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ABSTRACT
In this paper we present a distributed database system,
called Bridge-DB. This system focuses on using multiple
data sources without any prior knowledge of the underly-
ing database architecture as well as simplify interaction with
multiple database systems.

Bridge-DB has its own query language BQL which supports
all CRUD operations. It is connected to PostgreSQL and
Neo4J and through the modular design of the system it
supports any type of storage mechanism through the im-
plementation of a database driver module.

Our main contribution is the implementation of a cost-based
optimizer using a combination of a dynamic and black box
cost model to determine which database a query should be
executed on, or whether the query should be enumerated,
and executed on multiple databases after which the opti-
mizer does post-processing of the results to fulfill the query.

The new solution has been tested against two different
datasets each with a bias towards Neo4J and PostgreSQL
respectively and a combination of both in order to test the ef-
fectiveness of the cost model. Based on response times, data
traffic and overhead of Bridge-DB we show that through the
use of our cost model we gain higher performance on re-
sponse times at the cost of an increase in data traffic between
Neo4J and Bridge-DB.

1. INTRODUCTION
With the Not only SQL (NoSQL) movement came many new
database models, each having a speciality that the dominant
database model, the relational model, cannot handle as effi-
ciently [14]. For example, many NoSQL database models are
more flexible since they have no rigid schema and it is easier
to add more servers. A few concrete examples are the key-
value databases demonstrate good performance when han-
dling temporary unstructured data, graph databases handle
relationships as first-class citizens and column databases are

better for storing historical data for business analysis. Even
though relational databases have gained more competition,
they are still dominant database.

Today, as a result of this development more and more com-
panies use multiple database systems to satisfy their own
and their customers’ needs. In these systems each database
is used, such that the advantages are exploited and the weak-
nesses are covered by another database system. This is also
referred to as polyglot persistence [14, 18].

A disadvantage of using multiple databases is the increase of
complexity in the model layer [18]. First, there are no single
database access point for multiple heterogeneous database
because typically Object/Relational Mapping (ORM) li-
braries only connect to a single database. Secondly, each
Database Management System (DBMS) has its own data
declaration and manipulation language, so developers need
to learn multiple query languages. In addition, the devel-
opers also need to know, how the data has been partitioned
into the different databases, such that when they query a
database, it contains the wanted data. Finally, when query-
ing the different databases we also risk getting the result in
different format which also increases the complexity further.

A solution to this problem is to make a multi-database sys-
tem which incorporates a simplified method to interact with
multiple heterogeneous database management systems and
then presents a unified data declaration and manipulation
language to the user. Such a system is presented in our pre-
vious work [8] where we presented a system called Bridge-
DB.

Bridge-DB
Bridge-DB focuses on creating a middle-ware layer between
heterogeneous databases with the purpose of leveraging the
advantages of these databases. Bridge-DB uses PostgreSQL
[10] and Neo4J [21], as they represent two different database
models, query languages, and they are also clear opposites
in most use cases. Bridge-DB has been designed as a mod-
ular system allowing a user to add or remove modules, e.g.
optimizer module or database connector module [8].

During the evaluation of Bridge-DB it was demonstrated
that it is a viable solution to use a middle-ware layer to
connect heterogeneous databases, since the overhead is low
compared to querying the databases directly, in most cases
less than 50 ms [8].
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Bridge-DB has its own query language called Bridge-DB
Query Language (BQL) which is inspired by SQL, but with
extensions to allow graph operations. However, BQL is less
expressive than SQL and does not support nested queries
or parenthesis used to control the conditions evaluation.
Bridge-DB is meant to be a distributed database system,
but BQL does not support any write operations to the
databases, which defeats the purpose. Therefore in the ex-
tended version of Bridge-DB all Create, Read, Update and
Delete (CRUD) operations have been implemented, and the
language constructs for read queries have been extended to
make more complex queries that can be a challenge for the
optimizer.

Bridge-DB implements a heuristic optimizer to determine
the database which a query should be executed on. This
is an insufficient solution if Bridge-DB connects to several
databases, due to the heuristic optimizer could potentially
find multiple databases indistinguishable from each other,
or if Bridge-DB extends its functionality with support for
more complex queries. A cost model would be a better solu-
tion to do query optimization based on it does not focus on
which databases uses a specific paradigm or which database
is compatible with certain parts of a query, but is more fo-
cused on response times which are the reason we have re-
placed the heuristic model with a cost model. To support the
cost model, Bridge-DB implements a plan enumerator capa-
ble of decomposing the individual queries, in the cases the
cost model deem it necessary to decompose a query among
multiple databases to achieve better performance.

The query translation from BQL to especially Cypher is not
fully supported. The traverse and reachable queries could be
translated, given the values of two internal Cypher indexes
of two nodes and then make the Cypher queries from this.
Instead we want to find the nodes via a property, such that
we can make a property that also uniquely identifies the node
in Bridge-DB. The translation of SQL-like queries to Cypher
also has a limited implementation where the translation only
succeeded with simple selection queries that did not contain
a join operation. In the extended version of Bridge-DB this
has been improved.

Bridge-DB did not store information about the data in the
databases, but only a simple mapping solution from SQL
indexes to Neo4J indexes. This mean that Bridge-DB could
not validate a query or translate a query which could be ex-
ecuted on the external databases. It is also difficult to make
a cost model without any information about the schema and
since Bridge-DB works with PostgreSQL then a schema dec-
laration method is necessary. Due to the advantages of hav-
ing a schema within the system, the schema is stored in
Bridge-DB.

The REST API of Bridge-DB could be optimized with an
TCP Socket implementation. By doing this, we can limit the
overhead of communication between the client and Bridge-
DB as well as allowing bi-directional communication, with-
out the need to reconnect with each message transmission,
as required with the REST API. Bi-directional communica-
tion allows Bridge-DB to supply the client with intermediate
information such as optimizer decisions and query execution
progress. This solution also allows us to process incoming

query results on the client before the entire result is received,
limiting the blocking-time a query can cause.

Novel Contributions
In summary our novel contributions in this paper are to ex-
tend the original design of Bridge-DB with some additional
functionality and modules to improve the issues of the orig-
inal design.

First, the REST API has been replaced by a TCP Socket
based module that contains a protocol to wrap communica-
tion between Bridge-DB and the client.

A new functionality in Bridge-DB is the schema declaration,
such that a schema can be forced on the external databases.
Also the schema can advantageously be used during query
optimization and translation.

The third contribution is to extend BQL such that read op-
erations have become more expressive and all of the CRUD
operations are implemented. This also leads to the reimple-
mentation of the SQL and Cypher translators, so they are
able to translate the extended version of BQL into SQL and
Cypher, respectively.

The main contribution is the implementation of an optimizer
module with a cost model capable of leveraging the strengths
and weaknesses dynamically of the individual connected
databases, based on continuous measurements of query ex-
ecution times. This allows Bridge-DB to execute queries
using an estimated optimal decomposition of the original
query on multiple databases and post-process the partial re-
sults from the individual databases on Bridge-DB to fulfill
the query. By decomposing we can execute individual parts
on different databases to take advantage of the strengths of
the connected databases.

With these contributions Bridge-DB can be considered an
operational distributed database system which reduces the
complexity of using the graph database Neo4J and the re-
lational database PostgreSQL in unison. For the remainder
of this paper Bridge-DB and BQL will refer to the extended
versions.

Structure of the paper
The remainder of this paper is structured as follows: in Sec-
tion 2 we will look at some data and cost models that are the
foundation of Bridge-DB. Bridge-DB’s architecture, schema
declaration, and BQL are explained in Section 3. The trans-
lation process from a BQL query to a Cypher query is pre-
sented in Section 4. Section 5 explains the optimizer and
cost-model of Bridge-DB in detail. We evaluate the im-
plementation of Bridge-DB and its optimizer in Section 7.
Finally, in Section 8 we conclude on the paper and explain
possible improvements of the system.

2. BACKGROUND AND PRELIMINARIES
As in the previous version of Bridge-DB, Neo4J and Post-
greSQL are used as they present two different types of
databases, and are designed to solve different types of prob-
lems. Both databases are used in the same manner in the
current implementation of Bridge-DB, but to improve on
them, we need a better understanding of the data models.
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To improve on the heuristic optimizer from the previous ver-
sion of Bridge-DB we have chosen to implemented a cost
based optimizer and therefore we need to understand the
different approaches to making a cost-model for a heteroge-
neous multi-database system.

2.1 Data models
Both a relational and graph database are used in Bridge-DB,
so to get a common understanding of the two models some
concepts are presented in this section. We also show how
a relational designed schema can be represented in a graph
such that we can make a schema on Bridge-DB that can be
enforced on both system.

Relational model
In [7] Edgar F. Codd suggested the relational model which
has been the foundation for relational databases. In Figure
1 is the relational model represented as a table, and it also
shows some of the terminology mentioned below.

Figure 1: A representation of the relational model

Relational database terminology and concepts will be used
throughout the paper, therefore it will be clarified in this
section. A relation is typical also referred to as a table, and
it contains all the data. The relation has a name which is
called relation name or table name. A row is called a tuple,
and it contains the data of a single row in the relation. A
column is also called an attribute and the head of the column
is the attribute name. [20]

A relational database consists of a collection of relations.
The database schema is the blueprint of the database, so
each relation schema is also a part of the database schema.
The relation schema contains information about the con-
straints of an attribute such as its data type, uniqueness of
the attribute, etc. It also contains information about keys
such as the primary key which identifies each tuple in a re-
lation, or the foreign key which references an attribute in a
relation.

In a relational database the foreign keys are used to make
relationships between relations. These relationships have
three types: one-to-one, one-to-many, or many-to-many. In
Figure 2 is a conceptual representation of a database schema,
and how this schema would be represented in a relational or
graph database. There is a one-to-many relationship be-
tween person and user where the foreign key is in the user.
A similar solution is made for a one-to-one relationship. The
relation between two person is a many-to-many and a new
relation is need to contain the relationship.

The relational databases has a strict schema, and the DBMS

Figure 2: A conceptual representation of a schema
and its representation in a relational and graph
database

handles constraints and foreign-key dependencies. This also
means that the DBMS handles constraints introduced by
using foreign-key references. For example a foreign-key must
reference an existing value in the referenced table, but if the
tuple with this value should be deleted then the DBMS can
take some predefined actions as set the reference to null or
another value, or do not allow the deletion of the tuple. This
also means that when executing an update or delete query
through Bridge-DB, we do not have to take the foreign-key
dependency into account when writing the SQL query.

Graph model
During the last decade graph databases have made their
entry on the commercial market like other data models in
the NoSQL movement. Graph database are based on graph
theory, and is optimized to perform graph operations like
finding a path between two nodes. These databases can use
different graph models, but this paper will only focus on
Neo4J’s data model, which is the labelled property graph
model, see Figure 3.

Figure 3: A representation of the labelled property
graph model

There are two types of elements in a graph. One is a node
or vertex, and the other is an edge which makes a relation-
ship between nodes. The edges are directed in Neo4J which
means an edge always has a stated begin and end node, but
it can be queried as if it was an undirected graph. Nodes and
edges can also have attributes or properties, as it is called
in a graph. A property is a key-value representation of the
property name and its value. [4]

Both a node and an edge can have several labels. A label
represents a role in the domain of databases and it is used
to group nodes or edges together, which typically have some
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properties in common. Labels can also be used to make
constrains and indexes for a property. [4]

Figure 2 shows how the person, user, and friends from the
ER-diagram are represented in a graph. In the figure only
the labels of the nodes and edges have been included to
simplify the graph. But the nodes and the edge friends
have the same properties as in the ER-Diagram while the
edge labelled person id does not have any properties.

Differently from the relational database, Neo4J has an op-
tional and flexible schema which is based on the use of labels.
For Bridge-DB this leads to more control when translating
queries. Because ideally the foreign-key or edge dependency
should be taken into account when translating an update or
delete query to Cypher such that it will do the same as the
relational DBMS.

From a relational to a graph model
In Bridge-DB we introduce a schema declaration method
which resembles the relational schema, but it should also
be converted into a graph schema. On Neo4J’s webpage
[2] is some guidelines of how a relational database can be
converted into a graph database in Neo4J. By using some
of the same principle, we can convert a relational database
schema into a graph schema.

All tables in the schema are categorized as either a join table
or a data table which is defined in Definition 1 and 2. This
results in a one-to-one mapping between these table types,
and the graph schema’s nodes and edges.

Definition 1. A join table is a relation that is not refer-
enced by another table, it contains exactly two foreign-keys
and it can also have other attributes.

Definition 2. A data table is a relation that contain any
other case than the join table. This means that the relation
can have none or several foreign-keys and it can be referenced
by another table.

Each data table is made into a node where table name be-
comes the label of the node and the attribute names are con-
verted into property keys. Each property key is connected
to an object containing information about the attribute such
as its data-type, constraints, and indexes which have been
declared in the original schema, as explained in Section 3.2.
Each foreign-key in a data table becomes an edge with the
foreign-key name as a label. Each join table is made into
an edge between two nodes that are referenced by the two
foreign-keys. The attributes of the join table will be made
into properties of the edge and the table name become the
label name of the relationship.

By using this method a join table covers a many-to-many
relationship, while the data-table covers the entities, one-
to-one and one-to-many relationships explained previously
as well as other n-ary relationship types.

This graph schema is used when translating queries from
BQL to Cypher such that we can handle foreign-key refer-
ences, as will be explained in Section 4.

2.2 Cost models
When querying a Multi Database Management System
(MDBMS) the query could be executed on some or all of
the database source, depending on the optimizer. To op-
timize the execution of a query a cost model is needed.
MDBMS cost models are often divided into three methods
called Blackbox [9, 26], Customized [17, 27], and Dynamic
method [13, 30].

Black Box Method
The black box model is an approach that considers each
DBMS as a black box and by running some test queries on
each database, the information for the cost model can be
collected. [15]

In the CORDS project [28] a cost model is made by prob-
ing the individual DBMSs in order to determine cost infor-
mation. An extension of this method is proposed in [29]
which focuses on having sample queries. At the beginning,
all queries are classified into homogeneous classes according
to a set of criteria. Then some queries from each class are
executed and measured to derive cost information.

The black box methods are inhibited by the probe and sam-
pling queries that can take up resources when executed. To
avoid this, [5] implements a progressive learning cost model,
similar to some of the ideas in the dynamic method. Over-
all, the black box method has a general problem being that
it is not necessarily able to catch the individual specifics of
the individual database.

Customized Method
The customized method focuses on the idea that all DBMSs
are too different to be represented by a unique cost model,
which the black box method suggests. This method is fo-
cused on implementing a specialized cost model for the indi-
vidual databases and the aggregated result of these models
creates an overall cost model applicable on the system.

This is typically implemented in a mediator-wrapper archi-
tecture where the wrapper contains the specific cost infor-
mation of its database and it can implement its own cost
model. The wrappers have a common interface which the
mediator can use and the mediator need to integrate cost
information into the query optimizer. [15]

[17] presents a framework of making a customized cost model
where they demonstrated the simplicity and effectiveness of
this method as a simple implementation resulted in signifi-
cant improvements.

Dynamic Method
The dynamic approach focuses on fixing a problem with both
the customized and black box model which is they both as-
sume a stable database environment. Instead the dynamic
approach makes a cost model from monitoring the run-time
behaviors of each database [15]. [16] describes the three fac-
tors in determining cost for each database and each of them
focusing on how dynamic they are. The first factor consists
of CPU load, I/O throughput, and available memory. The
second factor consists of configuration parameters, physical
data organization and database schema. The third factor
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consists of DBMS type, database location, and CPU speed.
Each going from a fast changing factor to a stable factor re-
spectively. So by observing these factors, a cost model can
be made and it would be more accurate than the black box
and customized method. However, the dynamic approach
will also result in some overhead when querying a database
[15, 16].

In [25] a method is proposed which takes some ideas from
the black box method and implements them to account for
the more dynamic nature. The user queries are used as sam-
ple queries which avoids the issue of sample queries causing
additional overhead when executed.

A fusion of all three methods is described in [24] where the
author attempts to predict execution time of a query on both
concurrent and dynamic database workloads. This is done
by using knowledge of the built-in optimizers cost model.
The query is decomposed into its base constructs and the
execution time of them individually is compared to previous
queries which is similar to the dynamic method as queries
are continuously evaluated as they are executed.

In Bridge-DB we want to use some concepts from the black
box and dynamic approach. Mainly, we will implement a
dynamic optimizer based on the query decomposition ideas
from [24], but we will initialize the cost model by doing some
probing of each database with some measurement queries
as in the black box approach. We choose this cost model
because the optimizer would then be able decompose a query
and execute parts of it on different databases and thereby
exploit the advantages of each database.

