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Preface
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Reading Guide

Source references in the report will be listed according to the Harvard method, with
given [Surname of author, Publication year] in the text. All references are collected in the
bibliography at the end of the project and listed alphabetically.

If no reference is given for a figure or table in the report, then these have been created
by the project group. Tables and figures are numbered according to their occurence in
the chapter in question, e.g. the first figure in chapter 2 will have the reference number
2.1. Any abbreviations used in the report are defined at first occurrence and placed in
brackets.
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Resumé

Tab af muskelmasse er et problem for kritisk syge patienter indlagt påintensivafdelinger,
da dette kan have alvorlige konsekvenser for kritisk syge patienters helbred pålængere
sigt. Muskeltabet efterlader patienterne i en svækket tilstand, som medvirker til forlænget
sygdomsophold og forøget mortalitet efter udskrivelse fra intensivafdelingen. Dette tab af
muskelmasse skyldes særligt en hypermetabolsk respons påden kritiske sygdom. Protein
ernæring har vist sig at være et vigtigt element til at mindske tabet af skeletal muskel-
masse, dog uden at kunne forhindre protein tab fuldstændigt. Estimation af nitrogen
balance er over en lang periode blevet anvendt til at estimere protein tab for patienter.
Denne metode er dog blot et estimat og kan ikke tage højde for al nedbrydelse af proteiner
i kroppen under kritisk sygdom. Da der ikke findes metoder til at estimere det enkelte
individs muskelmassetab over en indlæggelsesperiode påen intensiv afdeling, har målet
med dette projekt været:

1) At forståfysiologien, der ligger til grund for det metabolske stress, som kritisk syge
patienter oplever og dennes effekt påprotein nedbrydelse.
2) At indsamle klinisk data, der kan repræsentere den fysiologiske stress respons og heri-
blandt muskel proteolyse, som er at finde ved kritisk sygdom.
3) At anvende den tilegnede viden og data til at definere en model, til repræsentation af
metabolsk stress over indlæggelsen for den kritisk syge patient.

Stress responsen ved kritisk sygdom kan typisk indeles i en hypometabolsk ’ebb’, hy-
permetabolsk ’flow’ fase, og endelig en rekonvalescens fase. I flow fasen, defineret ved et
forøget energiforbrug, vil tab af muskelmasse forekomme, for at bidrage til energiforbruget.
Protein fra muskler anvendes i en gluconeogenetisk process, hvor protein, lactat og glyc-
erol omdannes til glucose, der vil frigives til blodcirculationen og optages i kroppens celler
for at danne energi.

Data for intensivpatienter blev indhentet den kliniske database MIMIC II. Fra denne blev
123 patienter, med i alt 134 indlæggelsesforløb, ekstraheret. Visse stress parametre kunne
ekstraheres fra MIMIC II, men data om stress parametre som eksempelvis cortisol kunne
ikke indhentes. Patienternes energiforbrug (REE) blev estimeret med prediktionsligninger
påbaggrund af ekstraherede patientspecifikke parametre. Grundet det begrænsede antal
parametre der kunne ekstraheres fra databasen, blev målet med den opstillede model jus-
teret.

En fysiologisk kompartment model blev opstillet med formålet at beskrive anvendelsen
af amino syrer fra proteinnedbrydelse til gluconeogenese i den kritisk syge patient.

Fremadrettet arbejde bør ligge i indsamling af data til temporal analyse af metabolsk
stress og muskelnedbrydelse for kritisk syge patienter. Målinger af stress hormoner, særligt
cortisol, i kombination med mål for protein nedbrydelse, ville være af stor værdi for videre
arbejde med modellering af metabolsk stress.
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Chapter 1

Introduction

In earlier years, the discharge of a patient from an intensive care unit (ICU) was viewed
as a successful ending to a course of disease. The patient was brought back from the brink
of critical illness and was now a survivor. However, spending time in an ICU as a critically
ill patient may result in long-term consequences, which eventually may become the cause
of post-discharge mortality. The focus of critical care medicine has therefore shifted from
short-term to long-term outcomes. Patients must be treated for survival in a time-span
reaching beyond the time spent within the ICU ward. This requires actions against the
critical illness, but also a minimization of sequelae related to the ICU stay [Wischmeyer,
2013], [Vincent and Norrenberg, 2009], [Lee and Fan, 2012].

Critically ill patients are known to suffer from muscle protein breakdown (proteolysis),
leaving patients in a weakened state referred to as ICU acquired weakness (ICUAW). This
is one of many potential sequelae of critical illness, which may show consequences both
during ICU stay and after discharge. Consequences of ICUAW may be increased morbid-
ity in terms of prolonged mechanical ventilation and prolonged hospital stay. Long-term
consequences may appear as loss of lean body mass and lack of physical activity, resulting
in weakness and immobilization. Patients may never return to previous levels of physical
abilities, and studies have shown poorer quality-of-life scores for prior ICU patients due to
degradation of physical function. Muscle wasting is therefore considered one of the most
devastating consequences of critical illness [Weijs and Wischmeyer, 2013], [Wischmeyer,
2013], [Puthucheary et al., 2010], [Preiser et al., 2014].

Proteolysis is an attribution to the metabolic abnormalities experienced by critically ill pa-
tients. The energy demands of patients increase during critical illness, forcing the body to
alternate between metabolic pathways of energy production depending on the availability
of energy substrates. First-choice glucose reserves are quickly depleted (within 24 hours),
requiring an utilization of other energy substrates, such as muscle protein, to maintain
energy production. Proteins from skeletal muscle are also degraded for protein synthesis,
providing new proteins to be applied in inflammatory and immunological processes. These
catabolic factors combined with patient inactivity during ICU stay may synergistically ac-
celerate skeletal muscle wasting [Preiser et al., 2014], [Berg et al., 2006], [Biolo, 2013].

Severe muscle wasting from proteolysis requires retaliatory actions, in the form of pro-
tein administration, to minimize this sequelae of critical illness. Studies by Shaw et. al.
have shown that body protein catabolism continues, even though protein was administered
to sepsis and trauma patients through parenteral nutrition. Protein administration did,
however, have a tissue sparing effect by promoting protein synthesis [Shaw et al., 1987],
[Shaw and Wolfe, 1989].

A patient’s nitrogen balance has traditionally been used to reflect the difference between
rate of protein breakdown and protein synthesis. From this balance, the minimum protein
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administration can be derived as the lowest rate of nitrogen loss through urea formation.
However, the body’s utilization of skeletal muscle protein for protein synthesis, due to the
stress condition of patients, is not reflected in the nitrogen balance. Therefore, a greater
protein administration in stress conditions may be required to reflect this protein loss from
skeletal muscle. Knowledge about muscle turnover, in regards to adaptation during criti-
cal illness, is however limited [Biolo, 2013], [Preiser et al., 2014], [Puthucheary et al., 2010].

Estimation of muscle proteolysis in adaptation to critical illness could be pursued from a
modelling approach. A model of specific human physiology may present a picture of phys-
iological behaviour, potentially varying over time in relation to inter- and intra-patient
variability [Chase et al., 2011]. Modelling physiological structures and processes affected
by stress parameters may provide a picture of the physiological behaviour of critically ill
patients and the interconnectivity between stress-related parameters. Presuming a con-
nection between muscle proteolysis rate and the stress condition of ICU patients, a phys-
iological picture of muscle turnover may be formed from modelling stress parameters and
proteolysis interconnectivity.

1.1 Research Objectives
Methods to determine the individual magnitude of muscle wasting through the process
of critical illness are still unavailable. Muscle proteolysis may be estimated in relation to
stress parameter values, varying over time, in a physiological model. The model must
represent relevant physiological structures and their behaviour in relation to muscle
proteolysis and stress parameter development (e.g. energy expenditure). Model behaviour
may be stratified from clinical data or literature related to relevant model structures and
parameter kinetics. Research objectives are therefore:

• Understand the underlying physiology of stress related to critical illness and the
interconnections with muscle protein breakdown.

• Gather clinical data relevant to physiologic consequences of critical illness and
subsequent muscle proteolysis.

• Apply acquired knowledge of physiology and clinical data to define model structures
and parameter kinetics relating to muscle proteolysis and stress conditions of the
critically ill patient.
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Part I

Physiological Background
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Chapter 2

Metabolism of the Human Body

Keeping the human organism alive requires energy, which may be obtained through the
progression of different metabolic pathways. During critical illness, the chosen pathways of
energy production are altered to support increased energy demands. The current chapter
will provide an introduction to the human metabolism in terms of substrate utilization and
product outcome by central metabolic pathways. This physiological knowledge will provide a
foundation for understanding the activated metabolic pathways and substrate appearances
during critical illness presented in the subsequent chapter.

2.1 General Metabolic Concepts
For the human body to maintain homoeostasis, i.e. a state of internal equilibrium, energy
is required. Energy is generated and utilized through a series of chemical reactions
collectively referred to as a persons metabolism. Metabolic reaction pathways create
a balance between breaking down substrates and building these up or storing these, which
is demonstrated by Figure 2.1 [Martini and Nath, 2009].

Figure 2.1: Indexation of pathways in cellular metabolism, inspired by [Khan Academy, 2013].

A metabolic pathway may be classified as either catabolic or anabolic. During
catabolism, organic molecules are broken down to release cellular energy for adenosine
triphosphate (ATP) synthesis, cf. Equation 2.1. Anabolic processes, cf. Equation 2.2,
apply generated ATP and other precursors for synthesis of new organic molecules and
other cellular functions [Berg et al., 2006].

Substrate(carbohydrate, fat) catabolism−−−−−−→ CO2 + H2O + energy (2.1)

Energy + simple precursors anabolism−−−−−−→ complex molecules (2.2)

Generation of energy can be divided into three catabolic stages, depicted in Figure 2.2.
At stage I larger substrates from foodstuffs or cell reserves are hydrolyzed into smaller
molecules such as fatty acids, glucose, and amino acids. This stage is strictly preparatory
and does not yield any useful energy. At stage II some of these smaller molecules are broken
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down even further to the acetyl unit of acetyl CoA for final mitochondrial processing
when oxygen is present. ATP is generated by the catabolic processes performed at this
stage. However, this amount of ATP is small compared to the output obtained from the
third stage. At stage III the acetyl unit enters the citric acid cycle (TCA) within the
mitochondria. Here, acetyl units are oxidized to CO2, transferring four pairs of electrons
for each acetyl unit to NAD+ and FAD. These electrons are used for reduction of molecular
O2 to H2O through oxidative phosphorylation, releasing a large amount of free energy for
ATP synthesis [Berg et al., 2006]. Acetyl CoA enters the aerobic pathway consisting of
the TCA and the electron-transport chain performing oxidative phosphorylation, where
processing yields an amount of 28 ATP.

Figure 2.2: Subdivision of catabolic processes, edited from [Berg et al., 2006].

Glucose molecules are most often broken down to generate ATP, succeeded by fatty acids.
Amino acids are usually conserved in the pool of available nutrients, since these are more
often needed to synthesize new cell compounds. Amino acids may, however, be catabolized
as a "last-ditch" energy source in situations of critical illness or starvation [Martini and
Nath, 2009]. In the following sections, the catabolic processes of stage II depicted in
Figure 2.2 will be described in more detail.
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2.1.1 The Breakdown of Glucose Through Glycolysis

Glucose is a very important metabolic fuel, serving as the primary energy source for the
brain and as a source of energy for cells throughout the whole body. This fuel presents
itself to the body through food intake or from glycogen reserves located predominantly
in the liver and skeletal muscles. The initial steps to generate energy from glucose take
place in the glycolysis process where one glucose molecule is catabolized to two pyruvate
molecules, giving a net production of two ATP molecules [Berg et al., 2006], [Martini and
Nath, 2009]:

Glucose + 2 NAD + 2 ADP + 2 Pi
glycolysis−−−−−−→ 2 pyruvate + 2 ATP + 2 NADH (2.3)

Firstly, glucose enters cells of the body by means of glucose transporters. There are dif-
ferent types of glucose transporters, each having a distinct role; GLUT1,3 are responsible
for the basal glucose uptake, i.e. these transporters continuously flux glucose into cells
at a constant rate. GLUT2 is present in the liver and pancreatic β cells and transports
glucose into these cells at a significant rate only when glucose levels are high in the blood.
GLUT1,2,3 are all independent of insulin. GLUT4 transports glucose into muscle and fat
cells, especially in the presence of insulin, promoting the uptake of glucose. The GLUT4
transporter is therefore insulin dependent [Berg et al., 2006].

After glucose has entered a cell, the glycolysis process can proceed in three stages, cf.
Figure 2.3. In stage I) glucose is converted into fructose 1,6 bisphosphate through an
initial phosphorylation to trap the glucose molecule inside the cell and thereafter a sec-
ond phosphorylation to ready the fructose molecule for separation. Each phosphorylation
costs the cell one ATP molecule. In stage II) fructose 1,6 bisphosphate is cleaved into two
three-carbon units to be applied for the final ATP harvest in stage III. Dihydroxyacetone
phosphate is not on the direct pathway of glycolysis like glyceraldehyde 3-phosphate, how-
ever these compounds are readily interconverted. Hereby, the dihydroxyacetone phosphate
molecule can be converted for further processing, why stage III in Figure 2.3 happens twice
(x2). Energy is extracted intermediately in stage III when the two carbon units each are
converted into a pyruvic acid molecule. Two ATP molecules are generated for each three-
carbon molecule, providing a total net sum of two ATP molecules from the glycolysis
process [Berg et al., 2006], [Martini and Nath, 2009].
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Figure 2.3: Subdivision of the glycolysis process, inspired by [Berg et al., 2006] and [Martini and Nath,
2009].
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In Figure 2.3 the diverse fates of the generated pyruvate molecules are depicted in the
final box. The fates of pyruvate depend on the availability of oxygen; whether oxygen
is present (aerobic) or if oxygen is lacking (anaerobic). If oxygen is available to the
cell mitochondria, much more energy may be harvested from the synthesized pyruvate
molecules. During aerobic conditions, pyruvate may be transported into mitochondria and
thereafter oxidatively decarboxylated to form acetyl CoA, cf. Equation 2.4. This chemical
reaction is irreversible and links the glycolysis process to the TCA cycle in Figure 2.2
[Berg et al., 2006].

