
Java: MUCA - Mark Up
Comment Analyzer

Search Engine for Comment to Code Coupling

SW10 Project
Group DPT108F15

Department of Computer Science
Aalborg University

June 8th 2015





Department of Computer Science
Aalborg University
Selma Lagerlöfs Vej 300
Telephone: +45 9940 9940
Telefax: +45 9940 9798
http://cs.aau.dk

Title:

Java: MUCA - Mark Up Comment An-
alyzer;
Search Engine for Comment to Code
Coupling

Theme:

Master Thesis: Spoken Programming
Interfaces and Comment to Code Cou-
pling

Project period:
P10, Spring Term 2015

Project group:
DPT108F15

Participant:
Lars Chr. Pedersen

Supervisors:
Bent Thomsen
Bo Thiesson

Circulation: 4

Page count: 78

Appendix count and type: 0

Finished on June 8th 2015

Synopsis:

MUCA is a search engine that is able to take
queries in the form of comments and match
said query to a comment in its database, in
order to return a piece of code. MUCA assists
in the selection of a quality piece of code by
utilizing a repository’s star raiting on GitHub
and the number of times a method is men-
tioned in its source code.

The report content is freely available, but publication (with source), only after agreement
with the authors.





Resume

Indenfor talt programmering har der længe været et problem kendt som “Where
am I?”, et problem hvor programmøren mister overblikket over sin kode og
glemmer hvor markøren står. I et forsøg på at komme dette problem til livs,
blev vi inspireret til at bygge en søgemaskine specielt designet til at matche
kommentarer samt koble kommentarer til kodeblokke.

Resulterende i en problemstilling som lyder:

“Hvordan kan man lave en søgemaskine som kan koble kom-
mentarer til kode og rangere disse par i forhold til relevans og kvalitet?”

Denne afhandling tager udgangspunkt i designet af denne søgemaskine, som
har fået navnet MUCA (Mark Up Comment Analyzer). For at designe en sådan
søgemaskine er det nødvendigt først at finde en måde at koble en kommentar til
en kodeblok og dernæst finde en måde til at vurdere denne kodebloks kvalitet.

Afhandlingen fortæller om generelle principper inden for søgemaskiner og
kommentar analyze, opbygger et design for en søgemaskine og til slut afprøver
søgemaskinens evner.

De tests som MUCA bliver udsat for bliver gennemført på en database
bestående af 3,1 million dokumenter, 1.517 forskellige projekter fra GitHub og
mere end 174000 forskellige termer, indsamlet fra cirka 2,8 GB af .java filer.

Vi finder at MUCA kan være en løsning på problemstillingen, men at MUCA
stadig mangler fintuning før den er klar til hverdagsbrug.
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Preface

This is a master thesis written by a student from the Department of Computer
Science at Aalborg University. The thesis suggests a solution to the problem:
“How does one create a search engine that can couple comment to code and
rank these pairs in favor of relevance and quality?”

The student is studying Software Engineering at the 10th semester.
Included with this thesis is a CD containing all code used in creating the

MUCA system, a copy of the database structure and a digital copy of the thesis.
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Chapter 1

Intro

1.1 Motivation
This thesis was motivated by our former project and examination: Designing
LARM by Mark Faldborg and Lars Chr. Pedersen [8]. The project was about
spoken programming, the act of writing computer code with your voice. During
the project we designed a language called LARM. One of the major problems
that was found during the project is called “Where am I?”, a term coined by
Smith et. al [29]. The problem of “Where am I?” happens when the programmer
loses track of the marker’s position while entering code by voice. This problem
most often occur in spoken programming when the programming interface lacks
a screen for feedback.

During our examination the external examiner pointed out that LARM did
not tackle this problem. After the examination we came up with several ideas
on how to solve the problem. One was to create a search engine that could serve
pre-written code, making for less work for the programmer and hopefully reduce
the mental load of the programmer such that “Where am I?” would occur less.
The reasoning being: That less mental work will leave more space to remember
the marker’s position and with pre-written code the act of combining code pieces
will result in fewer low level programming statements.

This leads us to the inspirational problem of this thesis:

“How does one create a system that can take spoken comments
and suggest quality programming solutions based on pre-written so-
lutions from the internet?”

Such a system is very complex and is created from several components.
Therefore, this thesis focuses on a sub-problem, a single component, that is the
search engine for the above problem. The sub-problem can be formulated as
follows:

“How does one create a search engine that can couple comment
to code and rank these pairs in favor of relevance and quality?”
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A solution to this problem may have inherent use in regular programming,
since it have become more common to search Google for code solutions to ones
own problem before attempting to solve it. Creating a dedicated search system
for searching code might have use in regular programming to.

1.2 Top Level View and Areas of Interest

This thesis details the implementation of a search engine that couples comment
to code and when queried with a comment, matches query comment to database
comment in order to serve a useful piece of code. The database collected by the
search engine is created from more than 1.500 Open-Source Software (OSS)
projects from GitHub.

A modern search engine consists of the following parts[36]:

Crawling: Finding documents and extracting information, typically done on
web-pages.

Indexing: Grouping documents in such a way that it is easier to search a large
data-set during the query to document matching.

Anti-Spam: Removing duplicate documents and irrelevant data from the database.
As well as keeping it out of the crawler in the first place.

Document Understanding: Understanding the contents of the item being
analyzed by the search engine.

Query Understanding: Understanding what the user is asking for.

Query-Document Matching: Understanding the relation between query and
stored data. A single entry in the database is refereed to as a document.

Ranking: Order results of a given query in a list based on quality and relevance.

Search Result Presentation: Presenting the results for the user, in a useful
way.

Search Log Mining: Analyzing the queries performed by users to enable a
more precise and quick matching process.

For the comment-to-code system that is developed in this project, the focus
will be on the following parts: Crawling (see Chapter 4), Document Under-
standing (see Chapter 2), Query-Document Matching (see Chapter 3 and 4),
Ranking (see Chapter 3 and 4), and ultimately also Search Result Presentation
(see Chapter 7). In addition to these standard parts involved in the construction
of a search engine, we are also interested in the area of comment analyzes and
comment to code coupling.
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Others have looked into matching comments and code pairs, very few have
also attempted to rank said pairs, however this research is crucial for creat-
ing the comment-to-code system developed in this project, which will be the
main concern of the next chapter. Luckily the second crucial ingredient for the
comment-to-code system developed in this project have been standaradized,
namely how to create a search engine, which will be the focus of Chapter 3.
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Chapter 2

Related Works

Comments in code is an area that have been studied for some time now. The
earliest paper analyzing comments, that we have been able to find, is from
1999[19].

Analyzing comments have grown in popularity since 2005 and, in our modern
days, most of these projects use Information Retrieval (IR) for this purpose.[20,
21, 11, 24, 23]

This chapter will first list projects that are very similar to this one and point
out where they differ. Followed by a look into commenting behavior, studies
on how to couple comment to code, and lastly the application of search engine
techniques on comment-code pairs.

2.1 Similar Projects
Many projects work with commenting behavior or comment analyzes, but to
the best of our knowledge only two projects have created actual search engines
based on comment-code pairs.

In 2012 José Luis Figueiredo de Freitas [11] wrote his master thesis on: Com-
ment Analysis For Program Comprehension. He created a tool that is
intended to help developers get an overview over a projects source code,
without having to read all the source code. The system couples com-
ment and code into pairs and finds the most important parts based on the
problem domain that the code describes.

Where Freitas’s project differs from ours, is that it only works with a
single project at a time and does not do comment querying.

In 2011 Collin McMillan [24] made a tool that could search for a function,
much like Google Code Search (which was closed in 2012[4]) or Koders
(now known as BlackDuck or Open HUB [30]). McMillan’s tool seems to
only use the name of a function to index the code pieces, however it takes
into account the way functions are used in relation to each other.
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Where McMillan’s project differ from ours, is that it does not utilize com-
ments for document indexing and it does not match comment to code.

2.2 Commenting Behavior
According to Jef Raskin [28] the best practice for proper commenting is to not

write comments that describe code, but instead write comments that describes
the choices made during programming. For example, a certain algorithm which
would typically be used in sorting is not used because another algorithm was
found to work faster for this specific set of data.

Jef Raskin’s version of proper commenting is a threat to our problem solution.
If programmers are writing less comments, there will be less data to analyze,
resulting in less documents in the database. There will also be less incoming
queries, meaning our problem solution will not even be used.

To our luck, programmers have not adopted this proper commenting behavior.
Supporting this claim; Peter Vogel wrote two articles [38][37] in 2013, describing
the same problem Raskin saw in 2005. Vogel claims that programmers today
comment too much, he thinks that by writing too many comments; programmers
only receive a bigger task of keeping comments up to date with the code. Vogel
believes that comments should only be used to describe the reasoning behind
choices and for very complex methods.

Vogel’s worries about out of date comments is set aside by a paper by Beat
Fluri et al. [9] They did a study to see if programmers kept their comments
up to date with their code. The study was conducted on three different OSSs:
ArgoUML, Azureus and JDT core. The study showed that 97% of the time
comments was also updated when related code was updated.

Also supporting Beat Fluri et al.’s claim, Oliver Arafat et al. wrote two papers
[2, 3] were they analyzed the commenting practice in Open-Source Software.
They used a database called Ohloh Inc., where they only targeted successful
projects, meaning projects that still had activity and had seen activity for some
time. They found that Java is the most commented language (With a comment
density of 25.87%[2]). They also found that when developers changed 1 or 2
lines of source code, documentation was often updated as well, or the change
was well explained in the version control system. However when a major change
occurred it would be less documented. They found that OSS projects on average
had a comment density of 19% and they note that this comment density seems
to slightly decline as the project grows older. After 4 years the density has
dropped to 18.05%. For our project that is good news, it means that there is
many comments to analyze both in new and older projects.

Antoher aspect that is interesting in commenting behavior is the use of TODOs
and team communication through comments. In 2005 Ying et al. [41] looked at
how programmers communicate through comments in Eclipse task comments.
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They found that programmers tend to leave many TODOs for code navigation
and team communication, for example: “TODO an ugly hack for now -sue.
Joan, please fix it”.
In 2007, Storey et al. [32] created a code navigation plug-in for Eclipse based
on Ying et al.’s work, called TagSEA, which according to the paper has made
it easier for programmers to navigate their code.
Storey et al. continued to do research in the field of TODOs and in 2008 released
another paper [33], this time on the role TODOs play in software development.
They found that:

Out of date comments are likely to be the location of a bug.
Developers tend to add information to TODOs, such as: References to other

classes, methods, plug-ins or modules. Their own name/initials. Bug id
number. URLs and date of creation.

