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Abstract:
Dynamic behaviour of railway bridges became a topic of
great importance due to development of high-speed rail-
ways in various countries. With increasing speeds the dy-
namic loads increase drastically and become harder to pre-
dict, thus more complex computational models are needed
to proper evaluate the behaviour of the structure. Firstly,
a simply supported beam subjected to a moving constant
force is analysed, using analytical and finite element meth-
ods. Later a vehicle is implemented in the model in dif-
ferent ways: as a moving mass, single-degree-of-freedom
system and multi-degree-of-freedom system. Next step is
taken by introducing three-dimensional model, created us-
ing three-dimensional beam elements. The most advanced
computational model, which includes the subsoil and a ve-
hicle models, is described in the paper “Numerical mod-
elling of dynamic response of high-speed railway bridges
considering vehicle–structure and structure–soil–structure
interaction”. The tests performed to validate the computa-
tional models on a small-scale experimental model are pre-
sented in the paper “Experimental validation of a numeri-
cal model for three-dimensional railway bridge analysis by
comparison with a small–scale model”. The experimental
tests show that a proper modelling of the vehicle–track sys-
tem and implementation of subsoil are crucial for analysis
of the structural dynamic behaviour. The proposed compu-
tational model, offers a simplified solution for preliminary
calculations, but accounts for the most significant contribu-
tions to vibrations and deformations of the bridge–subsoil
system.





Prologue

This document includes master thesis, titled “Dynamic analysis of a bridge structure exposed
to high-speed railway traffic” written by Paulius Bucinskas, Liuba Agapii and Jonas Sneideris.
The complete work is split into three parts. First of all, the knowledge base and the theory be-
hind are presented in the report “Dynamic analysis of a bridge structure exposed to high-speed
railway traffic”. The most advanced computational model, created to investigate dynamic be-
haviour of the structure including the subsoil and the vehicle, is described in the paper “Numeri-
cal modelling of dynamic response of high-speed railway bridges considering vehicle–structure
and structure–soil–structure interaction” presented in the Appendix A. To validate the compu-
tational model, experimental tests on a small–scale model are performed and presented in the
paper “Experimental validation of a numerical model for three-dimensional railway bridge anal-
ysis by comparison with a small–scale model” given in Appendix B. Additionally, Appendix C,
“Numerical code”, describing the code used for the computational model, and Appendix D,
“Experimental testing of a small–scale bridge model”, where more detailed explanation of the
testing procedure and the construction solutions of the model are presented, are given.

The authors would like to show gratitude to Lars Vabbersgaard Andersen for guidance and
assistance during the course of the project.
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Summary

In this document dynamic response of a multi-span railway bridge exposed to a high-speed
railway traffic is investigated.

Firstly, the most simple case of a simply supported two-dimensional beam traversed by a con-
stant force is analysed. This is modelled by using both an analytical approach and the finite
element method. The basic model provides a steppingstone for further more advanced models
involving different phenomena. The finite element method is used for all further calculations
of the structure. Further, a vehicle is implemented in a number of different ways: as a moving
mass, as a single-degree-of-freedom system and as a multi-degree-of-freedom system. Each of
these different models predicts the effects from the moving vehicle with different precision. Fi-
nally, a multi-degree-of-freedom vehicle is chosen for further analysis, based on the comparison
of the results.

The next step is modelling the system in three-dimensions. For it, two-noded beam elements
with six degrees-of-freedom at each node, are introduced and described, as well as the trans-
formation between local and global coordinate systems. These simple three-dimensional mod-
els are then improved by introducing multi-layered deck structure, vehicle and underlying soil
body. To properly evaluate the effects from the vehicle caused by vertical track irregularities,
a non-linear wheel–rail interaction force is introduced. The soil body is modelled utilizing a
semi-analytical approach, based on Green’s function solution in frequency wave-number do-
main. The obtained soil impedance matrix is then added to the structure at connecting nodes.
Since non-linear vehicle solution is obtained in time domain and bridge–soil structure is solved
in frequency domain, an iteration procedure is introduced to solve both parts simultaneously.
The presented results show the effects, from different soil parameters and different vehicle mod-
elling approaches, on the dynamic structure behaviour.

Further, the developed computational model is validated using small–scale experimental tests.
Experimental multi-span bridge model, with surface footings is constructed. The underlying
soil is substituted by layers of mattress foam. Bridge structure is excited by a travelling electric
vehicle, with four wheel sets, on a plastic railway track. A number of accelerometers are placed
in strategic positions, to analyse the structure response. Frequency response functions of the
small–scale structure are compared to those from the computational model, as well as accelera-
tions in frequency domain. The obtained results show a reasonable agreement between the two
models.
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Chapter 1

Introduction

The interest in dynamic behaviour of railway bridges has increased in recent years due to de-
velopment of high-speed railways in various countries. An example of this is the long-term
plan for transportation in Denmark, part of which is the so-called “1 Hour Model”. The aim
is to decrease the travel time between the four major cities of Denmark to one hour, thereby
decreasing the total travel time between Copenhagen and Aalborg from approximately four and
a half hours to three hours. The new high-speed line, which will be able to handle train traffic
speeds up to 250km/h, between Copenhagen and Ringsted is already under construction and is
expected to open in 2018. After realization of Copenhagen–Odense–Aarhus–Aalborg connec-
tions, further expand of the high-speed railway network to Esbjerg is considered. The concept
plan for the 1 Hour Model is illustrated in Figure 1.1.

Figure 1.1: Concept 1 Hour Model plan of high-speed railway connections between
the major cities in Denmark, [1]

Realization of the project includes construction of several new high-speed railway lines, up-
grade of the existing lines, construction of a new bridge across the Fjord of Vejle and electrifi-
cation of the intercity railway network.

High-speed rail is emerging in Europe as an increasingly popular and efficient means of trans-
port. The first lines were built in the 1980s and 1990s which reduced the travel time on intra-
national corridors. During the years several countries, like France, Spain, Italy, Germany, Aus-
tria, Sweden, Belgium, the Netherlands, Russia and the United Kingdom have built an extensive
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high-speed railway networks and established cross-border connections. More European coun-
tries are expected to be connected to the high-speed railway network in the incoming years since
Europe invests heavily in the infrastructure across the continent. One of the largest contract de-
signer and manufacturer of high-speed trains in Europe is TGV, France. A high-speed railway
line raised on pylons in France with a traversing TGV high-speed train is shown in Figure 1.2.

Figure 1.2: High-speed railway line in France with a passing TGV high-speed train,
[2]

The railway lines are complex structures where a lot of different phenomena have to be taken
into account during the design process. It becomes even more complicated when the lines are
built on the bridge structure and are exposed to high-speed train traffic, which is the case con-
sidered in the thesis. More particularly, the dynamic structural behaviour is investigated for a
high-speed railway bridge exposed to traffic speeds up to 250km/h. For high speeds various
factors such as a vehicle traversing the bridge, track irregularities or underlying soil properties
might become crucial, thus it is important to investigate the effects caused by the mentioned
factors.

The most simple approach to model the traversing vehicle is to apply moving constant forces on
the bridge structure. However, such rough way of modelling vehicle might not be able to recre-
ate the dynamics of suspensions used in present days trains and therefore the response of the
structure might be underestimated. In Figure 1.3 an example of a high-speed train suspension
is shown.

10 1. Introduction



Figure 1.3: Suspension of a high-speed train, [3]

Another important factor to investigate for the high-speed railway might be the irregularities of
the track or wheel flats, since they might cause significant excitation of the structure, especially
with increasing speeds. Also the mentioned track or wheel defects can affect the comfort (vi-
brations felt in the train carriage during the travel) or even the safety (possibility for the train do
derail). An extreme example of track irregularities is shown in Figure 1.4.

Figure 1.4: Railway track irregularities, [4]

To model a bridge structure, pylons fixed to a rigid surface, might be an inadequate approach,
except the case when it is build straight on bedrock. However, usually it is not the case and
therefore the effects from the subsoil on the dynamic structural behaviour should be analysed,

1. Introduction 11



especially when the subsoil is soft. In Figure 1.5 an example of a railway bridge built on soft
subsoil is shown.

Figure 1.5: Railway bridge built on soft soil, [5]

The dynamic loads increase significantly with increasing train speeds and become hard to pre-
dict. Thus, more complex numerical models are required for proper evaluation of the structural
behaviour. One aim of the thesis is to create a computational model which encompasses a bridge
structure, a passing vehicle model, the effects from track irregularities and the subsoil. Another
aim of the thesis is validation of the created computational model which is done by performing
tests a small–scale experimental model.
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Chapter 2
Simply supported beam with moving
force

In this chapter, an analytical solution for a simply supported two-dimensional (2-D) beam tra-
versed by a constant moving force is given in Section 2.1 and the finite element formulation
(FEM) of the same problem is given in Section 2.2. In the last mentioned section, the formu-
lation of a finite 2-D beam element is introduced. Further, solution techniques are presented
introducing full equation of motion in Subsection 2.2.1, damping in Subsection 2.2.2, time do-
main solution and time integrations in Subsection 2.2.3, frequency-domain solution in Subsec-
tion 2.2.4 and modal analysis in Subsection 2.2.5. Lastly, in Section 2.3 a comparison between
deflections of the models described theoretically in previous sections is presented.

2.1 Analytical solution in two dimensions

The present section is based on Fryba [6]. A classical solution for problems involving vibrations
of structures subjected to a moving load is applied, in order to determine a bridge response to a
passing train analytically. Therefore, the railway bridge exposed to a passing train is defined as
a simply supported beam, traversed by a constant force moving at uniform speed.

y
x

L

Ftotal

ct

vba

Figure 2.1: Simply supported beam subjected to a moving force Ftotal

The analytical solution is based on following assumptions:

• The beam is considered as a Bernoulli-Euler beam which is described by partial differen-
tial Equation 2.1;

• The beam has a constant cross-section and constant mass per unit length;
• The mass of the beam is much bigger than the mass of the moving load which means

that only gravitational effects of the load are considered. Thus, the load is expressed by
Ftotal =−Mtotal ·g, where Mtotal is a mass of the train and g is the gravitational acceleration;

• The load moves from left to the right with a constant speed;
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2.1 Analytical solution in two dimensions

• Damping is proportional to the velocity of vibration (viscous damping);
• At both ends of the beam deflections and bending moments are equal to zero (defined by

boundary conditions, Equation 2.2);
• At the instant of force arrival t = 0, the beam is at rest which means that deflection and

velocity are equal to zero (defined by initial conditions, Equation 2.3);
• It is a 2-D problem.

The partial differential equation of motion is as follows:

EbIb,z
∂v4

ba(x, t)
∂x4 +ρbAb

∂v2
ba(x, t)
∂t2 +2ρbAbωb

∂vba(x, t)
∂t

= δ(x− ct)Ftotal, (2.1)

where
x length coordinate with the origin at the left-hand end of the beam,
t time coordinate with the origin at the instant of the force arriving upon the beam,
vba(x, t) beam deflection at point x and time t, measured from equilibrium position when

the beam is loaded by self-weight,
Eb Young’s modulus of the beam,
Ib,z moment of inertia of the beam, constant through the length of the beam,
ρb mass density,
Ab cross-sectional area ,
ωb circular frequency of damping of the beam,
Ftotal concentrated force of constant magnitude,
c constant speed of the moving load,
δ(x− ct) the Dirac delta function, shifted to the right side from origin by ct.

The Dirac delta function can be defined as

δ(x) =
{

+∞, x = 0,
0, x 6= 0.

Beam physical properties such as stiffness, mass and damping are represented by first, second
and third terms, respectively, on the left-hand side of differential Equation 2.1. Right-hand side
defines an external force acting on the beam. The boundary conditions are:

vba(0, t) = 0, vba(L, t) = 0,

∂2vba(x, t)
∂x2

∣∣∣∣
x=0

= 0,
∂2vba(x, t)

∂x2

∣∣∣∣
x=L

= 0, (2.2)

where L is the beam length. The initial conditions are:

vba(x,0) = 0,
∂vba(x, t)

∂t

∣∣∣∣
t=0

= 0, x ∈ [0; L]. (2.3)
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2.1 Analytical solution in two dimensions

Deflection of the beam is determined using:

vba(x, t) = vba,0

∞

∑
j=1

1
j2[ j2( j2−α2)2 +4α2β2]

[
j2( j2−α

2)sin( jωt)

− jα[ j2( j2−α2)−2β2]

( j4−β2)1/2 e−ωbt sin(ω′( j)t−2 jαβ)(cos( jωt)− e−ωbtcos(ω′( j)t)
]

sin(
jπx
l
),

(2.4)

which includes j modes of vibration. The effects of speed and damping are involved in the
solution. Also t ≤ Tv which means that solution is valid as long as force acts on the beam, Tv is
the time needed for the vehicle to cross the bridge. The deflection denoted as vba,0 is the static
deflection in the middle of the same beam from a force Ftotal:

vba,0 =
FtotalL3

48EbIb,z
.