Pyruvate+NAD++CoA pyruvate dehydrogenase complex−−−−−−−−−−−−−−−−−−−−−→ acetyl CoA+CO2+NADH (2.4)

When oxygen is unavailable to the cell mitochondria, pyruvate must instead convert to
other cell products to keep glycolysis running. Under anaerobic conditions, alcoholic and
lactic acid fermentations take place:

Glucose + 2 Pi + 2 H+ + 2 ADP→ 2 ethanol + 2 CO2 + 2 ATP + 2 H2O (2.5)

Glucose + 2 Pi + 2 ADP→ 2 lactate + 2 ATP + 2 H2O (2.6)

NADH is reoxidized to NAD+ through these processes, even though NADH and NAD+ are
not present in the equations above due to a lack of net oxidation-reduction. Regenerated
NAD+ sustains the continued process of glycolysis, cf. equation 2.3, and lactic acid and
ethanol are the bi-products of the fermentations.
Lactate is produced through glycolysis in skeletal muscles, brain, erythrocytes etc., but
the product is a dead end in metabolism. Lactate must be converted into pyruvate before
it can be metabolised, which can be done in well-oxygenated cells. E.g. during strenuous
exercise, skeletal muscles produce lactate through the anaerobic path of glycolysis and
transport this out of the muscle cells to metabolize in other tissues such as the liver and
kidneys. Hereby, the lactate metabolising burden is shifted to other organs than skeletal
muscle cells, which lack oxygen during strenuous exercise [Berg et al., 2006].

2.1.2 The Breakdown of Lipids

Lipids, such as triacylglycerols, are an important energy reserve to the body.
Carbohydrates are firstly applied for energy production, but glucose reserves are depleted
within 24 hours, where-after lipid catabolism can take over to provide the required energy
of the body for several weeks. Lipid reserves are difficult to access and many lipids are
processed within the mitochondria, which depends on oxygen, why carbohydrates are
applied first for energy production. Lipids are stored in adipose tissue and may be broken
down through lipolysis to form fatty acids and glycerol. In Figure 2.4 the fates of these
lipolysis products are illustrated [Berg et al., 2006], [Martini and Nath, 2009].
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Figure 2.4: The fates of lipolysis products, from [Berg et al., 2006].

Fatty acids are transported to other tissues by an albumin carrier and thereafter oxidized
in a series of steps, yielding carbon chains that enter the TCA cycle as acetyl-CoA.
Substantial energy is gained from catabolizing a 18-carbon fatty acid, exactly 144 ATP
molecules, but this energy cannot be generated quickly like that from glucose catabolism.
Glycerol is transported to the liver for oxidation into dihydroxyacetone phosphate. As seen
in Figure 2.3, this molecule may be converted into pyruvate through glycolysis or may be
turned into glucose through gluconeogenesis described in later sections [Berg et al., 2006].

2.1.3 The Breakdown of Body Proteins

The final substrate, responding to the metabolic demands of the body, is protein. Pro-
teins are a construction of amino acids, where different combinations of the same 21 amino
acids give the protein its varying form, function, and structure. Ten of the amino acids
are essential to the body, implying that these must be provided exogenously for the body
to function properly.

Proteins are primarily degraded and resynthesized in response to the bodies changing
metabolic demands. The constant degradation of proteins into free amino acids provides
building blocks for synthesizing new proteins that will e.g. activate or shut down a sig-
nalling metabolic pathway. The degradation of proteins consists partly of a transamina-
tion process, performed by cells in many different tissues, where there is an exchange of
functional groups between an amino acid and a ketoacid. An example of a transamination
process is depicted in Figure 2.5, where the amino group (NH3) is removed from alanine
and attached to α-ketoglutarate. This converts α-ketoglutarate into glutamate, which may
leave the mitochondria for protein synthesis elsewhere. The original alanine amino acid is
converted to a ketoacid applied in the TCA cycle for ATP production [Martini and Nath,
2009], [World Health Organisation, 2007].
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Figure 2.5: Transamination of alanine into glutamine [Larsen, 2015].

Secondarily, amino acids may be catabolized by the cell mitochondria in order to generate
ATP. The catabolic process on amino acids is in this case termed deamination, depicted
in Figure 2.6. In this example, deamination removes the amino group and a hydrogen
ion from glutamate, converting glutamate to a ketoacid for mitochondrial processing. A
bi-product of the deamination process is an ammonium ion (NH4+), which is highly toxic
for cells. Therefore, deamination primarily occurs in the liver where an enzyme uses the
ammonium ion to synthesize urea in the urea cycle. Urea is a harmless water-soluble com-
pound found in urine.

Deamination of proteins will occur if there is an excess of amino acids not required for
biosynthesis. These amino acids cannot be stored like glucose as glycogen and fatty acids
as triacylglycerols, but must be converted into a metabolic intermediate. If glucose and
lipid energy resources are scarce, like during critical illness, then amino acids are applied
for ATP production. Extensive deamination threatens homoeostasis by applying proteins
for ATP production instead of structural and functional purposes in the cell, why deam-
ination of amino acids is the body’s last energy resource when other energy sources are
unavailable. [Martini and Nath, 2009].

Figure 2.6: Deamination of glutamate [Larsen, 2015].

So, the breakdown of protein molecules creates a pool of free amino acids applied primarily
for protein synthesis and secondarily to be degraded to carbon skeletons applied as
a metabolic intermediate for regulatory purposes or oxidation in the TCA cycle. An
illustration of amino acid flow in the human body is seen in Figure 2.7 and Figure 2.7
presents some of the different amino acids applied for certain processes.
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Figure 2.7: Protein supplement to the amino acid pool and the fates of different amino acids (oxidation,
biosynthesis, and regulatory purposes) [Biolo, 2013].

2.1.4 Synthesis of Glucose Through Gluconeogenesis

Glucose is such an important metabolic fuel for the brain and other body organisms,
that glucose molecules must be added to the system through diet or synthesized in
the body continuously. Irreversible steps in the glycolysis process (phosphorylation and
pyruvate kinase) makes it impossible to form glucose by performing glycolysis in reverse.
To synthesize glucose, another process involving a different set of regulatory enzymes must
be executed. The gluconeogenic pathway converts pyruvate into glucose through a series
of chemical steps, most of which are common to glycolysis except for those bypassing the
irreversible reactions of glycolysis:

Pyruvate+CO2 +ATP+H2O
pyruvate carboxylase−−−−−−−−−−−−−→ oxaloacetate+ADP+Pi +2H+ (2.7)

Oxaloacetate+GTP phosphoenolpyruvate carboxykinase−−−−−−−−−−−−−−−−−−−−−−→ phosphoenolpyruvate+GDP+CO2

(2.8)

Fructose 1,6-bisphosphate + H2O → fructose 6-phosphate + Pi (2.9)

Glucose 6-phosphate + H2O → glucose + Pi (2.10)
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The liver and kidneys are the only two organs in the human body, which possess glucose-
6-phosphatase to hydrolyse gluconeogenic precursors into free glucose through the gluco-
neogenic pathway. Substrates for gluconeogenesis are non-carbohydrate precursors ,such
as lactate, amino acids, and glycerol, which enter the gluconeogenic pathway at differ-
ent entry points. Fatty acids and many amino acids cannot be applied in gluconeogenesis
because their catabolic pathways produce acetyl CoA, which is an irreversible fate of pyru-
vate, mentioned in section 2.1.1 [Gerich et al., 2001],[Martini and Nath, 2009].

Glycerol enters the gluconeogenic pathway as dihydroxyacetone phosphate after an initial
product conversion. This product is part of the glycolysis pathway in stage II of Figure 2.3,
and is converted into glucose by means of the gluconeogenic enzymes.
Lactate enters the pathway after an initial conversion to pyruvate, illustrated in Figure 2.8,
and is hydrolysed into glucose in the liver or kidneys. Lactate delivered by skeletal muscle
may be converted to glucose in the liver and thereafter brought back to the muscle for
ATP synthesis - this constitutes the cori-cycle [Berg et al., 2006].
Amino acids are primarily degraded within the liver, providing carbon skeletons for ox-
idation, glucose synthesis, or fatty acid synthesis. Glucogenic amino acids, like alanine
and glutamine, provide carbon skeletons for the gluconeogenic process. Ketogenic amino
acids cannot be converted to glucose, but their carbon skeletons may enter the TCA cycle
after conversion to acetyl CoA through ketogenesis. In some instances, amino acids are
degraded in other tissues, like skeletal muscle. The release of NH4+ from protein deami-
nation must be transported out of these tissues and into the liver to be excreted through
the urea cycle. The peripheral transport of nitrogen to the liver is illustrated in Figure 2.9
[Berg et al., 2006].

Figure 2.8: The Cori-cycle [Berg et al., 2006]
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Figure 2.9: The alanine-glucose cycle. Degradation of amino acids within peripheral tissues and the
subsequent transport of nitrogen out of tissue by alanine [Berg et al., 2006].

In the post-absorptive state, gluconeogenesis is responsible for 55% of all glucose released
into the circulation. Glycogenolysis contributes the remaining part of total glucose
production. It has been approximated, that the kidney produces 40% of the gluconeogenic
substrate and the liver the remaining 60 %. The kidney does not posses glycogen stores like
the liver, why glucose released from the kidneys is considered a product solely produced
from gluconeogenesis [Gerich et al., 2001].
Gluconeogenesis is especially important during longer periods of fasting or starvation. The
human body has direct glycogen reserves to fulfil only one day of whole-body glucose
requirement, why it is important to generate glucose from other non-carbohydrates.
Gluconeogenesis takes over endogenous glucose production, when glycogen reserves are
becoming exhausted [Berg et al., 2006].
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Chapter 3

Stress Response of the Critically Ill Patient

Finding an unequivocal definition of critical illness is not an easy task. Studies may
describe their patients as critically ill from various severity scores or from their own
arbitrary definition of the term, e.g. patients are critically ill if these are burned, septic,
or trauma patients [Genton and Pichard, 2011].
Even though the definition of critical illness is somewhat vague, several studies have
attempted to describe the general pattern of response to critical illness [Frayn, 1986],
[Preiser et al., 2014]. The current chapter aims to describe this temporal pattern of stress
experienced by critically ill patients, with focus on stress parameters related to muscle
proteolysis. Knowledge of stress parameters and stimulated metabolic pathways will be
applied in a subsequent modelling process.

3.1 Phases of Critical Illness
If a person becomes critically ill, the preliminary medical care will center around the
repair of injuries or fight against infection in the case of trauma and sepsis, respectively.
However, speaking of a patient’s stress response to critical illness, focuses more exactly
on the general changes in metabolism throughout the patient’s disease process. It is well-
known that the metabolic response to critical illness changes in a generally predictable way,
stimulated by controlling hormonal factors. The sequential changes have been categorized
within so-called stress phases depicted in Figure 3.1.

Figure 3.1: Metabolic response to injury, categorized into an ebb, flow, and convalescence phase. The
figure only provides a representative time-view on each phase. The duration may well vary depending on
the individual patient disease process. Redrawn from [Frayn, 1986].

Figure 3.1 indicates that the stress response may begin even before the injury itself has
occurred. It is possible for the body to sense approaching danger, which activates the
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hypothalamic defence area, leading to the initiation of the ebb phase.

3.2 The Ebb Phase
The ebb phase is short, lasting typically around 12-24 hours depending on the severity
of illness. It is characterized by a rapid mobilization of fuels, such as glucose and fat,
due to the activated physiological "fight or flight" response to stress. In the classical
interpretation of fight-or-flight, the body is prepared by this response for sudden, intense
physical activity in order to handle a presented crisis. Mobilized fuel will dissipate into the
physical activity, giving the response a fleeting performance time. However, during critical
illness, mobilized resources in the ebb phase do not dissipate due to certain restraint
mechanisms [Frayn, 1986], [Vermes and Beishuizen, 2001]. The following sections describe
the hormonal components secreted in the ebb phase and their metabolic effects.

3.2.1 The Initial Hormonal Response to Illness

The ebb phase begins after an initial stressor has been signalled to the central nervous
system (CNS), cf. Figure 3.2. A stressor is defined as any condition that threatens
homoeostasis, i.e. this could be hypovolaemia activating baroreceptors or nociceptors
detecting pain. The body issues a response to the stressor by activating the hypothalamic-
pituitary-adrenal (HPA) axis. This primary stimulation causes a sequence of hormone
secretions; a release of corticotropic hormone (CRH) from the hypothalamus, stimulating
a further release of adrenocorticotropic hormone (ACTH) from the pituitary gland.
ACTH causes the final part of the HPA-axis to secrete epinephrine (adrenalin). Levels of
epinephrine in the ebb phase are well above those required to produce metabolic changes,
i.e. epinephrine enhances the mobilization of metabolic fuels with levels above 0.5 nmol/l
and inhibits insulin secretion from the pancreas at levels above 2.2 nmol/l. Secondary
hormonal responses in the ebb phase include the secretion of glucagon by the pancreas
and secretion of cortisol from ACTH stimulation on the adrenal cortex. [Frayn, 1986],
[Preiser et al., 2014], [Martini and Nath, 2009].
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Fig. 4. Central nervous control of metabolism in the ebb phase of the response to injury. Primary 
events are the activation of the sympathetic nervous system (SNS) and release ofadrenaline from 
the adrenal medulla, with pituitary secretion of vasopressin (AVP) and corticotrophin (ACTH). 
The metabolic changes can all be viewed as stemming, directly or indirectly, from these central 
responses. Secondarily. the sympathoadrenal activation acts on the pancreas to stimulate 
secretion of glucagon and inhibit that of insulin, and ACTH promotes cortisol release from the 
adrenal cortex (+. stirnulation of a process; -. inhibition). These changes result in stimulation of 
liver and muscle glycogenolysis; release of lactate and pyruvate from muscle, together with the 
hormonal changes, act to promote hepatic gluconeogenesis. Liver glucose release is thus 
massively stimulated. Glucose uptake by muscle is not, however, increased as i t  would normally 
be in hyperglycaemia because of inhibition by adrenaline and cortisol, and because of the failure 
of insulin to respond to the hyperglycaemia ('low insulin'). In adipose tissue several factors act to 
stimulate lipolysis. i.e. the breakdown of triacylglycerol (TAG) to free fatty acids (FFA) and 
glycerol; impaired insulin secretion ('low insulin') allows this to proceed unchecked. Release of 
FFA into the general circulation is not. however, as great as expected after severe injury. Local 
vasoconstriction-brought about by adrenaline and AVP-limits the availability of albumin to 
transport FFA out of adipose tissue, and local hypoxia, together with any rise in the systemic 
lactate concentration. act to stimulate teesterification of FFA (through increased provision of 
glycerol 1-phosphate; see text). 

metabolic characteristics of the flow phase: increased metabolic rate in association with 
elevated core temperature and pulse rate; and increased urinary excretion of nitrogen 
together with other markers suggestive of (net) muscle protein breakdown, including 
3-methylhistidine, zinc, creatine and creatinine (Cuthbertson, 1930, 1980; Threlfall et al.. 
1981). 