Some developers tend to priorities TODOs by adding LOW or HIGH (Be-
cause these keywords will then be searchable).

TODOs can be politically sensitive: One interviewee from an OSS project
told that he was sometime reluctant to add TODOs to his project because
then his followers might judge him on his lack of work.

TODOs that stay are typically the ones without an author, or a TODO no
one really understands.

For this project, the trouble that TODOs create means that we either have to
take great care when analyzing them, or perhaps we will need to ignore them
all together.

2.3 Comment to Code Coupling
As explained in the introduction, we are interested in how to couple comments
to code as well as how to asses the quality of this pair. In this section we look
at what other projects have done.

2.3.1 Coupling Comments to Code
One of the most relevant subject for this project’s search engine is how to link
comments to code. At first, one might think this is very hard, but it turns out
that most programmers follow an unwritten convention. Most programmers
tend to write their comments just before the code it describes or on the same
line [9][21]. However, Beat Fluri et al. ([9]) does state that: “In programming
languages, it is seldom straight-forward to track relations between comments and
source code entities algorithmically.” [9], but they do have some suggestions on
how to do so.

Beat Fluri et al. continues that single line comments is also often used as
a substitute for block comments and must therefore first be subject to a pre-
analysis step, to see if a single line comment is followed by another single line
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comment, suggesting it is actually a block comment. Beat Flrui et al. also
makes the following statements:

Comment on the same line: If a comment is on the same line as a piece of
code (in-line comment), it will describe that code. [9]

Comment on an adjacent line: Comments will normally be placed in close
proximity to the code it is describing. [9]

Comment describes source code: Since comments describe source code, it
is most likely that they mention function or variable names found in the
source code. [9]

In Beat Fluri et al.’s research they analyze the comment-blocks to both the
code before and after the comment. They use a technique they call token-based
string similarity to compare the strings. In other words they tokenize all the
words in the comment and the code before and after, put them into “bags (mul-
tisets) of tokens” and then see which is the most similar to the comment. This
is also known as the Vector Space Model (VSM). More details on VSM will be
given in Section 3.2.

Matthew J. Howard [15] writes in his paper about “action pairs”. He be-
lieves that comments often describe functions in these action pairs. That is: It
is likely that a comment contains the action verb and the function is named with
the command form of the same word (For example: Search-Find and Cancels-
Abort). Sometimes, however, they are named in this pair form, with synonyms.
He therefore implements a tool that searches for these action pairs, which uti-
lizes a synonym dictionary. The tool also identifies and ignores non-descriptive
comments. The tool is tested against humans in its ability to identify the correct
action pair. And he finds that the test persons agreed 78% of the time with his
automatic tool.

These papers could indicate that to match a comment to code, one could
simply match it to the closest code segment (typically the one coming after the
comment). But in order to get a more precise matching one could look at action
pairs, or matching the mentioned variables or function names.

2.3.2 Throw away/Ignore
If the code pieces that is delivered to the user of our system is to be of value,
it is important to know what should not be in the final database. This section
looks at what other researchers have thrown away during analysis.

Dawn J. Lawrie et al. [20] created a Quality Assessment tool (called QALP).
The tool analyzes comments and code to assess quality, but will skip any com-
ment that is 25 words or less. These comments are skipped because they believe
that these comments will look too similar to other comments of unrelated code,
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if they are shorter than 25 words.

Margaret-Anne Storey et al. [33] did research on commenting behavior and
found that: Out of date comments are likely to be the location of a bug. If one
was able to track the creation and changes on comments and code, this could be
valuable knowledge to know if a comment should be left out of analyzes, because
it was out of date, minimizing the risk of giving the user of our system a piece
of code that does not match the comment that was analyzed. This could be
achived by looking at the history of the project from its version control system.

Harald C. Gall et al. [12] created a plugin for Eclipse that suggests bug fixes
to common problems, it would analyze code repositories to see when a bug fix
was introduced and then figure out what it was. When analyzing they made
sure not to analyze dead code (code that have been commented out).

2.4 Ranking and Pre-ranking

When querying our database we must consider two values in order to figure out
what the user actually wants: Quality and relevance. Or as it would be called
in a search engine, pre-ranking and ranking. Pre-ranking is a static analyzes of
the document extracted during crawling. Where ranking is a dynamic analyzes
determining the relevance between documents and query. Where then the final
ranking is a mixture of the pre-ranking and the ranking. Ranking will for
the remainder of this thesis be refereed to as relevance-ranking as to reduce
confusion.

One way to do “relevance”-ranking is by Term Frequency - Inverse Docu-
ment Frequency (tf-idf) which is a method for weighting the importance of a
term (word) in a given document. It takes into account the frequency of the
term in a document (indicating the importance of that single term in that single
document) and the inverse frequency of the term in the whole database (indi-
cating how general that term is). The tf-idf ranking is computed dynamically
for comparison with the query such that only relevant terms are considered.

This relevance-ranking method have been standardized and is commonly
used when creating search engines. It is used by: [20, 11, 26]. More details on
the theory behind tf-idf will be given in Section 3.2.

However how to access static quality of a comment-code pair is not an exact
science. Therefore the next section looks into ideas from other papers.

2.4.1 Pre-ranking (Static Quality)

Dawn J. Lawrie et al. [20] looked at identifier names and used these to infer
concept understanding. They state that comment and code is of better quality
if the identifier names are present in both the comment and the code which it
describes.
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Collin McMillan [24] made a tool that listed functions and ranked these
functions much like Google does with their pageranking. The tool looks at how
many times a function is called and by that infers how important that function
is to the whole program. Derived from the logic that: A function that is called
often, must have received extra attention during development.

Ninus Khamis et al. [18] created a tool for automaticly assessing JavaDoc
quality. This tool would first of all analyze the language used in the comment;
creating different readability heuristics (FOG, FLESCH, KINCAID), it also fig-
ured out what grammatical-person the comment was written in. It would then
proceed to count the number of items documented by the comment. All these
heuristics would go into rating the value of a JavaDoc comment and suggest
different improvements. Ninus Khamis et al. [18] also states that abbreviations
make for bad quality, because these abbreviations are not always explained,
making it harder for uninitiated programmers to understand the abbreviation.

These different ways of static pre-ranking, could indicate that there is more
to assess the collective usefulness of the code and comment pair than simply
looking at the relevance-rank based on a tf-idf comparison between comment
and query. It might be beneficial for the user if we added extra measures of
quality to the analysis.
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Chapter 3

System Overview And Theory

This chapter first gives an overview of the system and then continues to state
the reasoning behind general decisions and explain some of the general theory
behind search engines.

The search engine designed in this project can be depicted as seen in Figure
3.1. The system consists of 3 parts, with the following purposes:

Crawling Generate an indexed and pre-ranked database of comment-code pairs.

Matching/Querying Match input query to comments stored in the database
and rank the resulting matches.

Verifying An interface for sending queries to the database.

Each part will be explained in further detail in the following chapters. But
first a short explanation of general decisions and theory is in order.
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3.1 General Decisions
In order to create a search engine we need to decide on a data-source, like Google
uses most of the world-wide-web. However our search engine will be specialized
for comment to code coupling, therefor an appropriate data-source must contain
vast amounts of code.

The literature gives 4 choices: Ohloh inc. [16], SourceForge [31], GitHub [13]
and FreeBSD [10]. The most accessible one of these is GitHub, it has an API
for searching their vast number of different repositories. Making it possible to
target a single language. It is also possible to automate the download process
through scripting. For these reasons we chose to use GitHub as our data-source.

To simplify the task of creating the comment to code coupler, the search
engine will only be designed to handle one language. Working with only one
language makes the task easier because, we do not have to take different usage
of the same symbols across different languages into account.

In the literature the most popular choice for comment analyzes is Java, it is
used by: [19, 41, 9, 32, 2, 3, 6, 35, 33, 12, 18, 24, 11, 15, 34]. In addition Oliver
Arafat showed, in 2009, that Java has the highest comment density, a comment
density of 25.87%, that is for every 4 lines of code one line is a comment [2].
Even if this is no longer the case, Java is also the second most popular language
on GitHub, only passed by JavaScript [42]. With this in mind, the language
will be Java.

3.2 TF-IDF and Vector Space Models
This section goes into the theory of Term Frequency - Inverse Document Fre-
quency (tf-idf) and Vector Space Model (VSM). This section is based on theory
from the book: An Introduction to Information Retrieval [22], slides from the
course Web Intelligence at Aalborg University [36], the MOLE group at DTU’s
website [17] and Stanfords online course on Natural Language Processing [7].

When creating a search engine, one must be able to deliver documents that
are relevant to a given query. The naive way to do this would be to match the
query to every single word in the document but, with millions of entries in the
database the execution of such an operation would take far too long, therefore
one uses a Vector Space Model.

3.2.1 Vector Space Model
The VSM consists of three parts [17]:

Document Indexing is the main reason for the efficient similarity check, be-
tween query and documents, it can be thought of as the index in the back
of a book, indicating what pages a word can be found on. In the same
analogy; the naive method, for query to document matching, would be to
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read every word on every page to find the related pages. The document
indexing will be described in Section 3.2.2.

Term Weighting is the act of assigning a value to a term in a document, which
indicates the measure of relevance to that term in that document. The
most common version of term weighting in search engines is called Term
Frequency - Inverse Document Frequency and is described in Section 3.2.3
and 3.2.4.

Similarity Coefficients is the measure of similarity between a document and
a query. The most common version of this measure is called cosine coeffi-
cient and is described in Section 3.2.5.

3.2.2 Document Indexing
Document indexing is used to optimize the speed of lookups in the database of
a search engine, such that only relevant documents are considered for a given
query.

The simplest version of a document index is the boolean index, an index
that only indicates whether or not a term exists in a document, see Figure 3.2.
The idea is that there is a row for every term in the dataset and every term
have a related postings list. The postings list for the boolean index contains a
reference to the document it describes and a boolean indicating whether or not
the term is contained within that specific document.

