An example of using
retry can be seen in Listing A.18. Here updated-ref is set to zero when
it reaches ten. The incremental changes to updated-ref is done by other
transactions. retry is used to block the transaction until updated-ref is
modified. static-ref in this scenario is never updated outside the shown
transaction, therefore waiting on both Refs would result in a deadlock.
Which is why retry is called with only updated-ref.

1 (dosync
2 (execute-db-operation
3 (or-else
4 (alter db-connection-one identity)
5 (alter db-connection-two identity)
6 (alter db-connection-three identity)
7 (terminate))))

Listing A.19: Or-else and terminate example

A.4 Transaction Control 101

The second example is shown as Listing A.19. Here or-else and terminate
are used by a thread to execute an operation on a database if a database is
available, otherwise the thread continues its operation. On Line 3 or-else is
used to secure one of three database connections against other transactions
by using the function alter. If one of the three database connections is suc-
cessfully secured then the value of the expression is returned which for this
example is the database connection it received as input. If all database con-
nections are currently in use by other transactions then it calls terminate
and the thread will terminate the transaction and continue without waiting
for a database connection.

A short summary of this experiment in comparison to Clojure’s existing
control over transaction can be seen in the following itemize as advantages
and disadvantages.

Pro: Allow synchronisation without side-effects

Con: Cannot compensate for any side-effect

Con: Modification of Clojure is necessary

102 Experimental Designs A

APPENDIX B
Experimental

Implementations
This appendix contains implementation details of the experiments described
in Appendix A. The experiments were used to see how each approach were
compatible with Clojure’s STM implementation while gaining better general
understanding of the implementation. For more information about how to
obtain the code see the preface.

B.1 After-Commit
The After-Commit experiment described in A.1.1 was implemented as three
macros and two private functions. The private functions are used to verify
input and perform updates to Refs.

1 (defmacro dosync-ac
2 [& body]
3 `(let [~'&ac-funcs-and-args (java.util.ArrayList.)
4 dosync-return# (dosync
5 (.clear ~'&ac-funcs-and-args)
6 ~@body)
7 after-commit-return# (map #(apply (first %) (second %))
8 ~'&ac-funcs-and-args)]
9 (vec (conj after-commit-return# dosync-return#))))

Listing B.1: The dosync-ac macro

The dosync-ac shown in Listing B.1 enhances Clojure’s existing dosync
macro with the ability to store functions and arguments for later execution.
This is achieved by a let binding named &ac-funcs-and-args in Line 3
that binds an instance of a java.util.ArrayList and executes the current
transaction inside its scope. This gives any function executed as part of
the transaction access to a mutable storage allowing easy aggregation of
functions and arguments without any of the downsides of using a mutable

104 Experimental Implementations B

collection because it is only accessible from inside the let binding and it is
emptied every time the transaction is executed. This causes retries to be
irrelevant. Each After-Commit function is added to &ac-funcs-and-args
as the transaction executes. The map function in Line 7 is lazily evaluated in
Clojure and executed all After-Commit functions. The value returned from
the transaction itself is the first value in the list of returned values. The
other returned values in the list comes from the After-Commit functions in
the executed order. This list is converted to a vector to force executing of
the lazy map sequence and returned to the developer.

The name of the binding, in this case &ac-funcs-and-args, must how-
ever be static for it to be accessible by the other macros using it, to do so
is the symbol prefixed with ~’ which first quotes and then unquotes the
symbol resulting in a unqualified symbol. An unqualified symbol in Clo-
jure binds to the first instance it encounters doing lookup with the same
name when ignoring namespaces, qualified symbols contain namespace and
access the data directly by ignoring any unqualified symbols. This makes
&ac-funcs-and-args inaccessible for the developer when using the macro,
unless the developer purposely creates an unqualified symbol with the name
&ac-funcs-and-args as all symbol are fully qualified by default in Clojure.
It would be possible to use dynamic bindings for &ac-funcs-and-args like
it was done in the earlier experiments described in Appendix C. However
this would require a def to be created outside the scope of the macro in
which the macro could store the java.lang.ArrayList during execution
of the transaction. While this method would allow functions executed in
the transaction to add functions to be executed after commit, as bindings
are dynamically scoped instead of lexically scoped like let, it would also
increase the chance of hiding the developer’s symbols as the binding would
be fully qualified and visible in a much wider scope, so we decided to use a
let binding.