Figure 3.2: Control of metabolism in the ebb phase [Frayn, 1986].

3.2.2 Metabolic Effects of Hormones in the Ebb Phase

Epinephrine, glucagon, and cortisol released in the ebb phase stimulate the breakdown
of glycogen in the liver and skeletal muscle. Epinephrine stimulates the breakdown of
glycogen in muscle and to some degree in the liver. The liver is usually more respon-
sive to glucagon, released by the pancreas in situations of low blood sugar [Berg et al.,
2006]. However, epinephrine seems to be the major controlling factor in stimulating glu-
cose breakdown, since an observed hyperglycaemic state post-injury is closely related to
plasma adrenaline concentrations. The secretion of glucagon responds slowly to injury and
plasma glucagon levels are normal right after stressor onset, why the hyperglycemic state
is assumed independent of glucagon during this phase of illness. Plasma cortisol levels
are in the ebb phase elevated compared to control subjects, but in this phase it is more
concerned with maintenance rather than the initiating factor of the stress response [Frayn,
1986], [Vermes and Beishuizen, 2001], [Mizock, 2001].

Fuels are mobilized extensively during the first hours of injury. Hepatic glucose production,
through glycogenolysis in the ebb phase, elevates the plasma glucose concentration, causing
the critically ill patient to experience hyperglycaemia. Muscle glucogenolysis contributes
only to hyperglycemia through the release of pyruvate and lactate, to be transformed into
glucose in the liver. In normal individuals, there is a tight regulation of blood glucose
concentrations, controlled by hormonal, neural, and hepatic autoregulatory mechanisms.
In a hormonal perspective, insulin is secreted rapidly in response to hyperglycaemia, low-
ering glucose levels by enhancing glucose uptake and synthesis of glycogen and suppress-
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ing hepatic glucose production (glycogenolysis and gluconeogenesis) [Mizock, 2001]. In the
critically ill patient, hyperglycaemia seems to withstand after glycogen reserves are largely
depleted. This is recognized partly as consequence of further hepatic glucose production
from the gluconeogenic pathway, but is also linked to decreased peripheral utilization of
glucose. Impaired utilization contributes to insulin being metabolically ineffective. Glu-
cose oxidations is therefore inhibited, when insulin-mediated glucose uptake is inhibited,
causing a diminution of metabolic rate during the initial phase of critical illness [Frayn,
1986].

Figure 3.2 also demonstrates FFAs and glycerol substrates in the blood stream, result-
ing from lipolysis in adipose tissue. Lipolysis is primarily activated by the release of
epinephrine, and this catabolic process continues unaffected when the insulin secretion
from the pancreas is impaired. However, epinephrine limits the availability of albumin
through local vasoconstriction, transporting FFA out of adipose cells into circulation
[Frayn, 1986].

3.3 The Flow Phase
If the patient has not expired in the initial ebb phase, then the patient merges into a
more prolonged stage defined as the flow phase of the stress response. This phase often
corresponds to when the patient has been stabilized and transferred to an ICU.
The flow phase is characterized by an increased metabolic rate and increased catabolism of
substrates from different body tissues to withstand these energy demands. The flow phase
is not set within a specific time-frame, and it is not defined by a certain intensity. These
factors may vary depending on the severity of illness. In an uncomplicated patient scenario,
the stress response will peak around 7-10 days after injury and thereafter gradually
subsides into a convalescence phase, cf. Figure 3.1 [Frayn, 1986]. The flow phase is, like the
ebb phase, characterized by a hormonal effect on metabolism, described in the following.

3.3.1 Hormonal Response in the Flow Phase

The ebb phase is characterized by high levels of counter-regulatory hormones, such as
catecholmines (epinephrine and norepinephrine), cortisol, glucagon, and growth hormone
(GH). In the flow phase, many of these hormone concentrations rapidly return to normal
values, cf. Figure 3.3.
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Fig. 5. Counter-regulatory hormone responses to accidental injury. and their relationship to 
urinary nitrogen excretion, and to plasma insulin concentrations.The patients were similar to 
those described by Frayn er ul. ( 1984a.b). and had suffered musculoskeletal injuries with Injury 
Severity Scores ranging from 9 to 43. Mean values only are shown for clarity; n = & I  5, except for 
initial glucagon result where n=2. 

Top panel: adrenaline (0). noradrenaline (0) and cortisol ( A ) ;  glucagon (M): GH (+). Lower 
panel: nitrogen (0 ) ;  insulin (M). Results redrawn from Frayn er al. (1984b) except catecholamines 
and glucagon (see Acknowledgements). 

Associated hormonal changes 
The early rise in cortisol and other counter-regulatory hormones is accompanied by a 

depression of plasma somatomedin activity (Coates er af . .  1981a, 1981b; Frayn et al., 
1984b). This is of potential relevance since, apart .from their role in collagen metabolism 
and hence wound healing and fracture repair, somatomedins may have a general anabolic 
function including stimulation of muscle protein synthesis (Salmon & DuVall, 1970; 
Phillips, 1979). However, once again, except in the critically injured in whom 
somatomedin activity may remain low (Coates et af . ,  1981a. 1981 b), this is an early and 
transient response, with normal or even elevated somatomedin activity returning within 
k.5 d of injury (Frayn et al., 1984b). 

Although not normally classed as part of the counter-regulatory hormone response, the 
secretion and metabolism of thyroid hormones are also affected by injury. Again, there 
has been considerable interest in this subject because of the potential role of thyroid 
hormones in the metabolic responses to injury, increased metabolic rate and loss of body 
protein being prominent features of hyperthyroidism (Hoch. 1974). However, there are 
varying reports on the precise changes occurring after injury. A general consensus of the 
reports available (reviewed by Elliott & Alberti, 1983) would suggest that concentrations 
of T4 change little and in an inconsistent manner, but that there is a consistent and fairly 
prolonged rise in the rT3/T3 ratio with depressed absolute levels of T3 (e.g. Popp er 01.. 
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Figure 3.3: Responses of counter-regulatory hormones during injury; � growthhormone, � glucagon,
N cortisol, • adrenaline, ◦ noradrenaline. Results were taken from patients suffering from musculoskeletal
injuries [Frayn, 1986].
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Figure 3.4: Free cortisol index over time in patients with septic shock (�) and trauma (◦) [Vermes and
Beishuizen, 2001]. The broken lines in the bottom of the graph illustrates the reference range of normal
subject. Free cortisol index is an expression of plasma cortisol related/cortisol-binding globulin (CBG), the
transporter for cortisol in the blood.

At the peak of catabolism, around 7-10 days after injury, many of the hormone
concentrations will have reached baseline levels with the exception of cortisol. An example
of catabolic peak is seen in Figure 3.5, and has also been mimicked in [Monk et al., 1996]
for other trauma patients. The cortisol slope in the above Figure 3.3 is decreasing, with a
similar tendency seen in Figure 3.4 of the free cortisol index. Plasma cortisol levels may,
however, be moderately elevated at the peak of catabolism compared to other counter-
regulatory hormones. During critical illness, the immune system responds to damaged
and pathogen-invaded cells by massively producing pro-inflammatory cytokines, such as
TNF-α, IL-1, and IL-6. The latter is shown to stimulate adrenocortical cells to release
glucocorticoids (cortisol) [Vermes and Beishuizen, 2001], [Frayn, 1986].
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Table 2. RESULTS OF BODY COMPOSITION MEASUREMENTS OVER A 21-DAY PERIOD
IN 12 PERITONITIS PATIENTS

Day 0 Day 5 Day 10 Day 21 p*

BW (kg)
TBF (kg)
TBW (I)
ECW (I)
TBN (g)
SMM (kg)
VM (kg)
TBK (mmol)

79.36 ± 4.69
17.17 ± 2.23
49.12 ± 2.82
28.16 ± 2.11
1482 ± 76
19.86 ± 1.53
21.99 ± 1.36
2979 ± 315

73.59 ± 4.44t
17.17 ± 2.03
43.87 ± 3.12t
24.77 ± 2.05
1399 ± 69§
18.58 ± 1.36
21.53 ± 1.62
2759 ± 288

69.39 ± 4.42t
17.12 ± 2.09
40.65 ± 2.72t
22.23 ± 1.68t
1349 ± 80t
16.57 ± 1.23t
20.22 ± 1.80
2637 ± 252

66.28 ± 4.32t
16.80 ± 2.00
38.04 ± 2.65t
20.35 ± 2.03
1289 ± 68
16.91 ± 1.45
19.35 ± 1.68
2428 ± 140

<0.0001
0.63

<0.0001
<0.0001
<0.0001
0.0007
0.049
0.014

BW = body weight; TBF = total body fat; TBW = total body water; ECW = extracellular water; TBN = total body nitrogen; SMM = skeletal muscle mass; VM = visceral
mass; TBK = total body potassium (5 of the 12 patients had complete TBK measurements).
Values are mean ± standard error of the mean.
* Repeated measures analysis of variance.
t p < 0.05.
t p < 0.01.
§ p < 0.001 for paired t test vs. preceding measurement.

energy balance calculation for these patients, with estima-
tion of their TEE, are shown in Table 3. The average TEE
was 9862 ± 1004 kJ/day (2357 ± 240 kcallday), which was
1.25 X the average REE during the 10-day period. Energy
expended as physical activity during this period was 1992 ±
1017 kJ/day (476 ± 243 kcal/day), making up 20% of the
TEE.

Fat Metabolism
For the eight patients who were involved in energy bal-

ance studies, Figure 3 shows the relation between the 5-day
changes in TBF and the energy deficit calculated by sub-
tracting the energy intake from the TEE. A significant
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1 20A

correlation (r = -0.63, p = 0.008) is seen, showing that fat
oxidation occurred in patients whose energy intake was
insufficient to achieve energy balance. There is, however,
no relation between the quantity of protein administered and
the amount of TBP that was hydrolyzed (r = 0.09, p = 0.8).

Plasma Proteins and Cytokines
Hepatic Secretory Proteins
The fall in C-reactive protein levels during the study

period is shown in Figure 4. C-reactive protein levels were
initially high (218.6 mg/l, 95% confidence interval [CI]
157.7 to 303.4 mg/I) but by day 21 had fallen to 27.9 (8.4 to
93) mg/l (p < 0.001). Also shown in Figure 4 are prealbu-
min and transferrin concentrations, which were both ini-
tially well below the normal range but rose at a rate con-
sistent with their known turnover rates so that by day 21
they had increased to near-normal levels (prealbumin: 5.9
[95% CI: 4.4 to 8.1] mg/dl to 24.9 [16.2 to 38.5] mg/dl, p <
0.0001; transferrin: 69.1 [57.2 to 83.4] mg/dl to 149.8 [108
to 207.6] mg/dl, p < 0.0001).

Table 3. ENERGY BALANCE IN EIGHT
PERITONITIS PATIENTS MEASURED OVER

STUDY DAYS 0 THROUGH 10

9 I Energy intake
TotalEnergybalance*
Total energy expendcture
Restina enerav exenditureC.vv

0 5 10 15 20 25
Days after Admission

Figure 2. Resting energy expenditure (REE) in eight patients with peri-
tonitis measured for 23 days after onset of sepsis (closed circles), with
REE predicted from the Harris-Benedict equation (open circles)
(mean ± SEM).

Activity energy expenditure

2039 ± 56
-318 ± 264
2357 ± 240
1881 ± 114
476 ± 243

Mean ± SEM in kcaVday.
* Sum of the energies of oxidation of protein (-327 ± 65 kcaVday), fat (+216 ±
195 kcal/day) and glycogen (-207 ± 176 kcaVday) gained or lost over the study
period.

Vo. 228 * No. 2
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4 0
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Figure 3.5: Measurements of daily resting energy expenditure (REE) by indirect calorimetry, from eight
ICU patients with peritonitis secondary to perforation of an abdominal viscus [Plank et al., 1998]. Results
are plotted as daily mean + SEM, with maximum reached around day 9 after admission to the ICU. The
original figure included REE predicted from Harris-Benedict equation, but these have been removed for
simplicity.

In contrast to the presented counter-regulatory hormones, insulin is not depressed during
the flow phase. Plasma insulin concentrations consistently rise in the days following
ICU admission, cf. Figure 3.6, peaking about the same time as the catabolic peak
in Figure 3.5. The disappearance of adrenergic hormones from plasma removes the
restraint on the pancreas to secrete insulin in response to hyperglycaemia. A case of
hyperinsulinemia occurs, may occur because secreted insulin concentrations are in a period
of time inappropriately high in relation to the hyperglycemic state [Frayn, 1986].
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Fig. 5. Counter-regulatory hormone responses to accidental injury. and their relationship to 
urinary nitrogen excretion, and to plasma insulin concentrations.The patients were similar to 
those described by Frayn er ul. ( 1984a.b). and had suffered musculoskeletal injuries with Injury 
Severity Scores ranging from 9 to 43. Mean values only are shown for clarity; n = & I  5, except for 
initial glucagon result where n=2. 