Figure 3.2: Boolean Index

A slightly more optimized version of this index, called the inverse boolean
index, it takes up less space and works even faster for retrieval. The difference
between the boolean- and the inverse boolean index, is that any document not
containing the specific term is no longer in the postings list, see Figure 3.3.

The inverse boolean index only tells if the term exists, but it is fair to
assume that: If a term occurs multiple times in a document, that document is
more related to that term. [36] Therefor one could replace the boolean in the
inverted index with a frequency, see figure 3.4.
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Figure 3.3: Inverse Boolean Index

The index still specifies if the the term is contained in a specific document,
by the document simply being in the term’s postings list, and now also gives a
measure of how important that term is for a given document.

Figure 3.4: Inverted Term Frequency Index

3.2.3 TF (Term Frequency)

Tf-idf is a term weighting method and stands for: term frequency - inverse
document frequency, note here that “-” is a hyphen and not a minus. This
weighting method can be split into two: tf (term frequency) and idf (inverse
document frequency).

Tf in tf-idf is more than just the number of times a term occurs in a given
document, it is calculated as a weight, tf∗t,d, as shown in Formula 3.1, where t
is term and d is document. Making tft,d the number of times a term occurs in
a document.

The reasoning behind the use of this formula is that: If a term occurs once
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in a document it is worth something, if it is mentioned twice even more so. But
if a term occurs 100 times compared to 200 times it is not necessarily twice as
important, therefore the use of log10 makes sense. [36]

tf∗t,d = 1 + log10(tft,d) (3.1)

Applying the tf weight to the example in Figure 3.4 one would get the results
shown in figure 3.5.

Figure 3.5: Weighted TF Index

3.2.4 IDF (Inverse Document Frequency)

The second part of tf-idf, idf, is a measure of how common a term is in the
corpus (corpus is all analyzed documents). The reason for using idf is that: If
a query contains two words, such as “the lexicon”, one of these terms can be
more important than the other. A term such as “the” will occur very often in
the corpus, to the point where it makes very little difference, but a word such
as “lexicon” is rare in comparison. So any document only containing “lexicon”
will be more relevant than a document only containing the term “the”.

Letting N be the total number of documents in the corpus, t being a term,
dft being the document frequency for t and idf∗t being the inverse document
frequency weight for t, the inverse document frequency is calculated as denoted
in Formula 3.2. An example of this equation being used on a set of documents
can be seen in Figure 3.6.

idf∗t = log10(N/dft) (3.2)

With the above equations in place, the tf-idf weight of a term t in a document
d is then calculated as seen in Formula 3.3.

tf − idft,d = (1 + log10(tft,d)) ∗ (log10(N/dft)) (3.3)
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Figure 3.6: Inverse TF Index with IDF

3.2.5 Cosine Similarity and Query

The next step is to match a query to relevant documents in the database and
lastly order them according to relevance based on the tf-idf weight.

For this to succeed one must have a way to compare the query to the doc-
uments in the database. In the VSM this is done by comparing vectors. The
documents have vectors made out of the tf-idf scores for every term. This means
the vectors exists in a M dimensional space, where M is the number of different
terms in the corpus. And the query is made into a vector calculating the weight
for every term in the query in the same way as for the documents, see Formula
3.1.

Now that both the documents and the query have been turned into vectors,
the task of matching the query to documents can be reduced to finding the
document vector that is most similar to the query vector. The naive way to
do this is to use Euclidean distance, finding the document that is closest to
the query, however this is solemnly the best case for comparison. If one looks
at Figure 3.7.A, the black arrow represents our query vector, the red arrow
represents a document vector where our query is appended to itself twice (it
has the same words trice as many times) and the green and yellow arrows are
slightly unrelated document vectors. One would think that the red vector would
be the one most related to our black query vector, since they both have all the
same terms, however with Euclidean distance the most related vector would be
the yellow vector.

Therefore the vectors should be normalized as seen on Figure 3.7.B, this is
done because the documents often have more terms than the query, meaning
that the vector length will be very different. Imagine making a query to Google,
usually a query is only a few words, but Google returns a page with several
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thousand words. Therefore by reducing all vectors to length one, the worth
of every word is reduced down to the same space as the query vector. - The
same of course applies in the other direction since both the query and document
vectors are normalized.

In the VSM, a different similarity measure is used, which, in fact, implicitly
normalizes the vectors. The VSM uses cosine similarity, which translates the
problem of finding similarity into; finding the angle between the query vector
and the document vectors. If one looks at Figure 3.7.B, and remembers we want
to find the vector that is most similar to our black query vector, it can be seen
that finding the most similar document vector can be reduced to finding the
document vector that have the lowest angle between itself and the query vector.
This is attained by using cosine on the vectors, as can be seen from Formula 3.4,
where q̂ is the query vector and d̂ is the document vector. But computing the
cosine on high dimensional vectors is expensive in computation time, therefore
the problem is further reduced as can be seen in Formula 3.5, where |V | is the
length of the vectors. In the implementation |V | only consists of t ∈ q ∧ d (the
intersection of terms in the query and the document, making it faster and less
expensive in memory)[7].

cos(q, d) =
q · d
|q||d|

=
q

|q|
· d

|d|
= q̂ · d̂ (3.4)

q̂ · d̂ =

|V |∑
i=1

q̂id̂i =

∑|V |
i=1 qidi√∑|V |

i=1 q
2
i

√∑|V |
i=1 d

2
i

(3.5)

By using Formula 3.4 and 3.5 one no longer has to calculate the expensive
cosine, instead one can make the dot product of the query vector and document
vectors. The document with the highest dot product (cosine similarity) is then
the best match to the given query.

Figure 3.7: A: Euclidean B: Normalized for Cosine Similarity, the Black arrow
is our query, the rest are documents in the database. [36]
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3.2.6 Implementation Details and Example

Tf-idf is very popular and have many different implementations, therefore a
notation for the different implementations have been created. It is called the
SMART notation. It uses two sets of 3 acronyms: ddd.qqq, where d is for
document setting and q for query setting. The acronyms should be replaced by
the acronyms in Figure 3.8.

The most common implementation is lnc.ltc. Note here that the document
is not treated with any ranking from the document frequency, this is added
through the handling of the query. This makes it more practical to update the
database since the tf score is independent on the increasing/decreasing number
of documents.

Also note that the query is set to use cosine normalization, however this
step makes no difference when comparing the document vectors to the query
vector, since the effect will be added to every term in every document, making
this factor mute.

Figure 3.8: Tf-idf Normalization Scheme [7]

Example:
In the following example, see Table 3.1, we have a query: “best car insurance”
and a document: “car insurance auto insurance”. In the example we use the
SMART notation: lnc.ltc.

We start by finding the tf-weight (denoted by tf*-wt) for the query (see
Formula 3.1), in this example every word only occurs once, meaning we get a
tf-weight of 1 on everything except for “auto” which is not present in the query.
Next we calculate the inverse document frequency (idf) from the document
frequency (see equation 3.2), in this example N is 1 million. Next the tf-idf
weight of the query is computed (denoted here by wt), by multiplying tf*-wt with
idf. And in this example we finish the queries calculations off by normalizing it.

The same is done for the document, except we skip the idf-part. Next we cal-
culate the dot product between the query and the document, by multiplying the
query’s normalized tf-idf weight with the documents normalized tf-idf weight,
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note here that the words “auto” and “best” have no influence on the scoring,
since they are lacking in either the query or the document. As the last step the
values in the Prod column is summed into the cosine similarity score between
the query and the document, which for this example is 0+0+0.27+0.53 = 0.8.

Term Query Document Prod
tf-raw tf*-wt df idf wt norm wt tf-raw tf*-wt wt norm wt

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Table 3.1: Tf-idf Query Example [7]

3.3 Stop Words, Stemming and Tokenization

Stop words, stemming and tokenization are all standardized parts of a search
engine and work together to create a simpler database.

The important part about these three is that they are applied to the docu-
ment as well as the query. Why will be explained in the following subsections.

3.3.1 Tokenization

Tokenization is the act of splitting a document or string into a meaningful and
useful set [36]. The most typical case is splitting a string, eg. “the quick brown
fox” into the single words: “the”, “quick”, “brown”, “fox”. Meaning the words can
be separated by the white-space delimiter.

There is also more complicated cases where keeping two words together in
one token will give more precission, eg. “Aalborg East” [36]. Whether or not
that is to be one or two tokens depends on the search engine.

Other issues can be with special characters such as:

Apostrophes How is the word “book’s” supposed to be split? “book” and “s”,
“book’s”, or “books”. [36]

Hyphens How is the word “mother-in-law” supposed to be split? “mother” and
“in” and “law”, or “mother-in-law”, “motherinlaw”. [36]

Special Numbers Dates, time, phone numbers, eg: “12/13/1991”, “99 99 87
87”, and “12:31”. [36]

Compund Words Is the word “lifetime” supposed to be split into “life” and
“time” or not split at all? [36]

How the above tokens should be split is again up to the search engine.
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3.3.2 Stop Words

Stop words are words that occur in so many documents that it makes no differ-
ence whether or not they are included. Imagine having a word occur in every
document; when a user searches for that particular word it will only buff every
documents score and thereby become a mute increase. [36]

Examples of stop words could be: “the, a, and, to, be” [36]. The words
themselves have little semantic value, however the words can be important in
certain phrases such as: “King of Denmark” or “flights to London” [36].

There exists stop word lists for many languages at RANKS NL [25] which
is also where we have our stopword list from.

It is important to remove stop words from both the index in the database
as well as the query, since having them in either only adds unnecessary compu-
tation.

3.3.3 Stemming

Stemming is the action of reducing a word to its stem, eg. reducing “milking” to
“milk”. The purpose of stemming the words in a search engine is to normalize
the documents and the queries, note that this is not vector normalization, but
a normalization of the terms. Imagine having a document with the string “how
to create greater focusing” if a user then searched with the phrase “great focus”
these two would not match, however they are similar. [7]

Normalizing in IR covers a big field, it is the act of stemming, transforming
a term such as "U.S.A." into "USA" [7], or more advanced as shown by the
following example [7]:

Enter: “window” - Search for: “window, windows”

Enter: “windows” - Search for: “Windows, windows, window”

Enter: “Windows” - Search for: “Windows”

The example shows that simply cutting off the ending of every word and
forcing everything into lowercase can remove important information. In this
example we have three different search queries, “window”, “windows” and “Win-
dows”. The first, “window”, only relates to the windows in relation to construc-
tion work, the third, “Windows”, is most likely a search for the operating system
Windows, and the second, “windows”, could be both.