1 (defmacro ac
2 [& body]
3 `(dosync-ac-helper ~'&ac-funcs-and-args nil (fn [_#] ~@body) nil))

Listing B.2: The ac macro

1 (defmacro ac-fn
2 [func & args]
3 `(dosync-ac-helper ~'&ac-funcs-and-args nil ~func ~@args))

Listing B.3: The ac-fn macro

B.1 After-Commit 105

1 (defmacro ac-fn-set
2 [ref-set-map func & args]
3 `(dosync-ac-helper ~'&ac-funcs-and-args ~ref-set-map ~func ~@args))

Listing B.4: The ac-fn-set macro

The three other macros used directly by the developers are ac, ac-fn
and ac-fn-set shown respectively in Listing B.2, B.3, B.4. These macros
add a function and optional arguments to &ac-funcs-and-args. The ac
macro converts the expressions passed as it’s argument to a function that
is passed to the dosync-ac-helper function. The ac-fn macro allows the
developer to specify functions with arguments. The ac-fn-set macro allows
a dictionary to be passed with a Ref as key. Any Ref contained in the
dictionary that are passed as argument to ac-fn-set will be dereferenced
so its value can be used by the function to be run on commit, and then set to
the value stored in the dictionary. This is intended to allow multiple Ref’s
to be reset to a starting value in one expression instead of one per reference,
reducing the chance of one being changed without the other if the function
to be run on commit consumes the current value of the Ref’s.

1 (defn dosync-ac-helper
2 [^java.util.ArrayList array ref-set-map func & args]
3 (when-not (fn? func)
4 (throw (IllegalArgumentException. "argument (fun) must be fn")))
5 (if (nil? ref-set-map)
6 (.add array [func args])
7 (let [updated-args (map #(update-arg-by-ref-map ref-set-map %) args)]
8 (doall updated-args)
9 (.add array [func updated-args])))

10 nil)

Listing B.5: The dosync-ac-helper function

The first of the two private helper functions are dosync-ac-helper
shown in Listing B.5. Its job is to verify input to ac, ac-fn, ac-fn-set and
update Refs if necessary before adding everything to &ac-funcs-and-args.
First the function argument is verified on Line 3 before the function checks
if a map is passed on Line 5. If a map is passed the second helper function
update-arg-by-ref-map is called on every entry in the map to update the
value of any Refs specified in the map.

The second helper function update-arg-by-ref-map seen in Listing B.6
verifies that its arguments is a Ref and that it is contained in the map passed
as ref-set-map. If so, the Ref is set to the value stored in the map and the

106 Experimental Implementations B

1 (defn- update-arg-by-ref-map
2 [ref-set-map arg]
3 (if (and (instance? clojure.lang.Ref arg) (contains? ref-set-map arg))
4 (let [arg-val @arg]
5 (ref-set arg (ref-set-map arg))
6 arg-val)
7 arg))

Listing B.6: The update-arg-by-ref-map function

original value of the Ref is returned, otherwise the argument simply passes
through.

B.2 Lazy Evaluation
The implementation of Lazy Evaluation, described in A.1.2, required changes
to Clojure’s runtime and new constructs for creating lazy expressions. An
overview of the architecture of the implementation can be see in Figure B.1.

Figure B.1: Architecture of lazy expressions

The interface for lazy expressions consists of the macros le and ler
that was described in Section A.1.2. The le macro supports the automatic

B.2 Lazy Evaluation 107

extraction of Refs by calling the function extract-refs with the body of
the lazy expression as input. After the requested locks have been taken
for each Ref then an instance of the class Thunk is created that holds the
body of the lazy expression and delays execution until the STM transaction
is guaranteed to commit. The Thunk object is then passed to the current
instance of LockingTransaction.

1 (defmacro le
2 [& body]
3 (let [lexically-scoped-bindings (keys &env)]
4 `(do
5 (doseq [r# (extract-refs '() '~body ~@lexically-scoped-bindings)]
6 (alter r# identity))
7 (Thunk. (fn [] ~@body)))))

Listing B.7: The le macro

In Listing B.7 le is shown which automatically extracts all Refs from
the body passed as the only argument, lexically scoped Ref’s cannot be
look up by resolve and are extracted from &env a symbol available inside
defmacro. After the Refs are extracted, write locks are taken for all Refs
using alter as it ensures that changes are synchronised. The semantics
provided by commute is less strict and require the operation performed to
be commutative. To specify a Ref to be commutative, the developer needs
to use ler instead of the more automatic le.