Top panel: adrenaline (0). noradrenaline (0) and cortisol ( A ) ;  glucagon (M): GH (+). Lower 
panel: nitrogen (0 ) ;  insulin (M). Results redrawn from Frayn er al. (1984b) except catecholamines 
and glucagon (see Acknowledgements). 
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depression of plasma somatomedin activity (Coates er af . .  1981a, 1981b; Frayn et al., 
1984b). This is of potential relevance since, apart .from their role in collagen metabolism 
and hence wound healing and fracture repair, somatomedins may have a general anabolic 
function including stimulation of muscle protein synthesis (Salmon & DuVall, 1970; 
Phillips, 1979). However, once again, except in the critically injured in whom 
somatomedin activity may remain low (Coates et af . ,  1981a. 1981 b), this is an early and 
transient response, with normal or even elevated somatomedin activity returning within 
k.5 d of injury (Frayn et al., 1984b). 

Although not normally classed as part of the counter-regulatory hormone response, the 
secretion and metabolism of thyroid hormones are also affected by injury. Again, there 
has been considerable interest in this subject because of the potential role of thyroid 
hormones in the metabolic responses to injury, increased metabolic rate and loss of body 
protein being prominent features of hyperthyroidism (Hoch. 1974). However, there are 
varying reports on the precise changes occurring after injury. A general consensus of the 
reports available (reviewed by Elliott & Alberti, 1983) would suggest that concentrations 
of T4 change little and in an inconsistent manner, but that there is a consistent and fairly 
prolonged rise in the rT3/T3 ratio with depressed absolute levels of T3 (e.g. Popp er 01.. 

Figure 3.6: Displayed is the development in urinary nitrogen excretion (•) and plasma insulin
concentrations (�) for patients suffering from musculoskeletal injuries [Frayn, 1986].

3.3.2 Metabolic Effects of Hormones in the Flow Phase

Cortisol is the driving catabolic factor within the flow phase, stimulating the lipolysis of
triaglycerides and the breakdown of protein from skeletal muscle [Frayn, 1986]. Several
studies have correlated an increase in plasma cortisol concentrations with increased

20



appearance rates of different amino acids in the blood stream [Simmons et al., 1984],
[Brillon et al., 1995]. Amino acids, released by stimulated muscle proteolysis, are
provided for hepatic gluconeogenesis and protein synthesis to support inflammatory and
immunological responses, cf. Figure 3.7. One type of degraded amino acid is glutamine,
which is stored as a free amino acid in skeletal muscle. Glutamine is released in great
amounts from muscle to support the rapidly dividing cells of the immune system and
gluconeogenesis in the liver, causing a quick depletion of this substrate during critical
illness [Biolo, 2013].

Figure 3.7: The figure shows the effect sites and utilizations of e.g. glutamine, other amino acids and
glucose during critical illness [Biolo, 2013].

A suggestive marker of protein breakdown is the urinary nitrogen excretion measure, seen
in the previous Figure 3.6. The urinary nitrogen excretion does, however, only provide an
estimation of oxidized proteins and not whole-body protein turnover [Biolo, 2013].
A connection between glucocorticoids and increased urinary nitrogen excretion was demon-
strated by [Wolthers et al., 1997], where eight male subjects were administered glucocor-
ticoids for four days and blood and urine samples were taken over a smaller time period
to estimate urea excretion and nitrogen balance. Glucocorticoid administration increased
hepatic nitrogen clearance and hence utilization of amino acids in this study.

Accelerated muscle wasting, indicated from an increasing urinary nitrogen excretion bal-
ance, causes weakness in critically ill patients. Increased morbidity and mortality has been
correlated with muscle loss and experienced physical weakness, why protein synthesis must
be favoured to improve outcome. Normally, insulin acts as anabolic factor, stimulating pro-
tein synthesis in the excess of plasma amino acids. However, protein turnover is resistant
to the anabolic effect of insulin seen as the urinary nitrogen excretion curve follows that
of the insulin curve in Figure 3.6 [Frayn, 1986], [Biolo, 2013].

An increase in energy expenditure up to 50 % compared to normal resting energy ex-
penditure has been seen for critically ill patients. An example of the heightened energy
expenditure during the flow phase can be seen in Figure 3.8. This increase may be accred-
ited to an excessive uptake of glucose. Following the glucose uptake, an increased rate of
glycolysis may incur lactic acidemia [Wolfe and Martini, 2000], [Chioléro et al., 1997].
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Text: INTRODUCTION European intensive care nutrition guidelines recommend caloric intake close to measured energy
expenditure. The daily supply during the first days should not exceed 20-25 kcal/kg body weight (BW). During recovery, 25-
30 kcal/kg BW/day is recommended. 

OBJECTIVES We hypothesized that specific daily caloric targets can be defined based on modeled changes in measured
energy expenditure (MEE) on consecutive ICU days. 

METHODS We searched the literature for clinical data of MEE by indirect calorimetry on consecutive ICU days. We limited
our search to patients with sepsis, trauma, or sepsis and trauma. We excluded studies without daily measurements and
studies without data to predict resting energy expenditure (pREE). We estimated daily averages of the increase from pREE
by calculating the mean values (± standard error of the mean (SEM)) of the ratio of MEE to pREE on each day and
constructed a model of the changes in energy expenditure by a mathematical fit to the mean values of the ratios. 

RESULTS We found three studies with daily measurements in seven [1], eight [2], and thirteen [3] patients (mean age
38±20, 60±16, 63±16 years, respectively). The patient numbers for the analysis of MEE/pREE ratios on consecutive ICU
days differed between 9 (day 14 and 15) and 25 (day 7). Fig. 1 shows the mean MEE/pREE ratios (± SEM) by study on
consecutive ICU days and a model of the time course for changes in MEE/pREE ratio based on a parabolic fit to the mean
values. The model indicates an increase in MEE/pREE ratio during the first week and a peak after 9 days. To estimate daily
caloric needs, the MEE/pREE model value is read from the curve and multiplied with the pREE of a patient. For example,
at a predicted basal metabolic rate of 1500 kcal/day, the caloric target is 1680 kcal (1.12 x 1500 kcal) on day 2 and
increases to 1995 kcal on day 9 (1.33 x 1500 kcal). 

[Fig. 1 mean MEE/pREE ratios (±SEM) and model fit]

CONCLUSION Changes in energy expenditure over the course of critical illness are evident from daily measurements.
Optimized caloric intake close to energy expenditure is recommended. The modeled time course of changes in MEE/pREE
ratio may be a method to define specific daily caloric targets in the absence of indirect calorimetry. We proposed a model
for sepsis and trauma patients based on data from three studies. More studies with MEE and pREE on consecutive ICU
days and detailed patient care information are needed to validate this approach. 
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Figure 3.8: The figure shows a fit of data on the ratio of energy expenditure measured by indirect
calorimetry (MEE) and predicted energy expenditure (pREE) over the course of ICU stay. A distinct
increase in energy expenditure can be seen when entering the flow phase [Pielmeier et al., 2014].
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Chapter 4

Clinical Data Acquisition

To estimate unknown parameters in a physiological model of muscle proteolysis
during critical illness, clinical data is required for parameter estimation and general
conceptualization of a model. Certain data parameters were desired, being indicators of
metabolic stress and/or protein loss. Efforts of clinical data retrieval will be described in
the present chapter, followed by an analysis of the extracted clinical parameters in the
subsequent chapter.

4.1 Desired Physiologic Parameters for Modelling
To be able to describe the stress response of critically ill patients in a physiologic
model, clinical data is required, relating to indicative parameters of stress. Knowledge
of physiological parameters related to stress from chapter 3 provided a list of desired
clinical parameters to be retrieved for the model, see Table 4.1. Information regarding
patient demographics is also desired. Physiological models, incorporating knowledge of
the human physiology and patient-specific data, may capture the physiological status of
the individual patients [Chase et al., 2011].

Patient Demographics
Age
Gender
Admission weight
Height
Diabetes diagnosis

Time-varying chart-data
Blood glucose
Blood lactate
Exogenous insulin
Cortisol
Interleukin-6
Parenteral nutrition
Enteral nutrition
Protein intake
Urine urea nitrogen (UUN)
Blood urea nitrogen (BUN)
White blood cell count
(WBC)
Temperature
Energy expenditure
Daily Weight
Minute volume

Table 4.1: Patient demographic parameters and charted stress-related parameters warranted for modelling.

4.2 Data Selection Criteria
In addition to the criteria of extracting specific parameters listed in Table 4.1, some
data selection criteria were established to homogenize a dataset of critically ill patients for
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physiological modelling. A patient group constituting all types of ICU patients is by nature
very heterogeneous. Such a patient group will introduce a large spectrum of diseases and
injuries, some affecting metabolism more than others. Two of the most prominent patient
groups within ICUs are patients with sepsis and trauma. Both sepsis and trauma patients
show metabolic characteristics of the ebb and flow phase of critical illness described in
chapter 3 [Frayn, 1986]. Selection criteria were identified to filter patients into more specific
groups of sepsis and trauma patients, described in the following:

• Patients must be diagnosed with trauma or sepsis.
Due to the large heterogeneity of patients admitted to ICUs, diagnostic inclusion
criteria were required to homogenize the patient group considered for modelling.
Diagnosis of either trauma or sepsis was specified, seeing as these patients have
markedly different metabolism than healthy persons [Shaw et al., 1987], [Shaw and
Wolfe, 1989].

• Patients must be older than 18 years when admitted to the ICU.
Critically ill children are sorted from the patient group in applied clinical data, since
metabolic demands of the children may be different to those of adults.

• Patients’ course of disease, right after admittance to an ICU, must span
at least 10 consecutive days.
One of the goals of the physiologic model is to describe muscle proteolysis through
the time-course of critical illness. Therefore, only patients with ICU admissions long
enough for indications of stress-induced hypermetabolism, cf. section 3.3, are in-
cluded in the clinical data. A minimum of 10 consecutive ICU days was chosen due
to the possibility of including the catabolic peak seen in Figure 3.5 of chapter 3.

• Patients must have a charted admittance weight and height.
Height and weight values are often used when estimating patient metabolic rate from
predictive energy expenditure equations [Frankenfield and Ashcraft, 2011], [Walker
and Heuberger, 2009]. Height is not expected to change noticeably over the time-
course of critical illness, whereas body weight may fluctuate more, especially due to
common oedema appearances throughout ICU stay [Walker and Heuberger, 2009].
As oedema-induced weight changes are expected not to incur metabolic changes and
seeing as it may be difficult to detect oedema from clinical weight data, a "baseline"
weight must exist in applied clinical data.

• Patients cannot be diagnosed with liver or kidney disease or failure.
Patients with unstable liver and/or kidney function was excluded from the applied
clinical dataset, due to unpredictable metabolic responses entailed by these organ
dysfunctions. Excluding critically ill patients with liver and kidney dysfunctions will
make it possible to assume normal functionality of these organs, simplifying model
identification.
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4.3 Clinical Data Acquisition
To acquire clinical data for physiologic modelling, a source for data acquisition must be
chosen. Attempts to collect the above-specified clinical data from patient journals at a
clinical site (Aalborg University Hospital) failed due to new regulatory affairs taking ef-
fect in March 2015. Instead, the Multi-parameter Intelligent Monitoring in Intensive Care
II (MIMIC II) database at PhysioNet was chosen for data extraction, since this database
includes general clinical parameters measured for critically ill patients [Saeed et al., 2011],
[Goldberger et al., 2000]. Authorization to access MIMIC II was granted the 25th of March
2015, and the database was specified as version 2.6 at the time of data retrieval with 32.536
registered ICU subjects.

Data from MIMIC II was provided in tab-delimited text files, divided into different aspects
of ICU admittance for each patient exemplified in Table 4.2. All data available for each
critically ill patient was contained in 26 separate .txt files.

Filename (.txt) Short description
CHARTEVENTS Information on all chartings (measurements etc), i.e. data that

may have been stored in the patient journal.
D_PATIENTS Details on the specific patient, such as gender and date of birth.
ICD9 Listings of ICD-9 diagnostic codes for classification of the

patient’s diseases and/or injuries over time.
ICUSTAY_DETAIL Information specific to each ICU admittance of a patient,

examples are admittance weight, height, ICU admittance, and
discharge dates.

D_CHARTITEMS A mapping table of chart IDs and the names of different
parameters that can be measured in CHARTEVENTS.

Table 4.2: This table demonstrates some of the 26 files contained in a patient folder downloaded from
MIMIC II, which will be used for the subsequent data criteria filtration. All the above-listed file names
are appended by the patient ID of the current specific patient, e.g. the file named ICD9 would actually be
named ICD9-00164 for a patient with the ID 00164.

Due to the large amount of data contained within this clinical database (CHARTEVENTS.txt
can comprise up to 42.000 lines of parameter data), a Python-script was developed to filter
MIMIC data based on the desired parameters listed in Table 4.1 and selection criteria from
section 4.2. Filtered data was then stored in a local MySQL database, simplifying further
data analysis for physiologic modelling. An activity diagram of the data filtration process
of MIMIC II data files is depicted in Figure 4.1. The Python-script iterated through each
MIMIC-acquired patient folder, each containing 26 .txt-files. The data files, used in data
filtration, are those listed in Table 4.2. If filtered clinical data for a patient satisfies the
applied data selection criteria, then the patient’s demographic data, ICD-9 codes, and
charted parameter data are stored in the locally created MySQL database.
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[else]

[No burn, kidney or liver injury]

[else]

[Diagnosed with trauma or sepsis]

[else]

[else]

[Age >= 18 & ICU-stay > 10 d]

[else]

[CHARTEVENTS not empty]

[All Parameter IDs
found in CHARTEVENTS.txt]

List of inclusion
Parameter IDs

Store patient, 
chartdata and icd9

in MySQL DB

Read CHART
EVENTS.txt

Read ICUSTAY_
DETAIL.txt

Read ICD9.txt

Next patient

List of patient
folders

Figure 4.1: An activity diagram of the data filtration and storage process of MIMIC II acquired clinical
data.