3. BRIDGE-DB DESIGN
Bridge-DB has been re-implemented and several changes
have been made, so in this section we present some of the
design decisions of Bridge-DB.

3.1 Architecture
The architecture of Bridge-DB is shown in Figure 4. It is a
client-server architecture where a client can write a query in
BQL via the Querybuilder and send it, wrapped in JSON to
the server. The communication protocol is a simple TCP-
socket implementation and therefore will not be discussed
in detail, but it can be found in Appendix A.

The server has modules for translating the JSON wrapped
query into a query object which the optimizer can manipu-
late. Eventually, the optimizer passes the object to a con-
nector which translates it into the query language of the
target database, and finally executes the query on the ex-
ternal database.

The optimizer contains several modules such as a cost model
and a plan enumerator, which are explained in detail in Sec-
tion 5. The optimizer uses an internal database to save
information for the cost model, and the declared schema
which is forced onto the external databases. If the optimizer
decides that a query should be distributed across multiple
databases then the optimizer also needs to join the results
from the databases before sending the result to the user.

Figure 4: Architecture of Bridge-DB

Connector
For each external database that should be connected to
Bridge-DB there must be a connector. The sequence dia-
gram in Figure 5 describes, how a connector works. The
optimizer decides which database should execute the query
and selects its respective connector, and passes the query
object to it. First, the connector needs to have a connection
to the target database. Then the query is translated into the
target query language, but to do this, the connector needs
the schema to validate and make the query. After the query
has been translated, it is sent to the database which then
executes it and returns the result.

The connector makes the result into a common format for
all connectors and then returns it to the optimizer.

Figure 5: Sequence Diagram of a Connector

Currently in Bridge-DB there are two external databases,
Neo4J and PostgreSQL. The implementation of the trans-
lator module of PostgreSQL is simple since the schema and
BQL are SQL inspired, see Appendix B for more details.
The translator module of the Neo4J connector is more com-
plex due to the differences in the schema representation and
its query language Cypher. See more of translating into
Cypher in Section 4.

3.2 Database schema
We chose to design a way of declaring schemas inside Bridge-
DB, to move information of the schema layout from the in-
dividual databases and into Bridge-DB.
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When a schema is declared in Bridge-DB, it will be imposed
onto the individual databases. This is done through the
generation of the schema on the database servers, like Post-
greSQL, and via the validation of the input query’s compat-
ibility with the schema on schema-less database servers, like
Neo4J.

By declaring the schema in Bridge-DB, it allows for easier
validation of the incoming query. The declaration of the
schema can also assist the optimizer in making decisions on
the most efficient query execution plan (QEP), all without
retrieving information from the individual databases which
is described in Section 5.

The language is designed as seen in Listing 1. It is called
Bridge-DB Schema Language (BSL) and is also inspired
from SQL. All changes to the schema are named a migration
and contain an up and down method. They are similar to
version control as the up method handles the transition from
a previous schema to a new schema and the down method
handles the transition from a current schema to a previously
declared schema.

This is inspired by the PHP framework Laravel [3], but with
a rather different storage mechanism and underlying imple-
mentation. By declaring the schema in this way, it is possible
to have version control of the schema.

1 namespace schemaDecleration\Migrations;
2
3 class CreateDatabase extends Migration {
4 public function up() {
5 \schemaDecleration\Schema :: create("person",
6 function (\ schemaDecleration\Blueprint

$table) {
7 $table ->increments("id")->primaryKey ();
8 $table ->string("firstname");
9 $table ->string("lastname");

10 });
11
12 \schemaDecleration\Schema :: create("user",
13 function (\ schemaDecleration\Blueprint

$table) {
14 $table ->increments("id")->primaryKey ();
15 $table ->integer("person_id")->unsigned ();
16 $table ->foreign("person_id")->references("

id")
17 ->on("person")->onDelete("cascade");
18 $table ->string("username")->unique ();
19 $table ->string("password");
20 });
21
22 \schemaDecleration\Schema :: create("friends"

,
23 function (\ schemaDecleration\Blueprint

$table) {
24 $table ->increments("id")->primaryKey ();
25 $table ->string("type");
26 $table ->integer("person_id1")->unsigned ();
27 $table ->foreign("person_id1")->references(

"id")
28 ->on("person")->onDelete("cascade");
29 $table ->integer("person_id2")->unsigned ();
30 $table ->foreign("person_id2")->references(

"id")
31 ->on("person")->onDelete("cascade");
32 });
33 }
34

35 public function down() {
36 \schemaDecleration\Schema ::drop("friends");
37 \schemaDecleration\Schema ::drop("user");
38 \schemaDecleration\Schema ::drop("person");
39 }
40 }

Listing 1: Bridge-DB Schema Language (BSL)

Version control becomes vital as Bridge-DB creates the
declared schema on compatible servers and enforces the
schema internally for schema-less database systems. There-
fore changes to the schema can require modifications to the
stored data which Bridge-DB needs to handle internally.
When a migration is executed through the up and down
methods, it allows the developer to declare, how the changes
to the stored data should be done both when upgrading and
downgrading.

The declared schema in Listing 1 will act as an example
describing the simple schema from Figure 2 with person,
user, and friends. As can be seen from the example when
declaring a schema, we use many of the same constructs as
SQL such as declaring data-types, primary, and foreign keys,
etc.

This schema is compatible to a relational database like Post-
greSQL, while Bridge-DB must impose the schema on Neo4J
internally in most cases. Neo4J can handle constraints as
unique and indexing as making indexes on primary keys,
while constraints on foreign-keys must be handled by Bridge-
DB. These foreign-key constraints for Neo4J have not been
fully implemented, therefore we limit the constraints only to
include the cascade constraint.

The cascade constraint on Neo4J is enforced through check-
ing declared cascade constraints in the declared schema on
Bridge-DB. If a there a declared cascade constraint, a new
query is generated which enforces this constraint.

3.3 BQL
BQL is a high-level query language and it is highly inspired
from SQL, but in its previous version it only included read
operations. BQL has therefore been extended in Bridge-DB
to support all of the CRUD operations. A BQL query is
written via a QueryBuilder, and it is made into an object in
Bridge-DB that can be translated into Cypher and SQL.

BQL has been expressed in Extended Backus-Naur Form
(EBNF), and in Table 1 is a list of symbols and constructs
that is used to express the EBNF of BQL which is presented
in Listing 2. The non-terminals are primarily grouped by the
query type, but if a non-terminal is used by multiple types
then it is presented at the first occurrence.

1 <Query > ::= <CreateQuery > | <UpdateQuery >
2 | <DeleteQuery > | <ReadQuery >;
3
4 <CreateQuery > ::= <table > (<values >
5 | <column > <sub -query >);
6 <table > ::= "string";
7 <attribute > ::= "string"
8 | <table > , ’.’, "string"
9 | <alias > , ’.’, "string" ;

10 <values > ::= <column > <value >;
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Usage Symbol Usage Symbol
definition ::= grouping ( ... )
termination ; nonterminal <...>

alternation | terminal
string

’ ... ’

option [ ... ]
terminal
empty

empty

concatenation , terminal

string
numeric
char
array

Table 1: Symbols and constructs used in the EBNF
of BQL

11 <value > ::= <mixed > | <mixed > <value >;
12 <column > ::= <attribute >
13 | <attribute > <column >;
14 <sub -query > ::= ’(’ <ReadQuery > ’)’;
15 <mixed > ::= "numeric" | "string" | "char";
16
17
18 <UpdateQuery > ::= <table > <values > [<where >];
19 <where > ::= <conditionConstructs >
20 | <conditionConstructs > <where >;
21 <conditionConstructs > ::= <type > <condition >
22 | <type > <parenthesis -sub -query >;
23 <type > ::= ’AND’ | ’OR’ | "empty";
24 <parenthesis -sub -query > ::= ’(’ <where > ’)’;
25 <condition > ::= <condLeft > <operator >
26 <condRight > | <exists > <sub -query > ;
27 <condLeft > ::= <attribute >;
28 <condRight > ::= <mixed > | <attribute >
29 | array | <sub -query >;
30 <operator > ::= ’LIKE’ | ’NOT LIKE’ | ’IN’
31 | ’NOT IN’ | ’=’ | ’<’ | ’>’ | ’>=’
32 | ’<=’ | ’<>’ | ’!=’ | ’!<’ | ’!>’;
33 <exists > ::= ’EXISTS ’ | ’NOT EXISTS ’;
34
35
36 <DeleteQuery > ::= <table > [<where >];
37
38
39 <ReadQuery > ::= <select > [<from > [<where >]]
40 | <traversal > | <reachable >;
41 <traversal > ::= <sub -query > <sub -query >;
42 <reachable > ::= <sub -query > <sub -query >;
43 <select > ::= <attribute >
44 | <attribute > <select >;
45 <from > ::= <fitem > | <fitem > <from > ;
46 <fitem > ::= <table > [<alias >]
47 | <sub -query > [<alias >];
48 <alias > ::= "string";

Listing 2: Extended Backus-Naur Form of BQL

As can be seen from the statement at line 1 in Listing 2
a query can be a create, read, update or delete query. The
create is presented in the second grouping at line 4 in Listing
2, the update is presented in the third grouping and then
there is a line with the construct for a delete query. The read
query is presented in the final grouping and it shows that
there are three types of read queries: traversal, reachable,
and an SQL-like query.

As can be seen from the conditionConstructs and condition
non-terminals, it is possible in the where clause which means

that a sub-query or parenthesis-sub-query are in the query.
As can be seen a parenthesis-sub-query is an extra where
clause inside the parent query which makes it a special sub-
query. A normal sub-query is an extra query inside the par-
ent query, but the sub-query can only be a read query.

QueryBuilder
When a client needs to build a BQL query, they can use
the QueryBuilder class which is written in PHP. With the
QueryBuilder class, the query can be written and sent to
Bridge-DB. In Listing 3 are a few examples of how to make
an insert, update, or delete query using the QueryBuilder.
In the first example a person is inserted with given values
for firstname and lastname. In the second query we update
the firstname of a person is changed and in the last query
we delete all persons with a given firstname.

1 // example of a create/insert query
2 $queryBuilder ->insert(’person ’)->values(’

firstname ’,’Mickey ’)->values(’lastname ’,’
Mouse’)->send();

3
4 // example of a update query
5 $queryBuilder ->update(’person ’)->values(’

firstname ’,’Minnie ’)->where(’lastname ’,’=
’,’Mouse’)->where(’firstname ’,’=’,’Mini’)
->send();

6
7 // example of a delete query
8 $queryBuilder ->delete(’person ’)->where(’

firstname ’, ’=’, ’Mickey ’)->send();

Listing 3: BQL examples of how to make a read,
update and delete query

Additional constructs for a read query have been included in
BQL. For example sub-queries and parenthesis for control-
ling the logic in the where clause have been implemented into
BQL, see the 2. However, a query that contains a sub-query
is only fully supported on PostgreSQL. Using parenthesis in
a query has been implemented as a special sub-query and
it is supported on both PostgreSQL and Neo4J. Listing 4
shows how a read query can be made in BQL when using
sub-queries or parenthesis. The first query uses a sub-query
to find all firstname of persons that have a lastname in com-
mon, and then in the main query find all persons with a
firstname which also appear in the result of the sub-query.
The second query show how a parenthesis sub-query we find
all person with the lastname Mouse and where the firstname
is either Mickey or Minnie.

A more detailed description of how to make a create, read,
update, or delete query using the QueryBuilder can be found
in Appendix C.

1 // example of a read query with a subquery
2 $queryBuilder2 ->select(’firstname ’)->from(’

person)->where(’lastname ’,’=’,’Mouse’);
3 $queryBuilder ->select(’*’)->from(’person ’)->

whereIn(’firstname ’,$queryBuilder2 ->
getReadQueryAsObject ())->send();

4
5 // example of a read query with parenthesis
6 $queryBuilder2 ->where(’firstname ’,’=’,’Mickey

’)->orWhere(’firstname ’,’=’,’Minnie ’);
7 $queryBuilder ->select(’*’)->from(’person ’)->

where(’lastname ’,’=’,’Mouse ’)->where(
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$queryBuilder2 ->getReadQueryAsObject ())->
send();

Listing 4: BQL examples of using parenthesis and
sub-queries in a read query

4. TRANSLATION TO CYPHER
In the previous version of Bridge-DB only a few queries in
BQL could be fully translated into Cypher. This was due to
the complexity of translating an SQL-like query into Cypher
without knowing whether a foreign-key referred to a node or
edge. In Bridge-DB all SQL-like queries that do not contain
a sub-query can be translated into Cypher.

First, when translating a query object into Cypher it needs
to turn the schema into a graph schema. The second step
is to do translation pre-processing of the query object, such
that it gets a new representation that can easily be trans-
lated into Cypher. The final step is the translating into
Cypher.

4.1 From General Schema to Graph Schema
As previously mentioned the schema is important when
translating a query because data and join tables are repre-
sented differently in Cypher as either nodes and edges. Even
though, the declared schema in Bridge-DB can be used for
this purpose then it would be easier to have a graph repre-
sentation of the schema. Therefore the schema is converted
into a representation of the graph schema, such that the
graph will be as described in Section 2.1.

Between the schema and graph schema is a one-to-one corre-
spondence. A table in the schema will correspond to a single
edge or node type in the graph schema. In the schema each
table can be uniquely identified by its table name and like-
wise can a table name uniquely identify whether it is a node
or an edge in the graph schema. However, with this rep-
resentation of the graph schema we only represent some of
the edges from the graph database. For example, an edge
made from a foreign-key in a data table is not represented as
an edge in the graph schema. Instead they are represented
in the node as a special type of properties, we call foreign-
key property. The foreign-key property is not represented as
properties in the graph database, but are made into edges
during translation.

The graph schema consists of three classes Graph, Node, and
Edge which are presented in the class diagram in Figure 6.
The class Graph generates a graph schema upon initializa-
tion, and then it is a container and access point for the nodes
and edges of the graph. Node and Edge contain all data
about its properties and foreign-key properties. IGraphEn-
tity is a common interface for a Node and Edge which makes
the data accessing easier when translating a query.

When the graph schema is complete then there is a single
instance of the Graph, which contains two lists, one with in-
stances of Edge and one with instances of Node. By choosing
this solution it is easy to find and retrieve the node or edge.
A common problem with this approach, is that a node with
foreign-key properties needs to be handled differently from
a node without foreign-key properties. This is a reoccur-

Figure 6: Overview of the interface IGraphEntity
and classes Graph, Edge and Node

ring problem throughout the translation of queries as will
be apparent in Section 4.3.

4.2 Pre-processing of the Query Object
The update, delete and read query objects can all contain
conditions which are used to filter the result by using the
where construct of BQL. In Cypher the filtering can be done
by a WHERE clause similar to SQL and BQL. However,
translating conditions of a query object to Cypher is not
straightforward, because Cypher uses aliases differently from
BQL. Another problem is the constructs parenthesis sub-
query, foreign-keys, and patterns, that need to be identified
and handled. This puts an extra layer of complexity when
translating the query into Cypher and therefore some pre-
processing of the where clause is necessary.

Pre-processing of Parenthesis Sub-Queries
The first pre-processing action is to make a flat representa-
tion of the query such that additional pre-processing of the
query object also will be done inside the parenthesis.

The Cypher translator supports the special parenthesis sub-
query which means that the conditions of query object can
have a hierarchical representation. In Listing 5 is the defi-
nition of BQL’s where construct in EBNF, but it has been
adapted to show only the constructs which are supported in
the Cypher translator. In the listing it is apparent that a
conditionConstruct can lead to some recursion which results
in a hierarchical representation.

1 <where > ::= <conditionConstruct >
2 | <conditionConstruct > <where >;
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3 <conditionConstruct > ::= <type > <condition >
4 | <type > <parenthesis -sub -query >;
5 <condition > ::= <condLeft > <operator >
6 <condRight >;
7 <parenthesis -sub -query > ::= ’(’ <where > ’)’;

Listing 5: Hierarchical Representation

This needs to be converted into a flat representation as
shown in Listing 6. This is done by checking for parenthesis
sub-queries in the conditions. When a parenthesis sub-query
has been found then its conditions are placed between the
conditions of the parents query. However, the first and last
element of the parenthesis sub-query get an extra parameter
with its begin or end bracket.