1 (defmacro ler [refs & body]
2 `(do
3 (cond
4 (map? ~refs)
5 (doseq [[le-ref# func#] ~refs]
6 (if (or (= func# commute) (= func# alter))
7 (func# le-ref# identity)
8 (throw (IllegalArgumentException.
9 "map value must be alter or commute"))))

10 (vector? ~refs) (doseq [r# ~refs] (alter r# identity))
11 :else (throw (IllegalArgumentException.
12 "(refs) is neither a vector or a map")))
13 (Thunk. (fn [] ~@body))))

Listing B.8: The ler macro

The ler macro shown as Listing B.8 depends on the developer to indicate
which locks are needed for the Refs in the lazy expression. It expects either
a vector or a map as an extra argument in addition to the body of the

108 Experimental Implementations B

expression. The type of argument refs is checked in Line 3. If refs is a
map then the key of the entry is used as an argument to the function found
in the value of the entry. If refs is a vector then write locks is implied
and alter is executed for each Ref. The identity functions is used as
the function for both commute and alter to get necessary locks without
changing the value of the Ref. Finally a Thunk is created on Line 13 with
the expression to be executed on commit.

1 (defn extract-refs [acc & body]
2 (distinct (reduce
3 (fn [acc elem]
4 (cond
5 (and (ref? elem) (var? elem)) (conj acc @elem)
6 (ref? elem) (conj acc elem)
7 (symbol? elem) (do
8 (let [elem-var (some-> elem resolve var-get)]
9 (if (ref? elem-var)

10 (conj acc elem-var)
11 (if (or (seq? elem-var) (vector? elem-var))
12 (extract-refs acc elem-var)
13 acc))))))
14 acc (flatten body))))

Listing B.9: The extract-refs function

The function extract-refs shown as Listing B.9 goes through the ex-
pression passed to le and extracts any Refs directly in the code as seen in
Line 5 or accessible through a var as seen in Line 8. If any symbols re-
solve to a sequence the function is called recursively as shown on Line 11, as
flatten only removes explicit nesting and not collections accessed through
symbols.

The changes to LockingTransaction are shown as Listing B.10. The
class is extended with a method for adding Thunks shown on Line 3, the
method verifies that the transaction is running before adding the Thunk.
The run method shown on Line 10 is executed by LockingTransaction
to evaluate the STM transaction, a loop was added shown on Line 12 to
execute the function stored in each Thunk and store the return value so the
developer can retrieve it through deref.

B.3 Undo 109

1 public class LockingTransaction{
2 ...
3 void doThunk(Thunk thunk) {
4 if (! info.running()) {
5 throw retryex;
6 }
7 thunks.add(thunk);
8 }
9 ...

10 Object run(Callable fn) throws Exception{
11 ...
12 for (Thunk thunk : thunks) {
13 thunk.run();
14 }
15 ...
16 }
17 ...
18 }

Listing B.10: Additions to the LockingTransaction class

B.3 Undo
The Undo experiment described in A.2 was implemented as three macros.

1 (defmacro dosync-undo
2 [& body]
3 `(let [~'&undo-funcs (java.util.ArrayList.)]
4 (dosync
5 (try
6 ~@body
7 (catch Error e#
8 (doall (map #(apply (first %) (second %)) ~'&undo-funcs))
9 (.clear ~'&undo-funcs)

10 (throw e#))))))

Listing B.11: The dosync-undo macro

The dosync-undo macro seen in Listing B.11 extends the normal trans-
action with undo capabilities. This is accomplished by placing the normal
transaction in a let binding that binds an instance of a java.util.ArrayList
to the symbol &undo-funcs as seen in Line 3. &undo-funcs is used by the
other two macros to store functions that needs to be executed when the
transaction aborts. The transaction is placed in the try part of a try-catch
block because a transaction aborts by throwing an error. If an error is
thrown during execution of the transaction it is caught in Line 7 and then

110 Experimental Implementations B

the catch part is executed. This part executes all the functions stored in
&undo-funcs in Line 8. Then it clears &undo-funcs in Line 9 and throws
the error once again which aborts the transaction.

The two other macros allows the developer to specify expressions or
functions to be run if the transaction aborts.

1 (defmacro undo
2 [& body]
3 `(.add ~'&undo-funcs [#(do ~@body) nil]))

Listing B.12: The undo macro

1 (defmacro undo-fn
2 [func & args]
3 `(.add ~'&undo-funcs [~func '~args]))

Listing B.13: The undo-fn macro

For adding function to be executed does the Undo experiment also im-
plemented the macros undo, that can be seen in Listing B.12, and undo-fn,
which can be seen in Listing B.13, as a means to store functions in &undo-funcs.
The two macro are very similar because undo allows the developer to pass
a body and store it as a function without any arguments where as undo-fn
will store a function with specified arguments.

B.4 Check-Run
Check-Run experiment, described in A.3, is implemented on top of lazy eval-
uation described in Section B.2. Check-Run is sharing the same concept as
Lazy Evaluation of verifying a list of expressions that can be executed before
performing the actual execution. Check-Run however hides this implemen-
tation detail providing the developer with the same syntax as the existing
dosync macro.

