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Synopsis:

This Master of Science Thesis reviews the
concepts of vertex coloring and encompasses
a thorough study of the chromatic number
for a graph G. The main emphasis is on
Brooks’ theorem in various editions. Brooks
proved, in 1941, the inequality between a
graph’s maximum degree and its chromatic
number. The basic traits for graphs are
accounted for, as well as fundamental
subtopics and theorems essential for un-
derstanding and completing the proofs of
interest.
An examination of a more recent version
of Brooks’ theorem by Chartrand and
Zhang reveals that although terminology
and phrasing is very diverse, the disparity
in mathematical technique is minimal as
both utilizes paths, greedy coloring, and
permutation.
In 1976 Catlin proved an extension to the
theorem of Brooks and recently a unified
version of these was published by Vaidy
Sivaraman. He utilizes independence in
graphs, matchings, and Hall’s condition
in order to complete the proof. As the
original unified proof seemed insufficient
in the sense that the author left out some
intermediate results and explanations, an
elaborate version is presented here.





Dansk resumé

Dette speciale er skrevet ved Institut for Matematiske Fag, Aalborg Uni-
versitet og behandler begreber indenfor punktfarvning af grafer. Hvis man
ønsker at punktfarve en graf, står man over for følgende optimerings-
problem: Hvad er det mindste antal farver, der er nødvendige for at kunne
tildele en farve til hvert punkt, således at to nabopunkter ikke har samme
farve?
Dette mindste tal er kendt som det kromatiske tal og der gives en grundig
gennemgang af egenskaber ved dette kromatiske tal χ(G) for en graf G.
Kromatisk grafteori kan dateres tilbage til 1850’erne, hvor Francis Guthrie
opdagede det velkendte firfarveproblem: Kan ethvert landkort farves med
højst fire farver, således at lande, der deler grænse, ikke har samme farve?

Hovedvægten lægges på Brooks’ sætning i forskellige udgaver. Brooks be-
viste i 1941 uligheden mellem maksimumsgraden ∆(G) og det kromatiske
tal χ(G) for en graf G. Der redegøres naturligvis for det basale indenfor
grafteori og for fundamentale underemner, såsom grådig farvning og kri-
tiske grafer, og for sætninger, der er essentielle for at forstå og gennemføre
de beviser, der har interesse i dette speciale.

En gennemgang af en nyere version af Brooks’ sætning, udarbejdet af Char-
trand og Zhang, viser, at på trods af stor diversitet i terminologi og formu-
lering, er forskellen i den matematiske teknik minimal, da begge anvender
veje, grådig farvning og permutation.

I 1976 beviste Paul A. Catlin en sætning, der betragtes som en udvidelse
af Brooks’ sætning. Catlins sætning siger, at hvis en graf G opfylder
betingelserne i Brooks’ sætning, så indeholder G en monokromatisk, mak-
simal, uafhængig delmængde. For nyligt blev en forenet version af disse
bevist og publiceret af Vaidy Sivaraman. Han anvender uafhængighed i
grafer, matching og Halls betingelse for at gennemføre beviset. Hans be-
vis er dog utilskrækkeligt, forstået på den måde, at visse mellemregninger
og forklaringer er udeladt. Derfor gives der i dette speciale en noget mere
uddybende og detaljeret version af beviset.





Preface

This Master of Science Thesis is written by Helle Blicher in spring 2015
during the last semester of a Master’s degree programme in Mathematics at
the Department of Mathematical Sciences at Aalborg University.

The primary literature is "Chromatic Graph Theory" by G. Chartrand and
P. Zhang, although Reinhard Diestel’s "Graph Theory" has been consulted.
Full bibliography is provided on the last page.

The reader is expected to have a certain knowledge of Graph Theory be-
forehand and to possess the mathematical qualifications corresponding to
completion of a bachelor education in Mathematical Sciences as a mini-
mum.

The author wishes to thank her supervisor Leif Kjaer Joergensen for his help
and supervision, and the staff at Department of Mathematical Sciences at
Aalborg University for their support.

Reading instructions
The first chapter will introduce the reader to the basics of graph theory and
the terminology used throughout.
The chromatic number is introduced in the second chapter along with greedy
coloring and color-critical graphs.
The third chapter is devoted to Brooks’ theorem while the fourth and final
chapter recapitulates the contents of the thesis.

If nothing else is mentioned then all the graphs in question are simple and
finite.

Sections, figures, mathematical definitions, etc., are numbered according to
the chapter, i.e. the first figure in Chapter 2 has number 2.1 etc. References
to an equation is on the form (x.y).
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Introduction

Within the mathematical field of Graph Theory the most well-known and
studied area is inarguably coloring. Whether it be vertex coloring or edge
coloring, new and improved studies and proofs are being published regularly.
In this thesis the subject of vertex coloring is fundamental. When coloring
the vertices of a graph G, one is faced with an optimization problem; what
is the minimum number of colors necessary in order to assign a color to
each vertex such that no to adjacent vertices have the color? This number
is known as the chromatic number of G, denoted as χ(G).

Chromatic graph theory dates back to the 1850’s where Francis Guthrie
discovered the well-known Four Color Problem: Can the countries of every
map be colored with four or fewer colors so that every two countries with a
common boundary are colored differently?
Although it is desirable to obtain a χ(G)-coloring, it may not be as easy to
do as it might seem. Hence, the method of greedy coloring comes in handy
as it, in addition to coloring without using an excessive number of colors,
provides an upper bound for the chromatic number.

The purpose of this thesis is to examine a specific and fundamental result in
the theory of graph coloring, namely Brooks’ Theorem of 1941. He proved
the, intuitively known, inequality between a graph’s maximum degree and
its chromatic number. Obviously, the terminology and the way mathemati-
cal texts were phrased at the time, was quite different from that of modern
times. Due to this diversity within the mathematical methods and language,
various proofs will be scrutinized, thus covering a greater area of graph the-
ory.

In 1976 Catlin proved an extension to the theorem of Brooks and recently,
a unified version of these was published by Vaidy Sivaraman. An elaborate
version of Sivaraman’s unified proof will be presented in this thesis.

1





Chapter 1

Terminology and Essential
Graph Theory

1.1 Terminology
A graph G consists of a finite, nonempty set V of vertices and a set E of
edges. If u and v are vertices in G, then the joining edge between them is
denoted e = uv. Hence, an element of the set E is a 2-element subset of V .
G is often written as G = (V,E), V as V (G), and E as E(G). The number
of vertices in G determines the order of G denoted as |G| or n, while the
number of edges determines the size of G denoted as ||G|| or m. Two ver-
tices, u and v, connected by an edge uv are adjacent and are referred to
as neighbors. Similarly, if two distinct edges share a vertex they are also
adjacent.