Dimensionless parameters α and β denote the effects of speed and damping, respectively:

α =
cL
π

(
ρbAb

EbIb,z

)1/2

, (2.5)

β =
ωb

ω(1)
. (2.6)

The circular frequency of damping of the beam ωb:

ωb = ξb f(1), (2.7)

where ξb is the logarithmic decrement of damping of the beam, expressed as:

ξb =
2πζb√
1−ζ2

b

, (2.8)

parameter ζb is the damping ratio. The circular frequency ω( j) and the corresponding natural
frequency f( j) of the j mode of vibration of a simply supported beam are defined by:

ω( j) =

√
j4π4EbIb,z

L4ρbAb
, (2.9)

f( j) =
ω( j)

2π
. (2.10)
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2.2 Finite element method in two dimensions

The circular frequency ω is expressed as:

ω =
πc
L
, (2.11)

while the circular frequency of a damped beam ω′( j) with light damping (ζb� 1) is equal to

ω
′
( j) =

√
ω2
( j)−ω2

b. (2.12)

Using the methodology presented in this section, the structural response to a moving load is
determined analytically. Deflection of the bridge can be found at any length coordinate x for
a vehicle traverse time Tv defined in a preferable accuracy using proper time step t. Obtained
results depend on many parameters such as train speed, bridge length and cross-section, damp-
ing ratio and etc. Therefore, parameters sensitivity analysis is performed regarding the different
parameters and results are presented in Subsection 2.3.2.

2.2 Finite element method in two dimensions

The finite element method is one of the most popular and convenient techniques for numerical
solution for field problems. Mathematically, the field problem is described by differential equa-
tions or integral expressions. Either description may be used to formulate finite elements which
can be visualized as small pieces of a structure. The elements are connected at the nodes. There-
fore, a ”net”, i.e. a particular arrangement of all elements used to describe a finite structure, is
called a mesh. Since each finite element is described by algebraic equations, the whole field
will be represented as a system of those equations. Latter equations are used to find unknowns
at the nodes or at any point between nodes invoking interpolation. Using obtained quantities, a
spatial variation of unknowns within the element can be determined. Since the whole structure
is approximated element by element, a final solution for a field is obtained at the end, cf. e.g
Cook [7].

Firstly, a railway bridge is modelled as a simply supported beam, as in Section 2.1, where
analytical solution for a structure is introduced. However, for a numerical solution, bridge is
discretized into a number of 2-D beam elements. Thus, a brief FEM formulation for mentioned
elements is introduced in present section.

y
x

Fw,i Fw,2 Fw,1

x w,i

Lb

x w,2
x w,1

vbs

Figure 2.2: Beam with multiple concentrated forces travelling across it
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2.2 Finite element method in two dimensions

A single 2-D beam element is considered, where the longitudinal axis is parallel with the x-axis
direction, a shown in Figure 2.2. It is assumed that it has a constant cross-section and constant
mass per unit length. The element has a node at each end and two degrees of freedom (dof) at
each node, lateral deflections vbs,1, vbs,2 and rotations ψbs,1, ψbs,2.

The 2-D beam element is described using Euler-Bernoulli beam theory, i.e. assuming absence of
transverse shear deformations and only including the effects of bending. Thus, the equation of
motion, i.e. the strong form of a governing partial differential equation, for a beam is expressed
by:

EbIb,z
∂4vbs(x, t)

∂x4 +ρbAb
∂2vbs(x, t)

∂t2 =
Nw

∑
i=1

δ(x− xw,i(t))Fw,i + boundary conditions, (2.13)

where the beam is described by: Young’s modulus Eb, moment of inertia of the beam cross-
sectional area around the z-axis Ib,z, mass density ρb, cross-sectional area Ab, transverse deflec-
tion of the beam vbs(x, t) and a number Nw of concentrated forces Fw,i applied at distances xw,i

to the right from the 1st node. The length of the beam element is Lb. Boundary conditions can
be either nodal forces or forced nodal displacements.

Equation 2.13 is transformed into a so-called weak form using standard Galerkin approach. The
following steps are applied:

• discretization and interpolation of displacement field, vbs(x, t);
• premultiplication of a strong form by weight functions;
• integration by parts over the element length.

After application of these steps the weak form is obtained:

∫ Lb

0
δvbs(x, t)ρbAb

∂2vbs(x, t)
∂t2 dx+

∫ Lb

0

∂2δvbs(x, t)
∂x2 EbIb,z

∂2vbs(x, t)
∂x2 dx

=
Nw

∑
i=1

∫ Lb

0
δvbs(x, t)δ(x− xw,i(t))Fw,idx−

[
δvbs(x, t)Qbs,y(x, t)

]Lb

0
+
[

∂δvbs(x, t)
∂x

Mbs,z(x, t)
]Lb

0
,

(2.14)

where first member on the left-hand side is mass of the beam and the second one is bending
stiffness. The right-hand side of Equation 2.14 gives external forces.

In order to discretize displacements field and to obtain these quantities at any spatial coordinate
x at an instant time t, an interpolation between two element nodes has to be included. Inter-
polation is handled by using weight and shape functions. Therefore, physical displacement at
coordinate x and time t can be written by following expression

vbs(x, t) = {Φ̌(x)}{dBS(t)}, (2.15)

where {dBS(t)} denotes the discretized displacement at each dof of the element, see Equa-
tion 2.19, and {Φ̌(x)} is a shape function vector, defined by Equation 2.18. Moreover, virtual
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2.2 Finite element method in two dimensions

field (or variation field) can be expressed by:

δvbs(x, t) = {δ dBS(t)}T{Ψ̌(x)}T , (2.16)

where {δdBS(t)} are arbitrary nodal values of the virtual field and {Ψ̌(x)} are the weight func-
tions. The Galerkin approach implies that the shape functions are identical to the weight func-
tions

{Φ̌(x)}= {Ψ̌(x)}, (2.17)

and therefore, the physical and virtual displacement fields can be described using the same
shape functions for a beam element. Four shape functions are obtained regarding each degree
of freedom. Those are expressed by the following vector:

{Φ̌(x)}T =





1− 3x2

L2
b
+ 2x3

L3
b

x− 2x2

Lb
+ x3

L2
b

3x2

L2
b
− 2x3

L3
b

− x2

Lb
+ x3

L2
b

. (2.18)

The nodal displacements of a 2-D beam element are defined by the following vector:

{dBS(t)}=





vbs,1(t) transverse displacement at the first node;

ψbs,1(t) rotation at the first node;

vbs,2(t) transverse displacement at the second node;

ψbs,2(t) rotation at the second node.

(2.19)

y
x

Lb

vbs,1 vbs,2ψbs,1 ψbs,2

Figure 2.3: Nodal degrees of freedom for a 2-D beam element

Finally, by inserting Equation 2.15 and Equation 2.16 into Equation 2.14 the weak form be-
comes able to describe the time series of displacements. Thus, a solution for the finite beam

18 2. Simply supported beam with moving force



2.2 Finite element method in two dimensions

element as well as for a numerical model which includes whole bridge structure affected by
passing train can be obtained. The finite element form of the equation of motion for a beam
element can be written as:

[MBS]{d̈BS(t)}+[KBS]{dBS(t)}= {fBS(t)}, (2.20)

where {d̈BS(t)} = d2{dBS(t)}/dt2 is acceleration, and [MBS] denotes the consistent element
mass matrix:

[MBS] =
∫ Lb

0
{Φ̌(x)}T

ρbAb{Φ̌(x)}dx =
ρbAbLb

420


156 22Lb 54 −13Lb

4L2
b 13Lb −3L2

b

Symm 156 −22Lb

4L2
b

 . (2.21)

[KBS], the element stiffness matrix, is described as:

[KBS] =
∫ Lb

0

d2{Φ̌(x)}T

dx2 EbIb,z
d2{Φ̌(x)}

dx2 dx =



12EbIb,z

L3
b

6EbIb,z

L2
b
−12EbIb,z

L3
b

6EbIb,z

L2
b

4EbIb,z
Lb

−6EbIb,z

L2
b

2EbIb,z
Lb

Symm 12EbIb,z

L3
b

−6EbIb,z

L2
b

4EbIb,z
Lb


. (2.22)

The load vector is {fBS(t)} = {fBS,b(t)}+ {fBS,c(t)}, where {fBS,b(t)} is the boundary load
vector, while {fBS,c(t)} is the consistent nodal loads:

{fBS,b(t)}=−
[
{Φ̌(x)}T Qbs,y(x, t)

]Lb

0
+

[
d{Φ̌(x)}T

dx
Mbs,z(x, t)

]Lb

0
, (2.23)

{fBS,c(t)}=
Nw

∑
i=1

∫ Lb

0
{Φ̌(x)}T

δ(x− xw,i(t))Fw,idx =
Nw

∑
i=1
{Φ̌(xw,i)}T Fw,i. (2.24)

Another approach to distribute mass over the beam element is to use a lumped mass matrix:

[MBS,l] = ρbAbLb


1
2 0 0 0

1
24L2

b 0 0

Symm 1
2 0

1
24L2

b

 . (2.25)

The nodal load vector {fBS(t)} associated with nodal degrees of freedom vbs,1, vbs,2 and ψbs,1,
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2.2 Finite element method in two dimensions

ψbs,2 is as follows:

{fBS(t)}=





qbs,1(t)

mbs,1(t)

qbs,2(t)

mbs,2(t)

.

The nodal loads are illustrated in Figure 2.4.

y
x

Lb

mbs,1
qbs,1 mbs,2

qbs,2

Figure 2.4: Beam element with four degrees of freedom

2.2.1 Full equation of motion

The full structure is defined by a number of finite elements as it was mentioned at the intro-
duction of the present chapter. In Section 2.2, the 2-D beam element stiffness matrix [KBS],
consistent mass matrix [MBS] and load vector {fBS(t)} have been defined. To create a numer-
ical model for a full structure, the element matrices have to be assembled into a global system
of equations. Thus, a global stiffness matrix [K], global mass matrix [M] and load vector {f(t)}
are obtained. These system matrices and vectors describe the whole structure. Therefore, the
full system can be described by the following expression:

[M]{d̈(t)}+[K]{d(t)}= {f(t)}, (2.26)

where {d̈(t)} and {d(t)} are the discretized full systems accelerations and displacements, re-
spectively. Assuming that there is a number Ndof degrees of freedom, the system matrices [M],
[K] have the dimensions Ndof×Ndof, while the vectors {d̈(t)}, {d(t)} and {f(t)} have the di-
mensions Ndof×1.

Seeking to obtain more accurate and realistic response of the structure, viscous damping is
introduced in the numerical model. The full equation of motion in the finite element formulation
is then defined

[M]{d̈(t)}+[C]{ḋ(t)}+[K]{d(t)}= {f(t)},

{d(0)}= {d0} {ḋ(0)}= {ḋ0},
(2.27)
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2.2 Finite element method in two dimensions

where {d0} and {ḋ(0)} are initial conditions for displacement and velocity, respectively. [C] is
the global damping matrix, which shows dependence on velocity {ḋ(t)}.

2.2.2 Rayleigh damping

Rayleigh damping is introduced in terms of damping matrix which is a linear combination of
the mass and stiffness matrices

[C] = αR[M]+βR[K], (2.28)

where αR and βR represent Rayleigh damping coefficients. They can be approximated if damp-
ing ratios ζ(1) and ζ(2) for any two eigenmodes of the structure are known:

αR = 2ω(1)ω(2)

(
ζ(1)ω(2)−ζ(2)ω(1)

)
ω2
(2)−ω2

(1)
, (2.29)

βR = 2

(
ζ(2)ω(2)−ζ(1)ω(1)

)
ω2
(2)−ω2

(1)
, (2.30)

where ω(1) and ω(2) are the two modes circular eigenfrequencies. Lower modes are mostly
damped by a member αR[M], while higher modes are more influenced by βR[K], cf. Cook [7].