1 (defmacro dosync-checked
2 [& body]
3 `@(dosync
4 (le ~@body)))

Listing B.14: The dosync-checked macro

B.5 Transaction Control 111

Check-Run is implemented as two macros, dosync-checked shown as
Listing B.14 and dosync-checked-ref shown as Listing B.15. The two
macros are nearly identical and passes the entire contents of the dosync
block given, as the argument to a lazy expression. As described in Section
B.2 lazy expressions takes the needed read and write locks using Clojure’s ex-
isting locking semantics before executing, ensuring a retry is impossible when
the expression is actually executed. When the body of the Thunk has been
executed, the Thunk returns the result of the execution of the body when
dereferenced instead of returning the Thunk itself, making dosync-checked
and dosync equivalent from a developer’s perspective.

1 (defmacro dosync-checked-ref
2 [refs & body]
3 `@(dosync
4 (ler ~refs ~@body)))

Listing B.15: The dosync-checked-ref macro

The two macros only differ in how Refs are handled, dosync-checked
uses the lazy evaluation macro le and dosync-checked-ref uses ler. This
means that dosync-checked will parse the expressions passed as its body
arguments for any Refs and take a write lock on them. It is possible to
define Refs that cannot be extracted automatically, by placing them in-
side a called function as described in detail in Section B.2. The function
dosync-checked-ref is a solution to this problem and takes a map as an
extra argument compared to dosync-checked. The map must contain any
Refs used in the transaction as keys, and either commute or alter as values
indicating what locking semantics should be used. Furthermore the function
dosync-checked-ref skips the runtime extraction of the specified Refs.

B.5 Transaction Control
This section will describe the experimental implementation of the transac-
tion control system, described in Section A.4. The final implementation,
described in Section 3.2, reuses many parts of the experimental imple-
mentation. The reused parts will be briefly described in this section and
then further explained in Section 3.2. The implementation consists of two
parts. The first part is a set of Clojure functions in the Clojure part of the
runtime, described in Section B.5.1. The second part consists of methods
that are added to the LockingTransaction class and the addition of the
STMBlockingBehavior class described in Section B.5.3.

112 Experimental Implementations B

B.5.1 Clojure Implementation

The implementation of the Clojure interface for transaction control can be
seen in Listing B.16. The interface provides accesses to transaction con-
trol functionality implemented as public methods on LockingTransaction,
allowing developers to use the functionality in Clojure without knowledge
about LockingTransaction and the public methods.

1 (defn retry
2 ([] (.doBlocking (LockingTransaction/getEx) nil false))
3 ([refs] (.doBlocking (LockingTransaction/getEx) refs false)))
4

5 (defn retry-all
6 ([] (.doBlocking (LockingTransaction/getEx) nil true))
7 ([refs] (.doBlocking (LockingTransaction/getEx) refs true)))
8

9 (defn or-else
10 [& body]
11 (.doOrElse (LockingTransaction/getEx)
12 (java.util.ArrayList. ^java.util.ArrayList body)))
13

14 (defn terminate
15 [] (.abort (LockingTransaction/getEx)))

Listing B.16: Clojure functions for the retry, retry-all, or-else and
terminate constructs

The functions retry and retry-all can be seen in Listing B.16 on Line 1
and Line 5 respectively. They provides the same interface but have different
semantics. Both block until a set of specified Ref’s are written to by another
transaction. The function retry block until any of the Ref’s are written to.
The function retry-all block until all the Refs in the set are updated.

The or-else function is implemented in Clojure in Listing B.16 on Line
9. The function takes a list of expressions where it will try to execute them
in the given order until one of them executes without forcing the transaction
to retry.

The function terminate is implemented on Line 14 in Listing B.16. This
function makes it possible to terminate a transaction by aborting it without
any re-executing.

B.5.2 STMBlockingBehavior Implementation

The concept of blocking threads based on a set of Refs is introduced in the
abstract class called STMBlockingBehavior. A blocking behavior is used
to block a thread based on a set of Refs. Each behaviour has different
semantics but they all extend the STMBlockingBehavior. Two concrete

B.5 Transaction Control 113

implementations were created, STMBlockingBehaviorAny blocks the thread
until any Refs defined have been written to by other transactions and is
used by retry, while STMBlockingBehaviorAll blocks the thread until all
Refs defined have been written to by other transactions and is used by
retry-all.

1 abstract class STMBlockingBehavior {
2 protected Set<Ref> refSet;
3 protected CountDownLatch cdl;
4

5 STMBlockingBehavior(Set<Ref> refSet) {
6 this.refSet = refSet;
7 this.cdl = new CountDownLatch(1);
8 }
9

10 void await() throws InterruptedException {
11 this.cdl.await();
12 }
13

14 abstract void handleChanged(Set<Ref> refSet);
15 }

Listing B.17: The abstract super class for the specific blocking behaviors

All blocking behaviours are child classes of the abstract super class
STMBlockingBehavior which defines the interface of the child classes. The
constructor of the class is found in Listing B.17 on Line 5. The con-
structor takes one argument refSet which is a Set of Ref instances the
STMBlockingBehavior blocks on. Then the constructor initialises an in-
stance of the class CountDownLatch on Line 7, this is used to block the
thread.

