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Preface

This report contains the project work performed by Eric Kassebaum in 3rd and 4th
semester Master studies in Biomedical Engineering and Informatics at Aalborg University,
over the time period 2nd of September 2014 till 3rd of June 2015. The overarching theme
of the two semesters was "Modeling Physiological Processes" and the title of the project
is "A computerized model of the Cori cycle in patients with critical illness".

The target group of the project include students, supervisors, researchers, and others with
an interest in biomedical engineering.

Reading Guide

Source references in the report will be listed according to the Harvard method, with given
[Surname of author, Publication year] in the text. All references are collected in the
bibliography at the end of the project and listed alphabetically.

If no reference is given for a figure or table, these have been created by Eric Kassebaum.
Tables and figures are numbered according to the chapter in question, e.g. first figure in
chapter 2 has the referencing number 2.1. the next one of 2.2, etc. Therefore, there is a
possibility of table 2.1 and figure 2.1 in same section. Used abbreviations are defined with
first usage and placed in brackets. An abbreviations list is enclosed in the beginning of
the document.
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Chapter 1

Introduction

This chapter describes the breakdown of muscle proteins in critically ill patients as a side
effect of an intensive care unit (ICU) stay. Aspects of epidemiology, etiology, prevalence
and prognosis of the resulting acquired weakness are presented and linked to the lactate
metabolism.

1.1 Intensive Care Unit Acquired Weakness

The body response to injury is mobilizing reserves (e.g. glycogen, proteins and fat),
to provide substrates for the metabolism [Saxena and Hodgson, 2012]. Especially the
breakdown of skeletal muscle proteins allows for a quick reaction to altering physiological
requirements [Wischmeyer, 2013], [Lecker et al., 1999]. This increased catabolism is asso-
ciated with muscle degradation and loss of lean body mass, which is leading to intensive
care unit acquired weakness (ICUAW) [Saxena and Hodgson, 2012], [Mansoor et al., 1996].
This loss amounts to 2% in muscle proteins and 3−4% in the muscle fibers daily [Griffiths
and Hall, 2010]. Consequently, 20% of all body proteins are being lost over the first three
weeks, especially within the first 10 days after injury [Mansoor et al., 2007].
ICUAW is characterized by an acute severe illness, associated with prolonged immobiliza-
tion and required organ support, resulting in diminished reflexes, symmetrical motor weak-
ness that do not result from an underlying neurological condition [Saxena and Hodgson,
2012]. Patients generally tend to survive their stay in an ICU but suffer from the results
of acquire weakness later [Wischmeyer, 2013], [Appleton and Kinsella, 2012]. ICUAW
leads to increased costs, due to prolonged ICU and hospital stay, as well as extended me-
chanical ventilation [Wischmeyer, 2013], [Saxena and Hodgson, 2012], [de Jonghe et al.,
2009]. Further consequences include physical disability, increasing the recovering time
from weeks to months with the probability of persistent long term symptoms, as well as
a higher mortality rate of affected patients [Saxena and Hodgson, 2012]. 25 − 60% of
patients surviving the acute phase of critical illness and being mechanically ventilated for
more than a week, suffer from ICUAW [Griffiths and Hall, 2010], [de Jonghe et al., 2009].
45% of those die during their hospital stay, with another 20% dying over the first year
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after their discharge from the ICU. Moreover, approximately 68% of the patients who
survive, regain full functional capacity, while around 28% suffer from persistent disability
[Appleton and Kinsella, 2012].
This prevalence makes it necessary to pinpoint risk factors and take preventive action, as
well as not exclusively focusing ICU treatment on patient survival, but also emphasize the
improved patient outcome in the long term [Wischmeyer, 2013], [de Jonghe et al., 2009].
Risk factors such as hyperglycemia, muscle immobilization, multi organ failure and the
use of neuromuscular blockers or corticosteroids have been isolated [Griffiths and Hall,
2010], [de Jonghe et al., 2009]. However, it remains debatable on whether the medical
consequences of ICUAW are the result of ICUAW and not the underlying medical condi-
tion and on whether they could be improved by different treatment [Saxena and Hodgson,
2012], [Griffiths and Hall, 2010], [de Jonghe et al., 2009].

1.2 Critical Illness

Critical illness and injury is considered to be a process, where the body is subjected
to certain phases of response to the underlying condition, as depicted in figure 1.1
[Wischmeyer, 2013].

Figure 1.1: The graph shows the initial phases of the metabolic body reaction to injury and critical illness
[Wischmeyer, 2013].

The graph describes the increased metabolism as a reaction to injury in the acute phase,
which is fueled by the physiological reserves the body can naturally provide for a limited
period of time. When entering the chronic phase those reserves are depleted and the
organism begins to break down body structures, e.g. muscles for substrates. Over time
this drain can cause irreversible damage to the organism causing death. However, when
dealt with the injury before that critical point, a patient can recover, repair the damage,
and rebuild reserves to complete health [Wischmeyer, 2013].
The acute phase lasts 12 − 24 hours post-injury and is characterized by sepsis and
shock, which frequently leads to resuscitation, mechanical ventilation and requires a
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suitable drug therapy [Wischmeyer, 2013], [Van Cromphaut, 2009]. During the following
chronic phase, the patient is exposed to an increased risk for recurring infections and
various complications, potentially leading to a relapse into the acute phase [Wischmeyer,
2013].This phase is associated with protein catabolism, hyperglycemia, insulin resistance,
increased energy requirements and cardiovascular activity such as tachypnea, tachycardia,
and vasodilatation. Moreover, signs of infection such as hyper- or hypothermia and
leukocytosis are present. Depending on the illness severity this phase peaks at
approximately 3 − 5 days after the initial injury and declines over the next 7 − 10 days
[Mizock, 2001]. However, if the patient is stabilized and survived this far, he enters a
recovery phase over the next couple of weeks, which is characterized by the prospect to
regain a sufficient health level that prevents a relapse to either of the two previous phases
and general anabolism [Wischmeyer, 2013], [Mizock, 2001]. The patient is then usually
discharged from the ICU to a normal hospital ward or rehabilitation facility [Wischmeyer,
2013].
Surviving the acute phase of acute injury primarily requires hemostasis and suppressing
inflammation, especially with systemic inflammatory response syndrome (SIRS) and sepsis
[Wischmeyer, 2013]. This is achieved by an accelerated metabolism, where critically ill
patients show a protein catabolism resulting from stress hormone and cytokine release
[Elke et al., 2014], [Wischmeyer, 2013]. The protein catabolism is fueled by amino acids
(e.g. glutamine), especially drawn from the muscles (70%) and used for energy supply and
immune response [Wischmeyer, 2013], [Mansoor et al., 2007], [Lecker et al., 1999]. How
long the organism can drain its resources apparently depends on the individual pre-injury
muscle mass and nutritional state before the injury, as e.g. glutamine reserves in the blood
plasma can be exhausted within two days post-injury. According to this, increased protein
intake during the acute and chronic phase of critical illness, should provide the metabolism
with enough substrate, to retain reserves and body mass for recovery [Wischmeyer, 2013].

1.3 Nutrition in Critical Care

A quite common problem in hospitals is the malnutrition of patients, occurring in
30 − 50% and being higher in critically ill patients (more than 50% worldwide). To
reduce the protein catabolism in these times of diminished caloric gain, it is suggested to
support the critically ill metabolism with proteins from an external source during the
chronic and acute phase [Wischmeyer, 2013]. It remains debatable on how exactly ICU
patients benefit from feeding, as e.g. low enteral nutrition is recommended for sepsis
patients by the Surviving Sepsis Campaign, but it recently has been shown, that full
enteral nutrition improves the outcome (reduced mechanical ventilation and mortality)
for those patients [Elke et al., 2014].
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1.4 Sepsis

Sepsis is among the 10 most frequent causes of death in the United States of America and
a serious health problem worldwide, especially in the critically ill [Garcia-Alvarez et al.,
2014a], [Wischmeyer, 2013]. It often results in the death of ≥ 25% of the affected, with
increasing incidence of e.g. 8.7−13% in the United States of America over the last 30 years
[Marik, 2014], [Dellinger et al., 2013], [Wilhelms et al., 2010]. In Europe the incidence of
sepsis and severe sepsis is 37% and 30%,respectively [Marik, 2014]. Sepsis is diagnosed by
clinical and laboratory assessment, where an increased blood lactate level (BLL) and its
development over time can suggest the severity of a disease [Garcia-Alvarez et al., 2014a],
[Handy, 2006]. Moreover, lactate is considered to be a major factor in restoring wounds
and the healing process as a whole, as it e.g. nearly doubles collagen synthesis [Hunt et al.,
2007], [Gladden, 2004], [Trabold et al., 2003].

1.5 Motivation

An important but not necessarily reliable indicator for sepsis severity and mortality rate
is the amount of lactate in the blood. Larger quantities of lactate is produced in an
accelerated, more catabolic metabolism. However, the specific lactate balance in both,
normal metabolism and accelerated catabolism is not known [Garcia-Alvarez et al., 2014a].
Therefore it might be beneficial to simulate the development of e.g. sepsis in a model based
on the lactate metabolism and use the gained knowledge and probably derived therapy to
potentially reduce mortality from sepsis.

4



Part I

Problem Analysis

5





Chapter 2

Lactate Metabolism

This chapter introduces general agreements in nomenclature and considerations for
future reference. Moreover it provides a basic overview on biochemical background
information such as glycolysis and general lactate metabolism.

2.1 Introduction and Definitions

2.1.1 Lactate and Lactic Acid

The human organism can derive two molecules of lactic acid from one molecule of glucose
by glycolysis and subsequent pyruvate conversion, which is presented in more detail in
section 2.2.1 [Baynes and Dominiczak, 2014]. Glycolysis takes place in aqueous solutions,
which means strong acids exist predominantly in their dissociated form - that is, cations
and anions [Lane et al., 2009], [Horn, 2009],[Gladden, 2008], [Handy, 2006], [Robergs
et al., 2004]. In the case of lactic acid that would be a hydrogen ion H+ and a lactate ion,
respectively. However, it is commonly not precisely distinguished between acid, ion, and
salt, as lactate is used for all of them interchangingly. Consequently, this is not necessarily
representing reality and leading to confusion in the understanding of the related metabolic
reactions [Handy, 2006]. Moreover, since only L-lactate is produced naturally in the human
metabolism, it is usually simply referred to as lactate [Lenzen, 2012], [Deutsch, 2003]. In
the following lactate will therefore refer to the L-lactate anion, as depicted in figure 2.1.

2.1.2 Inorganic Phosphate

The anions of phosphoric acid (HxPO 3 – x –
4 ) are usually named inorganic phosphate

(Pi) without distinguishing dihydrogen phosphate (H2PO
–
4 ) from hydrogen phosphate

(HPO 2 –
4 ). Both exist physiologically in a pH-value depending equilibrium, which is

described by the Henderson–Hasselbalch equation [Handy, 2006], [Robergs et al., 2004],
[Mortimer and Schilling, 1980].

7



⊖O

L-Lactic Acid

D-Glucose

OH

HO

OH

CH2OH

OH

L-Lactate

C

H

H

H

C
H O

C

C

C

H
C

C

O HO

H3C

HHO C

O
C

H3C

HO H

Figure 2.1: The figure shows the Fischer projections of glucose, lactic acid and lactate.

pH = pKa + log
[H +][A −]

[HA] (2.1)

Rearranging this equation and inserting the values of physiological pH-value (pH = 7.4)
and acid ionization degree (pKa = 7.2) leads to [Löffler et al., 2007], [Handy, 2006],
[Mortimer and Schilling, 1980]:

10(7.4−7.2) = [H +][HPO 2−
4 ]

[H2PO −
4 ]

. (2.2)

Accordingly, hydrogen phosphate exists predominantly (≈ 60%) and is further referred to
as Pi. However, the relation shifts towards dihydrogen phosphate with dropping pH-value
[Weiler and Nover, 2008], [Robergs et al., 2004]. Pi is depicted in figure 2.2 as part of the
ATPase reaction [Robergs et al., 2004].
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Figure 2.2: The figure shows the ATP hydrolysis generating ADP, Pi and a H+. R denotes the adenosin
and ribose backbone of the compound, which does not participate in the conversion.

2.1.3 Redox Coenzymes

The abbreviations of nicotinamide adenine dinucleotide (NADH), flavin adenine
dinucleotide (FADH), and nicotinamide adenine dinucleotide phosphate (NADPH) are
generally used for the redox coenzymes of the human body without distinguishing their
oxidized from the reduced forms. Thus e.g. NADH comprises the oxidized form (NAD+)
as well as its reduced form (NADH + H+) of NADH [Horn, 2009].
Redox coenzymes are coenzymes of oxydoreductases, they take part in the electron shift
of redox reactions (electrons and protons are shifted simultaneously e.g. during glycolysis)
[Horn, 2009; Berg et al., 2002]. Enzymes can only work with one type of coenzyme, which
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enables a simultaneous catabolism (e.g. glycolysis, using NAD+) and anabolism (e.g.
fatty acid synthesis, using NADPH + H+) [Horn, 2009].

2.2 Biochemistry and Physiology

2.2.1 Glycolysis

Glycolysis is the first step of glucose metabolism and can be found in the cytosol of
any body cell. The second step is the breakdown of pyruvate into CO2 and H2O in the
respiratory chain of the mitochondria (endoxidation) yielding ≥ 30 ATP [Baynes and
Dominiczak, 2014], [Horn, 2009], [Handy, 2006].
Glycolysis describes the breakdown of glucose into pyruvate, during which energy is
yielded in a two-phase process, as depicted in figure 2.3. The investment phase consumes
two molecules of ATP, creating a gradient along the reaction chain and synthesizing
fructose-1,6-biphosphate. Fructose-1,6-biphosphate is subsequently split in two molecules
of glyceraldehyde-3-phosphate per glucose molecule, causing the following reactions to run
twice, as depicted in figure 2.3.
In the beginning of the yield phase glyceraldehyde-3-phosphate is oxidized to 1,3-
biphosphoglycerate using Pi and reducing NAD+ to NADH + H+. The reaction
temporarily stores energy in the anhydride bond of carboxylic and phosphoric acid, to
transfer the prior attached phosphate to ADP in the subsequent phosphoglycerate kinase
reaction. This substrate-level phosphorylation regains the ATP molecules invested in the
first phase of glycolysis. After an intramolecular redistribution phosphoenol pyruvate is
generated by dehydration and subsequently converted into pyruvate to generate a total
of two more ATP molecules, as seen in figure 2.3 [Horn, 2009]. The rate at which ATP is
generated by glycolysis is more than twice the rate of ATP synthesis in the endoxidation
[Juel, 1997]. The conversion of glucose-6-phosphate to lactate takes about 20 − 100ms
[Cerretelli and Samaja, 2003]. Moreover, it can be adjusted within a few seconds, allowing
for quick reactions to a changing energy demand [Juel, 1997].

Glucose-Lactate Balance

During glycolysis two molecules of pyruvate are formed from one molecule of glucose,
synthesizing two molecules of H2O, ATP and NADH + H+. However, the conversion of
pyruvate into lactate reoxidizes the prior produced NADH + H+ to NAD+, as depicted
in figure 2.4 [Horn, 2009], [Handy, 2006], [Berg et al., 2002]. Thus the net balance of the
conversion from glucose into lactate can be found as [Bakker et al., 2013], [Lane et al.,
2009], [Horn, 2009], [Rehm and Hammar, 2005], [Robergs et al., 2004]:

C6H12O6 + 2ATP+2HPO 2−
4 −→ 2C3H5O−

3 + 2H + + 2ADP+2H2O. (2.3)
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Figure 2.3: The figure shows a systematic overview of glycolysis. Key enzymes and thus the irreversible
steps of glycolysis are marked blue. Edited from [Horn, 2009].

2.2.2 Lactate Metabolism

The reduction of pyruvate into lactate (outside of the mitochondria), as depicted in figure
2.4, gains NAD+ for the glycolysis in case a NAD+ shortage is built up in the cytosol
[Horn, 2009], [Bolton, 2007], [Handy, 2006]. The conversion from pyruvate into lactate
can occur for several reasons [Horn, 2009], [Handy, 2006].

• Reduced oxygen availability leading to increasing pyruvate concentration

• Pyruvate build up due to increased metabolism e.g. muscle activity
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• Glycolysis exceeding mitochondria capacity caused by drugs e.g. catecholamines

• Metabolism of erythrocytes (no mitochondria)

Figure 2.4: The figure shows the conversion of pyruvate into lactate, catalyzed by LDHase. Edited from
[Horn, 2009].

Lactate then enters the bloodstream (along with its H+) and is transported to well
oxygenated areas of the body, e.g. liver and heart, to be oxidized into pyruvate, which
is needed for many cellular reactions Horn [2009], [Bolton, 2007], [Handy, 2006], [Juel,
2004], [Juel, 1997], [Vincent, 1995]. During a stress situation (e.g. exercise or critical
illness) the lactate production increases, exceeding the liver metabolism and leading to an
accumulation of lactate in the blood [Garcia-Alvarez et al., 2014b], [Horn, 2009], [Bolton,
2007]. Lactate producing tissues include erythrocytes (20%), skeletal muscles (25%), brain
(20%), adipose tissue (25%) and gut (10%), while lactate metabolizing tissues are heart,
liver and kidneys. The resulting Cori cycle is depicted in figure 2.5 [Garcia-Alvarez et al.,
2014b], [Handy, 2006], [Levy, 2006], [Cori, 1981].

Figure 2.5: The figure shows the basic concept of constant lactate recycling in the Cori cycle. Following
the glycolysis in one tissue (e.g. muscle) lactate is synthesized and released into the blood. Another tissue
(e.g. liver) includes the lactate to gluconeogenesis synthesizing glucose, which is released into the blood.
Other tissues can subsequently absorb glucose from the blood as required [Baynes and Dominiczak, 2014].
A more refined schematic of the Cori cycle is presented in figure 8.7 for the developed model.

Lactate Dehydrogenase

The puruvate lactate conversion is catalyzed by lactate dehydrogenase, which maintains
an intracellular lactate-pyruvate ratio of 10 : 1 (20 : 1 or more during metabolic stress
like sepsis) and is found as five isoenzymes in different organs of the human body [Garcia-
Alvarez et al., 2014b], [Horn, 2009], [Handy, 2007], [Levy, 2006], [Levy et al., 2005], [Fall
and Szerlip, 2005], [Levy et al., 1997], [Vincent, 1995]. A complete LDHase enzyme is
formed by four subunits of the categories M or H [Horn, 2009].
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• The heart isoenzyme LDH1 (H4) oxidizes lactate to pyruvate

• The muscle isoenzyme LDH5 (M4) reduces pyruvate to lactate.

However, the LDHase-5 predominantly found in the liver usually catalyzes the oxidation
from lactate to pyruvate. Although being an intracellular enzyme, LDHase can be found in
the bloodstream at a normal concentration of 40−230IU/l resulting from tissue breakdown
[Horn, 2009], [Nathwani et al., 2005], [Vassella et al., 1967].

2.2.3 Gluconeogenesis

Gluconeogenesis describes the synthesis of glucose from lactate (from erythocytes and
skeletal muscles), amino acids (e.g. alanine from the skeletal muscles), and glycerol
(from the adipose tissue). Several organs are capable of gluconeogenesis [Baynes and
Dominiczak, 2014], [Horn, 2009], [Gerich et al., 2001].

• Liver, which supplies the remaining organism with glucose.

• Kidneys, which also contributes to the blood glucose level (BGL) regulation as well
as pH-value stabilization.

• Gut, to facilitate homeostasis during digestion.

The lactate dehydrogenase in cells of these organs and heart cells oxidize lactate to
pyruvate, which can subsequently be used as input for either respiratory chain or
gluconeogenesis. In gluconeogenesis the key reactions of glycolysis have to be
circumvented using alternative reactions and different enzymes, as depicted in figure 2.6.
Pyruvate is the precursor of gluconeogenesis, so alanine is also converted into pyruvate by
alanine transaminase in the cytosol. Pyruvate is transported into a mitochondrion and
carboxylated to oxaloacetate, consuming one molecule of HCO – to form the coenzyme
biotin-CO2 and reducing one molecule of ATP to ADP in the process. Oxaloacetate has
to be converted into malate in order to leave the mitochondrion before it is subsequently
decarboxylated into phosphoenolpyruvate. At high-level lactate availability and thus
sufficient NADH + H+ (e.g. caused by high muscle activity) oxaloacetate can be directly
converted into phosphoenolpyruvate by phosphoenolpyruvate carboxylase to avoid
producing additional NADH + H+ in the cytosol. The following conversions have to run
twice to synthesize fructose-1,6-biphosphate and are the exact reversal of the glycolysis
reactions, depicted in figure 2.3. Fructose-1,6-biphosphate is subsequently hydrolyzed to
fructose-6-phosphate, which is converted into glucose-6-phosphate and finally hydrolyzed
to glucose in the endoplasmic reticulum. Glucose is then released into the blood, as
depicted in figure 2.6 [Horn, 2009].