2.2.3 Time domain solution and time integrations

Time domain solution is based on time discretization, introducing a time step ∆t. General dis-
placements, i.e. lateral displacements and rotations for a beam element, velocities and external
forces which are discretized in space by using Equation 2.27 are further decomposed in time.
This procedure can be done using explicit or implicit integration schemes. For explicit schemes
only values of displacements, velocities and external loads at time step t j are required, for the
computation of the similar of these quantities at the next time step t j+1. In implicit schemes,
displacements, velocities and external loads at time t j+1 are dependent upon each other, which
requires solution of system of equations. Furthermore, time integrations can be direct or in-
direct. Direct time integration is used when equation of motion Equation 2.27 is solved in its
original form, while indirect integration requires transformation of Equation 2.27 into its state-
space equivalent, as described in Andersen [8]. Using indirect time integration, original ordi-
nary second-order differential equations are transformed into first-order differential equations.
Firstly, the state vector is defined as {Dint(t)}= {d(t) ḋ(t)}T and {Ḋint(t)}= d{Dint(t)}/dt.
Thus, Equation 2.27 for Ndof system is defined as:

{Ḋint(t)}= [Aint]{Dint(t)}+{Fint(t)}, (2.31)
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2.2 Finite element method in two dimensions

where

[Aint] =

 [0]Ndof×Ndof [I]Ndof×Ndof

−[M]−1[K] −[M]−1[C]

 , (2.32)

{Fint(t)}=


{0}Ndof×1

[M]−1{f(t)}

 . (2.33)

Runge-Kutta fourth-order time integration algorithm

One of the time integrations used in a numerical model of the bridge structure and a passing
train is Runge-Kutta fourth-order algorithm. It calculates vectorial quantities for each time step
t j:

{kint,1}= ∆t{Ḋint(t j,D j
int)}, (2.34a)

{kint,2}= ∆t{Ḋint(t j +0.5∆t,D j
int +0.5kint,1)}, (2.34b)

{kint,3}= ∆t{Ḋint(t j +0.5∆t,D j
int +0.5kint,2)}, (2.34c)

{kint,4}= ∆t{Ḋint(t j+1,D j
int + kint,3)}, (2.34d)

where {D j
int}= {Dint(t j)}. The generalized displacement vector {Dint(t j+1)} for time step t j+1

can be found by:

{Dint(t j+1)}= {Dint(t j)}+ 1
6

(
{kint,1}+2{kint,2}+2{kint,3}+{kint,4}

)
. (2.35)

This indirect, explicit time integration scheme provides accurate and reliable results until it
works. The problem is that Runge-Kutta algorithm is just conditionally stable which means
that it requires small time step to obtain stable solution. Moreover, system matrices conversion
is highly demanding of array storage space. Due to these reasons a lot of computational power
and time is required to obtain a solution.

Newmark second-order time integration algorithm

The other time integration used in the numerical model is Newmark second-order algorithm,
which is direct, implicit time integration scheme. To obtain the displacements {d j+1

BS }, velocities
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2.2 Finite element method in two dimensions

{ḋ j+1
BS } and accelerations {d̈ j+1

BS } at time step t j+1 the algorithm is:

{d̈ j+1
BS }= {d̈

j
BS}+[M̂]−1({f j+1}− [M]{d̈ j

BS}− [C]{d̈ j+1
BS,*}− [K]{d̈ j+1

BS,*}), (2.36a)

{ḋ j+1
BS }= {ḋ

j+1
BS,*}+ γ({d̈ j+1

BS }−{d̈
j
BS})∆t, (2.36b)

{d j+1
BS }= {d

j+1
BS,*}+β({d̈ j+1

BS }−{d̈
j
BS})∆t2, (2.36c)

where [M̂] = [M]+ γ[C]∆t +β[K]∆t2, {ḋ j+1
BS,*} is the predicted value of the velocity vector and

{d j+1
BS,*} is the predicted value of the displacement vector for time step j+1, expressed by

{ḋ j+1
BS,*}= {ḋ

j
BS}+{d̈

j
BS}∆t, (2.37a)

{d j+1
BS,*}= {d

j
BS}+{ḋ

j
BS}∆t +

1
2
{d̈ j

BS}∆t2, (2.37b)

further, β and γ are weights. Using β = 1/4 and γ = 1/2 the approximation is made, which
states that acceleration is constant during the whole time and is equal to the mean value of two
accelerations in neighbouring time steps. Using these values, the Newmark algorithm is un-
conditionally stable. Since no system matrix transformation is necessary, the Newmark method
performs a time domain solution faster and more efficient respect to computer memory.

Finally, the same numerical model is solved in time domain using two different, above described
integration schemes. The results obtained from both models show acceptable accuracy, cf.
Subsection 2.3.3.

2.2.4 Frequency domain solution

Generally, Fourier transformation is used to transform time series of displacements, loads. etc.
from time domain to frequency domain:

F(x,ω) =
∫

∞

−∞

f(x, t)e−iωtdt, (2.38)

where i is the imaginary unit i =
√
−1, F(x,ω) denotes a function in frequency domain, f(x, t)

is a function in time domain and ω is circular frequency. Consequently, inverse Fourier trans-
formation is expressed as:

f(x, t) =
1

2π

∫
∞

−∞

F(x,ω)eiωtdω. (2.39)

Discrete Fourier transformation and discrete inverse Fourier transformation are performed using
Fast Fourier Transformation (FFT) and Inverse Fast Fourier Transformation (IFFT) algorithms.

In order to obtain frequency domain solution, equivalent equation of motion for a frequency
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2.2 Finite element method in two dimensions

domain is solved for each of the circular frequencies:

[Z j]{D j}= {F j}; [Z j] =−(ω j)2[M]+ iω j[C]+ [K], (2.40)

where [Z j] is dynamic stiffness matrix for the circular frequency ω j = 2π( j− 1)/T , where
j = 1,2, ...,J and T denotes total time used in solution. [M], [C] and [K] represent global mass,
damping and stiffness matrices used in original FEM equation of motion Equation 2.27. {D j}
and {F j} are the Fourier transforms of the discrete time series of the generalized displacement
and the external load vectors, respectively.

2.2.5 Modal analysis

Modal analysis is a helpful tool dealing with multi-degree-of-freedom (MDOF) systems be-
cause it allows to analyse structural modes separately. Therefore, just the most contributing
modes can be added in the solution, while less important modes can be excluded. Due to that, a
lot of computational power and time can be saved. Usually the most important ones are just the
first few modes. A modal analysis can be described in three steps:

• Reduction of MDOF system to a number of single-degree-of-freedom (SDOF) systems;
• Full FEM equations of motion in modal coordinates are solved for each SDOF system;
• Solution for MDOF is achieved adding all obtained solutions for SDOF systems.

A system must be linear in order to analyse it by modal analysis. Also eigenmodes must be
independent of each other.
Solving the eigenvalue problem is a part of modal analysis. Thus, a brief introduction to it is
given, before equations of motion in modal coordinates and modal matrices are defined.

Algebraic equation for a general eigenvalue problem is written by following expression:

([K]−λ( j)[M]){Φ̆( j)}= 0, λ( j) = ω
2
( j), j = 1,2, ...,J, (2.41)

where ω( j) is circular frequency, λ( j) is an eigenvalue and Φ̆( j) is an eigenmode. For every λ( j)
there is one solution Φ̆( j), in terms of “direction”. However, the length of eigenvector is not
uniquely defined. Usually it is scaled to provide a modal mass of 1. Derivation of eigenvalue
problem algebraic equation and solutions to it, is given at Cook [7].

Now, when general eigenvalue problem is defined, FEM equation of motion for modal analysis
can be written:

[S]T [M][S]{q̈(t)}+[S]T [C][S]{q̇(t)}+[S]T [K][S]{q(t)}= [S]T{f(t)}, (2.42)

where [S] is the matrix storing the eigenvectors in columns. For a solution containing eigen-
modes from one to J, the matrix [S] can be expressed as:

[S] =
[
{Φ̆(1)} {Φ̆(2)} · · · {Φ̆(J)}

]
, (2.43)
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2.3 Comparison between analytical and finite element models

{q(t)} is a vector with the modal coordinates, cf. Nielsen [9]. Equation 2.42 is obtained from
general FEM equation of motion Equation 2.27 substituting {dBS(t)} by [S]{q(t)} and pre-
multiplying every member by [S]T .

The MDOF system is solved using equations of motion in modal coordinates applied for a
number of SDOF systems:

[Mm]{q̈(t)}+[Cm]{q̇(t)}+[Km]{q(t)}= {fm(t)}. (2.44)

The modal matrices are defined as:

• [Mm] = [S]T [M][S] is a modal mass matrix;
• [Cm] = [S]T [C][S] is a modal damping matrix;
• [Km] = [S]T [K][S] is a modal stiffness matrix;
• {fm(t)}= [S]T{f(t)} is a modal force vector.

[Mm] = [S]T [M][S] and [Km] = [S]T [M][S] are diagonal matrices and so is [Cm] = [S]T [M][S]
when Rayleigh damping is employed.

2.3 Comparison between analytical and finite element mod-
els

In this section, a comparison between the deflections of a simply supported beam, considered
in the analytical solution and in the numerical model, is presented. Also specifications of each
model are given and exact parameters used in calculations are introduced. The bridge model is
described in Subsection 2.3.1, while parameter sensitivity analysis is done regarding deflection
dependency on varying locomotive speed and bridge length, in Subsection 2.3.2. Further, de-
flections obtained using analytical approach as well as the two numerical models, with different
time integration schemes, are compared in Subsection 2.3.3.

2.3.1 Model of bridge and passing train

0.3

OP1 Ftotal
y

x
OP2

L

L
0.5L

Figure 2.5: Simplified model of a bridge with a passing locomotive
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A railway bridge structure is considered as a simply supported beam. The traversing locomotive
is modelled just as a moving concentrated load equal to Ftotal =−Mtotal ·g (where Mtotal is a mass
of the vehicle) in the analytical solution and in the most basic numerical models based on FEM.
Bridge model remains the same in all 2-D models. The most simple case of a bridge and a
passing locomotive is illustrated in Figure 2.5 Geometrical dimensions of the bridge, material
parameters and mass of the vehicle are given in Table 2.1.

Length of the bridge L 28.4 m
Moment of inertia Ib,z 4.08 m4

Young’s modulus Eb 34 GPa
Mass density ρb 2400 kg/m3

Damping ratio ζb 0.01 −
Mass of the vehicle Mtotal 69320 kg

Table 2.1: Properties of the model

The deflections of the bridge are extracted in observation points OP1 and OP2, shown in Fig-
ure 2.5. These exact points are chosen to investigate the effects of different mode shapes, i.e.
at the length 0.5L deflection due to the first mode excitation is maximum but for the 2nd mode
excitation is equal to zero. Thus, displacements of the bridge obtained at the mid-span are equal
to zero for a number of mode shapes at OP2 position. To analyse the effects of these mode
excitation, another observation point OP1 is introduced at length 0.3L. First five mode shapes
of the bridge are presented in Figure 2.6, where the coordinate x is normalized by the bridge
length L.
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1st eigenmode, ω =33.9 [rad/s]

2nd eigenmode, ω =135.6 [rad/s]

3rd eigenmode, ω =305.1 [rad/s]

4th eigenmode, ω =542.2 [rad/s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5th eigenmode, ω =846.9 [rad/s]

Normalized length

Figure 2.6: First five mode shapes of considered bridge

2.3.2 Parameter sensitivity analyses

A small study is done analysing bridge deflection variations due to changing bridge length and
vehicle speed. The cross-section of the bridge, reinforced concrete parameters and the mass of
the vehicle remain constant. Parameter sensitivity analyses are done using the basic analytical
and two numerical models (one with Runge-Kutta fourth-order time integration and another one
with Newmark second-order time integration scheme). The specifications of these models are
given at Subsection 2.3.3.

Firstly, the bridge length is considered constant, equal to 28.4m and just the vehicle speed is
changing from 10m/s (36km/h) to 100m/s (360km/h), cf. Figure 2.7.
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Figure 2.7: Bridge displacements at OP1 and OP2 positions due to varying locomotive
speed

According to Figure 2.7, deflection of the bridge shows general tendency to increase with a
higher vehicle speed. As it was expected bigger displacements are observed at OP2 position
(0.5L). The graph shows that at certain speeds, the displacement reaches peaks with a local
maximum value and later decreases to a local minimum value, e.g. at OP2 for a train speed
of 29m/s the deflection is maximum 2.54mm (for both numerical models). The deflection de-
creases to 2.46mm at a speed of 34m/s. A bridge behaviour like this can be observed from a
starting speed of 10m/s until the speed of 61m/s for OP2 and 56m/s for OP1. This phenomenon
can be explained by the fact that at certain critical speeds different eigenmodes are excited,
which affects the bridge deflection by increasing or decreasing it.

Figure 2.7 shows that two numerical models which use Runge-Kutta and Newmark time inte-
gration schemes provide virtually the same results, while analytical solution gives somewhat
bigger values for bridge deflection. However, the difference between numerical and analytical
solutions is up to 1.4% of the maximum absolute bridge deflection. The difference might be
caused by different damping approaches used within the analytical and numerical models. It
is considered that the numerical models and the analytical solution provide almost the same
results.

In further analysis, two different vehicle speeds, 47m/s and 69m/s are considered. Both speeds
provide very similar maximum absolute bridge deflection. However, the behaviour of the bridge
is considerably different. The speed of 47m/s is chosen because it provides the local maximum
deflection between speeds 34m/s and 61m/s, while 69m/s is the maximum vehicle speed con-
sidered. Thus, results are inspected for both speeds.