1 <where > ::= <conditionConstruct >
2 | <conditionConstruct > <where >;
3 <conditionConstruct > ::= <type > <parenthesis >

<condition >;
4 <condition > ::= <condLeft > <operator > <

condRight >;
5 <parenthesis > ::= ’(’ | ’)’ | "empty";

Listing 6: Flat Representation

The hierarchical and flat representations of the query ob-
ject’s where construct have also been illustrated as object
diagrams in Figure 7. These object diagrams use the second
example from Listing 4 to show the changes in the structure
of the object.

Pre-processing of update and delete queries
The pre-processing of update and delete queries is necessary
to make BQL aliases compatible with Cypher aliases, and to
deal with foreign-key references in the query. The solution
presented, is applicable as long as the query only directly
refers to one node or edge, as update and delete does.

An alias in BQL, SQL, and Cypher is a temporary name for
a table, node or edge. In SQL and BQL aliases are necessary
when a table is included more than once in the query. Aliases
are necessary in Cypher when a node or edge needs to be
referenced more than once.

Aliases are not needed when writing an update or delete
query in BQL, but this is not the case for Cypher. Therefore
all properties which are referred in Cypher’s WHERE clause,
need an alias preceding it. In an update or delete query just
one table is directly referred to, so by using the table name
this alias problem can be solved. An example can be found
in Listing 7, where a delete query needs to delete a user and
its edges.

1 MATCH (user:user)-[r0:person_id]-(person_id:
person) WHERE person_id.id = 2 WITH
users OPTIONAL MATCH (user)-[r]-() DELETE
user ,r

Listing 7: Examples of alias assignment in a delete
query both in BQL and Cypher

The second part of the problem is to handle foreign-keys that
are represented in the query and their aliases. A foreign-key

Figure 7: Object diagrams of the hierarchical and
flat representation of the query object’s where con-
struct

is a reference to a specific property in a node. This property
and its node will be referred to as the referred element.

A side effect of referring to a foreign-key in the query is that
the MATCH clause needs to reflect the connection between
the node or edge, and the referred element in a path. In the
example in Listing 7 this path is between user and person.
As can be seen from the example, the alias of the referred
element will get the foreign-key name and if there are any
edges in the pattern then they will get an auto-generated
alias.

Pre-processing of Read queries
The pre-processing of aliases and foreign-keys in a read
query with only one element in from are handled, as in a
update or delete query. However, since a read query can
include several tables and a single table several times then
another solution is needed for the general case. Therefore
Bridge-DB relies on the user to make aliases when a table is
represented in the query more than once. Furthermore the
user must also use the table name or alias of the table when
referring to an attribute in BQL. This is similar to SQL’s
approach and it is done to avoid ambiguity. However, the
pre-processing of where must still handle foreign-keys and
new aliases made during this process.

The where part of a read query might also contain a pattern,
which needs to be handled. Therefore some prepossessing of
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the query object must be done to separate a pattern from the
other conditions. The conditions which can be translated
into Cypher, are defined in EBNF in Listing 8. From the
definition of the condition, a pattern can be defined as in
Definition 3 and by using this definition the patterns can be
removed from the conditions.

1 <condition > ::= <condLeft > <operator > <
condRight > ;

2 <condRight > ::= <mixed > | <attribute > | array
;

3 <condLeft > ::= <attribute >;
4 <operator > ::= ’LIKE’ | ’NOT LIKE’ | ’IN’
5 | ’NOT IN’ | ’=’ | ’<’ | ’>’ | ’>=’ |

’<=’ | ’<>’ | ’!=’ | ’!<’ | ’!>’
;

6 <mixed > ::= numeric | string | char;
7 <attribute > ::= string | <table > , ’.’,

string
8 | <alias > , ’.’, string;
9 <table > ::= string;

10 <alias > ::= string;

Listing 8: EBNF of a condition that can be
translated into Cypher

Definition 3. A condition consisting of condLeft = con-
dRight, is a pattern, iff condLeft and condRight are at-
tributes where one must be a foreign-key attribute and the
other, the referenced attribute. This means if condLeft is
a foreign-key attribute then its referred element must corre-
spond to the table name and attribute name which condRight
refers to, and vice versa.

An example of both a condition and a pattern is shown in
Listing 9. The first where clause is a condition even though
u.person id is a foreign-key because condRight is a numeric
value. The second where clause is a pattern because condLeft
is a foreign-key and its referred element is the id of person
which in this case is p.id.

1 $queryBuilder ->select(’u.*’)->from(’user’,’u’
)->from(’person ’,’p’)->where(’u.person_id
’,’=’ ,2)->where(’u.person_id ’,’=’,’p.id’)
;

Listing 9: Example of a pattern and condition

Figure 8 gives an overview of how the pre-processing of a
read query is done. The pre-processing action dependents on
whether the query contains more than one element in from.
Provided from only contains one element then the alias that
has been specified by the user, can be removed and then be
handled as described in a delete or update query.

If from clause contains more than one table then it is possible
that patterns are in the condition, so the conditions and pat-
terns need to be separated. Finally the alias and attribute
name in the conditions need to be checked for foreign-key
references and replaced by the referred element. Again this
might lead to additional patterns and tables in the query.
Therefore the additional tables need to be add to from and
the new patterns to the other patterns. This concludes the
pre-processing before doing any translation into Cypher.

Figure 8: Pre-processing of from and where ele-
ments

4.3 Translating Queries into Cypher
When making a Cypher query there are some keywords
and notations that should be explained. The typical key-
words in a create query are MATCH, CREATE, and RE-
TURN. MATCH finds nodes and edges according to a pat-
tern. CREATE makes the new nodes or edges and RETURN
specifies the return values which can be a path, node, or
edge with all of its properties, or just a property from a
node or edge. An update query also uses the MATCH and
RETURN clause, and to update a property it uses the key-
word SET. In a delete query which deletes a node and its
edges, it uses the keywords MATCH, OPTIONAL MATCH,
and DELETE, where MATCH finds the node, OPTIONAL
MATCH finds the edges, and DELETE deletes the nodes
and edges mentioned. A typical read query also uses the key-
words MATCH and RETURN as previously described, but
it also uses a WHERE clause to filter the result. In Listing
10 is a small example of a read query in which parentheses
symbolize a node and square brackets represent an edge.

1 MATCH (nodeAlias:label1)-[edgeAlias:label2
]->(nodeAlias2:label3)

2 RETURN nodeAlias2

Listing 10: Examples of a simple Cypher query

Examples of each CRUD operation are shown in the fol-
lowing sections that describe how each query is translated.
It should be noted, that this translator only supports the
cascade constraint on foreign-keys.

Create Query
In the BQL QueryBuilder a create query consists of a func-
tion call to insert and one or more to values. In Figure 9 is
a decision diagram that shows when to make an edge, node,
or both. If the table name given in insert refers to an edge,
then an create edge statement needs to be made, where it
needs to find the connecting nodes via the foreign-key prop-
erties. If the table name refers to a node without foreign-key
properties then a simple create node statement can be made.
But if the node contains foreign-key properties then the cre-
ate statement must create both a single node and an edge
for each foreign-key property.

Three examples of translating a create query can be found in
Listing 11. The first create query shows how a person node
which does not have any foreign-key properties, is trans-
lated into Cypher. In the second example a user node with
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Figure 9: Decision diagram of what create action
that should be taken

foreign-key properties is translated to Cypher, resulting in a
user node and an edge from the user to a person with the id
5. The last create query in the listing shows how a friends
edge is created by using person id1 and person id2 to find
the nodes. Notice, that the MATCH clause is different from
the read, update and delete queries because a create state-
ment in BQL does not accept any of the where conditions,
which make this method easier to implement.

1 $queryBuilder ->insert(’person ’)->values(’id’,
’5’)->values(’firstname ’,’Mickey ’)->
values(’lastname ’,’Mouse’);

2 CREATE (n:person{id:5,firstname:’Mickey ’,
lastname:’Mouse’} RETURN n

3
4 $queryBuilder ->insert(’user’)->values(’id’ ,3)

->values(’username ’,’Mickey ’)->values(’
password ’,’password ’)->values(’person_id ’
,5);

5 MATCH (person_id:person{id : 5}) CREATE (n:
user{id : 3, username : ’Mickey ’,
password : ’password ’}) -[:person_id]->(
person_id) RETURN n

6
7 $queryBuilder ->insert(’friends ’)->values(’id’

,2)->values(’person_id1 ’ ,3)->values(’
person_id2 ’ ,5)->values(’type’,’childhood ’
);

8 MATCH (person_id1:person{id : 3}) ,(person_id2
:person{id : 5}) CREATE (person_id1)-[r:
friends{id:2, type : ’childhood ’}]->(
person_id2) RETURN r

Listing 11: Examples of create queries from
QueryBuilder to Cypher

Update
The update statement consists of at least two function call
update and values in BQL. Optionally different where func-
tions can also be used. An update query has more cases to
consider than a create query as can be seen from Figure 10.

If an edge or node is to be updated then the action to be
taken, depends on whether a foreign-key property should be
changed. So if there are no foreign-key references then it is
a simple question of finding the node or edge, and update
the relevant properties. However, if the query updates a

foreign-key property in an edge then the action depends on
whether one of the foreign-key properties is set to null. If so,
the edge should be deleted, since an edge needs a connection
to two nodes to be valid. In the other case, the foreign-key
will reference another node, and the edge must be recreated.
This means that the current edge needs to be deleted and
a new edge with the same or updated properties should be
created with the new connecting nodes.

When a node needs to be recreated, it is actually one or sev-
eral of its edge which was made from a foreign-key property
that are recreated. This means an edge might be created,
deleted or entirely recreated as described before for remak-
ing an edge.

Figure 10: Decision diagram of the update actions
that can be taken

In Listing 12 there are two examples of update queries in
BQL and their corresponding queries in Cypher. The first
is a simple query where all nodes with the label person will
update its firstname property and return the nodes to the
user. The second query is simple in BQL, but more advanced
in Cypher. In this query a foreign-key property is changed,
which means the node is recreated, and this results in a
Cypher statement containing MATCH, WHERE, CREATE,
SET, WITH, DELETE and RETURN clause. In this query
SET copies all the properties from the old edge to the new
edge. The WITH clause express that a new query starts and
it uses the listed elements from the previous query. So this
update query first creates an new edge, copies the properties
from the old edge, deletes the old edge, and return the user
node and the person node it has been connected to.

1 $queryBuilder ->update(’person ’)->values(’
firstname ’,’name’);

2 MATCH (person:person) SET person.firstname =
’name’ RETURN person

3
4 $queryBuilder ->update(’user’)->values(’

person_id ’ ,6);
5 MATCH (user:user)-[r0:person_id]-(person_id)

,(endnode0:person{id : 6}) WHERE user.id
= 5 CREATE (user)-[newR0:person_id]->(
endnode0) SET newR0=r0 WITH user ,endnode0
,r0 DELETE r0 RETURN user ,endnode0

Listing 12: Examples of an update query in BQL
and in Cypher
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Figure 11: Decision diagram of what type of read
query is to be translated

Delete Query
The delete query in BQL is made using the function delete
and possibly some of the where function to filter what should
be deleted. Deciding the action in a delete query is simple, if
the table name refers to an edge then a delete edge statement
should be made. However, if it is a node then the query
needs to delete the node and all of its connecting edges.

An example of a delete query in BQL and its corresponding
Cypher query is in Listing 13. In the first example a friends
edge should be deleted which results in a Cypher query
containing MATCH, WHERE, and DELETE clauses. The
second query deletes a user node and its connecting edges.
This results in a statement containing a MATCH, WHERE,
WITH, OPTIONAL MATCH, and DELETE clause. In this
case the user node is found by the MATCH and WHERE
clause using a person node, which is a result of the filter-
ing on the foreign-key property person id. The user node is
passed on to a new query that finds all of the node’s edges,
and then deletes both the node and its edges.

1 $queryBuilder ->delete(’friends ’)->where(’id’,
’=’ ,1);

2 MATCH () -[friends:friends ]-() WHERE friends.
id = 1 DELETE friends

3
4 $queryBuilder ->delete(’user’)->where(’

person_id ’,’=’ ,2);
5 MATCH (user:user)-[r0:person_id]-(person_id:

person) WHERE person_id.id = 2 WITH user
OPTIONAL MATCH (user)-[r]-() DELETE user

,r

Listing 13: Examples of a delete query in BQL and
in Cypher

Read
A read query can either be a reachable, traversal, or an SQL-
like query, see Figure 11. Deciding which type of query
it is, is done by checking whether the query contains any
reachable elements or traverse elements, and if both of these
element are empty then it is an SQL-like query made from
a combination of select, from, and where.

The SQL-like read query is more complicated to translate
because a query might need several tables. As described in
Section 4.2 conditions in where has been pre-processed such
that all references to foreign-keys are replaced and all pat-
terns are put into their own lists. This makes the conditions

ready for translation into the WHERE clause in Cypher.
The select values also need some extra processing to trans-
late it into the RETURN clause. This is done to remove
references to foreign-keys and replace the SQL wild-card *
with the relevant properties. The MATCH clause is made
from a combination of patterns and tables in from which is
explained in Appendix D.

In Listing 14 are two examples of an SQL-like read query
that are translated into Cypher. In the first query we want
to find all friends of a username and return all data about
the friend. In the query there are one condition and three
patterns, which are translated into two MATCH patterns.
In the second query we want to find a username based on
a person id. In the BQL query there are no aliases, instead
they are created during translation. In addition the query
references a foreign-key property that references a person
which is not represented in the from clause and therefore
an additional pattern from user to person is made during
translation.

1 $queryBuilder ->select(’p2.*’)->from(’user’,’u
’)->from(’person ’,’p1’)->from(’friends ’,’
f’)->from(’person ’,’p2’)->where(’p1.id’,’
=’,’u.person_id1 ’)->where(’p1.id’,’=’,’f.
person_id1 ’)->where(’p2.id’,’=’,’f.
person_id2 ’)->where(’u.username ’,’=’,’
Mickey ’);

2 MATCH (u:user)-[r1:person_id]->(p1:person),(
p1:person)-[f:friends]->(p2:person)
RETURN p2.id, p2.firstname , p2.lastname

3
4 $queryBuilder ->select(’username ’)->from(’

users’)->where(’person_id ’, ’=’ ,4);
5 MATCH (user:user) -[:person_id]->(person:

person) WHERE person.id=4 RETURN user.
username

Listing 14: Examples of an read query in BQL and
in Cypher

To implement traverse and reachable a basic support for
sub-queries is necessary in the Cypher translator. The sub-
query supported, is an SQL-like read query that only has a
single element in from. In Listings 15 and 16 are examples
of traverse and reachable queries, respectively. In BQL the
queries take two sub-queries as input which both finds a per-
son node according to a specified id. This is translated into
a single sub-query in the Cypher version of the queries which
finds both nodes and pass them to the parent query. The
parent query finds the shortest path between the two nodes
without having any restriction on the path taken. Finally
the query returns the result. As can be seen the difference
between a reachable and traverse query is the return value
which is a number for reachable and a path for traverse.

1 $qb1=$qb1 ->select(’*’)->from(’person ’, ’p1’)
->where(’p1.p_id’,’=’ ,1);

2 $qb2=$qb2 ->select(’*’)->from(’person ’,’p2’)->
where(’p2.p_id’,’=’ ,2);

3
4 $qb_tra=$qb_tra ->traverse($qb1 ->

getReadQueryAsObject (), $qb2 ->
getReadQueryAsObject ());

5 MATCH (p1:people),(p2:people) WHERE p1.p_id =
1 AND p2.p_id = 2 WITH p1,p2 MATCH p =

shortestPath (( p1 ) -[*] -( p2 ) )
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RETURN p

Listing 15: Examples of a traverse query in BQL
and in Cypher

1 $qb1=$qb1 ->select(’*’)->from(’person ’, ’p1’)
->where(’p1.p_id’,’=’ ,1);

2 $qb2=$qb2 ->select(’*’)->from(’person ’,’p2’)->
where(’p2.p_id’,’=’ ,2);

3
4 $qb=$qb ->reachable($qb1 ->getReadQueryAsObject

(), $qb2 ->getReadQueryAsObject ());
5 MATCH (p1:people),(p2:people) WHERE p1.p_id =

1 AND p2.p_id = 2 WITH p1,p2 MATCH p =
shortestPath (( p1 ) -[*] -( p2 ) )
RETURN COUNT ( p )

Listing 16: Example of a reachable query in BQL
and in Cypher

5. OPTIMIZER
The optimizer consists of multiple components so to get an
overview, we present how the optimizer given a query, are
able to find the optimal Query Execution Plan (QEP), see
Section 5.1. This only gives a general picture of the compo-
nents.

In Section 5.2 we presents some algorithm used to gather
statistics. This sections is focused on retrieving response
times of the queries as well as supplying the cost model with
data such that it can create a QEP.