STMBlockingBehavior contain two methods which are the await method
that simply blocks on the CountDownLatch created by the constructor and
the abstract method handleChangedSet that is overridden by subclasses
to define when the STMBlockingBehavior should unblock the thread. The
handleChanged method updates its internal refSet based on the values
of refSet given as an argument, and unblocks if the requirements for the
STMBlockingBehavior is fulfilled. This implementation is therefore opti-
mised for blocking on a large set of Ref’s where each transaction only writes
to a small set of Ref’s.

B.5.3 LockingTransaction Implementation

The two subclasses of STMBlockingBehavior are used by methods defined
in LockingTransaction which will be described now.

114 Experimental Implementations B

1 public void doBlocking(HashSet<Ref> refs, IFn fn, ISeq args,
2 boolean blockOnAll) throws InterruptedException, RetryEx {
3 if (! info.running()) {
4 throw retryex;
5 }
6 if (refs == null) {
7 refs = this.gets;
8 }
9 if (blockOnAll) {

10 this.blockingBehavior = new STMBlockingBehaviorAll(refs);
11 } else {
12 this.blockingBehavior = new STMBlockingBehaviorAny(refs);
13 }
14 LockingTransaction.blockingBehaviors.add(this.blockingBehavior);
15 throw retryex;
16 }

Listing B.18: The doBlocking Java method in the transaction
LockingTransaction class

The method doBlocking, seen in Listing B.18, adds the correct blocking
behaviour to the transaction which makes the transaction block when it
retries. If the refs argument is null it means that it should block on all
Ref instances read in the transaction, therefore refs is assigned to gets,
the set of dereferenced Ref instances from the current transaction. The
argument blockOnAll, in Line 9, decides if the doBlocking method must
wait for changes in any or all Ref instances given in refs.

1 if (this.blockingBehavior != null) {
2 this.blockingBehavior.await();
3 LockingTransaction.blockingBehaviors.remove(this.blockingBehavior);
4 this.blockingBehavior = null;
5 }
6 gets.clear();

Listing B.19: If the transaction have a blocking behaviour then it must wait
for it to resolve.

In Listing B.19 code from LockingTransaction is shown. The code is
the first part of the transaction’s run method and checks if the transaction
has a blocking behaviour set on Line 1. If so, the transaction is on Line
2 forced to block until the CountDownLatch in the blocking behaviour is
counted down to zero where it will unblock.

B.5 Transaction Control 115

1 for (STMBlockingBehavior blockingBehavior :
2 LockingTransaction.blockingBehaviors) {
3 blockingBehavior.handleChanged(this.vals.keySet());
4 }

Listing B.20: Notify all blocking behaviours in other transactions with which
Refs have been written to by the committed transaction

When the transaction has committed it notifies all blocking behaviours
in the global set of blocking behaviours with the set of Refs that was writ-
ten to by the committed transaction by calling handleChanged on each
STMBlockingBehavior on Line 3 in Listing B.20.

1 void stop(int status){
2 if(info != null) {
3 synchronized(info) {
4 info.status.set(status);
5 info.latch.countDown();
6 }
7 info = null;
8 sets.clear();
9 commutes.clear();

10 if (status != COMMITTED) {
11 vals.clear();
12 }
13 }
14 }

Listing B.21: Clear only the set of Refs that have been written to on commit
in the stop method

As seen in Listing B.20 the set of Refs that has been written to in the
transaction is needed when notifying blocking behaviours. This set is cleared
by the method stop when a transaction either commits or aborts, as each
STMBlockingBehavior requires the set of Refs changed by the transaction
committing, must an exception be added to stop. The exception can be
seen in Listing B.21 on Line 10, where the set is not cleared if the status of
the transaction is not COMMITTED. Instead, the set is first cleared when the
blocking behaviours of other transactions has been notified.

116 Experimental Implementations B

1 public Object doOrElse(ArrayList<IFn> fns) {
2 this.orElseRunning = true;
3 for (IFn fn : fns) {
4 try {
5 return fn.invoke();
6 } catch (RetryEx ex) {
7 // We ignore the exception to allow the next function to execute
8 }
9 }

10 this.orElseRunning = false;
11 throw retryex;
12 }

Listing B.22: The doOrElse Java method in the transaction
LockingTransaction class

The doOrElse method seen in Listing B.22 takes a single argument fns
that is an ArrayList of IFn instances. The method iterates through the
list of IFn instances, and executes each function until one of them returns
without trying to abort the transaction.