Secondly, the sensitivity analysis is performed keeping the vehicle speed constant (69m/s) and
changing the length of the bridge from 15m to 70m, cf. Figure 2.8.
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Figure 2.8: Bridge displacements at OP1 and OP2 positions according to varying
bridge length

Figure 2.8 shows that the displacement is increasing with increasing bridge length, without any
fluctuations. Also the deflections at position OP2 are bigger than those at OP1. Two numerical
models provide the same results, while analytical model shows a small difference, up to 1.5%
of a maximum absolute bridge deflection.

Regarding the bridge length, the maximum deflection seems to be increasing with increasing
bridge length. Thus, only one length is analysed further in this chapter. A length of 28.4m is
chosen because it is the length of an actual bridge from which the parameters like Ib, Eb, ζb etc.
are taken.

It is important to point out that bridge length, cross-section and damping ratio, general mass
of the vehicle, also reinforced concrete material parameters such as Young’s modulus and mass
density remain constant in the 2-D models described further on. The exact values are given in
Subsection 2.3.1.

2.3.3 Analytical solution and basic numerical models

In this section, three models are compared between each other: analytical (Section 2.1), numer-
ical using Newmark second-order time integration scheme (Subsection 2.2.3) and numerical
using fourth-order Runge-Kutta time integration algorithm (Subsection 2.2.3). The vehicle is
implemented as point load in all three models, cf. Figure 2.5. A brief specification of each
model is given before presenting the results.

Analytical solution

The analytical solution provides reliable results just for first few eigenmodes of the bridge
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structure. Since mass proportional damping is used in the analytical solution, higher modes
have too little damping which causes non-physical high frequency vibrations. Thus, just the
first five modes are included in the analytical solution.

Runge-Kutta time integration

Numerical model, which uses Runge-Kutta fourth-order time integration algorithm provides ac-
curate results. However, it does not work with consistent mass matrix, cf Equation 2.21. Thus,
a lumped mass matrix, cf. Equation 2.25 has to be used. The drawbacks of this integration
scheme are: doubling the sizes of FEM matrices and an extremely small time step is required
to ensure stability of the solution, therefore computational time increases significantly. To de-
crease computational time, modal analysis is used, where just the first fives eigenmodes are
included.

Newmark time integration

Numerical model, which uses Newmark second-order time integration scheme works way faster
than the one with Runge-Kutta time integration, because it does not double the sizes of FEM
matrices used. Also a bigger time step can be used, keeping satisfactory accuracy of the re-
sults. Since the model works fast, full solution is applied instead of a modal analysis, including
all eigenmodes of the bridge structure. Furthermore, numerical model with Newmark time
integration algorithm is unconditionally stable applying weights β = 1/4 and γ = 1/2 (cf. Sub-
section 2.2.3) when Runge-Kutta is just conditionally stable.

Bridge deflections obtained using these three models are presented in Figure 2.9 and Fig-
ure 2.10.
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Figure 2.9: Bridge deflections at speed 47m/s. a) Analytical solution; b) Numerical
model using Newmark second-order time integration scheme; c) Numeri-
cal model using Runge-Kutta fourth-order time integration algorithm
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Figure 2.10: Bridge deflections at speed 69m/s. a) Analytical solution; b) Numerical
model using Newmark second-order time integration scheme; c) Numer-
ical model using Runge-Kutta fourth-order time integration algorithm
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Firstly, it can be seen that three models compared in this section provide almost identical re-
sults, both in terms of maximum displacements and overall bridge behaviour. For example, the
maximum difference of displacement between the analytical solution and numerical, the model
with Runge-Kutta time integration scheme, at a locomotive speed of 47m/s is 0.0393mm. It is
just 1.4% of the maximum absolute deflection.

Secondly, the values of maximum absolute displacements between two analysed speeds are
very similar. However, the position and time, where these displacements are obtained on the
bridge, are different. Figure 2.9 shows that at a vehicle speed of 47m/s the maximum absolute
deflection is obtained when the load is at the middle of the bridge, while Figure 2.10 shows it
approximately at 1/3 of the bridge length at a vehicle speed 69m/s. It can be concluded that the
bridge behaviour becomes more similar to a case of static loading with a decreasing train speed.
However, at high locomotive speeds it shows different behaviour.

Generally, the analytical solution and the numerical solution, based on FEM, perform very
similarly. However, the numerical solution is by far a more versatile way to analyse a finite
structure. It is also a more convenient way to model the geometry of the structure itself, i.e.
introduce different supports for the bridge, apply more than one active force at a time etc. Thus,
further models of a bridge and a passing locomotive are solved numerically.

It is decided to use Newmark time integration algorithm in further models because of its uncon-
ditional stability and calculations speed. Runge-Kutta time integration provides virtually the
same results but it has drawbacks, namely slow computation speed and conditional stability.
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Chapter 3
Moving vehicle models on a two-
dimensional beam element

In the previous chapter the influence from the train to the bridge was modelled only as a constant
moving force. This, however, is not a good assumption, as the added mass from the train will
have an effect on the behaviour of the bridge. Thus, various vehicle models are analysed in
this chapter. In Section 3.1 a solution for a moving mass on a beam element is given, while
in Section 3.2 a moving single-degree-of-freedom system is analysed. Finally, in Section 3.3 a
solution for a moving multi-degree-of-freedom system is given. The comparison between these
models is presented in Section 3.4.

3.1 Moving mass vehicle

To address the problem of the moving force the beam element equations derived in Section 2.2
are modified to include multiple added masses. The problem is illustrated in Figure 3.1. As
it can be seen at distances xw,i there are point masses Mbm,i and a number Nw of forces Fw,i

moving at speed c.

y

x w,i

Lb

x w,2
x w,1

Fw,i

Mbm,i

cFw,2

Mbm,2

Fw,1

Mbm,1
vbm

x

Figure 3.1: Beam element with point masses

The equation of motion for a system illustrated previously can be written as:

ρbAb
∂2vbm(x, t)

∂t2 +EbIb,z
∂4vbm(x, t)

∂x4 +
Nw

∑
i=1

δ(x− xw,i(t))Mbm,i
∂2vbm(x, t)

∂t2 =
Nw

∑
i=1

δ(x− xw,i(t))Fw,i.

(3.1)
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3.1 Moving mass vehicle

The weak form of differential Equation 3.1 is:

∫ Lb

0
δvbm(x, t)ρbAb

∂2vbm(x, t)
∂t2 dx+

∫ Lb

0

∂2δvbm(x, t)
∂x2 EbIb,z

∂2vbm(x, t)
∂x2 dx

+
Nw

∑
i=1

∫ Lb

0
δvbm(x, t)δ(x− xw,i(t))Mbm,i

∂2vbm(x, t)
∂t2 dx =

[
δvbm(x, t)Qbm,y(x, t)

]Lb

0

+

[
∂ δvbm(x, t)

∂x
Mbm,z(x, t)

]Lb

0

+
Nw

∑
i=1

∫ Lb

0
δvbm(x, t)δ(x− xw,i(t))Fw,idx.

(3.2)

In finite element formulation, Equation 3.2 is written as:

[MBM]{d̈BM(t)}+[CBM]{ḋBM(t)}+[KBM]{dBM(t)}= {fBM(t)}, (3.3)

where [KBM] and [CBM] are stiffness and damping mass matrices, respectively, and {fBM} is
force vector.

[KBM] = [KBS], (3.4a)

[CBM] = [CBS], (3.4b)

{fBM}= {fBS}, (3.4c)

where [KBS], [CBS] and {fBS} are defined in Section 2.2. The mass matrix [MBM(t)] can be
described as a sum of two components:

[MBM(t)] = [MBS]+ [MBM,0(t)], (3.5)

where [MBS] is the consistent element mass matrix, cf. Equation 2.21 and [MBM,0], is the influ-
ence from added masses Mbm,i. Assuming that vbm(x, t) = {Φ̌(x)}{dBM(t)} and δvbm(x, t) =
{δ dBM(t)}T{Φ̌(x)}T it can be expressed as:

[MBM,0(t)] =
Nw

∑
i=1
{Φ̌(xw,i(t))}T Mbm,i{Φ̌(xw,i(t))}

=
Nw

∑
i=1

Mbm,i
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(3.6)

where xw,i = xw,i(t). Thus, the mass matrix [MBM(t)] becomes time dependent. Applying the
influence of the train mass on a bridge the dynamic behaviour can be modelled more precisely.

3.2 Single-degree-of-freedom vehicle

One way of modelling the effects from a moving train to a bridge is by modelling the train as a
number of SDOF vehicles. The ith SDOF vehicle can be described by mass Mh,i, spring stiffness
Kh,i and viscous damping Ch,i. Also using this model it is possible to include the effects of an
uneven track. The track profile is modelled as a stationary stochastic process and is described
in Appendix A. The vertical displacement of the SDOF vehicle is denoted vh,i = vh,i(t), while
the displacement of the beam is vbh = vbh(x, t). The beam surface has the irregularities denoted
by r = r(x).

y
x

Kh,i Ch,i

x w,i

Lb

x w,2
x w,1

Kh,2 Ch,2 Kh,1 Ch,1

Mh,1

Fw,i Fw,2 Fw,1

r

vh,2vh,i vh,1
cMh,2Mh,i

vbh

Figure 3.2: SDOF system moving along a Euler-Bernoulli beam element

The governing equation of motion for the beam is as follows:

ρbAb
∂2vbh(x, t)

∂t2 +EbIb,z
∂4vbh(x, t)

∂x4 +
Nw

∑
i=1

δ(x− xw,i(t))Kh,i
(
vbh,i(x, t)+ r(x)− vh,i(t)

)
+

Nw

∑
i=1

δ(x− xw,i(t))Ch,i

(
∂vbh(x, t)

∂t
+ c

dr(x)
dx
−

dvh,i(t)
dt

)
= 0. (3.7)

For the ith SDOF vehicle the equation of motion is described as:

Mh,i
d2vh,i(t)

dt2 +Kh,i
(
− vbh(x, t)− r(x)+ vh,i(t)

)
+Ch,i

(
− ∂vbh(x, t)

∂t
− c

dr(x)
dx

+
dvh,i(t)

dt

)
= Fw,i. (3.8)
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Rearranging and transforming these equations the following is obtained:

∫ Lb

0
δvbh(x, t)ρbAb

∂2vbh(x, t)
∂t2 dx+

∫ Lb

0

∂2δvbh(x, t)
∂x2 EbIb,z

∂2vbh(x, t)
∂x2 dx

+
Nw

∑
i=1

∫ Lb

0
δvbh(x, t)δ(x− xw,i(t))Kh,i

(
vbh(x, t)− vh,i(t)

)
dx

+
Nw

∑
i=1

∫ Lb

0
δvbh(x, t)δ(x− xw,i(t))Ch,i

(
∂vbh(x, t)

∂t
−

dvh,i(t)
dt

)
dx

=

[
δvbh(x, t)Qbh,y(x, t)

]Lb

0

+

[
∂δvbh(x, t)

∂x
Mbh,z(x, t)

]Lb

0

−
Nw

∑
i=1

∫ Lb

0
δvbh(x, t)δ(x−xw,i(t))Kh,ir(x)dx−

Nw

∑
i=1

∫ Lb

0
δvbh(x, t)δ(x−xw,i(t)) cCh,i

dr(x)
dx

dx,

(3.9)

Mh,i
d2vh,i(t)

dt2 +Kh,i
(
− vbh(x, t)+ vh,i(t)

)
+Ch,i

(
∂vbh(x, t)

∂t
+

dvh,i(t)
dt

)
= Fw,i +Kh,ir(x)+ cCh,i

dr(x)
dx

. (3.10)

Assuming that vbh(x, t) = {Φ̌(x)}{dBH(t)} and δvbh(x, t) = {δ dBH(t)}T{Φ̌(x)}T the equations
are expressed in finite element formulation:

[MH]{d̈H(t)}+[CH]{ḋH(t)}+[KH]{dH(t)}= {fH(t)}, (3.11)

where {dH(t)} is the nodal displacement vector:

{dH(t)}=



{dBH(t)}

vh,1(t)

vh,2(t)

...

vh,Nw(t)



=





vbh,1(t) transverse displacement at the first node;

ψbh,1(t) rotation at the first node;

vbh,2(t) transverse displacement at the second node;

ψbh,2(t) rotation at the second node;

vh,1(t) transverse displacement of mass Mh,1;

vh,2(t) transverse displacement of mass Mh,2;

...

vh,Nw(t) transverse displacement of mass Mh,Nw .

(3.12)
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3.2 Single-degree-of-freedom vehicle

For a beam with Nw SDOF vehicles the stiffness matrix [KH] is expressed as:

[KH] =


[K11] [K12] [K13] · · · [K1Nw]

[K21] Kh,1 0 · · · 0
[K31] 0 Kh,2 · · · 0

...
...