The cost model is described in Section 5.3. The cost model
in conjunction with the Credibility Value (CV) compares
and selects the most optimal database for a given query. In
case the most optimal query execution is not on a single
database the cost model uses the results from the plan enu-
merator, to divide the query and compare derived queries
to find a more optimal QEP among the databases as well as
the reconstruction of the results to match the original query.

The optimizer focuses on read queries and disregard create,
update and delete as these queries cannot be partially exe-
cuted on one database. The reason for this is these types of
queries are supposed to be executed on all databases as we
implement full replication across the databases.

5.1 Overview
A sequence diagram of how a query is handled by the op-
timizer, its main components, and the main actions made
during the optimization of the query is shown in Figure 12.

First a user query is sent to the optimizer. During the
first step of the Optimizer, the initial query is sent to the
Plan enumerator which makes additional enumeration of the
query, such that an QEP can be made for all enumerations of
the query. The enumerations are returned to the Optimizer.

Next the enumerations are sent to the Cost model compo-
nent which will return a single QEP to the Optimizer. In this
component, first we retrieve an id of a measurement for each
enumeration from Bridge-DB’s internal storage. This means
that if the enumeration has already been executed once then

we have previous statistics that the Cost model component
can use. However, if this retrieval fails then an Measurement
Query (MQ) corresponding to this enumeration need to be
executed by the Measurement query component. After all
enumerations have been processed, then the cost model can
compare each QEP to find the most optimal and return it
to the optimizer.

The QEP can be one or several queries, which should be exe-
cuted on different databases. Each query is sent to the Con-
nector of a database which then will execute the query and
return a result to the Optimzer. If there were several queries
then their results need to be handled by the Query-post pro-
cessor component to join the results into a final result that
is returned from the Optimizer.

5.2 Statistics gathering
One approach to approximate the post-processing time of
a query is to evaluate the data size of different QEPs and
use this to select the most optimal plan. However, as this
method is great at approximating the QEP with the low-
est resource footprint on a database, this is not suitable for
Bridge-DB as our focus is on response time.

The reason for measuring the response time on Bridge-DB
and not the post-processing time on the individual database
servers, is mainly that the size of the returned data may
vary. Therefore the bandwidth between Bridge-DB and the
database servers will have an impact on the time and our
focus is on approximating how much time will pass from the
query is sent until a result can be forwarded to the client.

To measure query response time, the original query is re-
ceived and stored in Bridge-DB’s internal data storage. The
query is then forwarded to the plan enumerator component.
This component is intended to enumerate the query based
on its constructs, where a construct is either a select, ta-
ble reference, or condition. The reason for doing this is to
maintain a set of queries derived from the user query includ-
ing how to reconstruct the original query from the derived
queries. By doing this, we are able to execute parts of the
query on different databases and let Bridge-DB reconstruct
the original query.

Plan enumerator
The queries are enumerated using the algorithm shown in
Algorithm 1. The algorithm takes a single query as a pa-
rameter. It first checks if there is more than one table. In
case there is more than one table, it first creates a new query
for each permutation of all possible join combinations and
second, creates a new query for each table with all condi-
tions and select statements. Secondly, if there instead are
multiple conditions, the algorithm creates one new query for
each condition, adds the one table, and adds all select state-
ments to the new query. Thirdly, if neither of these case is
in the query then a new query is created with the one table
and the select statements, without the conditions. Finally if
there are no conditions in the query and no join operations,
the algorithm stops and returns the input query. Otherwise
for each of the new queries created, the plan enumerator al-
gorithm is called with one new query as parameter, creating
a recursive function. The algorithm returns all the results
from all of the recursive calls of the plan enumerator.
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Figure 12: Sequence diagram of the optimizer
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input : query
output: Enumerated queries

1 tmp q = new query;
2 tmp q.add(query.selects);
3 if count(query.tables) > 1 then
4 foreach permutations(query.tables) as permutation

do
5 new query = clone tmp q;
6 new query.add(permutation);
7 queries.add(new query);

8 end
9 foreach query.tables as table do

10 new query = clone tmp q;
11 new query.add(table);
12 new query.add(query.conditions);
13 queries.add(new query);

14 end

15 else if count(query.conditions) > 1 then
16 foreach query.conditions as condition do
17 new query = clone tmp q;
18 new query.add(query.tables);
19 new query.add(condition);
20 queries.add(new query);

21 end

22 else if count(query.conditions) == 1 then
23 new query = clone tmp q;
24 new query.add(query.tables);
25 queries.add(new query);

26 if count(query.conditions) == 0 && !
count(query.tables) == 1 then

27 return query;
28 else
29 foreach queries as query do
30 returnQueries.add( queryEnumerator( query ) );
31 end
32 return returnQueries;

33 end
Algorithm 1: Plan enumerator algorithm

The result from the plan enumerator algorithm is an enu-
meration of queries, similar to a tree structure. The root
of the tree is the initial query and each of the children are
derived from the initial query.

An example of this is a query as presented in Listing 17,
which contains two join operations, one being a self join.
After the execution of the plan enumerator on this query.
The result from the plan enumerator can be seen in Listing
18.

1 $q ->select("*")->from("user")->from("friends"
, "f1")->from("friends", "f2")->where("
user.id" ,"=" ,"f2.user1_id")->where("f1.
user2_id", "=" ,"f2.user1_id");

Listing 17: Initial example query

1 $q ->select("*")->from("user")->from("friends"
, "f1");

2 $q ->select("*")->from("user")->from("friends"
, "f2")->where("user.id","=","f2.user1_id
");

3 $q->select("*")->from("friends", "f1")->from(
"friends", "f2")->where("f1.user2_id","="
,"f2.user1_id");

4 $q->select("*")->from("user");
5 $q->select("*")->from("friends");
6 $q->select("*")->from("friends");

Listing 18: Plan enumeration of example query

In Listing 18 it can be seen that line 1, 2, and 3 are all
permutations of the join operations as well as compatible
conditions with the referenced tables. Line 4, 5, and 6 are
only referencing a single table, and as no condition is com-
patible with any of those queries, they are removed. This
can also be viewed as a tree structure as seen in Figure 13.

Figure 13: Enumerated queries

The enumerated queries are used both when we executing
MQs where every enumerated query not previously known
in Bridge-DB is executed, but also when approximating the
most optimal QEP for a user query.

Measurement Queries
As the cost model in Bridge-DB is based on measured re-
sponse times of the connected databases, the concept of MQs
is implemented. An MQ is intended to act as a way of mea-
suring a response time baseline to be used by the cost model
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when selecting the most optimal QEP and not intended to
return an actual result to a user. MQs is mainly visible in
bootstrapping queries described in Section 6 but also dur-
ing execution of user queries in case, the user query is un-
known to Bridge-DB. MQs allows the cost model to compare
enumerated user queries without the need to execute each
enumeration each time they are compared.

To gather statistics the user query is sent as input to Algo-
rithm 1 and the algorithm returns the enumerated queries
based on the user query. Each of these queries are then
executed one by one where the response time and query re-
sult size are stored in the internal storage and marked as an
MQ. The reason for storing the result size is, when estimat-
ing the execution time for post-processing a query inside
Bridge-DB, information about the result size is required.
Post-processing of queries is important as the system is de-
signed to execute the queries partially on multiple databases,
and then let the post-processor handle the aggregation of the
partial results from the individual databases. This is further
described in Section 5.3.

Initially, there is no data in the internal database on Bridge-
DB about any executed queries and therefore no known mea-
surements. Therefore when Bridge-DB executes a query, it
will cause a high load on the databases as the queries are
enumerated using the plan enumerator and each query from
the plan enumerator is executed as MQs to gather statistics
for the cost model.

However, as the response time is stored for each MQ, the
MQ will only be executed once. As the enumerated MQs
are expected to overlap to some degree, they are considered
overlapping subproblems. Therefore we can use principles
from Dynamic Programming [1] to speed up the execution
of MQs in order to limit the load impact on the database
servers.

This is done by hashing each MQ and storing the MQs in the
internal storage on Bridge-DB. When the execution of the
gatherStatistics algorithm is started, as seen in Algorithm
2, it is considered a batch execution and a batchId value is
set. Based on the batchId and the hashed MQ it is pos-
sible to retrieve, whether a given MQ has previously been
executed and whether that given query was last executed as
part of the current batch. In case it was executed in the
current batch, the given MQ is an overlapping subproblem
and therefore is unnecessary to execute.

An example of this continues with the enumerated queries
in Listing 18 which is forwarded to the gatherStatistics algo-
rithm in Algorithm 3. A batchId is created for the gather-
Statistics execution and for each query, the internal database
is queried to check whether the given query has been exe-
cuted as part of the current batch. If the query has been
executed previously, it is disregarded and will not be exe-
cuted as an MQ. If it has not been executed previously in
the current batch, the query is executed and the response
time and result size is stored in the internal database.

Based on the queries in Listing 18, only the queries shown in
Listing 19 are actually executed as MQs. As can be seen, one
query is missing, which is line 6 in Listing 18. The reason for

this is, as mentioned, the initial example query contained a
self join on the friends table. As the enumerations contained
two identical selections on the friends table, they are con-
sidered overlapping sub problems, and therefore the second
duplicate query is disregarded when executing the MQs.

1 $q->select("*")->from("user")->from("friends"
, "f1");

2 $q->select("*")->from("user")->from("friends"
, "f2")->where("user.id","=","f2.user1_id
");

3 $q->select("*")->from("friends", "f1")->from(
"friends", "f2")->where("f1.user2_id","="
,"f2.user1_id");

4 $q->select("*")->from("user");
5 $q->select("*")->from("friends");

Listing 19: Executed MQs

To limit the amount of MQs executed, the retrieve query
algorithm in Algorithm 3 simplifies the input query before
doing a lookup in the internal database. This simplification
is mainly visible in the conditions as they are only consid-
ered as referencing an indexed or non-indexed column. The
reason for this is, if a column is indexed, the execution time
is not expected to change drastically when compared to an-
other indexed column. The same applies for non indexed
columns.

A drawback of MQs is, if the database is under load at the
time an MQ is executed, the response time results might
not reflect the optimal response time which the database
is capable of. To limit the impact of this, we implement
a method to dynamically adapt to erroneous measurements
and changes to the databases called CV.

Credibility Value
The use of CV is intended to let Bridge-DB dynamically
adapt to changing database environments. Therefore the
CV are assigned to either let MQs or user queries become the
dominant factor when calculating the cost of executing the
queries. The reason for this design is, ideally the MQs should
act as a guideline, but as the database is put under load
or the database grows, the user queries supplies updated
measurements.

The CV is calculated based on whether it is an MQ or a
user query. The CV of an MQ has by default a static value
of 10. The reason for choosing a value of 10 is, that we want
at least 10 subsequent executions before we depend on the
measurements of the subsequent executions as a dominant
factor in the cost model. The exact number for queries was
found through some experimentation.

The aggregated CV of user queries are calculated according
to Definition 4. This calculation is only used when compar-
ing queries and therefore the incoming query can be either
the incoming user query or enumerated queries.
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input : queryArray (enumeratedQueries)
input : onlyMissing

1 batchId = getHighestBatchId();
2 if batchId > 0 then
3 batchId++;
4 else
5 batchId = 1;
6 end
7 if isArray(queryArray) == true then
8 returnQueries = array();
9 foreach queryArray as query do

10 if isArray(query) == true then
11 gatherStatistics(query);
12 else
13 foreach internalDatabase.getDatabases() as

database do
14 storedQuery = retrieveQuery( query,

database, batchId);
15 if storedQuery[’batchId’] != batchId then
16 if ( onlyMissing == true &&

storedQuery[’batchId’] == 0 ) || (
onlyMissing == false ) then

17 startTimer();
18 result = database.query( query );
19 executionTime = stopTimer();
20 internalDatabase.store(

storedQuery[’queryId’],
executionTime);

21 end

22 end

23 end

24 end

25 end

26 end
Algorithm 2: Gather statistics

Definition 4. Aggregated CV for user queries
mq → the measurement query
mi → the known user query measurements
n→ the number of known user query measurements
cv → the aggregated CV of the subsequent queries

cv =

n∑
i=1

1− (
|mq −mi|
( (mq+mi)

2
)
)

The calculation is focused on subtracting 1 from the per-
centage difference between mq and mi. Ideally, the user
queries should be as close to mq as possible. The result is
the aggregated cv of user queries becomes larger than the
CV of the MQ as fast as possible making, the user queries
the dominant factor. In case the percentage difference is
large, a larger set of user queries are required to make them
the dominant factor.

5.3 Cost Model
The cost model has its roots in the results from the MQ.
The cost model uses these to predict the execution time in

input : query
input : databases
input : batchId = 0
output: internal query id
output: batchId

1 foreach query.conditions as condition do
2 if isIndexed(condition) == true then
3 tagAndStoreIndexed(condition);
4 else
5 tagAndStoreUnindexed(condition);
6 end

7 end
8 selectHash = hash( commaSeperate( sort( query.selects

) ) );
9 fromHash = hash( commaSeperate( sort( query.froms )

) );
10 conditionHash = hash( commaSeperate( merge(

sort(indexed conditions), sort(unindexed conditions) ) )
);

11 query = ”select * from queries where
selectHash=”+selectHash+” AND
fromHash=”+fromHash+” AND
conditionHash=”+conditionHash;

12 if batchId > 0 then
13 query = query+” AND batchId=”+batchId;
14 else
15 query = query+” AND

batchID=”+highest(batchId);

16 end
17 result = internalDatabase.query(query);
18 if result then
19 return result[’primaryKey’],result[’batchId’];
20 else
21 query = ”insert into queries ”+selectHash+”,

”+fromHash+”, ”+conditionHash;
22 internalDatabase.query(query);
23 return primaryKey,0;

24 end
Algorithm 3: Query retrieve algorithm

Bridge-DB, but the incoming user queries are also used to
measure response time. Both the MQ and the user queries
are assigned an CV, used to let the cost model progressively
learn changes to the database environments, whether the
changes are new hardware, new software, or different load
on the system. This method is similar to the dynamic cost
model, described in Section 2.2.

When a user query is received by Bridge-DB, the cost model
retrieves the CV of the MQ corresponding to the user query.
It also retrieves the aggregated CVs of all user queries. The
cost model selects the dominant CV which is the larger CV
of either the MQ or the user queries. Practically this means
as long as the aggregated CV of the user queries is smaller
than the static CV of MQs, which is 10, Bridge-DB will
use the MQ as the dominant measurement and if not, the
average of the previously executed user queries are used.

Aside from the CV the cost model can access response times
and result sizes of previous user queries and MQs through
the internal database. Based on the plan enumerator in
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Section 5.2 we have a set of enumerated plans which is for-
warded from the optimizer to the cost model. The enumer-
ated queries are structured similar to a tree structure and
therefore we reference the queries as nodes.

The first step in the cost model is to traverse the tree struc-
ture of enumerated queries. At each traversal step, the
CV are recalculated for all types of databases connected
to Bridge-DB to choose the dominant measurement. For
each node the cost model then compares the dominant mea-
surements of the nodes to find the database with the lowest
response time. At each level of the tree, the response time
of all siblings are aggregated and the estimated execution of
executing local computations is added. The aggregated re-
sponse time of siblings and local computations is compared
with the response time of the common parent of the siblings.
The measurement comparison is shown in Algorithm 4 and
the estimation of local computations is shown in Algorithm
6.

If the aggregated response time differs with more than 10%
from the parent query, the traversal continues as it is ex-
pected that further optimization can be done. If not, the
traversal stops and if the aggregated response time differs
with less than 5%, the parent is used as the optimization
achieved in the last step, is not sufficient to defend the ad-
ditional operations required. These percentages are chosen
based on experimentation when executing the tests. The
algorithm used to do this is shown in Algorithm 5.