4.4 Final Dataset For Physiologic Modelling
An inspection of filtered data from MIMIC II clearly demonstrated that far from all data
parameters listed in Table 4.1 existed for ICU patients in MIMIC II. Some parameters
were not even defined in the D_CHARTITEMS.txt file, and other parameters existed in
dictionary files, but no parameter values were logged for any of the patients fulfilling
the data selection criteria. A list of parameters, with existing parameter measurements
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for filtered patients from MIMIC II, can be seen in Table 4.3. All of the demographic
parameters in Table 4.1 existed in the MIMIC II database.

Existing Time-varying
Parameters
Blood glucose
Blood urea nitrogen (BUN)
White blood cell count
(WBC)
Temperature
Weight
Minute Volume

Table 4.3: The table illustrates the existing parameters in MIMIC II for patients fulfilling the data
inclusion criteria.

16,000 patients from the MIMIC II database where filtered by use of the data selection
criteria in section 4.2. Of these, 123 patients or 0.77% of the 16,000, with a total of 134
unique patient scenarios, matched the selection criteria and had registered parameter data
for the desired modelling parameters shown in Table 4.3. A patient scenario is defined to
be an admittance to the ICU. Characteristics of the patient group, representing the filtered
dataset, are illustrated in Table 4.4. From Table 4.4 it is clear, that only a small proportion
(app. 15%) of the extracted patients have diabetes, almost exclusively in the form of type
2 diabetes. The majority of the extracted ICU patients were male (63.4%).

Total patients 123
Total patient scenarios 134
Mean Age (std) 59.1 (17.8)
Gender

Male(%) 85 (63.4)
Female(%) 49 (36.6)

Mean Admission weight -
kg (std)

81.0 (23.2)

Mean Height - cm 169.9 (18.0)
Diabetes

Type 1 (%) 1 (0.74)
Type 2 (%) 19 (14.2)

Diagnosis
Trauma (%) 86 (64.2)
Sepsis (%) 48 (35.8)

Table 4.4: Patient characteristics. Percentages are of the total number of patient scenarios. std: Standard
deviation.
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Chapter 5

Strategy for Model Development

The present chapter provides a description of a general development process of models.
The methodology within steps of the development process will be discussed, along with
the limitations of developed models. Methodological aspects of the illustrated development
process will be applied when deriving a physiological compartment model of muscle
proteolysis during critical illness.

5.1 Model Definition
A model is, in its essence, a representation of some sort of reality. In the case of
physiological models, these may represent physiological processes (e.g. glycolysis) and/or
physiological components (e.g. the liver compartment), describing the internal milieu of
the human body to some degree of complexity. A physiological compartment model is a
certain type of model, applying differential equations to describe the kinetics of materials
within the modelled compartments.
A model design will always be an approximation of the modelled reality, since it
is impossible to incorporate all possible components of a reality into one model. In
physiological models, a number of assumptions are usually imposed by physical, chemical,
and biological processes incorporated in the model [Cobelli and Carson, 2008], [Chase
et al., 2011].

5.2 Development of Physiological Models
The development process of a model involves some inter-related steps, identified as model
conceptualization, model identification, and model validation. If the methodology within
each step is applied appropriately, then a model will be developed to fit its primary pur-
pose [Cobelli and Carson, 2008].

To create a model, it is first important decide the specific goal of the model. Many mod-
els have varying goals; they may describe, interpret, predict, or explain the physiological
process(-es) in focus. The goal of the developed model in this project was set forth in the
research objectives of chapter 1.
With a chosen goal in mind, a model may then be constructed from physiological knowl-
edge and potentially available experimental data, relevant to the model goal. In Figure 5.1
a methodology for model development is depicted, based upon 1) the formulation of a con-
ceptual model, 2) the specification of mathematical expressions for model variables, and
3) solving the model by connecting physiological variables [Cobelli and Carson, 2008].
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28 CHAPTER 3 MODELS AND THE MODELING PROCESS

Modeling
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Physiological 
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Model structure 
input-output representation
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Modeling 
methodology

Data

Figure 3.3 A methodological framework for modeling the data (adapted from
Carson and Cobelli, 2001).

of this mathematical expression are then determined in the identification process as
outlined in section 3.6.

The modeling methodology for the situation where the model seeks to provide an
explicit representation of the underlying physiology is depicted in Figure 3.4. Here
there are essentially three distinct components of the modeling process. These are
formulation of a conceptual model, the mathematical realization of that conceptual
model and then the solution of the model to give the required relations between the
variables of interest (this last component being achieved once the model identification
process is complete). This approach to modeling is considered in detail in Chapter 5.

The conceptual model is based on the physiological knowledge that it is pro-
posed to have been represented by the model. However, since any model is an

Modeling
purpose

A priori
knowledge

Assumptions

Physiological 
system

Model structure 
input-output representation

Parameter 
estimation

Model

Modeling 
methodology

Data

Figure 3.4 A methodological framework for modeling the system (adapted from Carson
and Cobelli, 2001).Figure 5.1: Methodology for creating a model [Cobelli and Carson, 2008].

The conceptual model describes the physiological process related to the model goal. Model
concepts are based upon acquired physiological knowledge, e.g. in this project the model is
based upon physiological knowledge from chapter 2 and 3. Deriving the basic concepts of
the model may require an aggregation of physical compartments, an abstraction of com-
partments (e.g. assuming distribution of only certain materials within the compartment),
and assuming ideal behaviour/structure to simplify the model (e.g. instantaneous distri-
bution of materials). After conceptualization, mathematical equations may be formed for
suggested parameters seen in the conceptual model. Physiological parameters often vary as
a function of time, which represents the dynamics that mathematical parameter equations
must mimic. Finally, explicit relationships between model parameters must be constituted,
representing the solving of a model. The relationships are commonly connected through
differential equations [Cobelli and Carson, 2008].

Parameter values or model structures may be known a priori, making it possible to solve
and further validate the model. In most cases, however, there is an uncertainty about the
model structure or parameter values. In such cases, unknown structures/values must be
identified through input/output data seen in Figure 5.2. This often requires a conduction
of clinical experiments, where a stimulus relevant the model unknown is applied to a sys-
tem and the dynamic response is recorded for one or more variables [Cobelli and Carson,
2008]. In view of the current project, literature with isotope tracer infusions of certain ma-
terials (e.g. lactate) and their effect on other parameters (e.g. amino acid release) has been
reviewed to identify kinetics of certain model parameters between different compartments.
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3.7 MODEL VALIDATION 31

that it can reasonably be tested. A model is by definition an approximation of reality.
As such, it will not be able to reproduce all the features of behavior that would be
found in the real system. The question is can it reproduce those that matter in terms
of how it is to be used in practice?

When working with a number of competing, candidate models, the validation
process consists of determining which of these models is best in relation to its intended
purpose. We can therefore define a valid model as one that has successfully passed
through all the tests that form the validation process.

An important point to stress at the outset is that the validation process is very
much an integral component of the modeling process overall. It is an activity which
takes place whilst the model is being built as well as once the completed model
is available. The issue of validity testing during the process of model formula-
tion involves considering issues, such as whether the various ways in which the
model is an approximation of reality are reasonable (given the intended purpose of
the model).

Once the model is complete and all its parameters have been specified, the val-
idation process can be summarized as shown in Figure 3.6. Again it is important
to emphasize that the validity issue is intimately related to model purpose. In other
words, it is specific to the particular problem being dealt with. So we are examining
whether all the necessary ingredients are included in our model. For example, we
might want to use our model to test the hypothesis that particular changes in vascular
blood flow were linked to particular changes in the elastic properties of certain
arteries. Suppose these changes in blood flow corresponded to the change from a
healthy state to one of disease. We would then expect that by changing the elas-
ticity parameters in a way which we knew corresponded to the disease process, we

Experimental 
design

Unknown 
system

Model structure 
determination

Parameter 
estimation

Model
validation

Final model

Experiment

Data analysis

Input Output

Figure 3.6 Validation of the complete model (adapted from Carson and Cobelli, 2001).
Figure 5.2: Identification of model structures [Cobelli and Carson, 2008].

In Figure 5.2 model validation is depicted as the final development step, even though this
step is an integrated part of the modelling process overall. The goal of validating a derived
model is to investigate whether the model performs well enough in relation to the model
goal defined at the beginning of model development. Model behaviour is examined and
interpreted, and simulated model outputs may be statistically compared to real-life data
[Cobelli and Carson, 2008].
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Chapter 6

Data Analysis of Clinical Dataset

The current chapter examines the available clinical data for physiological modelling,
depicted by the final filtered dataset from chapter 4. Data parameters have been visualized
in a graphical user interface to inspect dynamic changes in parameter values over the
time-course of trauma and sepsis patients’ ICU admittances.

6.1 Visual Interpretation of MIMIC II Data
Parameter data in the filtered MIMIC II dataset may be visually inspected, to attain
an idea of how certain parameter values change dynamically over time. A graphical
user interface (GUI) was created in MATLAB for inspection of filtered data in the
local MySQL database, an example of the GUI is seen in Figure 6.1. Visual inspection
of parameter data was performed for several patients in the filtered dataset, to detect
any preliminary tendencies in parameter development over ICU admission time. It was
observed that some patients experienced considerable weight losses during their ICU stay,
one weight scenario is depicted in Figure 6.1. This correlates with findings by [Plank et al.,
1998], where body weight also decreased during a 21-day observation period after onset
of sepsis. Furthermore, estimated energy expenditures from patient demographic data,
minute volume data, and temperature showed similar dynamic changes over ICU stay
between patients in the filtered dataset. A general tendency curve of estimated energy
expenditure over admission time was therefore generated for the observed patient group,
described in the next section.
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Figure 6.1: The figure demonstrates a screen shot of the MATLAB GUI, created for visualization of the
temporal development of clinical parameters extracted from MIMIC II, see chapter 4. In this specific screen
shot, the blue line indicates development of blood glucose concentrations (mg/dl), while the black line shows
weight (kg) development over ICU admission time for a patient.

6.2 Utilization of Data: Estimation of Energy Expenditure
Illustrated by Figure 3.5 in chapter 3, an interesting parameter indicating metabolic
stress may be the resting energy expenditure (REE). The standard method for mea-
surement of REE is by indirect calorimetry, which is expensive and cumbersome [Walker
and Heuberger, 2009], why it is not surprising that this parameter is absent in the final
filtered dataset from MIMIC II. REE may instead be estimated using predictive equa-
tions [Frankenfield and Ashcraft, 2011]. The use of predictive equations ensues inaccuracy
due to the inherent problem of estimating REE from a specific mathematical formulae
for a patient group as heterogeneous as ICU patients [Faisy et al., 2009], [Walker and
Heuberger, 2009], [Preiser et al., 2015]. Despite possible inaccuracies, predictive equations
will be applied to determine the development of REE for the patient group in the filtered
dataset.

A multiplum of equations for estimating energy expenditure have been proposed, both
for critically ill patients and healthy persons [Frankenfield and Ashcraft, 2011]. For these
purposes, the Penn State Equation (PSE) for the critically ill and the Mifflin-St Jeor
(MSJ) equation for the healthy person were used, as these have been found to be the
most accurate [Walker and Heuberger, 2009], [Frankenfield and Ashcraft, 2011]. These
two equations are written below:

MSJ
kcal

day
= 10 ·BM + 6.25 ·H + 5yrs−1 ·A (6.1)

PSE
kcal

day
= 0.96 ·MSJ + 167 · Tmax + 31 · Ve − 6212 (6.2)
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Here BM is body mass in [kg], H is height in [cm], A is age in [years], Tmax is the maximum
temperature in degrees [celsius] for the previous 24 hours, and Ve is the minute ventilation
of the patient in [l/min]. A modified version of the PSE is applied to obese, older patients
(age ≤ 60 and BMI > 30) [Frankenfield et al., 2012]:

PSEmod
kcal

day
= 0.71 ·MSJ + 85 · Tmax + 64 · Ve − 3085 (6.3)

All the necessary parameters for calculating MSJ and PSE exist in filtered data set from
MIMIC II. Despite observations of weight loss for the patients in the dataset, an initial
admission weight is applied to calculate PSE and MSJ over the time-course of ICU stay.
This weight parameter is chosen because oedema might influence the daily weight param-
eter. A weight loss during ICU stay does not necessarily entail a lower energy expenditure
in real-life. However, this will be the picture of the estimated REE, if the dropping weight
values are applied in the predictive equations over time. Estimated REE from PSE and
MSJ are therefore very much affected by the weight of patients, with the possibility of
underestimating expenditure if decreasing weight values are applied in the equations over
time [Walker and Heuberger, 2009], [Frankenfield and Ashcraft, 2011].

It is of interest to express a generalized development curve of estimated REE for crit-
ically ill patients, much like the one seen in Figure 3.8 of chapter ??. The curve is a
normalization of the estimated REE with respect to (MSJ):

REEnorm = PSE

MSJ
(6.4)

A generalized development curve of the REEnorm was found from the 134 patient scenarios
in the filtered dataset of MIMIC II. Of these, 36 scenarios were selected due to their
continuously charted temperature and minute ventilation measurements during 14 days
of ICU stay, with a measurement frequency of at least 1 measurement per day. 20 of
the patient scenarios were trauma patients, while 16 were septic patients. REEnorm was
estimated for each patient scenario, and a mean and standard deviation was found for
each of these patient groups per ICU day. The graph of REEnorm over time is illustrated
in Figure 6.2.
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Figure 6.2: The estimated mean REE, normalized in respect to Mifflin-St Jeor REE estimations of trauma
and septic patients. The black curve is a power fit made on the applied REEnorm data.

