
Multiple Static Segmentation of Videos
using a Convolution of Mixtures of Gaussian

processes

Master Project, 2015

Jacob Jon Jensen, Christoffer Samuel Nielsen, Niels Nørgaard Samuelsen
Spring 2015, Aalborg University

June 8, 2015

3

Resume
This project builds on our pre-thesis on multiple static segmentation

of videos, that further builds on an earlier masters thesis from AAU on
segmentation of images and image-stacks. Multiple static segmentation of
videos is the creation of multiple complementary segmentations of the pixels
in a video. These can be visualised as images that shows the underlying
structures of a video. This is not a common task, and to our knowledge
this work is novel in its approach, both in providing providing multiple
complementary segmentations and providing static segmentations in general.

In this project we change the underlying probabilistic model from being
non-temporal to being based on Gaussian processes which can be used to
represent continuous Gaussian distributions through time. We start by ex-
plaining the original method before going into the changes, which have some
implications on the algorithm that we use. We show how one part of the al-
gorithm can be changed to work with the new model, so we still optimise our
objective function and the rest of the algorithm and implementation can be
reused. We implement the method in MATLAB and use this implementation
to run our experiments. We experiment with different mean functions for
the Gaussian process, both simple polynomial functions and piecewise linear
functions, and show how these can be used to obtain good segmentations.
We experiment on four different videos, two of which we have also used in
our previous work. We find that the method is able find multiple interesting
structures in videos, and also segmentations that we were unable to find with
our previous method, it does however not give better results in all cases, and
especially when looking at the movement in videos as features the results
are often less intuitive than those of our previous work. The program runs
iteratively with random restarts and therefore it can take a few hours to get
the best segmentation. We experiment on how we can improve this running
time by performing dimensionality reduction on the video using Principal
Component analysis, and observe that we can obtain good results with a far
shorter running time. The method is still novel and therefore there is still
work to be done in adapting the method for real world applications.

0.0 Titlepage 5

The Faculty of Engineering and Science
Department of Computer Science
Address: Selma Lagerlöfs Vej 300

9220 Aalborg Øst
Phone no.: 99 40 99 40
Fax no.: 99 40 97 98
Homepage: http://www.cs.aau.dk

Project title:
Multiple Static Segmentation
of Videos using a Convolution
of Mixtures of Gaussian pro-
cesses

Project period:
Spring 2015

Group name:
mi104f15

Supervisor:
Manfred Jaeger

Group members:
Jacob Jon Jensen
Christoffer Samuel Nielsen
Niels Nørgaard Samuelsen

Copies: 2

Pages: 72

Finished: June 8, 2015

Abstract:

In this project we work with mul-
tiple static segmentation of videos,
which is the creation of multi-
ple complementary segmentations of
the pixels in a video. The work
is based on a recently proposed
method for multiple segmentation
of image stacks and our own work
on improving this method. We
change the underlying probabilistic
model from being non-temporal to
being based on Gaussian processes.
We experiment with different mean
functions for the Gaussian process,
and show how we can use a piecewise
linear function as a mean function to
obtain good segmentations. We find
that the method is able find multi-
ple interesting structures in videos,
and also segmentations that we were
unable to find with our previous
method, it does however not give
better results in all cases. We also
do dimensionality reduction on the
data using PCA, and show that we
can obtain good results with a far
shorter running time.

http://www.cs.aau.dk

Contents

1 Introduction 9
1.1 Introduction . 9

2 Convolutional Clustering Algorithm 13
2.1 The Convolutional Clustering Model 13
2.2 Clustering Algorithm . 16

3 A Temporal Model 21
3.1 A Temporal View of the Model 21
3.2 Gaussian Processes . 21
3.3 The Temporal Convolutional Clustering Model 23
3.4 Mean Functions for Gaussian Processes 25
3.5 Clustering Algorithm . 27
3.6 Features . 32

4 Implementation 35
4.1 Architecture Overview . 35
4.2 Configuration Files . 35
4.3 Video to Features . 37
4.4 Initialisation . 37
4.5 EM-Algorithm . 37
4.6 Cluster Visualisation . 38

5 Experiments 39
5.1 Experiments on Sunset Video 39
5.2 Experiments on Intersection Video 44
5.3 Experiments on Scene Change Video 47
5.4 Experiments with Simulated Crowd Movement 48
5.5 Experimental Observations 50
5.6 Experiments with Dimensionality Reduction 50

6 Conclusion 57
6.1 Future Work . 57

A Results 59
1.1 Lowest Energy Results from Sunset Video 59
1.2 Lowest Energy Results from Drumming Video 62
1.3 Best Segmentations of the Intersection Video 64
1.4 Lowest Energy Results from Simulated Crowd Video 67

Bibliography 71

8 CONTENTS

CHAPTER 1
Introduction

1.1 Introduction

In this masters thesis we improve on an approach for video segmentation that
is based on the image segmentation model from [1] and further improved by
us in [2]. Parts of this introduction was also part of our earlier report [2].

Video segmentation is a well-known and researched area in the domain of
video processing. The concept encapsulates a number of separate methods
that focus on different areas of segmenting a video such as temporal seg-
mentation that typically focuses on splitting a video into scenes [3, 4], but
also methods that focus on separating the physical objects that appear in
a video into distinct clusters, such as tracking the athletes in a video of a
sports event [5].

Our focus is in the new domain of doing clustering on videos to extract
static structures that may or may not be easy to discover otherwise. This is
to our knowledge an unexplored research area. This means that we provide
spatial segmentations of the pixels in the whole video, and unlike when track-
ing objects, not a segmentation per frame. Videos with a fixed perspective
generally reduces the complexity of the solutions, and assuming the input
video is of this form, enables us to specialise our method. We define videos
with a fixed perspective as videos for which the orientation and position of
the camera and landscape as a whole remains fixed. Assuming that videos
are filmed with a fixed perspective in our video segmentation enables us to
extract structure from the entire video instead of doing it per-frame.

One state of the art method from image segmentation [1], focuses on
multiple segmentation of images, i.e. to find several valid segmentations of
one or more images. This is an interesting proposition as it is clear that
there can be multiple valid interpretations of images or videos in regards
to clustering. We have used this method as the basis for our work as the
method have shown promising results. As example of the our version of
the methods ability to do multiple segmentation on videos, consider Figure
F1-1 showing frames from a video of a 4-way intersection. By basing the
segmentations on the motion in the video, we could imagine a result that
gives us one of any number of paths through the intersection that the cars
are using. In Figure F1-2 we can see the result from using the algorithm to
give three complementary segmentations that shows the paths the cars are
taking in the intersection.

10 Introduction 1

Figure F1-1: Two frames from a 4-way intersection video.

Figure F1-2: The resulting segmentations of the intersection video.

Another possible use case for our method could be segmentation of mo-
tion flows in more complicated contexts such as crowds of people moving
through each other in various directions. A simulated example of such a
video can be seen on Figure F1-3, and a segmentation that captures two
crossing directions can be seen on figure F1-4.

Figure F1-3: Three frames from a simulated crowd video.

Figure F1-4: A resulting segmentations of the crowd video.

1.1.1 Previous results

In our previous work [2] we managed to retrieve video segmentations based
directly on the model for image segmentation [1] in which it treats the video
as an unordered stack of images. By constructing new features for each pixel
that are dependant on the order of the images, we were able to incorporate
some temporal information. The result of this feature construction can how-
ever be seen as aggregating a video or a stack of images into a single image

1.1 Introduction 11

and will therefore pose some limitations on how temporal information is uti-
lized for the segmentation. A video with different scenes is not represented
very well by this method due to the feature aggregation. For example if we
do a simple average of the values we lose the information that some parts
of the video might have entirely different values. This previous method can
work when the features are constructed carefully and tailored to the video,
so aggregation is done more intelligently which may in some cases allow each
segmentation to correctly represent a different parts of the video, examples
of which can be found in [2].

The frames in most videos are somewhat related to each other and there
is a form of progressive change. This information is discarded with the
previous method, and we expect a model to be more consistently able to
find good solutions if we can take advantage of temporal information, and
possibly find new solutions that we were previously unable to find.

Improving on these limitations and better representing the progression
of values in a video is also part of the proposed future work in [2] and we
proposed to extend the model with temporal information directly incorpo-
rated into the model. This is as opposed to simply being incorporated into
feature construction. Creating a temporal clustering model is therefore the
main contribution of this work.

The chapters is organized so the following chapter introduces the original
model and then afterwards we discuss the changes and extensions we have
made. After that we provide some implementation details before we show
the results of our experiments and conclude on the work.

12 Introduction 1

CHAPTER 2
Convolutional Clustering

Algorithm
We will in this chapter first describe the convolutional clustering model for
video segmentation. Then we will describe the clustering algorithm that
seeks to optimize our objective function. These first two sections are largely
based similar sections, that appeared in our previous report [2], which in
turn was based on [1].

2.1 The Convolutional Clustering Model

In the this section we use notation where bold symbols are used to denote
tuples of variables, e.g. a = a1, a2, Random variables in upper case is
the variable itself, and lower case are concrete values of the variables.

2.1.1 Latent Variable Model

The convolutional clustering model is a probabilistic approach based on a
latent variable model. In a latent variable model we assume that a data point
x is sampled from a joint distribution P (X,L | θ) where X is the observed
data variable, L ∈ {1, . . . , k} is the latent variable that specifies the cluster
label, and θ are the parameters of the model. The clustering problem in this
model is to learn the parameters θ and finding the label assignment l for
point x such that P (X = x, L = l | θ) is maximal.

When the latent variable model is generalized to multiple clustering we
have multiple latent variables L = L1, . . . , Lm. We then have to find multiple
labels L1 = l1, . . . , Lm = lm (abbreviated L = l) that maximises P (X =
x,L = l | θ).

2.1.2 Model for Multiple Segmentation of Videos

In our model we say that we want to find m segmentations, each of which
consist of several clusters, in a video with I pixels. We do not count a pixel
multiple times across the frames of the video, meaning that I is the number
of pixels we find in a single frame. This also means that we should see the
observed data Xi for pixel i as a feature vector with values constructed from
all frames in the video. The perhaps simplest feature vector is the three RGB
values of a pixel in a frame concatenated over all frames, so with F frames
the length is |Xi| = 3F . Our focus in our previous work was to examine
different methods for constructing Xi.

14 Convolutional Clustering Algorithm 2

Our model is structurally identical to a multi-layer hidden Markov ran-
dom field, as illustrated in Figure F2-1, where each variable Xi represents a
pixel. The hidden variables in each layer is organised in a grid and influences
the observed variables also organised in a grid. There are m latent variables
associated to each pixel Li,• = Li,1, . . . , Li,m. The variables in one hidden
layer defines one segmentation L•,k = L1,k, . . . , L|I|,k and takes values in
the set {1, . . . , nk}. Theoretically the model supports a different number
of clusters in each segmentation in that the kth segmentation will have nk

clusters, but in our implementation the number of clusters is the same for
all segmentations.

Li,2

Li,1

Xi

Figure F2-1: Illustration of a multi-layer hidden Markov random field

The joint distribution for all pixels and all labels P (X,L | θ) will serve as
our objective function. It is found by obtaining the the marginal distribution
P (L | θ) and the conditional probability distribution P (X | L, θ). The
marginal distribution is defined using the Potts model, and the conditional
distribution is defined by a convolution of Gaussian mixtures. Each of these
are defined in the following sections.

2.1.3 The Potts Model

We define the distribution P (L = l | θ) using the Potts model, which is
a model inspired from particle physics in which the state of one point is
influenced by the state it’s neighbouring points. For our application it is
used to represent a smoothing effect, where pixels are more likely to be in
the same clusters as their neighbours as defined in the square grid structure
in the Markov Random Field. It does not necessarily have to be a square
grid structure. In other works on segmentation it is also typical to see 8-pixel
neighbourhoods.