This design can both find a QEP for the execution of a
user query using one or multiple databases, by checking
the decompositions of the user query against the available
databases, the query can be partially executed on the most
optimal set of databases.

input : tree
output: result

1 tree.node.aggregateTime = 0;
2 foreach tree.siblings as sibling do
3 tree.node.aggregateTime +=

sibling.fastestMeasurement();
4 tree.node.aggregateTime +=

getTimeOfLocalOperation( tree.sibling, tree.node );

5 end
6 tree.node.aggregateTime +=

tree.node.fastestMeasurement();
7 if percentLower( tree.node.aggregateTime,

tree.parent.aggregateTime ) > 10 then
8 return measurementComparison(tree.node);
9 else if percentLower( tree.node.aggregateTime,

tree.parent.aggreTime ) < 5 then
10 return tree.parent;
11 else
12 return tree.node;

Algorithm 4: Measurement comparison

The cost model can, based on the measurements and the
enumerated queries, select the optimal division of the query
in regards to the smallest response time. The algorithm used
to do the calculations is shown in Algorithm 5.

input : query
input : databases
output: result

1 enumerations = planEnumerator(query);
2 if ! internalDatabase.retrieveQuery( query ) then
3 executeMeasurementQuery( query, true );
4 end
5 querySet = measurementComparison(enumerations);
6 if querySet.sublings then
7 resultArray = array();
8 foreach querySet.sublings as subling do
9 resultArray.add(

subling.getFastestDatabase().execute() );

10 end
11 resultArray.add(

querySet.getFastestDatabase().execute() );
12 return executeLocalComputation(querySet,

resultArray);

13 else
14 return querySet.getFastestDatabase().execute();
15 end

Algorithm 5: Query selection algorithm

The query selection algorithm returns an QEP as well as
computations needed to be executed locally on Bridge-DB
to fulfill the user query. At this point, the cost model has
calculated a cost for executing the different variations of the
user query and the returned QEP is the best in terms of
speed, based on the cost model calculations.

The returned QEP is executed by Bridge-DB and in case
post-processing is required, meaning that the returned QEP
are a decomposition of the user query, the intermediate re-
sults from the individual databases are forwarded to the
post-processing algorithm. The result of the post-processing
algorithm is the final result and it is returned to the client.

Local Cost Calculator
The local cost calculator uses the size of the intermediate re-
sults to estimate the execution time of a given operation. As
the only two operations that would require post-processing,
are a join operation and a condition check. The local cost
calculator does not need to take other cases into account.
Aside from this, as the join operation is a simple nested-
join and the condition check is a loop through all values,
the execution times are easily predicted based on only a few
preceding measurements of executions.

An example of this is, if we have two tables, shown in Table 2
and 3 and we wish to find the friends of person with p id = 1,
basically two join operations and one condition, as shown in
Listing 20.

p id name location
1 Person name 1 1
2 Person name 2 3
3 Person name 3 2

Table 2: Simplified people table

18



f id person1 person2
1 1 2
2 2 3

Table 3: Simplified friends table

1 $q ->select(’*’)
2 ->from(’people ’,’p1’)->from(’people ’,’p2’)
3 ->from(’friends ’)
4 ->where(’p1.p_id’,’=’,’friends.person1 ’)
5 ->where(’friends.person2 ’,’=’,’p2.p_id’)
6 ->where(’p1.p_id’,’=’,’1’)

Listing 20: Example query in BQL

Bridge-DB first checks conditions and then join operations.
Therefore, the algorithm shown in Algorithm 6 receives as
input condition as operation parameter and the data param-
eter is an array which contains the size of the table. The lo-
cal cost calculator executes a query in the internal database
for the last 10 previous measurements for the given opera-
tion, in this case the ’condition’ operation. Each of these
measurements consist of execution time and the number of
rows.

As the implementation of the local post-processor is a sim-
ple loop through the rows, we simply divide the the time
with the table size for each 10 previous measurements and
calculate the average. This will give us an approximation
of the time needed to check the condition of one row. This
approximation is multiplied with the number of rows for the
operation of which the cost is calculated and the result is
returned.

In the next step, the cost of join operations are calculated.
They are calculated one by one, but the same procedure is
used in both cases. When calling the local cost calculator,
the operation parameter is set to join and the data param-
eter is an array with two values, one being the number of
rows in the first table, and the second value is the number of
rows in the second table. The algorithm retrieves the pre-
vious 10 measurements for the join operation where each
measurement consist of the number of rows resulted from a
cartesian product and the execution time. The reason for
using the number of rows resulted from a cartesian product
is because the join operation is a simple nested join imple-
mentation.

The execution time is divided by the number of rows and the
average is calculated over the 10 measurements. The result
is then multiplied with the number of rows resulted from a
cartesian product of the two input tables and the result is
returned.

This solution depends highly on the same principles the gen-
eral cost model does which is the MQs as the previous mea-
surements dictate the approximated execution time.

6. MEASUREMENT BOOTSTRAPPING
As executing MQs can be expensive, we limit this problem
through bootstrapping Bridge-DB by executing the most ba-
sic MQs. As we declare the schema locally in Bridge-DB we

input : operation
input : data = array()
output: time estimate

1 timedResults = internalDatabase.query(”SELECT
time,dataStatistics FROM localOperations WHERE
operation=”+operation+”” ORDER BY id DESC
LIMIT 10);

2 storedAverages = array();
3 if operation == ”condition” then
4 foreach timedResults as timedResult do
5 tableSize =

timedResults[’dataStatistics’][’tableSize’];
6 averageTimePrRow =

timedResult[’time’]/tableSize;
7 storedAverages.add(averageTimePrRow);

8 end
9 return data[’tableSize’] / average(storedAverages);

10 else if operation == ”join” then
11 foreach timedResults as timedResult do
12 table1Size =

timedResults[’dataStatistics’][’table1Size’];
13 table2Size =

timedResults[’dataStatistics’][’table2Size’];
14 averageTimePrRow =

timedResult[’time’]/(table1Size * table2Size);
15 storedAverages.add(averageTimePrRow);

16 end
17 return (data[’table1Size’]*data[’table2Size’]) /

average(storedAverages);
Algorithm 6: Local cost calculator

gain the ability to pre-create these MQs. This method is
similar to the black box cost model in Section 2.2. The
algorithm used to do this is shown in algorithm 7.

A subset of the queries generated from Algorithm 7 can be
seen in Listing 21 and Listing 22 for SQL and Cypher re-
spectively where COLUMN and VALUE is used as general
placeholders. COLUMN represent each column in the given
table and VALUE represents a random value in the given
COLUMN.

1 SELECT 1
2 SELECT * FROM user
3 SELECT * FROM friends
4 SELECT * FROM user WHERE COLUMN=VALUE
5 SELECT * FROM friends WHERE COLUMN=VALUE
6 ...

Listing 21: Subset of autogenerated MQs

1 RETURN 1
2 MATCH(n:user) RETURN n
3 MATCH(n:friends) RETURN n
4 MATCH(n:user) WHERE COLUMN=VALUE RETURN n
5 MATCH(n:friends) WHERE COLUMN=VALUE RETURN n
6 ...

Listing 22: Subset of autogenerated MQs

The first line in both listings, we do a selection on a
static value, which is used to measure the response time
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output: Array of bootstrapping queries

1 sqlQueries.add(”SELECT 1”);
2 cypherQueries.add(”RETURN 1”);
3 tableNames = declaredSchema.getTableNames();
4 foreach tableNames as tableName do
5 sqlQueries.add(”SELECT * FROM tableName”);
6 cypherQueries.add(”MATCH(n: tableName)

RETURN n”);
7 foreach tableNames.column as column do
8 value = getRandomValue(tableName, column);
9 sqlQueries.add(”SELECT * FROM tableName

WHERE ”+column+”=’”+value+”’”);
10 sqlQueries.add(”MATCH(n: tablename)

WHERE n.”+column+”=”+value+” RETURN
n”);

11 end

12 end
13 return sqlQueries, cypherQueries;

Algorithm 7: Measurement Query auto generation

of the database without retrieving any actual data from the
database. In the rest of the queries, a SELECT * is used
for each query. This is to retrieve the largest possible result,
and through that, indrectly test the available bandwidth of
the individual databases. Lastly, based on the selection on
each table, we extract a random value from each column of
each table and do a SELECT * with the column and ran-
dom value as a condition. This tests each database’ ability
to handle conditions.

By executing these pre-created MQs we limit the number
of MQs Bridge-DB has to execute while processing user
queries. Aside from this, by bootstrapping Bridge-DB we
also warm up the cache on the connected databases.

7. EVALUATION
In this section we evaluate the overhead, response time, and
bandwidth consumption of Bridge-DB using one setup. We
also test the ability of the optimizer to change its QEP
of a query when the run-time behaviour of the databases
changes.

7.1 Test hardware
During testing we use 4 identical servers, each with an Intel
Q9440[12] processor, 8 GB memory, one 250 GB Samsung
840 Evo[19] harddrive. Each server is connected to a giga-
bit network which is isolated from other networks to avoid
network interference. The operating system used is Ubuntu
15.04[23]. To ensure a fair comparison, each server is dedi-
cated to a single part of the system each; Client, Bridge-DB,
PostgreSQL and Neo4J.

7.2 Datasets
When evaluating Bridge-DB, we use three datasets. The
first is a dataset with a bias towards graph operations and
therefore Neo4J should have an advantage. The second is a
dataset with a bias towards relational databases which we
have adapted from the TPC-C dataset [22], and PostgreSQL
should have the advantage. The final dataset is a combina-
tion of the two aforementioned datasets.

Social Graph Dataset
Renzo Angles et al. [6] present the Graph Data Benchmark
(GDBench) which evaluates the performance of a graph
database based on a social-network dataset. The data is
created by the data generator (GDGenerator) which is in-
cluded in their benchmark. To test a graph dataset against
Bridge-DB we have used a dataset generated by GDGener-
ator.

The dataset is shown in an ER-diagram in Figure 14. It
consists of four elements people, webpages, friends, and likes.
In the graph database this will result in the nodes people
and webpages, as well as the edges friends and likes. In
the relational database people and webpages are data tables
while the others are join tables.

The queries executed on the dataset are listed below and
they are intended to reflect a few queries common to a so-
cial network. These queries are a subset of the queries in
GDBench, and the remaining queries in the benchmark can-
not be expressed in BQL.

Query 1 Find a person with a given name

Query 2 Find all people who likes a given webpage

Query 3 Find all webpages a person likes

Query 4 Find a person name from person id

Query 5 Check if there is a path between person 1 and
person 2

Query 6 Find a path between person 1 and person 2

Query 7 Find a common friend between two people

Query 8 Find all webpages two people both like

Query 9 Find all friends of friends of a person

Query 10 Find all webpages liked by friends of friends

Query 11 Find all people who likes a webpage which per-
son with id 18 likes

Queries 5 and 6 are a reachable and traverse query, respec-
tively, while the others are SQL-like queries. When we have
an SQL-like query which contains a friend relationship, then
there is a small problem finding all friends. This is due to
the undirected nature of the relationship which cannot be
expressed in BQL, which uses a directed approach. So to
get all friends, BQL would need a construct like a union to
express the correct query. Therefore we have a directional
constraint on queries 7, 9, and 10 which gives a subset of
the desired result, and this applies to both databases so we
will get the same result. For query 7 this actually means
that it finds a common friend between person 1 and person
2, where the relationship has been initialized by persons 1
and 2. All queries have been written via the QueryBuilder
which can be found in Appendix F.

The size of the dataset is 362 MB in PostgreSQL and 1.09
GB in Neo4J. The node and edge statistics can be found in
Table 4.
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Figure 14: An ER-diagram of the social graph
dataset used for testing

Type Label/Table name No. of elements
Node/
Data table

people 130.000
webpages 70.000

Edge/
Join table

friends 1.533.881
likes 1.545.009

Table 4: Statistics of the social graph dataset

Relational Dataset
To test Bridge-DB against a relational dataset, we have cho-
sen to use the dataset of the TPC-C Benchmark [22]. Ham-
merDB [11] has made a data generation and loading tool
which we have used to generate the data.

An ER-diagram of the data set is presented in Figure 15.
The attributes of tables in the dataset are not represented
in ER-diagram. In [22] the dataset has been specified, but
we have made some changes because Bridge-DB does not
support all of the design constructs of the TPC-C dataset.
There have been made two modifications. First each table
must have a single column that can uniquely identify a tu-
ple in the table, this means that all tables which have a
composite primary key or no primary key, get a surrogate
primary key. This change affects all but item and warehouse.
The second change is that each foreign key may only refer-
ence one column in a table. In the original TPC-C dataset
a foreign-key can reference multiple columns which is the
composite primary key of the table. Instead, each of those
foreign-keys is removed and replaced with a foreign-key that
references the new primary key from the first change.

Figure 15: An ER-diagram of the relational dataset
used for testing

The queries executed on the relational dataset, are listed
below and they can also be found in Appendix F. We have
written these queries to reflect some of the common data-
warehousing queries which also can be expressed in BQL.

Query 1 Find a customer with id 90032

Query 2 Find all customers in district 3

Query 3 Find all items a customer with id 90032 have
bought

Query 4 Find all overlapping items two customers have
bought

Query 5 List all customers who have bought something
from warehouse 3

Query 6 List all items available at warehouse 3

The size of the dataset is 414 MB in PostgreSQL and 2.28
GB in Neo4J. The statistics of the dataset can be found in
Table 5.

Type Label/Table name No. of elements

Node/
Data table

warehouse 4
customer 120000
district 40
item 100000
new order 36000
orders 120000
stock 400000

Edge/
Join table

history 120000
order line 1199766

Table 5: Statistics of the relational dataset

The Merged Dataset
This dataset is a combination of the graph and relational
datasets. We have used the relational dataset as base and
then connected the friends relationship to customer, and
the like relationship has been added between customer and
item. This result in a dataset as presented in Figure 16.

We used GDGenerator to generate a new set of friends and
likes relationship which correspond to the number of ele-
ments found in customer and item. To do this we have
made a one-to-one mapping between people and customer,
as well as webpages and items, see Definitions 5 and 6.

Definition 5. People-To-Customer Mapping: f(x)=x

Definition 6. Webpages-To-Item Mapping: f(x)=x - no.
of people

The queries executed on the merged dataset are listed be-
low and the BQL versions can be found in Appendix F.
The reservations stated about the queries in the social graph
dataset also apply to these queries.
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Figure 16: An ER-diagram of the merged dataset
used for testing

Query 1 Find all friends of friends who have bought the
same product

Query 2 Find all friends of a customer in the same district

Query 3 Find all friends who have liked a given item

Query 4 Find all friends who have both liked and bought
a given item

Query 5 Find all items a customer have both liked and
bought

The size of the dataset is 2.1 GB in PostgreSQL and 3.32
GB in Neo4J. The statistics of the dataset can be found in
Table 6.

Type Label/table name No. of elements

Node/
Data table

warehouse 4
customer 120000
district 40
item 100000
new order 36000
orders 120000
stock 400000

Edge/
Join table

history 120000
order line 1199766
likes 1417423
friends 1406550

Table 6: Statistics of the merged dataset

7.3 Test Execution
The measurements of response time have been done on the
client-side. Meaning, the timer is started when the query is
sent using the Bridge-DB client library, and stopped when
the entire result has been received. The result is asserted
against a known correct response. If the assertion is true
then the timed execution is stored, otherwise the test would
have failed. The assertion has been done to avoid erroneous
database results from contaminating the test results. Each
of the queries is executed 50 times and the average execution
time is stored and presented here as a result.

The test executions are split into three parts in which the
first two executions are not using the optimizer. The first is
a cached result meaning the database has been warmed up

with a query, and followed by the same query being executed
50 times. Then the average response time is calculated and
used in the results. This test demonstrates how the database
can perform at its best. The second execution is a non-
cached result meaning caching is disabled in the operating
system and before each execution, the database is rebooted
to clear any active cache. Both of these execution have been
done on both PostgreSQL and Neo4J through Bridge-DB.

The third and last execution is with an enabled optimizer in
Bridge-DB. As the cost model automatically executes mea-
surement queries, it will automatically warm up the cache.
Therefore the results can both be partly cached and partly
non-cached results. The queries can also be executed en-
tirely on one of the database or using both databases, de-
pending on the optimizer estimates.

7.4 Overhead Result
When executing the tests we measured the overhead of the
cost model both in execution of user queries, but also the
execution of an MQ.

The general overhead of the optimizer is on average 8 ms
calculated by starting a timer when the query is received
and stopping the timer when the QEP is ready for execution.
This process consists of enumerating the queries, look-up
in the local database for known measurements, comparison
of the enumerated queries to find a QEP as well as query
translation.

Secondly, the overhead of executing MQs consists of both
response time and data size. In terms of response times,
Bridge-DB has an overhead of 21%. This is measured by
timing every time Bridge-DB executes a query, no matter
whether it is a user query or an MQ and stores the time.
Additionally, before each MQ a seperate timer is started,
timing only the execution time of the MQ. By calculating
the percentage difference between the total time spent on
executing queries and the time spent on execution MQs we
get the overhead in terms of response time. In terms of
data size, the aggregated transmitted data of executing the
measurement queries is 14 GB, so multiple times the full size
of each database.