Another characteristic for a graph G is the degree which is based in the
degrees of the vertices. The degree of a vertex v is the number of vertices
adjacent to v; i.e. v’s neighbors. Equivalently, the degree of v is the number
of edges incident with v. A vertex v is incident with an edge e if and only
if e = uv or e = vu. The vertex with the largest degree determines the
maximum degree of G denoted as ∆(G) while the minimum degree of
G, determined by the vertex with the smallest degree, is denoted by δ(G).
Thus for a graph G of order n the following applies:

0 ≤ δ(G) ≤ deg v ≤ ∆(G) ≤ n− 1.

A very important member of the graph family is the complete graph.
A graph G is complete if and only if every two distinct vertices in G are
adjacent and a complete graph of order n will be denoted as Kn. The size
m of Kn is easily calculated by(

n
2

)
= n (n− 1)

2 .
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Figure 1.1: A complete graph of order 5.

A graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G) is a subgraph of G
and if V (H) = V (G) then H is a spanning subgraph of G. H can also
be a proper subgraph of G if either V (H) is a proper subset of V (G)
or E(H) is a proper subset of E(G); i.e. H 6= G. Furthermore, H is an
induced subgraph if S is a nonempty subset of V (G) such that the sub-
graph H = G[S] of G induced by S has S as vertex set and two vertices are
adjacent i G[S] if and only if the same two vertices are adjacent in G.

Figure 1.2: A connected graph G, an induced subgraph H1, and a span-
ning subgraph H2.

1.2 Connectivity
A graph G is connected if every two vertices of G are connected. This means
that there must exist a u − v walk between every two vertices u and v of
G. A walk in which no edge is repeated is called a trail and if no vertices
are repeated then the walk is considered a path. The minimum length of
any path between to vertices u, v is called distance and is denoted d(u, v).
Such a path is also known as a u− v geodesic.
If a graph G is not connected it contains components which are connected
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independent subgraphs as seen on figure 1.3.

Figure 1.3: An unconnected graph G consisting of two components, H1
and H2.

Since Brooks’ Theorem eliminates odd cycles and complete graphs one must
understand the meaning of these. As explained earlier a complete graph is
one where every two distinct vertices are adjacent. A cycle of a graph G is
a path from one vertex v through distinct vertices and back to v. The lengt
of a cycle is determined by the number of edges traveled and so an odd cycle
would be one traveling along an odd number of edges.

Figure 1.4: A connected graph G, a path in G, and a cycle in G.

If a graph contains no cycles it is referred to as a tree.

When determining the connectivity of a graph G one is actually examining
the number of vertices or edges that must be removed for G to be discon-
nected or trivial (n ≤ 1). A so called vertex-cut would then be a set S
of vertices such that G − S is disconnected and the minimum number of
vertices for this to be possible is called the vertex-connectivity (or just
connectivity) of G and is denoted by κ(G).
Thus, for every graph G of order n,

5



0 ≤ κ(G) ≤ n− 1.

If κ(G) = k ≥ 1, then G is considered k-connected. For any complete
graph Kn the connectivity is defined as n− 1, since the removal of less than
n − 1 vertices will result in a smaller complete graph, hence obtaining a
trivial graph is necessary in order for Kn to be disconnected.

If a connected graph contains no cut-vertices (the removal of a single cut-
vertex results in a disconnected graph) the graph is considered nonseparable.
A connected nonseparable subgraph is called a block if it is not a part of a
larger block.

Figure 1.5: Blocks

A block that contains exactly one cut-vertex is called an end-block and a
connected graph with cut-vertices must contain two or more end-blocks.

An edge-cut is a set X of edges such that G−X is disconnected. The mini-
mum number of edges for this to be possible is called the edge-connectivity
of G and is denoted by λ(G). Thus

0 ≤ λ(G) ≤ n− 1.

for every graphG of order n. A graphG is k-edge-connected if λ(G) = k ≥ 1.
The trivial complete graph K1 does not contain an edge-cut. However, the
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edge-connectivity is defined as λ(K1) = 0. Further, for every complete graph
the following applies:

Theorem 1.1
Let n be a positive integer. Then, for every n,

λ(Kn) = n− 1.

Proof.
By definition λ(K1) = 0, wherefore it is safe to assume that n ≥ 2. If n− 1
edges incident with any vertex of Kn is removed then a disconnected graph
is obtained. Thus

λ(Kn) ≤ n− 1.
Let X be a minimum edge-cut of Kn so that |X| = λ(Kn). Now G = Kn−X
is a disconnected graph consisting of two components, G1 and G2. Suppose
that G1 has order k. Then G2 must have order n − k since the number of
vertices is unaltered. Thus |X| = k(n−k) since otherwise it would not have
been a complete graph to begin with.
Now, since k ≥ 1 and n− k ≥ 1, it follows that k− 1 ≥ 0 and n− k− 1 ≥ 0
and so

(k − 1)(n− k − 1) ≥ 0
kn− k2 − k − n+ k + 1 ≥ 0

k(n− k)− (n− 1) ≥ 0
k(n− k) ≥ (n− 1)

This implies that

λ(Kn) = |X| = k(n− k) ≥ n− 1.
Thus,

λ(Kn) = n− 1.

In the early 1930s American mathmatician Hassler Whitney (1907-1989)
contributed to the studies of graph coloring and amongst his observations
was the following theorem which establishes inequality between connectivity,
edge-connectivity, and minimum degree of a graph G:
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Theorem 1.2
For every graph G,

κ(G) ≤ λ(G) ≤ δ(G).

Proof.
Let G be a graph of order n. If G is disconnected then obviously κ(G) =
λ(G) = 0. If G is complete then κ(G) = λ(G) = δ(G) = n − 1. Thus the
theorem holds in these two cases.
Assume that G is a connected, non-complete graph. Since G is not complete,
δ(G) ≤ n− 2. Now, let v be a vertex of G such that deg(v) = δ(G). If the
edges incident with v are removed, a disconnected graph is produced. Hence
λ(G) ≤ δ(G) ≤ n− 2. It remains to show the first inequality; κ(G) ≤ λ(G).
Let X be a minimum edge-cut of G such that |X| = λ(G) ≤ n − 2. Now
G−X consists of two components, G1 and G2. Suppose that G1 has order
k. Then G2 must have order n − k and k ≥ 1 and n − k ≥ 1. Further,
every edge in X joins a vertex of G1 and a vertex of G2. Two cases can be
considered. Case 1: Every vertex of G1 is adjacent to every vertex of G2.
Then |X| = k(n− k). Since k − 1 ≥ 0 and n− k − 1 ≥ 0, it follows that, as
shown in the previous proof;

k(n− k) ≥ n− 1.