Figure 6.2 indicates that the sepsis and trauma patients in the filtered dataset have an
increased energy expenditure, supported by the literature [Plank et al., 1998], [Pielmeier
et al., 2014]. A larger deviation from the mean was found for the septic patient group,
indicating even higher variations in energy expenditure for this group than trauma pa-
tients. This curve may be used prospectively to estimate energy expenditure of critically
ill patients over time. In the following chapter this relation will be utilized to include a
temporal aspect to the physiologic model of muscle proteolysis during critical illness by
trauma and sepsis patients.

For future analysis it would be interesting to also extract nutritional data for the patients,
to analyse the energy balance (energy intake - energy expenditure) for the patients. This
was done by [Faisy et al., 2009], where 38 mechanically ventilated ICU patients, likewise
observed retrospectively over a 14 day ICU period. In this study, the REE was estimated
by a different predictive equation than PSE. However, the applied equation in [Faisy et al.,
2009] did utilize the same bio-dynamic parameters as PSE (weight, height, minute ven-
tilation, and body temperature). [Faisy et al., 2009] showed no change in the predicted
REE over the course of ICU stay, as would have been expected for critically ill patients.
The authors speculate that the lack of an initial hypometabolic phase may be that the
patients where already in the hypermetabolic ’flow’ phase [Faisy et al., 2009]. In Figure 6.3
the results of the use of predictive REE estimation in [Faisy et al., 2009] can be seen.
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interruptions and the length of conditions limiting feeding
absorption or feeding rate prescription for the first 14 d of
mechanical ventilation are summarized in Table 2. The main
causes of EN interruptions were diagnostic procedures in or
out of ICU and vomiting.

Impact of energy deficit on intensive care unit outcome

Non-survivors had higher mean energy deficit than ICU
survivors (Table 3). Furthermore, non-survivors had a daily
energy deficit higher than ICU survivors and that difference
was statistically significant from day 10 of mechanical venti-
lation (Fig. 2). Non-survivors were similar to survivors for
demographic characteristics, causes of ICU admission, factors
influencing feeding administration or feeding prescription
but spent more time sedated (Table 3). Logistic regression

analysis, performed with factors influencing ICU outcome,
identified mean energy deficit as independently associated
with ICU death (Table 4). By the Mantel–Haenszel test,
there was an increasing trend in ICU mortality across the
quartiles of mean energy deficit estimated in the first 14 d
of mechanical ventilation (Fig. 3 (A)). We used the best oper-
ating point of the receiver operating characteristics curve
(Fig. 3 (B)) of mean energy deficit to determine a threshold
of 5021 kJ (1200 kcal) per d of mechanical ventilation for
predicting ICU death after the fourteenth ICU day (sensitivity
80%, specificity 65%, OR 6·12 (95% CI 1·33, 28·2), positive
likelihood ratio 2·28). Twenty-five patients had a mean energy
deficit ^ 5021 kJ (1200 kcal) per d of mechanical ventilation
and they had a higher ICU mortality rate than patients with
lower mean energy deficit (n 13) after the fourteenth ICU
day (Fig. 4).

Fig. 1. (A), Evolution of prescribed energy (X), delivered energy (W) and resting energy expenditure (REE) calculated with the Faisy 2003 equation(31) (K) in
patients requiring prolonged acute mechanical ventilation (n 38). Energy balance ¼ delivered energy – calculated REE. Values are means with their standard
errors depicted by vertical bars. (B), Delivered/prescribed (—) and delivered/calculated REE energy ratios (- -).
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REE over the ICU stay for patients. Filled circles indicate prescribed energy, while open circles represent
energy delivered. Notice that predicted REE is stable throughout the 14 days of ICU stay.

In the estimation seen in Figure 6.2 there is an increasing REE during the initial ICU stay
(1-3 days). This may be the result of a change from the ’ebb’ phase to the ’flow’ phase.
A decrease in REE at the end of the 14 day ICU period would, however, be expected as
a result of entering a convalescence phase. This lack of decrease in REE may be due to
the patients never (due to very critical state), or at least not in the chosen 14 day period,
reaching the recovery phase.
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Chapter 7

Model of Muscle Proteolysis and Critical Illness

In the present chapter, a physiological compartment model is proposed, with the aim of
temporally estimating muscle proteolysis in critically ill patients. An initial restriction to
the model conceptualization is presented, due to the limitations of the acquired clinical data
from MIMIC II.

7.1 Restrictions of Muscle Proteolysis Modelling
Due to the lack of stress parameters in the filtered dataset from MIMIC II, it may prove
difficult to model the total muscle breakdown induced by critical illness. A stress marker,
such as cortisol, could be valuable in regards to estimating muscle proteolysis over the
time-course of critical illness, cf. chapter 3, since this stress parameter has been correlated
with amino acid degradation into plasma circulation [Wray et al., 2002], [Weissmann,
1990], [Brillon et al., 1995]. Urinary nitrogen excretion values and protein intake values
are required to estimate net protein catabolism by means of nitrogen balance [World
Health Organisation, 2007], [Bergstrom et al., 1998].

Protein degradation from skeletal muscle is mainly stimulated for amino acid oxidation,
de novo protein synthesis, and gluconeogenesis during critical illness, cf. subsection 2.1.3.
The major indicating parameter of amino acid oxidation is the excreted urinary nitrogen,
the residual product of catabolised amino acids. Since only blood urea nitrogen values are
available in the filtered dataset, protein degradation kinetics due to amino acid oxidation
cannot be estimated from the available clinical data, if this parameter is part of the war-
ranted physiological model of muscle proteolysis.
A consistent state of hyperglycaemia is presented by critically ill patients during their
disease process, which in the flow phase may be attributed to glucose release from glu-
coneogenesis. Glycogen reserves will likely be depleted after the ebb phase, making the
gluconeogenic pathway the primary provider of endogenous glucose. Blood glucose con-
centrations in the filtered MIMIC II dataset may then be utilized for parameter estimation
of muscle proteolysis kinetics, attributed to gluconeogenesis. A restriction of the physio-
logical model is therefore proposed; the physiological model will focus on the degradation
of muscle protein through gluconeogenesis during critical illness.

7.2 Model Overview
Figure 7.1 illustrates a proposed physiological compartmental model of muscle proteolysis
contributing to the gluconeogenic metabolic process. The stimulation of this metabolic
pathway is accelerated in order to satisfy increased energy demands characterized by the
flow phase of critical illness, cf. section 3.3.
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Figure 7.1: Compartmental structure of the gluconeogenic pathway during critical illness, with muscle
proteolysis contributing to glucose production.

The model draws elements from the Glucosafe model described in [Pielmeier et al.,
2010], specifically the definition of a blood glucose compartment as connected to
glucose transporters GLUT1, GLUT3 and GLUT4. In the following sections, physiological
compartments and fractional transfer rates between compartments will be motivated
through literature references.

7.3 Blood Glucose Compartment
The blood glucose compartment represents the concentration of blood glucose distributable
to the cells through glucose transporters (GLUT1,3 & GLUT4). The compartment is de-
fined by a concentration GBG in mmol/l and a distribution volume of glucose, VBG with
the unit of liters. The volume applied in this model is the volume of extracellular fluid
(ECV), which is evaluated based on body mass [Arleth et al., 2000]:

VBG = BM · 0.19 l

kg
(7.1)

Application of this volume provides the assumption of an even distribution of glucose
throughout the ECV [Arleth et al., 2000]. VBG will be used to describe the change in
blood glucose concentration over time in mmol/l/min:

dGBG

dt
= (nhep + nren − glut1+3 − glut4)

VBG
(7.2)
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Here nhep and nren represent the hepatic and renal gluconeogenic contribution of glucose
to the blood glucose compartment, both in mmol/kg/min. These rates will be entertained
in later sections. glut1+3 and glut4 describe the transfer rates of blood glucose by the
combined transport of glucose by the GLUT1 and GLUT3 transporters and the insulin-
mediated GLUT4 transporter respectively [Pielmeier et al., 2010], [Arleth et al., 2000].
These also have the unit mmol/kg/min. From the above equation it is clear that the
glucose transporters GLUT1, GLUT3 and GLUT4 affect the blood glucose concentration.
The GLUT1 and GLUT3 transporters are responsible for the basal glucose uptake in
numerous areas of the body, whereas GLUT4 transports glucose to adipose tissue, skeletal
muscle, and cardiac muscle. GLUT4 is dependent on insulin sensitivity, illustrated in
Figure 7.1 [Arleth et al., 2000]. glut1+3 and glut4 are represented as Michaelis-Menten
kinetic equations proposed by [Arleth et al., 2000]:

glut1+3 = J1+3 ·GBG

Kmglut13 +GBG
(7.3)

glut4 = α · J4 ·GBG

Kmglut4 +GBG
(7.4)

In the above equations, Kmglut13 and Kmglut4 are the Michaelis-Menten constants for
each of the transport processes. These are 1.5 and 5 mmol/l, respectively. J1+3 and J4
are the maximum transport rates for each of these processes and are 0.0093 and 0.0848
mmol/kg/min, respectively. Finally, α represents unitless the insulin effect experienced by
the patient. The insulin effect expresses the effectiveness of insulin to facilitate the uptake
of glucose in cells from the blood compartment. The insulin effect is generally decreased
for critically ill patients [Arleth et al., 2000], [Pielmeier et al., 2010].

7.4 Cell Glucose Utilization
Glucose transported by the GLUT4 transporter enters the skeletal and adipose tissue tar-
get cells. It is assumed that within the skeletal and adipose cells glycolysis transpires imme-
diately, breaking one molecule of glucose down into two pyruvate molecules, cf. chapter 2,
as the cell does not store glucose during critical illness. Synthesized pyruvate molecules
may then be either 1) utilized by aerobic energy production through the TCA cycle and
oxidative phosphorylation in the mitochondria or 2) converted into lactate in an anaero-
bic process. Reactions 1) and 2) are assumed to occur instantly, hence there can occur no
build-up of glucose or pyruvate in the current cells.

Seeing as glucose is not stored in the cells, the determinator of whether glucose is ox-
idized in the cell or converted to lactate leaving the cell has been decided to be the rate of
mitochondrial oxidation. For this purpose, the function between ICU stay days and REE,
REEnorm, found in section 6.2 is utilized. This leads to the following expression for the
rate of mitochondrial oxidation, Mitooxi in mmol/min:

Mitooxi = 103mmol

mol
· (REEnorm(day)− 1) ·MSJ

7.3 · 10−3 kcal
molAT P · 24 h

day · 60min
h

· 1
34
Glucose

ATP
(7.5)

Here REEnorm(day) is the function of the ratio of estimated REE for critically ill (PSE)
over REE for the healthy person with same demographics (MSJ). From this value, 1.0 is
subtracted as only the energy requirements above the RMR of the healthy is assumed to
be transported by the GLUT4 transporter to adipose tissue and skeletal muscle cells.
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The glucose that is not oxidized in the cells of the adipose tissue and skeletal muscles
is converted to lactate. This lactate is transported to the blood. If lactate accumulated
in the cells these would become acidic and expire. Because of this, a choice has been
made for this model to transfer all glucose not oxidized in the cells to the blood lactate
compartment.

7.5 Blood Lactate Compartment
The blood lactate compartment represents the lactate in the blood. This compartment is
defined by a concentration GBL and the volume of the blood VBL. VBL is calculated by
[Medscape, 2015]:

VBL = avgBV ·BM (7.6)

avgBV is 0.075 L
kg for men and 0.065 L

kg for women [Medscape, 2015]. The change in blood
lactate concentration in mmol/l/min is described by:

dGBL

dt
= nlin − nlac − nrext − nlox

VBL
(7.7)

Here nlin is the lactate influx due to anaerobic glycolysis described earlier in mmol/min,
nlac is the hepatic extraction of lactate in mmol/min, nrext is the renal extraction of lactate
in mmol/min and nlox is the rate of lactate oxidized in other organs in mmol/min. As
mentioned earlier, the glycolysis of one glucose molecule will yield two pyruvate molecules
which, if converted to lactate, will yield two lactate molecules [Martini and Nath, 2009].

nlin = (glut4 −Mitooxi) · 2 (7.8)

Should Mitooxi be larger than glut4, this difference is set to zero, as nlin is decided to not
assume negative values.

The liver is the main organ for recycling of lactate in the body [Stumvoll et al., 1998]. In
a study by [Dietze et al., 1976] hepatic extraction of lactate from arterial blood was found
to increase when arterial blood lactate concentrations were increased. Figure 7.2 shows
the linear fit of this relation.
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Fig. 1. Relation between arterial concentration and hepatic extrac- 
tion of lactate. Each dot represents an individual blood sample. 
Eight blood samples have been derived from one subject. For 
details see Materials and Methods, y = - 5,8 + 0.43 • ; r = 0.86, 
p < 0.005 

Materials 

Lactate was used as a racemate and as a sterile sodium 
lactate solution containing 150 mM of lactate (Dept. 
of Pharmacy of Schwabing City Hospital, Munich, 
FRG). Radioactive 133xenon (Radiochemical Center 
Amersham, Great Britain) was purchased as a sterile 
zolution in 0.9% sodium chloride (10 mCi/ml) with a 
specific activity of 2 Ci/cm 3 (NDT). 

Results 

Demonstration of identical substrate concentrations 
in the portal vein and the hepatic artery after an over- 
night fast (Table 1) indicated that substrate balances 
derived from arterio-hepatic venous differences rep- 
resented metabolic rates of the liver. This was also 
demonstrated in one subject during lactate infusion 
(W. J., 21.2. 72). 

So as to exclude interference from the catheteriza- 
tion and infusion procedure, the substrates were mea- 
sured in 9 controls during saline infusion. This proce- 
dure revealed no significant changes of substrate con- 
centrations and hepatic substrate balances (Table 2). 

Immediately with the start of lactate infusion the 
arterial lactate level rose almost three-times from 0.44 
_+ 0.05 mmoles/1 up to 1.24 _+ 0.1 mmoles/1 (p < 
0.005) and its arterio-hepatic venous difference four- 
times from a mean in the basal period of 0.12 + 0.01 

G. Dietze et al.: Hepatic Substrate Baiances during Lactate Infusion 

to 0.49 + 0.04 mmoles/1 (p < 0.005) (Table 3). With 
increasing lactate concentrations hepatic lactate ex- 
traction rose continuously (Fig. 1). 