The smoothing effect is calculated using the latent variables and the
parameter β = 1/T which is the inverse temperature from the model in
physics. Low temperatures mean that particles have a large influence on
their neighbours, and thus a high value of β means that pixels are more
likely to be placed in the same cluster as their neighbours which creates
spatially connected clusters. The model is defined as:

2.1 The Convolutional Clustering Model 15

P (L = l | β) = 1

Z

m∏
k=1

eV (L•,k=l•,k)β

where Z is a normalisation constant and the function V is called the
neighbours potential function and is equal to the number of neighbouring
pixels that are in different clusters in the current layer:

V (L•,k = l•,k) =
∑

i,j:i∼j

I(li,k 6= lj,k)

with I being a binary indicator function, that returns 0 if li,k = lj,k and
1 otherwise. We can rewrite it to a log-likelihood to get a more intuitive
negative sum:

log(P (L = l | β)) ≈ −β

m∑
k=1

∑
i,j:i∼j

I(li,k 6= lj,k)

which gives us a a lower likelihood for solutions for which pixels share
less cluster indices with their neighbours. Notice that we have removed
normalization constant, hence the ≈. It can be freely removed, because a
constant has no influence in determining what is the most likely solution
to the objective function. We call this part of the objective function the
neighbourhood cost.

2.1.4 Convolution of Mixtures

To complete the model we then need the conditional probability distribution
P (X | L,θ). In this model the pixel features are seen as sampled from
a convolution of mixtures of Gaussians. The feature values in the layer
is sampled from a mixture distribution consisting of a Gaussian for each
cluster/label, with a mean µ and a constant covariance, that is simply the
unit covariance matrix.

There is one mixture for each layer each corresponding to a clustering, to
get to the model, we take the convolution of those. The convolution of two
Gaussians results in a new Gaussian, where the mean and variance is the
sum of those of the original distributions. As such this representation allows
us to represent Xi as a sum of the underlying layers that can be diverse
clusterings. We define the Gaussian means for the mixture components as
µ ∈ {µ1,1, ..., µm,1, ..., µm,nk

} where µk,j ∈ R|X|.
The mixture distribution Zi,k in layer k is then defined as a mixture of

all the Gaussians of layer k for pixel i:

P (Zi,k | Li,k,µk) =

nk∑
j=1

N (µk,j ,1)I(Li,k = j)

where 1 is the unit covariance matrix. The indicator function I ensures
that in practice the model for a single variable Zi,k, is just the Gaussian
corresponding to the label Li,k that is assigned to the variable.

We can then define the model for Xi as the convolution of each mix-
ture, i.e., the probability distribution of the sum of each variable: P (Xi) =
P (Zi,1 + ...+ Zi,m). We denote the convolution of two probability distribu-
tions P (A) and P (B) as P (A) ∗ P (B). We then have the complete model
for Xi:

16 Convolutional Clustering Algorithm 2

P (Xi | Li,•,µ1, ...,µm) = P (Zi,1 | Li,1,µ1) ∗ ... ∗ P (Zi,m | Li,m,µm)

Converting this expression to a log-likelihood we obtain:

log(P (Xi | Li,•,µ1, ...,µm)) = −
∑
i∈I

||xi −
m∑
k=1

µk,li,k ||
2

We are calling this second part of the objective function the data cost.

2.1.5 The Objective Function

We can then combine our equations for P (L = l | β) and P (X | L,µ) and
obtain our objective function that we want to maximise:

log(P (L = l,X = x | µ, β)) ≈

−β

m∑
k=1

∑
i,j:i∼j

I(li,k 6= lj,k)−
∑
i∈I

||xi −
m∑
k=1

µk,li,k ||
2

By a change of sign we get an energy function that instead needs to be
minimised. It is this energy function that in practice will be the target of
optimisation in the clustering algorithm.

2.2 Clustering Algorithm

The clustering algorithm is a two-step iterative process similar to the EM
algorithm. We will start with an overview of the algorithm, and the describe
the individual steps in more detail afterwards.

The pseudo code can be seen in Algorithm 1. We saw in the previous
section that the parameters of the model are the means µ and β. The
smoothing parameter β will in the algorithm be taken as a hyper parameter,
and the parameters that will have be learned is then the means. The output
is the segmentations specified by the labellings L. The first step in the
algorithm is the feature creation, where the feature vectors for each pixel
is created. In a later section we give some examples of video features. The
second step is a random initialisation of the means. Then follows the two-step
iterative process that continues until convergence to a local minimum of
the energy function. The first step, called the MAP-step, calculates an
approximation to the most likely label assignment L = l using an algorithm
called α-expansion given the current setting of µ. The following step, called
the M-step (maximisation of likelihood), updates the means by coordinate
descent on the energy function.

From here we refer to Xi as the pixels, defined as consisting of their
associated feature values.

2.2.1 Initialization

The means are initialised using a method devised in our previous work [2].
Assume that we want m segmentations with c clusters each. We then ran-
domly pick c pixels x1, . . . , xc. For each picked pixel xj we use it to initialise

2.2 Clustering Algorithm 17

Algorithm 1: Overview of the clustering algorithm.
input : A video and the smoothing parameter β
output: The labellings L

Construct xi for each original pixel i;
Initialize µ;
while energy has not converged do

Find label assignment L = l with the α-expansion algorithm;
Update means µ by coordinate descent;

end

the means belonging to cluster index j in all m layers, such that a convex
combination of the mean vectors is equal to xj . Formally, the means are
initialised as µk,j = xj ∗ wk,j where we have random weights w1,1, . . . , wm,c

such that
∑m

k=0 µk,j = xj . This method ensures that in the first MAP-
step the three pixels are heavily biased to be placed separate clusters. This
helps guarding against results with one or more empty clusters, which was
a problem we faced previously. The weights are random instead of fixed,
e.g. always 1

3 for three layers, for having as much variance in the means as
possible for multiple runs of the algorithm.

2.2.2 The MAP-step with α-expansion

The α-expansion algorithm [6] can find a joint labelling s of all pixels that
is a local minimum of an energy function E(s) using a graph cut approach.
Since we are doing multiple segmentation and every pixel is assigned a cluster
label for each segmentation, the labelling of a pixel i can be seen as a tuple
(li,1, . . . , li,m). In order to use the α-expansion algorithm, we have to inter-
pret every tuple labelling as a single label s(i) = (li,1, . . . , li,m). This means
that we are creating

∏m
k=1 nk labels for the α-expansion algorithm, one for

each possible combination of cluster assignments across the segmentations.
This also means that the we are gaining a complexity that is exponential in
the number of segmentations.

For the α-expansion algorithm the energy function must be on the fol-
lowing form

E(s) =
∑

Di(s(i)) +
∑

i,j:i∼j

Vi,j(s(i), s(j))

Here Di(s(i)) is the independent data cost of the labelling s(i) given the
observed data for pixel i. The term Vi,j(s(i), s(j)) is the smooth cost that
gives a preference for spatial smoothness. This requirement is the reason we
change sign on the log-likelihood function. In our case the data cost will be

Di(s(i)) =‖ xi −
m∑
k=1

µk,li,k ‖2

and the smooth cost will be

Vi,j(s(i), s(j)) = β
m∑
k=1

I(li,k 6= lj,k)

18 Convolutional Clustering Algorithm 2

The algorithm guarantees that the returned solution is a local minimum that
is within a factor of the global minimum. For our algorithm this factor is
2m [2], two times the number of layers.

2.2.2.1 Algorithm Complexity

Though we gain a complexity that is exponential in the number of layers,
the α-expansion is linear in the number of pixels, and the computation of
the data cost makes it linear in the size of the feature vector |Xi|. The full
complexity is O(I × |Xi| × km), where we use k to denote the number of
clusters in a layer.

2.2.3 The M-step with Coordinate Descent

During the M-step the means are updated by Coordinate descent on the
energy function and thus increasing the likelihood of the current setting. In
this step new optimal values are computed for every µ, and then every mean
takes simultaneously a step towards their new optimal values. The approach
is similar to [7], except that we are not using a regularisation term.

We will in this section describing the general procedure for updating a
single mean. The specific mean we are updating is denoted by µ̃, and its
computed new optimal value will be denoted by µ̂. The optimal values can
be found by taking the partial derivative of our energy function w.r.t. µ̃.
Since we assume that everything but µ̃ is constant, we can then just take
the partial derivative to the following simplified energy function, where we
have removed the terms that does not involve µ̃

∑
i∈Ĩ

||xi −
m∑
k=1

µk,li,k ||
2

In the above expression Ĩ is the set of pixels which is assigned to the cluster
of µ̃. The equation can be simplified a little further by subtracting all means
except µ̃ from each xi to get a value yi

yi = xi −
m∑
k=1

µk,li,k + µ̃ (2.1)

We can then use yi instead in the function∑
i∈Ĩ

||yi − µ̃||2 (2.2)

When we take the partial derivative of the above function we get

∂

∂µ̃

∑
i∈Ĩ

||yi − µ̃||2 = −2
∑
i∈Ĩ

(yi − µ̃)

We set the gradient equal to the zero vector to get the optimal mean value,
and remove the −2 by multiplying each side by −1

2

0 =
∑
i∈Ĩ

(yi − µ̂)

2.2 Clustering Algorithm 19

Now we can isolate the mean on the left-hand side of the equation, and that
will be the optimal mean value, which is actually just the mean value of all
yi

µ̂ =
1

|Ĩ|

∑
i∈Ĩ

yi (2.3)

20 Convolutional Clustering Algorithm 2

CHAPTER 3
A Temporal Model

This chapter will introduce our proposal for a new model for video segmen-
tation that incorporates the temporal aspect of videos. The first sections in
the chapter will explain the more formal parts, and the last few sections will
explain what changes the new model brought to the algorithm.

3.1 A Temporal View of the Model

Let us first review why the old model is incapable of capturing the the
temporal aspects of a video. The old model uses multivariate Gaussian dis-
tributions. If the constructed feature vectors for each pixel had for example
length 100, then it would be 100 dimensional Gaussian distributions. The
mean of each dimension in the Gaussian distribution is optimised indepen-
dently from the others. This is why the model is non-temporal. In a video
we can make the reasonable assumption that the mean values of a cluster of
pixels at frame f is close to the mean of the same cluster at frame f − 1 and
f + 1. Imagine for example a part of a video that gets brighter throughout
the video. The mean of the pixels in that area will then gradually increase,
perhaps in a linear fashion. A temporal view we could bring into the model is
then to say that we have a (multivariate) Gaussian distributions per frame,
and that these distributions changes during the video. This is what is known
as a Gaussian process.

3.2 Gaussian Processes

A Gaussian process is a stochastic process, that describes a continuous Gaus-
sian distribution which means we can evaluate the probability distribution
in infinitely many locations [8, 9]. However it is often sufficient to say that
we can evaluate it at any location on the real line. Often it is evaluated in
time, but it can be a multidimensional process for example a spatial process
where we can evaluate it at any point in two dimensions. In our case we only
need one dimension which corresponds to the temporal nature of videos.

A simple example of a Gaussian Process is the temperature in the world.
Each year we could sample the temperature different places around the globe
and they might fit a Gaussian distribution. This distribution is similar the
following year, but probably not identical, the temperature have been ris-
ing for the last couple of decades. This behaviour could be modelled by a
Gaussian process where the parameters of the process determines that the
temperature rises in the long term.

A Gaussian process is however much more flexible than simply describing
an increase over time. If, for example, the temperature changes periodically

22 A Temporal Model 3

because we measure the temperature on a monthly basis instead of a yearly,
the long term tendency is still an increase, but it does not increase every
month because of the seasons. To model this, we need a periodic trend
besides the long term trend, and this can also be modelled by a Gaussian
process.

A multivariate Gaussian distribution is defined by two parameters, the
covariance matrix and the mean vector of the distribution. When we are
considering a Gaussian process the parameters for the associated Gaussian
distribution of each point, changes depending on the location. The mean
value is easy to describe as a function which is often constant. But since we
cannot write a covariance matrix that handles an infinite number of locations
we also need a function in this case and we use a covariance kernel function
k(ti, tj). It gives the covariance between two locations ti and tj . We can
then define the covariance matrix for a set of locations t as

K(t, t) =

k(t1, t1) k(t1, t2) · · · k(t1, tn)
k(t2, t1) k(t2, t2) · · · k(t2, tn)

...
...