Thus λ(G) = |X| = k(n−k) ≥ n−1 which contradicts λ(G) ≤ n−2. Hence
case 1 cannot occur.

Case 2: There is a vertex u ∈ G1 and a vertex v ∈ G2 such that uv /∈ E(G).
Let U be a set of vertices of G selected according to the following and let
e ∈ X. If e is incident with u ∈ G1 such that e = uv′, then v′ is placed in
the U . If e is not incident with u, e = u′v′ where u′ ∈ G1, then u′ is placed
in U . Hence, for every edge e ∈ X one of its two incident vertices belongs
in U but u, v /∈ U . Thus |U | ≤ |X| and U is a vertex-cut. Ultimately,
κ(G) ≤ |U | ≤ |X| = λ(G).
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Figure 1.6: An example of the inequality.
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Chapter 2

Vertex Coloring

2.1 The Chromatic Number
Basically, a vertex coloring of a graph G is the assignment of given col-
ors to the vertices in such manner that no adjacent vertices are of same
color. The colors used are commonly labeled with positive integers 1, 2, ..., k.
Hence, the following definition can be applied:

Definition 2.1 (Vertex Coloring)
A vertex coloring of a graph G is a function c : V (G)→ N such that c(u) 6=
c(v) if u and v are adjacent in G.

A nonempty set of vertices with the same color can be referred to as a color
class and each color class is an independent set of vertices of G.
If each color used to color a graph G is one of k given colors, it is referred
to as a k-coloring of G.
If a coloring of G from a set of k colors exists, then G is said to be k-
colorable. The minimum positive integer k with which G is k-colorable is
called the chromatic number and is denoted by χ(G). No general formula
for the chromatic number exists, hence determining the chromatic number
for specific graphs of interest and examining the upper and lower bounds
for the chromatic number must suffice. Obviously, for any graph G of order
n, it must apply that

1 ≤ χ(G) ≤ n.

Further, it is clear that any graph G containing one or more triangles must
have χ(G) ≥ 3 since three vertices forming a triangle must be assigned
different colors. Such triangles are also referred to as odd cycles; a key
term, shortly mentioned in section 1.2, which will be further elaborated on
later in this thesis. Furthermore, for any complete graph G = Kn it must
apply that χ(G) = n.
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The lower bound for the chromatic number of a graph can be determined
by the chromatic numbers of its subgraphs, and the following applies:

Theorem 2.2
If H is a subgraph of a graph G, then χ(H) ≤ χ(G).

Proof.
Assume that χ(G) = k. By definition there exists a k-coloring c of G. Since
any two adjacent vertices of G are assigned distinct colors by c, the coloring c
also assigns distinct colors to adjacent vertices of H. Hence, H is k-colorable
and so χ(H) ≤ k = χ(G).

Further, as a direct consequence of the previous theorem:

Corollary 2.3
For every graph G, χ(G) ≥ ω(G).

This is obvious since ω(G), the clique number, is the order n of the largest
complete subgraph H of G and, as already mentioned, χ(H) = n for a com-
plete graph H = Kn.

A graph with chromatic number k is said to be k-chromatic, as well as
k-colorable.

Should a graph G be made up of the union of k graphs, then the chromatic
number of G will depend on the maximum chromatic number of any one of
the k graphs:

Proposition 2.4
For graphs G1, G2, ..., Gk and G = G1 ∪G2 ∪ ... ∪Gk,
χ(G) = max{χ(Gi) : 1 ≤ i ≤ k}.

This proposition leads to the following:

Corollary 2.5
If G is a graph with components G1, G2, ..., Gk, then
χ(G) = max{χ(Gi) : 1 ≤ i ≤ k}.
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The reader is reminded that a component of a graph is a connected, inde-
pendent subgraph - see fig. 1.3.

Proposition 2.6
If G is a nontrivial (two or more vertices) connected graph with blocks
B1, B2, ..., Bk, then

χ(G) = max{χ(Bi) : 1 ≤ i ≤ k}.

The reader is reminded that a block of a graph is a nonseparable, connected
subgraph which is not a part of a larger block - see fig. 1.5.

While it is desirable to obtain a coloring of a graph G using exactly χ(G)
colors, it is in fact difficult to do. However, there is a method that does
not use an excessive number of colors, and although it may not result in a
χ(G)-coloring is will provide an upper bound for the chromatic number of
a graph G.

2.1.1 Greedy Coloring

Let G be a graph of order n and let the vertices of G be listed in some
specified order, say v1, v2, ..., vn. A greedy coloring c assigns colors to
the vertices successively, always assigning the smallest available color. The
color 1 is in this case assigned to v1. If v2 is not adjacent to v1 then it is
assigned the color 1 too. Otherwise it is assigned the color 2. Following the
list of vertices, they are now all assigned colors with respect to pre-assigned
neighbors and the smallest available color. When done, G’s vertices have
been given colors from the set {1, 2, ..., k} for some positive integer k. Thus
χ(G) ≤ k and k is said to be an upper bound for the chromatic number.
Intuitively, a greedy coloring will use at most ∆(G) + 1 colors to color a
graph G.
More formally, the greedy coloring is an algorithm and is defined as the
following:

Definition 2.7
The Greedy Coloring Algorithm
Suppose that the vertices of a graph G are listed in the order v1, v2, ..., vn.

1. The vertex v1 is assigned the color 1.

13



2. Once the vertices v1, v2, ..., vj, where 1 ≤ j < n, have been assigned
colors, the vertex vj+1 is assigned the smallest color that is not assigned
to any neighbor of vj+1 belonging to the set {v1, v2, ..., vj}.

2.2 Color-Critical Graphs
If a graph G has chromatic number χ(G) = k ≥ 2 and thus is k-chromatic
with k ≥ 2, it means that the graph can be colored using exactly k colors and
not (k − 1) colors. A graph G is considered color-critical if the chromatic
number of any proper subgraph H of G is lower than the chromatic number
of G itself.

Definition 2.8
If for a graph G, χ(H) < χ(G) = k for any subgraph H, then G is called
critically k-chromatic or k-critical.

Suppose that G is a k-chromatic graph, k ≥ 2, and H is a k-chromatic sub-
graph of minimum size with no isolated vertices.
Then for every proper subgraph F of H, the chromatic number of F must
be lower than the chromatic number of H, i.e. χ(F ) < χ(H). Hence H
is color-critical, more specifically a k-critical subgraph of G. From this it
can be derived that every k-chromatic graph, k ≥ 2, contains a k-critical
subgraph.
By corollary 2.5 it follows that every k-critical graph, k ≥ 2, must be con-
nected. If not, there would be a subgraph with an equal chromatic number
which contradicts the aforementioned trait of a k-chritical graph.
The complete graph K2 is the only 2-critical graph and obviously it is 1-
connected and 1-edge-connected and so by proposition 2.6 it follows that
every k-critical graph, k ≥ 3, must be 2-connected. If not, there would be a
subgraph with an equal chromatic number which again contradicts the afore-
mentioned trait of a k-chritical graph. And finally, by theorem 1.2 it can be
concluded that every k-critical graph, k ≥ 3, must be 2-edge-connected.