Out of the 21% overhead in terms of response time, 96% is
during bootstrapping of the system and the last 4% is during
regular use when queries not previously executed needs to
be measured. Out of the 14 GB of transmitted data when
executing MQs, less than 100 MB is during regular use and
the rest is during bootstrapping.

7.5 Query Response Time Results
In this section we will present our results when executing our
tests. We both present the response times for each dataset
and how the optimizer has treated queries which was enu-
merated.

Social Graph Dataset
The test results of social graph dataset are shown in Figure
17. As can be concluded from the figure, there is a sig-
nificant difference between executing the queries on Neo4J
when the cache is enabled or disabled. The average percent-
age difference is 186,7%, demonstrating the efficiency of the
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built-in cache in Neo4J. On PostgreSQL this percentage is
32,54%, which demonstrates that PostgreSQL also obtains
a significant speedup over time, but still not as significant
as Neo4J.

Figure 17: Query responds times in the social graph
dataset

When comparing the response times with enabled cache on
both Neo4J and PostgreSQL, the average percentage differ-
ence is 137,85%, in favor of Neo4J showing that over time,
Neo4J in our test cases becomes the fastest database for
most of the queries. This changes when comparing the non-
cached response times on both Neo4J and PostgreSQL with
a percentage difference of 117,32% in favor of PostgreSQL.

When enabling the cost model and executing the same set of
queries, the results are more similar to those of the cached
results. When examining which database the queries have
been executed on, see Table 7, then we found that queries
1-4, 8, and 11 is run on PostgreSQL, queries 5 and 6 run
on Neo4J while query 7, 9 and 10 is decomposed and uses
both databases to execute the query. It should be noted
that queries 5 and 6 have not been executed on PostgreSQL
since the SQL translator does not support recursive queries,
but as we have shown in our previous work[8] Neo4J would
still outperform PostgreSQL.

When testing how the cost model selects QEPs when exe-
cution an MQ multiple times, we discovered that all queries
but query 1 was executed on Neo4J and only query 1 was
executed on PostgreSQL. The reason for this is, the second
MQ only get cached results from both databases, and on
Neo4J this is a simple lookup in a key-value store for the
query and its result and therefore not an accurate measure-
ment.

Query Execution type
Query 1 All on PostgreSQL
Query 2 All on PostgreSQL
Query 3 All on PostgreSQL
Query 4 All on PostgreSQL
Query 5 All on Neo4J
Query 6 All on Neo4J
Query 7 Decomposed
Query 8 All on PostgreSQL
Query 9 Decomposed
Query 10 Decomposed
Query 11 All on PostgreSQL

Table 7: Execution of social graph dataset’s queries

It is notable that the cost model does not choose Neo4J more
often when we look at the cached performance of Neo4J.
This suggests that the cost model favors PostgreSQL, which
actually only beats Neo4J’s cache result in query 1 which is
a selection on a non-indexed value. However, it also shows
how the cost model improves the response time of query 7
and 10 compared to the cached PostgreSQL results. Query
9 which also is a decomposed query does not perform better
than the cached result from PostgreSQL.

Through analysis of the decisions made by the cost model,
the favoritism of PostgreSQL is based on the initial MQ ex-
ecuted. This makes the cost model select PostgreSQL as the
desired database when the optimizer finds, that the optimal
QEP is to execute the initial query. Because of this, Bridge-
DB does not test Neo4J again, unless PostgreSQL becomes
slower than the initial MQ executed on Neo4J. A solution
to this problem is to re-execute the mqs! (mqs!) after an
amount of user queries. This is also diskussed further in
Section 9.

When looking closer into how query 7 is decomposed then we
observe that the query is decomposed into three composite
queries, see Figure 18. First we have two queries that finds
two people from an id which both are executed on Post-
greSQL, and one query that joins all the tables together,
returns it to the optimizer which then joins the results from
the databases together to find the final result. This is also
the general description of the QEP for query 9 and 10, which
can be found in Appendix H. This result also suggests that
we have much traffic between Neo4J server and the Bridge-
DB server. This has also been tested and the results are
discussed in Section 7.6.

Figure 18: High-level description of QEP of query 7

Relational Dataset
The results of the relational dataset are shown in Figure
19. Some of the same patterns appear as with the social
graph dataset. Again Neo4J is able to obtain a much lower
response time when the cache is enabled, which results in
a percentage difference being 83,57%. For PostgreSQL the
percentage difference has decreased to only 4,2%.

When comparing the cached response times of Neo4J and
PostgreSQL, the percentage difference is 120,85% in favor of
Neo4J and when comparing the non cached response times,
it repeats with a percentage difference of 53,97% in favor of
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Figure 19: Query responds times in the relational
dataset

PostgreSQL.

When enabling the optimizer we also found similar results
as for the social graph dataset. The response time tends to
follow the cached results from PostgreSQL and all queries
but one is also solely executed on PostgreSQL as shown in
Table 8. As can be seen from Figure 20 only query 4 has
been divided into composite queries in a similar way to query
7 in the social graph dataset.

When executing the MQs multiple times, all queries are ex-
ecuted solely on Neo4J, again accredited to Neo4Js cache.

Query Execution type
Query 1 All on PostgreSQL
Query 2 All on PostgreSQL
Query 3 All on PostgreSQL
Query 4 Decomposed
Query 5 All on PostgreSQL
Query 6 All on PostgreSQL

Table 8: Execution of relational dataset’s queries

Merged dataset
The test results of the merged dataset are shown in Figure
21. Again we can observe that Neo4J outperforms Post-
greSQL when looking at the cached results as well as Post-
greSQL performing better than Neo4J when the cache is
disabled.

The response time difference between the cached executions
is 175,57% in favor of Neo4J and the response time differ-
ence between the non-cached executions is 102,5% in favor
of PostgreSQL.

When enabling the cost model we find that query 2 is exe-
cuted on PostgreSQL, but the other 4 are divided into com-
posite queries and executed on either PostgreSQL or Neo4J,
see Table 9. From Figure 22 it is apparent that the QEP of
query 1 is similar to the two previous example. The query
execution plans for 3-5 can be found in Appendix H, but
they show the same pattern.

When executing the MQs multiple times, all queries are
again executed on Neo4J.

Query Execution type
Query 1 Decomposed
Query 2 All on PostgreSQL
Query 3 Decomposed
Query 4 Decomposed
Query 5 Decomposed

Table 9: Execution of merged dataset’s queries

7.6 Data Traffic Results
As mentioned in Section 7.5 by looking at the QEP of the
decomposed queries we would find that the data transfer
between the Neo4J server and Bridge-DB server to be high.
In Figures 23, 24 and 25 are shown the data size returned
from Neo4J, PostgreSQL, and Bridge-DB for each of the
datasets. It should be noted that the column for query 5 in
Figure 23 is too small to be seen.

As we expected the data size returned from Neo4J for each
of the decomposed queries, are significantly higher than final
results returned from Bridge-DB especially query 4 from the
relational dataset in Figure 24.

This data traffic is a significant disadvantage of the optimizer
in this test setup. However, due to the dynamic nature of
the cost model this might not become a problem with a
different setup. For example the network connection can be
slower, so the cost model will find another QEP which does
not use as much data transfer, however, this might also lead
to the optimizer choosing only either PostgreSQL or Neo4J.
In another example the transferred data might increase to a
point where the optimizer finds a QEP with a lower cost.

7.7 The Run-time Behaviour of the Optimizer
In this test we want to test the cost model’s ability to dynam-
ically choose an QEP while each of the external databases is
under a different load. We use the same queries on the three
datasets, each query is executed 200 times, and the exter-
nal database servers is under high load at different iteration
interval. The additional load on the database increases the
response time with several 1000 ms.

The results of the test is presented in Table 10 which both
presents when database is under load and when the opti-
mizer chooses a different QEP. As can be seen from the
table first we run 50 iteration without any load on the ex-
ternal database servers such that we would get the same
results as in the response time tests. After 50 iterations
we put PostgreSQL’s server under load which after 14 ad-
ditional iterations causes the optimizer to choose another
QEP such that all queries are executed on Neo4J. After 100
iterations we switch the load from PostgreSQL’s server to
Neo4J’s server and then after 14 iterations the optimizer
chooses PostgreSQL to execute the queries on. This behav-
ior continues until the we stop the test after 200 iterations.

From this test we can conclude that the optimizer is able
to change QEP at run-time based on response times that
is collected when a query has been executed. We can also
conclude when a database is under a high load, it takes 14
iterations to change the QEP for a query.
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Figure 20: High-level description of QEP of query 4

Figure 21: Query responds times in the merged
dataset

7.8 Test Conclusion
Even though Neo4J demonstrated an exceptional ability to
execute queries fast when the query has previously been exe-
cuted, it will not suffice in a real world scenario. PostgreSQL
demonstrates an ability to execute the queries faster than
Neo4J when the result is not cached and even though the
result is cached, the execution time is still good.

When enabling the cost model, we can see that in sev-
eral cases, we gain a speedup in terms of execution time
compared which closely resembles the cached results, even
though the query at the execution time is unknown and
therefore is not cached. This is achieved through the de-
composition of the queries as well as the use of measurement
queries. Each time a new query is received, then all of the
derived queries have already been executed on all databases
causing a warm up of all database caches, not necessarily of
the entire query but parts of it.

When queries are executed, they showed a similar pattern
across the different tests. They are consistently decomposed
when self joins are executed as the join operation is consis-
tently executed on Neo4J. Also conditions are consistently
executed on PostgreSQL and Bridge-DB only handles the
merging of the database results. This also has resulted in a
large amount of data traffic between the Bridge-DB server
and Neo4J server.

Iteration Action

1
start,
no database is loaded

50 PostgreSQL is under load
64 Optimizer only chooses Neo4J

100
Neo4J under load,
PostgreSQL not under load

114 Optimizer only chooses PostgreSQL

150
PostgreSQL under load,
Neo4J not under load

164 Optimizer only chooses Neo4J
200 Stop test

Table 10: Results from testing with changing con-
ditions for the database which exposes the dynamic
nature of the cost-model

When alternating load on the databases, we can see that
Bridge-DB is able to correctly switch between databases
and therefore is able to dynamically handle changes to the
database environment.

When testing whether it makes a difference for Bridge-DB to
execute the MQs multiple times in order to have the cached
response times used as measurements, we discovered that
Bridge-DB begins consistently using Neo4J to execute its
queries except in test 1 query 1. This is due to Neo4Js
aggressive caching methods, which causes the measurements
to be more related to that of a lookup in a small key-value
store then that of executing queries on a graph database.

The results retrieved by measuring the overhead of using
this cost model can to some extent be surprising. When ex-
ecuting the measurement queries, the amount of transferred
data exceeds the actual size of the databases by several times
their actual size. This does not immediately impact the ac-
tual performance of the system as most of this data transfer
is done during the bootstrapping of Bridge-DB and not dur-
ing actual use. Regarding the high overhead in terms of
response time, the same thing applies that most of this time
is spent when bootstrapping Bridge-DB.

An additional test has been executed to test the scalability
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Figure 22: High-level description of QEP of query 1

Figure 23: Data sizes for the graph dataset

Figure 24: Data sizes for the relational dataset

of the system by starving the databases of available mem-
ory. The test result from the old version of Bridge-DB [8]
demonstrated that Neo4J did not perform well if it was con-
strained by a low amount of available memory. But as this
result could not be replicated in this environment due to the
use of solid state drives, giving Neo4J access to a swap par-
tition capable of serving Neo4J fast enough. This test result
is not shown.

8. CONCLUSION
We have presented a method for implementing a distributed
database system, which is called Bridge-DB, between a client
and two heterogeneous databases, capable of decomposing
and executing queries on multiple databases with the pur-
pose of speeding up response times by allowing the databases
to work in unison.

Figure 25: Data sizes for the mixed dataset

To do this, we proposed an architecture consisting of a TCP-
socket based communication protocol, connected to an opti-
mizer component capable of estimating the most optimal di-
vision of queries based on the suggestions from a cost model.

The cost model implements concepts from both dynamic
cost models and black box cost models to both have initial
measurements to base decisions upon, but also continuous
measurement of query response times.

We also proposed a method to declare a global schema,
which can be imposed onto the connected databases to en-
sure schema consistency across all databases. The schema
is also used for query translation and validation.

Furthermore, we demonstrated a query language called BQL
with all CRUD operations implemented, and designed to be
translated into both Cypher and SQL.

Our results have shown that the use of a distributed
database system can be feasible and is able to improve the
response times of queries and achieve response times close
to those of cached responses.

One drawback with the current method is the high band-
width usage internally caused by Neo4J consistently han-
dling all join operations when a query is decomposed. This
caused a large result being returned to Bridge-DB for further
processing.
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9. FUTURE WORK
Referential integrity on Neo4J
In BSL we can set the referential integrity on a foreign-key,
but is not comparable with Neo4J referential integrity. This
needs to be handled by Bridge-DB, which currently only
supports a cascading referential integrity constraint. This
means when we want to delete or update a node then Bridge-
DB needs to find the connecting nodes, check whether the
action is legal, and whether some adjustment needs to be
made to the connecting nodes, and afterward performs the
necessary actions.

Additional Support for Expressing Patterns
During testing we found that it was hard to express all the
join patterns using our relational approach, when we want
to find the friends of a friend. Therefore it would be better
if BQL could be extended further, such that patterns could
be expressed more simply, where the schema then supplied
the additional information when translating the query to
Cypher or SQL.

Adding Sub-query Support in Cypher Translation
The Cypher translator can only translate some simple sub-
queries into Cypher and this is only traverse and reachable
queries. This should be extended such that sub-queries also
are possible in SQL-like queries. Currently the supported
sub-queries are only allowed to include a single table so this
should also be extended to include more complex queries.

Partial-Replication across the Databases
Currently Bridge-DB use full replication across the
databases such that all data are in both Neo4J and Post-
greSQL, but it would be an advantage if a partial replication
method was used instead. For example PostgreSQL is good
at store and retrieve data while Neo4J is good at relation-
ship and traversing through them. This would also result in
less data transferal between Bridge-DB’s server and Neo4J’s
server which was a problem with Bridge-DB’s cost model.

Consistency Control between Databases
As complexity is an disadvantage of using multiple databases
so is the lack of support for data consistency between the
databases. In Bridge-DB it is possible to extend the con-
cept to include some data consistency control between the
external database. This could be to insure Atomicity, Con-
sistency, Isolation and Durability (ACID) or Basically Avail-
able, Soft state, Eventually consistent (BASE) properties.

Better database selection by the cost model
During the testing phase, it was revealed that the cost model
would quickly create a bias towards either database in some
use cases. This is caused by relying too much on the ini-
tial MQ causing all subsequent queries to be executed on
the database which initially demonstrated the best response
times.

The cost model would only change database if the selected
database became slower than the initial executed MQ on an-
other database. By solving this problem, Bridge-DB would
be better suited to adapt to changing environments, whether
it is better performing hardware or a database performing
better over time through improved caching.

One solution to this problem could be to clear the database
of all measurements and re-execute all MQs. As the test
demonstrate, this would cause a high load on the system
but will reset all internal knowledge as well as bias towards
any one database in Bridge-DB. Alternatively, an MQ could
be executed on all databases at certain intervals of executed
subsequent queries to confirm the measurements which the
cost model base its decisions upon.
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APPENDIX
A. BRIDGE-DB PROTOCOL
The previous design used a REST API, but as this included
the entire overhead of the HTTP protocol, we chose to boil
the solution down to a basic TCP socket and implement our
own protocol for the communication between the client and
the Bridge-DB server which we named Bridge-DB Protocol
(BP). Interaction with Bridge-DB is designed to expose a
service on a given port using the TCP protocol. The first
advantage is the limited overhead of communicating in this
manner. The second advantage is, this design allows us to
have bi-directional communication between the client and
the Bridge-DB server. Bi-directional communication was an
issue in the first version of Bridge-DB as it often was a hin-
drance not knowing the current state of Bridge-DB during
an execution as well as debug information was delayed until
the completion of the query.

Each message sent between the client and Bridge-DB con-
tains the values seen in Table 11.

Name Type
Sequence Number integer

State integer
Message string

Table 11: Protocol values

Each message between the client and server is stamped with
a sequence number consisting of a separator between two
integers where the first integer indicates whether it is from
the client or the server the messages originates, 1 and 2
respectively. The second integer indicates which step in the
sequence have been reached. These sequences are used to
avoid erroneous replay of messages as well as keep track of
the current state of execution.

The value State indicates whether the execution moves for-
ward with the value 1. In case the execution is halted, State
will contain a negative value unique to the given step in the
sequence reflecting what type of error happened.

The value Message can contain any additional information
as well as contain the query sent from the client and the
query result returned from Bridge-DB.