Defining how to create such a sophisticated tool is an advanced task, that
will not be covered in this thesis. For the purpose of this project a much simpler
way of stemming is possible. The most commonly used stemmer for the English
language is called the “Porter algorithm” [7]. The Porter algorithm is a series
of replacement rules that is applied to the end of a word. It is a very crude but
effective algorithm, an example can be seen in Figure 3.9.
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Figure 3.9: Porter Stemmer Algorithm Example [7]

The Porter algorithm is a long algorithm, the following is a part of the
replacement rules, with examples (in green) [7]. For a deeper explanation of the
Porter algorithm see: [27].

Step 1a

• sses → ss (caresses → caress)

• ies → i (ponies → poni)

• ss → ss (caress → caress)

• s → ø (cats → cat)

Step 1b

• (*v*)ing → ø (walking → walk) (sing → sing)

• (*v*)ed → ø (plastered → plaster)

• · · ·

Step 2 (for long stems)

• ational → ate (relational → relate)

• izer → ize (digitizer → digitize)

• ator → ate (operator → operate)

Step 3 (for longer stems)

• al → ø (revival → reviv)

• able → ø (adjustable → adjust)

• ate → ø (activate → activ)

• · · ·

In the above rules note that “(*v*)” means any verb and “ø” means nothing.
The Porter algorithm have also been written for other languages. [27]
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Chapter 4

Crawling

The crawler is the main part of our system and is named MUCA (Mark Up
Comment Analyzer). MUCA can be thought of as: MU being a pre-analyzes
step to make the analyzes easier and CA as the actual indexer and coupler,
followed by a pre-ranking step.

This chapter will go into details about how MUCA works and design deci-
sions for MUCA and the tf-idf ranking.

4.1 Mark Up (MU)
As mentioned in Chapter 3 we have decided to work with data from GitHub,
specifically Java code. We first downloaded over 1.500 projects from GitHub
through their APIs, then filtered out anything that was not a .java file. Next
MU was applied to all .java files. MU creates markup around program ele-
ments such as strings, chars and comments in an eXtensible Markup Lan-
guage (XML) style inspired by JavaML [5, 1], a markup language for Java that
is no longer kept up to date.

XML is normally written in two ways:

By using a start and closing symbol, such as: “<greeting>” and “</greet-
ing>” - the first being the start and the latter being the closing symbol
[39]. Everything inside the two symbols are then considered to be part of
the greeting. XML also allows for nested symbols [39].

XML can also contain single symbols, such as: “<br />” [39] - the newline
in Hyper Text Markup Language (HTML) (HTML is also a markup lan-
guage). These single symbols were in JavaML used to detail identifier use
[5].

The purpose of MU is to make the work in the Comment Analyzer (CA)
easier. We want to create easily recognizable symbols, such that the logic in
CA is easier to write, therefore markup is done as specified in Table 4.1. The
reasoning behind the markup is as follows:

35 of 78



Comments MU does markup on comments such that we can extract the com-
ments in full in CA by simply finding the start and end marks.

Strings and Chars MU does markup on strings and chars such that we can
remove these while analyzing. Strings and chars can contain characters
that we utilize during analyzes, such as brackets. - Note that MU’s markup
is not nested for strings, chars, and comments, meaning that if one of the
beginning marks for these is encountered all text within them is ignored
by MU and therefore ignored by CA. This makes sure we do not markup
a bracket within a string.

Brackets MU does markup on brackets because; much of the logic in CA is
based on scoping, which in Java is defined by brackets.

Mark Begin Begin Mark End End
<string> “ </string> “
<char> ‘ </char> ‘
<br /> \n
<bracket> {
</bracket> }
<comment type=“javadoc”> /** </comment> */
<comment type=“multi”> /* </comment> */
<comment type=“single”> // </comment> \n

Table 4.1: MU - Markup overview

4.1.1 Benefits and Drawbacks

The fact that MU creates an XML like syntax makes it possible to create op-
timization through different XML-tools. However this would require MU to be
extended to create a full XML syntax as defined on W3C’s website [39], this is
left for future work.

The drawback of creating an XML like syntax is that Java uses the special
chars < and > to declare general types. This is an oversight and have resulted
in a few bugs, sadly it was first discovered late in the project and have therefore
not been taken into account. A quick fix for this could be to replace < and >
with placeholders such as “£LESS_THAN” and “£GRETER_THAN”.

An alternative to using mark up as a prestep for comment analyzes could be
using a tokenizer. A tokenizer will definitely perform the prestep faster, however
it is more complex to use and in this thesis we want to stay as clear and simple
as possible, such that the principle behind comment-to-code coupling is clear.
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4.2 Comment Analyzer (CA)
The Comment Analyzer (CA) is the main part of the crawler and is responsible
for the information retrieval and analyzes. CA contains all the elements of the
crawler from Figure 4.1, except for the tf-idf ranker which stands on its own,
see Section 4.3.

CA consists of the following parts:

• Find and Extract Comment

• Pass Criteria

• Coupling Comments to Code

• Code Analysis

• Pre-rank

4.2.1 Find and Extract Comment
CA works on the marked up .java files delivered by MU, which means that for
extracting comments all CA has to do is find one of the three comment starting
strings as defined in Table 4.1.

In the implementation CA will however look for the greatest shared part of
the three comment starting strings, “<comment type=“”, explained in Section
4.2.4. It then extracts the following word to see what comment type it is. This
word can either be “javadoc”, “multi” or “single” as indicated by Table 4.1.

The comment type is used for deciding how to couple the comment to code,
see Algorithm 1, 2 and 3. It will then extract the comment itself, by starting
from the comment starting string’s end point and extract every word until it
encounters the string “</comment>”. “</comment>” is the end string for all three
comment strings, as defined in Table 4.1.

When the comment type is “single”, a special check is performed, as suggested
by Beat Fluri et al. [9], to see if the following line is also a single-line comment. If
so, the two single-line comments are concatenated and is treated as a multi-line
comment.

4.2.2 Pass Criteria
In order to serve the most likely code solution to the users problem/comment/-
query, CA will only consider comments that pass at least a minimum of criteria.
These criteria could potentially be modified at a later point in time. The criteria
currently being enforced are as follows:

At least 5 words As Dawn J. Lawrie et al. [20] removed any JavaDoc com-
ment that was less than 25 words, so do we remove any comment that
is less than 5 words. The exact number of words that is needed as a
minimum for a meaningful comment should be experimented with, but
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Figure 4.1: CA/Crawling overview

38 of 78



as a start we decided on 5 words as the minimum. This choice is based
on the intuition that many Java projects on GitHub are for mobile apps,
where it is sometimes needed to have files with settings or other static
data, these files often have very short comments, typically 1 or 2 words,
and would deliver nearly useless code for most contexts, as they mostly
contain variable declarations.

Does not start with TODO or FIXME If the comment starts with TODO
or FIXME it indicates that the code it relates to either is broken or buggy.
As we want to serve the user a useful solution to his problem, this code
should not be included in the database.

4.2.3 Throwing Away Too Much

During the design of the pass criteria it is important to investigate the trade-off
between false positive and false negative as well as the associated costs.

True False
Positive Good Code Bad Code Served to User
Negative We were right to throw it away We were wrong to throw it away

Table 4.2: False Positives and False Negatives

When making comment-code pairs we have 4 possible scenarios, depicted in
Table 4.2.

True-Positive is when we match the correct piece of code to the correct com-
ment.

True-Negative is when the system have found an insignificant comment and
was right to remove it.

False-Positive is when we mistakenly couple the wrong piece of code to a
comment, when this is served to the user it will have negative value, since
it wastes his time and only makes the burden of programming greater.

False-Negative is when the system mistakenly throws away a useful comment,
with a piece of code that could have been used.

The tradeoff comes down to False-Positives and False-Negatives. Where
False-Positive is expensive for the systems usefulness compared to the False-
Negative, since not serving anything will not waste the users time and therefore
the system at least does not make the burden of programming any larger. Of
course there is a limit to how much can be thrown away before the database
becomes so sparse that it only solves very few problems, however with more than
27.000 potential OSS Java projects on GitHub1 it is also likely that more than

1This is the number of repositories we could gain access to through GitHub’s API.
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one project’s problem domain revolves around the potential False-Negative. In
other words, being overly cautious will only benefit the user, as there is a good
chance a badly written comment is written in another project with a higher
quality.

4.2.4 Coupling Comments to Code
Coupling the comments to the code is the most important step for MUCA as it
is important to couple the comment to the right piece of code, indicated by the
prevues section.

Our comment to code coupling is greatly inspired by Beat Fluri et al. [9],
see Section 2.3.1, however we change their logic slightly.

The comments are coupled to code in code blocks by the Algorithms 1, 2, 3,
here written in psudo-code. We define a code block in the following, denoted as
“codeblock”:

Simple Codeblock A piece of code that does not contain any brackets and is
naturally split from other codeblocks by an empty newline. See Listing
4.1, line 7-8.

Extended Codeblock A piece of code that contains at least two brackets,
always in pairs, and is split from other codeblocks by scope. An extended
codeblock can contain several simple codeblocks. See Listing 4.1, line 5-12.

Open Codeblock A codeblock that have more open brackets than it has clos-
ing brackets. See Listing 4.1, line 1-12.

Listing 4.1: Codeblock Example
1 //Open Codeblock Star t
2 public class codeBlockExamples
3 {
4 //Extended Codeblock Star t
5 public static void main ( String [ ] args ) {
6 // Simple Codeblock Star t
7 printOne ( ) ;
8 printOne ( ) ;
9

10 // Simple Codeblock End
11 System . out . println ("Printed twice!" ) ;
12 }
13 //Extended Codeblock End
14 //Open Codeblock End
15 public static void printOne ( ) {
16 System . out . println ("Hello World" ) ;
17 }
18 }
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Algorithm 1 Multi-Line
1: procedure CoupleMultiLine
2: codeBlock← getAboveCodeLine()
3: if isOpenCodeBlock(codeBlock) then
4: return makeExtended(codeBlock)
5: else
6: codeBlock← getFollowingCodeBlock()
7: return makeExtended(codeBlock)

Algorithm 2 Single-Line
1: procedure CoupleSingleLine
2: nextLine← getNextLine()
3: comment← getCommentOnLine()
4: isMultiLine← false
5: loop:
6: if isSingleLineComment(nextLine) then
7: isMultiLine← true
8: comment← comment+ nextLine
9: nextLine← getNextLine()

10: goto loop
11: if isMultiLine then return CoupleMultiLine()
12: else
13: code← getCodeOnCommentLine()
14: if isEmpty(code) then
15: codeBlock← getFollowingCodeBlock()
16: return makeExtended(codeBlock)
17: else
18: return code

The reasoning behind the algorithms
Multi Line Comments are supposed to describe the code that comes directly

after it. However, some programmers use it to describe the scope that the
multi-line comment is in. Therefore, we first check if this comment is the
first thing in a scope. If so, we match it to that whole scope. If not, it is
more likely that it describes the code directly after it. See Algorithm 1.