The synthesis of one molecule glucose requires an equivalent of six ATP [Horn, 2009],
[Levy, 2006]. However, two ATP are yielded from the glucose conversion during glycolysis,
leading to a net loss of four ATP in gluconeogenesis [Horn, 2009]. Lactate is a permanently
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Figure 2.6: The figure shows a systematic overview of gluconeogenesis. Key enzymes and thus the
irreversible steps of gluconeogenesis are marked blue, emphasizing the alternative pathways in comparison
with glycolysis. Edited from [Horn, 2009]. LDH: lactate dehydrogenase, PDH: pyruvate dehydrogenase,
PEP-CK: phosphoenolpyruvate carboxylase, ER: endoplasmic reticulum

available and the quantitatively most important substrate for gluconeogenesis, which is
supplemented by alanine (liver) and glutamine (kidney) in times of need [Garcia-Alvarez
et al., 2014a], [Horn, 2009], [Gerich et al., 2001]. The fatty acid decomposition delivers the
energy required for this process, as well as glycerol, which can also be used as a substrate.
Glycerol can enter gluconeogenesis after it has been converted into dihydroxyacetone
phosphate, to form fructose-1,6-biphosphate. Other glucogenic amino acids (3 − 4 C-
atoms) can enter gluconeogenesis when converted into pyruvate or via the the citric acid
cycle into oxalocatate, respectively [Horn, 2009]. All free amino acids in blood and tissue
combined amount to 70− 100g in a 70kg adult [Löffler et al., 2007].

13



Glycogen

Glycogen is the storage polysaccharide of glucose in animal tissues, being stored in skeletal
muscles (1g/100g tissue) and liver (10g/100g tissue) for own usage in energy metabolism
and to supply the remaining organism with glucose, respectively. However, those reserves
only last about 12 hours [Baynes and Dominiczak, 2014], [Horn, 2009], [Löffler et al.,
2007]. Moreover, the breakdown of muscle glycogen results in the release of lactate into
the blood, while hepatic glycogen breakdown releases glucose [Gerich et al., 2001]. The
intersecting pathways of the underlying glucose metabolism are depicted in figure 2.8.
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Figure 2.7: The figure shows a systematic overview of glycogen synthesis and glycogenolysis. Edited from
[Horn, 2009]. PGM: phosphoglucomutase, ER: endoplasmic reticulum
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2.3 General Metabolic Model

Based on the reaction chains of glycolysis, gluconeogenesis, and the glycogen metabolism
of figures 2.3, 2.6,and 2.8, a diagram of the interacting main metabolites involved in the
Cori cycle can be derived, as depicted in figure 2.8.

Figure 2.8: The figure shows a schematic overview of the intersecting pathways of glucose metabolism
close to how they were modeled. Edited from [Van Cromphaut, 2009]. G-6-: glucose-6-, G-6-P: glucose-
6-phosphate, F-1,6-: fructose-1,6-, PFK: phosphofructokinase, GAPDH: glyceraldehyde-3-phosphate
dehydrogenase, PGK: phosphoglycerate kinase, PGM: phosphoglycerate mutase, PK: pyruvate kinase,
ALT: alanine transaminase, PDH: pyruvate dehydrogenase, LDH: lactate dehydrogenase

Figure 2.8 forms the structural basis of the developed model. The reactions are adopted
for the different organs and modified where necessary. The details are discussed in chapter
8 The 
 arrows indicate that the reaction is catalyzed by the same enzyme in the forward
and reverse reaction and also includes the alanine transferase and lactate dehydrogenase
reactions. The ←→ indicates that the forward reaction is catalyzed by a different
reaction then the reverse reaction and also applies to the glucose cycle and glycogen
metabolism. All reactions, except the pyruvate dehydrogenase reaction, are essentially
depicted reversible. The irreversible reactions (indicated by −→) of gluconeogenesis were
lumped in the model to make them reversible in one reaction, excluding oxaloacetate as
relevant metabolites in the process. Combining several reactions the glycogen metabolism
for the model also eliminated glucose-1-phosphate as a contributor to that process, as seen
in chapter 7.3. The inhibiting and promoting effect of insulin in the glycogen metabolism
is shown but not the inhibition or activation of any other enzyme that were incorporated
in the model, as presented in chapter 7.3. The reaction of the pyruvate dehydrogenase
complex to form acetyl-CoA is kept irreversible, as acetyl-CoA can not be reintroduced
to the carbohydrate metabolism, which is indicated by its oxidation and contribution to
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lipogenesis [Horn, 2009]. The redox coenzyme conversion by lactate dehydrogenase was
divided between lactate and alanine in the model, as presented in their respective equations
in chapter 7.3. Moreover, no H2O, Pi or other contributing metabolites to specific reactions
are shown, to focus on the model environment. As not all of the depicted reactions take
place in the same cell at the same time, they have to be distributed to their respective
organs, which are then individually considered for their contribution to the Cori-cycle.
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Chapter 3

Clinical Relevance of Lactate

This chapter introduces the two major conceptions on why the blood lactate concentration
is a valuable laboratory parameter to be considered in critically ill patients. Moreover,
the parallels of hyperlactatemia and hyperglycemia are briefly mentioned.

3.1 Hyperlactatemia

Hyperlactatemia describes an elevated BLL (> 2mmol/l) at normal pH-value and has
to be distinguished from lactic acidosis [Lee et al., 2008], [Bolton, 2007], [Vincent, 1995].
The development of a patients BLL and pH-value over time is used as solid predictor
of mortality and illness severity and provides a basis for risk assessment in patients
suffering from e.g. sepsis, shock, and trauma Garcia-Alvarez et al. [2014a], [Lee et al.,
2008], [Bakker and Jansen, 2007], [Bolton, 2007], [Levy, 2006]. However, details in this
mechanism remain unclear and it is debated on whether hyperlactatemia is a protective,
maladaptive or physiological stress response of the human organism [Garcia-Alvarez et al.,
2014b]. However, the causes of hyperlactatemia are various and it can be increased by
hepatic dysfunction [Vincent, 1995].

• acute circulartory failure (e.g. by sepsis or obstructive shock)

• maloxygenation (e.g. by hypoperfusion or anemia)

• malnutrition

There are two major concepts for the origin of hyperlactatemia and they can be illustrated
by equation 3.1, which is derived from the pyruvate-lactate conversion at equilibrium as
seen in figure 2.4 [Levy, 2006], [Vincent, 1995], [Oliva, 1970], [Williamson et al., 1967],
[Huckabee, 1958].
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Lactate
Pyruvate = K

[NADH + H +]
[NAD+]

= 10
1 (3.1)

Rewritten this equation indicates two possibilities for hyperlactatemia [Handy, 2007],
[Levy, 2006], [Vincent, 1995], [Kruse et al., 1990], [Oliva, 1970], [Huckabee, 1958].

Lactate = Pyruvate ·K [NADH + H +]
[NAD+]

(3.2)

Type A Reoxidation of NADH + H+ to NAD+ in the mitochondria is suspended by
hypoxia (hypoxia-associated hyperlactatemia)

Type B Lactate increase caused by increased substrate consumption in glycolysis leading
to a pyruvate accumulation and subsequently more lactate (hyperlactatemia
associated with increased glycolysis but not stress from hypoxia)

There is no general agreement on which of the factors or to what extent they contribute
to the clinical observation hyperlactatemia. However, more recently type A and B are
considered as equally valid to explain hyperlactatemia in different situations [Handy, 2007],
[Levy, 2006], [Vincent, 1995], [Kruse et al., 1990], [Oliva, 1970], [Huckabee, 1958].

3.1.1 Sepsis-Associated Hyperlactatemia

Patients suffering from sepsis can exhibit an elevated BLL of up to 15mmol/l. However,
the exact pathomechanism is debated and unclear [Garcia-Alvarez et al., 2014a]. Sepsis-
associated hyperlactatemia is generally assumed to indicate hypoxia as a result of
hypoperfusion, leading to organ failure. This relative lack of oxygen is said to suspend
the endoxidation in mitochondria of the affected tissue, forcing the tissue to convert
pyruvate from the glycolysis into lactate to restore the redox potential and enable
further glycolysis [Garcia-Alvarez et al., 2014a], [Levy, 2006]. Thus the oxygen deficient
metabolism is characterized by an increased lactate-pyruvate ratio, glucose usage, and BLL
as well as a decreased energy production [Levy, 2006]. Hyperlactatemia resulting from
hypoperfusion is especially likely in shock situations resulting from reduced cardiac output
e.g. septic shock with catecholamine-resistent cardiocirculatory collapse [Levy, 2006].
More recently it is assumed that lactate is an important metabolite in the physiological
stress response of the human organism that indicates inflammation or metabolic stress
rather then hypoperfusion [Garcia-Alvarez et al., 2014a], [Bolton, 2007], [Gladden, 2004].
Accordingly, inflammation and catecholamines (e.g. adrenalin) triggered an increased
glycolysis and muscle lactate production that rise above the oxidative capacities of the
mitochondria. The resulting elevated BLL is attributed to pyruvate, which is produced
by this accelerated glycolysis and transamination and subsequently converted into lactate,
since the concentration of pyruvate and lactate is continuously balanced by LDHase
[Garcia-Alvarez et al., 2014a], [Garcia-Alvarez et al., 2014b], [Bakker et al., 2013], [Levy,
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2006]. Moreover, lactate clearance appears to be reduced in septic patients, which slightly
contributes to the accumulation of lactate in the blood [Bolton, 2007], [Levraut et al.,
1998].

3.1.2 Exercise-Associated Hyperlactatemia

The BLL increases not only as a result of pathophysiological stress e.g. sepsis, but also
physiologically during exercise [Garcia-Alvarez et al., 2014b]. This exercise-associated
hyperlactatemia is often considered to result from insufficient oxygenation (hypoxia),
which caused muscle fatigue and led to tissue damage by acidosis. This does not necessarily
have to be true, as acidosis and muscle fatigue both can be attributed to various other
factors (e.g. increased H+ concentration) and increased BLL being only one of them,
implying a grater complexity. Moreover, lactate and glucose apparently compete with
each other over being a substrate for oxidation in skeletal muscles. With lactate being
the preferred one, more glucose is left to be consumed by other body tissues. During this
process the gluconeogenesis remained constant, indicating the significance of lactate as a
valuable precursor in gluconeogenesis [Gladden, 2004]. However, the issue has not been
resolved with clear results yet [Garcia-Alvarez et al., 2014b], [Gladden, 2004].

3.2 Lactic Acidosis

Acid-base imbalances in ICU patients are seen frequently and with various implications for
the outcome. However, it is often unknown where they originate from [Gunnerson et al.,
2006]. A metabolic acidosis is associated with a negative balance of nitrogen moieties and
body protein loss by increased protein breakdown in the skeletal muscles [Mitch et al.,
1994]. Lactic acidosis is defined as a metabolic acidosis (pH-value of < 7.35) accompanied
by an arterial BLL of ≥ 5mmol/l [Lee et al., 2008], [Fall and Szerlip, 2005], [Hardern and
Quinn, 2003], [Stacpoole et al., 1994]. Among hospitalized and non-surgical patients the
prevalence of lactic acidosis is approximately 1% Fall and Szerlip [2005]. Acidosis refers
to the elevated H+ concentration, as a decreasing pH-value from e.g. 7.4 to 7.2 leads to a
60% increase in H+ concentration, rising from 40 to 63nmol/l [Boyd and Walley, 2008].
However, lactate or an increased BLL does not in itself contribute to that [Robergs et al.,
2004], [Vincent, 1995]. And neither does the conversion from pyruvate to lactate [Lane
et al., 2009]. The balance equation for glucose-lactate conversion 3.3 does not accurately
represent the causality H+ generation [Lane et al., 2009], [Robergs et al., 2004].

C6H12O6 + 2ATP+2HxPO 3 − x −
4 −→ 2C3H5O−

3 + 2(x− 1)H + + 2ADP+2H2O (3.3)

Under normal resting conditions (pH = 7.4) x is approximately 1.3, resulting in a
production of 2.4H+ during glycolysis [Lane et al., 2009]. Consequently, the H+ increase
from high energy phosphate turnover (ATP hydrolysis), as depicted in 2.2. Sufficient
oxygenation enables the recovery of ATP metabolites in the respiratory chain of the
mitochondria without acidosis [Bakker et al., 2013], [Fall and Szerlip, 2005], [Robergs et al.,
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2004], [Vincent, 1995]. Here H+ are needed to reduce molecular oxygen and Pi and ADP
are recycled to form ATP. Metabolic acidosis is therefore the result of an energy (ATP)
demand exceeding the ATP supply from the mitochondria and the resulting increasing
turnover of non mitochondrial ATP, which leads to a H+ build up in the cytosol [Robergs
et al., 2004], [Vincent, 1995].

3.3 Hyperglycemia

As seen in figure 2.5, glucose is an important part of the Cori cycle and there are
parallels and overlap between hyperlactatemia and hyperglycemia. Hyperglycemia and
insulin resistance in critically ill patients is often observed (50%) and associated with
metabolic stress [Van Cromphaut, 2009], [Mizock, 2001]. Additionally, hyperglycemia
is often associated with a poor outcome for ICU patients by increasing the risk of e.g.
myocardial infarction and multiple organ failure, which leads to increased morbidity and
mortality [Pretty et al., 2010].

3.4 Hypoglycemia

An increased amount of amino acids in the blood stream, induced by e.g. parenteral
nutrition, stimulates the insulin secretion and might result in hypoglycemia, with the
effect potentially being enhanced by a high amount of in the blood stream. If the BGL is
dropping to less than 2 mmol/L the central nervous system (CNS) is inadequately supplied
with glucose, resulting in coma and hypoglycemic shock [Lacherade et al., 2009], [Singer
et al., 2009], [Despopoulos and Silbernagl, 2003]. Hypoglycemia triggers the secretion of
glucagon, the main antagonist of insulin, from the pancreas to stimulate glycogenolysis for
compensation [Despopoulos and Silbernagl, 2003]. Hypoglycemia aggravates the outcome
of an ICU patient by an increased risk of e.g. myocardial infarction, multiple organ failure,
or polyneuropathy - all conditions increasing the patient mortality. To effectively prevent
this scenario the BGL of the patient is kept between approximately 6 mmol/L and 8
mmol/L [Pretty et al., 2010]. Moreover, hypoglycemia seems to be preventable when
associated with high-calorie parenteral feeding [Kavanagh and Goodship, 2010].

3.5 Lactate Models

The carbohydrate metabolism in general and lactate metabolism in particular is of interest
for several branches of medicine. In sports medicine the anaerobic threshold is a central
area of interest e.g. to assess exercise performance [Proshin and Solodyannikov, 2013],
[Billat, 1996]. In emergency medicine, intensive care, trauma medicine and anesthesiology
on the other hand, whole blood lactate level of a patient is measured for initial evaluation
or e.g directing the resuscitation of trauma patients, [Bolton, 2007].
There are several models in existence, that describe a wide range of aspects regarding
the lactate metabolism. Some describe the whole human organism, some subsystems
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(e.g. carbohydrate metabolism of red blood cells), others even cancer cells, [Proshin
and Solodyannikov, 2013], [Mendoza-Juez et al., 2012], [Wahl et al., 2011], [Brumen and
Heinrich, 1984]. However, in sports medicine those models are not widely applied, which
is ascribed to the non-individualized applicability of those models to e.g personal training
[Proshin and Solodyannikov, 2013].
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Chapter 4

Models

This chapter presents the reasoning behind modeling, specifies a special modeling
technique (compartmental modeling), and describes applications of metabolic models.
Finally an introductory algorithm on the modeling procedure is given.

4.1 Reasons for Modeling

A model is an abstraction from reality to a feasible or comprehensible level and thus
generally involves some extend of simplification. Modeling methodology attempts to
address the complexity usually found in natural systems. This complexity arises from
various factors, such as hierarchy and interconnectivity of processes, as well as time-
varying, nonlinear and stochastic properties of the system. In a physiological context
hierarchy comprises the levels of molecules and chemical reactions, cell and organ
structures, and finally the organism as a whole. Each level is controlled by complex
processes of e.g. feedback and hormonal regulation. Feedback is especially important
in the regulation of biochemical reactions. In these overlapping processes it is often
impossible to directly measure aspects of interest, which therefore have to be deduced.
An example for that is the measurement of hormones in the blood stream, when direct
measurement of the secretion by the respective gland might often be inaccessible.
A model is distinctively influenced by its purpose, as is its quality. A model might be
conceptual, statistical, mathematical or graphical and thus differently suited for different
applications, such as the testing of hypotheses, examination of design or not least of all
teaching. A mathematical description can be a very powerful and compact model and
used to interpret data collections and subsequently predict the behavior of a system. The
quality of the model can then be assessed by mapping theory with clinical data
There are different approaches to modeling. Empirical data driven models (black box
models) make quantitative descriptions on systems based on their in- and output. The
result is a mathematical description with only lose (implied) connection to the underlying
process e.g. physiology. They are very useful when the underlying process is unknown
or not understood and when knowledge about the system dynamic is needed without
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knowing the specifics of a process. Opposite to data modeling there is system modeling,
where detailed representation of the underlying process is pursued. The amount of detail
in the representation is dependent on available prior knowledge about the system, the
assumptions made, and also the purpose. The can be classified by their approaches into
e.g. static/dynamic, deterministic/stochastic, lumped/distributed, linear/nonlinear and
so on, with various combinations of each other.
Solving the model leads to simulation and examination of the output behavior often over
time and of numerous variables. However, simulation can be used during the process of
modeling, e.g. to clear up uncertainties and after completing the model, e.g. for making
predictions based on the model output, [Carson and Cobelli, 2013].

4.2 Compartmental Models

Compartmental models can be used do deal with (nonlinear) dynamics in a System.
They usually consider mass balances to quantitatively describe metabolites and their
kinetic properties. A compartment is assumed to be a substantially and kinetically
homogeneous amount of substance. The finite number of compartments possess specified
connections (flux) that determine properties of e.g production, transport, distribution,
use and interactions between the considered substances, may they be exo- or endogenous.
The bloodstream is a prime example for a compartment, as is the blood glucose within it.
Other substance in the bloodstream compartment e.g. blood lactate require a separate
compartment, leading to multiple bloodstream compartments within one model. Similar
substances can be lumped to reduce the dimensionality and thus complexity of the system,
[Cobelli and Carson, 2008].

4.3 Steps of Physiological Modeling

A feasible approach to modeling physiological networks is summarized in the block diagram
depicted in figure 4.1 and was used to develop the model presented in 8.

Step 1 has been discussed in chapter 2. Steps 2 and 3 are presented in chapters 6 and 8,
respectively.
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Figure 4.1: The figure shows an algorithm for successfully modeling physiological pathways. However,
the larger the metabolic network, the more practical obstacles may arise in describing it mathematically,
[Steuer and Junker, 2009].

4.4 Structural Modeling

Structural metabolic models only require knowledge of the system stoichiometry. As
the stoichiometry characterizes all metabolite species (S), reaction rates (v), and their
interactions, it forms the basis for any arbitrary depth the model shall possess. Branching
and moiety-conserving reactions are a common sight in biochemistry and can be
represented in a metabolic network as depicted in figure 4.2 [Rohwer, 2012].

Figure 4.2: The figure shows a basic metabolic network with no particular grounding in reality. The
frequently encountered branching and moiety-conserving reactions are incorporated. In this network the
summarized amount of species S2 and S3 remains constant. The species x mark external (outside e.g. the
cell membrane) metabolites that are not considered for the model description of the (internal) metabolism
in the stoichiometric matrix given by figure 4.3 [Rohwer, 2012], [Steuer and Junker, 2009]. Edited from
[Rohwer, 2012].

The stoichiometric coefficients, determining how many molecules are involved in any given
reaction, can be summarized in a stoichiometric matrix N = m × r (metabolites ×
reactions), depicted in figure 4.3 [Rohwer, 2012], [Steuer and Junker, 2009].