Since lactate and pyruvate concentrations sug- 
gested a steady state of hepatic lactate and pyruvate 
metabolism during the 20 and 30 min after the start of 
the infusion, and blood flow was measured during this 
period, this seemed to be the most favourable time to 
compare the basal balances with those calculated dur- 
ing lactate infusion. As determined by the increased 
hepatic lactate extraction and the enhanced hepatic 
blood flow (Table 3) the mean value for hepatic lac- 
tate uptake rose almost 6 fold from 9.1 + 1.2 up to 
51.7 + 5.8 ~tmoles/100 g • rain (p < 0.005). Al- 
though arterial and hepatic venous pyruvate levels 
showed a similar rise, its hepatic extraction and utili- 
zation remained unchanged (Table 3). The concentra- 
tions of alanine and glycerol exhibited no significant 
changes. 

Simultaneously with the accelerated lactate up- 
take the arterio-hepatic venous glucose difference in- 
creased from a mean of -0 .54  + 0.06 to -0 .84  
+ 0.07 mmoles/1 (p < 0.02). When adjusted for the 
faster flow rate, hepatic glucose production was dou- 
bled (Table 3). Based on the results from 6 volunteers 
whose hepatic uptake of all the individual precursors 
could be registered completely (Table 4), the portion 
of glucose output which accounted for precursor up- 
take increased from 11.3 + 1.6 up to 37.3 + 3.3 
~tmoles/100 g X rain (p < 0.05). That portion of 
glucose production which was not accountable for by 
substrate uptake remained' constant (Table 4). 

Although arterial FFA concentrations did not 
change significantly there was a significant augmenta- 
tion of hepatic free fatty acid utilization from a basal 
value of 8.3 + 1.6 up to 12.6 + 2.2 ~tmoles/100 g • 
min during lactate infusion (p < 0:05) (Table 3). The 
simultaneously measured total hepatic ketone body 2 
production revealed no significant difference. 

Arterial osmolarity (285, 291 mosmol/kg H20) 
and pH (7.38, 7.40) measured in two subjects did not 
change significantly during lactate infusion (292, 294 
mosmol/kg H20; 7.37, 7.38). Heart rates and systolic 
blood pressures of 4 subjects receiving lactate were 
unchanged (basal rate: 73.8 ___ 7.1, basalpressure: 125 
+__ 8.2 mmHg, during lactate infusion: 75.8 _ 6.5, and 
118.8 + 10.1 mm Hg). 

Discussion 

The aim of this study was to prove whether lactate 
as a substrate per se would accelerate hepatic 

2 The term "total ketone l~)dies" refers to the sum of/~l-hy- 
droxybutyrate and acetoacetatc (Table 2,3) 

Figure 7.2: The figure shows a linear fit of the data on calculated hepatic lactate extraction and arterial
lactate concentrations for 8 subjects. The linear expression is y = 0.43 · x − 5.8 and the r-value for the
regression was listed as 0.86 [Dietze et al., 1976]

The fitted relation between hepatic lactate extraction and arterial lactate concentration is
utilized in this model. To use this expression it is however necessary to take into account
the hepatic blood flow as this affects the hepatic lactate extraction. Hence the hepatic
lactate extraction is expressed as:

nlac = (−0.058 + 0.43 ·GBL) ·HBF (7.9)

where HBF is the hepatic blood flow in l/min. A different depiction of the hepatic lactate
extraction would be to view the process as a first order Michaelis-Menten reaction. In a
model of the role of glucose homeostasis by the liver proposed by [König et al., 2012], the
kinetics of the lactate transporter from the blood to the hepatic cells were defined as a
reversible process by Michaelis-Menten kinetics:

v[liver],[blood] =
Vmax
Km
· (GBL −Gliver_lact)

1 + GBL
Km

+ Gliver_lact

Km

(7.10)

where Gliver_lact would be the concentration of lactate in the liver cells and Km and Vmax

are 0.8mmol
l and 0.033 mmol

min·kg respectively [König et al., 2012]. The expression of nlac was
however chosen for this model. This was to avoid increasing the complexity of the liver
compartment by adding a concentration of lactate to it. We also deemed it undesirable
to model a reversible transport of lactate between blood and the liver, seeing as the main
purpose of the liver compartment in this model is to function as a site of gluconeogenesis
of precursors.

Although the liver is the largest contributor to lactate utilization, the kidneys are im-
portant organs for this as well. The kidneys are responsible for the disposal of 30% of an
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exogenous load of lactate. Although the renal lactate metabolism is dependent on pH, in-
creasing at acidosis, this is not a factor in this model [Bellomo, 2002]. The renal extraction
nrext is hence described by:

nrext = 0.3 ·GBL (7.11)

The final means of outflux of lactate from the blood lactate compartment is for oxidation
in other organs, such as the brain and heart. The rate of transfer of lactate to these
miscellaneous organs have been assumed to be 0.27. Based on this assumption the lactate
oxidation to other organs can be described by:

nlox = 0.27 ·GBL (7.12)

7.6 Hepatic Compartment
The liver compartment represents mainly the gluconeogenic properties of the liver. An
equation to estimate the liver volume of caucasian persons in liters was proposed by
[Heinemann et al., 1999]:

V olliver = 1.0728 ·BSA− 0.3457 (7.13)

Where BSA is the body surface area of the person in m2 [Heinemann et al., 1999]:

BSA = BM0.425 ·H0.725 · 0.00784 (7.14)

For the purposes of this model it is deemed necessary to determine specifically the volume
of the fluid component of the liver, as this would provide more accurate concentrations
of glucose in the liver. The fraction of non-hepatocytes in the liver is approximately 0.42
[Kapanen et al., 2005]. This factor may then be used to calculate the volume of the liver
for this model:

VHep = 0.42 · V olliver (7.15)

where VHep is in liters. The liver is able to convert glucogenic precursors (lactate,
glycerol and glucogenic amino acids) into glucose. This functionality is of the utmost
importance, seeing as patients with trauma and sepsis have an increased proportion of
glucose production attributed to gluconeogenesis [Dahn et al., 1995]. An example of this
can be seen in Figure 7.3:
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Surgery Dahn et al. 523 
Volume 117, Number 5 

Oxygen V02 Insulin Glucagon 
(ml/min2/m 2) (>U/ml) (pg/ml) 

Cortisol 
(#tool/L) 

0.41 • 0.04 

0.54 • 0.06 

0.93 • 0.20* 

ND 9.4 • 0.8 93 • 7 

162.7 • I2.5 8.5 • 2.0 507 • 147" 

149.8 • 10.5 6.9 • 2.4 513 • 134" 

bance (805 nm) over time (12 minutes) after intravenous 
dye injection. Plasma volume measurements (required 
for flow determination) were measured immediately af- 
ter the blood flow determinations by using the radioio- 
dinated serum albumin technique. Cardiac index mea- 
surements by use of thermal dilution were also obtained 
in the patient but not control groups because institu- 
tional review board approval was not available for this 
latter measurement in control subjects. Plasma hormone 
concentrations including insulin, glucagon, and cortisol 
were obtained after completion of the hepatic blood flow 
evaluation. The counterregulatory hormone concentra- 
tions were measured with radioimmunoassay (BIO- 
RIA, Inc., Louisville, Ky.). 

Some subjects also underwent the measurement of 
endogenous albumin production with an in vivo ra- 
diotracer technique. Subject selection for this portion of 
the study was based on patient-family acceptance of 
tracer administration. After the completion of flow and 
substrate concentration measurements three normal 
subjects, five injured patients, and 10 patients with sep- 
sis received an intravenous injection of 200 #Ci [14C]- 
sodium carbonate (New England Nuclear, Chicago, 
Ill.) for the measurement of hepatic albumin production 
rate (APR) according to the procedure of Tavill et al. 3~ 
In this method the intracellular albumin precursor pool 
of arginine becomes flash labeled in the guanidine car- 
bon after tracer administration and the amount of albu- 
min produced by the liver is determined from the radio- 
activity incorporated into albumin and urea over time. 
The precursor (arginine) specific activity is estimated 
from the urea specific activity extrapolated to time = 0 
minutes as previously described. 32 All participants were 
pretreated with 1 gm of neomycin enterally every 6 
hours for four doses beginning 24 hours before isotope 
administration. In addition, 1 gm of erythromycin base 
was given enterally at noon and at 6 PM on the evening 
before study in an effort to suppress tracer recycling 
from gastrointestinal bacterial urease activity. Patients 
with sepsis were also receiving clinically indicated broad 
spectrum antibiotics before study. Although the sup- 
pressive influence of these maneuvers was not rigorously 
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Fig. 1. Relative contribution of gluconeogenesis and glyco- 
genolysis to hepatic glucose production in different subject 
groups is estimated. Height of each bar represents total mea- 
sured splanchnic GO, and cross-hatched portion represents 
that fraction that may be accounted for on basis of splanchnic 
gluconeogenic substrate uptake. Remaining fraction (open 
portion) represents estimated contribution of glycogenolysis to 
hepatic GO. 

evaluated, previous studies indicated that tracer recy- 
cling in patients is probably lower than in control sub- 
jects. 33 

Plasma albumin concentrations were determined 
electrophoretically. Plasma urea and albumin specific 
radioactivity for the kinetic analysis were determined 
with physical separation methods and a gasometric 
technique essentially identical to that described by 
Tavill et al. 31 Albumin from timed plasma samples was 
precipitated by using ammonium sulfate fractionation. 
After acid hydrolysis of the isolated albumin fraction, 
incorporated tracer was enzymatically liberated from 
arginine present in the hydrolysate (arginase followed 
by urease). Carbon dioxide (CO2) released from argin- 
ine and urea was collected by using an ultrasensitive, 
high-vacuum gas detection system, and the yield was 
determined by using a thermistor that had been cali- 
brated with known amounts of COz. Thereafter the 
CO2 was condensed on phenylethylamine, and the in- 
corporated radioactivity (hence the specific activity) of 
the sample was determined by liquid scintillation 
counting. 

Data are reported relative to preillness weight. 
Results are expressed as mean values _+ SE, and group 
comparisons are made by use of the one way analysis of 
variance and the least significant difference range pro- 
cedure to evaluate intergroup differences. 

A portion of the analysis required an evaluation of a 
biphasic response relationship (sptanchnic oxygen con- 
sumption versus glucose production). This was con- 
ducted in a fashion similar to that reported by Nelson 

Figure 7.3: The relative relation between glucose production by gluconeogenesis and glycogenolysis, for
groups of 1) healthy individuals, 2) injured patients and 3) septic patients. The crosshatched part of each
column represents the contribution of gluconeogenesis to hepatic glucose production. The white part of the
column represents contribution of glycolysis [Dahn et al., 1995].

Figure 7.3 illustrates that the main glucose producing process in the liver during critical
illness is gluconeogenesis, supporting the choice of focusing on this hepatic function.
Lactate in the liver may be utilized by conversion into pyruvate by lactate dehydrogenase.
It may then be either oxidized directly or converted to glucose by gluconeogenesis as part
of the Cori cycle [König et al., 2012]. The change in concentration of glucose in the hepatic
compartment dGHep

dt is given by the following differential equation:

dGHep

dt
=

nlac+naa−nhlox
2 − nhep

VHep
(7.16)

where naa is the amino acid uptake of the liver from protein degradation and nhlox is the
oxidation of glucogenic precursors by the liver, as seen in Figure 2.8. Notice the division
by two in the expression. This is due to these transfer rates representing in- or outflux of
either lactate or amino acids, which requires two mole to one mole of glucose.

Amino acids extracted by the liver may be used for synthesis of other proteins, e.g. acute
phase proteins or for gluconeogenesis [Weissmann, 1990]. For the purposes of this model,
only the gluconeogenesis will be modeled, as it has not been possible to attain data on
the amount of amino acids utilized for protein synthesis.

The gluconeogenesis of precursor substrates increases the amount of glucose in the liver.
This glucose is subsequently released into the systemic blood circulation by means of the
GLUT2 transporter, normally to retain euglycemia. The rate of transfer of glucose between
the liver and blood, is denoted nhep and is expressed by the following reaction proposed
by [König et al., 2012]:

nhep =
0.25 mmol

kg·min · (GHep −GBG)mmol
l

1 + GBG
KmHep

+ GHep

KmHep

mmol
l

(7.17)

where KmHep is the Michaelis-Menten constant for this GLUT2 transport kinetic, being
42.3 mmol/l determined by [Gould et al., 1991].
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Glucose production also occurs in the kidneys, more precisely the renal cortex of the
kidneys. The kidneys have been found to approximately constitute 40% of total gluconeo-
genesis [Bellomo, 2002], [Gerich et al., 2001]. If the liver is assumed to be responsible for
the rest, the renal glucose production can be calculated based on the values of nhep:

nren = 40%
60% · nhep (7.18)

To describe naa one way to do so would be to take into account that cortisol, cf. section 3.3,
increases proteolysis. Hence, a relation between blood cortisol and amino acid uptake
could be hypothesized. Data from [Dahn et al., 1995] indicates that splanchnic amino
acid uptake is increased with increasing levels of blood cortisol. This together with data
on Free Cortisol Index (FCI) and Corticosteroid-Binding Globulin (CBG) over time for
septic and trauma patients from [Beishuizen et al., 2001] may be applied to hypothesize a
relation between splanchnic amino acid uptake and days of ICU stay. See Figure 7.4 and
Figure 7.5 for examples of this relation.
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Figure 7.4: Correlation between ICU day and blood cortisol for patients with trauma or sepsis. The blood
cortisol values used (black crosses) are derived from data from [Beishuizen et al., 2001], also seen in
Figure 3.4.
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Figure 7.5: Correlation between blood cortisol and amino acid uptake. The amino acid uptake data (black
crosses) are from [Dahn et al., 1995].

