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ABSTRACT

The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-loaded
cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. Firstly, a
modal method for formulation of Green’s matrix is derived by means of modal decomposition. The
method builds on the recent advances on bi-orthogonality conditions for multi-modal waveguides,
which are derived here for an elastic fluid-filled cylindrical shell. Subsequently, modal decom-
position is applied to the bi-orthogonality conditions to formulate explicit algebraic equations to
express the modal amplitudes independently of each other. Secondly, the method is verified against
results available in the literature and the convergence is studied as well. Thirdly, the work con-
ducted in the same references is extended by employing this method to assess the near field energy
distribution when the coupled vibro-acoustic waveguide is subjected to separate pressure and ve-
locity excitations. Further, it has been found and justified that the bi-orthogonality conditions can
be used as a ’root finder’ to solve the dispersion equation. Finally, it is discussed how to predict the
response of a fluid-filled shell when the excitation is imported from CFD-modelling of an operating
pump.

1 INTRODUCTION

This paper is concerned with analysis of fluid- and structure borne noise in piping systems con-
veying a heavy acoustic medium, such as water or sewage. The field of acoustical and mechanical
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noise in piping systems share many common interests e.g. by industrial partners as well as a wide
range of Research Departments around the world. However, the main issue from the view point
of the co-authors in this paper (Grundfos Holding A/S) is the sound emission and mechanical vi-
brations as these are directly related to comfort and fatigue durability. Consequently, it is essential
to have an understanding of the acoustical and mechanical vibrations and how to suppress these to
accommodate with vibrational demands. This immediately entails a coupled vibro-acoustic model
to cope with the fluid-structure interaction.

For the coupled vibro-acoustic waveguide we employ the classical models of an infinite thin
elastic cylindrical shell and an inviscid compressible fluid with no mean flow. In addition to this
the model is restricted to time-harmonic forced vibrations. This is a classical problem considered
in numerous publications with [1] and [2] being the most cited references on the subject. In these
references the acoustic and mechanical vibrations are assessed by means of the energy flow, from
which the dominant path(s) of energy transmission can be identified.

To analyse arbitrary forcing problems we employ Green’s matrix method which is a well-known
and widely acknowledged method used to recover the response of a given waveguide. This method
does indeed have a wide range of applications and in relation to the scope of this paper it has been
used in [3] to predict the near field energy distribution when applied to fundamental mechanical
loading conditions. Similarly, it has been used in [4] to calculate the power flow when applied to
acoustical loadings with the scope of mapping available CFD-data onto the shell.

However, the conventional method for formulating Green’s matrix has certain convergence and
accuracy limitations in predicting the near field energy distribution of such coupled vibro-acoustic
waveguides. Thus the motivation of this paper is to develop a sustainable method for accurately
and efficiently formulating Green’s matrix.

The method developed throughout this paper is based on the recent advances on bi-orthogonality
conditions for elastic multi-modal waveguides. These conditions have been facilitated in [5] to
calculate the modal amplitudes of a straight elastic layer and similar in [6] to solve the classical
Rayleigh-Lamb problem by means of modal decomposition. The latter reference is based on the
work conducted by Achenbach in [7], from which the work of [8] also arises. Here the concept
has been adapted to simple elastic multi-modal waveguides again with the scope of calculating
the modal amplitudes by means of modal decomposition. In the present paper the work from the
latter reference is extended to the more complex elastic multi-modal waveguide of a cylindrical
shell conveying heavy fluid. The bi-orthogonality conditions for this waveguide are derived here
and facilitated to decompose the equation system into a set of explicit algebraic equations for
calculating modal amplitudes for, in general, five fundamental loading conditions.

The paper is structured as follows: Section 2 presents the governing equations, the orthogonal-
ity condition and the power flow equations for the fluid-filled shell. In section 3 the modal de-
composition method is derived, starting with the derivation of the bi-orthogonality conditions and
subsequently the formulation of Green’s matrix for the fundamental loading conditions. Section 4
is devoted to justify of the modal decomposition method through a verification with respect to the
work done in [3] and likewise study the convergence of the power flow for acoustical loadings. Sec-
tion 5 contains an extension to the work in [3] by analysing the near field energy distribution with a
converged pressure and velocity excitation applied at different locations along the radii. This sec-
tion also contains a brief discussion of other useful properties of the bi-orthogonality conditions.
Finally, section 6 briefly outlines the procedure for mapping CFD-data onto the vibro-acoustic
model.