The odd cycles, which are all 2-edge-connected, are 3-critical graphs. Any
odd cycle G can be colored using colors c1 and c2 alternately, and only the
last vertex before completing the cycle must be colored c3, thus χ(G) = 3.
Further, every proper subgraph H of an odd cycle has χ(H) = 2 since it is
a tree, which is commonly known to be 2-colorable. Thus χ(H) < χ(G) for
any proper subgraph H of any odd cycle G, satisfying the conditions for a
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k-critical graph. The following theorem and proposition will provide further
information.

Theorem 2.9
A nontrivial graph G is a bipartite graph if and only if G contains no odd
cycles.

A graph G is bipartite if it is possible to divide the set of vertices into two
partitions U and W such that every edge of G joins a vertex of U and a
vertex of W .

Figure 2.1: A bipartite graph

Proof. (of Thm. 2.9)
Suppose that G is bipartite with partite sets U and W and every edge of G
joins a vertex of U and a vertex ofW . Let C = (v1, v2, ..., vk, v1) be a k-cycle
of G. Assume that v1 ∈ U . Thus v2 ∈W , v3 ∈ U , and so on. For every odd
integer i, 1 ≤ i ≤ k, vi ∈ U and for every even integer j, 2 ≤ j ≤ k, vj ∈W .
Since v1 ∈ U it follows that vk must be in W . Hence, k is even.
Now, let G be a nontrivial graph containing no odd cycles. Since it will
suffice to show that every nontrivial component of G is bipartite one can,
without loss of generality, assume that G is connected. Let u be a vertex of
G and partition the remaining vertices based on the distance d(u, x) such
that

U = {x ∈ V (G)|d(u, x) is even}
W = {x ∈ V (G)|d(u, x) is odd},

and let u ∈ U . To show that G is bipartite with the above mentioned partite
sets, it remains to show that no two vertices of U are adjacent and no two
vertices of W are adjacent. Suppose that W contains two adjacent vertices,
w1 and w2. Let P1 be a u − w1 geodesic and P2 a u − w2 geodesic. Let z
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(possibly z = u) be the last vertex that P1 and P2 have in common. Then
the length of the subpaths, z − w1 and z − w2, are both even or odd. This
is illustrated in fig. 2.2.

Figure 2.2: Subpaths z − w1 and z − w2.

Hence these two paths together with the edge w1w2 form an odd cycle which
contradicts the presumption of G.
Similarly, it can be shown that no two vertices of U are adjacent.

Proposition 2.10
A nontrivial graph G is 2-colorable if and only if G is bipartite.

Therefore, if G contains no odd cycles, then χ(G) ≤ 2 and if a graph G has
χ(G) = 3 it must contain an odd cycle.
Furthermore, since no k-critical graph can contain another k-critical graph
as a proper subgraph, the odd cycles are the only 3-critical graphs.

Theorem 2.11
Every k-critical graph with k ≥ 2 is (k-1)-edge-connected.
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Proof.
As per previous explanation, the theorem holds for k = 2, 3, thus it is safe to
assume that k ≥ 4 and it will be shown that the theorem holds by creating
contradiction.
Let G be a k-critical graph, k ≥ 4, that is NOT (k − 1)-edge-connected.
Then there exists a partition, V1, V2 of V (G), such that the number of edges
joining the vertices of V1 and the vertices of V2 is at most k − 2.
G is k-critical, so the two induced subgraphs G1 and G2, containing the
vertices of V1 and V2 repectively, are, per definition, (k − 1)-colorable. Let
G1 and G2 be given colorings from the same set of k − 1 colors and assume
that E′ is the set of edges connecting the vertices in V1 and the vertices in
V2. If every edge in E′ joins vertices of different colors, G itself is (k − 1)-
colorable which, per definition, is impossible.
Hence some edges in E′ must join vertices of the same color which contradicts
the definition of coloring. It remains to show that by permutation of the
colors assigned to the vertices of V1, a proper coloring of G can be obtained.
A coloring in which every edge of E′ joins vertices of different colors, which
again shows that G is (k − 1)-colorable, creating a contradiction.
Let U1, U2, ..., Ut denote the color classes of G1 for which there is some vertex
ui ∈ Ui (1 ≤ i ≤ k− 2) that is adjacent to a vertex of G2. Let ki denote the
number of edges joining the vertices of Ui and the vertices of G2. Now, for
each ki it must apply that

ki ≥ 1 and
t∑

i=1
ki ≤ k − 2.

If the neighbors of every vertex u1 ∈ U1 are assigned a different color than
u1, an alteration of the color of the vertices in U1 is unnecessary. However,
if some vertex u1 has a neighbor of same color, then a permutation of the
k−1 colors used to color G1 is conducted so that no vertex in U1 is adjacent
to a vertex of G2 having the same color. This permutation is possible since
there are at most k1 (corresponding to the number of edges between U1
and G2) colors to avoid when recoloring the vertices of U1 and there are
k− 1− k1 ≥ 1 colors available. Now U2 is scrutinized. If no vertex u2 has a
neighbor of same color in G2, then no permutation is performed. However,
if some vertex u2 is assigned the same color as one of its neighbors in G2
then another permutation is implemented which leaves the vertices in U1
unaltered. This is possible since there are at most k2 + 1 (corresponding to
the number of edges between U2 and G2 and the one color assigned to U1)
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colors to avoid but the number of colors available for U2 is at least

(k − 1)− (k2 + 1) ≥ (k − 1)− (k2 + k1) ≥ 1.

This process of permuting the colors is continued until a (k − 1)-coloring
of G is obtained. This is, as aforementioned, impossible, thus a k-critical
graph G, k ≥ 4 must be (k − 1)-edge-connected.
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Chapter 3

Brooks’ Theorem

3.1 The Original
In 1941 R. Leonard Brooks published a proof of what then became known
as Brooks’ Theorem. It states that there is a relationship between the
chromatic number and the maximum degree of a graph. The theorem was
at that time phrased as follows:

Theorem 3.1 (Brooks, 1941)
Let N be a network (or linear graph) such that at each node not more than
n lines meet (where n > 2), and no line has both ends at the same node.
Suppose also that no connected component of N is an n-simplex. Then it is
possible to colour the nodes of N with n colours so that no two nodes of the
same colour are joined.