1 public void abort() throws AbortException{
2 stop(KILLED);
3 throw new AbortException();
4 }

Listing B.23: The abort Java method in the transaction
LockingTransaction class

The abort method seen in Listing B.23 takes no arguments. The method
stops the transaction on Line 2 and moves the continued execution right
after the transaction by throwing an AbortException that is caught inside
LockingTransaction and allows the run method to stop and the program
to continue execution after the dosync block.

APPENDIX C
Dosync-ac Design Options

In the following section we will present and discuss different implementation
options we had when implementing the dosync-ac macro. Modification
of Refs are not allowed in a After-commit block since it is not executed
inside the transaction. It is possible to give the values of the Refs to the
After-commit block and thereby use the values of the Refs in relation to
side-effects. First the shared part is presented followed by the different
options for the developers interface and their implementation.

1 (defn acarg
2 ([arg]
3 (if (= clojure.lang.Ref (type arg))
4 (.add &acargs (deref arg))
5 (.add &acargs arg)))
6 ([arg new-val]
7 (if (= clojure.lang.Ref (type arg))
8 (do
9 (.add &acargs (deref arg))

10 (ref-set arg new-val))
11 (throw (IllegalArgumentException. "cannot ref-set a non ref")))))

Listing C.1: The common acarg function

The shared part is a function called acarg that is used by option 1, 2 and
3 and can be seen in Listing C.1. The function is used to add specified values
from the transaction to the After-commit block through an ArrayList called
&acargs. The symbol &acargs is prefixed with a & to prevent it being
hidden by the developers symbols by accident. This method is also used in
the implementation of Clojure’s own defmacro that is used to define macros.
If the argument to the function is a Ref, the Ref is dereferenced and the
dereferenced value is then used in the after-commit block. If a second
argument is given to the function and the first argument was a Ref, then
the value of the Ref is set to new-val afterwards. Below is the different
implementation options of the dosync-ac macro represented with a brief
description of the macro and helper functions, followed by a code example

118 Dosync-ac Design Options C

with a subjective discussion.

Option 1

1 (defmacro dosync-ac-one [after-commit & dosync-args]
2 `(with-bindings {#'&acargs (java.util.ArrayList.)}
3 (dosync
4 (.clear &acargs)
5 ~@dosync-args)
6 (apply ~after-commit &acargs)))

Listing C.2: Option 1, with After-commit as a function

The implementation of Option 1 is shown in Listing C.2 which con-
sists of the macro dosync-ac-one and the common helper function acarg.
Dynamically scoped variables set by with-bindings are used in all the pre-
sented options because as we only experiment with different interfaces for a
after-commit function and therefore not concerned with ensuring that the
implementation is not leaking data. All the options presented here have a
dynamically scoped ArrayList called &acargs which is used to store values.
The dosync-ac-one requires that the code to be run after the transaction
has committed must be in the form of a function and given as the first argu-
ment. The following arguments given to the dosync-ac-one macro will be
executed as the body of the transaction, from the body of the transaction it
is possible to store values in &acargs through acarg. The function given as
the first argument that will be executed after the transaction has committed
will have access to the stored values in &acargs.

1 (dosync-ac-one
2 (fn [& args] (println "after-commit:" args))
3 (acarg test-ref 1))

Listing C.3: An example of option 1

An example of Option 1 in use, can be seen in Listing C.2. This op-
tion makes it possible to specify the code that should be executed after the
transaction has committed in a function as seen in Line 3. The following ar-
guments defines the body of the transaction as normally when using dosync,
the body of the transaction is defined in Line 3. The downside of this option
is that the code specified is not in chronological order which might cause
confusion for the developer.

119

Option 2

1 (defmacro dosync-ac-two [dosync-args after-commit]
2 `(with-bindings {#'&acargs (java.util.ArrayList.)}
3 (dosync
4 (.clear &acargs)
5 (~dosync-args))
6 (apply ~after-commit &acargs)))

Listing C.4: Option 2, with both dosync and After-commit as a function

The implementation of Option 2 is shown in Listing C.4 which consists
of the macro dosync-ac-two and the common helper function acarg. The
dosync-ac-two requires that the body of the transaction must be in the form
of a function and must be given as the first argument. In this function it
is possible to store values in &acargs through acarg. The second argument
given to dosync-ac-two macro must also be in the from of a function and
will be executed after the transaction have committed while having access
to the stored values in &acargs.