Single Line Comments is first exposed to a check to see if it is actually a
multi-line comment in disguise as this is common [9]. If it is not, we want
to see if there is code on the same line as the comment, making it an
in-line comment, if so the comment matches that line only. Discarding
in-line comments could potentially make for a higher quality of results in
general, since a single line of code rarely solves a programming problem,
however we keep them for now, such that tests might be performed to
investigate the benefits. See Algorithm 2.
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Algorithm 3 JavaDoc
1: procedure CoupleJavaDoc
2: codeBlock← getFollowingCodeBlock()
3: return makeExtended(codeBlock)

JavaDoc Comments is always matched to the codeblock after it, as that is
the only way JavaDoc can add information to classes and methods. See
Algorithm 3.

Problems with the above logic

Multi line comments used in the middle of a code line (ex.: int i = /*
Assign */ 7;) this occurs every now and then. The above logic will couple
the comment to the "7;" and what is on the next lines of code, making for
a stump in the codeblock.

JavaDoc used as Multi is not a problem if the comment was supposed to
describe the codeblock coming after the comment. However if the com-
ment was supposed to describe the method or class and the comment was
placed inside the scope we will make a mismatch and potentially only link
it to a single declaration, however this case is extremely rare.

4.2.5 Code Analysis

Now that CA have found the code piece belonging to the comment it must
analyze the code before the information can be used for pre-ranking. While
doing this code analyzes CA also stores potential important information in the
database such as codePattern and codeType. And if the current piece of code is
identified as a method, information such as paramaterTypes, parameterNames,
returnType, and numberOfTimesCalled is also stored.

The code is analyzed first by identifying its pattern. The pattern can for
our experiment be identified as the nesting of class-, method-, for-, while-, do-,
if-, else, try-, catch-, and lambda-statements. This information can potentially
be used to search by context or if the user have an idea of the structure of his
code, it can be used for limiting the search space.

Next the codeType is identified, this is simply done by looking at the pattern
and identifying what came first. For our experiment we use the following types:
Controlstructure, Method, Class, Other or None. Controlstructure is when
it starts with a for-, while-, do-, if-, else-, try- or catch-statement. Method is
when it starts with a method statement. Class is when it starts with a class
declaration. None is used when the code have none of the above. Lastly Other
is used as a failsafe for anything unexpected. - The codeType can be used to
search by context or limit the search space for the user.

As the last step if the codeType is of type Method the method information
is extracted. The information is extracted by working the method declara-
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tion line. CA extracts paramaterTypes, parameterNames, returnType, and
functionName. The functionName is then used for pre-ranking.

4.2.6 Pre-rank
In the current implementation we do two steps to do pre-ranking:

Number of times a method is mentioned in a given project. CA collects
the names of methods used in a project and when the last file have been
processed it counts the number of times a method is mentioned (including
comments) in all the files in a project. CA looks in all files in a project
since Java projects often split the files into classes, that often are interde-
pendent.
This pre-rank measure is based on the idea that: The more a function
is mentioned and used in code, the more attention it have received and
therefore it will be better designed.

Star-rating from GitHub is used as a pre-rank because a project with many
stars is supposedly a project with both many followers that have pointed
out potential errors. A high star-rating also often indicate that the project
in itself is useful. The star-rating is simply added to the database from
the list of data received when the repositories was first downloaded from
GitHub.

The above ranks still need to be converted into a weight that makes sense,
such that it can be combined with the tf-idf ranking. The most naive way would
be to add the pre-ranks to the documents and simply add the related pre-rank
to the cosine similarity computed with the VSM. However more sophisticated
ideas are investigated in Chapter 8.

4.3 TF-IDF Ranking
The tf-idf ranking is currently separated from MUCA and runs in its own script
after MUCA have filled the database with information about the comment-code
pairs. This split-up makes it easier to replace and change different parts of the
ranking as one sees fit.

How tf-idf works is explained in Section 3.2 and in this section our imple-
mentation details are specified.

Recall the tf-idf normalization scheme from Figure 3.8, according to the
SMART notation described there, our implementation is lnc.ltc. Meaning that
all documents have their terms logarithmicly scaled and cosine normalized. The
queries are also logarithmicly scaled and cosine normalized but is also applied
the inverse document frequency. This choice of implementation makes for fewer
computations without sacrificing precision.

When performing tf-idf ranking it is also necessary to normalize (or stem)
the terms themselves, as is explained in Section 3.3. In our implementation we
normalize the terms by:
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First splitting any word that is written in camel case, such that eg. “first-
NASACamelCase” is transformed into “first NASA Camel Case”. - This is
to separate any variable or method name potentially written in a comment
into its components.

Next any special character such as “.”, “<”, “_”, “\n”, “\t”, “?”, “!”, is replaced
by a whitespace. The reasoning for this is that Java uses dot notation for
classes and if these are mentioned in the comment we want the words to be
split such that “java.class.important” becomes “java class important”. Al-
ternatively we could have allowed such notations to fold in on itself which
is good for some shorthands such as “U.S.A” where it becomes “USA”,
however we are more focused on code notation than regular language no-
tations.

Next everything is turned to lowercase, some terms might be lost in trans-
lation because of this very crude method, meaning that the search engine
loses precision. However this implementation is very fast and makes cer-
tain that we do not make unjustified conclusions on how casefolding2 infers
on a comment in Java.

Next the word is stemmed by the Porter Algorithm [27], for more detail see
Section 3.3.

Lastly before the counting and raiting of the term, we make sure to remove
any stop words. The stop word list used is the “long stopword list” from
RANKS NL [25].

When all the above steps have been taken the term is weighted by logarithm
and normalized, as explained in Section 3.2. Every term is then stored into a
postings-list making an inverse index, which is just an index showing in which
documents a certain term can be found. Also in this index we store the normal-
ized tf-weight now calculated. This makes for faster comparison when matching
the documents to the queries.

Lastly when all documents in the corpus have been added the inverse doc-
ument frequency (idf) for every term is calculated and stored in the database,
for how to calculate the idf see Section 3.2 and for how this data is organized
see Chapter 5.

2the importance and meaning of using capital letters in the middle of a word (also includes
fully capitalized words)
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Chapter 5

Database

The database contains all the information extracted with MUCA and the tf-idf
ranking of the documents.

We decided to work with a MySQL Database Management System (DBMS),
because the developer of this thesis have experience with that particular DBMS.
Alternatively one could have used another DBMS, such as PostgresSQL, one
could have made a special file storage system, or one could keep all information
loaded in RAM. However using simple file storage is very slow for retrieval and
keeping all information in RAM is very expensive when we have gigabytes of
data. Therefore the most practical solution is a DBMS.
The database currently consists of 3 tables, see Figure 5.1:

Couple contains the comment-code couples. It contains information on how
to retrieve the full code belonging to the comment, the full comment and
information about the structure of the code.
The last 5 columns in the couple table is only filled if the code piece is
identified to be a method. More on how the information is found can be
read in Section 4.2.5.
Information about the package- and project name is also stored in the
database, where the project name is used as a foreign key to the project
table.

Project stores any information related to the project itself. Currently it only
contains the name of the project and how many stars it had on GitHub;
on the day it was downloaded for analysis. The project table could poten-
tially be expanded to contain information such as copyright and problem
domain, this discussion is left for future work, see Chapter 10.

Wordcount is the table containing the inverse index, see tf-idf in Section 4.3,
it contains the primary key: word which needs to be unique as the post-
ingslist for the term must not be split into different arrays. If the post-
ingslist for a term was split it would result in serious performance issues,
going from O(n) to O(n2) where n is number of entries in the array. [36].
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The hashMapString is the postingslist converted into string form for easier
storage. The string is formatted as follows: “<id>;<tf-score>|<id>;<tf-
score>|...” and converting this back into a hashMap is very fast as it only
has to split on the two delimters “;” and “|”.
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Figure 5.1: The Database Schema for MUCA
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Chapter 6

Matching/Querying

If one recalls the system-overview Figure 3.1 on page 24, this chapter is about
the second part of the system; matching/querying.

This chapter explains what happens when the system receives a query and
what is done to find the most relevant documents in the database.

6.1 Receiving, Transforming and Matching the
Query

When a query is received from the user, in our case, in the form of a comment.
This comment must be transformed into a query vector, as explained in Section
3.2. However, before that can take place it must first be normalized by a stem-
mer and stop word remover, as explained in Section 3.3 this must include every
step also applied to the documents.

To summarize, an incoming comment query must go through the following
steps:

1. Split on camel case

2. Replace any special character with a whitespace

3. Turn everything to lowercase

4. Stem

5. Remove stop words

6. Calculate tf-idf weight

7. Calculate cosine similarity

When all the above steps have been completed our system applies an extra
step. It adds our pre-rankings from the documents to the cosine similarity
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measure in order to create a final ranking. How exactly this is done will be
experimented on and explained in Chapter 8.

When the final ranking have been created, the list of matching documents
is ordered and the 50 best solutions are returned to the user. The returned
number of documents should be reduced in a version meant for regular use, but
for testing purposes, 50 makes it easier to detect potential drawbacks of the
system.
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Chapter 7

Verifying

If one recalls the system-overview Figure 3.1 on page 24, this chapter is about
the third and last part of the system, the interface that allows the user to verify
the usefulness of a suggested piece of code.

The interface can be designed for both written and spoken programming,
as the rest of the system simply needs an SQL command and a little code to
combine the tf-idf scores together with the pre-ranking. The interesting part of
the user interface is how to confirm that a piece of code is actually useful to the
given problem. For now that task is left to the user, however the MUCA system
does assist in finding the best piece of code related to the comment query, based
on the pre-rank, see Chapter 8.