It is obvious that N is equivalent to a simple graph G with maximum degree
∆(G) = k ≥ 3. Furthermore, a connected component of N is equivalent to
a subgraph H of G and an n-simplex is a complete graph of order k + 1.
Now the claim is that it is possible to conduct a vertex-coloring of G with no
more than k colors. Brooks explains in his research note that without loss of
generality one may assume that G is connected since otherwise the theorem
can be proved for each connected component. Following his note, in which
he allows multiple edges and applies induction, while at the same time using
more modern terminology, the introductory remarks and corollary will be
accounted for and the proof of the theorem will be given.

It is obvious that by greedy coloring G can be given a (k+ 1)-coloring with
colors c0, c1, ..., ck such that each vertex is assigned a different color from
those of its neighbors. The following three operations can be applied in
order to minimize the occurence of the color c0.
(1): A vertex v with no more than k − 1 neighbors can be recolored not-c0.
The term "recoloring" includes the case where no color is altered. Particu-
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larly, a vertex with two neighbors of same color may be recolored not-c0.

(2): Adjacent vertices v and u can be recolored without altering any other
vertices so that v is not-c0. Ignoring the edge uv, it is obvious that v can
be recolored by (1) and then u can be recolored (possibly c0).

(3): Let v, v′, v′′, ..., u be a path in G. Beginning with v the vertices in this
path can be recolored successively, without altering other vertices, so that
at most u has the color c0.

Corollary 3.2
If G is finite, choose u arbitrarily in G. Since there is a path joining u with
every vertex v ∈ G, G can be recolored with at most u having the color c0.

The proof of the theorem is by Brooks divided into two parts; one for finite
graphs and one for infinite graphs. However, only the first part regarding
finite graphs will be examined here.

Proof.
Let G be a finite, connected graph with ∆(G) = k.

Case 1: If any vertex v has less than k neighbors then by (1), v can be
colored not-c0 and thus G is k-colored.

Case 2: Suppose v, u, a, b are any four distinct vertices and that there is a
path from v to u not including a or b. Since G is not complete, vertices v, u
that are not adjacent can be found. Let G be (k+ 1)-colored such that only
u has the color c0. Hence v and all of its neighbors are not-c0. Now, either
a) v has less than k neighbors or b) there are two vertices, a, b, adjacent to
v which have the same color.

Because there is a path from v to u not including a or b, G can be recolored
by (3) without altering a, b so that now at most v is colored c0. If a) occurs,
v can be recolored by case 1. If b) occurs, v can be recolored by (1). Thus
G is k-colored.

Case 3: Let v, u, a, b be four distinct vertices such that every path from v
to u passes through a or b. Now, consider the subgraphs of G with the
following specifications:
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H1: Contains the vertex v and all vertices joined to v by some path not
passing through a, b as an intermediate point. Hence a can only be in H1
if a − v does not pass through b and vice versa. H1 also contains all edges
connecting the aforementioned vertices.
H2: Contains a, b, u and all vertices of G not in H1 and all edges connecting
these vertices.
Thus H1 and H2 are non-empty subgraphs of G and H1 ∪ H2 = G with
∆(H1) ≤ k and ∆(H2) ≤ k. They have at least one of the vertices a, b
in common and at most both vertices and all edges ab. The possibility of
multiple edges ab does not interfere with any coloring of G.
Let mi denote deg(a) in Hi and let m0 denote the number of edges ab .
Then

m1 +m2 ≤ m0 + k (3.1)

Now, the following three subcases must be considered:

Case 3.1: Suppose H1 and H2 have only one vertex, say a, in common. Then
in both subgraphs a has less than k neighbors. Thus by case 1 both H1 and
H2 can be k-colored. If a should not be the same color in both subgraphs
then a permutation of the colors in one of them can ensure that a is of same
color, hence G is k-colored.

Figure 3.1: Case 3.1.

Case 3.2: One of the subgraphs, say H1, is such that if the edge ab is added
then it becomes a complete graph of order k + 1. Thus a and b have k − 1
neighbors in H1. Now, H1 and H2 have both a and b in common and the
edge ab does not exist.
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Obviously, H1 can be k-colored by assigning k − 1 colors arbitrarily to the
k−1 other vertices and the last remaining color to a and b. Clearly, because
a and b have k − 1 neighbors in H1, there is only one edge connected to a
in H2 and also only one edge connected to b in H2. Thus by case 1 H2 can
be k-colored with a and b the same color as in H1. Now G is k-colored.

Figure 3.2: Case 3.2.

Case 3.3: Neither H1 nor H2 becomes a complete graph when adding the
edge ab. However, suppose the edge ab is added. Then they both contain
a, b and ab and by 3.1 they are of degree not greater than k.

Figure 3.3: Case 3.3.
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Now, if H1 and H2 are k-colorable so is G and by strong induction due to
the fact that both H1 and H2 contain fewer vertices than G, both subgraphs
must be k-colorable. Furthermore, since ab is in both subgraphs, the vertices
a and b must have different colors in any k-coloring. By permutation of the
colors in H1 the colors of a and b can become the same as in H2 and thus
G is k-colorable.

3.2 A Contemporary Version
Over the years, the proof for this theorem has been given numerous times
using a variety of techniques and terminology. The following is from Char-
trand and Zhang’s book "Chromatic Graph Theory".

Theorem 3.3 (Brooks’ Theorem)
For every connected graph G that is not an odd cycle or a complete graph,
χ(G) ≤ ∆(G).

Proof. (Brooks by Chartrand & Zhang)
Let χ(G) = k ≥ 2 and let H be a k-critical subgraph of G as described in
section 2.2. Obviously, ∆(H) ≤ ∆(G).
Suppose H is a complete graph Kk. Then ∆(H) = k− 1. However, since G
is connected, at least one vertex of H will have at least one more edge such
that ∆(G) ≥ k and so the following applies;

k = χ(H) = χ(G) ≤ ∆(G).

Suppose H is an odd cycle with χ(H) = 3. Then ∆(H) = 2 and, again,
since G is connected, at least one vertex of H will have at least one more
edge such that ∆(G) ≥ 3 and so the following applies;

3 = χ(H) = χ(G) ≤ ∆(G).

In both cases χ(G) ≤ ∆(G). Hence it is safe to assume that H is neither an
odd cycle nor a complete graph. And since K2 is the only 2-critical graph
and odd cycles are the only 3-critical graphs it follows that k ≥ 4. Further-
more, H is evidently 2-connected as clarified in section 2.2.