...
...

k(tn, x1) k(t1, t2) · · · k(tn, tn)

So to describe a Gaussian process we need a mean function and a covari-

ance kernel function. Formally we can write the evaluation of a Gaussian
process at locations t as

p(t) = N (m(t),K(t, t))

where m is the mean function.
The covariance function k can be in many different forms but the con-

straint is that the covariance matrix is generates must be positive semi
definite which is the case if and only if the eigenvalues of the matrix are
non-negative. This still allows for a lot of different functions, so one has to
choose one based on the use case. In many cases we assume that the data is
dependent on past data and how long ago the past data was observed. To
incorporate this information in a covariance function a stationary covariance
function is used which means that the function is dependant on |ti− tj |. The
most widely used function of this class is the squared exponential function
which is defined as

k(ti, tj) = h2exp[−(
ti − tj

λ
)2]

The hyper parameter h decides the output scale of the function and λ the
time scale i.e. how fast the correlation between locations decreases. Often a
certain amount of noise in observations is assumed, this can also be modelled
in the covariance function by adding a noise term. We expect this noise to
be uncorrelated between different locations and therefore we multiply it by
the identity matrix I and add it to the covariance function. A squared
exponential function with noise would then be

k(ti, tj) = h2exp[−(
ti − tj

λ
)2] + σ2I

where σ2 is the noise variance.
The mean function can be any continuous function but often the average

values of the sample functions drawn from a Gaussian process is assumed to

3.3 The Temporal Convolutional Clustering Model 23

be 0, and thus the mean function is assumed to be constant. This means
that the functions drawn from a Gaussian process is purely based on the
covariance function. However in our model we work with the opposite case,
we have knowledge of the mean values from the videos, but assume the
covariance to be zero, there for we simply use the identity matrix as our
covariance matrix. This makes for a simpler case in the maximisation step,
where we are optimising the parameters, because we only need to optimise
the mean functions of the Gaussian processes. If we also had to learn co-
variance function parameters it would make the maximisation step harder.
So we assume it is enough to model the temporal relationship only through
mean functions.

3.3 The Temporal Convolutional Clustering Model

First and foremost the temporal model requires a specific view of the pixel
data. In the old model the feature vector xi that you create for a pixel i
depended entirely on the feature creation method. For example you could
aggregate the motion flow information of any number frames into just 8
features per pixel (an example is our SIFT histogram features from [1]).
Because we now need to model a Gaussian processes it is a requirement that
xi contains data from every frame. Therefore we now introduce the notation
xi,f which is the pixel value(s) at frame f for pixel i. In reality we would
most likely have a vector of pixel values per frame, for example when we use
RGB values we would have both a red, green and blue component, but for
simplicity the model is easier explained if we assume that xi,f is just a single
value.

The temporal model definition will in some parts be identical to the
old model’s definition. An structural overview of the model is illustrated
in Figure F3-1. The illustration is similar to Figure F2-1 except that each
pixel variable Xi is split into three variables Xi,1, Xi,2 and Xi,3; one for
each of three frames. We may still refer to Xi, in which case we mean
Xi = Xi,1, . . . , Xi,F for F frames. The notation to index the individual
frames will only be used when we talk about specific the specific values for
these frames.

The joint distribution for all pixels and all labels is P (X,L | θ, β). In
the old model θ was used as the general symbol for model parameters, but
now θ is used specifically as the mean function parameters.

The joint distribution will still be found by combining two distributions:
the marginal distribution P (L | β) and the conditional distribution P (X |
L,θ). The model’s latent variable structure remains unchanged so there
is still one latent variable per layer associated to each pixel. Therefore the
Potts model specification for use in the marginal distribution in Section 2.1.3
also remains unchanged. The definition of the conditional distribution has
changed, because it has now become a convolution of mixtures of Gaussian
processes.

3.3.1 Convolution of Mixtures of Gaussian Processes

The model now defines a Gaussian process, instead of a Gaussian distribu-
tion, for each cluster. The parameters θ is the set of mean function param-
eters for each Gaussian process in each layer θ = θ1,1, . . . , θm,1, . . . , θm,nk

.

24 A Temporal Model 3

Layer 1

Layer 2

t1 t2 t3

Video Xi,2

Xj,1

Xi,2

Xj,2

Xi,3

Xj,3

Li,2

Lj,2

Li,1

Lj,1

Figure F3-1: Illustration of the temporal model for three frames and two
pixels

The feature values in a layer is now sampled from a mixture of Gaussian
processes, whose mean function is defined by some parameters θ and the
unit covariance matrix. Our decision to keep zero covariance between the
frames for a pixel matches the illustration in Figure F3-1, because we can
here see that Xi,2 is conditionally independent from Xi,1 and Xi,3 given Li,1

and Li,2.
The change from Gaussian distributions to Gaussian processes is perhaps

easiest explained by thinking of the mean function as a vector, in which
there is an entry for each frame f with the mean function value Mθ, f) as
specified by θ. In fact, there is also some mathematical convenience in this.
We can keep the mean vectors µ in our model, but redefine them so the
mean vector in layer k and cluster j is µk,j = [Mθkj , 1), . . . ,Mθkj , F)]>. So
instead of the mean vectors being parameters, they can now be thought of
as being generated by the mean function. This is not only to simplify the
model definition, but also because it matches the algorithm implementation,
since the algorithm can then support both the non-temporal model and
the temporal model. Therefore our way of defining the model also helps
explaining how the clustering algorithm is backwards compatible.

With µ defined by θ we are allowed to have a similar definition of the
mixture distribution as we used in Section 2.1.4. We define Zi,k in layer k
as a mixture of all the Gaussians processes of layer k for pixel i:

P (Zi,k | Li,k,θk) =

nk∑
j=1

N (µk,j ,1)I(Li,k = j)

3.4 Mean Functions for Gaussian Processes 25

The mean of the convolution of two Gaussian distributions was the sum of
the two Gaussian distributions’ means. Similarly, the function that describes
the means of a convolution of Gaussian processes is the sum of the mean
functions of each Gaussian processes. Note that this is only the case for
Gaussian distributions and thus differs from the definition of a convolution
of two arbitrary functions f and g which is not the simply sum. The easiest
way of thinking of the convolution of the processes is to add them on top
of each other, as illustrated in Figure F3-2 which shows the convolution of
two example mean functions. In our context the horizontal axis represents a
videos frame number. We can therefore again reuse the definitions from the

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Figure F3-2: The convolution (black line) of two mean functions.

old model and define the conditional distribution for Xi using the sum of the
mean vectors because they were defined by the mean function parameters:

P (Xi | Li,•,θ1, ...,θm) = P (Zi,1 | Li,1,θ1) ∗ ... ∗ P (Zi,m | Li,m,θm)

As a result, when we combine the marginal distributions and conditional
distribution we get a similar log-likelihood

log(P (L = l,X = x | θ, β)) ≈

−β
m∑
k=1

∑
i,j:i∼j

I(li,k 6= lj,k)−
∑
i∈I

||xi −
m∑
k=1

µk,li,k ||
2

3.4 Mean Functions for Gaussian Processes

The mean function in a Gaussian Process can have any shape, but we are
restricting ourselves to only focus on a few types of simple mean functions.
For example we could restrict the mean functions to only be linear. The rea-
son for this restriction is both because of scope, since we need to evaluate the
usefulness of the mean functions somehow, but also because too much time
spent on choosing appropriate mean functions is over-engineering or overfit-
ting the mean function to the video. Instead it would be more practical to
have a few functions that can be used for any video. The multiclustering tool
has from the start been seen as a general purpose video-exploration tool, so
in that context it is not really possible to reason much about which complex

26 A Temporal Model 3

mean function that would be the most appropriate. We have chosen to fo-
cus on the polynomial family of functions and the piecewise linear function,
which is a special kind of polynomial function.

3.4.1 Polynomial Mean Function

Polynomial functions as mean functions can effectively be used to represent
videos with smooth feature value progression throughout the videos frames.
The complexity of the polynomial function is determined the by the degree d
of the function. The polynomial mean function with d = 1 is the linear mean
function. We will treat the degree as a hyper parameter that is chosen before
the algorithm is run. This is both because of the above mentioned issue of
overfitting, but also because it would be a much more complex problem if
this parameter also had to be learned. The two mean functions in Figure
F3-2 are examples of two polynomial mean functions of degree d = 3.

Polynomial functions can be least squares fitted to a pixel trajectory
with a computational complexity of O(n2), with n as the number of frames
of the video, using Vandermonde matrices [10]. Polynomial function fitting
is available in MATLAB by the function polyfit.

3.4.2 Piecewise Mean Functions

The polynomial functions seems an appropriate choice when we can as-
sume that the mean of pixels’ trajectories is somewhat smooth. You could
though image that the mean values change dramatically one or multiple
times throughout a video, for example if the video contains scene changes. In
that case it would be appropriate to have multiple mean functions that cor-
respond to different parts of the video. So what we need is in fact piecewise
mean functions, since a piecewise function is the concatenation of multiple
functions, also called pieces.

There is two basic methods to fitting a piecewise function. The first is
where you control the number of knots k, which is the number of endpoints
in the piecewise. A piecewise function with two pieces have three knots; one
in either end, and one where they two pieces meet. An algorithm for fitting
such a piecewise function will then determine where to place the knots to
reduce squared error. The second method is where an algorithm is given a
bound on the error the piecewise function may at maximum give. Such an
algorithm would create as few functions as possible needed to be within the
error bound. This method is not a least squares fitting method, because its
first priority is to minimise the number of knots.

We decided to only focus on piecewise linear functions. We do not believe
there is a need to consider piecewise polynomial functions of higher degree,
since they already get flexibility by the freedom to determine where the
knots should be. We choose two fitting algorithms that are based on the two
methods explained above. The algorithm that uses a fixed number of knots
fits a continuous piecewise function, while the algorithm that uses an error
bound fits a discontinuous piecewise function.

3.5 Clustering Algorithm 27

Continuous Piecewise Linear Mean Function with Fixed Number
of Knots

The algorithm we use is from the Shape Language Modeling toolbox for
MATLAB[11]. The toolbox provides a function that fits a piecewise function
on an input vector. The parameters of the function is the number of knots
k and the degree of individual functions, which we set to 1, because we want
piecewise linear functions. It utilises the MATLAB optimization toolbox to
find a least square fit of the function with the chosen number of knots. The
complexity of the fitting is not provided, but empirical testing shows that
the running time is linear in the number of input points which is in our case
the number of frames, and linear in the number of knots but with a higher
constant. The testing showed that running with up to 9 knots is reasonable.
An example of two continuous piecewise linear mean functions is shown in
Figure F3-3 along with their convolution.

Discontinuous Piecewise Linear Mean Function with Error Bound

The algorithm we use comes from [12], and implemented by ourselves in
MATLAB. It is an method that tries to fits as few linear functions as possible
to the input data that all lie with the error bound. The resulting piecewise
function is discontinuous because it does not attempt to match the endpoints
of the linear function it is made up of. It is an approximate method in that
the fitted discontinuous piecewise function only approximately minimises
squared error w.r.t. the number of knots the algorithm found. Because it is
an approximate method it achieves an efficient running time that is linear
in the input size.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Figure F3-3: The convolution (black line) of two continous piecewise linear
mean functions with k = 5.

3.5 Clustering Algorithm

In this section we will introduce the main parts of the clustering algorithm
based on the model presented. Focus is on the contributions of this work
which lies primarily with the M-Step using coordinate descent.