Multiplying the stoichiometric matrix with a vector s = [S1, ...,Sn]T , containing all species
S1 to Sn, and a vector v = [v1, ..., vn]T , containing all reaction rates, leads to a system
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Figure 4.3: The figure shows the stoichimetric matrix corresponding to the basic network of figure 4.2.
Species are assigned to the rows, while the reactions are assigned to the columns. The values of the matrix
elements are completely arbitrary but correctly represents the consumed and produced metabolites by
negative and positive coefficients, respectively [Rohwer, 2012]. Edited from [Rohwer, 2012].

of ordinary differential equation (ODE), as given in equation 4.1. The ODE describe the
change in concentration of all metabolites over the entire network [Rohwer, 2012], [Steuer
and Junker, 2009]. The complete procedure is summarized in figure 4.4.

ds
dt

= Nv (4.1)

Figure 4.4: The figure shows the steps of developing the equations to describe, in this case, a metabolic
model of glycolysis in a single cell organism, as well as the representation of those steps [Steuer and Junker,
2009].

In structural models v contains unknown kinetic properties. However, equation 4.1 can
be set to zero and attempted to be solved for the unknowns, generally yielding only flux
values or flux ratios. In case knowledge of kinetic properties is available v is considered to
be a set of functions of the metabolite concentrations s. Thus the entire development of
the system over time for both concentrations and fluxes can be calculated, transforming
the structural into a kinetic model [Rohwer, 2012]. Assuming that v only contains linear or
bilinear equations, the general solutions for the system of ODE can be found by computing
first the eigenvalues (λ) and corresponding eigenvector of N, which results in equation
4.2 with the eigenvector matrix B = [EV1, ...,EVn] and the fundamental solving system
z = [eλ1x, ..., eλ1x]T 1 [Steuer and Junker, 2009], [Merziger, 2004].

1In case λ1 = λ2 −→ z = [eλx, xeλx]T
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y = Bz (4.2)

However, the structure of the model can generally be explored by computing a solution
space (flux cone) for e.g. flux-balance analysis [Rohwer, 2012] [Kauffman et al., 2003].
This solution space describes the metabolic capacity an organism posses [Kauffman et al.,
2003].

4.4.1 Flux-Balance Analysis

However, the key of flux-balance analysis is experimental data on the fluxes, which are
not always obtainable, potentially leaving (some) kinetic equations undefined. This often
results in a significant degree of freedom for the system, as there likely are more internal
metabolites then boundary fluxes, which is emphasized by the number of independent
vectors spanning the right Nullspace (kernel) N of [Rohwer, 2012], [Steuer and Junker,
2009]. Moreover, it is feasible to set up N as a square matrix to to facilitate the analysis
and use e.g. the rank(N) to isolate conservation reactions and determine the dimensions
of the right Nullspace K, which is spanned by r-rank(N) column vectors that satisfy the
relation NK = 0 as depicted in 4.5 [Steuer and Junker, 2009].

Figure 4.5: The figure shows all feasible steady state vectors v 0=v(S 0), which are described by two (r-
rank(N)=2) linearly independent basis vectors that form the right Nullspace [Steuer and Junker, 2009].
The free parameters α1 and α2 represent the dependent fluxes as a linear combination of the independent
fluxes [Rohwer, 2012], [Steuer and Junker, 2009]. The numbers are again arbitrary. Edited from [Steuer
and Junker, 2009].

The system has to be optimized for the undetermined parameters using an objective
function. This function can e.g. be maximized for growth of a certain metabolite or
minimized for the uptake of a particular substrate, as depicted in figure 4.6 [Rohwer,
2012].

A large drawback of this method is that the models are only valid for the steady state
they have been built for, limiting their applicability. Moreover, it is unpredictable how
certain parameters have to be tweaked quantitatively (e.g. enzyme activity) to achieve
a specific effect for the system, as no particular kinetic information contained within the
models. A way to minimize this problem is to introduce additional constraints based on
e.g. thermodynamics to determine the direction of reactions and make then consistent with
measured metabolite concentrations to limit the solution space (hybrid model) [Rohwer,
2012].
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Figure 4.6: The left figure shows the flux constraint using experimental or other external, while the left
figure shows the system optimization by using different objective functions [Kauffman et al., 2003].

4.5 Kinetic Modeling

Any kinetic model inherently implies a structural model as well and can therefore be
subjected to a structural analysis as well. The system is usually reduced and simplified
as far as possible without eliminating its core characteristics, as depicted in figure 4.9.
The resulting models are quite specific in design, purpose, and applicability. Considering
influences on the reaction rates by e.g. substrate concentrations or other effectors enables
the model to exhibit dynamic behavior. This consideration is typically expressed by the
Michaelis-Menten equation, as given in figure 4.7 [Rohwer, 2012]

Figure 4.7: The figure shows a reversible reaction of one substrate and product, expressed in a Michaelis-
Menten equation that corresponds to the basic network of figure 4.2. S1 and S4 denote the respective
substrate concentrations, Vf denotes the maximum reaction velocity in the (forward) direction of the
arrow, which equals to the limiting rate of the reaction [Rohwer, 2012]. K1 and K4 denote the Michaelis-
Menten constants of the reaction, which are specific to the binding affinity metabolite and enzyme [Rohwer,
2012], [Gizak et al., 2008]. Keq denotes the equilibrium constant for the reaction [Rohwer, 2012]. Edited
from [Rohwer, 2012].

The rate laws should comprise the general behavior of the reaction and it is not
necessary to cover every detailed aspect of the enzyme reaction to sufficiently describe
the reaction behavior in dependence of the substrate concentrations. However there
different underlying mechanism that describe an enzymatic reaction and influence the
kinetic equations. The complexer the equation, the more terms and constants e.g. on
inhibition have to be included. When further including transcription and translation, the
enzyme concentrations are made into variables and the resulting differential equations
have to be added to the existing differential equations for the network [Rohwer, 2012]

4.5.1 Bottom-Up Assembly of a Kinetic Model

The bottom-up approach to build a model is described by figure 4.9 The network structure
is determined by the number of reactions included. Too many might potentially limit
applicability of the system due to high processing power [Schallau and Junker, 2010] The
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Figure 4.8: The left figure shows the change of metabolites over time, while the right figure shows the
changing reaction rates in dependence of time. Corresponding to the network depicted in figure 4.2,
the graphs show a simulation of reversible Michaelis-Menten kinetics and arbitrary values The initial
metabolite concentration was set to 0.5 for all species. The moiety conservation of S2 and S3 can be
observed, as their concentration graphs mirror around the symmetry axis 0.5 (dashed line) and the sum
of their concentrations constantly yielding 1.0 [Rohwer, 2012].

stoichiometry of the reactions involved are generally well known for many organisms.
Determining the enzyme kinetics include set up of representative rate laws, by considering
e.g. enzyme activation or inhibition and the reaction mechanism. On the other hand
it includes the parameter elimination of those rate laws e.g. inhibition, equilibrium and
Michaelis-Menten constants. Gathering these data from literature is a time-consuming
and cumbersome task, even with the help of enzyme databases like BRENDA [Rohwer,
2012]. It is common practice to substitute unavailable data for desired cells with data
from (closely) related organisms, at best measured under in vivo conditions [Rohwer,
2012], [Lambeth and Kushmerick, 2002]. However, this is not necessarily a criterion met,
as reaction mechanisms tend to be explored under environmental conditions optimal for
the respective enzyme. These conditions might not be close to physiological conditions
in a cell, concerning e.g. pH-value and temperature. There are, however, efforts
for standardization [Rohwer, 2012]. Representative rate equations correspond to the
underlying thermodynamics of a reaction Lambeth and Kushmerick [2002]. This means
that the reversibility of a reaction has to be considered, otherwise the model behavior is
influenced [Rohwer, 2012]. Moiety conserving metabolites are directly entered into the rate
equations with their constraints as fixed parameters [Rohwer, 2012], [Wolf et al., 2000].
The moiety conserving reactions yield two non-independent equations, of which one can
be ignored [Steuer and Junker, 2009]. Once initial concentrations of all metabolites are
found the ODE system is integrated to yield the time-course or it is solved to obtain the
steady state. To assess the model quality it subsequently needs to be validated. This is
usually done by comparing the model output with independent data e.g. measurements
of fluxes [Rohwer, 2012].

4.5.2 Top-Down Assembly of a Kinetic Model

In contrast to the bottom-up approach to modeling there is also the top-down approach,
where the model parameters are iteratively adjusted to fit the model output to independent
data (optimization). This technique, however, has the disadvantage of disjointing model
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Figure 4.9: The figure shows the steps of putting together all available data. A describes the network
connectivities. B introduces stoichiometric data that lead to numerical dependencies. C defines rate laws
that govern the reaction velocity. D generates the ODE by combining stoiciometric data with the rate
laws to describe time dependently changing concentration of a metabolite [Schallau and Junker, 2010].

parameters from e.g. enzyme properties that are grounded in reality. The connection to
the process intended to model, is further weakened when empirical rate equations are used
to build the model in the first place. Moreover, during this process it becomes increasingly
unclear where model construction and validation begin and end, respectively. This has
the inherent possibility of the model being inapplicable, as no physiological process is
necessarily described by the tweaked parameters that therefore might not represent any
physiological properties [Rohwer, 2012].
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Chapter 5

Summary

This chapter will summarize the previously discussed topics as a transition to the
problem statement at the end of this chapter.

5.1 Metabolism in Critical Illness

The physiological reactions to critical illness, such as sepsis and trauma, and acute stress
are comparable to a large extent. They are both characterized by hormone induced
catabolism and increased glucose production associated with insulin resistance and in case
of critical illness infection and tissue damage. Increased levels of adrenalin and glucagon
promote glycogenolysis and enhance the glucose output of the liver. An elevated level of
cortisol in the blood induces increased muscle protein breakdown and gluconeogenesis.
At the same time the muscular glucose uptake is reduced and leads to physiological
stress hyperglycemia [Van Cromphaut, 2009], [Tappy, 2008]. This might exacerbate to
hyperinsulinemia in combination with insensitivity to insulin mediated by the immune
response, which also increases the glucose turnover. Moreover, these effects have time to
build up and amplify over the duration of the illness. They are undoubtedly beneficial in
the short term to provide highly demanded substrate for the body, but lead to increased
protein breakdown, loss of body mass, and organ failure in the long term [Tappy, 2008].

5.2 Physiology

Glucose is an essential carbohydrate for the human metabolism and its primary energy
source. Body structures like the brain are highly dependent on the direct consumption of
glucose [Despopoulos and Silbernagl, 2003]. The Cori cycle is a metabolic feed back loop
for BGL control. It involves the processes of glycolysis, gluconeogenesis, glycogenolysis,
with their respective biochemical and hormonal regulation. The three processes are
linked by exchanging the exchanging the main metabolites glucose, lactate and alanine
and powered by the energy provided by the oxidation of fatty acids. Their hormonal
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regulation is mainly accomplished by insulin and glucagon from the pancreas, which
trigger interactions of organs such as liver and muscle. and interactions by [Baynes and
Dominiczak, 2014], [Horn, 2009], [Despopoulos and Silbernagl, 2003].

5.3 Modeling and Metabolic Control

A physiological model is an approximation of reality expressed in mathematic formulas.
Simplifications are made to reduce the mathematical complexity and focus on the relevant
processes for a specific purpose, which can e.g. be of descriptive, explanatory, and
predictive nature. Predicting the reaction of the human organism or organ systems to
an input might be of general practical interest and can be simulated by the model to e.g.
assess the pharmacokinetics and -dynamics of an administered drug [Cobelli and Carson,
2008].
Another application using the predictive character of mathematical equations is the control
of certain metabolic factors, as is the case in glucose and insulin level control [Pielmeier,
2010], [Pretty et al., 2010]. Additionally, advice on how to adjust a parameter to reach a
specified state may be derived from such a model [Pielmeier, 2010].

5.4 Problem Statement

Problem Statement Reflecting upon the described background information and
aspects, the following problem statement was found:

How can a computerized model, within the scope of critically ill and possibly septic
patients, sufficiently reflect the human lactate metabolism (Cori cycle) on the cellular
level, to provide the basis for an application as a clinical decision support system in
intensive medicine?

Premise Metabolic stress from either exhausting performance requirements (e.g.
physical activity) or from critical illness (e.g. sepsis) represent a comparable metabolic
problem for the organism and therefore result in similar physiological reactions of the
body.

Objectives

• Devising a mathematical model that represents the relevant physiological processes
of the Cori cycle based on the biochemical reactions of the glycogen metabolism,
glycolysis, and gluconeogenesis

• Develop and test a computer program incorporating that model for validation
purposes
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Part II

Methods
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Chapter 6

Quantification of the Cori Cycle

6.1 Central Metabolites of the Cori Cycle

6.1.1 Glucose (CID:79025)

The maximum glucose oxidation rate is 500g (2000kcal) per day for a 70kg adult. The
rate of glucose production in sepsis, trauma, and burn injury patients is approximately
20 − 25µmol/kg ∗ min, which is roughly double the normal rate (approximately 10 −
12µmol/kg*min) [Mitrakou, 2011], [Wolfe, 1999], [Consoli et al., 1990b]. Adrenalin doubles
renal glucose production, increases glucose release of the liver by 50%, and overall glucose
production by 60%. Moreover, adrenalin stimulated renal glucose release can be solely
responsible for the increase in blood glucose after three hours [Stumvoll et al., 1997].
Glycogenolysis and glucoeogenesis each contribute approximately 50% to the normal
glucose production [Mitrakou, 2011], [Stumvoll et al., 1997]. 75−80% of the blood glucose
in the postabsorptive state is released by the liver and the remaining 20 − 25% by the
kidneys. BGL peak 1−1.5 hours after ingestion, before they return to normal within 3−4
hours [Mitrakou, 2011]. Normoglycemia ranges between 3.3 − 7.8mmol/l but is around
5.6mmol/l over the day [Mitrakou, 2011], [Van Cromphaut, 2009]. During fasting a BLL of
4.4−6.7 is maintained, which would be approximately 14g in an 70kg adult [Tappy, 2008].
Moreover, the glucose oxidation rate during exercise is approximately 0.7mmol/kg ∗min
[Miller et al., 2002].

6.1.2 Lactate (CID:5460161)

Lactate can be released physiologically or pathophysiologically by any organ [De Backer
et al., 1997]. The rate of lactate production under normal conditions ranges between
0.8− 1mmol/kg ∗ h, which is approximately 1500mmol/l ∗ d and results in a normal BLL
of 0.6 − 2mmol/l [Garcia-Alvarez et al., 2014a], [Garcia-Alvarez et al., 2014b], [Bolton,
2007], [Levy, 2006], [Fall and Szerlip, 2005], [Levraut et al., 1998], [Meyer et al., 1998],
[Consoli et al., 1990b]. However, lactate buildups occur e.g. in wounds (4 − 15mmol/l)
[Hunt et al., 2007], [Trabold et al., 2003]. Lactate is oxidized at a rate of approximately
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7.8−8.5µmol/kg∗min, while Lactate-glucose conversion occurs at a rate of approximately
1.4−4.2µmol/kg∗min [Consoli et al., 1990b], [Jenssen et al., 1990]. Gluconeogenesis from
lactate is increased during exercise and exhibits a rate of approximately 0.2mmol/kg∗min
[Miller et al., 2002]. The combined conversion into glucose (34.2%) and oxidation of lactate
(61.9%) is attributed to 96% of its turnover (approximately 100% use) [Bellomo, 2002],
[Consoli et al., 1990b]. Alanine and lactate conversion is responsible for 60 − 80% of
gluconeogenesis [Consoli et al., 1990a]. Lactate clearance can reach 0.8 − 1.8mmol/min
[Garcia-Alvarez et al., 2014a], [Fall and Szerlip, 2005], [Bellomo, 2002]. About 45% of
the blood lactate originates from glycolysis of blood glucose, the rest from glycogenolysis
[Consoli et al., 1990b]. During exercise lactate appearance and disappearance rate in
the blood have been determined to be approximately 1mmol/kg ∗ min. The lactate
oxidation rate under these conditions is approximately 0.8mmol/kg ∗min [Miller et al.,
2002]. Lactate, as a gluconeogenetic precursor, contributes at a rate of 3.0µmol/kg ∗min
to the BGL, which is approximately 24% of the lactate turnover in the blood. Moreover,
lactate is oxidized at a rate of 4.2µmol/kg ∗min, which makes 35% of its turnover. The
combined oxidation (60%) and conversion into blood glucose is responsible for 90% of the
lactate disappearance from the blood, generally limiting the lactate metabolism to those
two processes [Consoli et al., 1990a]. Lactate producing tissues and their rate for an 70kg
adult with a carbohydrate consumption of 300g and overall lactate production of 115g
daily are given in detail in table 6.1 [Smith et al., 2005].

Tissue Lactate Production (g/d)
Red Blood Cells 29
Skin 20
Brain 17
Skeletal Muscle 16
Kidneys 15
Gut 8
Other Tissues 10

Table 6.1: Lactate producing tissues and their rate

6.1.3 Alanine (CID:5950)

The combined amount of alanine, glutamine, and glutamate forms approximately 80% of
the free amino acid pool, from which proteins can be synthesized [Rutten et al., 2005].
The alanine blood concentration amounts to 0.2 − 0.4mmol/l but only 30% originate
from muscle catabolism [Mizock, 2001], [Meyer et al., 1998], [Consoli et al., 1990b],
[Jenssen et al., 1990]. The rest is generated by pyruvate transamination (from glucose)
in association with deamination of other amino acids Mizock [2001]. Alanine appears at
a normal rate of approximately 4µmol/kg ∗ l and is oxidized at a rate of approximately
1.3µmol/kg ∗ min, while alanine-glucose conversion occurs at a rate of approximately
1.8µmol/kg∗min. The combined conversion into glucose (44.2%) and oxidation of alanine
(31.4%) is attributed to 75% of its turnover [Consoli et al., 1990b].
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Glutamine (CID:5961)

Glutamine accounts for a 20% of all amino acids in the blood, which is double the
amount of alanine. Both are the most important amino acids to serve as a precursor
for gluconeogenesis. The postabsorptive basal alanine and glutamine turnover in the
blood plasma amounts to 4.5µmol/kg ∗min and 5µmol/kg ∗min, respectively. However,
the glutamine plasma concentration is approximately double the concentration of plasma
alanine at 0.6mmol/l and 0.3mmol/l, respectively [Stumvoll et al., 1999], [Felig et al.,
1970]. However, this relation is, if at all, only inversely reflected by the amount they
occur in proteins (alanine 7.6% and glutamine 3.9%) Löffler et al. [2007]. Glutamine is
produced by muscles (19− 168µmol/l), lung (56µmol/l), and adipose tissue (12µmol/l).
It is consumed by gut (57µmol/l), liver (20µmol/l), kidney (35− 110µmol/l), and brain
(13µmol/l) [Stumvoll et al., 1999].
Additionally, normal plasma glucagon and insulin have been measured as 84 − 186ng/l
and 51− 59pmol/l, respectively [Meyer et al., 1998], [Consoli et al., 1990b].

6.2 Central organs of the Cori Cycle

6.2.1 Skeletal Muscles

Skeletal muscles represent about 20 − 32kg of the body mass and store approximately
200− 1000g glycogen [Horn, 2009], [Tappy, 2008], [Blomstrand and Saltin, 1999], [Consoli
et al., 1990b]. In the absorptive state the skeletal muscles consume approximately 30% of
the supplied glucose for glycogen synthesis [Mitrakou, 2011]. In the postabsorptive human
metabolism approximately 70% of the alanine and 40% of the lactate (12mg/kg ∗min)
released into the bloodstream originate from skeletal muscles [De Backer et al., 1997],
[Consoli et al., 1990a]. Moreover, they contribute to over 80% of total gluconeogenesis,
which is responsible for more than 50% of their uptake from the blood. The skeletal
muscles remove 30% of both alanine and lactate from the blood and about 80% in
combination with the liver [Consoli et al., 1990a]. Combined blood lactate and glucose
oxidation contribute approximately 60% to the overall carbohydrate oxidation during
exercise, while the remainder is provided by muscle glycogen [Miller et al., 2002]. The
normal oxidation of proteins and amino acids is attributed to 5−10% of the overall energy
production. The muscle degradation following depleted glycogen reserves during exercise
has been determined to be approximately 7.3 − 12.0g/h [Blomstrand and Saltin, 1999].
This would translate to an overall muscle degradation of 26.3−43.2g/h during stress, which
is more than 2% of the entire muscle mass a day [Griffiths and Hall, 2010], [Blomstrand
and Saltin, 1999]. Moreover, in polytrauma patients approximately 25% of the available
plasma proteins are used in in the overall protein synthesis of the body, which is increased
from the normal 11% [Mansoor et al., 2007]. Sepsis increases the muscular glucose uptake
by 67% [Mizock, 2001].