2 GOVERNING EQUATIONS

To assess vibrations of a fluid-filled shell we employ the standard formulation for the fluid-structure
interaction problem for a thin elastic cylindrical shell loaded by an inviscid compressible fluid. The
detailed derivations of the equations of motion from the action integral can be found in e.g. [3].
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The free vibrations of a fluid-loaded shell are described through the following system of equa-
tions in the framework of Novozhilov-Gol’denveiser’s shell theory.
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The fluid’s motion is governed by the velocity potential, φm(x, r, t), through the standard wave
equation presented in (2) with cylindrical coordinates.
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and the continuity condition at the fluid-structure interface is given as

∂φm
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=
∂wm
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(3)

In these equations the m-spectrum has been uncoupled by utilising the axial symmetry of a
cylindrical shell. The subscript, m, represents the circumferential wave-number. The axial, cir-
cumferential and radial displacements of the shell-surface are represented by u, v and w, respec-
tively and are all axial x and time t dependent. The mechanical properties of the shell are governed
by Young’s modulus E, material density ρstr and Poisson’s ratio ν, whereas the fluid properties are
governed by the fluid density ρfl and the fluid sound speed cfl. Finally, the geometry of the shell
is defined by the radius R and the thickness of the shell h.

To analyse the properties of free waves we derive the dispersion equation from (1-3) by means
of the Fourier method and employ a space and time-harmonic ansatz, exp(kx − iωt), and in ad-
dition, a linear combination of Bessel-functions for the velocity potential. In the ansatz; ω is the
angular frequency and k the axial wave-number. By substitution of the ansatz into the govern-
ing equations the linear differential equations reduce to linear algebraic equations from which the
dispersion equation is found as the condition providing a non-trivial solution to the homogeneous
linear equation system i.e. when the determinant is zero.

Confer to the chosen ansatz the equations are mapped into the frequency domain and the wave-
numbers found at discrete frequencies as illustrated in Figure 1 for a steel-shell filled with water.
The associated shell properties are given as: R = 20 mm, h = 0.35 mm, E = 210 GPa, ν = 0.3,
ρstr = 7800 kg

m3 , ρfl = 1000 kg
m3 , cfl = 1440 m

s and vibrating in breathing mode, m = 0.

For further analysis, we introduce modal coefficients defined as the ratios of amplitudes of the
axial and circumferential displacements to the amplitude of the radial displacement. These are
referred to as α and β, respectively, and are found analytically by solving any two equations of
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Figure 1. Dispersion of free waves for a fluid-filled shell vibrating in breathing mode, m = 0.

the linear system. The derivation of the dispersion equation and the modal coefficients can also be
found in e.g. [3].

In addition to the continuity and motion equations the action integral includes a set of indi-
vidually related generalised forces and displacements which are involved in the formulation of
alternative boundary/loading conditions. The forces and displacements are related through the
following complementary couples.
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Furthermore, it can be shown that the free waves are orthogonal to each other and based on any
two solutions to the governing equations in (1-3) we can apply the reciprocity theorem and derive
the condition of orthogonality for a fluid-filled shell as shown in equation (6).
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In the latter equation and hereafter we introduce the index-notation of (6) where the superscript
refers to the axial wave-number and the subscript to the circumferential wave-number. Furthermore
we introduce a scaling to the axial wave-number and the radial variable such that; kdim = k̃R−1

and rdim = r̃R, however tilde is omitted in the following for brevity.

From the reciprocity relation used in the formulation of the orthogonality condition we can
generalise to the power flow formulation by following the procedure in e.g. [1–3]. The individ-
ual power flow components given in (7) are expressed in terms of their generalised forces and
displacements.
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where γm=0 = 2, γm 6=0 = 1 and NAxial is the power flow carried in the axial components,
NTorsion the power flow carried in the circumferential components etc.