28 A Temporal Model 3

3.5.1 Initialization of Mean Functions

As explained in Section 2.2.1 we initialize the means by choosing a num-
ber of pixels x and base the initial means on their values. However when
we are using mean functions we cannot use the feature values for the pixel
directly, but need to fit the function to the pixel values from each frame.
The method is very similar, but instead multiplying the pixel features xj by
the weights w, we weight the function parameters θ. Formally this means
that for m segmentations with c clusters, we fit the desired function type
to xj to obtain function parameters θ̆. Then we weight them to obtain the
final parameters used for initialisation θk,j = θ̆j ∗wk,j where we use random
weights w1,1, . . . , wm,c such that

∑m
k=0 θk,j = θ̆j . We can do this because our

functions are polynomials or piecewise polynomials, and the evaluation of a
polynomial, where the parameters is the sum of the parameters for a set of
other polynomial functions of the same degree, is equal to the sum of the
evaluations of the polynomials in the set. This results in the convex com-
bination of the mean functions being equal to the function with parameters
θ̆.

3.5.2 The MAP-step with α-expansion

The MAP-step remains unchanged, because it just finds a joint labelling of
all pixels using the α-expansion algorithm.

3.5.3 Coordinate Descent for Mean Functions

The algorithm for the non-temporal model uses coordinate descent in the
M-step where the mean vectors are updated one by one. Now since the mean
vectors are created from mean functions, we will have to find the parameters
of the mean functions instead of updating the mean vectors directly. If θ̃ is
the current setting of parameters of a piecewise function we wish to update,
θ̂ are the new calculated optimal parameters. In this section we will show
how to obtain θ̂ by starting with a mathematical explanation and then follow
with the pseudo code in Section 3.5.3.2 to get an overview of the method.

In the old model we first computed µ̂ to

µ̂ =
1

|Ĩ|

∑
i∈Ĩ

yi

and then updated the means. Coordinate descent for mean functions will
work in a similar way. When iterating over the mean functions we apply the
following procedure: From a current setting of parameters θ̃ we have µ̃ from
which we can find µ̂. We then do a least squares refit of the mean function to
µ̂ giving θ̂, which then becomes the new parameters for that mean function.

As an example lets consider the case where we are in the midst of up-
dating one from the set of linear mean functions. The parameters for the
mean function we are updating consists of two coefficients θ̃ = (ã, b̃). Let
linear_mean be a function that we use to create the corresponding mean
vector from the parameters

µ̃ = linear_mean(ã, b̃)

From µ̃ we calculate µ̂ and do a least squares fit a new linear function to µ̂
giving us a new set of parameters.

3.5 Clustering Algorithm 29

(â, b̂) = linear_fit(µ̂)

This process is the same for other mean functions except that we use other
fitting functions giving other sets of parameters, and that the mean vec-
tors are created differently of course. It might not be immediately obvious
that least squares fitting of mean functions to µ̂ does in fact minimise our
objective function, so we will dedicate the following section to showing it.

3.5.3.1 Correctness of Coordinate Descent Method

The argument we will make in this section holds for the class of mean func-
tions that can be least squares fitted to a vector. This does not include the
discontinuous piecewise linear mean function, since it is constrained to be
least squares fitted within the error bound.

First we will introduce some notation for use in this section. We use the
notation yi,f to denote the value of the fth element of the vector yi. We
use the function m(θ̃, f) to give us the value at frame f of a mean function
specified by parameters θ̃. Using this notation we can write Equation 2.2
from Section 2.2.3 in a “constrained” form where we replace µ̃ with the mean
function

F∑
f=1

∑
i∈Ĩ

(yi,f −m(θ̃, f))2 (3.1)

When we fit a mean function that minimizes the squared error, to µ̂ we are
minimising

F∑
f=1

(
1

|Ĩ|

∑
i∈Ĩ

yi,f −m(θ̃, f))2 (3.2)

The equation is similar, but instead of minimising the sum of the individual
squared errors we are minimising the square of the average error.

The correctness of our coordinate descent method comes from the fact
that minimising Equation 3.1 is equivalent to minimizing Equation 3.2. It
can be shown in the following way: We take the partial derivative of Equation
3.1 w.r.t. a parameter θ ∈ θ̃ and set it to zero and with some rewritings
arrive at the same equation as when we similarly take the partial derivative
of Equation 3.2. We will start with Equation 3.1

∂

∂θ̃

F∑
f=1

∑
i∈Ĩ

(yi,f −m(θ̃, f))2 = −2

F∑
f=1

∑
i∈Ĩ

(yi,f −m(θ̃, f))
∂m(θ̃, f)

∂θ̃

We set the partial derivative equal to zero and remove the −2 by multiplying
both sides by −1

2 .

0 =

F∑
f=1

∑
i∈Ĩ

(yi,f −m(θ̃, f))
∂m(θ̃, f)

∂θ̃

By doing a series of rewrites we can make the mean of yi,f over all i appear
in the equation. First ∂m(θ̃,f)

∂θ̃
is moved outside the second summation

30 A Temporal Model 3

0 =
F∑

f=1

∂m(θ̃, f)

∂θ̃

∑
i∈Ĩ

(yi,f −m(θ̃, f))

Then instead of subtracting m(θ̃, f) inside the summation term, we subtract
|Ĩ| times m(θ̃, f) afterwards

0 =

F∑
f=1

∂m(θ̃, f)

∂θ̃
(
∑
i∈Ĩ

yi,f − |Ĩ|m(θ̃, f))

And lastly the multiplication of |Ĩ| is moved outside the second summation
term

0 =
F∑

f=1

∂m(θ̃, f)

∂θ̃
|Ĩ|(1

|Ĩ|

∑
i∈Ĩ

yi,f −m(θ̃, f))

Now for Equation 3.2 we similarly take the partial derivative

∂

∂θ̃

F∑
f=1

(
1

|Ĩ|

∑
i∈Ĩ

yi,f −m(θ̃, f))2 = −2
F∑

f=1

∂m(θ̃, f)

∂θ̃
(
1

|Ĩ|

∑
i∈Ĩ

yi,f −m(θ̃, f))

Again the partial derivative is set equal to zero and −2 is removed

0 =

F∑
f=1

∂m(θ̃, f)

∂θ̃
(
1

|Ĩ|

∑
i∈Ĩ

yi,f −m(θ̃, f))

We can multiply both sides by |Ĩ| to arrive at the same equation as above

0 =
F∑

f=1

∂m(θ̃, f)

∂θ̃
|Ĩ|(1

|Ĩ|

∑
i∈Ĩ

yi,f −m(θ̃, f))

which shows that the parameters of any mean function that minimises squared
error w.r.t. µ̂ does in fact minimize our energy function.

3.5 Clustering Algorithm 31

3.5.3.2 The pseudo code

The pseudo code can be found in Algorithm 2.
Algorithm 2: Overview of the coordinate descent algorithm. To bring
down the complexity a little we assume only one feature being used. It
is easy to generalize simply by using matrices of feature values instead
of vectors, and fitting a function for each feature.
input : A video I with labels L, a type of mean function M and the

current mean parameters θ̃
output: Updated mean function parameters θ̂

/* Calculate energy using Equation 3.1 */
OldEnergy = CalculateEnergy(I,L,M , θ̃);
θ̂ = θ̃;
Layers = Random order of layers;
for Layer in Layers do

Clusters = Random order of clusters in Layer;
for Cluster in Clusters do

correspondingClusters = All clusters in all other layers to
which Pixel belongs;
/* We now calculate the sum of the corresponding

means as in Equation 2.1 */
µsum = Zero-vector of length |frames|;
for Cluster l, c in correspondingClusters do

µsum = µsum + M evaluated using θ̃l,c at each frame;
end
ysum = 0;
for Pixel X in I that belongs to Cluster do

/* X and DataError is a vector of values for
every frame */

yi = X - µsum;
ysum = ysum + yi;

end
/* Normalize to get µ̂ according to Equation 2.3 */
µ̂ = ysum/|Ĩ|;
/* Fit returns parameters for M fitted to the data,

depending on the type of M, see Section 3.4 */
θ̂Layer,Cluster = Fit(M , µ̂);

end
end
NewEnergy = CalculateEnergy(I,L,M , θ̂);
if OldEnergy>=NewEnergy then

return θ̂;
else

TerminateRun;
end

The idea behind the code is to update each of the mean functions in
turns, and then use the updated mean function when updating the next
mean function. Since we have one mean function for each cluster in each
layer we loop through the layers and the clusters, and perform the update
inside this loop. To ensure that a specific mean does not dominate the results

32 A Temporal Model 3

because it is chosen first in every iteration of the overall algorithm we pick
the order of the layers and clusters at random.

Inside the loop we take the feature values of each pixel X and subtract
the mean values from the clusters in the other layers, that the pixel belongs
to. Unless the means fit perfectly to every pixel which is never happening in
practice, we then end up with a deviation for every pixel yi on the remaining
amount in every time step. The total error is divided by the number of
pixels to get the average error for a pixel. We have then obtained a vector
of the optimal mean values for every time step µ̂. Finally we fit our desired
mean function to these values to obtain the new parameters θ̃. After this
we continue with the same procedure for the remaining means in the other
layers and clusters until every mean function have been updated.

If the total error i.e. the energy of the solution have not improved by this
procedure we assume that we have arrived at a local optimum and terminate
the current run of the overall algorithm, otherwise we continue to the MAP
step to retrieve a new labelling.

The complexity of the algorithm is better than that of the MAP step
mentioned in Section 2.2.2.1, however the constant time it takes to fit a
mean function means that this part of the algorithm still makes for most
of the time spent running our method. The complexity is linear in most
of the parameters, but the influence of the number of frames depends on
which mean function is being used. The complexity of fitting a polynomial
function is O(Frames2), which means we end up with a total complexity of
O(Layers× Clusters× Pixels× Features× Frames2).

3.6 Features

In our previous work [2] we constructed a number of feature types with
the purpose of covering different style and videos and also to respect the
temporal aspect of videos. Our RGB features were represented as mean
the mean RGB values aggregated over all frames or as as a long feature
vector containing all RGB values of all frames. Our trajectory features
did incorporate temporal information but only by creating feature values
that covered 10 predetermined discrete parts of the video, with each piece
aggregated over its frames. In this work we have incorporated the temporal
aspects of videos into the model itself and we don’t need to rely on features to
represent the temporal structure. This means that the number of relevant
feature types have been reduced to RGB and SIFT flow. These can be
used by themselves or combined. Furthermore the framework is still easily
extensible with new feature types.

3.6.1 RGB-features

RGB-features for a given pixel are given by the 0 to 255 Red, Green, Blue
values. RGB is the general purpose feature that covers use cases in the
widest range of videos used to extract basic visual structures.

3.6.2 Motion Features based on SIFT Flow

Scale Invariant Feature Transform (SIFT) [13] is a standard method for
describing local features in an image and has been shown to have a wide
spectrum of applications in computer vision. Given an image it will create a

3.6 Features 33

large feature vector for a number of points of interest that are detected. This
feature vector is called a SIFT descriptor and captures the local gradient
information around the point. It has the advantage that it can reliable
detect features under changes to orientation, scale, camera perspective and
lightning.

The SIFT flow algorithm [14] creates SIFT descriptors for every pixel
in an image and attempts to match these descriptors between two images,
and in doing so calculates the displacement of every SIFT descriptor. The
algorithm can be used for motion field prediction if the two images are con-
secutive frames from a video, because the calculated displacement can be in-
terpreted as a motion vector. The motion vector calculated between frames i
and i+1 is denoted mvi = (dxi, dyi). The simplest approach is then simply
to use these two coordinate values as they are in the feature vector. We
convert the motion vector into three values, which are the sine, cosine and
length of the vector.

34 A Temporal Model 3

CHAPTER 4
Implementation

The implementation is written in MATLAB and is available on the attached
DVD along with the data and configurations we have used for the experi-
ments.

4.1 Architecture Overview

An illustration of the overall architecture of the implementation is shown in
Figure F4-1. The flow of the program working on a video follows the illus-
tration from top to bottom. To run the program on a video a configuration
file needs to be specified for the application that specifies which video files
that should be used and the values of various algorithm parameters that are
listed later in this chapter.

Before videos can be used by the main application they need to be con-
verted into its constituent frame images in either .png or .tif file format.
This is not done by the our implementation and needs to be done by a
third party tool. Once the frames have been obtained, the application starts
constructing feature vectors for each pixel from the frames specified by the
active configuration file. This utilizes a number of distinct feature conversion
functions depending on which features are used.