Alanine Alanine appears in the blood circulation at a rate of 4.2µmol/kg ∗min. The
alanine uptake rate by the skeletal muscles is approximately 1.6µmol/kg ∗ min being
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about 37% of its uptake from the blood. On the other hand skeletal muscles release
alanine at a rate of approximately 2.9− 3.0µmol/kg ∗min, which accounts for 71− 72%
of its appearance in the blood circulation [Consoli et al., 1990a], [Consoli et al., 1990b].
Alanine, as a gluconeogenetic precursor, contributes at a rate of 1.3µmol/kg ∗min to the
BGL, which is approximately 30% of the alanine turnover in the blood. Moreover, alanine
is oxidized at a rate of1.8µmol/kg*min, which makes 44% of its turnover. The combined
oxidation (30%) and conversion into blood glucose is responsible for 75% of the alanine
disappearance from the blood, leaving the rest for protein synthesis [Consoli et al., 1990a].

Lactate Lactate appears in the blood circulation at a rate of 12.7µmol/kg/min
[Consoli et al., 1990b]. The lactate uptake rate by the skeletal muscles is approximately
3.3 − 3.9µmol/kg ∗ min being about 27% of its uptake from the blood. On the other
hand skeletal muscles release lactate at a rate of approximately 5.5− 5.7µmol/kg ∗min,
which accounts for approximately 44 − 45% of its appearance in the blood circulation
[Consoli et al., 1990a], [Consoli et al., 1990b]. However during exercise the lactate release
increases to 1.3mmol/min and the uptake to 0.6mmol/min. Moreover, the lactate release
is influenced by the glycogen reserves (low glycogen, increased lactate release) [Blomstrand
and Saltin, 1999].

Glucose The Glucose uptake rate by the skeletal muscles is approximately 2.4µmol/kg∗
min being about 21% of its uptake from the blood [Grau and Bonet, 2009],
[Van Cromphaut, 2009], [Consoli et al., 1990a], [Consoli et al., 1990b]. This would translate
to a normal glucose uptake of 48− 76µmol/min and 1.5− 1.9mmol/min during exercise,
when assuming an overall muscle mass of 20−32kg [Horn, 2009], [Blomstrand and Saltin,
1999], [Consoli et al., 1990b]

6.2.2 Liver

The liver weights around 1.5kg and stores approximately 70−120g glycogen [Horn, 2009],
[Heinemann et al., 1999], [Tappy, 2008]. Blood glucose uptake by the liver is stimulated at
a BGL of > 6.7mmol/l, while a BGL of < 3.6mmol/l stimulates hepatic glucose secretion
from both glycogenolysis and gluconeogenesis [Lacherade et al., 2009], [Wolfe, 1999]. The
liver can remove blood lactate at a rate of approximately 800 − 1800mmol/min Garcia-
Alvarez et al. [2014a], [Marko et al., 2004]

Glycogenolysis Glycogenolysis is generally attributed to 50% of the overall glucose
production [Stumvoll et al., 1997]. In the absorptive state the liver consumes 45% of the
supplied glucose for glycogen synthesis [Mitrakou, 2011]. Glycogenolysis rate in the liver
is approximately 5.5 − 8.4µmol/kg ∗ min, being responsible for about 45% of the total
glucose release into the bloodstream [Gerich et al., 2001], [Consoli and Nurjhan, 1990].
Glycogenolysis is accounted for approximately 50 − 90% of the hepatic glucose output
after over night fasting and ceases completely after 48 − 60 hours of fasting, at which
point the glycogen reserves are depleted [Mitrakou, 2011], [Van Cromphaut, 2009], [Wolfe,
1999], [Consoli and Nurjhan, 1990]. At this point glcogenolysis is completely replaced by
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gluconeogenesis (7.5µmol/kg ∗ min) for glucose production [Wolfe, 1999], [Consoli and
Nurjhan, 1990]. The glycogen storage and glycogenolysis rate over time is given in more
detail in table 6.2 [Smith et al., 2005].

Fasting (h) Glycogen Storage (µmol/g liver) Glycogenolysis Rate (µmol/kg*min)
0 300 -
2 260 4.3
4 216 4.3
24 42 1.7
64 16 0.3

Table 6.2: Development of glycogeneolysis over time

Gluconeogenesis

Hepatic Uptake The combined liver and muscle metabolism removes 80% of alanine
and 60% of lactate from the blood circulation [Levy, 2006], [Fall and Szerlip, 2005], [Consoli
et al., 1990a]. The liver alone removes 45 − 55% of the alanine and 35 − 50% of the
lactate from the blood [Consoli et al., 1990a]. Generally spoken the hepatic uptake of the
four main precursors (lactate, alanine, glutamine, and glycerol) is attributed to 50% of
overall gluconeogenesis [Stumvoll et al., 1997]. The hepatic blood flow is approximately
700ml/min (normal 1600ml/min) while exercising with an lactate uptake rate of about
1.0mmol/min (normal 0.2−0.4mmol/min) [van Hall, 2010], [Jenssen et al., 1990]. During
sepsis the hepatic lactate uptake from the blood is increased two to threefold [Mizock,
2001].

Hepatic Output The normal glucose release rate by the liver is approximately
8 − 12µmol/kg ∗ min and the combined alanine (10%) and lactate (20%) conversion in
gluconeogenesis is approximately 3.6− 3.9µmol/kg ∗min, which is 17− 25% of the total
hepatic glucose output in postabsorptive state of the body [Meyer et al., 1998], [Consoli
et al., 1990a], [Consoli and Nurjhan, 1990]. Moreover, in the postabsorptive state (fasting)
25− 55% of the over all glucose release comes from hepatic gluconeogenesis [Gerich et al.,
2001], [Consoli et al., 1990a], [Consoli and Nurjhan, 1990], [Consoli et al., 1990b].

6.2.3 Kidney

Catabolic processes generate acids (e.g. pyruvatic acid during glycolysis) and thus H+

because they are dissociated. During metabolic acidosis those H+ are eliminated in the
renal cortex by synthesizing glucose from two acids, as described in section 2.2.3 [Baynes
and Dominiczak, 2014], [Horn, 2009], [Gerich et al., 2001], [Stumvoll et al., 1997].

Renal Uptake Gluconeogenesis is the exclusive way for renal glucose production, which
can increase considerably during fasting [Garcia-Alvarez et al., 2014b], [van Hall, 2010].
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Lactate Although the liver is mostly responsible for the lactate uptake from the
blood, approximately 20 − 30% is attributed to the kidneys and occurs at a rate of
approximately 160µmol/min [Garcia-Alvarez et al., 2014b], [van Hall, 2010], [Levy, 2006],
[Bellomo, 2002]. At the same time the kidneys contribute 50% of the lactate conversion
into glucose [Garcia-Alvarez et al., 2014b]. In contrast to the liver, this ability increases
with acidosis (6.7µmol/min) [Garcia-Alvarez et al., 2014b], [Bellomo, 2002], [Gerich et al.,
2001]. Over 50% of renal lactate uptake is used in renal gluconeogenesis. The total renal
lactate removal increases from 16% (at a pH-value of 7.45) to 44% (at a pH-value of 6.75)
[Bellomo, 2002]. Additionally, the kidneys contribute to approximately 4 − 5% of the
overall lactate release into the circulation [van Hall, 2010].

Glucose Normal renal glucose removal appears at a rate of 2.3µmol/kg*min and is
approximately 20% of the overall glucose disappearance from the blood [Stumvoll et al.,
1997]. The glucose uptake by the kidneys decreases in periods of metabolic stress while
renal glucose uptake and release increase [Gerich et al., 2001]. However, it accounts
for approximately 10 − 20% of the overall glucose uptake from the blood, at a rate of
10µmol/min [Mitrakou, 2011], [Stumvoll et al., 1997].

Renal Output The renal blood flow is 1000−1800ml/min and the rate of normal renal
glucose output is approximately 1.7−3.2µmol/kg∗min which accounts for 20−25% of the
total glucose release of the organism [Gerich et al., 2001], [Stumvoll et al., 1997]. Under
severe conditions the kidneys were reported to release glucose at a rate of 880µmol/min,
[Stumvoll et al., 1997]. Renal glucose release can increase threefold during hypoglycemia
(3.2mmol/l), elevating its contribution to total glucose release to 36% [Mitrakou, 2011],
[Meyer et al., 1998]. Consequently, the kidneys are responsible for approximately 40−50%
of total gluconeogenesis that accounts for 85− 90% of the renal glucose release [Mitrakou,
2011], [Gerich et al., 2001], [Stumvoll et al., 1997]. Additionally, about 50% of the in blood
circulation available lactate, 70% of glutamine, and 17− 35% of glycerol are metabolized
in renal gluconeogenesis. Mediated by fatty acids, elevated insulin concentrations increase
glucose uptake and equally reduce renal and hepatic glucose release. Adrenalin on
the other hand stimulates renal gluconeogenesis (twofold) and also more than hepatic
gluconeogenesis. Moreover, renal glucose release is reported to compensate for 50− 100%
of hepatic glucose release e.g. in sepsis [Bellomo, 2002], [Gerich et al., 2001].

Urinary Disposal Urinary lactate elimination is usually 2%, even hat high BLL
(> 20mmol/l) resulting from exercise [Fall and Szerlip, 2005], [Bellomo, 2002]. Higher
urinary lactate excretion (10− 12%) has been observed when the BLL is artificially kept
at 10mmol/l, though [Bellomo, 2002]. Renal glomerular filtration of the blood is capable
of filtering 180l/d [Mitrakou, 2011], [Bellomo, 2002]. Consequently approximately 180g
of glucose is filtered and reabsorbed into the organism [Mitrakou, 2011]. However, renal
glucose reabsorption is inhibited at a BGL of 12 − 13mmol/l because all Na+-glucose
symporters are occupied [Vivian, 2014], [Hick and Hick, 2000].
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6.2.4 Blood

Erythrocytes Red blood cells (erythrocytes) constantly consume approximately 40g
glucose per day under most conditions [Horn, 2009], [Wolfe, 1999]. Moreover, they release
lactate at at rates between 4.1mg/min and 16mg/min [De Backer et al., 1997], [Chapman
et al., 1962]. However, the lactate production from glycolysis in the red blood cells
increases with the pH-value. At pH = 7.5 they produce approximately 15mmol/l, which
increases to 20mmol/l and at pH = 8.0. [Chapman et al., 1962].

Leukocytes White blood cells (leukocytes) release lactate at a rate of 11mg/min
[De Backer et al., 1997].

6.2.5 Heart

Myocardium primarily relies on fatty acids for energy supply. However, during periods of
stress (e.g. fasting or physical exercise) the heart switches to carbohydrate metabolism
and oxidizes lactate [Lacherade et al., 2009], [Gladden, 2008]. An increased stress level,
expressed by increased BLL, blood flow, and myocardial oxygenation, the heart covers up
to 60% of its energy demand with lactate [Gladden, 2008]. Cardiac lactate and glucose
oxidation at rest is approximately 10 − 15% and 8%, respectively. During exercise it is
increased to approximately 30% and 14%, respectively [van Hall, 2010]. A cardiac lactate
oxidation rate of 16.3 − 24.4nmol/min has been observed in animals [Liu and Spitzer,
1978].

6.2.6 Brain

Lactate It has been theorized that lactate was the main product of glycolysis in the brain
and therefore an important metabolic precursor in its metabolism, as is the case in skeletal
muscles [Gladden, 2008]. Cerebral lactate consumption was considered to be insignificant
on the overall body scale and that there was no net uptake or release of cerebral lactate
under normal conditions [Gladden, 2008], [Quistorff et al., 2008]. More recent insight
shows that lactate can cover approximately 7− 8% of the cerebral energy demand under
normal conditions, which increases to 20 − 25% as the BLL rises. Normally the brain
releases lactate at a rate of 50 − 60µmol/min and contributes 8% to the overall lactate
production, which increases to 13% during exercise. However, an artificially increased
BLL (7mmol/l) resulted in a cerebral lactate uptake of approximately 160µmol/min at
rest, which increased even more during exercise (280µmol/min) and was associated with a
decreased glucose uptake [van Hall, 2010], [van Hall et al., 2009]. Cerebral lactate uptake
from the blood is 1− 1.3mmol/min during exercise. [Quistorff et al., 2008]. Additionally,
cerebral lactate uptake amounts to 11% during exercise [van Hall, 2010].

Glucose In the absorptive state the brain consumes approximately 15% of the supplied
glucose and it constantly consumes approximately 120g (1mg/kg ∗ min ≈ 1.5g/kg ∗ d)
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glucose per day [Mitrakou, 2011], [Horn, 2009], [Tappy, 2008], [Berg et al., 2002], [Wolfe,
1999]. At rest the CNS contributes to 80% of the blood glucose uptake in the body.
Cerebral glucose uptake from the blood is 0.5mmol/min during exercise. [Quistorff
et al., 2008]. Half of the glucose uptake of CNS and muscles is mediated by insulin
[Van Cromphaut, 2009]. The large energy requirements of the CNS cannot be met by
perfusion at a BGL below 2.0mmol/l, where it relies on substitution with lactate for
energy supply [Lacherade et al., 2009]. Moreover, the cerebral glycogen reserves have
been estimated to last approximately 3.5min at normal energy consumption, assuming a
glycogen and phosphocreatin store of 10 and 5mmol/kg, respectively. Under hypoxia this
would produce 20mmol of lactate, when assuming an oxygen consumption of 2µmol/g
[Quistorff et al., 2008].

6.2.7 Gut

The epithelium of the small intestine converts some amino acids into glucose during
digestion, since ATP is available in abundance during ingestion and allows for anabolism
[Horn, 2009].

6.2.8 Lungs

The contribution of pulmonary lactate uptake and release is usually negligible [van Hall,
2010], [De Backer et al., 1997]. However, normal lactate release at a rate of 80−300µmol/l
has been reported, as well as a lactate production rate of 12000mmol/min in patients with
acute pulmonary disease van Hall [2010], [Marko et al., 2004].

6.2.9 Adipose Tissue

Glycerol Glycerol in the bloodstream is by and large produced by adipose tissue
breakdown. In the postabsorptive state 50% of the blood glycerol is converted into glucose
[Nurjhan et al., 1992]. Normal blood glycerol concentration is approximately 50µmol/l
[Jenssen et al., 1990]. Glycerol contributes to approximately 3% of hepatic glucose output
and approximately 10% of renal and total gluconeogenesis [Stumvoll et al., 1997], [Nurjhan
et al., 1992]. However, this is increased in prolonged fasting and stress, where glycerol
contributes to 60% of the hepatic glucose output and 20−30% of overall glucose production
[Mizock, 2001], [Nurjhan et al., 1992]. Glycerol is released at a rate of approximately
6µmol/min and 49− 77µmol/min [Blomstrand and Saltin, 1999].

Fatty Acid A 70kg adult may store about 15kg of fat in his body [Baynes and
Dominiczak, 2014]. The rate of fatty acid release into the blood in sepsis, trauma, and
burn injury patients is approximately 12− 15µmol/kg ∗min, which is roughly double the
normal rate [Wolfe, 1999]. Normally fatty acids are released at a rate of approximately
10µmol/min and removed from the blood at a rate of 175µmol/min during exercise
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[Blomstrand and Saltin, 1999]. In the absorptive state the adipose tissue takes up
approximately 5% of the supplied glucose [Mitrakou, 2011].

Lactate The skin produces the largest amount of lactate at 20mg/min [De Backer
et al., 1997]. Lactate release from the adipose tissue has been reported to occur at a rate
of 60 − 150 and 30 − 40µmol/min for the overall body fat mass, which is 4 − 10 and
2µmol/kgfattissue/min, respectively. Additionally, it is said to increase during exercise
[van Hall, 2010].

Figure 6.1: The figure summarizes this chapter by illustrating the turnover of glucose and lactate from
the contribution of each discussed tissue. Edited from [van Hall, 2010].

45





Chapter 7

Assumptions and Constraints

This chapter presents the main simplifications, generalizations and assumptions used to
model the Cori cycle. Assumptions discussed in this chapter generally comprise the
abstractions specifically used for the model e.g. a standard body mass of 70kg or
simplified chemical reactions.

7.1 Scales, Dimensions and Magnitudes

7.1.1 Proportions

The naked eye is able to see structures of 100µm, a light microscope has a resolution of up
to 0.3µm at a zoom of 1000, limited by the wavelength of light. An electron microscope
has a resolution boundary of 0.3nm, where even large biomolecules like glycogen may be
identified. Table 7.1 illustrates the proportions and magnitude of different cells [Welsch
and Sobotta, 2003].

Structure Diameter
Human egg cell 250− 300µm
Intestinal epithelium (hight) 20− 25µm
Liver cell 25µm
Red blood cell 7.6µm
Hypochondrion (length) 2− 5µm
Bacteria 1− 2µm
Viruses 10− 100nm
Glycogen (β particle) 20nm

Table 7.1: Scale of relevant structures
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7.1.2 General Assumptions on the Human Body

The conventional 70kg (male) adult is a frequently made assumption, especially in text
books, which can occasionally be validated by cohorts of several studies [Baynes and
Dominiczak, 2014], [Horn, 2009], [Tappy, 2008], [Löffler et al., 2007], [Smith et al., 2005],
[Despopoulos and Silbernagl, 2003], [Berg et al., 2002], Heinemann et al. [1999]. A body
mass of 70kg is therefore used throughout the modeling process as a reference. The
processes described by the model occur in one cell and have to be scaled up to the
dimensions of the whole body.
The overall density of the human body should, due to its large water portion, measure
slightly above 1g/ml = 1g/cm3 = 1kg/l and has been determined to vary around
1.02−1.1g/ml with a mean of approximately 1.06g/ml [Jackson and Pollock, 1978]. There
is, however, variation between organs, as fat tissue has a density of 0, 9g/ml and visceral
organs of 1, 05g/ml [Müller et al., 2007].
Additionally it is assumed that the use of only two decimals in a final assumption will be
a sufficient degree of precision, especially when considering the at times large margin of
tolerances included in the premises.

7.1.3 Skeletal Muscles and Heart

The entire skeletal muscle mass of the body amounts to approximately 25 − 30kg for a
70kg adult, which is about 40% of the mass [Horn, 2009], [Hick and Hick, 2000], [Consoli
et al., 1990b]. Typical skeletal muscle cells (muscle filaments) measure in the magnitude
of a few µm in diameter (10− 100µm [Aumüller et al., 2007], 40− 100µm (rarely 500µm)
[Welsch and Sobotta, 2003], 15− 200µm [Hick and Hick, 2000]) and several cm in length
(15cm [Hick and Hick, 2000], 20cm [Aumüller et al., 2007]) [Aumüller et al., 2007], [Welsch
and Sobotta, 2003], [Hick and Hick, 2000]. Hand muscles may contain 100 − 300 muscle
filaments and arm and leg muscles 600− 1700. Muscles consist of several types of muscle
cells, each with different contraction properties [Welsch and Sobotta, 2003].
Since the measurements exhibit quite a spread, and the distribution of those measurements
is not given, as is their relation to a particular muscle, the heart is used as the basis for
scaling the properties of one muscle cell to the muscle mass of the body.

Heart Although not being defined as a skeletal muscle per se, myocardium bears
strong structural resemblance to skeletal muscles and considered to be a special type
of skeletal muscle [Aumüller et al., 2007], [Welsch and Sobotta, 2003]. Heart muscle cells
(cardiomyocytes) measure 10− 20µm in diameter and 50− 100µm in length [Welsch and
Sobotta, 2003].
Heart mass and volume are strongly dependent on the individual fitness level. The normal
mass of 300, which corresponds to 0.4−0.45% of the body weight, and volume of 785ml can
increase to 500g and 1440ml, respectively, in athletes [Aumüller et al., 2007]. Considering
the scope of application for the model it seems reasonable to start scaling from at the
lower end of the available data.
The heart measures 12−14cm from the apex to the basis, with a largest width of 8−9cm,
and a sagittal diameter of 6cm at the basis. It is subdivided into right and left atrium
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(atrium cordis dexter and sinister) and right and left ventricle (ventriculus cordis dexter
and sinister) by valves and septa (septum interatriale and interventriculare), as depicted
in figure 7.1 [Aumüller et al., 2007].