However, as we do not have data for the extracted patients on cortisol, we choose not to
apply estimate this relationship for the patients. Instead, parameter estimation is done in
chapter 8
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Chapter 8

Parameter estimation

Following the identification of model parameters, some parameters may be regarded
as unknown. These unknown parameters may not be adequately described by a priori
knowledge, e.g. in the literature. Therefore other ways of estimating these parameters may
be necessary. For the current project a lack of data relating to amino acid degradation
over ICU stay duration has been found. The following chapter will describe the process of
estimating this unknown parameter by use of data from the MIMIC II dataset extracted
in chapter 4.

8.1 Need for estimation
Although a function of liver amino acid uptake on blood cortisol was proposed in chap-
ter 7, it has not been possible to verify this relation in the literature beyond the data
from [Dahn et al., 1995]. Furthermore, seeing as no data on cortisol exists for the patient
data collected in this project, the use of this relation would rely on assumptions made for
the patient’s blood cortisol measurements derived from data from [Beishuizen et al., 2001].

Another way to estimate the amino acid degradation is to use our model to identify
that blood glucose is affected by gluconeogenesis of amino acids in the liver and the renal
cortex. Assuming that observations of high blood glucose concentrations are due to an
increased amino acid gluconeogenesis, we may estimate the amino acid uptake from the
blood glucose data extracted in chapter 4 by simulation of the model. This is a way of
parameter estimation where the goal is to find the expression of the parameter in question,
that minimizes the error between model simulation and the data from the actual system.
An illustration of this process can be seen in Figure 8.1
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8.2 LINEAR AND NONLINEAR PARAMETERS 197
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Figure 8.1 The parameter estimation scheme showing its iterative nature.

It will be seen that there are fundamentally two kinds of regression: linear and non-
linear. The theory of linear regression is mathematically precise with the formulae for
the parameters characterizing the function specifically defined. Nonlinear regression
is more complex and results only in approximations for the estimates of the parame-
ters. In addition to the parameter estimates, for both linear and nonlinear regression,
one usually wants information on the errors of the parameter estimates. To obtain
estimates of these errors, one moves to weighted regression. In weighted regression,
knowledge of the error structure of the data is needed. These errors are used to calcu-
late the weight assigned to a datum during the regression process. The importance of
understanding the nature of the error in the data and how this relates to weighted and
unweighted regression is an essential ingredient of the regression problem as will be
made clear later. Thus there are several ingredients to the regression problem. These
will be isolated and explained in detail with examples provided.

8.2 LINEAR AND NONLINEAR PARAMETERS

What constitutes a linear or nonlinear parameter? It is important to understand this
since, as will be seen in section 8.4, there is an exact solution when the model contains
only linear parameters. In contrast, as will be seen in section 8.5, the solution is only
approximate if the model contains a nonlinear parameter.

There are many kinds of functions that are linear in their parameters. Polynomials
such as the following one are an example:

y(t) = p1 + p2 · t + p3 · t2 + · · · + pn · tn−1 (8.5)

Figure 8.1: The figure illustrates the fundamental iterative process of parameter estimation [Cobelli and
Carson, 2008].

8.2 Method
As can be seen from Figure 8.1 an estimation algorithm is needed to determine the error
of model simulation compared to real system data. For this parameter estimation, A grid
search methodology is applied where the parameter in question is step-wise altered and the
induced change in model simulation accuracy compared to real system data is minimized.
The error measure to minimize was chosen to be the Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
n

N∑
n=1
|Ŷn − Yn|2 (8.1)

where Ŷn is predicted values of blood glucose by the model and Yn are blood glucose val-
ues from the patients. Ŷn and Yn are synchronized in time. RMSE was used rather than
Residual Sum of Squares, as a mean statistic was preferred due to a varying number of
blood glucose measurements per day during the ICU stay.

The unknown parameter, the amino acid uptake, was varied from 0 to 40 µmol/kg/min
with a stepsize of 0.2. These constraints were chosen as they were deemed to be within
physiological limits, based on results on splanchnic amino acid uptake by [Dahn et al.,
1995]. This was done for simulation periods of 1 day. The model was simulated with in-
creasing amino acid uptake rates over 1 day intervals where RMSE was calculated. The
starting value for the concentration of the blood glucose compartment for each simulation
was synchronized with the first true blood glucose level for the patient in that respective
time interval. Figure 8.2 shows examples of simulations of the model with various settings
on the amino acid uptake.
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Figure 8.2: The figure shows a section of the simulations performed, varying the amino acid uptake on
the first day of ICU stay. Crosses indicate actual data measurements of blood glucose concentration. The
red, blue and green line are simulations of blood glucose concentrations (GBG) with amino acid uptake set
to 5, 19.4 and 22 umol/kg/min respectively. The blue line was infact the simulation with the lowest RMSE
in this specific grid search.

Seven patients where chosen for the parameter estimation where four of them were
diagnosed with sepsis, while the remaining three were diagnosed with some sort of trauma.
The mean age of patients was 58.3 years. Insulin effect, α, for the patients was assumed
to be 0.25, as this was deemed representative of the state of critical illness the patients
were in. A criteria for inclusion into the parameter estimation was that patients had at
least four blood glucose values registered per ICU day, this to increase the validity of
the parameter estimation. Moreover blood glucose values had to be present throughout a
minimum of 10 consecutive ICU days.

8.3 Results
At the time of writing the parameter estimation has only been done for one patient case.
The results can be seen in Figure 8.3
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Figure 8.3: The figure shows the amino acid uptake values that would serve to minimize RMSE of the
simulations of the model for the 7 patients.

The results of this parameter estimation indicates that the amino acid uptake rate
minimizing RMSE does not change much, neither between patients or over the course
of the 10 ICU days.
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Part III

Synthesis
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Chapter 9

Discussion

During this project, multiple elements of work was needed to define a model for representing
the muscle proteolysis and stress conditions of the critically ill patient. In this discussion,
the proposed model and the results of simulations and parameter estimations of this will
be reviewed.

9.1 Parameter estimation
In chapter 8 parameter estimation of the amino acid uptake by the liver was performed. It
is a problem to make parameter estimation of the gluconeogenesis of amino acids by the
liver, when the blood glucose data provided in the MIMIC database cannot be considered
"noise-free". In our parameter estimation the insulin effect is kept constant (α = 0.25) and
the patient is assumed to be fasting. These assumptions were necessary to make, due to
the lack of data of data found in the MIMIC II database relating to the specific nutritional
intake of the patients or exogenous insulin load. However, these assumptions are most likely
big, as ICU patients just as well might be receiving nutrition and insulin therapy, both
affecting the blood glucose significantly. Hence when estimating the gluconeogenesis of
amino acids, the estimated amino acid degradation may not compare with the true value
of system, because the change in BG may have been influenced by changes in insulin
therapy or feeding. Without data on these parameters, it is hard to make the case that
amino acid degradation is uniquely identifiable in the subsequent parameter estimation.

9.2 Model limitations
A model is only an approximation of reality. In this project the limitations of the proposed
model relates mainly to the assumptions related to model identification. Simulations of
the proposed model showed situations where the concentration of the blood lactate com-
partment reached zero. This was due to a decrease in transport of glucose by the GLUT4
transport to a point where all glucose transported to the skeletal muscle and adipose
tissue cells was used in oxidative phosphorylation, e.g. going to the mitochondria. This
resulted in a non-existant flow of lactate to the blood lactate compartment, eventually
resulting in "drainage" of lactate from this compartment. This behaviour does not repre-
sent actual system behaviour, as there will always be a certain lactate concentration in
the blood (app. 1.2 mmol/l) [König et al., 2012]. This undesirable behaviour is found to
be due to the structural choices of the model. An assumption was made that the entire
increase in energy expenditure for the patient group was due to increased oxidation of
glucose in the skeletal muscle and adipose tissue cells and that REE for the same healthy
individual was fully portrayed by the combined GLUT1 and GLUT3 transporter glut1+3.
In reality however, it may be more appropriate to assign the energy expenditure in the
graph in Figure 6.2 to all oxidation of pyruvate followed by utilization in the TCA-cycle
and oxidative phosphorylation of the mitochondria. This would entail that multiple of the
transfer rates of the model would be bound to the predicted REE over time, as illustrated
in Figure 9.1.
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In relation to this, it is important to remember that REEnorm(day) from Figure 6.2
is based on predictive equations of REE. This leads to inherent inaccuracy of the values
of REE. Under optimal conditions, the REE was calculated

Figure 9.1: An example of a restructuring of the proposed model for gluconeogenesis of amino acids.
Notice that all transfer rates because of oxidation are related to the energy expenditure of the patient.

The amino acid degradation parameter was estimated with regards to the blood glucose
levels of the patients during ICU stay in chapter 8. However, clear limitations were found
in this parameter estimation. As no data on feeding of the patients or amount of exogenous
insulin administered could be extracted for the patients, see chapter 4, an assumption was
made that the patients were fasting and received no exogenous insulin. These assumptions
may be far from how the patient scenarios actually transpired and leads to a parameter
estimation were amino acid degradation was estimated based on an artificial patient sce-
nario. Without data on these parameters, it is hard to make the case that amino acid
degradation is uniquely identifiable in the subsequent parameter estimation.

Developed models will always have limitations to their representation of reality. In some
cases, experimental data is unavailable to identify model parameters, providing gaps in
the overall model structure, suggesting possible research areas. Available data may not be
rich enough to uniquely describe all unknown parameters in a model. This is known as the
identifiability problem, where the model is too complex for the available data or the data
is insufficient in relation to the concept of the model (e.g. parameters may only be esti-
mated for normal individuals and not patients). All assumptions composed for a model
will contribute to parameter inaccuracy and will affect the overall model performance
[Chase et al., 2011], [Cobelli and Carson, 2008].
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9.3 Future work
It is exceedingly difficult to describe a natural system, without access to relevant exper-
imental data to uniquely identify the processes of the system [Steuer and Junker, 2009].
This was found to be the case of this model of amino acid degradation for use in gluco-
neogenesis. Although studies do provide some data, there is a need for raw measurement
data for individual critically ill patients to meaningfully identify the parameters of the
model [Dahn et al., 1995], [Dietze et al., 1976].

As discussed by [Biolo, 2013] it is complex to determine parameters that give indica-
tions of optimal protein administration for ICU patients, due to the amount of specific
amino acids having differing function in the human body and rates of natural synthe-
sis and degradation. As adequate provision of proteins can lower negative outcomes, it is
still of the highest interest to model the protein requirements of ICU patients [Biolo, 2013].

Patient data on urine urea nitrogen and protein intake would make it possible to esti-
mate the nitrogen balance of patients, which would aid in understanding and modeling
the protein requirements of patients. However, these data may not prove adequate as in-
creased availability of amino acids may be required under stress conditions, resulting in
protein intakes that make the nitrogen balance positive rather than zero [Biolo, 2013].

In chapter 8 the blood glucose data of patients were used to estimate the amino acid
uptake of patients during their course of ICU stay. A different and interesting prospect
would be to further investigate how cortisol could be applied as a parameter in the model,
serving as a factor affecting the amount of muscle proteolysis and amino acid degrada-
tion experienced for the patient, cf. section 3.3. As we have found from some studies, cf.
chapter 7, one could hypothesize a cortisol factor directly influencing general amino acid
degradation. As indicated by [Vermes and Beishuizen, 2001], Free Cortisol Index might
be an even better measure of the influence of cortisol in the body, as it takes into account
the proportion of that is free, not bound by CBG and hence not effective. Future work
would need more ’raw’ data to support or reject this relation, either through experimental
studies or extraction of data from a more extensive clinical database than the one chosen
for this project.

Much work has been put in our attempts to gather clinically relevant data for use in
this project. An initial plan was to gather clinical data ourselves in collaboration with
a hospital. However, due to unexpected new regulatory affairs taking effect during the
project period, another plan for data acquisition had to be set in motion. We chose to
gather data from the MIMIC II database. However, working extensively with the dataset
we found that it did not contain the parameters we were the most interested in attaining
(cortisol, interleukin-6, protein intake, UUN, energy expenditure).

It is a complex task to make a model on metabolic processes in the human body. In
this project, we have however proposed an initial model to describe an aspect of protein
breakdown of the critically ill. Although the model presents some limitations, and that
future work will needed to apply more data for further conceptualization and identification
, the proposed model is regarded as a proof of concept of how to model one aspect of the
uses of muscle proteolysis in periods of stress induced by critical illness.
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Chapter 10

Conclusion

Conditions, such as ICU acquired weakness, potentially leads to further morbidity and
prolonged hospital stay of critically ill patients. Patients may experience a lowering of
quality of life due to decreased physical ability by aqcuired weakness. A hypermetabolic
’flow’ phase in the course of critical illness may contribute to an increased degradation
of muscle protein reserves by proteolysis. The aim of this project was to examine the
metabolic response to critical illness and the effect of this on muscle wasting. Moreover,
clinical data supporting the notion of metabolic stress in ICU patients was sought and
gathered. Data was gathered from MIMIC II, an intensive care unit research database
containing more than 32,000 patient experiences. A list of relevant and desired clinical
parameters intended as markers for metabolic stress, along with criteria for selection of
patient scenarios, were defined. Only af a few of these stress parameters existed for the
extracted patients in MIMIC II. Due to the lack of desired patient data, a physiological
model, relating to the role of amino acids in gluconeogenesis during critical illness, was
proposed. For this model, amino acid degradation due to gluconeogenesis was estimated
by patient blood glucose levels. The lack of data on nutritional load and possible under-
going insulin therapy for the patients made a parameter estimation of amino acid uptake
inaccurate.

This physiological model comprises of important physiologic compartments in the scenario
of critical illness. However, additional work on the conceptualization and identification of
model parameters may be necessary for the model to represent the critically ill patient
group. Furthermore, gathering of experimental study data on metabolic stress and muscle
proteolysis in critically ill patients is warranted, as current studies do not present "raw"
data for use. Use of a "cortisol factor" to describe muscle wasting will likely prove a better
marker of protein degradation than blood glucose in a physiological model.
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