After feature vectors for the video have been obtained the application
enters the main part of the algorithm which begins with an initialisation
step that provides randomized initial values for the models parameters. The
next step is a derivation of the Hard EM-algorithm. The mapping step
consists of matching each individual pixel to Gaussian cluster means, which
is done using an external library for the α-expansion algorithm [6, 15]. The
maximization step involves fitting new mean functions to the newly assigned
pixels in each cluster using our coordinate descent method.

4.2 Configuration Files

The configuration files specify the parameters that the application should use
for a particular video. This includes some basic information such as the path
of the video frames and which part of the video, specified as frame indices,
that should be used and whether to skip frames to reduce the amount of
features and speed up the run. The configuration files also specifies a number
of parameters relevant to how the algorithm should run:

• NumberOfLabelsPerLayer

• NumberOfLayers

36 Implementation 4

Configuration Files

EM-Algorithm

Video To Features Functions

RGB SIFT Texture ...

 α-Expansion
 Module
(Expectation Step)

 Coordinate Descent
 Module
(Maximization Step)

Video

Video to RGB Frames

 Cluster Visualisation
 Module

Initialisation

Figure F4-1: The architecture of the implementation.

• NeighbourWeight (β)

• NumberOfRuns

The number of runs specifies the number of times the application
should restart the initialisation and EM part of the application. This
is useful due to the nature of the random initialisation. The EM-
algorithm that will not always converge on the globally optimal solu-
tion, and as such multiple runs is recommended.

• MaxEMIterations

While the EM-algorithm is guaranteed to converge in a finite number
of steps under normal circumstances, it can still be useful to limit this
number to prevent slowing down the application with an unnecessary
number of small adjustments.

• TerminationThreshold

The termination threshold determines a minimum change in energy for
the application to continue doing EM iterations.

• UsePCAonFeatures and pctVarianceCovered

Specifies whether to use the features directly or perform dimensionality
reduction, as explained in 5.6, and what percentage of the original
variance the reduced set of components should cover.

• MeanType and parameters Tells the algorithm which mean function
family should use and the hyper parameters of the function depending

4.3 Video to Features 37

on the function type. For polynomial that is the polynomial degree.
For the continuous piecewise linear it is the number of knots and for
the discontinuous piecewise linear it is the ε-value.

Additionally a few less significant parameters for the output format are
specified.

4.3 Video to Features

The application utilizes a number of conversion functions that take the video
frames as input and constructs a feature vector per pixel per frame. These
feature vectors will automatically be concatenated when multiple feature
types are specified in the configuration files. The implementation currently
has three conversion functions:

• RBG-features

RGB features consist of Red, Blue and Green values.

• SIFT-features

SIFT features are calculated using the SIFT flow algorithm [14] cal-
culated using an external library. The motion is represented as Sine
Cosine and length of the pixel motions from one frame to the next.

• SFTA Texture features

The program also supports texture features that calculated using the
SFTA algorithm [16] using an external library for the core computa-
tions. The texture of the local area around each pixel is then converted
into 9 values which are used in the feature vector. This feature type
has however not been used in our experiments, as feature types is not
the main contribution of this project.

All feature values are normalized to lie between 0 and 255, this value
is not important but rather chosen to match the natural normalisation of
RGB-values in images.

4.4 Initialisation

The initialisation module is responsible for random initialisation of the clus-
ter means.

4.5 EM-Algorithm

The core part of the algorithm is based on the hard EM algorithm which
in generally works in two alternating steps: mapping and maximisation.
The interfacing between the two steps consists of passing the cluster means
and the label assignments. In the interfacing, the means are represented
as a vector of values for each feature value per frame, to avoid constantly
re-evaluating the mean function.

38 Implementation 4

4.5.1 MAP Step

The map step consists of taking the current cluster means and reassigning
all pixels to best fitting cluster using a squared distance function. Clus-
ter assignments are computed using the α-expansion algorithm [6]. The
α-expansion algorithm require that the distance from each pixel to each clus-
ter mean is pre calculated in what is called the data cost, the α-expansion
also supports parameters for a neighbourhood structure as well as a weight-
ing factor. The data cost is implemented as specified in Section 2.1.4.

4.5.2 Maximisation Step

The maximisation step computes the new cluster means provided the cluster
assignments in the expectation step. This is computed using the coordinate-
descent method presented in Section 3.5.3.

4.6 Cluster Visualisation

When a run terminates due to TerminationThreshold or MaxEMIterations
being exceeded a visualisation function is called to display the computed
segmentations. The segmentations are shown as grey scale images with the
clusters in the different layers displayed above each other. Each output file
is named with the resulting energy of the solution.

CHAPTER 5
Experiments

In the following experiments we will use the shorthand names cpl, dpl and
poly for the mean function types continuous piecewise linear, discontinuous
piecewise linear and polynomial respectively. When we present the results
of a specific configuration of the algorithm we will write the mean function
along with the mean function’s hyperparameters, e.g. poly d = 1 for when
the algorithm used polynomial mean functions of degree 1. In this section
when comparing experimental results with our previous method [2], we refer
to it as the old model.

5.1 Experiments on Sunset Video

The first experiment will be on a time-lapse video of a sunset containing 800
frames. Figure F5-1 shows three frames from the start, middle and end of
the video. The video is chosen because the RGB trajectories of the pixels
in video are very smooth, and it should therefore be an example where it is
easy to find convolutions of mean functions that match the pixel trajectories.

(a) Video at 0:01 (b) Video at 0:15 (c) Video at 0:29

Figure F5-1: Three frames from the start, middle and end of the sunset
video.

For the experiments we are only including every eighth frame of the video
to speed up the algorithm. This does not impact the shape of the trajecto-
ries, because the RGB values for each pixel changes very slowly during the
video. For this video we are creating a (2, 3)-segmentation, which is two seg-
mentations with 3 clusters each. The algorithm is run 200 times for each type
of mean function with a different settings of the functions hyperparameters.
We set β = 500 for all runs of the algorithm.

Table T5-1 shows energy statistics for the result of each run of the al-
gorithm. The energy values are the final energy value of the segmentations
after the algorithm have converged. The minimum values is especially inter-
esting because they tell us which type of mean functions resulted in the best
fit to the pixel data. The other values helps us to get a picture of how often
the algorithm gives good results when using each mean function. This is of

40 Experiments 5

min mean max median std. dev
cpl k = 5 6697 7675 10086 7582 605
poly d = 4 6734 7721 9694 7659 561
old model 6736 7707 9509 7637 541
cpl k = 4 6741 7743 9971 7740 581
poly d = 5 6754 7727 9734 7664 494
cpl k = 6 6754 7776 10145 7813 578
poly d = 3 6770 7789 9685 7746 551
cpl k = 3 6851 7826 9678 7757 563
dpl ε = 3 6945 8125 10108 7987 719
poly d = 2 7036 7927 9880 7845 553
dpl ε = 5 7058 8536 10916 8341 884
poly d = 1 7436 8432 10421 8429 475
dpl ε = 10 7503 9254 12710 9007 954
dpl ε = 20 8044 9921 13280 9695 925

Table T5-1: Statistics for energy of results for mean functions with varying
parameter values. The mean functions are sorted by minimum energy values.
Values are in millions.

course also tied to the choice of hyper parameters. We immediately notice
that the dpl functions generally performs worst. Part of the explanation can
be that, since the dpl fitting method is heuristic and does not fit an optimal
function inside its error bound, then we will see some approximation error
and a higher error bound will lead to a higher approximation error. This
effect is especially significant with the sunset video because the temporal
relationship between pixel values is so smooth that a function can easily be
fitted to it. The cpl and polynomial functions perform on par with respect
to minimum energy results. Also we see that higher values of k and d gives
lower energy results. This is expected since as the complexity of the mean
functions increase they can better fit the pixel trajectories. Cpl and poly-
nomial functions also compete with the original method that fitted mean
vectors in terms of energy. When looking at the mean, maximum, median
and standard deviation values we see that polynomial functions seem to have
a slight advantage over cpl functions.

The lowest energy segmentation using cpl k = 5 is shown in Figure F5-2.
The right segmentation managed to separate the pixels into foreground,
background and clouds. This segmentation can be explained by the fact
that there is a general decline in RGB values for all pixels, but the starting
point and rate of decline is different for these three parts of the video. The
left segmentation appears to have largely separated the pixels based the the
distance in the video to the setting sun which influenced the red colour. In
Figure F5-3 the lowest energy segmentation using the old method is shown,
and we can see that it is very similar to the lowest energy segmentation using
cpl k = 5. This is not surprising since the pixel trajectories are very smooth,
so the mean vectors that fit well will tend to look like they were generated
by smooth mean functions.

The lowest energy result using cpl k = 5 was the lowest energy result for
all the different configurations, so the convolution of the mean functions must
fit the pixel data quite well. Each pixel has in this video been assigned to two
clusters, which mean there are a total of 9 different combinations of cluster

5.1 Experiments on Sunset Video 41

Figure F5-2: Lowest energy (2, 3)-segmentation by algorithm using cpl with
k = 5.

Figure F5-3: Lowest energy (2, 3)-segmentation by algorithm using the old
model.

assignments (3 cluster and 2 layers give 32 combinations). In Figure F5-4
we have plotted the two mean functions for each cluster combination, their
convolution, and the mean of the pixels for the blue RGB component. There
are only 8 plots in the figure because there was a single cluster combination
which had no pixels. The mean functions have been drawn with the same
colour in all the plots, i.e. the red mean function in Figure F5-4a is the same
as the red mean function in Figure F5-4b. The figure is helpful in showing
how each mean function is a part of multiple pixel means.

As an example let us first focus on the combination in Figure F5-4d.
This combination contains the majority of the pixels located in the path of
the sun. We can see in the left segmentation in Figure F5-2 that the dark
grey cluster have captured the path of the sun. It is also evident from the
pixels’ mean in Figure F5-4d that these are in fact the pixels in the path of
the sun, since the pixels’ mean contain an upward bumb in the first part of
the video which corresponds to the time the sun passes over the pixels. The
purple mean function helps explain this early upward bumb in the pixels’
mean. The purple mean function is also in the cluster combination in Figure
F5-4g where it also helps explaining an early upward bumb. The green
mean function also has an upward bumb, but it appears later in the video.
In Figure F5-4c and Figure F5-4e, we can see it helps explaining two upwards
bums that appear in the pixels’ mean.

42 Experiments 5

Frames
0 10 20 30 40 50 60 70 80 90 100

B
lu

e
C

om
po

ne
nt

-100

-50

0

50

100

150

(a) Cluster combination 1
Frames

0 10 20 30 40 50 60 70 80 90 100

B
lu

e
C

om
po

ne
nt

-80

-60

-40

-20

0

20

40

60

80

100

(b) Cluster combination 2

Frames
0 10 20 30 40 50 60 70 80 90 100

B
lu

e
C

om
po

ne
nt

20

40

60

80

100

120

140

160

180

200

(c) Cluster combination 3
Frames

0 10 20 30 40 50 60 70 80 90 100

B
lu

e
C

om
po

ne
nt

0

50

100

150

200

250

(d) Cluster combination 4

Frames
0 10 20 30 40 50 60 70 80 90 100

B
lu

e
C

om
po

ne
nt

20

40

60

80

100

120

140

160

(e) Cluster combination 5
Frames

0 10 20 30 40 50 60 70 80 90 100

B
lu

e
C

om
po

ne
nt

0

20

40

60

80

100

120

140

160

180

(f) Cluster combination 6

Frames
0 10 20 30 40 50 60 70 80 90 100

B
lu

e
C

om
po

ne
nt

0

50

100

150

200

250

(g) Cluster combination 7
Frames

0 10 20 30 40 50 60 70 80 90 100

B
lu

e
C

om
po

ne
nt

0

20

40

60

80

100

120

140

(h) Cluster combination 8

Figure F5-4: The 8 cluster combinations from the lowest energy result with
cpl k = 5. Every figur shows the mean of the blue RGB component for pixels
with that cluster combination (black line) and the two means for the two
clusters (non-black lines) and their convolution (dashed black line).