Now, suppose thatH has order n. It has been established that χ(G) = k ≥ 4
which means that G can be colored using minimum 4 colors. Then, since H
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is not complete and H is a k-critical subgraph of G, n must be greater than
k such that n ≥ 5. Otherwise H would be (k − 1)-critical.
Since H is 2-connected, one of two cases can happen when removing two
vertices from H. Either H is still connected, hence it is 3-connected or it is
disconnected, thus H has connectivity 2.

Case 1: H is 3-connected.
H is not complete which means there are two vertices, u,w ∈ H, such that
the shortest path between u and w has dH(u,w) = 2. Now let (u, v, w) be a
u− w geodesic in H. Since H is 3-connected, H − u− w is connected. Let
v = u1 and let u1, u2, ..., un−2 be the vertices of H − u − w. They must be
listed in such manner that each vertex ui, 2 ≤ i ≤ n−2, is adjacent to some
vertex preceding it. Furthermore, let un−1 = u and un = w. Consequently,
for each set

Uj = {u1, u2, ..., uj}, 1 ≤ j ≤ n,

the induced subgraph H[Uj ] is connected, see fig. 3.4.

Figure 3.4: An example of Uj.

A greedy coloring is now applied to H with respect to the reverse ordering

w = un, u = un−1, un−2, ..., u2, u1 = v (3.2)

of the vertices. w and u are not adjacent and each is therefore assigned the
color 1.
In accordance with The Greedy Coloring Algorithm (definition 2.7) each
vertex ui, 2 ≤ i ≤ n − 2, is assigned the smallest color available in the
set {1, 2, ...,∆(H)}; i.e. the smallest color that was not used to color any
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preceding neighbor of ui in the sequence (3.2). Each vertex ui has at least
one neighbor following it in the sequence (3.2) which entails that ui has
at most ∆(H) − 1 neighbors preceding it, hence a color is available for ui.
Furthermore, u1 = v is adjacent to both w = un and u = un−1 which both
are assigned the color 1, thus at most ∆(H) − 1 colors are assigned to v’s
neighbors, leaving a color for v. Now it is evident that χ(H) ≤ ∆(H) and
thus, in combination with the initial assumptions

χ(G) = χ(H) ≤ ∆(H) ≤ ∆(G). (3.3)

Case 2: H has connectivity 2, κ(H) = 2.
Claim: H contains a vertex x with degree greater than 2 but less than n−1,
that is 2 < degH(x) < n− 1.
Suppose that this is not the case. Then every vertex of H has degree 2 or
n − 1. Since χ(H) ≥ 4 which means that the minimum number of colors
used to color H is 4, H cannot contain only vertices of degree 2, since that
would contravene the definition of the chromatic number. And since H is
not complete, it cannot contain only vertices of degree n − 1. Therefore, if
H contains vertices of both degree 2 and n− 1 and no others, then either

H = K1,1,n−2 or H = K1 +
(
n− 1

2

)
K2.

An illustration can be seen in fig. 3.5.
In both cases χ(H) = 3 and H is no longer critical, which is in conflict
with the initial assumptions. Thus, H contains a vertex x such that 2 <
degH(x) < n− 1 as claimed.
Since κ(H) = 2, the removal of a vertex x will result in either κ(H − x) = 2
or κ(H − x) = 1.
If κ(H−x) = 2, then x is not a part of a minimum vertex-cut of H, and since
x cannot be a neighbor to all other vertices because 2 < degH(x) < n − 1,
it implies that there is a vertex y ∈ H such that dH(x, y) = 2, see fig. 3.6.
Continuing as in Case 1 with u = x and w = y, a coloring of H using at
most ∆(H) colors is obtained and so (3.3) applies, that is, χ(G) ≤ ∆(G).

Finally, assume that κ(H −x) = 1. Then, since H −x is still connected and
contains cut-vertices, it must contain end-blocks as explained in section 1.2.
These end-blocks, B1 and B2, contains cut-vertices x1 and x2, respectively.
Since H is 2-connected there must exist vertices y1 ∈ V (B1) − {x1} and
y2 ∈ V (B2)− {x2} such that x is adjacent to both y1 and y2, se fig. 3.7.
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Figure 3.5: An illustration of the two aforementioned possible graphs H.

Figure 3.6: An illustration of dH(x, y) = 2.

Obviously, H − x− y1 − y1 is connected. And since x has at least one more
neighbor due to 2 < degH(x) < n − 1, then H − y1 − y2 is also connected.
Now it is possible to continue as in Case 1 with u = y1 and w = y2, thus
a coloring of H using at most ∆(H) colors is obtained and so (3.3) applies,
that is, χ(G) ≤ ∆(G).
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Figure 3.7: An illustration of how x is adjacent to both y1 and y2.

3.3 Catlin’s Extension
In 1976 Paul A. Catlin proved a theorem that is considered an extension to
Brooks’ theorem. It was a part of his Ph.D. dissertation which he completed
at Ohio State University. He showed that if a graph G, with ∆(G) = k, does
not contain H = Kk+1 as a subgraph and it has a Brooks-coloring, mean-
ing it satisfies χ(G) ≤ ∆(G), then this graph contains a monochromatic
maximum independent set. However, his proof is rather tedious and in
1978 John Mitchem of San Jose State University published a significantly
shorter proof. In 2014 Vaidy Sivaraman, Department of Mathematical Sci-
ences, Binghamton University, used these two proofs together with Brooks’
original proof to complete a unified proof of Brooks’ theorem and Catlin’s
theorem combined. This unified proof will be the focus of this section.

But first things first. What is a monochromatic maximum independent set?
Independence in graphs applies to both edges and vertices. A setM of edges
in G is independent if no two edges in M are adjacent, that is, no two edges
share a vertex. Such a set is also referred to as a matching. If G contains
no matching with more than |M | edges, then M is a maximum matching
and also a maximum independent set of edges.
A set U of vertices in G is independent if no two vertices in U are adjacent,
that is, no two vertices share an edge. Such a set is also referred to as a
stable set. If G contains no stable set with more than |U | vertices, then U
is a maximum stable set and also a maximum independent set of vertices.
The number of vertices in such a maximum independent set is defined as
the independence number and is denoted by α(G).
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A monochromatic set is one where all the vertices or edges are of same color.
Obviously the vertices or edges in a monochromatic set cannot be adjacent,
hence it can only apply to an independent set.
In other words, a monochromatic maximum independent set of a graph G
is a color class with size α(G).

In his published note, Sivaraman uses a slightly different notation than that
of the previous writings in this thesis. However, modifications will be made
in order to match the notation throughout the thesis. Further, he makes
use of Hall’s Condition, also known as a marriage condition, which states
that for a bipartite graph G with partite sets U and W and for a subset
S ⊆ U where N(S) denotes the set of all vertices in W having a neighbor
in S, the number of vertices in N(S) is greater than or equal to the number
of vertices in S for all subsets S ⊆ U . More formally:

|N(S)| ≥ |S| for all S ⊆ U.