For the purpose of this project we decided to create an interface for written
programming. Solemnly because it makes for a better testing interface, being
that we have removed the factor of the spoken programming interface. However
the ultimate goal for this project is to convert MUCA into a helpful tool for
spoken programming, but we must recognize that testing with a spoken pro-
gramming interface only makes determining the usefulness or shortcomings of a
comment-to-code-coupling search-engine harder to identify.

7.1 The Potential Interface

When creating a tool that is supposed to help programmers program, an obvious
thought is to improve upon the existing tool. The two top editors for Java-
programming is NetBeans and Eclipse. If one makes a Google search for “How
popular is ’IDE’ ” one will see that Eclipse have more than 39 million results
and NetBeans have less than 1 million. This could indicate that Eclipse is the
tool of choice when programming Java, therefore it seems obvious to create an
Eclipse plugin as the interface for MUCA.

Such an interface could for example work by keeping an eye on the input
stream in eclipse, and whenever a comment is entered; send a silent query to
MUCA. If the query returns any results above a certain threshold the plugin
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could notify the programmer that a possible solution is available, if not it should
remain silent such that the programmer is not distracted needlessly. It could
also be more visual as shown in Figure 7.1, where the interface is constantly
shown and will depict the most relevant solution it can find in MUCA for the
last active comment. By active comment we are referring to the comment that
was either last focused with the marker or last written, whichever occurred last
in time.

The best bonus that could be received from creating an Eclipse plugin is
the direct accessibility to finding coding context. When doing search queries to
Google from a mobile phone or computer, Google will use the location of the
device to make a more precise search, for example if one searches for “painter”
while residing in Aalborg, Google will return a map of painters in Aalborg.
The same principal could be translated to comment-to-code matching. When
a program is writing code, it is possible to tell, by the syntax, what is being
written, for example if the word “class” occurs it is most likely a class, or if the
word “private” is followed by another word and a parentheses it is most likely a
method declaration.

By using the context of the comment it is possible to limit the search space
even further, which makes it possible to find more precise results in the database.
MUCA already extracts the code-pattern of the analyzed code, which can be
used for this exact purpose.
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7.2 The Actual Interface
While the above interface is very good for user studies, being that it can be
designed to record the use of the system and by being an Eclipse plugin it will
be easily accessible for programmers, however user studies is not the focus of
this thesis. Before creating a tool exactly for that purpose, it is more important
to test the validity of the search engine itself, for that purpose a quick and dirty
solution is just as good and will allow for more time for testing. The minimum
requirement is that it can take a textual input and return a visual representation
of a list of comment-code pairs.

The current implementation of the interface is made in PHP because it makes
for a quick visual representation and the developer of this thesis have experience
with PHP and MySQL.

A screendump from the current implementation can be seen in Figure 7.2.
It displays three boxes:

Relevant Info contains any related information stored in the database that
can be important to view while testing. Some of these, eg. commentStartLine,
would be hidden in a version designed for regular use as it conveys very
little information to a programmer that only needs to determine if the
code can solve his current problem.

Comment contains the comment as it is stored in the database. If a set of
single line comments are being used as a multiline comment, see Section
4.2.4, all the related single line comments will be shown here.

Code will display the codeblock, see Section 4.2.4, related to that specific com-
ment.

The buttons in the top does the following:

Go! Searches the database with the above input as a query.

Previous Fetches and displays the previous comment-code pair.

Next Fetches and displays the next comment-code pair.

If there is no previous or next comment-code pair in the list it will return
with nothing.
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Figure 7.2: MUCA Interface Screen Dump
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Chapter 8

Testing

This chapter details the tests performed on the MUCA system and the results
thereof. All test have been performed on a database containing 3.1 million
documents (comment-code pairs), 1517 different projects and more than 174000
different terms gathered from roughly 2.8 GB of .java files.

8.1 Correct Comment to Code Coupling

The first test shows that the idea of coupling comments to codeblocks works.

Procedure

We will extract all comment-code pairs for 2 different projects in the MUCA
database and manually see if they match up to the right piece of code by looking
in the source file at the same time; in order to compare the alternatives. If a
comment-code pair is coupled wrongly we will determine if the reason for this
is a flaw in the logic or a bug in the MUCA implementation.

In order for a comment-code pair to be correctly matched the comment must
in some way describe the code it is matched to. If a comment is matched to a
too big piece of code we do not count this as a flaw, since the code the user is
looking for is still correctly linked to the right comment.

Results and Conclusion

Project
Name

GitHub
Stars

Total
Comments

Correctly
Coupled

Wrong by
Logic

Wrong by
Bug

Describes
Nothing

Dead
Code

Copyright
Comments

WikiSort 939 122 111 5 2 2 1 1
mixare 300 553 384 19 28 2 36 84

Table 8.1: Correct Comment to Code Coupling Results
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As can be seen in Table 8.1, the logic of MUCA is not flawless. First of all
MUCA is not able to detect if a comment only consists of out-commented code,
that is what is represented in the column “Dead Code”.

MUCA is not designed for handling comments that does not relate to a
codeblock, as was found 2 examples of in WikiSort and 2 in mixare. See Listing
8.1, this comment is about performance but is placed between the opening
licens-comment and import, following the import is a class declaration. The
comment itself seems important, but does not describe any specific codeblock.

Listing 8.1: Comment That Describes Nothing
8 ∗/
9

10 // the performance o f WikiSort here seems to be complete ly ←↩
at the mercy o f the JIT compi ler

11 // sometimes i t ' s 40% as f a s t , sometimes 80%, and e i t h e r way←↩
i t ' s a l o t s lower than the C code

12
13 import java . util . ∗ ;
14 import java . lang . ∗ ;
15 import java . io . ∗ ;

MUCA’s logic also seem to fall short with some specific cases, where a com-
ment describes more than it have been linked to. An example of this can be
seen in Listing 8.2, where the comment have been matched to the 2 lines of
code following it, however it describes the whole scope. This particular example
is a bug in MUCA, either caused by a problem with the number of brackets
on the line before it, or because the comment might have been treated as a
single line comment. Another example is Listing 8.3, in this case a true single
line comment have been used for describing the whole scope. This phenomenon
was considered when designing MUCA’s logic, but we decided if a single line
comment was used in the start of a scope, it would be more likely that the
comment was describing the variable declarations, an example of this can be
seen in Listing 8.4.

Listing 8.2: Comment Describing Whole Scope 1
646 } else {
647 // t h i s i s where the in−p lace merge l o g i c s t a r t s !
648 // 1 . pu l l out two i n t e r n a l b u f f e r s each conta in ing ←↩

A unique va lue s
649 // 1a . ad jus t b lock_s ize and bu f f e r_s i z e i f we ←↩

couldn ' t f i nd enough unique va lue s
650 // 2 . loop over the A and B subarrays with in t h i s ←↩

l e v e l o f the merge s o r t
651 // 3 . break A and B in to b locks o f s i z e '←↩

block_s ize '
652 // 4 . " tag " each o f the A b locks with va lue s ←↩
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from the f i r s t i n t e r n a l bu f f e r
653 // 5 . r o l l the A b locks through the B b locks and←↩

drop/ ro t a t e them where they belong
654 // 6 . merge each A block with any B va lues that ←↩

f o l l ow , us ing the cache or the second i n t e r n a l ←↩
bu f f e r

655 // 7 . s o r t the second i n t e r n a l bu f f e r i f i t e x i s t s
656 // 8 . r e d i s t r i b u t e the two i n t e r n a l b u f f e r s back ←↩

i n to the array
657
658 int block_size = ( int ) Math . sqrt ( iterator . length ( ) ) ;
659 int buffer_size = iterator . length ( ) /block_size + 1 ;

Listing 8.3: Comment Describing Whole Scope 2
868 } else if ( comp . compare ( array [ A . end ] , array [ A . end − 1 ] ) < 0)←↩

{
869 // these two ranges weren ' t a l r eady in order , so←↩

we ' l l need to merge them !
870
871 // break the remainder o f A in to b locks . f i r s tA ←↩

i s the uneven−s i z e d f i r s t A block
872 blockA . set (A . start , A . end ) ;
873 firstA . set (A . start , A . start + blockA . length ( ) % ←↩

block_size ) ;

Listing 8.4: Antisipated Use of Single Line Comment
1 void regularUseOfSingleLine ( int inputInteger ) {
2 // Assign d i f f e r e n t va lue s to v a r i a b l e s a and b
3 int a = 7 ;
4 int b = 9 ;
5
6 }

Another problem with MUCA’s logic is comments that actually describes
the regular code lines before itself. Such an example can be seen in Listing 8.5.
As the logic is designed to look forward in nearly all cases, this is expected to
happen. However in the two scenarios where we have observed this, the word
“above” have been present in both. This discovery might have some influence
on a potential extension of MUCA’s logic. - This particular flaw is one of the
things Beat Fluri et al. [9] have attempted to solve.

Listing 8.5: Comment Describing Code Before Itself
145 private static int cache_size = 512 ;
146 private T [ ] cache ;
147
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148 // note that you can e a s i l y modify the above to a l l o c a t e a←↩
dynamical ly s i z e d cache

149 // good cho i c e s f o r the cache s i z e are :
150 // ( s i z e + 1) /2 − turns in to a f u l l −speed standard merge ←↩

s o r t s i n c e everyth ing f i t s i n to the cache
151 // sq r t ( ( s i z e + 1) /2) + 1 − t h i s w i l l be the s i z e o f the A←↩

b locks at the l a r g e s t l e v e l o f merges ,
152 // so a bu f f e r o f t h i s s i z e would a l low i t to sk ip us ing ←↩

i n t e r n a l or in−p lace merges f o r anything
153 // 512 − chosen from c a r e f u l t e s t i n g as a good balance ←↩

between f ixed−s i z e memory use and run time
154 // 0 − i f the system simply cannot a l l o c a t e any extra ←↩

memory whatsoever , no memory works j u s t f i n e
155
156 public WikiSorter ( ) {
157 @SuppressWarnings ("unchecked" )
158 T [ ] cache1 = (T [ ] ) new Object [ cache_size ] ;
159 if ( cache1 == null ) cache_size = 0 ;
160 else cache = cache1 ;
161 }

When looking through mixare’s comments three bugs was found, the first
bug only occurs with in-line comments that is coupled to code on the same line
as itself. In this case MUCA is not setting the code-start-line-number which
makes it impossible to extract the coupled code. However it can be seen from
the comment-start-line-number and the code-last-line-number that the
logic have worked. However they are still marked as bugs in the Table 8.1.