A second statistic we produced in this experiment was the average num-

5.1 Experiments on Sunset Video 43

cpl k = 3 cpl k = 4 cpl k = 5 cpl k = 6

12.6 13.4 13.4 13.1

dpl ε = 3 dpl ε = 5 dpl ε = 10 dpl ε = 20

11.1 9.0 6.3 4.8

poly d = 1 poly d = 2 poly d = 3 poly d = 4 poly d = 5

12.3 12.6 13.2 12.8 13.4

Table T5-2: Average number of iterations before convergence of algorithm
for different configurations of the algorithm.

Energy #109
6.5 7 7.5 8 8.5 9 9.5 10 10.5

Ite
ra

tio
ns

0

5

10

15

20

25

30

Figure F5-5: Scatter plot over energies of segmentations and the number of
iterations before convergence in 200 runs of the algorithm for three different
mean functions. Blue: cpl k = 3. Red: dpl ε = 3. Yellow: Poly d = 1.

ber of iterations used by each configurations of the algorithm. The results
can be seen in Table T5-2, the original model used 12.6 iterations on average.
The cpl and poly mean functions both have similar converge speed regardless
of the complexity of the functions (k and d values). On the other hand we see
that when using dpl mean functions the converge speed improves the larger
the error bound gets, but as we saw in the Table T5-1 a larger error bound
was also tied to worse results. This could be an indication that there is a
negative correlation between the energy of a segmentation and the number
of iterations, so in Figure F5-5 we have drawn a scatter plot with the energy
and number of iterations for each of the 200 runs of the algorithm for three
different mean functions. We can see that there is no trend in the plot that
supports this hypothesis. Therefore we believe that the dpl mean functions
with a high error bound does not converge fast, because it finds high energy
segmentations, but rather because the high error bound enables it to quickly
find a satisfying solution. The high energy is simply another by-product of
the approximation error that can be the result of a high energy bound.

44 Experiments 5

5.2 Experiments on Intersection Video

Our second experiment will be with the intersection video that was given
as an example in the introduction. Three frames form the video can be
seen in Figure F5-6. In our previous project we managed to get the result
shown in Figure F1-2 by engineering a set of features, which we called a
SIFT histogram. Basically we divided all motion vectors into 8 bins which
represented 8 directions, e.g. left, down-right etc. and incremented a pixel’s
bin counter based on the direction of the motion in a frame.

(a) Video at 0:01 (b) Video at 0:05 (c) Video at 0:10

Figure F5-6: Three frames from the start, middle and end of the intersection
video.

The purpose of this experiment is to see if the mean functions allow us
to replicate this result without any specific feature engineering. The three
SIFT flow features are computed per frame, in the same way that we have
three RGB features per frame.

For these experiments the algorithm have also been run 200 times for
each configuration and with β = 75.000. It is a high value for β compared to
the other videos, but we also find it important in this video that the clusters
are connected, since we are hoping to find the traffic lanes in the results.
As the first experiment we will see what happens, when we fit mean vectors
using the old method instead of mean functions. In Figure F5-7 we see the
lowest energy segmentation, and notice that the clusters does not correspond
to the traffic lanes. Since this experiment is different in that we are hoping
for a specific result, we should look at the 20 best results. This is because
the results in the top results will not necessarily look alike, so one of them
might have managed to find the traffic lanes, but was not shown to be the
case in this experiment.

Figure F5-7: Lowest energy result from intersection video when fitting the
old model.

For the experiments with mean functions we use the same configurations
as presented in the sunset experiment section. In Appendix 1.3 we have
shown one result each algorithm configuration, the one that best captured
the traffic lanes for each algorithm configuration. In Figure F5-8 we have

5.2 Experiments on Intersection Video 45

presented what we deem to be the best segmentation w.r.t. capturing the
traffic lanes. It was the second lowest energy segmentation for poly d = 2.
Many of the results using mean functions have two segmentations that are
identical. Typically they only found the up-going lane and the right-going
lane, and then one of these segmentations were duplicated. The result in
Figure F5-8 stood out because it found three different lanes.

Figure F5-8: Lowest energy result from intersection video when using poly
d = 2. Left segmentation: Right-going lane. Middle segmentation: Down-
going lane. Right segmentation: Up-going lane.

If we look more closely at the mean of the feature values in these results
we can attempt to understand the structure of the segmentations. One
interesting observation can be made of the results from our previous work in
Figure F1-2 is that in the first cluster we have the upwards going lane and
the curved bottom-to-right going lane merged into a single cluster. If we look
at our new models result, we have the upwards going lane by itself in the
rightmost cluster of Figure F5-8 . If we look at the mean feature values of
the pixels that belong to the upwards going cluster and compare them to the
mean feature values of the pixels in the curved lane, we can try to understand
why these two are not clustered together using the new model. Figure F5-9
shows us the mean feature values of the rightmost cluster. Note that all
feature values are normalized to lie between 0 and 255, and that neutral sine
and cosine values lie at 127.5. Comparing this with the values of the curved
bottom-to-right going lane in Figure F5-10 we see significant differences in
the fluctuations of the curves and it becomes clear that the upwards going
lane should not be in the same segment as the curved bottom-to-right going
lane based on these features.

Frames0 20 40 60 80 100 120 140 160

M
ea

n-
si

fts
in

e

60

70

80

90

100

110

120

130

140

(a) Mean sine values
Frames0 20 40 60 80 100 120 140 160

M
ea

n-
si

ftc
os

in
e

120

140

160

180

200

220

240

(b) Mean cosine values
Frames0 20 40 60 80 100 120 140 160

M
ea

n-
si

ftl
en

gt
h

0

20

40

60

80

100

120

140

(c) Mean length values

Figure F5-9: Mean feature values of rightmost segmentation in Figure F5-8.

46 Experiments 5

Frames0 20 40 60 80 100 120 140 160

M
ea

n-
si

fts
in

e

90

100

110

120

130

140

150

(a) Mean sine values
Frames0 20 40 60 80 100 120 140 160

M
ea

n-
si

ftc
os

in
e

100

120

140

160

180

200

220

(b) Mean cosine values
Frames

0 20 40 60 80 100 120 140 160

M
ea

n-
si

ftl
en

gt
h

0

20

40

60

80

100

120

140

160

(c) Mean length values

Figure F5-10: Mean feature values of curved bottom-to-right going lane.
.

We can similarly look at the other results from the old model. Looking
at the middle segmentation in Figure F5-7 which appears to capture a small
part of the right going lane, it would be interesting to see why the rest of
the lane is not segmented. To figure out why, we can look at the difference
of the feature values of the pixels inside the stumped cluster seen in Figure
F5-11 and the feature values belonging to the full right going lane seen in
Figure F5-12. Looking at these trends we see that there is a rather significant
difference between the mean feature values in the stumped cluster and the
entire lane. Especially during frames 40 to 100 we have very little change in
the stump, but if we look at the entire lane we do have activity there. This
difference can be explained by the other lanes crossing the right going lane
and causing activity in parts of the video where we otherwise do not have
cars moving right.

Frames
0 20 40 60 80 100 120 140 160

M
ea

n-
si

fts
in

e

20

40

60

80

100

120

140

160

(a) Mean sine values
Frames0 20 40 60 80 100 120 140 160

M
ea

n-
si

ftc
os

in
e

100

120

140

160

180

200

220

240

260

(b) Mean cosine values
Frames

0 20 40 60 80 100 120 140 160

M
ea

n-
si

ftl
en

gt
h

0

50

100

150

(c) Mean length values

Figure F5-11: Mean feature values of middle segmentation in Figure F5-7.

Frames0 20 40 60 80 100 120 140 160

M
ea

n-
si

fts
in

e

80

90

100

110

120

130

140

150

(a) Mean sine values
Frames

0 20 40 60 80 100 120 140 160

M
ea

n-
si

ftc
os

in
e

120

140

160

180

200

220

240

(b) Mean cosine values
Frames

0 20 40 60 80 100 120 140 160

M
ea

n-
si

ftl
en

gt
h

0

50

100

150

(c) Mean length values

Figure F5-12: Mean feature values of right going lane.

The results from the intersection video shows that the new model may
not always provide more intuitive results than the old method. It might be
the case that the various parameters can be changed to find the same seg-
mentations, but it is not something one would discover without specifically
looking for these segmentations. In which case there is not much point in

5.3 Experiments on Scene Change Video 47

finding the segmentation, other than for experimental purposes. It is prob-
able that we need other features to find that kind of segmentation, and that
it is not possibly with the generic SIFT flow features which we have used
here.

5.3 Experiments on Scene Change Video

An often seen task when doing video segmentation in other contexts, is a
temporal segmentation of the different scenes in a video. While our method
is not meant to do this kind of segmentation, we can make a different seg-
mentation for each scene due to the multiple layers.

To test the viability of this we have used our method on a simple video
showing a person playing drums, but from different angles.

The video is 12 seconds long and changes back and forth between two
angles 4 times. Three frames from the video can be seen in Figure F5-13.

(a) Video at 0:01 (b) Video at 0:05 (c) Video at 0:10

Figure F5-13: Three frames from the start, middle and end of the drumming
video.

For this video we used time standard RGB-features and created a 3-2
segmentation. In theory only two layers should be required to make a seg-
mentation based on the two angles, but it is interesting to see what additional
segmentation is found when looking at the third layer. The algorithm is run
100 times for each configuration and a number of different configurations are
used.

The statistics for each method can be seen in T5-3. The best result from
dpl ε = 3 can bee seen in Figure F5-14, and a collection with the best results
from each method can be found in Appendix A.

Figure F5-14: Lowest energy result using dpl with ε = 3.

It is clear that the piecewise linear fits provides the best results energy-
wise. The polynomial mean function is slightly better than using the old
model that treats the video as an image stack, and importantly polynomial
mean function provides much more stable results. The resulting images from
the polynomial mean results shows the two different camera angles in two of
the segmentations, but they are not very clear. The two different angles of
the video can not be seen in the results from the old model.

48 Experiments 5

min mean max median std. dev
dpl ε = 3 12703 13807 18757 13649 999
dpl ε = 5 12753 13829 19253 13660 994
dpl ε = 10 12820 14574 22132 14050 1736
dpl ε = 20 13576 18266 21427 19510 2360
cpl k = 9 13988 15051 19155 14961 894
cpl k = 7 14164 15052 17027 14896 758
cpl k = 4 15760 17725 21122 17642 1326
poly d = 1 19014 19764 21625 19593 586
poly d = 5 19691 20255 21726 20201 348
Image stack 20334 32886 210612 24681 24576

Table T5-3: Statistics for energy of results for mean functions with varying
parameter values. The mean functions are sorted by minimum energy values.
Values are in millions.

Looking at the results from the piecewise fit we can see that the discontin-
uous method provides the results with the lowest energy, but with a slightly
higher standard deviation. If we look at the resulting images it is clear that
the different angles are seen in different segmentation in both results, and
actually it is not possible to see a difference in the segmentations between
the best results from the discontinuous mean function and those from the
continuous mean function. If we look at results with the discontinuous mean
function that has the same energy as the best results from the continuous
case the latter are clearly more useful segmentations even though the energy
is the same. Thus it is hard to conclude a clear better method, the energy is
better for the discontinuous function, but with a less stable result compared
to the results with the continuous function.

5.4 Experiments with Simulated Crowd Movement

One interesting domain where our method could be useful is segmenting
motion flow in videos. An example of a type of video in which motion flow
could be interesting, would be surveillance of crowded areas to for example
analyse where adverts should be placed to be seen. In order to evaluate our
method on a completely static and interesting video we have used a crowd
simulation plugin for the 3d-animation program maya [17] to generate videos
with crowds moving through a street. The video shows two groups of people
moving in opposing directions, cluttering while trying to move through each
other and then finally getting through.