Actually, in 1935 Philip Hall proved the following theorem:

Theorem 3.4 (Hall 1935)
A bipartite graph G with partite sets U and W contains a matching M of U
if and only if |N(S)| ≥ |S| for all S ⊆ U .

A matchingM of U is when every vertex in U is an endpoint of some edge in
the matching, hence the number of edges inM equals the number of vertices
in U , that is, |E(M)| = |V (U)|.

Proof.
1: If G has a matching of U , then |N(S)| ≥ |S| for all S ⊆ U .
Assume M is a matching that contains all vertices of U . Let the set of
all vertices of W matched by M to a given S be denoted M(S). Thus,
by definition, |M(S)| = |S|. Now, since all elements of M(S) are adjacent
to an element of S, then M(S) ⊆ N(S). Now, |N(S)| ≥ |M(S)|, hence
|N(S)| ≥ |S|.

2: If |N(S)| ≥ |S| for all S ⊆ U , then G has a matching of U .
In order to create a contradiction, assume that G is bipartite and has no
matching of U . LetM be a maximum matching and u ∈ U a vertex not cov-
ered by M . Consider all non-trivial paths in G that alternately uses edges
not in M and edges in M and goes from u to another vertex in U , and let

28



U ′ denote the end-vertices of these paths. Further, let W ′ ⊆ W denote the
set of all penultimate vertices of the aforementioned paths. The last edges
of these paths are contained in M , that is, |U ′| = |W ′|. Hence, by Hall’s
Condition, there must be an edge from a vertex v ∈ S = U ′ ∪ u to a vertex
w ∈W −W ′.
Since v ∈ U ′ ∪ u, there is an alternating path, say P , from u to v. Further-
more, either P ′ = Pvw or P ′ = Pw (if w ∈ P ) is an alternating path from
u to w. This is illustrated in fig. 3.8.

Figure 3.8: The path P ′.

Now, let M ′ be the symmetric difference of M and E(P ′),

M ⊕ E(P ′) = (M ∪ E(P ′))− (M ∩ E(P ′)).

The first edge of P ′ is not in M and if the last edge is not in M either, i.e.
w is unmatched, then M ′ > M .
Suppose w was matched by u′w ∈M . Then P ′wu′ would be an alternating
path placing u′ in U ′ and w in W ′. However, w /∈W ′, thus w is unmatched
and M ′ > M which contradicts the initial assertion of M being a maximum
matching.

Theorem 3.5 (Sivaraman: Brooks and Catlin combined)
Let G be a simple finite graph with ∆(G) ≥ 3. If G does not contain H =
Kk+1 as a subgraph, then G has a k-coloring in which one color class has
size α(G). In particular, χ(G) ≤ k.

Proof.
The proof is accomplished by induction on |V (G)|. The induction step con-
siders two cases; either k ≥ 4 or G contains a subgraph H = Kk. Thus
the base is when k = 3 and G contains no triangles, that is, no subgraph
H = K3.
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Base case: If a maximum independent set I can be chosen such that G− I
is bipartite, then G can be 3-colored with I as one color class. For this
purpose, choose an independent set I of size α(G) such that the number of
odd cycles in G− I is minimum.
Suppose that G − I contains an odd cycle C. If it is possible to construct
another independent set I ′ where |I ′| = |I| and G− I ′ has fewer odd cycles
than G− I, then it is a contradiction as to the choice of I and it proves that
G− I is bipartite.
Choose a v ∈ V (C) and consider all paths P starting at v and alternating
between vertices of I and non-isolated vertices of G − I, subject to V (G −
I) ∩ V (P ) being independent. Let P0 be such a path of maximum length.
Let I ′ be the symmetric difference of I and V (P0),

I ⊕ V (P0) = (I ∪ V (P0))− (I ∩ V (P0))

such that I ′ contains the vertices of I that are not a part of P and the
vertices of G− I that are a part of P . This is illustrated in fig. 3.9.

Figure 3.9: An illustration of P0 and I ′.

I ′ is independent because 1) v cannot have any neighbors in I ′ since it has
two neighbors in C and one in I − I ′. And 2) every vertex of I ′ − I − v has
two neighbors in I ∩V (P0), none of which are in I ′, and a neighbor in G−I,
since the vertices of P0 ∈ G − I are non-isolated. And 3) the remaining
vertices of I ′ were independent to begin with. I ′ cannot be greater than I,
since I is maximum and since P0 starts outside I, it must end in I, thus

30



|I ′| = |I| = α(G).

No cycle in G− I ′ contains a vertex of I ∩ V (P0) because, by construction,
each vertex, except the final one, of I ∩ V (P0) is adjacent to two vertices of
I ′. The final vertex of P0 has one neighbor in I ′ and if it has other neighbors,
they must be isolated vertices of G− I, as shown in the following.
Let w be this final vertex. w can be adjacent to x and y in G − I if x, y
have neighbors, x′, y′ respectively, in G − I. x′, y′ are in P0. If there is an
x− y path Q, then Q together with w would be a cycle in G− I ′. However,
since there can be no edge between x and y because that would create a
triangle, then at least one of the neighbors, x′ and y′, must be in Q. Thus
the cycle cannot be in G− I ′. Therefore, it is safe to assume that Q is part
of a longer path x′xQyy′. Thus x, y have degree 2 in G− I and so their only
neighbor in I is w. Hence, w can be replaced in I with x, y, thus creating
an independent set exceeding I; a contradiction as to I being maximum.

This means that every odd cycle in G− I ′ is also an odd cycle in G− I. But
C is an odd cycle in G− I that is NOT in G− I ′. Thus the number of odd
cycles in G − I ′ is strictly less than in G − I, which contradicts the choice
of I. Hence G− I contains no odd cycle and is indeed bipartite and can be
2-colored (colors 1 and 2). I is a maximum independent set which can be
given the color 3, thus G is 3-colored, χ(G) = 3, and the color class 3 has
size α(G).

Induction hypothesis: Assume that the theorem holds for any graph H, that
satisfies the conditions and contains fewer vertices than G.

Induction step: Suppose k ≥ 4 and G does not contain a copy of Kk. Let I
be a maximum independent set.
Now, G− I must have ∆(G− I) ≤ k− 1, so by induction hypothesis, G− I
has a (k−1)-coloring. And by applying the color k to I, the desired coloring
is achieved. Should the maximum degree of G− I be less than k − 1, then
the induction is unnecessary; a (k − 1)-coloring can be obtained by using
The Greedy Coloring Algorithm (see section 2.1.1).