1 (dosync-ac-two
2 #(acarg test-ref 2)
3 (fn [& args] (println "after-commit:" args)))

Listing C.5: An example of option 2

An example of Option 2 in use can be seen in Listing C.5. Option 2
makes it makes possible to specify a transaction as a function that can store
values in &acargs as seen in Line 2. The second argument to dosync-ac-two
are the function to execute after the transaction has committed and can be
seen in Line 3, this function has access to &acargs. This gives a clear
indication of which part of code is executed as a transaction and what is
executed after the transaction while having the execution in chronological
order which could make the code easier to read.

Option 3
The implementation of Option 3 is shown in Listing C.6 and consists

of the macro dosync-ac-three and the common helper function acarg.
The dosync-ac-three requires that the transaction must be in the form of
a function and must be given as the first argument. In this function it is
possible to store values in &acargs through acarg. The following arguments
given the dosync-ac-three macro will be executed after the transaction
have committed while having access to the stored values in &acargs.

120 Dosync-ac Design Options C

1 (defmacro dosync-ac-three [dosync-args & after-commit]
2 `(with-bindings {#'&acargs (java.util.ArrayList.)}
3 (dosync
4 (.clear &acargs)
5 (~dosync-args))
6 ~@after-commit))

Listing C.6: Option 3, with dosync as a function

1 (dosync-ac-three
2 #(acarg test-ref 3)
3 (println "after-commit:" &acargs))

Listing C.7: An example of option 3

An example of Option 3 in use, can be seen in Listing C.7. Option 3 it
makes possible to specify a transaction as a function, which can be seen in
Line 2. The expressions in the following arguments are executed after the
transaction has committed while having access to &acargs as seen in Line 3.
This makes it possible to write the code in chronological order which could
help making the code easier to understand while not being forced to have
the code that is executed after the transaction in the form of a function, like
in Option 2.

Option 4

1 (defn acfunc
2 ([func & args]
3 (if (fn? func)
4 (.add &acargs [func args])
5 (throw (IllegalArgumentException. "argument must be fn")))))
6

7 (defmacro dosync-ac-four [& dosync-args]
8 `(with-bindings {#'&acargs (java.util.ArrayList.)}
9 (dosync

10 (.clear &acargs)
11 ~@dosync-args)
12 (doseq [acarg# &acargs]
13 (apply (first acarg#) (second acarg#)))))

Listing C.8: Option 4, with After-commit as a function

The implementation of Option 4 is shown in Listing C.8 and consists
of the macro dosync-ac-four and its helper function acfunc. The helper
function acfunc makes it possible to add function calls to &acargs that will

121

be executed by dosync-ac-four after the transaction has committed. The
functions are executed in the order they were added to &acargs.

1 (dosync-ac-four
2 (acfunc (fn [& args] (println "after-commit:" args)) (deref test-ref))
3 (alter test-ref + 1))

Listing C.9: Option 4, with After-commit as a function

An example of Option 4 is shown in Listing C.9. The helper function
acfunc makes it possible to specify a function and arguments to be run
after the transaction has committed. These arguments makes it possible
to pass values from the transaction to the function that will be executed
after the transaction has committed. This can be seen in Line 2 where the
value of test-ref is passed to the After-commit function and will be used
by the println function after the transaction has committed. The macro
dosync-ac-four has the same syntax as the normal dosync which could
increase the chances of a seamless integration.

Option 5

1 (defmacro acbody
2 [& body]
3 `(.add &acargs (fn [] ~@body)))
4

5 (defmacro dosync-ac-five [& dosync-args]
6 `(with-bindings {#'&acargs (java.util.ArrayList.)}
7 (dosync
8 (.clear &acargs)
9 ~@dosync-args)

10 (doseq [acarg# &acargs]
11 (acarg#))))

Listing C.10: Option 5, with After-commit taking a body

The implementation of Option 5 is shown in Listing C.10 and consists
of the macro dosync-ac-five that uses the helper function acbody. The
helper function acbody to makes it possible to add a block of expressions to
be executed after the transaction has committed. The block of expressions
are executed in the order they were added to &acargs.

122 Dosync-ac Design Options C

1 (dosync-ac-five
2 (acbody (println "after-commit:" (deref test-ref)))
3 (alter test-ref + 1))

Listing C.11: Option 5, with After-commit taking a body

This option makes it possible to put acbody around a block of expres-
sions with no added boilerplate code, as seen in Listing C.11. The macro
dosync-ac-five of Option 5 shares the syntax of the normal dosync which
could increase the chances of a seamless integration.

APPENDIX D
The Santa Claus Problem

The Santa Claus Problem is a known usability problem that have been
used to evaluate languages as a means to make them comparable [23, 27].
The problem originates from "A new exercise in concurrency" [23] and is as
follows.