The second bug is a problem with the Windows/Unix implementation of
newlines. Some repositories have been written in Windows and therefore have
different newlines than Unix does. The way MU is currently implemented it
does not differentiate between operating systems and expects the newlines to
be formatted as the Unix implementation. The difference is that Unix uses: “\n”
and Windows uses: “\r\n”. MU then inserts a “<br />”-tag before “\n”, which
makes the newlines in Windows files look like: “\r<br />\n”. This creates an
issue with how MU and Java interprets newlines, Java sees both “\r” and “\n” as
newlines and will therefore see “<br />” standing alone on a line (which is the
breakpoint for a simple codeblock) even if that “<br />” is ending the previous
code line. This have resulted in about 1/3 of the bugs for mixare. An example
of this problem can be seen in Listing 8.6, where MUCA believes this comment
only couples to line 1055, but it should have been related to all the lines.

Listing 8.6: Wrong Interpretation of Lineshift
1053 /∗ a s s i gn i c on s to the menu items ∗/
1054 <br />
1055 item1 . setIcon ( drawable . icon_datasource ) ;
1056 <br />
1057 item2 . setIcon ( android . R . drawable . ic_menu_view ) ;
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1058 <br />
1059 item3 . setIcon ( android . R . drawable . ic_menu_mapmode ) ;
1060 <br />
1061 item4 . setIcon ( android . R . drawable . ic_menu_zoom ) ;
1062 <br />
1063 item5 . setIcon ( android . R . drawable . ic_menu_search ) ;
1064 <br />
1065 item6 . setIcon ( android . R . drawable . ic_menu_info_details ) ;
1066 <br />
1067 item7 . setIcon ( android . R . drawable . ic_menu_share ) ;

The third bug is an implementation oversight. In Java the switch statement
uses “case:” and “break;” as scope delimiters. MUCA only looks for brackets
to find scopes, therefore any comment that describes a case-scope have been
marked as a bug since it is only linked to the first code line in that case-scope.
This makes up another 1/3 of the bugs for mixare.

Nearly all the logical flaws in mixare comes from comments being used for
segmentation of the code, see the example in Listing 8.7, these have been marked
as a flaw because MUCA will only couple the comment with the first method it
encounters, however this comment actually relates to several methods. Whether
or not to implement this detail into the logic is a question for another project,
there might not be any benefit from such a simple comment.

Listing 8.7: Comment for Segmentation
1 /∗ ∗∗∗∗∗∗∗∗∗ Operators ∗∗∗∗∗∗∗∗∗∗ ∗/
2
3 public void setStartPoint ( ) {
4 . . .
5 }
6
7 public void createOverlay ( ) {
8 . . .
9 }

10
11 . . .

8.2 Matching Query to Comment
The next step for MUCA after coupling the comment to code, is to match a
given query to a related document (comment-code pair). We want to make sure
this is done correctly.

Procedure
To prove the matching is correct, we will first find a comment in a code file and
copy it directly into MUCA’s search interface. We expect as a result to be given
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that exact comment-code pair as the first item returned from the search.
Next this comment will be slightly modified and again used in MUCA’s

search interface. We here expect that the comment-code pair, where the com-
ment originally came from, will be among the top 10 returned results.

As a control we will enter totally different queries that, first only contain one
of the related words and secondly does not contain any of the related words.

Results and Conclusion
Note here that in this experiment the pre-ranking is turned off. This is done to
show that MUCA’s indexing is working correctly as well as show that the tf-idf
weighting is implemented correctly and works for comment matching.

Comment Searched With Bag Of Words MUCA Rank
Placement

Expected
Placement

“you want 1000s of threads
to run on the GPU all at
once for speedups”

“1000 thread gpu
onc speedup”

1 1

“GPU all at once for
speedups”

“gpu onc speedup” 1 < 10

“threads to run on the
GPU all at once for
speedups”

“thread gpu onc
speedup”

1 < 10

“you want 1000s of
threads”

“1000 thread” > 50 < 10

“otherwise just use normal
GPU assignment”

“gpu otherwis
normal assign”

> 50 > 50

“otherwise just use normal
assignment”

“otherwis normal
assign”

> 50 > 50

“GPU: otherwise just use
normal GPU assignment
for GPU”

“gpu otherwis
normal assign”

28 < 50

Table 8.2: Query to Comment Matching Results

If one looks at Table 8.2, one sees the exact comment string used to search
with, the resulting bag of words (the terms MUCA recognizes for querying),
the resulting ranking and expected ranking. The column Expected Placement
indicates in what range, in the result, we expect to find the comment: “you want
1000s of threads to run on the GPU all at once for speedups”.

On the first row in Table 8.2 is the exact comment string that we know
already exists in the database, and as expected it is the first result that MUCA
returned.

On the second, third and fourth row in the table we change the query such
that it no longer contains all search terms. What can be seen in the table is
that row two and three still are returned as the first result, but the fourth row
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is not within the 50 first results. This can be explained by looking at the term’s
individual idf weight, see Table 8.3, note here that the idf weight of “gpu” and
“speedup” are very high (the range in the database goes from 0.61 to 6.50), that
explains why row two and three are still high in the result. However it does not
explain why the fourth row is not even in the 50 first results, since it has an idf
weight of 3.23 which is still a high weight. The problem with the fourth row is
located in a problem with MUCA itself. The current implementation of MUCA
allows comments such as “/* 1000 * 1000 */” to be analyzed, because MUCA
have detected 4 spaces (meaning it consists of at least 5 words), however when
such a comment is passed on to the tf-idf ranker, that comment is normalized
to contain two terms “1000” and “1000”, when that comment is ranked it will be
strongly matched to any query containing the term “1000”, to make the problem
complete this type of comment seems to be abundant in the database, making
the 50 first results of querying with row four; a list of comments only containing
the term “1000”.

Term 1000 thread gpu onc speedup otherwis normal assign
Idf 3.23 1.92 4.18 2.38 4.71 1.75 2.33 2.21

Table 8.3: Idf of Relevant Terms

Moving on to row five and six in Table 8.2, we queried the database with
two unrelated queries, to show that MUCA does not always return the same
specific document. First we allowed the query to keep one term from the first
query and next we removed all related terms, as can be seen from the table,
neither of them returned the document we were trying to avoid. In an attempt
to force the comment “you want 1000s of threads to run on the GPU all at once
for speedups” back into the results, we appended the word “GPU” 3 times to
the unrelated query, making the term “gpu” three times as important as any of
the other terms, see Section 3.2.5, this resulted in the the comment reappearing
in the result as the 28th result, as is shown in Table 8.2 row 7, showing that the
Cosine Similarity is implemented correctly.

To summarize; the system works as intended. Given a particular query it
returns with the expected result, even when the query is modified the system will
return the expected result as long as the query maintains the correct keywords.
Also as expected, when querying with another comment the first comment does
not show up again, unless forced to by modifying the second query enough.

8.3 Final Ranking Test

As mentioned in Section 2.4 and 4.2.6, MUCA is utilizing a pre-rank. This
pre-rank is a static measure of quality and combined with the dynamic tf-idf
rank it will give a final ranking, which makes MUCA able to serve the user a
useful and relevant piece of code based on a given query.

The final ranking should respect both relevance and quality, as serving a
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document that has a very high quality but is not related; or serving a document
that has a very high relevance but no quality, will both be worth less than a
combination of the two.

In order to combine the two scores we must first normalize them with respect
to each other. The cosine similarity score will always be between 0 and 1
[40], where the current values of stars and numberOfTimesCalled from the
database, range from 294 to 13338 and 0 to 83409 respectively. We want to
scale the values of stars and numberOfTimesCalled down to the same range
as the cosine similarity, this will make the combination of the ranks more fair.
We suggest two ways to do this

Normalized By Log is inspired by the way tf-idf is calculated and normalized
by the cosine similarity. The idea is to use logarithm to lower the very large
values, such that we follow the logic: “Mentioned once is worth something,
mentioned twice even more so, but mentioned 200 times is not twice as
important as 100”. Next we normalize the output such that the values are
between 0 and 1. If a is the minimum value, b the maximum value, and
x the star or numberOfTimesCalled entry for a document, then its pre-
rank weight is calculated as in Formula 8.1. The two specific calculations
for each pre-rank weight will be explained shortly.

Exponential Function seemed like a possible alternative, because an expo-
nential function will smooth out the range and can map any value to a
0 to 1 output. If f(x) is the linear normalization described by Formula
8.2, where a is the minmum value and b the maximum value, then the ex-
ponential normalization of the star or numberOfTimesCalled is PW expo

d ,
where x is the value from the star or numberOfTimesCalled and N a real
number greater than 1.

PW log
d =

log(x− a+ 1)

log(b− a+ 1)
b ≥ a, x ≥ a (8.1)

f(x) =
x− a

b− a
(8.2)

PW expo
d = Nf(x)−1 N > 1 (8.3)

With the above logic in place, the logarithmic normalized pre-rank weight of
the star-value is calculated as shown in Formula 8.4, where ds is the number of
stars that specific document has. The logarithmic normalized pre-rank weight
of the numberOfTimesCalled-value is calculated as shown in Formula 8.5, where
dtc is the number of times that documents code have been called, as calulated
by MUCA.