3 MODAL DECOMPOSITION METHOD AND GREEN’S MATRIX

The governing equations presented in the previous section describes free vibrations for elastic
fluid-filled cylindrical shells considered as multi-modal waveguides. This part of the analysis is
a very well established subject and is carefully explored in e.g. [1, 2]. In contrast to the free
vibrations it is usually of higher practical interest to treat forcing problems in fluid-filled shells.
The general forcing problem is formulated from the governing equation (1) and (2) by introduc-
ing non-zero right-hand-sides, corresponding to mechanical and acoustical forcing, respectively.
In this paper the forcing problems are solved by means of Green’s matrix method and to ensure
that any arbitrary forcing on the waveguide can be recovered, Green’s matrix is formulated for
five fundamental loading conditions (axial, circumferential, radial, flexural and acoustical) at each
circumferential wave-number.

The conventional method of formulating Green’s matrix is based on solving a system of com-
plex simultaneous equations. Initially, the number of waves included in Green’s matrix is truncated
to M -waves and the number of symmetry conditions expanded accordingly to obtain M -equations
associated with the M -waves. In [3] this is done by applying Galerkin’s orthogonalisation proce-
dure and orthogonalise e.g. the total pressure against individual velocity profiles. The complexity
of this equation system does indeed affect the number of waves which can be retained in the anal-
ysis and in [4] only 7 are included to assess the response for acoustical excitations.

Unfortunately, 7 waves may not always provide a converged field and with a threshold in the
range of 8 − 10 waves for this method, we are highly motivated for developing a new method
providing an efficient formulation of Green’s matrix. This can be achieved by means of the recent
advances on bi-orthogonality conditions and a method based on modal decomposition which is
outlined in the following.
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3.1 Bi-orthogonality conditions

The bi-orthogonality conditions provide great potential for solving problems of time-harmonic
forced vibrations in multi-modal waveguides. The bi-orthogonality conditions for a straight elastic
layer has been derived in [5] and in [7] for an infinite elastic layer of uniform thickness. From this
convenient reformulation of the conventional orthogonality condition the solution to the forced
time-harmonic Rayleigh-Lamb problem is formulated by means of modal decomposition in [6]
and the modal amplitudes can thus be found independently. The concept of bi-orthogonality is
then further adapted to simple waveguides in [8] e.g. to an elastic cylindrical shell, also with the
scope of calculating the modal amplitudes based on uncoupled algebraic equations rather than as
a system of simultaneous equations.

The derivation of the bi-orthogonality conditions are based on discarding the case when kn =
±kj from the conventional orthogonality condition and arrive at two equations valid only for
wave-numbers of different magnitude. Thus we are able to split the conventional orthogonality
condition into two equally valid conditions, which, fortunately, always holds true for multi-modal
waveguides. Further by subtraction of the two conditions we conveniently recover the original
orthogonality condition of (6). Effectively the bi-orthogonality conditions can be interpreted as an
advanced formulation of the reciprocity relation for multi-modal waveguides, which accounts for
the fundamental symmetry properties of free waves. This is treated in detail in [7–9].

If we introduce an acoustic medium inside the shell treated in [8] the complexity of the equa-
tion system increase significantly and the derivation of the bi-orthogonality conditions become
too comprehensive to be shown here. However, the necessary mathematical manipulations are
similar to those conducted in [8] for the simple waveguides. Based on these manipulations the
bi-orthogonality conditions for an elastic fluid-filled cylindrical shell are derived as in (8), to the
authors knowledge, for the first time.
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where the second condition is recovered simply by interchanging the indices of the first condition.

3.2 Formulation of Green’s matrix

In the formulation of Green’s matrix the infinite shell is divided into two semi-infinite shells sepa-
rated at the excitation point, ξ. The complete response of both semi-infinite domains are illustrated
in (9) by introducing the module, |x− ξ|, in the ansatz.
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where κ is the radial wave-number, M the number of waves included, Jm the Bessel-function
of first kind of order m and N indicates the five fundamental loading conditions, N = 1, . . . , 5.

3.2.1 Calculating modal amplitudes for mechanical excitations

Let us consider the third fundamental loading condition; a radial point source on the shell wall, ap-
plied at x = ξ and distributed with the wave-number in the circumference as cos(mθ). Obviously,
the semi-infinite domains must satisfy continuity across the excitation point and a unit-jump in the
real part of the excited component. This is ensured if the loading conditions in (10) are satisfied.

u03m (x, ξ) = 0 ∧ w
′03
m (x, ξ) = 0 ∧ ϑ03

m (x, ξ, r) = 0

Q03
2m(x, ξ) = 0 ∧ Q03

3m(x, ξ) = −
1

2
sgn(x− ξ)

for x→ ξ (10)