When executing a query from the client, the communication
conforms to the sequence diagram depicted in Figure A. At
each point Bridge-DB sends a message to the client, it can
set the State value to a negative value indicating Bridge-
DB assessed that the query cannot be executed, causing the
execution to be halted. These assessments are based on the
step Bridge-DB have been through up to the message is sent
to the client.

The first rejection can happen in the Accept message which
can be rejected if Bridge-DB is out of resources or no
databases are available, each declared with a state indicat-
ing the issue. This allows the client application to either
reconnect later or just halt all execution.

The second rejection can happen in the Optimizer result
message indicating that the optimizer deemed the query in-
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valid based on the internally declared database schema.

The third rejection can happen in the Query executing mes-
sage indicating that the database is unable to process the
query. This can either be a badly implemented connector or
the connector rejected the query based on the database is
unable to handle the query.

The fourth and last rejection can happen in the Query result
message indicating the result is invalid. An example of an
invalid result can be the database crashed during execution.

Client Bridge-DB Database

Connect, seq 1.1

Accept, seq 2.1

Send query, seq 1.2

Optimizer result, seq 2.2

Run query

Query executing, seq 2.3

Query result

Query result, seq 2.4

B. TRANSLATING QUERY OBJECT INTO
SQL

The translation of a BQL query to SQL is simple, since BQL
is highly inspired by SQL and it has a one-to-one correspon-
dence. In this section there will be references to functions
of a query objects, which can be found in Figure 26.

B.1 Create Query
An insert SQL query has typically the skeleton in Definition
7 where the name surrounded by need to inserted. The
table,columns and values can be easily found by using the
functions getTable,getAllColumns and getAllValues that the
insert query object offers. No or little processing or refor-
matting of data is necessary since the queries is much alike.

Definition 7. INSERT INTO table ({columns}) VAL-
UES ({values})

B.2 Read
The main clauses in a SQL read query is in Definition 8 and
these clauses is fully supported in the SQL translation mod-
ule. The insertion of the values for selectItems, fromItems
and conditions can be extracted from the functions getAllS-
electItems,getAllFromItems and getAllConditions. The val-
ues for fromItems and conditions need some processing of
the data since sub-queries can occur in the FROM and
WHERE clause. However, the handling of the sub-queries
is just like the handling of a read query, so it can be re-
cursively translated and inserted in parenthesis in its parent
query and the same is done to parenthesis sub-queries.

Definition 8. SELECT {selectItems} FROM
{fromItems} WHERE {conditions}

B.3 Update
In Definition 9 is building block of a update query. The con-
ditions of the WHERE clause extracted and handled as in
the read query. The data for table and keyValue can be ac-
cessed thought the functions getTable and getAllUpdatePair.
No or little processing of data from the two functions are
needed.

Definition 9. UPDATE {table} SET {keyValue}
WHERE {conditions}

B.4 Delete Query
Definition 10 contains an SQL delete query where the table
and conditions need to be inserted. Again the conditions are
handled as in the read query and the table as in the update
query.

Definition 10. DELETE {table} WHERE {conditions}

C. QUERYBUILDER
In this section explains all construct of how a BQL query is
build using the QueryBuilder.

C.1 Create Operation
To make insertion possible in BQL two functions have been
added which can be found in Table 12. insert needs a string
as input containing the table name and it should only be
called once otherwise it would just override the table name.
However, to complete the insert query the values function
should be called at least once to add data to the query, but
the functions take different inputs.

Name Input Return Value

insert @param: String
@return Self
| Bool

values

@param: String
| Array
@param: Mixed
| Array
| QueryObject

@return Self
| Bool

Table 12: Functions to make a create query

In Listing 23 are some examples of how to use the insert and
values functions. If the input of values are strings as in line
1-2 then it is possible to call values again with string as in-
put, but any other inputs would the second time be ignored
and return false. In line 3-4 values uses array as input and
in line 5-7 an array and a QueryObject is the input such that
it is possible to support sub queries. The QueryObject can
be generated via the function getReadQueryAsObject in the
QueryBuilder and this is how subqueries is generally made
in BQL.

1 //use values as key -value input
2 $queryBuilder ->insert(’user’)->values(’

firstname ’,’Mickey ’)->values(’lastname ’,’
Mouse’);
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Figure 26: Class diagram of the InsertQuery, ReadQuery, UpdateQuery and DeleteQuery
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3 //use addInsertValues as key -value input in
an array

4 $queryBuilder ->insert(’user’)->values(array(’
firstname ’,’lastname ’),array(’Mickey ’,’
Mouse ’));

5 //use values with a sub query
6 $queryBuilder2 ->select(’firstname ’)->select(’

lastname ’)->from(’olduser ’);
7 $queryBuilder ->insert(’user’)->values(array(’

firstname ’,’lastname ’),$queryBuilder2 ->
getReadQueryAsObject ());

Listing 23: BQL Create Operation

C.2 Read
To make a read query there are many functions that can
be used, see Table 13. Each of function can be called sev-
eral times and it will append the additional parameters to
the parameters extracted from the previous function call.
Sub-queries can be included in the query either in the from
function and different types of where-functions by using a
QueryObject as input similar to the third example in List-
ing 23.

Name Input Return Value

select @param: String
@return Self
| Bool

from
@param: String
| QueryObject
@param: String

@return Self
| Bool

where

@param: String
| QueryObject
@param: String
@param: Mixed

@return Self
| Bool

orWhere

@param: String
| QueryObject
@param: String
@param: Mixed

@return Self
| Bool

whereIn

@param: String
@param: Array
| QueryObject
@param: Bool

@return Self
| Bool

orWhereIn

@param: String
@param: Array
| QueryObject
@param: Bool

@return Self
| Bool

whereLike
@param: String
@param: String
@param: Bool

@return Self
| Bool

orWhereLike
@param: String
@param: String
@param: Bool

@return Self
| Bool

whereExist
@param: QueryObject
@param: Bool

@return Self
| Bool

orWhereExist
@param: QueryObject
@param: Bool

@return Self
| Bool

reachability
@param: QueryObject
@param: QueryObject

@return Self
| Bool

traversal
@param: QueryObject
@param: QueryObject

@return Self
| Bool

Table 13: Functions to make a read query

There are different types of where-functions that are able to
create a condition for the query. First it can create the gen-
eral condition which include a name, comparison operator
and a value, see line 2 in Listing 24. Secondly the condition
can also include a sub query instead of the value see line 4-
5. In line 6-12 the functions creates a condition containing
one of the logical operators IN, LIKE, and EXISTS or one
of there negations which is indicated by the boolean input
parameter. Lastly a condition requiring parentheses as the
SQL query in Listing 25 can also be expressed with a sub
query as can be found in Listing 24 in line 13-15.

1 // general condition
2 $queryBuilder ->select(’*’)->from(’person ’)->

where(’firstname ’,’=’,’Mickey ’);
3
4 // condition with sub query
5 $queryBuilder2 ->select(’username ’)->from(’

user’)->where(’id’,’=’ ,3);
6 $queryBuilder ->select(’*’)->from(’person ’)->

where(’firstname ’,’=’,$queryBuilder2 ->
getReadQueryAsObject ());

7
8 // condition with IN
9 $queryBuilder ->select(’*’)->from(’person ’)->

whereIn(’firstname ’, [’Mickey ’,’Donald ’])
;

10 // condition with LIKE
11 $queryBuilder ->select(’*’)->from(’person ’)->

whereLike(’firstname ’, ’Mick%’);
12
13 // condition with EXISTS
14 $queryBuilder2 ->select(’name’)->from(’user’)

->where(’user.username ’, ’=’, ’person.
firstname ’);

15 $queryBuilder ->select(’*’)->from(’person ’)->
whereExist($queryBuilder2 ->
getReadQueryAsObject (), true);

16
17 // condition with parentheses
18 $queryBuilder2 ->where(’firstname ’,’=’,’Mickey

’)->orWhere(’firstname ’,’=’,’Minnie);
19 $queryBuilder ->select(’*’)->from(’person ’)->

where(’lastname ’,’=’,’Mouse ’)->where(
$queryBuilder2 ->getReadQueryAsObject ());

Listing 24: BQL Read Operation

1 SELECT *
2 FROM person
3 WHERE lastname = ’Mouse’ AND (firstname=’

Mickey ’ OR firstname=’Minnie ’)

Listing 25: The parentheses sub query

The difference between the functions where and orWhere is
just the logical operator used, when there are more than
one call to the function. The second time a where function
is used and the function called is where then the binary
operator is AND. If the second call is to orWhere then it
uses the operator OR and this also applies to the other types
of where-functions.

C.3 Update
The update query is similar to the insert query, but simpler,
because the values function only accepts a string as input,
see table 14. To make an update query the functions up-
date, values need to be used, whereas the where-functions
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from Table 13 can be used. In Listing 26 is an example
of updating an element in the database where the name is
changed. As can be seen in the example values can be called
multiple time to add to the query, but update should only
be called once or it would override the table to be updated.

Name Input Return Value

update @param: String
@return Self
| Bool

values
@param: String
@param: Mixed

@return Self
| Bool

Table 14: Functions to make a update query

1 $queryBuilder ->update(’person ’)->values(’
firstname ’,’Mickey ’)->values(’lastname ’,’
Mouse ’)->where(’firstname ’,’=’,’Michey ’);

Listing 26: BQL Update Operation

C.4 Delete
The delete query is also very simple. It has a function delete
and then it also used the different types of where-functions
as in Table 13. The delete function can be found in Table
15 and an example of deleting an element from the database
can be found in Listing 27.

Name Input Return Value

delete @param: String
@return Self
| Bool

Table 15: Functions to make a delete query

1 $queryBuilder ->delete(’person ’)->where(’
firstname ’, ’=’, ’Mickey ’)->where(’
lastname ’,’=’,’Mouse’);

Listing 27: BQL Delete Operation

D. MAKING THE MATCH CLAUSE
Making the MATCH clause is done in two stages, first the
patterns from where is made into MATCH patterns. The
second stage is to get the aliases of all tables that are not
represented in a pattern and then add them to the MATCH
clause.

Generally a pattern in MATCH can include several nodes
and edge in a chain. However, when translating a pattern
acquired from the where clause to a MATCH pattern, it
will only contain three graph elements one edge and its two
connecting nodes. So instead of a chained pattern it will
result in subset of this chain, where a node can be present
in more than one pattern, such that the chain is indirectly
represented. In Listing 28 is an example of a query in BQL
and how the MATCH clause can be translated into a chain or
an indirectly representation of the chain. Since the returned
element is not a path but specific graph elements then the
pattern matching technique does not make any difference on
the result, but it might in execution time depending on the
optimizer in Neo4J.

1 queryBuilder ->select(’*’)->from(’user’,’u’)->
from(’person ’,’p1’)->from(’friends ’,’f’)
->from(’person ’,’p2’)->where(’p1.id’,’=’,
’u.person_id1 ’)->where(’p1.id’,’=’,’f.
person_id1 ’)->where(’p2.id’,’=’,’f.
person_id2 ’)->where(’u.username ’,’=’,’
Mickey ’);

2
3 MATCH (u:user)-[r1:person_id]->(p1:person)-[f

:friends]->(p2:person) RETURN u,p1,g,p2
4 MATCH (u:user)-[r1:person_id]->(p1:person),(

p1:person)-[f:friends]->(p2:person)
RETURN u,p1,g,p2

Listing 28: Equivalent match pattern

The patterns acquired from the where clause most be pro-
cessed before it can be made into a MATCH pattern. Figure
27 shows how a pattern is asserted. A BQL example on a
pattern is in the where clause in Listing 28. If an edge’s alias
is in the pattern then only the half of the MATCH pattern
is represented. Two lists are needed to keep the complete
patterns and the half finished patterns separated, which is
called matchList and halfList in the Figure. If halfList con-
tains the other half of a pattern then the two patterns can
be combined and added to the matchList. If not then the
pattern is added to halfList. However, if the pattern does
not contain an edge then the complete pattern can be made
and added to the matchList.

Figure 27: Make the patterns of the where clause
into MATCH patterns

After all patterns have processed it is possible that there are
still patterns in halfList which mean that one of the nodes
in an edge is unknown which is represented with () and then
the pattern can be added to the matchList. Finally each
element in matchList can be added to the MATCH clause.

E. PLAN ENUMERATOR IMPLEMENTA-
TION

In this section is the implementation details of the plan enu-
merator.
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1 private function _split_read (\ QueryObjects\
ReadQuery $query) {

2 $retr_query = array();
3
4 $tmp_q = new \QueryBuilder\QueryBuilder ();
5 $fromItems = $query ->getAllFromItems ();
6 $whereItems = $query ->getAllConditions ();
7 $selectItems = $query ->getAllSelectItems ();
8
9 foreach($selectItems as $selectItem) {

10 $tmp_q ->select($selectItem);
11 }
12
13 if(count($fromItems) > 1) {
14 // Join operation
15 for($x = 0; $x < count($fromItems); $x++) {
16 $tmpObj = clone $tmp_q;
17 $tmpObj ->from($fromItems[$x][0]);
18 foreach($whereItems as $whereItem) {
19 if(preg_match("/\./", $whereItem[’subject

’]) && preg_match("/\./", $whereItem[
’object ’])) {

20 } else {
21 $tmpObj ->where($whereItem[’subject ’],

$whereItem[’operator ’], $whereItem[’
object ’]);

22 }
23 }
24 $queries [] = $tmpObj;
25 }
26 } elseif(count($whereItems) > 1 && count(

$fromItems) == 1) {
27 // No join operation
28 foreach($whereItems as $whereItem) {
29 if(preg_match("/\./", $whereItem[’subject ’

]) && preg_match("/\./", $whereItem[’
object ’])) {

30 } else {
31 $obj = clone $tmp_q;
32 $from = $fromItems[’0’][’0’];
33 $queries [] = $obj ->from($from)->where(

$whereItem[’subject ’], $whereItem[’
operator ’], $whereItem[’object ’]);

34 }
35 }
36 } elseif(count($whereItems) == 1 && count(

$fromItems) == 1) {
37 // Simple query
38 $obj = clone $tmp_q;
39 $from = $fromItems[’0’][’0’];
40 $queries [] = $obj ->from($from);
41 }
42
43 if(count($whereItems) == 0 && count(

$fromItems) == 1) {
44 return $query;
45 } else {
46 $retr_queries [] = $query;
47 foreach($queries as $query) {
48 $jsonQuery = new \QueryObjects\query(

$query ->getJsonQuery ());
49 $retr_queries [] = $this ->_split_read(

$jsonQuery ->getQuery ());
50 }
51 return $retr_queries;
52 }
53 }

Listing 29: Query split implementation

F. TEST QUERIES

This section presents all test queries as it was written via
the QueryBuilder in BQL.

Graph Dataset
In the following listings are each query for the graph dataset
presented as it was written via the Querybuilder.