Figure 7.1: The figure shows the opened heart in its physiological position. The direct axis from the apex
to the basis is inclined by an angle of approximately 45◦ to the three main planes [Aumüller et al., 2007].

To relate the activity of one cell to the whole organ it is necessary to estimate how many
cells are contained within that organ. The rather complex geometry of the heart can
is simplified to a cube for simpler approximation of its properties regarding the number
of heart muscle cells that build up the organ. Using formula 7.1 with a cube length
a = 9.22479cm delivers a volume of Va = 784.99965cm3 = 784.99965ml ≈ 785ml [Becker,
2003].

V = a3 (7.1)

A cube volume has the advantage of being solely dependent on the cube length to the power
of three. This results in small adjustments to the cube length being strongly reflected in
the volume of the cube. Moreover, the approximation of, at least parts, of the heart as a
cube is an excepted simplification [Devereux and Reichek, 1977].
However, the heart is hollow, the cardiac wall (myocardium) is not equally thick in all
regions (figure 7.1) and there is also the septum to be considered for calculating the volume
and subsequent the density of the heart muscle tissue. Data on the heart wall is given in
table 7.2 [Aumüller et al., 2007]. Additionally, the muscle mass of the left ventricle alone
has been measured in the range of 105− 505g, with an internal dimension of 3.3− 7.5cm,
posterior wall thickness of 0.8−2.2cm, and intervestibular septum thickness of 0.7−2.3cm,
in a rather heterogeneous cohort of healthy and ill [Devereux and Reichek, 1977].
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Part of the cardiac wall Thickness (mm)
Atrium (right) 3
Atrium (left) 3-4
Ventricule (right) 3-4
Ventricule (left) 10-12
Interatrial septum -
Interventricular Septum 5-10

Table 7.2: Cardiac muscle tissue thickness

This leads to the sketch depicted in figure 7.2, where averaged values from table 7.2 are
used for the calculations.

Figure 7.2: The figure shows the base square of the approximation of the heart as a cube. Ad = atrium
cordis dexter, As = atrium cordis sinister, Vd = ventriculus cordis dexter, Vs = ventriculus cordis sinister,
measurements in mm

In the sketch atria and ventricles are considered to be of equal size and an average cardiac
wall thickness of w = 0.55cm (dashed line) is assumed. The volume of the resulting hollow
cube can be calculated by subtracting twice the wall thickness (w) from the length (a) of
the cube and use the resulting length (b) to determine the volume (Vb) of a smaller cube
to subtract from the initial volume (Va).

b = 9.22479cm− 2(0.55)cm = 8.12479cm→ Vb = 536.33536cm3 ≈ 536ml

The resulting volume Vw = 248.66429cm3 = 249ml represents the heart muscle volume
of the heart wall. However, this does not include the septa yet. They are considered
to be one single structure, idealized as a cuboid, spanning the inner cube at the length
and hight (b = 8.12479cm). Since no other data is available the interatrial septum is
assumed to have a thickness of 3.5mm, based on the wall thickness of the atria and span
half the cube, where it merges with the interventricular septum with an average thickness
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of 7.5mm. The resulting structure is assumed to have an average thickness of s = 0.55mm
over the entire length and hight of the inner cube. The septum cuboid thus has a volume
of Vs = 36.30672cm3 ≈ 36ml. Adding the septum volume (Vs) to the volume of the hollow
cube (Vw) results in an overall heart muscle volume of VH = 285ml, which is roughly a
third of the reference volume of 785ml. After correcting for the volume, a density of
%m = 300g

285ml = 1.05g/ml can be established for muscle tissue that corresponds with those
given in the literature Müller et al. [2007], [Devereux and Reichek, 1977].
Using equation 7.2 to calculate the volume of a single heart muscle cell, assuming a
diameter dmc = 15µm, and a hight of hmc = 75µm, the volume of a heart muscle cell
amounts to Vmc = 13253.6µm3 = 13.2536nl [Becker, 2003].

V = π ·
(
d

2

)2
· h (7.2)

Dividing by %m = 1.05g/ml, the mass of one heart muscle cell is assumed to be
mmc = 12.6 · 10−9g = 12.6ng. A heart (mH = 300g) therefore consists of 2.38 · 1010 heart
muscle cells. Since the heart represents 0.4% of the entire muscle mass, 750g represent
1% of the entire muscle mass of the body and 30000g = 30kg represent 40%. According
to this, a 30kg muscle mass consist of 2.38 · 1012 cells, 25kg consist of 1.98 · 1012 cells.
The entire muscle mass of the body (mM )is assumed to be composed by 2·1012 muscle cells,
which translates to an overall muscle mass of mM = 25.25kg and volume of VM = 26.51l.
However, this might be a little of an overestimation, as heart muscle cells tend to be a
little shorter than those of the extremities. On the other hand, heart muscle cells might
have a little less mass than skeletal muscle cells of the extremities, as they possess less
nuclei and the overestimation in quantity could be compensated, to some degree, by the
underestimation in mass [Welsch and Sobotta, 2003].
The results of the muscle approximation are summarized in 7.3

Structure Symbol Value
Heart dimensions(cube) a 9.22479cm
Heart volume (cube) V 785ml
Heart cell dimensions (average) dmc, hmc 15µm, 75µm
Volume of a heart cell Vmc 13.2536nl
Mass of a heart cell mmc 13.9pg
Density of a heart cell %m 1.05g/ml
Heart wall volume (hollow cube) Vw 249ml
Septum volume (cuboid) Vs 36ml
Number of cells in the heart - 2.38 · 1010

Volume of the heart (hollow cube) VH 285ml
Mass of the heart mH 0.3kg
Number of cells in the muscle mass of the body - 2 · 1012

Volume of the muscle mass of the body VM 26.51l
Muscle mass of the body mM 25.25kg

Table 7.3: Scaling of the heart muscle - one heart muscle cell represents all skeletal muscle cells of the
body
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7.1.4 Liver

The liver mass is often given in the magnitude of approximately 2.3% of the body mass
(1.5kg [Horn, 2009], 1.4− 1.8kg [Aumüller et al., 2007], 1.4− 1.8kg, [Welsch and Sobotta,
2003], 1.6 − 1.7kg [Heinemann et al., 1999]), with an average tissue density of 1.08g/ml
[Heinemann et al., 1999]. To the liver attached tissue (gallbladder, ligaments) amounts
to an average 41.3g and has been excluded. For a liver of the mass mL = 1.6kg these
measurements lead to a volume VL = 1.73l (1862ml for 1724g liver [Heinemann et al.,
1999]).
Liver cells (hepatocytes) measure dlc = 25µm in diameter and are organized in hexagonal
lobules (lobuli hepatis), as depicted in figure 7.3. One hepatic lobule measures 0.7− 2mm
in diameter and contains approximately 106 cells [Welsch and Sobotta, 2003].

Figure 7.3: The figure shows how the hepatocytes are organized in the hepatic lobules (70× zoom). A = v.
centralis, B = ductuli interlobulares, C = v. portae (vv. interlobulares) Artery, vein, and bile duct form
the portal triad (trias hepatica) [Welsch and Sobotta, 2003]. Edited from [Welsch and Sobotta, 2003].

A liver cell is assumed to be spherical with the diameter dlc = 25µm and thus have
a volume of Vlc = 8181.23µm3 = 8.81823 · 10−12ml = 8.81823pl, using formula 7.3
[Becker, 2003]. One hepatic lobule therefore contains 1 · 106 cells and has a volume of
Vl = 8.18123 · 10−3ml = 8.18123µl. A liver with a volume of VL = 1.73l thus contains
2.11 · 105 hepatic lobules and therefore 2.11 · 1011 liver cells.

V = 1
6 · π · d

3 (7.3)

The results of the liver approximation are summarized in 7.4

52



Structure Symbol Value
Liver cell dimensions (average) dlc 25µm
Volume of a liver cell Vlc 8.81823pl
Mass of a liver cell mlc 8.2ng
Density of a liver cell %l 1.08g/ml
Hepatic lobule volume Vl 8.18123µl
Number of cells in the liver - 2.11 · 1011

Volume of the liver VL 1.73l
Mass of the liver mL 1.6kg

Table 7.4: Scaling of the liver cell

7.1.5 Kidney

The kidneys weigh combined in the magnitude of 300g (120−180g [Aumüller et al., 2007],
120 − 300g [Welsch and Sobotta, 2003]) and measure 10 − 12cm in hight, 5 − 6cm in
width, and 3 − 4cm in depth [Aumüller et al., 2007], [Welsch and Sobotta, 2003]. The
right kidney may be smaller than the left one [Aumüller et al., 2007]. Although, the renal
medulla produces lactate, the renal cortex is solely responsible for renal gluconeogenesis
[Baynes and Dominiczak, 2014], [Stumvoll et al., 1997]. The renal cortex is 6 − 10mm
thick (10mm [Behrends, 2010], 10mm [Hick and Hick, 2000]), as depicted in figure 7.4
[Welsch and Sobotta, 2003].

Figure 7.4: The figure shows the dorsal view on the frontal half of the right kidney [Aumüller et al., 2007].

The size and shape of liver cells is assumed for the cells of the renal cortex (dkc = 25µm,
spherical). Moreover the cortex of one kidney is assumed to be shaped as a hollow cuboid
with the dimensions l×w× d = 11cm× 5.5cm× 3.5cm and a wall thickness of c = 0.8cm.
A renal cortex volume of two equally sized kidneys VK = 2(82.3ml) = 164.6ml is assumed.
The density of the renal cortex is assumed to be similar to that of muscle and liver [Müller
et al., 2007]. A reference to the kidney density of pigs could be found at approximately
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1.06g/ml [Klein, 1998]. Thus a mass of the renal cortex is assumed to be mK = 155.28g,
which represents approximately half of the total kidney mass.

Structure Symbol Value
Kidney cell dimensions (assumed) dkc 25µm
Volume of a kidney cell Vkc 8.83191pl
Mass of a kidney cell mlc 8.3ng
Density of a renal cortex cell %l 1.06g/ml
Number of cells in the kidney cortex - 2.11 · 1011

Volume of the kidney cortex VK 164.6ml
Mass of the kidney cortex mK 155.28g

Table 7.5: Scaling of the renal cortex

7.1.6 Blood

The hematocrit describes the volume of cells in the blood volume. The blood volume is
usually in the magnitude of 5l (5l [Baynes and Dominiczak, 2014], 4− 6l [Aumüller et al.,
2007], 4 − 5l [Despopoulos and Silbernagl, 2003], 3.7 − 4.5l [Welsch and Sobotta, 2003])
and consists of 54 − 56% plasma and 44 − 45% of cells [Aumüller et al., 2007], [Welsch
and Sobotta, 2003]. The blood density is approximately 1.05g/ml [Kenner, 1989].

Erythrocytes The major part of the cellular volume is comprised by red blood cells,
of which there are 4000 − 6000 · 103/µl = 4 − 6 · 1012/l (4000 − 6000 · 109/l [Aumüller
et al., 2007], 4.15 − 4.9 · 106/µl [Welsch and Sobotta, 2003]). They are shaped like
biconcave discs with a diameter of 7.5 − 8µm (7.7µm [Aumüller et al., 2007], 7.5µm
[Welsch and Sobotta, 2003], 8.0µm [Jay, 1975], 7.8 − 8µm [Evans and Fung, 1972],
8.1µm [Canham and Burton, 1968]) and a thickness te = 2µm on the edge and a
thickness tc = 1µm in the center [Aumüller et al., 2007], [Welsch and Sobotta, 2003].
One red blood cell has a surface area of 140µm2 (134µm2 [Jay, 1975], 135µm2 [Evans
and Fung, 1972], 134 − 138.1µm2 [Canham and Burton, 1968]), which implies the total
surface area for all red blood cells to be 3800m2 [Welsch and Sobotta, 2003]. Moreover, a
red blood cell volume of 107.5µm3 (99µm3 [Jay, 1975], 94µm3 [Evans and Fung, 1972])
has been established [Canham and Burton, 1968]. However, only 71% = 76µm3 is
considered to be cytoplasm [Brumen and Heinrich, 1984].

Leukocytes White blood cells come in a ratio of approximately 1:10000 with red
blood cells and comprise about 1% of the blood cells [Aumüller et al., 2007], [Welsch and
Sobotta, 2003]. The most common among this heterogeneous group of cells are the
neutrophil granulocytes with a diameter of 8.5 − 15µm (12 − 15µm [Aumüller et al.,
2007], 8.5− 10µm [Welsch and Sobotta, 2003]). Their number can rise from 60% to 80%
of the white blood cells during infection with a normal number of 1.7− 7 · 103/µl [Welsch
and Sobotta, 2003]. There are also lymphocytes as part of the white blood cells, which
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have a diameter of 6 − 12µm (6 − 10µm [Aumüller et al., 2007], 6 − 12µm [Welsch and
Sobotta, 2003]) and measure 1− 3 · 103/µl in their numbers [Aumüller et al., 2007].
However, due to their low number, which is even below blood plates (thrombocytes) by
approximately a factor of 100, their contribution to e.g. lactate production is assumed to
be negligible and their are metabolic properties (e.g. lactate production) are well
represented by red blood cells [Aumüller et al., 2007], [De Backer et al., 1997].

Assuming the volume of a single red blood cell to be 100µm3, their number in the blood
at 5 · 1012/l, and a blood volume of 5l, the overall volume of the red blood cells is
VRBC = 2500ml for 25 · 1012 cells, which corresponds to 95% of all blood cells [Behrends,
2010]. A density %rbc = 1.1g/ml of red blood cells is assumed and thus a mass for all
blood cells of mRBC = 2273 ≈ 2.27kg [Kenner, 1989].

Structure Symbol Value
Red blood cell dimensions (average) drbc 7.7µm
Volume of a red blood cell Vrbc 0.1pl
Density of a red blood cell %rbc 1.1g/ml
Number red blood cells - 25 · 1012

Volume of all red blood cells VB 2.5l
Mass of all red blood cells mB 2.27kg

Table 7.6: Scaling of the red blood cells -one red blood cell represents all blood cells of the body

7.1.7 Brain

The CNS contains 1 · 1010 − 1 · 1011 neurons (1 · 1010 − 1 · 1011 [Aumüller et al., 2007],
1 · 1011 − 1 · 1012 [Welsch and Sobotta, 2003]) and about 3− 10 times as much glial cells
[Aumüller et al., 2007]. A spherical neuron of the diameter dn = 20µm is assumed based
on shape and relative size to other tissues [Zhang et al., 2014], [Welsch and Sobotta, 2003].
Using formula 7.3 and assuming 1 · 1011 neurons in the CNS, this would translate to a
volume of Vn = 419ml and by assuming a density of 1.05g/ml, a mass of mn = 399g for
all neurons of the CNS, which correlates with the literature, when multiplied by 3.5 for
the glial cells of assumed identical size [Aumüller et al., 2007], [Franceschini et al., 2007],
[Ankney, 1992]. The total volume VC = 1467ml ≈ 1.47l of the CNS is therefore assumed,
which translates to a total mass mC = 1397g ≈ 1.4kg.
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Structure Symbol Value
Neuron dimensions (assumed) dn 20µm
Volume of a neuron Vn 4.2nl
Mass of a neuron mn 4ng
Density of neurons %b 1.05g/ml
Number neurons - 1 · 1011

Volume of the CNS VC 1.47l
Mass of the CNS mC 1.4kg

Table 7.7: Scaling of the neurons

7.1.8 Blood Flow

Considering large blood vessels like the superior and inferior vena cava at a diameter of
approximately 3cm, which equals a cross-sectional area of 7cm2 and a measured blood
velocity of roughly 14cm/min in those vessels, the venous blood flow is 5.8l/min. This
can increase tenfold during exercise [Wexler et al., 1968].

Muscles The blood perfusion of the muscles is very dependent on physical activity
[Behrends, 2010], [Hick and Hick, 2000]. At rest the perfusion the skeletal muscles is
approximately 2 − 3ml/min ∗ dl (3ml/min ∗ 100g tissue), which corresponds to about
15 − 21% = 0.75 − 1l/min oft the cardiac output [Behrends, 2010], citepHick2000. This
can increase 20-fold at maximum physical activity to 15l/min (100ml/min ∗ 100g tissue
citepHick2000) [Behrends, 2010]. At rest a muscle blood flow of 757.5ml/min is assumed.

Heart Coronary perfusion at rest is approximately 70− 80ml/min ∗ 100g tissue, which
corresponds to approximately 5% of the cardiac output and can increase 4− 5 fold during
stress to approximately 300ml/min ∗ 100g tissue [Behrends, 2010], [Hick and Hick, 2000].
The normal cardiac output is assumed to be 5l/min, so that 20% of the cardiac output
translate to 1l/min [Behrends, 2010]. At rest a coronary blood flow of 225ml/min is
assumed.

Liver Normal liver perfusion in an adult is approximately 1500 ± 300ml/min, which
corresponds to about 25% of the cardiac output and 100ml/min ∗ 100g tissue [Stein and
Schröder, 2006], [Hick and Hick, 2000]. A hepatic blood flow of 1600ml/min is assumed.

Kidneys Normal kidney perfusion is approximately 1000− 1800ml/min [Gerich et al.,
2001]. At rest the contain 20−25% of the blood from the cardiac output (1−1.2l), which
corresponds to a perfusion of 400ml/min ∗ 100g tissue [Behrends, 2010], [Hick and Hick,
2000]. A blood flow of 311ml/min is assumed for the renal cortex.
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Brain Normal CNS perfusion is approximately 750ml/min (50ml/min ∗ dl), which
corresponds to about 13 − 15% of the cardiac output [Behrends, 2010], [Hick and Hick,
2000]. The perfusion varies between cortex (100ml/min ∗ 100g tissue) and medulla
(20ml/min ∗ 100g tissue) and may increase up to 50% at increased neuronal activity
[Hick and Hick, 2000]. A normal cerebral blood flow of 735ml/min is assumed

Skin At normal room temperature skin perfusion amounts to approximately 10% =
0.5l/min but is largely dependent on the thermo-regulation. It can increase from about
100ml/min ∗m2 body surface area to 2l/min ∗m2 body surface area at physical activity
[Behrends, 2010]. This translates to 150− 500ml/min ∗ 100g tissue [Hick and Hick, 2000].

7.2 Kinetics

7.2.1 Metabolic Reactions

The metabolic reactions considered are generally assumed to follow Michaelis-Menten
kinetics (only occasionally mass-action kinetics) as the metabolite concentrations yielded
from the network are of interest for the model. This implies, that the amount of enzyme
in a cell remains constant over time. Solving equation 4.1 for zero tends to generally
result in information about flux values or flux ratios but not concentrations [Rohwer,
2012]. Moreover, the metabolic reactions are generally assumed to be reversible (unless
it does not fit observations (e.g. glucose export from muscle cells)), because antagonistic
metabolic pathways are modeled realistic behavior is aspired to [Imperial and Centelles,
2014], [Schallau and Junker, 2010], [Horn, 2009], [Chalhoub et al., 2007], [Lambeth
and Kushmerick, 2002]. The reactions of those pathways depend on their intermediate
concentrations and can be redirected to reactants or products [Imperial and Centelles,
2014]. General assumptions for uni-uni and bi-bi reaction mechanisms are summarized in
table 7.8 [Imperial and Centelles, 2014], [Lambeth and Kushmerick, 2002]. The reversible
uni-uni mechanism assumes a competitive enzyme inhibition, which is expressed by the
[B] in the denominator of the equation. For multiple substrates, the bi-bi mechanism
involving a (random or ordered) ternary complex mechanism is the most frequently found.
The main difference in comparison to the uni-uni mechanism are the independent terms
in the denominator. However, there are also uni-bi or bi-uni reaction mechanisms. The
equations irreversible reactions are identical with the irreversible reactions of uni-uni and
bi-bi, respectively, as no products are considered. The denominators have to be adjusted
for the reversible reactions by using the uni positive and bi negative factor in uni-bi
reactions and vice versa [Imperial and Centelles, 2014]. Moreover, all equations can be
modified with factors that represent inhibition or cooperative behavior in the enzyme
reaction [Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002].
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A −→ B Irreversible Reversible

Michaelis-Menten v =
Vf ·

[A]
KmA

1 + [A]
KmA

v =
Vf ·

[A]
KmA

−Vr ·
[B]

KmB

1 + [A]
KmA

+ [B]
KmB

A+B −→ C +D

Ternary complex mechanism v =
Vf ·

[A][B]
KmAKmB

1 + [A]
KmA

+ [B]
KmB

+ [A][B]
KmAKmB

v=
Vf ·

[A][B]
KmAKmB

−Vr ·
[C][D]

KmCKmD

1 + [A]
KmA

+ [B]
KmB

+ [A][B]
KmAKmB

+ [C]
KmC

+ [D]
KmD

+ [C][D]
KmCKmD

Table 7.8: General reaction kinetics

Units

To facilitate calculations, the variables of the kinetic equations are converted to SI-Units
as summarized in table 7.9 [Scheer et al., 2010]1, [Holmes, 2007], [Hynne et al., 2001],
[Wolf et al., 2000].