Now, if we multiply each loading condition by their complementary generalised counterparts
for a single mode, such that u03m is multiplied by the modal force Q03(n)

1m , w′03
m by Q03(n)

4m etc. and
sum the loading conditions according to the bi-orthogonality conditions we arrive at the algebraic
equation of (11). Notice that the equations presented in the following are only valid at the point of
excitation i.e. for x→ ξ, which is however omitted from the equations for brevity.
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where n indicates the nth-modal generalised force/displacement and can be chosen arbitrarily.
By substitution of (9) into (11) we get
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This equation can now be simplified to (13) by applying the bi-orthogonality conditions from
(8) as these explicitly states that for kn 6= ±kj the summation equates to zero. Thus we swap j
with n and arrive at M -uncoupled equations, n = 1, . . . ,M .

Q
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The interpretation of the latter equation is that each modal contribution is found individually
and effectively the modes must form an independent set. Hence by employing the assumption
of modal decomposition we arrive at the M algebraic equations of (13) and confer to the ansatz
(using the Fourier method) the modal amplitudes can be expressed in the following simple form.

C03(n)
m (ω) =

1

2
sgn(x− ξ)

[
F (n)
m (ω)

]−1
(14)
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where F (n)
m (ω) is given as the left-hand-side of (13) with the amplitudes sorted out of each

individual term as seen in (15).
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As a final remark, notice that k(n) and κ(n) are implicit functions of ω and m and further that
the integral in (15) is Lommel’s integral, which reduce to a simple algebraic expression as well.
Thus we have derived a simple, purely algebraic, equation, from which all modal amplitudes can
be determined by substitution of the angular frequency, the circumferential wave-number and the
associated axial wave-number.

For the remaining mechanical loading conditions the procedure is completely analogue and the
governing equations for calculating the modal amplitudes become

Q
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m

By comparing these with (13) it is seen that only the right-hand-side change and consequently
this allow us to determine the remaining mechanical modal amplitudes based on the modal ampli-
tudes from the radial loading condition alone.

C01(n)
m (ω) = −α(n)

m C03(n)
m (ω)

C02(n)
m (ω) = β(n)

m C03(n)
m (ω) (17)
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Thus the modal amplitudes for all mechanical excitations are determined based on the single
algebraic equation of (14) and in addition simple multiplication operations.

3.2.2 Calculating modal amplitudes for acoustical excitations

For the acoustical excitations the source is introduced as a ring source profiled as the mechanical
sources in the circumference, concentrated at x = ξ and applied at the radius r0. To evaluate the
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difference in the near field energy distribution between applying a pressure and a velocity ring
source both sources are applied as excitations in this paper. The acoustical ring source excitations
are represented by the delta-function, δ(r − r0), and due to the radial and axial dependence of
the velocity potential the loading is introduced as in (18) in contrast to the mechanical excitation
(radial independent) shown in (10).

p05m (x, ξ, r) = iωρfl
1

2r0
δ(r − r0)sgn(x− ξ)

ϑ06
m (x, ξ, r) = − 1

2r0
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for x→ ξ (18)

where the velocity excitation can be interpreted as a monopole source and as the pressure is a
normal directed force the pressure excitation can be interpreted as a dipole source when the sign-
function is included.

By the same analogy the governing equations for calculating the modal amplitudes for acousti-
cal excitations are given in (19).
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(20)

and by substitution of the generalised pressure and velocity the modal amplitudes are deter-
mined as

C05(n)
m (ω) = ik(n)Rωρfl Jm

(
κ(n)r

)∣∣
r=r0

[
dJm

(
κ(n)r

)
dr

∣∣∣∣∣
r=1

]−1
C03(n)
m (ω)

C06(n)
m (ω) = isgn(x− ξ)R2ωρfl Jm

(
κ(n)r

)∣∣
r=r0

[
dJm

(
κ(n)r

)
dr

∣∣∣∣∣
r=1

]−1
C03(n)
m (ω)

(21)

By inspection of the modal amplitudes for the acoustical excitations it is evident that the rela-
tion between these and the modal amplitudes for the mechanical excitations are once again just a
simple multiplier.