”Santa Claus sleeps in his shop up at the North Pole, and can
only be wakened by either all nine reindeer being back from their
year long vacation on the beaches of some tropical island in the
South Pacific, or by some elves who are having some difficulties
making the toys. One elf’s problem is never serious enough to
wake up Santa (otherwise, he may never get any sleep), so, the
elves visit Santa in a group of three. When three elves are having
their problems solved, any other elves wishing to visit Santa must
wait for those elves to return. If Santa wakes up to find three
elves waiting at his shop’s door, along with the last reindeer
having come back from the tropics, Santa has decided that the
elves can wait until after Christmas, because it is more important
to get his sleigh ready as soon as possible. (It is assumed that the
reindeer don’t want to leave the tropics, and therefore they stay
there until the last possible moment. They might not even come
back, but since Santa is footing the bill for their year in paradise
... This could also explain the quickness in their delivering of
presents, since the reindeer can’t wait to get back to where it is
warm.) The penalty for the last reindeer to arrive is that it must
get Santa while the others wait in a warming hut before being
harnessed to the sleigh.”

124 The Santa Claus Problem D

APPENDIX E
Project Summary

This project address a problem found in the STM implementation of Clo-
jure, a composable and deadlock free alternative to locks for synchronising
concurrent programs. The problem is that Clojure does not providing func-
tionality for handling side-effects and does not allow manual control over
transactions for synchronisation of threads. This lack of functionality was
determined through an evaluation of both performance and usability of par-
allel functional programming languages and their concurrency models in
our 9th semester project named “Performance and Usability Evaluation of
Concurrency in Modern Functional Programming Languages”.

In this project we have implemented constructs allowing the use of side-
effects and transaction control in STM transactions into the programming
language Clojure, the extended language we have dubbed dptClojure. The
constructs were developed based on an extensive analysis of the Clojure
runtime and STM implementation, and multiple experiments about how
methods for handling side-effects in transactions could be performed. Each
design for enabling side-effects in transactions were evaluated based on three
minimal examples to demonstrate the specific problems that occur by comb-
ing STM and side-effects.

The experimental designs were implemented in Clojure’s STM imple-
mentation, together with constructs for transaction control inspired from
Haskell, to understand how such functionality could be enabled in Clojure’s
STM implementation. Based on the experimental design and their imple-
mentation a generic event handling system was developed and implemented
in Clojure with minimal changes to the existing STM implementation, en-
abling the use of side-effects in transactions by ensuring the side-effects are
executed only if a transaction is in a specific phase. Constructs for transac-
tion control are added and extends those inspired by Haskell, allowing the
developer to not only block a transaction based on transactional data, but
also specify a function for determining the state of said data and check if
the transaction should unblock.

We evaluated the capabilities of the event handling system using the
three minimal examples, and we showed the event handling system could be

126 Project Summary E

used to solve all problems represented by the examples. Transaction con-
trol was evaluated by demonstrating the effect of the added functionality.
For the constructs that provided alternatives to existing Clojure functional-
ity the constructs were evaluated using a usability evaluation based on the
Santa Claus problem, with two metrics and a subjective discussion. This
evaluation showed a decrease both in terms of Lines Of Code (LOC) and
in terms of development time, and subjectively the added constructs helped
to create a simpler implementation. To validate the results a larger us-
ability evaluation and a performance evaluation are suggested as possible
future work as well as an exploration of the concept of contexts in the event
handling system.

	Introduction
	Motivation
	Problem Statement
	Project Approach

	Clojure
	Clojure Macros
	The Clojure Runtime Overview
	Software Transactional Memory
	LockingTransaction and Ref
	Metadata
	dosync
	deref
	alter and ref-set
	commute
	ensure
	blockAndBail
	barge

	Exploration
	Examples
	Defer
	Compensate
	Irrevocability
	Transactional Control
	Discussion and Insight

	Implementation
	Event Handling System
	Clojure implementation
	Java implementation

	Transaction Control
	Clojure Implementation
	Runtime Implementation
	STMBlockingBehavior Implementation
	LockingTransaction Implementation

	Summary

	Evaluation
	Event Handling System
	Transactional Control
	Or-else and Terminate
	Retry

	Summary

	Reflection
	Effect of the added constructs
	Usability Evaluation
	Performance Evaluation
	Approach
	Implementation

	Conclusion
	Future Work

	Bibliography
	Experimental Designs
	Defer
	After-commit
	Lazy Evaluation

	Compensate
	Undo

	Irrevocability
	Check-Run

	Transaction Control
	Retry, Or-else and Terminate

	Experimental Implementations
	After-Commit
	Lazy Evaluation
	Undo
	Check-Run
	Transaction Control
	Clojure Implementation
	STMBlockingBehavior Implementation
	LockingTransaction Implementation

	Dosync-ac Design Options
	The Santa Claus Problem
	Project Summary