Now, suppose G contains a subgraph H = Kk. Let U = {u1, ..., uk} de-
note the vertices of H. For each ui, let ai be a neighbor outside U and let
A = {ai|1 ≤ i ≤ k}. Suppose all u′is have a neighbor in A. The ai does not
have to be distinct, but since G does not contain H = Kk+1 they cannot all

31



be equal. Let G′ = G− U .

The goal is to color G′ by induction hypothesis and then extend the coloring
to G. Should the maximum degree of G′ be less than k− 1, then (as above)
it can be colored greedily beginning with a maximum independent set. Ob-
viously, all the ui’s must be assigned distinct colors such that k colors are
used. Thus the ai’s cannot all have the same color.
Suppose G′ has a maximum independent set I that does not contain all of
A. To ensure that the ai’s are not assigned the same color, create G′′ from
G′ by adding some edge aiaj where ai /∈ I, see fig. 3.10.

Figure 3.10: Creating G′′.

Thus I is a maximum independent set of both G′ and G′′ which implies that
α(G′) = α(G′′). By the induction hypothesis there is a k-coloring of G′′
with one color class of size α(G′′). And if G′′ has a k-coloring, then so does
G′. This k-coloring can be extended to G as follows.
Each ui has one neighbor in A, thus for every ui there is k − 1 available
colors. Construct a bipatite graph as in fig. 3.11 with U as one part and
the k colors as the other. Let each vertex ui be adjacent to colors not used
on ai.
If Hall’s theorem (3.4) holds for the entire graph, such that the number of
available colors are greater than or equal to the number of vertices in U ,
then there is a matching and the k-coloring can be extended to U . Hence G
is k-colored.
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Figure 3.11: The bipartite graph.

The only way for Hall’s theorem not to hold for the entire graph, is if all the
ai’s are assigned the same color. This cannot occur due to the edge added
when forming G′′. Now, G is k-colored and the largest color class has size
α(G′) + 1 = α(G), since every independent set in G contains at most one
vertex of U .

Suppose instead that every maximum independent set of G′ contains all of
A. To ensure that the ai’s are not assigned the same color, form G′′ from
G′ by adding an arbitrary edge aiaj , see fig.3.12. Thus α(G′) = α(G′′) + 1.
Now, apply the induction hypothesis to G′′ and extend the k-coloring by
Hall’s theorem as above.

Now the largest color class has size α(G′) = α(G). The equality holds
because the maximum independent set of G′ contains all of A but when
forming G′′, one vertex is removed but this one is replaced by one in U
when extending the coloring to G.

Finally, assume some ui has no neighbor ai as in fig. 3.13.

G′ can be k-colored by induction hypothesis. This k-coloring can be ex-
tended to G by greedily coloring the vertices in U beginning with a vertex
adjacent to a maximum independent set in G′ and ending with the vertex
without a neighbor ai. There are k − 1 colors available for the first vertex
since it has only one neighbor in G′ and none of the ui’s have been assigned
a color. For the second vertex, at least k − 2 colors are available and so on,
leaving exactly one color available for the last vertex in U .
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Figure 3.12: G′′ when G′ contains all of A.

Figure 3.13: Some ui without a neighbor ai.
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Chapter 4

Recapitulation

The first chapter provided the necessary knowledge for the rest of the thesis.
The traits of paths and cycles in graphs was emphasized, as it was essential
to understand these terms in order to complete the proofs of interest. Also
Whitney’s inequality between connectivity, edge-connectivity, and minimum
degree of a graph G was accounted for.

Chapter 2 covered the fundamentals of graph coloring and offered a thorough
study of the chromatic number χ(G) = k which is the minimum number of
colors with which a graph G can be colored. It was shown that the lower
bound for χ(G) can be determined by the chromatic numbers of G’s sub-
graphs. Furthermore, the task of coloring a graph greedily was explained.
While writing this chapter it became apparent that the subject of color-
critical graphs had to be covered, since these play an important role in the
proofs of the contemporary and unified version of Brooks’ theorem. As ex-
plained, a graph is considered color-critical if the chromatic number of any
proper subgraph is lower than the chromatic number of the graph. More-
over, it was derived that every k-chromatic graph, k ≥ 2, contains a k-critical
subgraph.

Chapter 2 became the theoretical foundation on which chapter 3 was build.
Starting of with an exhaustive review of Brooks’ original theorem and proof,
rewriting the latter using more modern terminology, the basis for examin-
ing a more recent version was formed. Although terminology and phrasing
differs a lot from the original proof by Brooks, the newer version by Char-
trand and Zhang is not so different since the utilization of for instance paths,
greedy coloring, and permutation is evident in both proofs.
Looking into the theorem of Brooks’ and various proofs, it is impossible not
to stumble upon Catlin’s extension of 1976, which is a clever strengthening
of the original theorem by Brooks. It states that a graph G which satisfies
the conditions of Brooks’ theorem, contains a monochromatic maximum in-
dependent set. Catlin’s original proof was in 1978 shortened significantly
by John Mitchem. However, a combined version of Brooks’ theorem and
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Catlin’s theorem had been proved and published by Sivaraman earlier this
year, wherefore this unified proof became of interest.
Sivaraman utilizes matchings and independence in graphs along with Hall’s
condition in order to prove the theorem by induction. However, as the proof
by Sivaraman seemed insufficient, the version given in this thesis ended out
being much more detailed and elaborate.

36



Bibliography

R. L. Brooks. On colouring the nodes of a network. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 37(2):194–197, 1941.

Paul A. Catlin. Brooks’ graph-coloring theorem and the independence num-
ber. Journal of Combinatorial Theory, Series B, 27(1):42–48, 1979.

G. Chartrand and P. Zhang. Chromatic Graph Theory. Chapman and
Hall/CRC, 2009. ISBN 9781584888000.

Reinhard Diestel. Graph Theory. Springer, 2010. ISBN 9783642142789.

John Mitchem. A short proof of catlin’s extension af brooks’ theorem. Dis-
crete Mathematics, 21:213–214, 1978.

Vaidy Sivaraman. A unified proof of brooks’ theorem and catlin’s theorem.
Discrete Mathematics, 338(2):272–273, 2015.

37


	Title page
	Introduction
	1 Terminology and Essential Graph Theory
	1.1 Terminology
	1.2 Connectivity

	2 Vertex Coloring
	2.1 The Chromatic Number
	2.1.1 Greedy Coloring

	2.2 Color-Critical Graphs

	3 Brooks' Theorem
	3.1 The Original
	3.2 A Contemporary Version
	3.3 Catlin's Extension

	4 Recapitulation
	 Litterature