1 $qb ->select("*")->from("people")
2 ->where(’name’,’=’,’AISHA NEUENDORF ’)
3 ->send();

Listing 30: Query 1: Find a person with a given
name

1 $qb ->select(’people .*’)
2 ->from(’people ’)
3 ->from(’likes’)
4 ->from(’webpages ’)
5 ->where(’likes.id_webpage ’,’=’,’webpages.

wp_id’)
6 ->where(’likes.id_person ’,’=’,’people.p_id’)
7 ->where(’webpages.wp_id’,’=’ ,130018)
8 ->send();

Listing 31: Query 2: Find all people who likes a
given webpage

1 $qb ->select(’webpages .*’)
2 ->from(’people ’)
3 ->from(’likes’)
4 ->from(’webpages ’)
5 ->where(’likes.id_webpage ’,’=’,’webpages.

wp_id’)
6 ->where(’likes.id_person ’,’=’,’people.p_id’)
7 ->where(’people.p_id’,’=’ ,18)
8 ->send();

Listing 32: Query 3: Find all webpages a person
likes

1 $qb ->select(’people.name’)->from(’people ’)
2 ->where(’people.p_id’,’=’ ,18)
3 ->send();

Listing 33: Query 4: Find a person name from
person id

1 $qb2 ->select(’*’)->from(’people ’,’p1’)->where
(’p1.p_id’,’=’ ,18);

2 $qb3 ->select(’*’)->from(’people ’,’p2’)->where
(’p2.p_id’,’=’ ,19);

3 $qb1 ->reachable($qb2 ->getReadQueryAsObject (),
$qb3 ->getReadQueryAsObject ())

4 ->send();

Listing 34: Query 5: Check if there is a path
between person 1 and person 2

1 $qb2 ->select(’*’)->from(’people ’,’p1’)->where
(’p1.p_id’,’=’ ,18);

2 $qb3 ->select(’*’)->from(’people ’,’p2’)->where
(’p2.p_id’,’=’ ,19);

3 $qb1 ->traverse($qb2 ->getReadQueryAsObject (),
$qb3 ->getReadQueryAsObject ())

4 ->send();
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Listing 35: Query 6: Find a path between person 1
and person 2

1 $qb ->select(’p3.*’)
2 ->from(’people ’,’p1’)
3 ->from(’friends ’,’f1’)
4 ->from(’people ’,’p2’)
5 ->from(’friends ’,’f2’)
6 ->from(’people ’,’p3’)
7 ->where(’p1.p_id’,’=’,’f1.id_person1 ’)
8 ->where(’p2.p_id’,’=’,’f2.id_person1 ’)
9 ->where(’f1.id_person2 ’,’=’,’p3.p_id’)

10 ->where(’f2.id_person2 ’,’=’,’p3.p_id’)
11 ->where(’p1.p_id’,’=’, 18)
12 ->where(’p3.p_id’,’=’, 19)
13 ->send();

Listing 36: Query 7: Find a common friend between
two people

1 $qb ->select(’w.*’)
2 ->from(’people ’,’p1’)
3 ->from(’likes’,’l1’)
4 ->from(’people ’,’p2’)
5 ->from(’likes’,’l2’)
6 ->from(’webpages ’,’w’)
7 ->where(’p1.p_id’,’=’,’l1.id_person ’)
8 ->where(’p2.p_id’,’=’,’l2.id_person ’)
9 ->where(’l1.id_webpage ’,’=’,’w.wp_id’)

10 ->where(’l2.id_webpage ’,’=’,’w.wp_id’)
11 ->where(’p1.p_id’,’=’, 18)
12 ->where(’p2.p_id’,’=’, 19)
13 ->send();

Listing 37: Query 8: Find all webpages two people
both like

1 $qb ->select(’p3.*’)
2 ->from(’people ’,’p1’)
3 ->from(’friends ’,’f1’)
4 ->from(’people ’,’p2’)
5 ->from(’friends ’,’f2’)
6 ->from(’people ’,’p3’)
7 ->where(’p1.p_id’,’=’,’f1.id_person1 ’)
8 ->where(’p2.p_id’,’=’,’f1.id_person2 ’)
9 ->where(’f2.id_person1 ’,’=’,’p2.p_id’)

10 ->where(’f2.id_person2 ’,’=’,’p3.p_id’)
11 ->where(’p1.p_id’,’=’, 18)
12 ->send();

Listing 38: Query 9: Find all friends of friends of a
person

1 $qb ->select(’w.*’)
2 ->from(’people ’,’p1’)
3 ->from(’friends ’,’f1’)
4 ->from(’people ’,’p2’)
5 ->from(’friends ’,’f2’)
6 ->from(’likes’,’l’)
7 ->from(’webpages ’,’w’)
8 ->where(’p1.p_id’,’=’,’f1.id_person1 ’)
9 ->where(’p2.p_id’,’=’,’f1.id_person2 ’)

10 ->where(’p2.p_id’,’=’,’f2.id_person1 ’)
11 ->where(’p2.p_id’,’=’,’f2.id_person2 ’)
12 ->where(’p2.p_id’,’=’,’l.id_person ’)
13 ->where(’l.id_webpage ’,’=’,’w.wp_id’)
14 ->where(’p1.p_id’,’=’, 18)

15 ->send();

Listing 39: Query 10: Find all webpages liked by
friends of friends

1 $qb ->select(’p2.*’)
2 ->from(’people ’,’p1’)
3 ->from(’likes’,’l1’)
4 ->from(’webpages ’,’w’)
5 ->from(’likes’,’l2’)
6 ->from(’people ’,’p2’)
7 ->where(’p1.p_id’,’=’,’l1.id_person ’)
8 ->where(’l1.id_webpage ’,’=’,’w.wp_id’)
9 ->where(’l2.id_webpage ’,’=’,’w.wp_id’)

10 ->where(’p2.p_id’,’=’,’l2.id_person ’)
11 ->where(’p1.p_id’,’=’, 18)
12 ->send();

Listing 40: Query 11: Find all people who likes a
webpage which person with id 18 likes

Relational Dataset
In the following listings are each query for the relational
dataset presented as it was written via the Querybuilder.

1 $qb ->select(’*’)
2 ->from(’customer ’)
3 ->where(’id’,’=’,’90032’)
4 ->send();

Listing 41: Query 1: Find a customer with id 90032

1 $qb ->select(’customer .*’)
2 ->from(’district ’)
3 ->from(’customer ’)
4 ->where(’district.id’,’=’,’customer.

district_id ’)
5 ->where(’district.id’,’=’,’3’)
6 ->send();

Listing 42: Query 2: Find all customers in district 3

1 $qb ->select(’*’)
2 ->from(’customer ’)
3 ->from(’orders ’)
4 ->from(’order_line ’)
5 ->from(’stock’)
6 ->from(’item’)
7 ->where(’customer.id’,’=’,’90032’)
8 ->where(’customer.id’,’=’,’orders.customer_id

’)
9 ->where(’orders.id’,’=’,’order_line.order_id ’

)
10 ->where(’order_line.stock_id ’,’=’,’stock.id’)
11 ->where(’stock.s_i_id ’,’=’,’item.i_id’)
12 ->send();

Listing 43: Query 3: Find all items a customer have
bought

1 $qb ->select(’i1.*’)
2 ->from(’customer ’,’c1’)
3 ->from(’customer ’,’c2’)
4 ->from(’orders ’,’o1’)
5 ->from(’orders ’,’o2’)
6 ->from(’order_line ’,’ol1’)
7 ->from(’order_line ’,’ol2’)
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8 ->from(’stock’,’s1’)
9 ->from(’stock’,’s2’)

10 ->from(’item’,’i1’)
11 ->from(’item’,’i2’)
12 ->where(’c1.id’,’=’,’90032’)
13 ->where(’c2.id’,’=’,’90073’)
14 ->where(’c1.id’,’=’,’o1.customer_id ’)
15 ->where(’o1.id’,’=’,’ol1.order_id ’)
16 ->where(’ol1.stock_id ’,’=’,’s1.id’)
17 ->where(’s1.s_i_id ’,’=’,’i1.i_id’)
18 ->where(’c2.id’,’=’,’o2.customer_id ’)
19 ->where(’o2.id’,’=’,’ol2.order_id ’)
20 ->where(’ol2.stock_id ’,’=’,’s2.id’)
21 ->where(’s1.s_i_id ’,’=’,’i2.i_id’)
22 ->where(’i1.i_id’,’=’,’i2.i_id’)
23 ->send();

Listing 44: Query 4: Find all overlapping items two
customers have bought

1 $qb ->select(’customer .*’)
2 ->from(’warehouse ’)
3 ->from(’stock’)
4 ->from(’order_line ’)
5 ->from(’orders ’)
6 ->from(’customer ’)
7 ->where(’warehouse.w_id’,’=’,’3’)
8 ->where(’warehouse.w_id’,’=’,’stock.s_w_id ’)
9 ->where(’stock.id’,’=’,’order_line.stock_id ’)

10 ->where(’order_line.order_id ’,’=’,’orders.id’
)

11 ->where(’orders.customer_id ’, ’=’, ’customer.
id’)

12 ->send();

Listing 45: Query 5: List all customers who have
bought something in a warehouse 3

1 $qb ->select(’item.*’)
2 ->from(’warehouse ’)
3 ->from(’stock’)
4 ->from(’item’)
5 ->where(’warehouse.w_id’,’=’,’3’)
6 ->where(’warehouse.w_id’,’=’,’stock.s_w_id ’)
7 ->where(’stock.s_i_id ’,’=’,’item.i_id’)
8 ->send();

Listing 46: Query 6: List all items available at
warehouse 3

Merged Dataset
In the following listings are each query for the merged
dataset presented as it was written via the Querybuilder.

1 $qb ->select(’i1.*’)
2 ->from(’customer ’,’c1’)
3 ->from(’friends ’,’f1’)
4 ->from(’friends ’,’f2’)
5 ->from(’customer ’,’c2’)
6 ->from(’orders ’,’o1’)
7 ->from(’orders ’,’o2’)
8 ->from(’order_line ’,’ol1’)
9 ->from(’order_line ’,’ol2’)

10 ->from(’stock’,’s1’)
11 ->from(’stock’,’s2’)
12 ->from(’item’,’i1’)
13 ->from(’item’,’i2’)
14 ->where(’c1.id’,’=’,’90032’)
15 ->where(’c1.id’,’=’,’f1.id_customer1 ’)

16 ->where(’f1.id_customer2 ’,’=’,’f2.
id_customer1 ’)

17 ->where(’f2.id_customer2 ’,’=’,’c2.id’)
18 ->where(’c1.id’,’=’,’o1.customer_id ’)
19 ->where(’o1.id’,’=’,’ol1.order_id ’)
20 ->where(’ol1.stock_id ’,’=’,’s1.id’)
21 ->where(’s1.s_i_id ’,’=’,’i1.i_id’)
22 ->where(’c2.id’,’=’,’o2.customer_id ’)
23 ->where(’o2.id’,’=’,’ol2.order_id ’)
24 ->where(’ol2.stock_id ’,’=’,’s2.id’)
25 ->where(’s1.s_i_id ’,’=’,’i2.i_id’)
26 ->where(’i1.i_id’,’=’,’i2.i_id’)
27 ->where(’i1.i_id’,’=’,’4239’)
28 ->send();

Listing 47: Query 1: Find all friends of friends who
have bought the same product

1 $qb ->select(’c2.*’)
2 ->from(’customer ’,’c1’)
3 ->from(’customer ’,’c2’)
4 ->from(’friends ’)
5 ->where(’c1.id’,’=’,’90032’)
6 ->where(’c1.district_id ’,’=’,’c2.district_id ’

)
7 ->where(’c1.id’,’=’,’friends.id_customer1 ’)
8 ->where(’friends.id_customer2 ’,’=’,’c2.id’)
9 ->send();

Listing 48: Query 2:Find all friends of a customer in
the same district

1 $qb ->select(’c2.*’)
2 ->from(’customer ’,’c1’)
3 ->from(’customer ’,’c2’)
4 ->from(’friends ’)
5 ->from(’likes’)
6 ->from(’item’)
7 ->where(’c1.id’,’=’,’90032’)
8 ->where(’item.i_id’,’=’,’5163’)
9 ->where(’c1.id’,’=’,’friends.id_customer1 ’)

10 ->where(’friends.id_customer2 ’,’=’,’c2.id’)
11 ->where(’c2.id’,’=’,’likes.id_customer ’)
12 ->where(’likes.id_item ’,’=’,’item.i_id’)
13 ->send();

Listing 49: Query 3: Find all friends who have liked
a given item

1 $qb ->select(’c2.*’)
2 ->from(’customer ’,’c1’)
3 ->from(’customer ’,’c2’)
4 ->from(’friends ’)
5 ->from(’likes’)
6 ->from(’orders ’)
7 ->from(’order_line ’)
8 ->from(’stock’)
9 ->from(’item’,’i1’)

10 ->from(’item’,’i2’)
11 ->where(’c1.id’,’=’,’90032’)
12 ->where(’i1.i_id’,’=’,’5163’)
13 ->where(’c1.id’,’=’,’friends.id_customer1 ’)
14 ->where(’friends.id_customer2 ’,’=’,’c2.id’)
15 ->where(’c2.id’,’=’,’likes.id_customer ’)
16 ->where(’likes.id_item ’,’=’,’i1.i_id’)
17 ->where(’c2.id’,’=’,’orders.customer_id ’)
18 ->where(’orders.id’,’=’,’order_line.order_id ’

)
19 ->where(’order_line.stock_id ’,’=’,’stock.id’)
20 ->where(’stock.s_i_id ’,’=’,’i2.i_id’)
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21 ->where(’i1.i_id’,’=’,’i2.i_id’)
22 ->send();

Listing 50: Query 4: Find all friends who have both
liked and bought an item

1 $qb ->select(’i1.*’)
2 ->from(’customer ’)
3 ->from(’likes’)
4 ->from(’orders ’)
5 ->from(’order_line ’)
6 ->from(’stock’)
7 ->from(’item’,’i1’)
8 ->from(’item’,’i2’)
9 ->where(’customer.id’,’=’,’90032’)

10 ->where(’i1.i_id’,’=’,’5163’)
11 ->where(’customer.id’,’=’,’likes.id_customer ’

)
12 ->where(’likes.id_item ’,’=’,’i1.i_id’)
13 ->where(’customer.id’,’=’,’orders.customer_id

’)
14 ->where(’orders.id’,’=’,’order_line.order_id ’

)
15 ->where(’order_line.stock_id ’,’=’,’stock.id’)
16 ->where(’stock.s_i_id ’,’=’,’i2.i_id’)
17 ->where(’i1.i_id’,’=’,’i2.i_id’)
18 ->send();

Listing 51: Query 5: Find all items a customer have
both liked and bought

G. RAW TEST RESULTS
The raw data which the responds time diagrams are based
upon, can be found in Tables 16, 17 and 18. The raw data
for the data traffic diagrams can be found in Tables 19, 20
and 21.

H. QUERY EXECUTION PLANS FOR DE-
COMPOSED QUERIES

In Figure 28 and 29 are the QEP for query 9 and 10 in
the graph dataset. Figure 30, 31 and 32 show the QEP for
Query 4 and 5 in the merged dataset. As can be seen all
illustrate the same pattern as described in the test results.

Figure 28: High-level description of QEP of query 9

I. ACRONYMS
MQ Measurement Query

Figure 29: High-level description of QEP of query
10

BQL Bridge-DB Query Language

QEP Query Execution Plan

EBNF Extended Backus-Naur Form

DBMS Database Management System

MDBMS Multi Database Management System

NoSQL Not only SQL

CRUD Create, Read, Update and Delete

BSL Bridge-DB Schema Language

ORM Object/Relational Mapping

ACID Atomicity, Consistency, Isolation and Durability

BASE Basically Available, Soft state, Eventually
consistent

CV Credibility Value
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Query
Neo4J
cached

Neo4J
non-cached

PostgreSQL
cached

PostgreSQL
non-cached

Optimizer
single MQ

Optimizer
multiple MQ

1 189 2899 41 86 48 45
2 11 1707 283 282 244 12
3 17 1694 241 319 331 16
4 12 1437 12 28 21 14
5 11 1945 - - 21 12
6 12 1570 - - 20 14
7 31 1903 446 588 71 34
8 38 1769 443 592 455 36
9 223 3145 541 903 765 232
10 32 2142 503 702 268 36
11 214 2419 1014 1324 1039 221

Table 16: Responds time in ms for the social graph dataset

Query
Neo4J
cached

Neo4J non-cached
PostgreSQL
cached

PostgreSQL
non-cached

Optimizer
single MQ

Optimizer multiple MQ

1 11 1403 12 32 19 16
2 6995 12408 8392 8387 8402 7026
3 51 1762 506 823 531 54
4 14 1633 1134 1831 436 18
5 18 1632 22597 22657 22651 22
6 1289 1567 1318 1682 1364 1342

Table 17: Responds time in ms for the relational dataset

Query
Neo4J
cached

Neo4J non-cached
PostgreSQL
cached

PostgreSQL
non-cached

Optimizer
single MQ

Optimizer
multiple MQ

1 19 1654 247 324 263 24
2 29 1557 213 287 244 36
3 26 1685 212 290 144 34
4 15 1908 701 1150 346 25
5 32 1668 474 681 289 41

Table 18: Responds time in ms for the merged dataset

Figure 30: High-level description of QEP of query 3
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Figure 31: High-level description of QEP of query 4

Figure 32: High-level description of QEP of query 5

Query
From
Bridge-DB

From
Neo4J

From
PostgreSQL

1 1.2
2 542.2
3 831.5
4 0.9
5 0.1
6 506
7 787.1 4429 1.4
8 271.14
9 441.9 14253 1.2
10 926.2 29624 1.3
11 624.1

Table 19: Data traffic in kB for the social graph
dataset

Query
From
Bridge-DB

From
Neo4J

From
PostgreSQL

1 1.3
2 496127
3 1897
4 9 340148 3.2
5 1355
6 11997

Table 20: Data traffic in kB for the relational dataset

Query
From
Bridge-DB

From
Neo4J

From
PostgreSQL

1 1354 20530 2.4
2 1896.7
3 1896.7 11922 2.1
4 836.2 27638 2.3
5 2348.3 23654.8 2.2

Table 21: Data traffic in kB for the merged dataset
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