... . . . ...
[KNw1] 0 0 · · · Kh,Nw

 , (3.13)

where the term [K11] describes the stiffness for four degrees of freedom of a beam (vbh,1, ψbh,1,
vbh,2, ψbh,2), while Kh,i is the stiffness associated with the degree of freedom vh,i of the ith
vehicle. Terms [K1i] and [Ki1] describe the coupling between the beam and ith SDOF vehicle.

The stiffness associated with the degrees of freedom of the beam is also influenced by the
stiffness of the SDOF vehicles and is expressed as:

[K11] =
∫ Lb

0

d2{Φ̌(x)}T

dx2 EbIb,z
d2{Φ̌(x)}

dx2 dx+
Nw

∑
i=1
{Φ̌(xw,i)}T Kh,i{Φ̌(xw,i)}= [KBS]

+
Nw

∑
i=1

Kh,i
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(3.14)

The coupling terms for the ith SDOF vehicle are defined as:

[K1i]= [Ki1]
T =−Kh,i{Φ̌(xw,i)}T =−Kh,i
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. (3.15)
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3.2 Single-degree-of-freedom vehicle

The damping matrix [CH] is constructed in the same way as the stiffness matrix:

[CH] =


[C11] [C12] [C13] · · · [C1Nw ]

[C21] Ch,1 0 · · · 0
[C31] 0 Ch,2 · · · 0

...
...

... . . . ...
[CNw1] 0 0 · · · Ch,Nw

 , (3.16)

where member [C11] accounts for the damping of the beam as well as added damping from
the SDOF vehicles, while Ch,i is the damping associated with degree of freedom vh,i of the ith
vehicle. Terms [C1i] and [Ci1] describe the coupling between the beam and SDOF vehicle.

[C11] = αR[MBS]+βR[KBS]+
Nw

∑
i=1
{Φ̌(xw,i)}TCh,i{Φ̌(xw,i)}= αR[MBS]+βR[KBS]

+
Nw

∑
i=1

Ch,i
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(3.17)

The coupling terms for the ith SDOF vehicle are defined as:

[C1i]= [Ci1]
T =−Ch,i{Φ̌(xw,i)}T =−Ch,i
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3.2 Single-degree-of-freedom vehicle

The mass matrix [MH] is defined as:

[MH] =


[M11] 0 0 · · · 0

0 Mh,1 0 · · · 0
0 0 Mh,2 · · · 0
...

...
... . . . ...

0 0 0 · · · Mh,Nw

 , (3.19)

where [M11] is the consistent mass matrix of a beam as shown in Equation 2.21 and the mass of
the ith vehicle is Mh,i .

Lastly, the force vector {fH(t)} is expressed as:

{fH(t)}=



{fBH(t)}
fh,1(t)
fh,2(t)

...
fh,Nw(t)


, (3.20)

where {fBH(t)} is the forces acting on the beam, a combination of boundary load vector {fBH,b(t)}
and track unevenness load vector {fBH,u(t)}:

{fBH(t)}=−
[
{Φ̌(x)}T Qbh,y(x, t)

]Lb

0
+

[
d{Φ̌(x)}T

dx
Mbh,z(x, t)

]Lb

0

−
Nw

∑
i=1
{Φ̌(x)}T

(
Kh,i r(x)+ cCh,i

dr(x)
dx

)
= {fBH,b(t)}+{fBH,u(t)}, (3.21)

{fBH,u(t)}=−
Nw

∑
i=1

(
Kh,i r(x)+ cCh,i

dr(x)
dx

)
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. (3.22)

The force acting on the ith SDOF vehicle is a sum of external force Fw,i as well as the effects
from track unevenness:

fh,i(t) = Fw,i +Kh,ir(x)+ cCh,i
dr(x)

dx
. (3.23)
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3.3 Multi-degree-of-freedom vehicle

3.3 Multi-degree-of-freedom vehicle

In order to properly model the influence of a passing train to a bridge, a multi-degree-of-freedom
model for a vehicle is introduced. The model has ten degrees of freedom, which models the car
body, bogies, wheels and suspension system between these parts.

The vehicle is defined as a coupling system of a locomotive with two layers of springs and
dampers, between which bogies are included. Wheels are coupled with the beam through
springs and dashpots, the same principles apply as described in Section 3.2. The model for
the analysis of dynamic response of the vehicle is shown in Figure 3.3. The vehicle model
shown is based on Lei [10].

y
x

φ

2L1

Bogie 2 Bogie 1
v t,2

Mt,2 Jt,2

Mw,4

Wheel 4 Wheel 3 Wheel 1

Wheel 2

Vehicle body Moving directionMc c

c
c

Ksu,2 Csu,2 Ksu,2 Csu,2

φt,2

J
v

v t,1
φt,1Mt,1 Jt,1

Ksu,1 Csu,1 Ksu,1 Csu,1 Ksu,1 Csu,1 Ksu,1 Csu,1

Mw,3 Mw,2 Mw,1

2L12L2

vw,i

Deck

Kb,4 Cb,4 Kb,3 Cb,3 Kb,2 Cb,2 Kb,1 Cb,1r

Figure 3.3: Multi-degree-of-freedom vehicle

The locomotive is considered as a rigid body with mass Mc and pitch moment of inertia Jc.
It is connected with two bogies through spring–dashpot systems. Mass and pitch moments of
inertia of the bogies are Mt, j and Jt, j, respectively, where j = 1,2. Each bogie is connected
to two wheels using similar spring–dashpot systems and the wheels are described by a wheel
mass Mw,i, i = 1,2,3,4. The translations of the locomotive and bogies are defined by vertical
displacements vc and vt, j, respectively, while pitch rotations are described by angles ϕc and
ϕt, j. The vertical displacements of four wheels are denoted as vw,i. The vehicle is described
by ten equations of motion. Vertical displacement of the car body is affected by the secondary
suspension system which has stiffness Ksu,2 and damping Csu,2. Each wheel is loaded with one
quarter of the total force Ftotal =−Mtotal ·g. Finite element formulation is as follows:

[MV]{d̈V(t)}+[CV]{ḋV(t)}+[KV]{dV(t)}= {fV(t)}, (3.24)
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3.3 Multi-degree-of-freedom vehicle

where the nodal displacement vector {dV(t)} is given as:

{dV(t)}=





vc(t) transverse displacement of car body;

ϕc(t) rotation of car body;

vt,1(t) 1st bogie transverse displacement;

ϕt,1(t) 1st bogie rotation;

vt,2(t) 2nd bogie transverse displacement;

ϕt,2(t) 2nd bogie rotation;

vw,1(t) 1st wheel transverse displacement;

vw,2(t) 2nd wheel transverse displacement;

vw,3(t) 3rd wheel transverse displacement;

vw,4(t) 4th wheel transverse displacement.

(3.25)

The stiffness matrix for the system [KV] is:

[KV] =



2Ksu,2 0 −Ksu,2 0 −Ksu,2 0 0 0 0 0
2L2

2Ksu,2 −L2Ksu,2 0 L2Ksu,2 0 0 0 0 0
2Ksu,1 +Ksu,2 0 0 0 −Ksu,1 −Ksu,1 0 0

2L2
1Ksu,1 0 0 −Ksu,1L1 Ksu,1L1 0 0

2Ksu,1 +Ksu,2 0 0 0 −Ksu,1 −Ksu,1

2L2
1Ksu,1 0 0 −Ksu,1L1 Ksu,1L1

Symm Ksu,1 0 0 0
Ksu,1 0 0

Ksu,1 0
Ksu,1


(3.26)

3. Moving vehicle models on a two-dimensional beam element 43
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while the damping matrix [CV] is:

[CV] =



2Csu,2 0 −Csu,2 0 −Csu,2 0 0 0 0 0
2L2

2Csu,2 −L2Csu,2 0 L2Csu,2 0 0 0 0 0
2Csu,1 +Csu,2 0 0 0 −Csu,1 −Csu,1 0 0

2L2
1Csu,1 0 0 −Csu,1L1 Csu,1L1 0 0

2Csu,1 +Csu,2 0 0 0 −Csu,1 −Csu,1

2L2
1Csu,1 0 0 −Csu,1L1 Csu,1L1

Symm Csu,1 0 0 0
Csu,1 0 0

Csu,1 0
Csu,1


(3.27)

and the mass matrix [MV] is:

[MV] = diag
[
Mc Jc Mt,1 Jt,1 Mt,2 Jt,2 Mw,1 Mw,2 Mw,3 Mw,4.

]
(3.28)

3.4 Comparison of moving vehicle models

In this section the previously described vehicle models are compared. The bridge is still mod-
elled as a simply supported beam with parameters described in Subsection 2.3.1. In Subsec-
tion 3.4.1 the results of moving mass model and SDOF vehicle model are presented. Later, in
Subsection 3.4.2 multiple SDOF vehicles model is compared with MDOF vehicle model. Af-
ter, multiple SDOF vehicles and MDOF vehicle models are compared between each other once
again but this time including vertical railway track irregularities, in Subsection 3.4.3. Finally,
an overall review of the results is given in Subsection 3.4.4.

3.4.1 Moving mass model and single-degree-of-freedom model

In this subsection, specifications of moving mass and SDOF vehicle models are introduced. The
effects that these models have on the behaviour of the bridge are presented and compared.

Moving mass model

added mass
+

point load
y

x

Ftotal
c

Mtotal

Figure 3.4: Moving mass model on a beam

In the moving mass model, a load acting on the bridge due to a vehicle is implemented as a
single point load plus an added mass, cf. Figure 3.4. Added mass is taken as a point mass. The
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3.4 Comparison of moving vehicle models

theory used is introduced in Section 3.1. Parameters for a moving mass model: vehicle mass
Mbm = Mtotal = 69200kg and point load due to the vehicle Fw = Ftotal =−680000N.

Single-degree-of-freedom model

c

y
x

Kh Ch

Mtotal

Ftotal

Figure 3.5: SDOF model on a beam

In this model a vehicle is implemented as an SDOF vehicle. The vehicle itself is modelled as
a constant point load and an added mass. The difference from the previous model is that the
coupling between bridge and a vehicle is introduced by a spring–dashpot system. A detailed
illustration of the model presented in Figure 3.2 and the theory is given in Section 3.2. A
simplified model is presented in Figure 3.5.

Parameters for an SDOF model are: circular eigenfrequency of the vehicle ωv = 4.4rad/s, damp-
ing ratio of the vehicle ζv = 0.6. Using these parameters the stiffness Kh and damping Ch of the
SDOF vehicle are determined as:

Kh = Mh ω
2
v, (3.29)

Ch = 2 ζv
√

Mh Kh. (3.30)

The vehicle mass Mh = Mtotal and a point load Fw due to the vehicle have the same magnitudes
as in the moving mass model.

Deflections of the bridge, for both models at two different locomotive speeds of 47m/s and
69m/s, are presented in Figure 3.6 and Figure 3.7, respectively.
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Figure 3.6: Deflection of a bridge at a vehicle speed of 47m/s. a) Moving mass model;
b) Single-degree-of-freedom model

Regarding Figure 3.6, the behaviour of a bridge traversed by a vehicle varies significantly using
these two models. In case of added point mass, the mass Mtotal dampens the bridge response
and it mostly deflects in the first eigenmode. For SDOF vehicle model, the vibration of the
mass Mtotal itself excites more eigenmodes of the bridge. Bigger maximum absolute deflection
at a vehicle speed of 47m/s is observed for the SDOF vehicle model. The deflection difference
between the two models is 8.63% of the maximum absolute deflection.

At a higher vehicle speed, 69m/s, the difference of the bridge deflection between two models
decreases to 4% of the maximum absolute deflection, cf. Figure 3.7. Despite that, the overall
behaviour is still considerably different.
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Figure 3.7: Deflection of a bridge at a vehicle speed of 69m/s. a) Moving mass model;
b) Single-degree-of-freedom model

Comparing all four graphs it is noticeable that a moving mass model shows higher bridge de-
flection dependency on the vehicle speed than an SDOF model. Also the response of the bridge
varies significantly between the two models. The SDOF vehicle model excites the bridge more,
leaving the bridge to vibrate in the first eigenmode after the vehicle leaves, with a higher ampli-
tude then with the added mass model. Compared to the three models shown in Subsection 2.3.3
it can be seen that masses added either by point mass or SDOF vehicle, dampens the response
of the bridge, thus making the vibrations less intense.
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3.4.2 Multiple SDOF vehicles model and MDOF vehicle model

The main idea of this chapter is to introduce a contact point for every wheel set of the loco-
motive. Thus, more reliable results can be obtained than by using just one contact point as it
was done in previous models. In this section, differences of the bridge deflection are described
when a vehicle is introduced as an multiple SDOF systems or a multi-degree-of-freedom sys-
tem. Before introducing results, a short description of both models including exact parameters
and graphic illustrations are given.