Parameter Symbol Unit

Concentration [ ] mmol

l
= mM

Maximum velocity V mM

min

Michaelis-Menten constant
(Individual binding constant) Km mM

Inhibition constant Ki mM

Equilibrium constant Keq dimensionless

Rate constant k mM

min
,

1
min

,
1

mMmin

∗

Hill-coefficient n dimensionless

Correction factor for insulin α dimensionless

∗ 0th, 1st, 2nd order, respectively
Table 7.9: Units for variables in kinetic equations

Parameters

There exists a large variety of measured values for the parameters of table 7.9, often with a
span of several orders of magnitude, as can be seen e.g. at the Michaelis-Menten constants
listed in BRENDA [Scheer et al., 2010]. Therefore, parameter values of cells closest to

1This reference is used to reference the BRENDA enzyme database in general
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those mentioned in 7 and species closest to human were preferred as as substitute and in
general averaged [Rohwer, 2012]. Thus the used value might not so necessarily reflect a
specific measurement result but an order of magnitude, which can be confirmed by other
referenced sources. The variables are given together with the assumed kinetic equation
they are used in.

7.2.2 Variables

Variables are designated according to their classification:

• Transporters, four capital letters

• Enzymes, two to three capital letters and -ase suffix

• Metabolites, three capital letters

• Nucleotides, one capital letter and index

The assumed steady state concentrations of the metabolites, nucleotides, and coenzymes
in a cell are given in table 7.10. A general trend can be observed when comparing models
using single cell organisms with those aiming to describe different organs of mammals:
The measured steady state concentrations of metabolites tend to have higher values in
the range of one to two orders of magnitude in single cell organisms [Chalhoub et al.,
2007], [Chassagnole et al., 2002], [Lambeth and Kushmerick, 2002], [Hynne et al., 2001],
[Teusink et al., 2000], [Wolf et al., 2000], [Mulquiney and Kuchel, 1999], [Schuster et al.,
1988], [Scopes, 1973].
Some of those initial values already reflect a stressed metabolism. This can be derived from
e.g. the lactate-pyruvate ratio of 16 : 1, which is increased in comparison to the normal,
but well within range of the stress related ratio mentioned in chapter 2. Moreover, the
NADH + H+-NAD+ ratio indicates a metabolic situation closer to starvation [Williamson
et al., 1967].
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Metabolite Concentration (mM) Reference
[GLUx] 5 [Chalhoub et al., 2007], [Meyer et al., 1998]

[LACx] 1 [Chalhoub et al., 2007], [Bolton, 2007],
[Fall and Szerlip, 2005]

[ALAx]
0.3 (alanine)
0.6 (glutamine)

[Chalhoub et al., 2007], [Jenssen et al., 1990],
[Stumvoll et al., 1999], [Felig et al., 1970]

[GLU] 5 [Chalhoub et al., 2007]

[G6P] 0.1 [Chalhoub et al., 2007], [Damsbo et al., 1991]

[GLGx]
162.2 (liver)
15.8 (muscles)

[Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002],
[Horn, 2009], [Löffler et al., 2007], tables 7.4 and 7.3

[F6P] 0.05 [Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002],
[Mulquiney and Kuchel, 1999], [Schuster et al., 1988]

[FBP] 0.02 [Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002],
[Mulquiney and Kuchel, 1999], [Schuster et al., 1988]

[GAP] 0.02 [Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002],
[Mulquiney and Kuchel, 1999], [Schuster et al., 1988]

[PEP] 0.02
[Lambeth and Kushmerick, 2002], [Hynne et al., 2001],
[Teusink et al., 2000], [Mulquiney and Kuchel, 1999],
[Schuster et al., 1988]

[PYR] 0.08 [Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002],
[Mulquiney and Kuchel, 1999], [Schuster et al., 1988]

[ACAx] 0.14 [Chalhoub et al., 2007]

[LAC] 1.3 [Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002],
[Mulquiney and Kuchel, 1999], [Schuster et al., 1988]

[ALA] 0.5 [Chalhoub et al., 2007]

[A3] 3.7
[Chalhoub et al., 2007], [Chassagnole et al., 2002],
[Lambeth and Kushmerick, 2002], [Mulquiney and Kuchel, 1999],
[Schuster et al., 1988], [Scopes, 1973]

[A2] 0.3 [Chalhoub et al., 2007], [Chassagnole et al., 2002]

[A] 4 [Chalhoub et al., 2007], [Wolf et al., 2000],
[Hynne et al., 2001], [Teusink et al., 2000]

[N2] 0.002 [Chalhoub et al., 2007], [Schuster et al., 1988]

[N1] 0.5
[Yang et al., 2007], [Yamada et al., 2006],
[Lambeth and Kushmerick, 2002], [Hynne et al., 2001],
[Scopes, 1973]

[N] 0.502 [Wolf et al., 2000], [Williamson et al., 1967]

Table 7.10: Steady state metabolite concentrations
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Lactate

The lactate producing tissues red blood cells, skeletal muscles and brain combined are
responsible for roughly two thirds (65% (chapter 2)) of the entire lactate production and
are specifically modeled by the different metabolic pathways. The 10% of the intestine
are ignored, justified with the scope of application and the assumption that there is no
digestion (postabsorptive state (chapter 1)). The remaining 25% generated by the adipose
tissue is assumed to be of the constant rate of 0.05mmol/min for the entire body fat mass
[van Hall, 2010].

Nucleotides

Although, frequently encountered ATP is not the only nucleotides found in the body.
guanosine triphosphate (GTP) is used e.g. in the glycogen metabolism [Horn, 2009].
However, for the model it is generally assumed that behave similarly and can be expressed
by ATP and ADP, respectively. The same is assumed for the respective variations of
the redox coenzymes NAD+ and NADH + H+. The nucleotides and redox coenzyme
concentrations are constraint by equations 7.4a and b, as their overall amount is assumed
to remain constant over time [Wolf et al., 2000].

[A] = [A3] + [A2] (7.4a)
[N] = [A2] + [A1] (7.4b)

pH-Value

The pH-value inside a cell is assumed to remain constant at e.g. 7.4 because it is further
assumed that pH-value influencing metabolites e.g. lactate are released into the blood
stream, by which the cell self-regulates its pH-value. This ties in with the assumption of
ATP production being a major contributor to a reduced pH-value, as outlined in chapter
3, and is reflected by the constraint of the total nucleotide concentration to 2.8mM , as
given in table 7.10.

Amino acids

As outlined in chapter 6 and shown in table 7.10, the alanine-glutamine ratio in the blood
is 1 : 3. The normal combined alanine and glutamine concentration should therefore
translate to approximately 0.9mM . Moreover, the stress related amino acid release
into the blood is assumed to follow a linear function, which is derived from the loss
of 2% muscle mass daily adding up to 20% over approximately 10 days, as outlined in
chapter 1. Assuming the 25.25kg total muscle mass from table 7.3 that would translate
to the loss of 505g of total muscle mass per day. For a rough estimate the muscle
is assumed to be pure protein and made of the 21 proteinogenic amino acids in equal
shares (4.76%), which leads to approximately 24g of muscle per amino acid [Löffler et al.,
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2007], Despopoulos and Silbernagl [2003]. The one used for the model is alanine with
a molecular weight of 89g/mol, according to PubChem [Wang et al., 2010]2. Thus
dividing 24g by the molecular weight of alanine yields a rate of about 0.2mmol/min
or 0.3mmol/min, when additionally considering glutamine with a molecular weight of
146g/mol [Wang et al., 2010]. This can be confirmed by considering a more specific
percentage of alanine (≈ 8%) and glutamine (≈ 4%) in the pure protein muscle, which
translates to a muscle degradation of approximately 40g/d (0.3mmol/min) and 20g/d
(0.1mmol/min) for alanine and glutamine, respectively [Löffler et al., 2007]. Combined
this amounts to 42mg/min (0.4mmol/min). However, since the muscle breakdown only
accounts for 30% of the overall alanine production, the total alanine production is higher
then that [Mizock, 2001].
The combined share of alanine and glutamine in the all protein muscle is approximately
10%. Based on this, the model will use an alanine production rate of 35mg/min =
0.4mmol/min, which incorporates both alanine and glutamine, and will be added as
30% to the alanine production from muscle glycolysis (70%) to generate the total alanine
concentration in the blood (alanine compartment). To address the renal preference for
glutamine over alanine as a precursor in gluconeogenesis, the alanine compartment will
be drained at the combined alanine uptake rates of liver (1/3) and kidney (2/3). 30% of
the muscular alanine production can hence be used to rebuild muscle tissue (all protein
muscle approximation). This tissue synthesis is modeled in dependency of the correction
factor for insulin (α), which ensures that muscle tissue is regenerated at the same time
that glycogen is stored, which indicates a less stressed metabolic situation.

2This reference is used to reference the PubChem database for chemical structures in general

62



Part III

Problem Solution
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7.3 Equations and Constants

7.3.1 Membrane Transporters

There generally exists a large variety of different membrane transporters in the body
[Alexander et al., 2013]. For the model it is generally assumed that the metabolite
transport across the cell membrane is carried out by various kinds of transporters e.g.
types of glucose transporter (GLUT) and monocarboxylate transporter (MCT), which
are assumed to follow saturation kinetics. Moreover, those transporters are assumed to
generally work bidirectional [Richter and Hargreaves, 2013], [Chalhoub et al., 2007]3.

GLUT: GLUx ←→ GLU There are several transporters, with different properties, to
transport glucose (GLU) in and out of the cell [Uldry and Thorens, 2004]. GLUT1 is
responsible for the basal uptake and will be used in neurons and red blood cells, GLUT2
is found in liver and kidneys, and GLUT4 is insulin dependent and found in skeletal and
cardiac muscle [Arleth et al., 2000]. The kinetic equation to describe GLUT1 and GLUT2
is assumed to be of the form given in table 7.11 [Imperial and Centelles, 2014], [Chalhoub
et al., 2007].

vGLUTX =
VGLUTX ·

[GLUx]
KmGLUTX

−VGLUTX ·
[GLU]

KmGLUTX

1 + [GLUx]
KmGLUTX

+ [GLU]
KmGLUTX

= VGLUTX · ([GLUx]− [GLU])
KmGLUTX + [GLUx] + [GLU]

Parameter Value Reference

VGLUT1 0.5mM
min

[Hughes et al., 1993]

KmGLUT1 1mM [Berg et al., 2002], [Arleth et al., 2000]

VGLUT2 19.22mM
min

[Chalhoub et al., 2007], [Hughes et al., 1993]

KmGLUT2 17mM [Uldry and Thorens, 2004], [Berg et al., 2002],
[Arleth et al., 2000], [Hughes et al., 1993]

Table 7.11: GLUT kinetics

The differential equations that describe the model have to be solved for the respective
metabolite to represent its concentration over time, as mentioned in chapter 4. Using
the GLUT1 equation as an example, table 7.12 briefly illustrates the basis for the

3All referenced values have been corrected with the liver density (1.08g/ml (table 7.4)) for unit
conversion to mM/min
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implementation of the differential equations in the computerized model presented in
chapter 9, where the equation will be numerically integrated by LabVIEW.

vGLUT1 = ˙GLU =
0.5mM

min
· [GLUx]

1mM + [GLUx] + [GLU] −
0.5mM

min
· [GLU]

1mM + [GLUx] + [GLU]

dGLU
dt =

0.5mM
min

· [GLUx]

1mM + [GLUx] + [GLU] −
0.5mM

min
· [GLU]

1mM + [GLUx] + [GLU]

∫
1dGLU =

∫  0.5mM
min

· [GLUx]

1mM + [GLUx] + [GLU] −
0.5mM

min
· [GLU]

1mM + [GLUx] + [GLU]

 · dt

GLU =
t∫

0

 0.5mM
min

· [GLUx]

1mM + [GLUx] + [GLU] −
0.5mM

min
· [GLU]

1mM + [GLUx] + [GLU]

 · dt
Table 7.12: GLUT kinetics

GLUT4: GLUx −→ GLU GLUT4 is considered to be a unidirectional transporter,
corresponding to a modified Michaelis-Menten equation. The kinetic equation to describe
GLUT4 is assumed to be of the form given in table 7.13 [Richter and Hargreaves, 2013],
[Pielmeier, 2010]. However, when ignoring α the equation can also be used to model a
unidirectional GLUT1, GLUT2 or MCT for lactate transport, as presented in table 7.15.

vGLUT4 =
VGLUT4 ·

[GLUx]
KmGLUT4

1 + [GLUx]
KmGLUT4

· α

= VGLUT4 · [GLUx]
KmGLUT4 + [GLUx] · α

Parameter Value Reference

VGLUT4 0.09mM
min

[Pielmeier, 2010]∗

KmGLUT4 5mM [Richter and Hargreaves, 2013], [Chalhoub et al., 2007],
[Uldry and Thorens, 2004], [Arleth et al., 2000]

∗corrected with muscle density
(1.05g/ml (table 7.3))
for unit conversion to mM/min

Table 7.13: GLUT4 kinetics
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LACT: LACx ←→ LAC Different active and passive lactate (LAC) transport
mechanisms through the cell membrane are known and involve a H+ cotransport, when
LAC is released into the blood [Dienel, 2014], [Brooks, 2009], [Horn, 2009], [Juel, 2004],
[Brooks, 2002], [von Grumbckow et al., 1999], [Juel, 1997], [Balkovetz et al., 1988]. The
bidirectional lactate transport by e.g.MCT4 in the model is assumed to be described by the
equation in table 7.14 [Chalhoub et al., 2007], [Fox et al., 2000]. The unidirectional lactate
transport is assumed to follow the equation in table 7.15 [Chalhoub et al., 2007]. The
required concentration of intra- or extracellular lactate depends on the desired transport
direction.

vLACT =
VLACT ·

[LACx]
KmLACT

−VLACT ·
[LAC]

KmLACT

1 + [LACx]
KmLACT

+ [LAC]
KmLACT

Parameter Value Reference

VLACT 24.3mM
min

[Chalhoub et al., 2007]

KmLACT 28mM [Fox et al., 2000]

Table 7.14: LACT kinetics

vLACTu =
VLACT ·

[LACx]
KmLACT

1 + [LACx]
KmLACT

Table 7.15: Unidirectional LACT kinetics

ALAT: ALAx ←→ ALA The bidirectional alanine (ALA) transport through the cell
membrane is assumed to be of the form given in table 7.16. The unidirectional alanine
transport is assumed to follow the equation given in table 7.17 [Chalhoub et al., 2007]. The
required concentration of intra- or extracellular lactate depends on the desired transport
direction.
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vALAT =
VALAT ·

[ALAx]
KmALAT

−VALAT ·
[ALA]

KmALAT

1 + [ALAx]
KmALAT

+ [ALA]
KmALAT

Parameter Value Reference

VALAT 12.96mM
min

[Chalhoub et al., 2007]

KmALAT 0.6mM [Chalhoub et al., 2007]

Table 7.16: ALAT kinetics

vALATu =
VALAT ·

[ALAx]
KmALAT

1 + [ALAx]
KmALAT

Table 7.17: Unidirectional ALAT kinetics

7.3.2 Metabolic Reactions

The equations and parameters describing the metabolite conversion during the reaction
chains have been adapted and evaluated from different sources, most importantly [Imperial
and Centelles, 2014], [Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002], [Hynne
et al., 2001], [Wolf et al., 2000], and the enzyme database BRENDA.

GKase-G6Pase: GLU ←−−−−−−→
ATPyADP

G6P The conversion of hexoses (e.g. GLU) into
glucose-6-phosphate (G6P) is generally catalyzed by the hexokinase (HKase) enzymes
(EC 2.7.1.1) and in the liver by HKase IV, which is also named glucokinase (GKase) (EC
2.7.1.2) and specific to D-glucose [Molnes et al., 2011], [Scheer et al., 2010], [Xu et al., 1995].
For this conversion to be reversible, glucose-6-phosphatase (G6Pase) is required, which is
found in organs conducting gluconeogenesis, so mostly liver and kidney cortex [Horn,
2009]. The reversible reaction in those organs is assumed to be of the form given by the
equation in table 7.18. The GKase reaction is assumed to follow a bi-bi ternary complex
mechanism and the G6Pase is assumed to follow Michaelis-Menten kinetics. [Imperial and
Centelles, 2014], [Scheer et al., 2010], [Chalhoub et al., 2007], [Liebermeister and Klipp,
2006], [Kelmer-Bracht et al., 2003] [Hynne et al., 2001].
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v2 =
VGKase ·

[GLU][A3]
Km2GLUKm2A3

−VG6Pase ·
[G6P]

Km2G6P

1 + [GLU]
Km2GLU

+ [A3]
Km2A3

+ [G6P]
Km2G6P

+ [GLU][A3]
Km2GLUKm2A3

Parameter Value Reference

VGKase 2.37mM
min

[Cloutier et al., 2009], [Chalhoub et al., 2007],
[Oakes et al., 1997]

VG6Pase 6mM
min

[Oakes et al., 1997], [Minassian et al., 1995]

Km2GLU 6.75mM [Chalhoub et al., 2007], [Smith et al., 2005], [Berg et al., 2002],
[Xu et al., 1995]

Km2A3
0.16mM [Molnes et al., 2011], [Hynne et al., 2001]

Km2G6P 2mM [Minassian et al., 1995]

Table 7.18: GKase-G6Pase kinetics

HKase: GLU +ATP −→ G6P +ADP HKase is used for describing the metabolic
pathways of e.g. red blood cells and assumed to be of the form given by the equation in
table 7.19 [Liebermeister and Klipp, 2006], [Hynne et al., 2001].

v2u =
VHKase ·

[GLU][A3]
Km2uGLUKm2uA3

1 + [GLU]
Km2uGLU

+ [A3]
Km2uA3

+ [GLU][A3]
Km2uGLUKm2uA3

Parameter Value Reference

VHKase 2.37mM
min

[Cloutier et al., 2009], [Chalhoub et al., 2007],
[Oakes et al., 1997]

Km2uGLU 0.1mM [Hynne et al., 2001], [Xu et al., 1995]

Km2uA3
0.16mM [Molnes et al., 2011], [Hynne et al., 2001]

Table 7.19: HKase kinetics

storage-consum: G6P ←−−−−−−→
ATPyADP

GLG The glycogen (GLG) metabolism is lumped
into the form given by the equation in table 7.20. The conversion of GTP into guanosine
diphosphate (GDP) during the reaction is assumed to to be equivalent to the conversion
of ATP into ADP, which is used instead. The GLG production is described by a 2nd order
rate law (storage) and its consumption is assumed to follow a 0th order rate law (consum)
[Tian et al., 2013], [Chalhoub et al., 2007], [Hynne et al., 2001]. Both are modified with
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a correction factor for insulin, to signify the insulin dependence of those pathways [Horn,
2009].

v3 = kstorage[G6P][A3] · α− kconsum ·
1
α

Parameter Value Reference
kstorage 2.26 1

mMmin
[Tian et al., 2013], [Hynne et al., 2001]

kconsum 0.04mM
min

[Chalhoub et al., 2007]

Table 7.20: GLG kinetics

GPIase: G6P ←→ F6P The reversible conversion of G6P into fructose-6-phosphate
(F6P) is catalyzed by glucose-6-phosphate isomerase (GPIase) (EC 5.3.1.9), assumed to
follow Michaelis-Menten kinetics and be of the form given by the equation in table 7.21
[Imperial and Centelles, 2014], [Tian et al., 2013], [Rohwer, 2012], [Scheer et al., 2010],
[Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002], [Hynne et al., 2001].

v4 =
VGPIase ·

[G6P]
Km4G6P

−VGPIase ·
[F6P]

Km4F6P

1 + [G6P]
Km4G6P

+ [F6P]
Km4F6P

= VGPIase · (Km4F6P[G6P]−Km4G6P[F6P])
Km4G6PKm4F6P + Km4F6P[G6P] + Km4G6P[F6P]