5.4 Experiments with Simulated Crowd Movement 49

min mean max median std. dev
cpl k = 2 46057 48286 76847 47386 4664
cpl k = 3 46270 47630 50463 47333 936
cpl k = 4 45915 47920 77081 47081 3785
cpl k = 5 46465 48922 79651 48274 3785
dpl ε = 3 45717 47452 50402 47202 1030
dpl ε = 5 47491 49101 77637 48549 2569
dpl ε = 7 49039 51096 55988 50162 2083
dpl ε = 10 47397 50824 79642 49889 3658
dpl ε = 20 45635 47450 76903 46790 3697
poly d = 1 47534 48284 51040 48018 876
poly d = 2 46814 48300 50990 47880 1128
poly d = 4 46274 48145 76965 47272 3829
poly d = 5 46085 47523 50430 47136 989

Table T5-4: Statistics for energy of results of crowd simulation video for
mean functions with varying parameter values. The mean functions are
sorted by minimum energy values. Values are in millions.

(a) Video at 0:01 (b) Video at 0:04 (c) Video at 0:15

Figure F5-15: Three frames from the start, middle and near the end of the
simulated crowd video.

For this video we have used SIFT flow features and created 2-2 segmen-
tations and the β = 75.000. The algorithm have been run 200 times for each
configuration and a number of different configurations are used.

Similar to the previous experiments the statistics for each configuration
can be seen in T5-4

Energy wise all the methods provide results that are very similar. Look-
ing at the quality of the segmentations it seems that many of the methods
provide near-identical segmentations in both layers which is the case both
with the lowest energy solutions shown in Appendix A and most of the
slightly higher energy solutions. It seems that in about one half of the
cases we have the segmentation of the upwards moving crowd seen in Figure
F5-16 and the other half the method finds the group moving downwards on
the video seen in Figure F5-17. One exception to this is the discontinuous
piecewise linear method with ε = 7 where both directions are captured in
very well defined in clear clusters seen in Figure F5-18. It is probably some-
what a coincidence that we find both directions in that single case, and it
is just unlikely to arrive at that solution so even more runs might find it
with the other configurations. It is however evident that the method only
identifies both directions in rare cases.

50 Experiments 5

Figure F5-16: Lowest energy result using cpl with =̨3.

Figure F5-17: Lowest energy result using cpl with =̨4.

5.5 Experimental Observations

In the intersection and crowd experiments we have experienced a high num-
ber of results where several layers of the results provide very similar or even
identical clusters, which is in contrast with the goal of the method that is
finding distinct but complimentary clusters. One common point for these
two experiments is that they use SIFT flow features, and it is possible that
the behaviour of the SIFT features could explain the phenomenon. One pos-
sible explanation could be that it is difficult to match the three SIFT flow
feature values for distinct pixels which results in the algorithm only finding
very few good solutions.

A possible solution to this could be to reintroduce the regularization term
from [1] which penalizes similar clusters explicitly in the objective function
but at that time did not make a big difference, this is however beyond the
scope of this work. One could also look more into the SIFT features and try
to represent the motion vectors differently.

5.6 Experiments with Dimensionality Reduction

Before we extended the model to be temporal and use a mean function, we
discovered that we could not work with videos of long durations due to com-
puter resources, so we looked into methods of reducing memory consump-
tion and running time of the algorithm. For a video with pixel dimensions
300x200 we began to meet the memory ceiling on a 8GB laptop when the
video length approached a thousand frames, which is a duration of less than
a minute for a typical 24 frames per second video. There are possibly parts
of the source code that could benefit from some memory optimisations, but
the memory usage reduction would only be a small constant factor, and not
enough to actually enable us to run the algorithm on longer videos. There is
of course not a corresponding hard limit on the running time, but since we

5.6 Experiments with Dimensionality Reduction 51

Figure F5-18: Lowest energy result using dpl with ε = 7.

are restarting the algorithm multiple times, any reduction in running time
would also be beneficial. For the video described above a single iteration
of the algorithm takes 10 seconds on a quad-core 2.3 GHz laptop with the
old method, and with an average of 12 iterations per run, 200 runs takes
relatively long time to complete.

5.6.1 Dimensionality reduction in the old model

Due to the above reasons we looked into using principal component analysis
(PCA) [18]. It is used in statistics and relating fields in many different
contexts. We can use it to create a linear transformation that maps the
feature vector of every pixel to a another space, where the dimensions can
be sorted according to importance. Several good tutorials that explains how
to use PCA in practice can be found, e.g. [19] and [20].

PCA allows us to discard the least important dimensions in the new
space, and only work on a space of lower dimensionality (from here on called
a reduced space), with minimal loss of information. We first attempted this
using the original model, where we are using vectors of means instead of
fitting mean functions.

PCA is performed on a dataset by computing a covariance matrix of the
feature vectors where each pixel is considered a data point. You then find
the eigenvalues and eigenvectors of the covariance matrix. Each eigenvector,
also called a principal component, represents a dimension in the new trans-
formed space. It can then be used transform the feature values from the
original space to the values for this dimensions in the new spaces, simply by
multiplying the transposed original data by the transposed eigenvectors.

reducedData = covEigenV ectorsT · originalDataT

covEigenV ectors is the eigenvectors of the covariance matrix, and originalData
is the pixel features where the columns are the frames and the rows the fea-
ture value.

The eigenvalues shows how much of the variance of the original data
is kept in that component. You can then calculate the percentage of total
variance each component explains, so that you can choose a number of com-
ponents such that you preserve e.g. 99% of the variance of the original data
in the transformation. When the pixels have been transformed to the re-
duced space the entire algorithm will only work on this space, meaning that
the mean vectors will of course also be vectors in the reduced space. There
are no changes to the algorithm other than the pixel data is transformed
right after it is loaded.

52 Experiments 5

The most important question that arise is whether the best segmenta-
tions can be found in both the original space and in the reduced space. In
Figure F5-19 we see that the segmentation is almost identical to the seg-
mentation in Figure F5-3. So it is possible to get the same segmentations
when we work on the reduced space which in this case covered 99% of the
variance and resulted in 6 components. Although we don’t show this to be
the case for all videos it does show that PCA is very beneficial in at least
some cases. It is possible to form the argument that the more components
you use in your transformation the more likely you are to find the same
segmentations as you would in the original space because you preserve more
of the information.

Figure F5-19: Lowest energy (2, 3)-segmentation using the original method
in reduced space.

5.6.2 Dimensionality Reduction in the New Model

In the new model we have to consider how the algorithm uses mean functions
when the data has been transformed to a reduced space. At first it might
not seem logical that a mean function can be represented in a reduced space,
but it is possible because we in our implementation only work on discrete
evaluations of the mean function, and therefore can work work on a vector
containing the mean value for every frame. Every time we fit a mean function
we immediately use the newly found parameters to generate a vector of
means from that function. This is done to ensure that the implementation
supports both the original model and our new model. This means that we
in practice can have a mean function in a the reduced space if we transform
the mean values the function provides into the reduced space.

Another issue is that we have no control over which components PCA will
find. This means we have no guarantee as to which degree the transformation
preserves the temporal properties of the pixel trajectories when we are not
using all of the components. PCA only guarantees that we preserve a certain
amount of the variance. We hope however that this issue is mitigated in
practice when using enough components.

Ideally we would like to fit our mean functions using coordinate descent
in the original space and let the rest of the algorithm work in the reduced
space. We have also tried to fit the mean functions directly to the data in
the reduced space but that did not produce useful results. This is not too
surprising since the assumption when we use the mean function, is that there
is a correlation between the values in each frame that can be expressed by
the function. PCA however guarantees to give us uncorrelated components,
which means that it becomes hard to fit a function that describes the values
well.

5.6 Experiments with Dimensionality Reduction 53

It is possible to fit the mean functions in the original space, because a
useful feature of PCA is that you can transform your data into the original
space. PCA can be used as a sort of lossy compression of the data, and
the more components we use the more information we keep. If we use every
component the transformations is lossless, since all we need to go back is
the inverse of the eigenvectors, and the inverse of our eigenvectors is in this
case simply equal to the transpose of the eigenvectors. This is only the
case because all the elements of the eigenvectors matrix is a unit vector
of our data. This means we can simply multiply the reduced data by the
eigenvectors to go back to our original space [19].

originalData = covEigenV ectors · reducedData

Using all the components is however not useful for our application since
that would not reduce the dimensionality. It is also problematic to use too
few, because this of course results in an large loss of information.

Since we can transform the feature vectors of the pixels back and forth
between the two spaces we can also transform the mean vectors back and
forth, and this will allow us to fit our mean functions in the original space.
We do not lose additional information by doing the transformation multiple
times, because the eigenvalues we use for the transformation are derived
from the original data and not changed.

It is quite common to use a lossy transformation such as PCA and the
closely related method Karhunen and Loéve transform(KLT) for dimension-
ality reduction. It is for example used for plain compression or applications
doing facial recognition [19, 21]. Despite PCAs popularity, some results how-
ever show that variants of KLT is better in the cases tested[22], which was
unknown to us at the time of the experiments and could be interesting to
further explore.

5.6.2.1 Experiments with PCA

To experiment with PCA in the new model we have to make some changes
to the coordinate descent step. Recall that in Section 3.5.3 we explained
that the algorithm iterates through all means in a random order. When we
use PCA we now go through the steps seen in Algorithm 3.

Algorithm 3: Changes to coordinate descent
Find µ̂reduced in the reduced space;
Transform µ̂reduced to µ̂original;
Fit a mean function M to µ̂original to obtain θ̃;
Generate a new mean vector µ from M using θ̃;
Transform µ back to the reduced space;

We reran the sunset experiment with cpl k = 5 using respectively 6, 22
and 74 components in PCA, which explained 99.0%, 99.9% and 99.99% of
the variance. In Figure F5-20 we have shown the six mean functions (two
layers with three clusters each) for the red RGB component before and after
we reconstructed them. It is quite clear that when we use more components
we preserve more of the functions shape in this video. In Figure F5-20f
where 74 components were used we can easily recognise that it is indeed
a continuous piecewise linear function. In Figure F5-21 the lowest energy
segmentation for PCA with 74 components is shown.

54 Experiments 5

The sunset video was an example where the old model and the new model
gave the same segmentations, so we also applied PCA on the intersection
video, since it was only the mean functions that were able to give segmen-
tations that represented the traffic lanes. We used poly d = 2 since it was
the same configuration that gave the result in Figure F5-8. We set PCA to
preserve 99.0 % of the variance, which lead to the use of 54 components. In
Figure F5-22 we show the result within the top 10 that best captured the
traffic lanes. It has two duplicate segmentations, but that was also common
for the results without PCA. Another interesting thing about the segmen-
tations in Figure F5-22 is that the right-going lane is fully connected from
right to left. There is no “hole” in the lane cluster as we saw in Figure F5-8.
So not only can we somewhat get the same segmentations with the PCA
transformation, but the transformation resulted in it being able to create a
better segmentation of the right-going lane.

5.6 Experiments with Dimensionality Reduction 55

Frames
0 10 20 30 40 50 60 70 80 90 100

R
ed

 C
om

po
ne

nt

-50

0

50

100

150

200

(a) Mean functions before transformation using 6
components.

Frames
0 10 20 30 40 50 60 70 80 90 100

R
ed

 C
om

po
ne

nt

-20

0

20

40

60

80

100

120

140

160

180

(b) Reconstruction of mean functions using 6 com-
ponents.

Frames
0 10 20 30 40 50 60 70 80 90 100

R
ed

 C
om

po
ne

nt

-40

-20

0

20

40

60

80

100

120

140

160

(c) Mean functions before transformation using 22
components.

Frames
0 10 20 30 40 50 60 70 80 90 100

R
ed

 C
om

po
ne

nt

-40

-20

0

20

40

60

80

100

120

140

160

(d) Reconstruction of mean functions using 22
components.

Frames
0 10 20 30 40 50 60 70 80 90 100

R
ed

 C
om

po
ne

nt

-50

0

50

100

150

200

250

(e) Mean functions before transformation using 74
components.

Frames
0 10 20 30 40 50 60 70 80 90 100

R
ed

 C
om

po
ne

nt

-50

0

50

100

150

200

250

(f) Reconstruction of mean functions using 74
components.