Multiple single-degree-of-freedom vehicles model

Kh Ch

Fw

Kh Ch

Fw

Kh Ch

Fw

Kh Ch

Fw

Mh

L 2L1 L1

Lb

y
x

Mh Mh Mh

Figure 3.8: Multiple SDOF vehicles on a beam

The multiple SDOF vehicle model contains four separate, independent SDOF vehicles, cf. Fig-
ure 3.8. Each SDOF vehicle can have different mass and can be affected by different forces. In
this case, every vehicle is assigned one quarter of the total mass Mh =

1
4Mtotal of the vehicle and

a quarter of the total force Fw = 1
4Ftotal. Theory for the SDOF system is given in Section 3.2.

Parameters for an multiple SDOF vehicles model are given in Table 3.1.

Distance between wheels axes in a bogie L1 3 m
Distance between inner wheels axes of locomotive L2 11 m

Part of the locomotive mass applied for one SDOF system Mh 17300 kg
Circular eigenfrequency of the vehicle ωv 4.4 rad/s

Damping ratio of the vehicle ζv 0.6 -

Table 3.1: Parameters for multiple SDOF vehicles model
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Multi-degree-of-freedom vehicle model

y
x

Rw

l1 l1l2

l4 l3

Figure 3.9: MDOF vehicle model on a beam

MDOF vehicle is modelled with two layers of a spring–dashpot systems, in which vertical and
pitch motion for vehicle itself and bogies are involved. The vehicle model is based on a TGV
locomotive (French high-speed train), cf. Lei [10]. Figure 3.3 illustrates in details a 10-degrees-
of-freedom system, while a simplified model illustration is presented in Figure 3.9. Coupling
the vehicle system and a railway track is done through spring–dashpot systems. Parameters for
the MDOF vehicle model are listed in Table 3.2 and illustrated in Figure 3.3.

Distance between wheels axes in a bogie l1 3 m
Distance between inner wheels axes of locomotive l2 11 m

Distance from the centre axis to the front of a vehicle body l3 12.02 m
Distance from a centre axis to the end of a vehicle body l4 10.14 m

Mass of a car body Mc 53500 kg
Pitch moment of inertia for car body Jc 2.24 ·106 m4

Secondary suspension stiffness Ksu,2 1.31 MN/m
Secondary suspension damping Csu,2 30 kN·s/m

Mass of bogie Mt 3260 kg
Pitch moment of inertia for bogie Jt 2.45 ·103 m4

Primary suspension stiffness Ksu,1 3.28 MN/m
Primary suspension damping Csu,1 90 kN·s/m

Mass of wheel set Mw 2000 kg
Radius of a wheel Rw 0.458 m

Rigidity of a wheel Kw 18 GN/m
Damping of a wheel Cw 18 kN·s/m

Table 3.2: Parameters for MDOF vehicle model
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Deflections of the bridge at two different vehicle speeds, 47m/s and 69m/s, for both, multi-
ple SDOF vehicles and MDOF vehicle models, are presented in Figure 3.10 and Figure 3.11,
respectively.
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Figure 3.10: Deflection of a bridge at vehicle speed 47m/s. a) Multiple single-degree-
of-freedom vehicles model; b) Multi-degree-of-freedom vehicle model

According to Figure 3.10 bigger deflection of the bridge is induced by multiple single-degree-
of-freedom vehices model. However, maximum difference of the bridge deflection between
multiple SDOF and MDOF models at a vehicle speed 47m/s is just 0.12% of the maximum
absolute deflection. Thus, the difference is considered negligible. As it was expected the biggest
deflection can be seen at the mid-span of the bridge.
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Figure 3.11: Deflection of a bridge at vehicle speed 69m/s. a) Multiple single-degree-
of-freedom vehicles model; b) Multi-degree-of-freedom vehicle model

As it can be seen in Figure 3.11, at a vehicle speed 69m/s, bigger deflection of the bridge appears
in the MDOF vehicle model this time. As in the previous case the difference is very small, just
0.85% of the maximum absolute bridge deflection. Therefore, it is again considered too small
to show any significant differences between the two models.

In general, results provided by the two models described in this section are extremely simi-
lar. The general tendency of increasing bridge deflection due to increasing vehicle speed is
noticed for both models. Compared to previous sections, where only one load was introduced,
behaviour of the bridge and maximum absolute deflections are very different. Thus, the effects
of force distribution between wheel sets should always be introduced.
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3.4.3 Multiple SDOF vehicles and MDOF models including railway track
irregularities

To model accurately the effects of a passing vehicle, track irregularities have to be introduced
since they induce additional high frequency vibrations to the structure. In this section, two dif-
ferent profiles for vertical track unevenness are presented. Later, bridge deflections obtained
using multiple SDOF vehicles and MDOF models are compared once again but this time in-
cluding track irregularities. At the end, a small study of locomotive wheel acceleration due to
railway track irregularities is given.

Railway track unevenness

The theory covering railway track unevenness is given in Appendix A. Two different vertical
track profiles illustrating track unevenness are presented in Figure 3.12. These two different
vertical track unevenness profiles, Profile A and Profile B, are used in this section further at
bridge deflection comparison and wheel acceleration analysis.
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Figure 3.12: Vertical track unevenness: a) Profile A; b) Profile B

Bridge deflection comparison between multiple SDOF vehicles and MDOF models includ-
ing track irregularities

Bridge deflections are determined using the same multiple SDOF vehicles and MDOF models
as they are represented at Subsection 3.4.2. Track irregularities are implemented in both models.
This time, bridge deflection is compared according to two different vertical track unevenness
profiles at a constant vehicle speed 69m/s. A particular speed of 69m/s is chosen (not 47m/s)
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because higher speeds cause bigger forces induced by track unevenness.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Time [s]

 x
 c

oo
rd

in
at

e 
[m

]

Maximum absolute deflection 1.9962 [mm]

 

 

Position of maximum deflection at instant time;
Vehicle position;
Maximum absolute deflection.

D
is

pl
ac

em
en

t [
m

m
]

−2

−1.5

−1

−0.5

0

0.5

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Time [s]

 x
 c

oo
rd

in
at

e 
[m

]

Maximum absolute deflection 2.055 [mm]

 

 

Position of maximum deflection at instant time;
Vehicle position;
Maximum absolute deflection.

D
is

pl
ac

em
en

t [
m

m
]

−2

−1.5

−1

−0.5

0

0.5

(b)

Figure 3.13: Deflection of a bridge at a vehicle speed 69m/s, vertical track unevenness
Profile A. a) Multiple single-degree-of-freedom vehicles model; b) Multi-
degree-of-freedom model

Regarding Figure 3.13, bigger bridge deflection is obtained for the MDOF model at a vehicle
speed of 69m/s using unevenness Profile A. However, the difference of the bridge deflection
obtained from the two models is small, 2.9% of the maximum absolute deflection.
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Figure 3.14: Deflection of a bridge at a vehicle speed 69m/s, vertical track unevenness
Profile B. a) Multiple single-degree-of-freedom vehicles model; b) Multi-
degree-of-freedom model

For Profile B, see Figure 3.14, bigger bridge deflection is obtained with the MDOF model. The
difference is just 0.11% of the maximum absolute deflection between two models.

Comparing multiple SDOF vehicles model and MDOF vehicle model, it can be seen that track
irregularities are more noticeable for the MDOF model. This is caused by accelerating the
wheel set, which has relatively small mass and high stiffness thus, it induces significant forces
in the system.
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In general, it can be seen that while track unevenness does have some effect on the behaviour of
the beam, the overall effect is not very high. Due to relatively big bridge mass compared to that
of a wheel set, the high frequency vibrations of the wheels do not cause big beam displacements.
Further, locomotive wheel set acceleration analysis is done.

Locomotive wheel acceleration due to vertical track unevenness

A small study regarding variation of the wheel accelerations due to vertical track irregularities
is performed. For comparison three different cases are considered: track without irregularities,
track with vertical unevenness defined by Profile A and track with vertical unevenness defined
by Profile B. The results are determined using MDOF model at a vehicle speed 69m/s for all
three cases.
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Figure 3.15: Acceleration of a locomotive wheel at speed 69m/s, regarding track irreg-
ularities. a) No vertical track unevenness added; b) Vertical track uneven-
ness defined by Profile A; c) Vertical track unevenness defined by Profile
B
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In Figure 3.15, the maximum absolute locomotive wheel acceleration increases up to 60 times
introducing track irregularities with Profile A and up to 68 times with Profile B. Thus, it is clear
that vertical track unevenness has a significant influence on the behaviour of the vehicle. The
forces caused by wheel accelerations are mostly noticeable in the bogies of the vehicle, while
the effect on the bridge is small because of the relatively small mass of the wheel sets compared
to the bridge itself.

Previously it was found out that bigger bridge deflection is determined using Profile A because
it contains higher amplitude irregularities. However, higher wheel accelerations are obtained
using Profile B. It is because at Profile B irregularities change more drastically, i.e. increases
and decrease with steeper slopes, cf. Figure 3.12.

3.4.4 Review of the results

The effects of added mass from the locomotive itself are analysed. Introducing the mass as a
point mass or through a spring–dashpot system, in SDOF vehicle model, shows a considerable
difference in the obtained results. Since a real locomotive does not act only at one point, four
contact points are introduced to have a more realistic model. This is done in two different ways,
one by introducing four SDOF vehicles, second by introducing an MDOF vehicle which models
the real locomotive suspension system. The obtained results from a multiple SDOF vehicles
model and MDOF vehicle model are similar. However, a big difference can be seen comparing
the results from single contact point and four contact points models. In the real world railway
tracks have a certain degree of a vertical irregularities, which, in the thesis, are introduced for
multiple SDOF vehicles and MDOF vehicle models. The track unevenness causes significant
vibrations in the vehicle bogies but the effects on the bridge are small.

It can be concluded that MDOF vehicle model is the most realistic way to model the locomotive,
as it accounts for train mass, multiple contact points and reflects the effects of track unevenness
most accurate.
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Chapter 4
Finite element method in three dimen-
sions

The FEM in three dimensions is used to create the final computational model used in this thesis.
Firstly, in this chapter, general formulation of three-dimensional beam element is introduced in
Section 4.1, together with transformation between the local and the global coordinate systems in
Subsection 4.1.1. Based on the three-dimensional beam element the more advanced computa-
tional model, including multiple phenomena is created. It is described in the paper “Numerical
modelling of dynamic response of high-speed railway bridges considering vehicle–structure and
structure–soil–structure interaction” presented in the Appendix A. Here, in section Section 4.2,
only a brief introduction to the final computational model is given together with some results.

4.1 General formulation

For the three-dimensional (3-D) analysis, 3-D beam elements with six degrees of freedom (three
translation components along the x, y, z-axis and three rotational components around these axes)
at each node are used, as shown in Figure 4.1.

Lb

z

x
y

b,1θ

b,1ψ

b,1φ

wb,1

ub,1

vb,1 b,2ψ
b,2φ

wb,2
vb,2

b,2θ ub,2

Figure 4.1: Beam element with six degrees of freedom at each node

The following assumptions are used for finite element matrix derivations:

• Small deformations (axial deformation, bending and twist can be decoupled and looked
at separately);

• Euler-Bernoulli beam theory for bending (plane sections normal to the beam axis remain
plane and normal to the beam axis during the deformation);

• Twist is considered free (Saint-Venant torsion).
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4.1 General formulation

For axial deformation in the x direction the partial differential equation is:

EbAb
∂2ub(x, t)

∂x2 −ρbAb
∂2ub(x, t)

∂t2 =−qx, (4.1)

where qx is the axial force. Bending in the x,z-plane is based on Euler-Bernoulli theory:

ρbAb
∂2wb(x, t)

∂t2 +EbIb,y
∂4wb(x, t)

∂x4 = qz, (4.2)

where qz is the external force in z direction. Similarly, for bending in the x,y-plane:

ρbAb
∂2vb(x, t)

∂t2 +EbIb,z
∂4vb(x, t)

∂x4 = qy, (4.3)

where qy is the external force in the y direction. Finally, torsion around the x-axis is governed
by:

GbTb
∂2θb(x, t)

∂x2 −ρbIb,0
∂2θb(x, t)

∂t2 =−mx, (4.4)

where mx is the external moment around the x-axis.