In conclusion, the modal decomposition method allow us to express the modal amplitudes for
all fundamental loading conditions explicitly and through a convenient analytic algebraic equation,
dependent on the angular frequency, the circumferential wave-number and the associated axial
wave-number. Based on this formulation we are able to include an arbitrarily large number of
waves in Green’s matrix provided that all wave-numbers associated with m and ω are available.

Furthermore, this method is very strong as the modal amplitudes are found independent of the
number of waves we wish to include in the analysis, however as a compromise the symmetry
conditions are satisfied only as M → ∞ and the convergence of this method is thereby related to
convergence of the symmetry conditions rather than convergence of the modal amplitudes.
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4 VERIFICATION AND CONVERGENCE

To validate the modal decomposition method the obvious choice would be a qualitative experi-
mental set-up, however due to time constraints this has not been conducted for fluid-filled pipes at
this point. Nonetheless, as the conventional method is well established and accepted, the modal
decomposition is validated against the results obtained in [3] for mechanical excitations. For the
acoustical excitations no paper contains, to the authors knowledge, a converged near field en-
ergy distribution for acoustical excitations and therefore these are validated through a convergence
study.

4.1 Verification of the modal decomposition method

To ensure that the modal decomposition method is valid for mechanical excitations, it is compared
to the power flow graphs presented in [3] using the same physical parameters (presented in section
2 of this paper) and with 20 waves included. Through a comparison between the graphs illustrated
in [3] pp. 843-844, Fig. 15 and 16, for three mechanical excitations and the graphs illustrated in
Figure 2, it is evident that the near field distributions are all identical. This effectively means that
we can obtain converged energy distributions for mechanical excitations in fluid-filled shells with
a low number of waves retained.
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Longitudinal - f = 67.8 kHz

Radial - f = 2.3 kHz Radial - f = 67.8 kHz
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Figure 2: Near field energy distribution with 20 waves included, m = 3, and evaluated at f = 2.3
kHz and f = 67.8 kHz - just after the first and second cut-on frequency. The verification graphs
can be found in [3] on pp. 843-844, Fig. 15 and 16.

In [4] the energy distribution is considered for acoustical excitations as well, however with only
7 waves included. Through the convergence study in section 4.2 it is clear that 7 waves does not
provide a converged energy distribution and confer to the differences between the conventional
method and the modal decomposition method, it can not be justified to compare the energy fields
of the two, even though the same number of waves are included.
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This is simply due to the fact that the essential conditions from the view point of the conven-
tional method is symmetry, whereas the essential part from the view point of the modal decom-
position method is each modal contribution independent of each other. Thus in the conventional
method the symmetry conditions are ensured by choosing the amplitudes ’artificially’ through a
weighted averaged where the weighting is determined by the physical parameters of the shell. Con-
sequently, for the non-converged case illustrated in [4] the amplitudes are scaled unintentionally
corresponding to the weighting, hence the amplitudes will deviate from those calculated by means
of the modal decomposition method and a comparison would be pointless.

4.2 Convergence study

To ensure that the modal decomposition method is valid for acoustical excitations as well the con-
vergence of the symmetry conditions are studied in the following, however, only presented here
for the acoustical velocity excitation at the excitation frequency, f = 66.7 kHz.

Initially, it is of interest to validate that the load converges towards the delta-function at the
point of excitation. In Figure 3 the distribution of the fluid velocity, ϑm(x, ξ, r), is shown across
the radii for an increasing number of waves at m = 3 and evaluated at the point of excitation,
x = ξ, with the delta-function applied at r0 = 0.5.

Figure 3: Convergence of the applied excitation, ϑ(r), across the radii for an increasing number of
waves. Normalised with respect to the intensity at the excitation point, r0 = 0.5.

Based on this figure it is easily verified that for an increasing number of waves the source dis-
tribution resembles the delta-function. Similarly, this also holds true for all other circumferential
wave-numbers and locations of the source.

With convergence of the load verified it is of interest to study the convergence of the symmetry
conditions. Through the derivation of the modal decomposition method each modal contribution is
derived explicit and independent on the number of retained waves, hence the study of convergence
is related to the symmetry conditions and not the amplitudes. This immediately provides us with
four distinct and readily available convergence parameters, for which we can determine a threshold
based on desired numerical accuracy. To verify that the modal decomposition method is applicable
for acoustical loadings as well, the four symmetry conditions for the acoustical velocity excitation
located slightly from the fluid-structure interface, at r0 = 0.95, are shown in Figure 4 for an
increasing number of waves.