PWSlog
d =

{
log(ds−294+1)

log(13338−294+1) if ds ≥ 294

0 if ds < 294
(8.4)
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PWT log
d =

log(dtc − 0 + 1)

log(83409− 0 + 1)
(8.5)

With the above logic in place, the exponential normalized pre-rank weight
of the star-value is calculated as shown in Formula 8.7, and the exponential
normalized pre-rank weight of the numberOfTimesCalled-value is calculated as
shown in Formula 8.9.

fS(x) =
x− 294

13338− 294
(8.6)

PWSexpo
d =

{
10fS(ds)−1 if ds ≥ 294

0 if ds < 294
(8.7)

fT (x) =
x− 0

83409− 0
(8.8)

PWT expo
d =

{
10fT (dtc)−1 if dtc ≥ 1

0 if dtc < 1
(8.9)

Combination

After the weights have been calculated we want to combine them, the easiest
way to do so is by adding them together since their values have been normalized.
However we also want to see if changing the influence of each rank have any
effect on the final ranking, we therefore introduce three weights, wtfidf , wps,
wpt, that will be used to combine the three ranks into one. If wtfidf , wps,
wpt are numbers such that wtfidf + wps + wpt = 1 then the final ranking with
the exponential calculations is calculated as seen in Formula 8.10 and the final
ranking with the logarithmic calculations is calculated as seen in Formula 8.11.

ranktotalExpo
d = wtfidf ∗ ranktfidfd + wps ∗ PWSexpo

d + wpt ∗ PWT expo
d (8.10)

ranktotalLog
d = wtfidf ∗ ranktfidfd + wps ∗ PWSlog

d + wpt ∗ PWT log
d (8.11)

Procedure

We first define a comment query that will relate to several different projects in
the database. For our experiment that query will be: “This method draws the
circle”. This query was chosen because we know there is several different mobile
application repositories in the database and it is a common act to draw circles
in such applications. Next this query is given to the MUCA search interface,
only using the tf-idf ranking. The result will be the basis for our test.
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Then we run the same query through the MUCA search interface using the
final ranking measures, shown in Formula 8.10 and 8.11, with 4 different set of
weights, meaning we will collect 9 different result sets. The different weighting
schemes will be (wtfidf , wps, wpt): 0.33, 0.33, 0.33 and 0.5, 0.25 , 0.25, and
0.75 , 0.125 , 0.125, and 0.25 , 0.375, 0.375. These weighting schemes have been
chosen because we want to see what happens with; a fully fair distribution, a
fair distribution between tf-idf and pre-ranks as a whole, a distribution that
favors the tf-idf ranking, and a ranking that favors the pre-ranking.

Results and Conclusion
The results can be seen in Table 8.5 and information about the documents
themselves can be seen in Tabel 8.4. Note that in Table 8.4, we have replaced
the actual document id with another more readable one, it is not the 50 first
documents in the database, but the 50 first results found by only using cosine
similarity.

If one looks at the listings in Table 8.5 one can see that only 2 listings are
sorted in the same way, the two listings calculated with the weighting: 0.75,
0.125, 0.125. The fact that every other listing is different from each other
indicates that both the weighting and the chosen formula makes a difference.

Concluding which formula and weighting is best is not easy. When looking at
Table 8.4 we can see that there is only one document on the list that is actually
a method (No. 37), indicated by every other row being set to -1, which is the
default value in the database for unset. No. 37 also have more than 5.000 stars
and by that reason should make this document the best fit, however looking at
the comment itself it is: “Draws a circle with an axis”, making it less related to
our search query because of the term “axis” therefore it is acceptable if it is not
the first document presented.

Looking at Table 8.4, and having seen that the content of the related com-
ment’s codeblocks are near identical (save for tabulation and the use of other
variable names), with exception to No. 37. It stands to reason that the best
top 10 listing should contain every document that has a high amount of stars.
From the Table 8.4 every document with more than 2.000 stars is: 2, 12, 18,
22, 36, 37, 44 and 50. The last coulmn, Valid Count (VC), shows how many
of the documents with more than 2.000 stars are within the resulting listing. If
the number of high star documents is our measure of the best listing, the last
logarithmic formula is the best final ranking method.
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Document id Stars # of times mentioned tf-idf weight
1 1215 -1 0.9425
2 2261 -1 0.9425
3 386 -1 0.9425
4 517 -1 0.9425
5 1392 -1 0.9425
6 915 -1 0.9425
7 369 -1 0.7695
8 310 -1 0.7695
9 578 -1 0.7695
10 517 -1 0.7695
11 578 -1 0.7695
12 2300 -1 0.7695
13 1392 -1 0.7695
14 648 -1 0.7695
15 448 -1 0.7695
16 503 -1 0.7695
17 760 -1 0.7695
18 5054 -1 0.7695
19 992 -1 0.7695
20 1392 -1 0.7695
21 1392 -1 0.7695
22 5054 -1 0.7695
23 943 -1 0.7695
24 760 -1 0.7695
25 760 -1 0.7695
26 1891 -1 0.7695
27 1215 -1 0.7695
28 578 -1 0.7695
29 448 -1 0.7695
30 709 -1 0.7695
31 922 -1 0.7695
32 386 -1 0.7695
33 942 -1 0.7695
34 446 -1 0.7695
35 959 -1 0.7695
36 2261 -1 0.7695
37 5762 3 0.7695
38 1555 -1 0.7695
39 533 -1 0.7695
40 503 -1 0.7695
41 782 -1 0.7695
42 915 -1 0.7695
43 915 -1 0.7695
44 2261 -1 0.7695
45 478 -1 0.7695
46 915 -1 0.7695
47 533 -1 0.7695
48 1891 -1 0.7695
49 1248 -1 0.7695
50 2300 -1 0.7695

Table 8.4: Document Information
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Chapter 9

Conclusion

In order to conclude on the Problem Statement:

“How does one create a search engine that can couple comment
to code and rank these pairs in favor of relevance and quality?”

We must first summarize the results of the tests.

Can MUCA correctly couple code and comment: Yes, for the most part.
MUCA still have some bugs and a few flaws in its logic was discovered,
but whether these flaws are caused because of irregular use of comments
or because MUCA’s logic needs to be more sophisticated is still up for
debate.

Can MUCA match a query to a comment: Yes, we saw in Section 8.2 that
MUCA can find an exact comment, it can also find the same comment even
when it is slightly modified. But when using an entirely different query it
will not include the first result.

Does the ranking in MUCA make a difference: Yes, MUCA have been
specifically designed to assist programmers in finding useful code, it does
so by finding relevant matches in the corpus and orders them in favor of
quality and relevance. However MUCA will still need some fine tuning
before it is ready for regular use.

Returning to the Problem Statement, can MUCA be the answer to the ques-
tion? Yes, it can. MUCA is in nearly all sense a search engine, the only thing
it is lacking is an automated crawler. MUCA’s logic is also at an acceptable
level, but extending the logic even further should be a concern for future work.
But most importantly, MUCA is able to identify some measure of quality in
the code. Already now with only 1.500 repositories in its corpus, we are seeing
many duplicates, therefore it is even more important to rank the documents by
quality and try to remove duplicates.

Lastly we return to the inspirational problem of this thesis:
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“How does one create a system that can take spoken comments
and suggest quality programming solutions based on pre-written so-
lutions from the internet?”

Is MUCA the first step to realizing a solution to that problem? Perhaps.
Currently MUCA works at an acceptable level, but it needs close to flawlessly
before it is ready for use in the Spoken Programming context, such that we do
not unnecessarily burden the programmer. The next and final chapter will go
into details about different aspects of MUCA that can be improved.
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Chapter 10

Future Work

In this final chapter we will shortly touch upon ideas for improvements of the
MUCA system and potential research topics opened by the creation of MUCA.

10.1 Search Engine Improvements

As MUCA is a search engine there is a list of improvements that will make
MUCA both faster and more precise.

Duplicate Detection: In search engines that crawl the internet, it is common
to encounter a page with the exact same content, as people take backups,
copy a piece of text on to their blog or in any other way copy a web-page’s
content. If duplicate entries in the database is not detected it can clutter
up the database. On the other side it could also be interesting, for a tool
such as MUCA, to also analyze the reuse of code parts in other programs,
which could be combined with duplicate detection.

Dead Code Detection: As mentioned in Chapter 2, analyzing dead code
gives us no benefit, it might in the end give bad matches to the users of
MUCA. Therefore adding functionality that makes it possible for MUCA
to detect dead code that resides within comments will be a benefit.

Detect Copyrights: When copying code from OSS projects, it is important to
make a note of what copyright this particular project is under. If MUCA
is to be used in real-life programming, it will be important to detect the
copyright of any given project and or file in the corpus. Currently the
copyright settings on GitHub is specified as: If there is no license on the
GitHub page or in the file itself it will default to: “... This means that you
retain all rights to your source code and that nobody else may reproduce,
distribute, or create derivative works from your work. ...” [14]. With
copyright laws in the picture, MUCA can have trouble being useful if the
user is not informed correctly.
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Detect and Search by Context: As was mentioned in Chapter 7, it could
be beneficial to detect and search by the use of code context, such that if
a comment is written before a class declaration, MUCA might only search
for classes. Such a feature could improve precision of the matching.

Detect Problem Domain: Freitas et al. [11] was focused on making program
comprehension from, among other information, the problem domain of a
project. Detecting the problem domain in a project could potentially
create another measure for precision in the matching between query and
documents.

Make MUCA Web Based: Currently MUCA have no way of crawling. MUCA
is currently delivered a set of data files and analyzes them into a database.
In order to make MUCA a fully fledged search engine it will need the abil-
ity to crawl for new .java files on its own. This could potentially be
achieved by making a deal with GitHub.

10.1.1 Query Improvements

The following improvements have standard implementations and could improve
precision of the matching process.

Implement Phrase and Relational Queries: This will allow for more pre-
cise query input, as words such as “the” can gain meaning in a phrase such
as “The Queen of England”.

Implement Synonyms: By using synonyms in the search query it will be
possible to match more documents to the query and in most cases provide
a better result. The use of synonyms can also open up for using parts of
the code, such as method names, for indexing the document, as suggested
by Matthew J. Howard [15].

Implement Phonetic Search: Will potentially increase the number of matches
to a query. How this feature of a search engine works within the area of
comments could be interesting to research. Even more so for an imple-
mentation of MUCA with a spoken interface.

10.2 Potential Research

Create Spoken Programming Interface: This first version of MUCA have
made it possible to search for code solutions by comments. In order to
get back to our motivational problem statement, one must design a new
interface, specifically for spoken programming. Such a tool could be com-
bined with a spoken programming interface and language, such as the one
designed in the LARM report [8].
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The Use and Re-use of Code in OSS Java projects: AsMUCA now have
been developed, a potential research project could be to investigate how
often programmers of different capability and position writes or re-uses
code. One could potentially design and implement the Eclipse plugin for
interfacing with MUCA, as suggested in Chapter 7. This plugin could then
implement a data logger, retrieving information about the use of MUCA.

10.3 Other
Full XML As mentioned in Chapter 4, adding a full XML scheme to MU could

make it useful in more ways and open up for the use of regular XML tools.
This could potentially give a performance boost to MUCA and make MU
useful outside of this project context.
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