The finite element matrices are formed by combining the axial deformation (degrees of freedom
ub,1, ub,2), the bending problem in the x,z-plane (degrees of freedom wb,1, ψb,1, wb,2, ψb,2), the
bending problem in the x,y-plane (degrees of freedom vb,1, ϕb,1, vb,2, ϕb,2) and torsion around
the x-axis (θb,1, θb,2). The finite element formulation is written as:

[MB]{d̈B(t)}+[CB]{ḋB(t)}+[KB]{dB(t)}= {fB(t)}, (4.5)

where {d̈B(t)} and {ḋB(t)} are the acceleration vector and the velocity vector, respectively.
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4.1 General formulation

The nodal displacement vector {dB(t)} is:

{dB(t)}=





ub,1(t) translation in the x direction at 1st node;

vb,1(t) translation in the y direction at 1st node;

wb,1(t) translation in the z direction at 1st node;

θb,1(t) rotation around the x-axis at 1st node;

ϕb,1(t) rotation around the y-axis at 1st node;

ψb,1(t) rotation around the z-axis at 1st node;

ub,2(t) translation in the x direction at 2nd node;

vb,2(t) translation in the y direction at 2nd node;

wb,2(t) translation in the z direction at 2nd node;

θb,2(t) rotation around the x-axis at 2nd node;

ϕb,2(t) rotation around the y-axis at 2nd node;

ψb,2(t) rotation around the z-axis at 2nd node.

(4.6)

The governing equations for the structure are all discretized, using the standard Galerkin ap-
proach. For axial deformation linear shape functions are used:

{Φ̌a(x)}T =




1− x
Lb

due to unit translation in the x direction at 1st node;

x
Lb

due to unit translation in the x direction at 2nd node.
(4.7)
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4.1 General formulation

For bending in the x,z-plane cubic shape functions are used:

{Φ̌b,z(x)}T =





1− 3x2

L2
b
+ 2x3

L3
b

due to unit translation in the z direction at 1st node;

x
(
−1+ 2x

Lb
− x2

L2
b

)
due to unit rotation around the y-axis at 1st node;

x2

L2
b

(
3− 2x

Lb

)
due to unit translation in the z direction at 2nd node;

x2

Lb

(
1− x

Lb

)
due to unit rotation around the y-axis at 2nd node.

(4.8)

Similarly, for bending in the x,y-plane cubic shape functions are used:

{Φ̌b,y(x)}T =





1− 3x2

L2
b
+ 2x3

L3
b

due to unit translation in the y direction at 1st node;

−x
(
−1+ 2x

Lb
− x2

L2
b

)
due to unit rotation around the z-axis at 1st node;

x2

L2
b

(
3− 2x

Lb

)
due to unit translation in the y direction at 2nd node;

− x2

Lb

(
1− x

Lb

)
due to unit rotation around the z-axis at 2nd node.

(4.9)

For torsion around the x-axis linear shape functions are used:

{Φ̌t(x)}T =




1− x
Lb

due to unit rotation around the x-axis at 1st node;

x
Lb

due to unit rotation around the x-axis at 2nd node.
(4.10)

Differentiating and integrating the shape functions shown above, the three-dimensional elastic
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4.1 General formulation

stiffness matrix [KB] for a 3-D beam elements is obtained:

[KB] =



EbAb
Lb

0 0 0 0 0 −EbAb
Lb

0 0 0 0 0
12EbIb,z

L3
b

0 0 0 6EbIb,z

L2
b

0 −12EbIb,z

L3
b

0 0 0 6EbIb,z

L2
b

12EbIb,y

L3
b

0 −6EbIb,y

L2
b

0 0 0 −12EbIb,y

L3
b

0 −6EbIb,y

L2
b

0
GbTb

Lb
0 0 0 0 0 −GbTb

Lb
0 0

4EbIb,y
Lb

0 0 0 6EbIb,y

L2
b

0 2EbIb,y
Lb

0
4EbIb,z

Lb
0 −6EbIb,z

L2
b

0 0 0 2EbIb,z
Lb

EbAb
Lb

0 0 0 0 0
12EbIb,z

L3
b

0 0 0 −6EbIb,z

L2
b

Symm 12EbIb,y

L3
b

0 6EbIb,y

L2
b

0
GbTb

Lb
0 0

4EbIb,y
Lb

0
4EbIb,z

Lb


(4.11)

where the element is described by: element length Lb, cross-sectional area Ab, Young’s modulus
Eb, shear modulus Gb, cross-sectional moment of inertia with respect to the y-axis Ib,y, cross-
sectional moment of inertia with respect to the z-axis Ib,z, torsional constant Tb.

The consistent mass matrix [MB] for a 3-D beam element is determined in the same manner as
the stiffness matrix:

[MB] =
ρbAbLb

420



140 0 0 0 0 0 70 0 0 0 0 0
156 0 0 0 22Lb 0 54 0 0 0 −13Lb

156 0 −22Lb 0 0 0 54 0 13Lb 0
140Ib,0

Ab
0 0 0 0 0 70Ib,0

Ab
0 0

4L2
b 0 0 0 −13Lb 0 −3L2

b 0
4L2

b 0 13Lb 0 0 0 −3L2
b

140 0 0 0 0 0
156 0 0 0 −22Lb

Symm 156 0 22Lb 0
140Ib,0

Ab
0 0

4L2
b 0

4L2
b


(4.12)

where ρb is mass density and Ib,0 is polar moment of inertia of the cross-sectional area Ab. The
damping matrix [CB] for a 3-D beam element is determined by Rayleigh damping.

4.1.1 Transformation of coordinates

This section is based on Paz [11]. The beam element discussed in Section 4.1 is located along
the x-axis. Elements may have any orientation in space. The stiffness matrix and mass matrix
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4.1 General formulation

given by Equation 4.11 and Equation 4.12, respectively, refer to local coordinates system (x, y, z
directions) which are arbitrarily orientated in the global coordinates system (X, Y, Z directions).
Elements which correspond to the same nodal coordinates should be added together. This is
done in the same reference system, i.e. global coordinates system.

In Figure 4.2 the vector {A} can represent any force and displacement at the nodal coordinates
of the joints of the structure. The vector {A} = {Xc Yc Zc} has his components along the
global system of coordinates (X, Y, Z). Components of the same vector along the local system
of coordinates (x, y, z ) are obtained by projections along that axis of vector {A} components.

Ay

z

x

Z

X

Y

Figure 4.2: Components of a general vector {A} in local coordinates and global coor-
dinates, [11]

In matrix notation the transformation is written as:xc

yc

zc

=

cosxX cosxY cosxZ
cosyX cosyY cosyZ
coszX coszY coszZ

Xc

Yc

Zc

 , (4.13)

where cosxY is defined as the angle between the local x-axis and the global Y-axis. The rest of
the terms of the matrix are defined correspondingly. In order to calculate the direction cosines
of the transformation matrix [T1] it is sufficient to know the coordinates of the nodes of a beam
element along the local x-axis and coordinates of a third point located in the x,y local plane (y
is the principal axis of the cross-sectional area). From Equation 4.13 the transformation matrix
is defined as:

[T1] =

cosxX cosxY cosxZ
cosyX cosyY cosyZ
coszX coszY coszZ

 . (4.14)

For the 3-D beam element, the transformation of nodal displacement vectors involve the trans-
formation of linear and angular displacement vectors at each joint of the segment. Therefore,
for two joints there will be a transformation of a total of four displacements/rotations triplets.
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The transformation matrix for 12 nodal degrees of freedom is given:

[T] =


[T1] 0 0 0

0 [T1] 0 0
0 0 [T1] 0
0 0 0 [T1]

 . (4.15)

The transformed stiffness matrix of the element [KBT] and the mass matrix [MBT] in reference
to global coordinates are defined as follows:

[KBT] = [T]T [KB][T], (4.16a)

[MBT] = [T]T [MB][T]. (4.16b)

4.2 Description of computational model

Based on basic 3-D beam models described in Section 4.1 advanced computational model
is implemented and described in paper “Numerical modelling of dynamic response of high-
speed railway bridges considering vehicle–structure and structure–soil–structure interaction”
presented in the Appendix A. A brief description of this model is given in this section.

The bridge structure is modelled in three dimensions using two-noded 3-D beam elements. The
track structure is composed of three layers (rails, sleepers and deck components) connected by
spring and dashpot systems (which model the rail-pads and ballast). The considered bridge has
two railway tracks, but only one is modelled as a layered structure, while the second one is ac-
counted for by point masses offset from the deck centre line. The bridge supports are modelled
as 3-D two-noded beam elements with rigid surface footings, which rest on the subsoil. In order
to model the dynamic soil behaviour, a semi-analytical approach is used, utilizing a solution for
Green’s function in frequency wave-number domain, based on Andersen and Clausen [8]. Then
coupled bridge–soil system is solved in frequency domain. The vehicle is modelled as a 2-D
MDOF system, with two layers of spring-dashpot suspension system. The interaction between
the wheels and the rail is modelled through non-linear Hertzian force. Due to this, an iterative
time domain solution based on Newmark scheme is implemented. Since the bridge-soil system
is solved in frequency domain and the vehicle in time domain, another iteration procedure is
implemented for a simultaneous solution.

The geometry of the analysed bridge is shown in Figure 4.3. The bridge has a total length of
200m, which is subdivided into eight spans, each 25m long. Sleepers are spaced 0.6m apart.
From each side of the bridge there is 25m of the track which is attached to a rigid surface.
The bridge is supported by seven 6m tall pylons, each resting on a rigid surface footing. The
material, cross-sectional and other properties can be found in Appendix A.
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Figure 4.3: The bridge structure used in the computational model (measures in m)

4.3 Soil effects to the computational model

The results of the computational model are presented for four underlying soil cases as described
bellow:

Case 0 : Bedrock, i.e. bridge supports are fixed,

Case 1 : Half-space of clay,

Case 2 : 5m of clay over half-space of sand,

Case 3 : 10m of clay over half-space of sand.

Properties for the underlying soil are presented in Appendix A. In this section only a brief
review of the results is presented.

The excitation point is excited and the response of the structure is observed at response point 1
(on the rail) and response point 2 (on the deck directly under the rail) as shown in Figure 4.3.
The frequency response functions (FRFs) for the four mentioned cases are compared and the
effects of the soil to the dynamic behaviour of the structure is illustrated.

The results are presented in Figure 4.4. It can be seen that introducing soil body instead of
fixed supports, greatly reduces the first eigenfrequency, as well as changes the shape of the first
eigenmode. It can be seen that the width of the peaks increases, while magnitudes decrease.
This is caused by more inertia and damping, which are introduced to the system in Cases 1, 2, 3.
This illustrates that the soil changes the dynamic structural behaviour of the system completely.
The lower values of the first eigenfrequency makes the critical speeds, of the travelling vehicle,
easier to achieve.
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Figure 4.4: FRFs for four different soil stratifications: Response at Response point 1
(top) and Response point 2 (bottom)

4.4 Effects of including the vehicle in the model

The effects of the vehicle to the dynamic behaviour of the structure are analysed. The results
are compared between a model that includes the MDOF vehicle model together with track
unevenness and a model where the vehicle is introduced just as constant moving forces. The
results are investigated for three different speeds for soil stratification Case 1.

In Figure 4.5 it is seen that for the MDOF vehicle model with increasing speed, the high-
frequency vibrations become more pronounced. On the other hand, the constant force model
underestimates these vibrations. The difference between these two models increases with in-
creasing speed. With the analysed underlying soil case, the inertia and damping added to the
system, reduces the high–frequency vibrations, but calculations done for stiffer soil cases show
that with increasing stiffness of the soil high–frequency vibrations increase. Therefore, proper
vehicle model is an important aspect for modelling the dynamic behaviour of the whole system.

4. Finite element method in three dimensions 65



4.5 Structure–soil and structure–soil–structure interaction

0 2 4 6 8

−15

−10

−5

0
x 10

−4

Time [s]

D
is

pl
ac

em
en

t [
m

]

 

 

Force
Vehicle

0 10 20 30
0

0.5

1

x 10
−4

Frequency [Hz]

D
is

pl
ac

em
en

t [
m

]

 

 

Speed: 30m/s

Force
Vehicle

0 2 4 6 8

−15

−10

−5

0
x 10

−4

Time [s]

D
is

pl
ac

em
en

t [
m

]

0 10 20 30
0

0.5

1

x 10
−4

Speed: 50m/s

Frequency [Hz]

D
is

pl
ac

em
en

t [
m

]

0 2 4 6 8

−15

−10

−5

0
x 10

−4

Time [s]

D
is

pl
ac

em
en

t [
m

]

0 10 20 30
0

0.5

1

x 10
−4

Speed: 70m/s

Frequency [Hz]

D
is

pl
ac

em
en

t [
m

]

Figure 4.5: Time (left) and frequencies (right) series of the displacements of the model
excited by a passing vehicle for the soil stratification Case 1

4.5 Structure–soil and structure–soil–structure interaction

Due to limited time some results are not presented in the paper in Appendix A, thus analysis of
the coupling between structure and soil is presented here. In previously described computational
model that includes the soil body, the structure–soil–structure interaction (SSSI) is taken into
account. Thus, waves can travel through soil from one foundation to the others, affecting their
behaviour.