Figure F5-20: Reconstruction of means using different number of compo-
nents.

56 Experiments 5

Figure F5-21: Lowest energy (2, 3)-segmentation by algorithm using cpl k =
5 as mean function and PCA with 74 components.

Figure F5-22: Best segmentation by algorithm using poly d = 2 as mean
function and PCA with 54 components.

CHAPTER 6
Conclusion

In this project we work with and extend a novel method for image and video
segmentation that provides multiple segmentations in the form of images
that represents static structures in a video. We base our work on our previ-
ous project, where future work included extending the model with temporal
information. Our work achieves this by modelling the temporal relationships
between the pixel values throughout the frames in the input video. We do
this by changing the underlying probabilistic model from being based on
multivariate Gaussian distributions to Gaussian processes. The changes in
the model requires a new method to fit it to the data, in which we need to fit
a mean function for the Gaussian process. We present how this can be done,
and show that fitting the new model still maximised the original likelihood
function. The choice of mean function is not immediately clear, and we pro-
pose three different families of functions each of which can be preferable in
different cases, a simple polynomial function and two different methods of
fitting a piecewise linear function. In all cases the piecewise functions per-
forms better. The whole method is implemented in MATLAB based on the
implementation of the original image segmentation method. We show that
our new method provides advantages to the original method, and is able to
find meaningful segmentations without doing feature engineering and is able
to find segmentations in videos with scene changes that the original method
cannot. We did however show that in some cases our segmentation results
were less intuitive than the previous method. Furthermore we experiment
with dimensionality reduction on the data using Principal Component Anal-
ysis, and our results show that we improve the running time significantly,
while still gaining segmentations that are as good as when using the whole
feature space.

6.1 Future Work

There is still work that can be done to make the implementation more usage
friendly. Our work has mainly been with the model and realising the concept
without focusing much on the usability. To be used in a context where the
results can be used for real world applications it would be preferable to
have a more user friendly way of interacting with the program. We added
configuration files that allow the user to easily rerun the algorithm with
some chosen parameters, but it would also be good to be able to adjust
the parameters and provide default values in a user interface. This could
furthermore be complemented by an interactive visualisation tool, where for
example the results can be browsed based on energy and parameters used.

Additionally a user interface could automate the explorative tasks of

58 Conclusion 6

finding useful parameters. The application could be set to attempt a range of
possible parameter settings and then either have some strategy for changing
the parameters based the energy of the results or alternatively present the
results to the user who evaluate which parameter settings give the most
interesting.

Furthermore it currently takes a while to get the results for a video due
to the running time and the large amount of runs to get the best result.
We have not focused a lot on the performance of the algorithm, but there
are likely significant changes that could make it faster. It could especially
use some attention if the algorithm needs to be run videos with a longer
duration.

Another important direction for the method would be to test it in ad-
ditional use contexts where the segmentations could provide useful insight.
Such uses could include exploratory data analysis on videos or other tem-
poral data that can be represented as images. We have done some brief
experiments on spatio temporal data and think that it could be useful in
this environment. Another use case could involve using the resulting im-
ages as identification for videos to compare videos for example for a search
application, since they provide a representation of the different underlying
structures in the video. That would require the segmentation result to be
more consistent for example using a more refined, but not random initial-
ization method.

Our work with dimensionality reduction is the result of an experiment,
and if it is to be used, more investigation on the effect of this should be
performed. Other dimensionality reduction techniques could also be tried
that for example are tailored to this application.

APPENDIX A
Results

1.1 Lowest Energy Results from Sunset Video

Figure F1-1: Lowest energy result using cpl with k = 3.

Figure F1-2: Lowest energy result using cpl with k = 4.

Figure F1-3: Lowest energy result using cpl with k = 5.

60 Results A

Figure F1-4: Lowest energy result using cpl with k = 6.

Figure F1-5: Lowest energy result using poly with d = 1.

Figure F1-6: Lowest energy result using poly with d = 2.

Figure F1-7: Lowest energy result using poly with d = 3.

Figure F1-8: Lowest energy result using poly with d = 4.

Figure F1-9: Lowest energy result using poly with d = 5.

1.1 Lowest Energy Results from Sunset Video 61

Figure F1-10: Lowest energy result using dpl with ε = 3.

Figure F1-11: Lowest energy result using dpl with ε = 5.

Figure F1-12: Lowest energy result using dpl with ε = 10.

Figure F1-13: Lowest energy result using dpl with ε = 20.

62 Results A

1.2 Lowest Energy Results from Drumming Video

Figure F1-14: Lowest energy result using the old model.

Figure F1-15: Lowest energy result using poly with d = 1.

Figure F1-16: Lowest energy result using poly with d = 5.

1.2 Lowest Energy Results from Drumming Video 63

Figure F1-17: Lowest energy result using cpl with k = 4.

Figure F1-18: Lowest energy result using cpl with k = 7.

Figure F1-19: Lowest energy result using cpl with k = 9.

Figure F1-20: Lowest energy result using dpl with ε = 3.

Figure F1-21: Lowest energy result using dpl with ε = 5.

Figure F1-22: Lowest energy result using dpl with ε = 10.

Figure F1-23: Lowest energy result using dpl with ε = 20.

64 Results A

1.3 Best Segmentations of the Intersection Video

The results presented here are the segmentations which best captured the
traffic lanes, and were not necessarily the ones with the lowest energy.

Figure F1-24: Best result using cpl with k = 3.

Figure F1-25: Best result using cpl with k = 4.

Figure F1-26: Best result using cpl with k = 5.

1.3 Best Segmentations of the Intersection Video 65

Figure F1-27: Best result using cpl with k = 6.

Figure F1-28: Best result using poly with d = 1.

Figure F1-29: Best result using poly with d = 2.

Figure F1-30: Best result using poly with d = 3.

Figure F1-31: Best result using poly with d = 4.

66 Results A

Figure F1-32: Lowest energy result using poly with d = 5.

Figure F1-33: Lowest energy result using dpl with ε = 3.

Figure F1-34: Lowest energy result using dpl with ε = 5.

Figure F1-35: Lowest energy result using dpl with ε = 10.

Figure F1-36: Lowest energy result using dpl with ε = 20.

1.4 Lowest Energy Results from Simulated Crowd Video 67

1.4 Lowest Energy Results from Simulated Crowd
Video

Figure F1-37: Lowest energy result using poly with d = 1.

Figure F1-38: Lowest energy result using poly with d = 2.

Figure F1-39: Lowest energy result using poly with d = 4.

68 Results A

Figure F1-40: Lowest energy result using poly with d = 5.

Figure F1-41: Lowest energy result using cpl with k = 3.

Figure F1-42: Lowest energy result using cpl with k = 4.

Figure F1-43: Lowest energy result using cpl with k = 5.

1.4 Lowest Energy Results from Simulated Crowd Video 69

Figure F1-44: Lowest energy result using dpl with ε = 1.

Figure F1-45: Lowest energy result using dpl with ε = 2.

Figure F1-46: Lowest energy result using dpl with ε = 3.

Figure F1-47: Lowest energy result using dpl with ε = 5.

70 Results A

Figure F1-48: Lowest energy result using dpl with ε = 7.

Bibliography
[1] Jonathan Smets and Manfred Jaeger. Multiple segmentation of image

stacks. In ICPRAM 2014 - Proceedings of the 3rd International Confer-
ence on Pattern Recognition Applications and Methods, ESEO, Angers,
Loire Valley, France, 6-8 March, 2014, pages 5–13, 2014.

[2] Jacob J. Jensen, Christoffer S. Nielsen, and Niels N. Samuelsen. Multi-
ple static segmentation of videos, 2015. Pre-thesis Report.

[3] John R Kender and Boon-Lock Yeo. Video scene segmentation via con-
tinuous video coherence. In Computer Vision and Pattern Recognition,
1998. Proceedings. 1998 IEEE Computer Society Conference on, pages
367–373. IEEE, 1998.

[4] Shu-Ching Chen, Mei-Ling Shyu, Chengcui Zhang, and Rangasami L
Kashyap. Video scene change detection method using unsupervised
segmentation and object tracking. In ICME, 2001.

[5] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. Effi-
cient hierarchical graph-based video segmentation. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
2141–2148. IEEE, 2010.

[6] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy
minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.,
23(11):1222–1239, November 2001. ISSN 0162-8828.

[7] Prateek Jain, Raghu Meka, and Inderjit S Dhillon. Simultaneous unsu-
pervised learning of disparate clusterings. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 1(3):195–210, 2008.

[8] S Roberts, M Osborne, M Ebden, S Reece, N Gibson, and S Aigrain.
Gaussian processes for time-series modelling. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 371(1984):20110550, 2013.

[9] Carl Edward Rasmussen. Gaussian processes for machine learning.
2006.

[10] A Eisinberg and G Fedele. On the inversion of the vandermonde matrix.
Applied mathematics and computation, 174(2):1384–1397, 2006.

[11] Ingo Lütkebohle. SLM - Shape Language Modeling.
http://www.mathworks.com/matlabcentral/fileexchange/
24443-slm-shape-language-modeling, 2009. [Online; accessed
11-may-2015].

[12] Ivan Tomek. Two algorithms for piecewise-linear continuous approxi-
mation of functions of one variable. IEEE Transactions on Computers,
C-23:445–448, 1974.

http://www.mathworks.com/matlabcentral/fileexchange/24443-slm-shape-language-modeling
http://www.mathworks.com/matlabcentral/fileexchange/24443-slm-shape-language-modeling

72 BIBLIOGRAPHY

[13] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110, 2004.

[14] Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T
Freeman. Sift flow: Dense correspondence across different scenes. In
Computer Vision–ECCV 2008, pages 28–42. Springer, 2008.

[15] Andrew Delong, Anton Osokin, HossamN. Isack, and Yuri Boykov. Fast
approximate energy minimization with label costs. International Jour-
nal of Computer Vision, 96(1):1–27, 2012. ISSN 0920-5691.

[16] Alceu Ferraz Costa, Gabriel Humpire-Mamani, and Agma
Juci Machado Traina. An efficient algorithm for fractal analysis
of textures. In Graphics, Patterns and Images (SIBGRAPI), 2012 25th
SIBGRAPI Conference on, pages 39–46. IEEE, 2012.

[17] Golaem crowd. http://golaem.com. [Online; accessed 20-may-2015].

[18] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component
analysis. Chemometrics and intelligent laboratory systems, 2(1):37–52,
1987.

[19] Lindsay I Smith. A tutorial on principal components analysis. Cornell
University, USA, 51:52, 2002.

[20] Jonathon Shlens. A tutorial on principal component analysis. arXiv
preprint arXiv:1404.1100, 2014.

[21] A Levey and Michael Lindenbaum. Sequential karhunen-loeve basis ex-
traction and its application to images. Image Processing, IEEE Trans-
actions on, 9(8):1371–1374, 2000.

[22] Anil Cheriyadat and L Mann Bruce. Why principal component analysis
is not an appropriate feature extraction method for hyperspectral data.
In Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Pro-
ceedings. 2003 IEEE International, volume 6, pages 3420–3422. IEEE,
2003.

http://golaem.com

	Introduction
	Introduction

	Convolutional Clustering Algorithm
	The Convolutional Clustering Model
	Clustering Algorithm

	A Temporal Model
	A Temporal View of the Model
	Gaussian Processes
	The Temporal Convolutional Clustering Model
	Mean Functions for Gaussian Processes
	Clustering Algorithm
	Features

	Implementation
	Architecture Overview
	Configuration Files
	Video to Features
	Initialisation
	EM-Algorithm
	Cluster Visualisation

	Experiments
	Experiments on Sunset Video
	Experiments on Intersection Video
	Experiments on Scene Change Video
	Experiments with Simulated Crowd Movement
	Experimental Observations
	Experiments with Dimensionality Reduction

	Conclusion
	Future Work

	Results
	Lowest Energy Results from Sunset Video
	Lowest Energy Results from Drumming Video
	Best Segmentations of the Intersection Video
	Lowest Energy Results from Simulated Crowd Video

	Bibliography