Parameter Value Reference

VGPIase 35.42mM
min

[Cloutier et al., 2009], [Chalhoub et al., 2007]

Km4G6P 0.11mM [Chalhoub et al., 2007], [Lambeth and Kushmerick, 2002]

Km4F6P 0.05mM
[Cloutier et al., 2009], [Chalhoub et al., 2007],
[Lambeth and Kushmerick, 2002], [Mulquiney and Kuchel, 1999],
[Van Beneden and Powers, 1989]

Table 7.21: GPIase kinetics

PFKase-FBPase: F6P ←−−−−−−→
ATPyADP

FBP The conversion of F6P into fructose-1,6-
biphosphate (FBP) is calalyzed by phosphofructokinase (PFKase) (EC 2.7.1.11). The
reverse reaction requires fructose-1,6-biphosphatase (FBPase) (EC 3.1.3.11) [Scheer et al.,
2010], [Horn, 2009]. For simplicity reasons a two-substrate allosteric inhibition is assumed
to lump both reactions into the form given by the equation in tab 7.22. This translates
to a reversible, noncompetitive, random order, bi-uni reaction mechanism [Imperial and
Centelles, 2014], [Tian et al., 2013], [Scheer et al., 2010], [Steuer and Junker, 2009],
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[Liebermeister and Klipp, 2006], [Madison and Madison, 2006], [Lambeth and Kushmerick,
2002], [Hynne et al., 2001], [Gilbert, 2000], [Termonia and Ross, 1981]. However, since
PFKase exhibits an unusual behavior this equation does not comprise all its aspects, e.g.
the stimulating effect of ADP or adenosine monophosphate (AMP) [Tian et al., 2013],
[Horn, 2009], [Termonia and Ross, 1981]. Moreover, the inhibiting effect of citrate was
ignored, while the inhibiting effect of ATP was included with a factor in the denominator
[Lambeth and Kushmerick, 2002].

v5 =
VPFKase ·

[F6P][A3]
Km5F6PKm5A3

−VFBPase ·
[FBP]

Km5FBP(
1 + [F6P]

Km5F6P
+ [A3]

Km5A3

+ [FBP]
Km5FBP

+ [F6P][A3]
Km5F6PKm5A3

)(
1 + [A3]

Km5A3

)

Parameter Value Reference

VPFKase 45mM
min

[Tian et al., 2013], [Lambeth and Kushmerick, 2002],
[Hynne et al., 2001]

VFBPase 21.6mM
min

[Chalhoub et al., 2007], [Westermark and Lansner, 2003]

Km5F6P 0.05mM [Mulquiney and Kuchel, 1999], [Durante et al., 1995]

Km5A3
0.05mM

[Brüser et al., 2012], [Scheer et al., 2010],
[Lambeth and Kushmerick, 2002],
[Mulquiney and Kuchel, 1999]

Km5FBP 0.002mM [Gizak et al., 2008], [Rakus et al., 2005]

Table 7.22: PFKase-FBPase

HKase+PFKase: GLU + 2ATP −→ FBP + 2ADP For cells not involved in
gluconeogenesis, the HKase and PFKase reactions can be considered irreversible and the
conversion of GLU into FBP expressed in a modified 2nd order rate law of the form given
by the equation in table 7.23 [Horn, 2009], [Wolf et al., 2000], [Brumen and Heinrich,
1984].
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vi = kinvest[GLU][A3] · 1

1 +
( [A3]

Ki

)n

Parameter Value Reference
kinvest 550 1

mMmin
[Wolf et al., 2000]

Ki 1mM [Wolf et al., 2000], [Brumen and Heinrich, 1984]

n 4 [Wolf et al., 2000], [Brumen and Heinrich, 1984]

Table 7.23: HKase+PFKase kinetics

ALDase+TPIase: FBP ←→ 2GAP For the conversion of FBP into glyceraldyde-3-
phosphate (GAP), the triosephosphate isomerase (TPIase) reaction is neglected and it is
assumed that a lumped aldolase (ALDase) (EC 4.1.2.13) reaction of the form given by the
equation in table 7.24 produces 2 molecules of GAP in an ordered uni-bi mechanism
[Imperial and Centelles, 2014], [Scheer et al., 2010], [Liebermeister and Klipp, 2006],
[Lambeth and Kushmerick, 2002].

v6 =
VALDase ·

[FBP]
Km6FBP

−VALDase ·
(

[GAP]
Km6GAP

)2

1 + [FBP]
Km6FBP

+ 2 [ GAP]
Km6GAP

+
(

[GAP]
Km6GAP

)2

Parameter Value Reference

VALDase 35,5mM
min

[Esposito et al., 2004], [Mulquiney and Kuchel, 1999],
[Kusakabe et al., 1994]

Km6FBP 0.05mM [Esposito et al., 2004], [Lambeth and Kushmerick, 2002],
[Kusakabe et al., 1994]

Km6GAP 1.17mM [Rozova et al., 2010], [Lambeth and Kushmerick, 2002]

Table 7.24: ALDase+TPIase kinetics

GDHase+PGKase+PGMase+ENOase:
GAP +ADP +NAD ←→ PEP +ATP +NADH2 The glyceraldehyde dehydrogenase
(GDHase), phosphoglycerate kinase (PGKase), phosphoglycerate mutase (PGMase), and
enolase (ENOase) reactions necessary to convert GAP into pep! (pep!) are lumped
into one reversible reaction of the form given by the equation in table 7.25 [Imperial and
Centelles, 2014], [Rohwer, 2012], [Chalhoub et al., 2007].
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v7 =
V−GAPPEPase ·

[GAP][A2][N1]
Km7PEPGAP

−VGAPPEPase ·
[PEP][A3][N2]

Km7PEPGAPKeqPEPGAP

1 + [GAP][A2][N1]
Km7GAPPEP

+ [PEP][A3][N2]
Km7PEPGAP

=
VGAPPEPase · (KeqPEPGAP[GAP][A2][N1]− [PEP][A3][N2])

Km7PEPGAPKeqPEPGAP +
Km7PEPGAPKeqPEPGAP[GAP][A2][N1]

Km7GAPPEP
+ KeqPEPGAP[PEP][A3][N3]

Parameter Value Reference

VGAPPEPase 102mM
∗

min

[Chalhoub et al., 2007],
[Mulquiney and Kuchel, 1999]

Km7GAPPEP 2.5 ·10−6mM3∗ [Szabó et al., 2008a], [Szabó et al., 2008b],
[Mulquiney and Kuchel, 1999]

Km7PEPGAP 4 ·10−5mM3∗ [Szabó et al., 2008a], [Szabó et al., 2008b],
[Chalhoub et al., 2007], [Mulquiney and Kuchel, 1999]

KeqPEPGAP 4166∗ [Chalhoub et al., 2007], [Lehninger et al., 2005]

∗ based on GDHase and PGKase reactions
Table 7.25: GDHase+PGKase+PGMase+ENOase kinetics

PKase-(PCase+PCKase): PEP
2ADPx2ATP←−−−−−−−−→
ADPyATP

PY R The reversible conversion of
pep! into pyr! (pyr!) (by pyruvate kinase (PKase)) of the rapid equilibrium bi-bi form
given by the equation in table 7.26 assumes a lumped reaction for the pyruvate carboxylase
(PCase) and phosphoenolpyruvate carboxykinase (PEP-CKase) reactions [Chalhoub et al.,
2007], [Liebermeister and Klipp, 2006], [Lambeth and Kushmerick, 2002].
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v8 =
VPKase ·

[PEP][A2]
Km8PEPKm8A2

−VPCase+PCKase ·
[PYR]

Km8PYR

(
[A3]

Km8A3

)2

1 + [PEP]
Km8PEP

+ [A2]
Km8A2

+ [PEP][A2]
Km8PEPKm8A2

+
(

1 + [PYR]
Km8PYR

)1 + [A3]
Km8A2

+
(

[A3]
Km8A2

)2


Parameter Value Reference

VPKase 67,5mM
min

[Chalhoub et al., 2007]

VPCase+PCKase 13,39mM
min

[Chalhoub et al., 2007]

Km8PEP 0.1mM [Oria-Hernández et al., 2005],
[Lambeth and Kushmerick, 2002], [Hynne et al., 2001]

Km8A2
0.3mM

[Dombrauckas et al., 2005],
[Lambeth and Kushmerick, 2002],
[Chassagnole et al., 2002], [Hynne et al., 2001]

Km8PYR 0.22mM [Carbone and Robinson, 2003], [Jitrapakdee et al., 1999]

Km8A3
0.22mM [Lambeth and Kushmerick, 2002],

[Hynne et al., 2001], [Jitrapakdee et al., 1999]
Table 7.26: PKase-(PCase+PCKase) kinetics

LDHase: PY R+NADH2 ←→ LAC+NAD The pyr! conversion into LAC by LDHase
is assumed to follow a complex ternary complex mechanism, which can be simplified and a
described by reversible Michaelis-Menten kinetics by the equation in table 7.27 [Chalhoub
et al., 2007], [Lambeth and Kushmerick, 2002], [Mulquiney and Kuchel, 1999].
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v9 =
VLDHase ·

[PYR][N2]
Km9PYRKm9N2

KeqLDH
−VLDHase ·

[LAC][N1]
Km9LACKm9N1

1 + [PYR][N2]
Km9PYRKm9N2

+ [LAC][N1]
Km9LACKm9N1

Parameter Value Reference

VLDHase 210mM
min

[Mulquiney and Kuchel, 1999], [Chalhoub et al., 2007]

Km9PYR 0.3mM [Lambeth and Kushmerick, 2002],
[Mulquiney and Kuchel, 1999], [Pettit et al., 1981]

Km9N2
0.002mM [Lambeth and Kushmerick, 2002],

[Mulquiney and Kuchel, 1999]

Km9LAC 1mM [Chalhoub et al., 2007], [Mulquiney and Kuchel, 1999],
[Nakae and Stoward, 1997]

Km9N1
0.2mM

[Flores and Ellington, 2005],
[Lambeth and Kushmerick, 2002],
[Mulquiney and Kuchel, 1999]

KeqLDH 1.1 ·10−4 [Williamson et al., 1967],
table 7.10 (2.5 ·10−4)

Table 7.27: LDHase kinetics

ALTase: PY R + NADH2 ←→ ALA + NAD The pyr! conversion into ALA by
altase! (altase!) is assumed to follow a ping-pong bi-bi mechanism, which is described
by the equation in table 7.28 [Scheer et al., 2010], [Chalhoub et al., 2007]. The Km-value
for ALA in cytosolic altase! is typically in the magnitude of 3mM , but 10 − 20mM or
above have also been measured for humans and other mammals, which would correspond
with the squared denominator of the kinetic equation [Mu et al., 2012], [Scheer et al.,
2010], [Sánchez-Muros et al., 1998], [Gubern et al., 1990]. No Km-values for the redox
coenzymes could be found, as their presence the altase! reaction is only included to
balance the LDHase reaction and accommodate for the PEP-CKase reaction inside the
mitochondrion and they do not actually participate in the reaction, as was depicted in
figure 2.6 [Scheer et al., 2010], [Horn, 2009], [Chalhoub et al., 2007].
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v10 =
VALTase ·

[PYR][N2]
Km10PYRALA

−VALTase ·
[ALA][N1]

Km10PYRALA

1 + [PYR][N2]
Km10PYRALA

+ [ALA][N1]
Km10ALAPYR

Parameter Value Reference

VALTase 300mM
min

[Chalhoub et al., 2007], [Sánchez-Muros et al., 1998]

Km10PYRALA 0.006mM2∗
[Chalhoub et al., 2007], [Scheer et al., 2010],
[Mu et al., 2012], [Ward et al., 2000]

Km10ALAPYR 1,5mM2∗
[Chalhoub et al., 2007], [Ward et al., 2000],
[Sánchez-Muros et al., 1998]

∗ assumed by the product of a Km = 3mM and the
respective redox coenzyme concentration of table
7.10
Table 7.28: ALTase kinetics

ATPase: ATP −→ ADP The adenosine triphosphatase (ATPase) reaction (Na-K
ATPase) is assumed to represent the overall ATP consumption of the system, as described
by the form of the equation of table 7.29 [Tian et al., 2013], [Chalhoub et al., 2007],
[Lambeth and Kushmerick, 2002], [Hynne et al., 2001], [Wolf et al., 2000], [Mulquiney and
Kuchel, 1999], Brumen and Heinrich [1984].

v13 = kx[A3]

Parameter Value Reference

krest 0.28 1
min

[Lambeth and Kushmerick, 2002]∗, [Schuster et al., 1988],
[Termonia and Ross, 1981]

kmed 3.2 1
min

[Tian et al., 2013], [Cloutier et al., 2009],
[Lambeth and Kushmerick, 2002]∗, [Hynne et al., 2001]

kmax 28 1
min

[Lambeth and Kushmerick, 2002]∗, [Wolf et al., 2000]

∗ in relation to table 7.10

Table 7.29: ATPase kinetics

PDCase: PY R −→ ACA The conversion of pyr! into acetyl coenzyme A (ACA)
by a pyruvate dehydrogenase complex (PDCase) is assumed to follow Michaelis-Menten
kinetics [Chassagnole et al., 2002], [Hynne et al., 2001].
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v14 =
VPDCase ·

[PYR]
Km14PYR

1 + [PYR]
Km14PYR

Parameter Value Reference

VPDCase 35mM
min

[Hynne et al., 2001]

Km14PYR 0.3mM [Chalhoub et al., 2007], [Hynne et al., 2001],
[Chassagnole et al., 2002]

Table 7.30: PDCase kinetics

7.3.3 Correction Factor for Insulin

The contribution of the time dependent, dimensionless scaling factor α (0 ≤ α ≥ 1) to an
equation corresponds to the effect insulin has on that process. In the case of the GLUT4
transporter this implies maximum efficiency at α = 1 and no glucose transport at all,
when insulin is absent (α = 0). The insulin dependence is assumed to follow the equation
in table 7.31 [Pielmeier, 2010], [Arleth et al., 2000].

α =

 Q(t)−Q0
d
√

(Q(t)−Q0)d + Qk
d
− Q(0)−Q0

d
√

(Q(0)−Q0)d + Qk
d


1− Q(0)−Q0

d
√

(Q(0)−Q0)d + Qk
d


Parameter Value Reference

Q(t) (steady state) 18mIU
l

= 125.01 ·10−6mM [Pielmeier, 2010]

Q0 4.9mIU
l

= 34.03 ·10−6mM [Pielmeier, 2010]

d 1.77 [Pielmeier, 2010]

Qk 31.7mIU
l

= 220.16 ·10−6mM [Pielmeier, 2010]

Q(0) (normal insulin level) 55 ·10−6mM
[Meyer et al., 1998],
[Consoli et al., 1990b]

Table 7.31: Insulin correction kinetics and parameters

Given the values of table 7.31 and assuming a constant insulin level, α is equal to 0.3.
For the programmed version of the model α is independent of the insulin level and kept

77



constant in thee steps between (0.3, 0.6, 1), as it is imagined to be a potential interface
for other models that describe and consider this insulin dependent relation and require
further work in that particular direction.
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Chapter 8

Model of the Cori Cycle

This chapter presents the developed mathematical model of the Cori cycle.

8.1 General Concept of the Model

The model operates on two layers, cellular level and organ level. The cellular level is
described by the production and interaction of metabolites in the intracellular metabolism,
that the equations describing the reaction network of the cellular carbohydrate
metabolism. The organ level is described by the exchange of metabolites between organs
and their accumulation in the blood. This level is described by a compartment model
and the flow of masses between several compartments, representing the bloodstream
and organs, respectively. This division emerged as the biochemical reactions provide
parameters for the processes at organ level in the form of secretion and uptake rates for
glucose, lactate and alanine, as well as their accumulation in the blood, which are of
interest for the scope of application to evaluate the metabolic state the modeled organism
is in. At organ level there are less parameters, which are in vivo comparatively easy to
measure, to tweak the model and potentially improve its predictive value for the aimed
application as a decision support system.
Each figure of section 8.2 represents one cell of a respective organ and its metabolism in
terms of glycolysis and gluconeogenesis. Each of those cells will release and absorb certain
metabolites at a certain rate, determined by the equations that describe the intracellular
conversion from one metabolite (substrate) to another (product). For the listed cell types
to represent an entire organ, their metabolism has to be scaled to organ level, using the
cell quantities and volumes derived in chapter 7. To simplify the calculations, it was
already implied that the respective organs consist of only one type of cell - the type
which has a metabolism described by the presented differential equations (cellular level).
Therefore an organ e.g. the liver can be assumed to be represented by one cell that has the
volume of the respective organ e.g. 1.73l, as listed in table 7.4. The released metabolite
e.g. GLUx (extracellular glucose) has a blood concentration that is determined by the
releasing rate and volume of the organ it originated from, and the blood perfusion of
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that organ, which has been derived in chapter 7 for all considered organs. At this point
it is feasible to convert the metabolite concentration to a mass related dimension, e.g.
mg/dl. The metabolite flow in and out of an organ can again be described by an ODE
and for multiple organs by a set of, in this case, linear ODE, which can be solved by using
the standard ansatz for a solution of an ODE of that kind: y = A · eλx, which has been
discussed in chapter 4 in a slightly different context [Merziger, 2004]. Those equations do
not possess any unknowns, as they are directly derived from the metabolic reactions inside
the cell and the other mentioned other boundary conditions such as organ volume and
perfusion. These linear ODE describe the flux between the compartments blood-glucose,
-lactate, and -alanine and the organs, respectively, which is illustrated by figure 8.7. Of
interest for the application, because easy to measure and used trend and risk evaluation
are the metabolite concentrations in the blood. The out-flux of a metabolite is therefore
summed in in its respective blood compartment. However, the combined amount of e.g.
lactate produced by all considered organs amounts to roughly 2/3 of the total amount
produced by the organism, as pointed out in table 6.1 of chapter 6. The remaining 1/3 is
assumed to be a constant production by the fatty acid metabolism, which has not been
considered for this model at all. At this point is is unclear whether or not this constant
flux can be expressed by manipulating existing parameters of other organs and the matter
will be further discussed in chapter 10.
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8.2 Cellular Level

8.2.1 Skeletal Muscles Metabolic Model

Figure 8.1: The figure shows the structural model for the muscular carbohydrate metabolism that also
accounts for 70% of the alanine production [Mizock, 2001].

˙[GLU] = vGLUT4 − v2 (8.1a)
˙[G6P] = v2 + v3 − v4 (8.1b)
˙[F6P] = v4 − v5 (8.1c)
˙[FBP] = v5 − v6 (8.1d)
˙[GAP] = v6 − 2v7 (8.1e)
˙[PEP] = 2v7 − 2v8 (8.1f)
˙[PYR] = 2v8 − v9 − v10 − v14 (8.1g)
˙[LAC] = v9 − vLACT (8.1h)
˙[ALA] = v10 − vALAT (8.1i)
˙[A3] = −v2 − v3 − v5 + 2v7 + 2v8 − v13 (8.1j)
˙[N2] = 2v7 − v9 (8.1k)
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8.2.2 Liver Metabolic Model

Figure 8.2: The figure shows the structural model for the hepatic carbohydrate metabolism. Differences in
comparison to the muscle model are the reversible glucose transport and unidirectional lactate transport,
as well as the uptake of alanine.

˙[GLU] = −vGLUT2 + v2 (8.2a)
˙[G6P] = −v2 − v3 + v4 (8.2b)
˙[F6P] = −v4 + v5 (8.2c)
˙[FBP] = −v5 + 2v6 (8.2d)
˙[GAP] = −2v6 + 2v7 (8.2e)
˙[PEP] = −2v7 + 2v8 (8.2f)
˙[PYR] = −2v8 + v9 + v10 (8.2g)
˙[LAC] = −v9 + vLACT (8.2h)
˙[ALA] = −v10 + vALAT (8.2i)
˙[A3] = −v2 − v3 − v5 + 2v7 + 2v8 − v13 (8.2j)
˙[N2] = −2v7 + v9 + v10 (8.2k)
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8.2.3 Kidney Metabolic Model

Figure 8.3: The figure shows the structural model for the renal carbohydrate metabolism. The kidney
model largely corresponds to the liver model, except for the glycogen conversion, which is not included for
the kidneys, and the added possibility to convert pyr! into ACA (only renal cortex, not medulla) [Löffler
et al., 2007]. Moreover, the bidirectional lactate transporter is used.