From the figure it is seen that Q2 and u converges must faster than Q3 and w′, which can easily
be visualised by plotting the generalised forces and displacements as a continuous function of the
wave-number. The same can be conducted in case of a pressure excitation by visualising their
symmetry conditions, w and Q4, continuously along the wave-number. From the physical view
point the slow convergence of these flexural components are governed by the distinct differences
in the membrane and flexural stiffness and effectively the flexural components are more sensitive
to the acoustical sources. In conclusion the convergence parameters reduce conveniently from four
to two parameters.
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Figure 4: Convergence of the symmetry conditions for an acoustical velocity excitation located at
r0 = 0.95.

Furthermore, it is clear that the symmetry conditions converge non-monotonic towards zero
and through similar studies it is found that the oscillating behaviour holds true independent of the
source location and circumferential wave-number. Fortunately, the forces and displacements will
oscillate in a similar manner causing common intersections points as indicated in Figure 4. Thus
it may be advantageous to choose the number of waves for future analysis based on a convergence
study of the generalised forces and displacements as this will provide the best compromise be-
tween a low number of waves but converged symmetry conditions. On the other hand, this will
not necessarily provide a converged velocity potential. Nevertheless, for the case shown in Figure
4 with the physical parameters of section 2, the excitation located at r0 = 0.95 and excited at 66.7
kHz, a qualitative number of waves for the proceeding analysis will be M = 25.

For mechanical excitations the convergence study is also conducted by means of the symmetry
conditions and further, for mechanical excitations, it applies that the introduced load must be re-
covered by summation of all modal forces in the loaded direction. Thus for mechanical excitations
there are five distinct convergence parameters and dependent on the physical parameters these are
converged with 7− 10 waves retained.

In conclusion, the difference in the number of waves necessary to obtain a converged energy
field for mechanical and acoustical excitations are anticipated to be a consequence of the load
introduction. For mechanical excitations we introduce a finite-valued source but for the acoustical
excitations the load is introduced as a delta-function and in effect it will excite a wider spectrum
of waves with a significant amplitude - including higher order modes as well.

5 RESULTS AND DISCUSSION

To illustrate advantages of the proposed methodology we present here results of some case-studies.

5.1 Analysis of acoustical excitations of an elastic fluid-filled cylindrical shell

In extension to the previous section we investigate performance of the shell considered in [3] in
case of acoustical excitations i.e. with pressure and velocity sources. In Figure 5 the near field
energy distribution is shown for the velocity and pressure excitations applied at r0 = 0.95 - both
normalised with their respective total energy.
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Figure 5: Near field energy distribution for velocity and pressure excitations at r0 = 0.95 with an
excitation frequency of 67.8 kHz at m = 3 and 25 waves retained. Normalised individually with
the total energy.

This energy distribution reveals that with a velocity excitation 70-90% of the energy is trapped
in the fluid, whereas with the pressure excitation the fluid energy escapes rapidly to the shell in
terms of bending energy, which then carries 60-90% of the energy. In effect a pressure excitation
close to the interface is comparable to a mechanical loading and has a distribution similar to that
of a flexural excitation, however with another near field characteristic.

On the other hand, as the source is located further from the interface the energy distribution with
a pressure excitation turns towards the distribution with a velocity excitation as illustrated in Figure
6. At this location approximately 80% of the energy remains in the fluid for both excitations, when
the sources are located 1

4
from the fluid-structure interface. However, in the pressure excitation

with a slightly more pronounced oscillating fluid energy component but as the source moves closer
to the centre the oscillating behaviour of the fluid energy vanishes and the energy distribution from
the two sources become similar.

Figure 6: Near field energy distribution with velocity and pressure excitations 1
4

from the fluid-
structure interface, an excitation frequency of 67.8 kHz at m = 3 and 25 waves retained. Nor-
malised individually with the total energy.

As a concluding remark, it is also possible to evaluate the energy distribution when the source
is located in the centre, r0 = 0, as the velocity potential is defined to ensure a bounded solution
at r → 0. At this point the source transforms from a ring source to a point sources and if the
energy distribution for such an acoustical excitation is evaluated it is seen that the energy is carried
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solely in breathing mode and further, that it is comparable to a longitudinal mechanical excitation
vibrating in breathing mode. The overall difference is simply that the energy travels inside the fluid
rather than in the axial component of the shell.