This effect can be observed in Figure 4.6 where the the maximum displacement of a footing for
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different vehicle speeds is investigated. A more detailed description is given in Appendix A.
It can be seen that for Case 1 (half-space of clay) the maximum displacements are obtained
around the speed 56m/s, which is Rayleigh wave speed in clay. While the other two cases of
soil do not indicate any significant SSSI.
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Figure 4.6: Maximum displacement dependency on speed, SSSI

Another way of modelling the soil is by including just structure–soil interaction (SSI). In this
way, the effects from one footing displacement are not coupled with other footings. The advan-
tage of modelling just SSI, is reduced computational time, as the impedance matrix only needs
to be found for one footing and then be applied to all others, if all the footings have the same
shape. Once again the effects of different speeds are investigated using this model, the results
are presented in Figure 4.7. It can be seen that the critical speed seen for Case 1 disappears,
while the behaviour for other cases stays very similar.
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Figure 4.7: Maximum displacement dependency on speed, SSI

It can be concluded that SSSI can be a factor in the overall structure behaviour, but it is limited
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to homogeneous half-space for soil body, and even then the effects are not high. For layered
half-space the SSI should be sufficient to obtain reliable results, at least for the investigated
cases.
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Chapter 5
Experimental tests on a small-scale
model

In this chapter, experimental testing of a small-scale bridge model is presented. The tests are
performed in order to validate the computational model, described in previous chapter. A de-
tailed description of the experiment is in “Experimental validation of a numerical model for
three-dimensional railway bridge analysis by comparison with a small–scale model” given in
Appendix B. Here only a short introduction with some results is presented. Firstly, a brief
description of the experimental model is given in Section 5.1. Later in Section 5.2 the computa-
tional model is presented. Measuring equipment and cases for tests are described in Section 5.3.
Finally, validation of the computational model is given in Section 5.4 and results obtained from
both models are compared in Section 5.5.

5.1 Overall description of experimental small–scale model

A dynamic analysis is performed of a multi-span bridge structure placed on subsoil, thus imi-
tating structure–soil–structure interaction, as shown in Figure 5.1. The bridge model consists
of deck, columns and footings which are screwed together, therefore creating stiff joints.

Figure 5.1: Experimental small–scale model

The previously listed parts are made of Plexiglas. A railway track is made of separate LEGO®

railway pieces which are interlocked between each other and bolted to the bridge deck. To
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recreate a realistic structural behaviour, a LEGO® vehicle, powered by electric motor, with four
wheel sets is used to traverse the bridge. The whole structure is placed on a subsoil which
is substituted by mattress foam material. To fix the boundaries the mattress is placed within
a box of plywood. At either end of the bridge, ramps are built of concrete tiles to provide
space for acceleration and deceleration tracks. Also the bridge ends are fixed using ramps as
supports and additional weights to imitate clamps. At the end of the track a break is employed
to stop a vehicle completely. More detailed description of the whole model and construction
considerations of particular parts of the model are given in Appendix B.

5.2 Description of computational model

The computational model described in this section is based on the main computational model
presented in Section 4.2, including few modifications.
The bridge structure is based on finite element analysis, while the subsoil is implemented by
using a semi-analytical approach in the computational model. To model the bridge deck and
columns three-dimensional beam elements are used. These elements have two nodes and six
degrees of freedom at each node, three rotational and three translational. Bending of the ele-
ment is describe by equation of motion based on Bernoulli-Euler beam theory, while torsion is
considered as Saint-Venant torsion. The computational model accounts for added masses, such
as accelerometers, wires, etc. Also elements with higher stiffness are introduced to properly
recreate bolted railway track sections. Governing equations of motion, illustration of a 3-D
beam element and exact properties used in the computational model are given in Appendix B.
The vehicle is modelled as a two-dimensional 10-degrees-of-freedom system with two layers
of suspension implemented as spring–dashpot systems. The vertical dynamic interaction be-
tween wheel and rail is implemented as a non-linear Hertzian force. Also track irregularities,
i.e. railway track joints in the experimental model, are accounted for in the computational by in-
troducing periodically repeating bumps. The governing equations for vehicle, interaction forces
and track irregularities, as well as parameters for the listed computational model parts are given
in Appendix B.
To model the underlying soil the semi-analytical approach is employed, which utilizes the
Green’s function in frequency and wave-number domain. The solution is valid for homogeneous
viscoelastic material with horizontal boundaries between layers. The structure-soil-structure in-
teraction is implied by coupling bridge structure with the underlying soil through rigid footings
simply placed on the subsoil. Therefore a complex dynamic stiffness matrix for the footings and
an impedance matrix for the subsoil are computed, first individually and then added together.
More detailed explanation of structure–soil–structure interaction can be found in Appendix B.

5.3 Testing cases and measuring equipment

Two different types of tests are performed to investigate dynamic behaviour of the structure.
Firstly, tests by applying impulse forces to obtain frequency response functions are performed
to validate the computational model. The impulse forces are induced by hitting the structure
with an impact hammer at excitation points as shown in Figure 5.2.
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Figure 5.2: Accelerometers placing on the structure and excitation points (1 A and 1
B). Measures in milimeters

Later, tests using a traversing vehicle are done to analyse model response in frequency domain.
These tests are performed with three different vehicle speeds: 0.53m/s, 0.97m/s and 1.31m/s.
All experimental tests are done for five different cases:

• Case A: The bridge model is fixed on a solid surface (the laboratory floor) and no rail is
present (this case is investigated just for tests with an impulse force),

• Case B: The bridge model is fixed on a solid surface (the laboratory floor) and the rail is
bolted to the bridge deck,

• Case C: The whole structure is placed on one layer of dry mattress foam,

• Case D: The structure is placed on two layers of dry mattress foam,

• Case E: The structure is placed on one layer of soaked mattress foam.

More information about testing procedure itself and exact subsoil parameters used in the com-
putational model, obtained after validation, are given in Appendix B. The Case E is not included
in the paper due to limited time, thus the calibrated soaked mattress foam parameters are given:
Young’s modulus E = 79000N/m2, shear modulus G = 27200N/m2, mass density ρ = 650kg/m
and Poisson’s ratio ν = 0.45.

The equipment used for testing the small-scale model was manufactured by Brüel & Kjær, the
following equipment is used:

• 1× Pulse front-end, type 3560 D,

• 1× Pulse front-end power supply,

• 1× PC with Pulse LabShop Fast Track Version 18.1.1.9.,

• 1× Ethernet crossover (LAN cable to connect front-end with PC),

• 1× Pulse dongle (USB flash drive with boot-able Pulse LabShop software license),

• 1× NEXUS conditioning amplifier, type 2692-C,

• 13× accelerometers, type 4507 Bx,
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• 1× impact hammer, type 8202 (used just for tests with impulse force to obtain FRF).

A detailed description of the measuring equipment set-up with a sketch and information about
tools listed above can be found in Appendix B.

5.4 Computational model validation

In this section, the results obtained from experimental and computational models, using an
impulse force, are presented and compared between each other. Frequency response functions
are given in Figure 5.3 and Figure 5.4, They are obtained at positions of accelerometers 5 and
7, as shown in Figure 5.2.
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Figure 5.3: FRF comparison between experimental and numerical models for Case A
(bridge without railway) and Case B (bridge with railway). Graphs on the
left present data from accelerometer 5, while graphs on the right are from
accelerometer 7

In Figure 5.3 can be seen that results obtained from experimental and computational models
follow the same path and match quite well. When subsoil, i.e. mattress foam, is introduced, for
Cases C, D and E, results start to differ, cf. Figure 5.4, but still show that computational model
is able to predict real structure behaviour fairly well. The difference can appear because of
boundaries which are present in the experimental model but not in the computational simulation.
The main focus lies on first eigenfrequency since validation of the computational model is
done according to it. In Figure 5.3 it can be seen that the highest value, of 61Hz, for the
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first eigenfrequency is obtained in Case B and a bit lower value, 46Hz, in Case A, thus telling
that structural stiffness is increased by bolting the track to the bridge. Figure 5.4 shows the
first eigenfrequency at 24Hz, 22Hz and 19Hz for Case C, Case D and Case E, respectively.
According Figure 5.4 it can be seen that the overall system stiffness is decreased significantly by
placing the structure on mattress foam, in this way enabling the structure movement downwards.
It can be seen that the magnitude of the peaks decreases, this is due to lower eigenfrequencies.
For soaked foam (Case E) the added mass increases the inertia in the system, thus reducing the
magnitude of the peaks as well.
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Figure 5.4: FRF comparison between experimental and numerical models for Case C
(bridge on one layer of foam), Case D (bridge on two layers of foam) and
Case E (bridge on one layer of soaked foam). Graphs on the left present
data from accelerometer 5, while graphs on the right are from accelerome-
ter 7
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5.5 Results comparison

In this section, the results in frequency domain of the tests with a passing vehicle are presented
for Cases B, C, D and E. Tests with a passing vehicle are not performed for Case A, since there
is no railway track introduced and no vehicle can pass the bridge. The structural response is
obtained from accelerometer 5, the position of which can be seen in Figure 5.2. The same speeds
are analysed with calibrated computational models. The results are presented in Figure 5.5,
Figure 5.6, Figure 5.7 and Figure 5.8 for Cases B, C, D and E, respectively. The methodology
used for data analysis is explained in Appendix B.
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Figure 5.5: Accelerations in frequency domain; Case B (bridge with railway)

In Figure 5.5 it can be seen that the highest acceleration occurs in the 63Hz 1/3 octave band,
thus the value is considered as the first eigenfrequency for Case B. Figure 5.6, Figure 5.7 and
Figure 5.8 show that accelerations peak in the 80Hz 1/3 octave band for Cases C, D and E. The
structural response for Case E, when the subsoil is substituted by soaked mattress foam, is more
consistent than for Case C or Case D, using dry foam. It might be because of increased density
of foam which introduced more inertia in the system and provided more linear response.
The results for all four cases show the same trend, lower accelerations at low-frequency and
higher accelerations at high-frequency. Also acceleration response for a passing vehicle is con-
stantly underestimated in computational model, however the results from both, computational
as well as experimental model, follow the same path. Moreover, computed response from the
computational model match better with experimental data at high-frequency. All these differ-
ences may arise from different implementation of the vehicle and the track in the computational
and experimental models. It might be that the vehicle and the track in the computational model
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do not recreate all the effects caused by the LEGO® vehicle on the real small-scale structure.
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Figure 5.6: Accelerations in frequency domain; Case C (bridge with railway on one
layer of dry foam)
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Figure 5.7: Accelerations in frequency domain; Case D (bridge with railway on two
layers of dry foam)
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Figure 5.8: Accelerations in frequency domain; Case E (bridge with railway on one
layer of soaked foam)
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Chapter 6

Conclusions and discussion

In this chapter, the conclusions for the overall work done for the thesis, including the papers
“Numerical modelling of dynamic response of high-speed railway bridges considering vehicle–
structure and structure–soil–structure interaction” and “Experimental validation of a numerical
model for three-dimensional railway bridge analysis by comparison with a small–scale model”,
are presented. The dynamic behaviour of a railway bridge structure excited by a high-speed
train was studied. The effects from a number of different phenomena were investigated.

At the beginning the most simple cases were analysed, where the bridge was modelled as a 2-D
simply supported beam and the vehicle as a moving constant force. It was done using both
analytical and FEM based approaches. Thus, the FEM computational model was validated.
Further, more advanced vehicle models were implemented, that are able to recreate the dynamic
effects from the moving locomotive better. Finally, the MDOF vehicle model was chosen for
further analysis, as it is able to include the effects from uneven track profile and thus, a non-
linear wheel–rail interaction.

Further, a 3-D computational model was introduced, to better represent the analysed structure.
A computational model for a multi-span bridge with seven pylons, placed on surface footings
was created. The created model includes non-linear wheel–rail interaction, as well as structure–
soil–structure interaction. It is determined that track irregularities have a significant effect on
the structure behaviour, especially with increasing vehicle speeds. At a vehicle speed 70m/s
(250km/h) this effect becomes the governing factor in the structural behaviour, if the underlying
soil is stiff. Further, the effects from the underlying soil properties were analysed. Introducing
the soil, instead of fixed supports, changes the behaviour of the system drastically: the first
eigenfrequencies are reduced and the eigenmodes change.

Small–scale laboratory tests were performed, to validate the mentioned computational model.
Experimental model of a multi-span bridge, with surface footings was constructed. The effects
from a passing locomotive were reproduced by a small–scale vehicle, travelling on a plastic
railway track. Soil was substituted by mattress foam, which was later soaked to reduce the wave
travelling speed in the material. The compared FRFs show good agreement between numerical
and experimental models, while the vehicle induced deck accelerations are underestimated in
the computational model. A better defined experimental vehicle model would help to reduce
the differences.

The work presented in this thesis offers an approach to model a complicated system involving a
number of different phenomena, the results show a reasonably good agreement between exper-
iments and calculations. Further, work could reduce the number of approximations used in the
computational model, also more experiments could be carried out for a better calibration of the
vehicle model.
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