5.2 Other useful properties of the bi-orthogonality conditions

As demonstrated, the bi-orthogonality conditions are highly relevant in calculating the modal am-
plitudes for a set of fundamental loading conditions and effectively in the formulation of Green’s
matrix as well. On the other hand, through the development of this method it has been discovered
that the bi-orthogonality conditions also contains potential in finding the wave-numbers, which
conventionally are found from the dispersion equation.

What has been detected through the work documented in this paper is actually that certain
fluid-originated roots are “hidden” in the dispersion equation, meaning that the convergence rate
of these wave-numbers is very poor. Thus the bi-orthogonality conditions can be facilitated as an
alternative formulation for finding these roots.

The “only” requirement for one of the bi-orthogonality conditions to act as a replacement for the
dispersion equation is that an arbitrary wave-number, kj , which satisfies the governing equations
of (1-3) is available. The idea is simply to calculate any other wave-number, kn, by require that
it satisfies the bi-orthogonality conditions with respect to the already known wave-number, kj , i.e.
the wave-numbers must be bi-orthogonal so to say. Substituting the frequency and known wave-
number into equation (8) will provide us with a continuous function in kn which seems to be more
smooth than the original dispersion equation and may therefore be convenient from the view point
of convergence rate.

What is however interesting is that the characteristic of this equation change according to
whether the known wave-number is substituted into kj or kn and similar, through a concise in-
vestigation, it seems that specific sets of wave-numbers become more pronounced in the equation
depending on whether the known wave-number is purely imaginary, purely real or complex. This
immediately entails for a further investigation to clarify whether wave-numbers are more pro-
nounced in the bi-orthogonality conditions.

6 RESPONSE OF A FLUID-FILLED SHELL TO THE EXCITATION DEFINED BY DATA
FROM CFD-MODELLING OF AN OPERATING PUMP

The practical purpose of this paper is to reliably predict the vibro-acoustic performance of a pump.
To accomplish this, the output from an extensive CFD analysis of an operating pump should be
’mapped’ onto the vibro-acoustic model developed in this paper. Thereby the near field energy
distribution can be assessed when the waveguide is subjected to certain CFD velocity or pressure
profiles. This conveniently allows for a source characterisation and thorough analysis of the trans-
mission path(s) for such pressure and/or velocity pulsations.

Initially, the time-dependent CFD-data needs to be transformed from the time-domain into the
frequency domain, where our vibro-acoustic model is defined. This transformation is to be con-
ducted for each nodal value of the CFD-data and is done by means of a (fast) Fourier transforma-
tion. The succeeding step is to adjust this frequency dependent data to the modal decomposition
of the model. The CFD-data is then decomposed in the circumferential direction at individual
circumferential wave-numbers through a Fourier series. Thus we decompose the CFD-data into
separate branches of data for each retained circumferential wave-number. Hence if the branches
are summarised over the retained circumferential wave-numbers we recover the original CFD-data
in the frequency domain.

Then by similar data processing for the radial distribution at each circumferential wave-number
we are able to predict the acoustical sources in the CFD-data and evaluate the vibro-acoustic per-
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formance of an operating pump by means of Green’s matrix method. This is the subject of our
on-going work.

7 CONCLUDING REMARKS

Through this paper a highly efficient tool, the bi-orthogonality conditions, has been facilitated to
decompose the governing equation system which allows us to express the modal amplitudes explic-
itly and independently of each other via the excitation frequency, circumferential wave-number and
the associated axial wave-number. Further, simple relations between the modal amplitudes from
different fundamental loading conditions has been detected, which effectively reduce the equations
for calculating the modal amplitudes of all fundamental loading conditions to only one simple al-
gebraic equation and simple multiplication operations.

This very strong method directly allows for assessing the near field energy distribution and ob-
tain converged solutions for both mechanical and acoustical excitations. To validate that the modal
decomposition method applies, the case of mechanical excitations are verified against identical
loadings in [3] and for the acoustical excitations no qualitative reference models have been found,
hence these loadings are validated through a convergence study of the applied delta-function and
the symmetry conditions.

Through the development of this method it has also been discovered that the bi-orthogonality
conditions may be utilised as a ’root-finder’ in favour of the conventional dispersion equation. At
this point, this is however not investigated in substantial detail and is thereby left for future works.
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