˙[GLU] = −vGLUT2 + v2 (8.3a)
˙[G6P] = −v2 + v4 (8.3b)
˙[F6P] = −v4 + v5 (8.3c)
˙[FBP] = −v5 + 2v6 (8.3d)
˙[GAP] = −2v6 + 2v7 (8.3e)
˙[PEP] = −2v7 + 2v8 (8.3f)
˙[PYR] = −2v8 + v9 + v10 − v14 (8.3g)
˙[LAC] = −v9 + vLACT (8.3h)
˙[ALA] = −v10 + vALAT (8.3i)
˙[A3] = −v2 − v5 + 2v7 + 2v8 − v13 (8.3j)
˙[N2] = −2v7 + v9 + v10 (8.3k)

83



8.2.4 Blood Cells Metabolic Model

Figure 8.4: The figure shows the structural model for glycolysis in the red blood cell. Contrary to the
previous organs presented in figures 8.1a, 8.2, 8.3, the conversion of glucose into FBP and t pep! into
pyr! is assumed irreversible. The reactions have therefore been replaced by vi and vp, respectively

˙[GLU] = vGLUT1 − vi (8.4a)
˙[FBP] = vi − 2v6 (8.4b)
˙[GAP] = 2v6 − 2v7 (8.4c)
˙[PEP] = 2v7 − 2v8 (8.4d)
˙[PYR] = 2v8 − 2v9 (8.4e)
˙[LAC] = v9 − 2vLACT (8.4f)
˙[A3] = −2vi + 2v7 + 2vp − v13 (8.4g)
˙[N2] = 2v7 − 2v9 (8.4h)
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8.2.5 Brain Metabolic Model

Figure 8.5: The figure shows the structural model for glycolysis in the neurons, as presented in figure 8.4,
and additionally accounts for the cerebral lactate uptake.

˙[GLU] = vGLUT1 − vi (8.5a)
˙[FBP] = vi − 2v6 (8.5b)
˙[GAP] = 2v6 − 2v7 (8.5c)
˙[PEP] = 2v7 − 2v8 (8.5d)
˙[PYR] = 2v8 − 2v9 − 2v14 (8.5e)
˙[LAC] = v9 − 2vLACT (8.5f)
˙[A3] = −2vi + 2v7 + 2vp − v13 (8.5g)
˙[N2] = 2v7 − v9 (8.5h)

8.2.6 Operating Principle of the Model Equations

Each of the reaction chains depends by and large on the concentration gradients of the
respective metabolites. Assuming a sinusoid input to one of the reversible equations
that describe a reaction or transport, e.g. a reversible GLUT1 results in a self limiting
subsystem. A reversible GLUT1 is not used in the model but was elected to serve
example and demonstration purposes. It was implicitly presented in table 7.11 and was
implemented in a test VI as the basis for all reaction subVI to come. It is given by equation
8.6.
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vGLUT1 = VGLUT1([GLUx]− [GLU])
KmGLUT1 + [GLUx] + [GLU] (8.6)

A sine (amplitude = 5mM , phase = 0deg, cycle = 1.4) is assumed as changing input to
equation (GLUx). Starting from 0, each time the positive half period is input over time,
the result of the equation relates to GLU, each negative half period relates back to the
input GLUx, representing forward and reverse reaction or GLUx transport into and GLU
transport out of the cell. Determined by the parameters and the sine input, GLU from the
cell is transported into the blood, which appears as a reduction in GLU from its starting
condition, given in table 7.10 of chapter 7. The negative half period of the sine inverts the
sign of the reaction constant, which leads to a reverse reaction and the change in output is
related to a change in input. In this example the GLUx concentration increases (reduced
output), while the GLU concentration decreases further, as depicted in figure 8.6.

Figure 8.6: The figure shows the output of equation 8.6 with respect to the intracellular glucose
concentration (GLU) over 10 minutes. The upper most graph shows the output with the reverse reaction
(GLUx production) set to 0 (= unidirectional), the bottom graph shows the output including the reverse
reaction with respect to GLU. The GLU reduction corresponds to a GLUx production of the same amount,
starting from 0 (sin(0) = 0). The graph in the middle displays the sine input with the positive half period
marked yellow and the negative marked purple

The differential equations presented in chapter 7.3 have been realized by making the
output of one kinetic equation the input to another for them to exactly match match
the structural models of chapter 8. It is therefore imperative to determine the sign of the
input and relate the change in output, especially since the output of one equation serves as
the input for the next. This example further illustrates the necessity to block any output
in the substrate direction (by setting the rate change to 0), for any negative input, to
prevent obscured data. Unidirectional reactions/transporter have therefore to be modeled
slightly differently from reversible reaction, requiring further logical limitations, not the
least of which is stopping the reaction, when the substrate is depleted. The details will
be presented in chapter 9.
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8.3 Organ Level

The reactions of the different cells in muscle, liver, kidney, blood cells, and brain have
to be scaled up to organ level to make use of them for evaluating the metabolism of the
whole organism. This means the rates at which the respective metabolite is released from
the cell is multiplied by the volume of the respective organ, established in chapter 7. A
schematic overview of the organ interactions derived from chapter 6 is given in figure 8.7.

Figure 8.7: The figure shows the structural model at organ level, incorporating the structural model on
the molecular level.

This can be simplified to a compartment model with the three compartments for glucose
(G), lactate(L), and alanine (A) to represent their respective concentration in the blood,
as depicted in figure 8.8. The blood is where they most likely will be measured as
parameters with potentially predictive properties on the phase and development of critical
illness, as outlined in chapters 1 and 3. The concentration of those metabolites is therefore
considered the primary output of the modeled system.

The way they have been modeled on the cellular level all of the organs themselves are
compartments. However on organ level that becomes less relevant, as their interaction
with each other and thus the blood stream, or blood plasma to be precise, becomes more
prominent and important for the scope of application.
The compartmental model exhibits a quite modular structure and is therefore further
discussed with only one single compartment as an exemplary and representative in mind.
One compartment, as well as all of them can be mathematically described by balance
equations that comprise the in- and outflow of the compartment, as depicted in figure 8.9.

These balance equations are linear ODE and become a system of linear ODE when all
organs shall be described. The generic compartment M shall therefore illustrate the
general way to a mathematical solution for the system on organ level. Contrary to
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Figure 8.8: The figure shows the developed compartmental model at organ level with skeletal muscles,
liver, kidney, blood cells, and brain as the main focus of involved organs. Each of them is assigned a role
as either releasing a certain metabolite into the blood stream (output), absorbing it (uptake) or both.
This list could almost at will be completed with other organs and potentially improve the model. All
compartments are connected by the skeletal muscles.

Figure 8.9: The figure shows a generalized simple compartment model M with the metabolite concentration
[M].

the cellular level, where molecular conversions were described in dependency of molecule
concentrations (mmol/l), it is more feasible to rely on mass related balance equations
for the organ level. The reason is that molecule concentrations tend to change over
the course of a chemical reaction and masses before and after the reaction do not. An
example of changing molecule count during glycolysis is the conversion of glucose-1,6-
biphosphate into two molecules of glyceraldehyde-3-phosphate. This problem can be
addressed by including extra factors/exponents in the Michaelis-Menten equations, as
seen in the respective equation of table 7.24.
For M is assumed that a particular mass of a particular metabolite M is dissolved in the
volume of the compartment, which is V0 = 5l = 50dl = constant for the whole blood
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volume of the human body, as outlined in chapter 7. The mass inflow of M equals the
organ output of the metabolite M and can therefore be described by the product of organ
perfusion p and metabolite amount c of M in that blood, which yields a rate a. The
perfusion rate is organ specific and has been established in chapter 7. On the other hand,
the organ uptake equals the mass outflow of M and is the product of organ perfusion rate
p and time dependent metabolite concentration [M] divided by the compartment volume
V0, as seen in equations 8.7a [Blomhøj et al., 2014].

[M]inflow = p dl

min
· cmg

dl
·∆tmin = a mg

min
·∆tmin (8.7a)

[M]outflow = p dl

min
· [M]

V0

mg

dl
·∆tmin (8.7b)

The difference equation describes the difference between in- and outflow of the
compartment over a time step ∆t and yields the linear ODE for the total differential
of ∆t→ 0, as seen in equations 8.8a [Blomhøj et al., 2014].

[M](t + ∆t)−[M]
∆t = a mg

min
− p[M]

V0

mg

min
(8.8a)

= a mg
min

− b[M] mg
min

(8.8b)

With b being the quotient of perfusion and blood volume, the rate a being known from the
scaled cell output to organ level known from chapter 6, and the established blood volume
of 5l all parameters of this linear ODE are determined and the equation can be solved by
separation of variables and the ansatz y = A · eλx, which yields the general solution given
in equation 8.9.

[M] = dmg + Cmg · e−bt (8.9)

Which can be completely solved for a particular solution by applying an initial condition
e.g. the normal BGL of M0 = 90mg/ml from table 7.10 to determine the parameter C.
Basically, at this point the bottom-up and top-down approach of modeling could meet
and complement each other by using independent experimental data for both, model
validation and parameters determination. It also becomes apparent that this model
basically possesses three hierarchical layers. The first being a single differential equation,
describing one reaction based on changing input, the second being the system of differential
equations that describe the cellular metabolism by how they are connected to one another,
and the third being the interactions of the organs, as described by the compartment
model.
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Chapter 9

Computer Model of the Cori Cycle

This chapter presents the programed model and documents the program structure,
development and features. After a brief introduction to the software used for
programming, the user interface is presented and major code fragments are discussed to
illustrate the working principle of the program in general and the processing of the
calculations in particular.

9.1 Software

The model was implemented using the data stream oriented programming platform and
development environment of LabVIEW (National Instruments). Although LabVIEW is
not a cryptic programming language like C or Java, but a graphical programming concept,
its source code is written in G and translated to machine code prior to execution, making
it a compiled language. Instead of text, icons are used and variables are represented
as wires, with the wire color indicating the data type. The information flow is organized
from left to right and visualized as current in an electric circuit to build applications in the
block diagram. Those information are output to the front panel, which contains controls
and indicators that manipulate the data stream and show the results to the user [Greiner,
2012]. Front panel and block diagram of a LabVIEW program (VI) are presented next to
each other in figure 9.1 as an example.

9.2 State Machine

A state machine is a technique or a design pattern in software architecture for to represent
the dynamic behavior of a system [Eriksson et al., 2003], [Arlow and Neustadt, 2002]. State
machines are used to describe the event history of a single responsive object over its life
time and the rules of how it can change between the instances of a finite number of states.
A state describes the situation where an object meets a specified condition, is engaged
in some activity or waits for an event. An event is the trigger for an object to respond
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Figure 9.1: The figure shows the front panel (left) and block diagram (right) of the LabVIEW demo VI
Graph Temperature.vi

to, e.g. a predefined time is over or a specific condition has been met. The transition
describes the change from one state to another as the response to a prior event [Eriksson
et al., 2003], [Arlow and Neustadt, 2002].
A state machine was designed to handle user interface, calculations and model output
as different states, to divide the individual tasks of the program into smaller, more
manageable parts. The design is illustrated by figure 9.2. Starting point is the waiting
for input state, which presents the user with the graphical interface and input options.

Figure 9.2: The figure shows the state diagram to describe the state machine created for the model, by
defining the number of states and the transitions between them.
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9.2.1 User Interface

The user interface was constructed in an attempt to capture and address the basic ideas
of system usability and user friendliness, which comprise among others [Nielsen, 1994]:

• natural and simple system-user interaction

• low memory load on the user side combined with meaningful and consistent
designations

• feedback on user input, as well as comprehensive error messages

• opportunity to abort and exit system functionalities

• system documentation

Figure 9.3 presents the developed user interface for the state machine.

Figure 9.3: The figure shows the user interface generated by the front panel.

On the left hand side there are two vertical pointer slides named Set Current Blood Glucose
Level (A) and Set Current Blood Lactate Level, respectively. These two controls are used
to define the starting condition (initial value) for the calculations. Both have a set range
of accepted input values, as indicated by the scale. The range can easily be modified in the
front panel if necessary, however for the current version of the program and its development
status it was elected to limit the input values as indicated by the respective scales. This
also helps to exclude errors caused by non-realistic input e.g. negative values. Apart
from the different scales, both vertical pointer slides are identical and their description is
therefore focused to the glucose related and is also valid for the other one. Next to the slide
there is a numeric control (A1) that reads the value set by the Pointer Slide Control and
can be used to type in the initial value by using the keyboard. Right next to that there is
a numeric indicator, which displays the current value and locks for confirmed input values,
providing feedback. Additionally to the initial glucose and lactate values, some internal
values, required for the calculations can be varied in three stages by using the horizontal
pointer slide Stress Level. This control is set to the left most position, which corresponds
to the minimal rate constant for ATPase krest = 0.28 1

min
and an insulin correction factor

α = 0.3 that were introduced in chapter 7.3. The next two steps change alpha to α = 0.6
and α = 1, respectively and iterate through the remaining values of kmed = 3.2 1

min
and
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kmed = 28 1
min

. This option was included to switch the simulation from normal to two
different states of increased metabolism to mimic a stress situation based on the available
data. Further parameters could be included. An important part is the selection of the
dimension for the input values of glucose and lactate, to give them meaning and relation to
the output. Although any input value directly related to the output is internally converted
to mg/dl by the program, the user is given the option to select the equally valid unit of
mmol/l (= mM) as input dimension. This is achieved by the vertical toggle switch SET
UNITS (C) that is connected to two light-emitting diode (LED) flashing up according
to the position of the switch and indicate the selected dimension for the initial values.
The input has to be confirmed by pressing the push button CONFIRM START VALUES
(D) that will flash up as well for confirmation that the desired input has been made and
a new state can be initialized. The dial Loop Enum determines the simulation time in
minutes and is also limited by it input according to the scale. The simulation time can
also be entered using the keyboard and the numeric control that indicates the selected
simulation time (E1), identical to e.g. the glucose input (A1). To display to the user, what
is expected of him the string indicator (F) displays the state of the program. For the state
calculating the LED CALCULATING (G) will flash up to indicate the computing process
to the use and turn off again once all calculations are done.
By pressing the CONFIRM START VALUES button all user input is locked and the state
waiting for input is left to enter the state waiting for button. In case e.g. there has not yet
been an input on the simulation time, the user can return to the state waiting for input by
pressing the CANCEL Button (I) and modify the inputs again. Pressing the OK Button
(H) after (re)confirming the initial values will cause the program to switch to the state
calculating and include the user input to the respective equations. To support feedback
of the calculation process besides the LED, the numeric indicator Loop Indicator (K) will
display the elapsed loop iterations.
The simulation time can be modified by a factor hundred using the vertical toggle switch
integral steps (L). This switch essentially multiplies the simulation time by 100 and scales
the yielded results back to the simulation time that was input by the Loop Enum dial. The
result is an increased precision in calculating the various metabolite concentrations (by
a factor 100) so that one loop iteration represents 0.6s, rather then one minute (= 60s).
The switch thus effectively increases the step size when integrating of the various ODE
in the calculation process from one step to 100 and adjusts the output value. This will
be presented in more detail in section 9.3. Implementing this switch attempts to address
the error resulting from the numerical integration, which became noticeable and more
prominent with rapid rate changes and low concentrations over longer simulation times.
It was made optional to weigh the required additional computing performance against the
possibly not required detailed calculation and thus save time to more quickly respond to
the user input.
Additionally, the interface includes waveform graphs indicating the concentration of the
main metabolites (glucose, lactate, and alanine), as changing quantities in the blood
stream over time.
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9.2.2 Waiting for Input

The states waiting for input, waiting for button, calculating, and shut down were realized
by creating state variables of a customized, StrictTypeDef enum, which allocates the
different states to a case distinction as the control state. This was done to facilitate the
long term maintenance and expansion of the program by making it possible, to update all
related constants and variables after a program change, e.g. after adding an extra state.
Waiting for input generates buttons and stores the values generated by the user input to
different variables for further use. The block diagram of the waiting for input state is
presented in figure 9.4.

The program is continuously running using a while loop and an enum initializes a shift
register, which will store the value for the state from the previous loop iteration and thus
keep the state until it is changed by user input. By entering the while loop the status of the
program is output by the indicator (status) for the enum (A). At the same time the exit
condition from the while-loop is set to the state shut down, which ends the program (B).
Going further inward the next frame is a Case Structure coordinated by the enum (C).
The frame inside the case structure is a Flat Sequence, which forces LabVIEW to execute
the left frame before the right one. In the left part (D) all functional global variables are
set to default to avoid obscured data caused by previous calculations.
Functional global variables are a LabVIEW design pattern to e.g. prevent racing
conditions. An example of this pattern is presented in figure 9.11. The while-loop in
the right frame of the flat sequence (E) sets the interface buttons that are accessible in
the waiting for input state. In the top left corner, the stress level can be adjusted by the
slide control. The enum (stress) is typecast on the control Stress Level, before a subVI is
accessed, that scales the range of the control to an enum value, as depicted in figure 9.5.
The adjacent indicators serve only the purpose to check the functionality of the subVI.
This is generally the case with all indicators that are present in the various block diagrams
but do not show up on the front panel. The enum integral steps is typecast as well and
scales the number of loop iterations, generated by Loop Enum, according to the position
of the toggle switch Integral Steps (F). Those values are then written to the functional
global variables LoopCalc and IntCalc, respectively. The while-loop can be left by pressing
either the CONFIRM START VALUES or SHUT DOWN button, which is represented
by a local variable (G). When leaving the loop the user input is saved to local variable of
the controls Set Current Blood Glucose/Lactate Level (I). Moreover, the unit of the user
input, determined by the position of the toggle switch is stored in the enum unit. When
the toggle switch is flipped the scales of the input control for glucose and lactate change
value between mmol/l and mg/dl (H). After pressing the CONFIRM START VALUES,
the LED of the corresponding unit will remain flashed, even though the switch itself can
still be flipped.
Leaving the while-loop will cause the selector to permit the progression to the next state
in the case structure (waiting for button), while the buttons that were used are being reset
to default (J) and (K).
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Figure 9.5: The figure shows the subVI StressLevel (SubVI).vi as an example for an enum controlling a
case structure to define different values in dependence of certain conditions.

9.2.3 Waiting for Button

Figure 9.6 depicts the next state after successfully leaving the waiting for input state in
the forward direction. This state serves as a transition and is intended for the user to

Figure 9.6: The figure shows the state waiting for button.

reflect upon the input and giving the opportunity to change the input by pressing the
Cancel button and return to waiting for input. Moreover, the program can be terminated
by pressing the STOP button at this point. In case the use wishes to receive the simulation
results he may press the OK button. The position of each button determines the next state
of the state machine and is selected by evaluating two enums of the state control. The
sequence of checking the position of all three button implies a hierarchy with the STOP
button on to to overrule all others, as would be expected from an off switch. The first
criterion to proceed, however, is the number of calculations, the user wishes performed
(Loop Enum). The input there has to be larger than two to receive a simulation over
one minute, as the first loop iteration (0) only sets the initial values. This implies that
an input of e.g. 11 minutes would technically only simulate over 10 minutes, as one loop
iteration is lost for the setup of the initial values. The CALCULATING LED is turned off
and in case the OK button was pressed instead of any other, the next state, calculating
can be entered. In case the Cancel button is pressed, the user returns to the waiting for
input state and in case the STOP button is pressed, the program enters the shut down
state.
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9.2.4 Shut Down

The shut down state, as depicted in figure 9.7 rests all buttons and LED back to default
by writing a false value to their local variables..

Figure 9.7: The figure shows the state shut down.

9.2.5 Calculating

The program is generally divided into two parts. The state machine design pattern and a
producer/consumer design pattern, which is illustrated by figure 9.8. As state machines
are a highly effective way of solving sequential problems, they do not excel at parallel
processing, which is why the state calculating was implemented using he more suitable
producer/consumer pattern to coordinate the multiple interdependent calculations
reactions required for the simulation of the Cori cycle. The producer/consumer setup
synchronizes multiple parallel operating loops by ensuring that a consumer loop is only
executed once the producer loop sends new data. It is otherwise on hold. This enables
a coordination of the various calculations from the ODE that is to be expected. This
limited data supply is is handled by LabVIEWs queue functions, which operates on a first
come, first served basis.

Figure 9.8: The figure shows the producer/consumer design pattern suggested for LabVIEW [Instruments,
2012]

98



Calculating is the most complex state and contains the VI that solve equations, as well as
their organization. It was focused on using the graphical possibilities LabVIEW provides
to keep the VI structure as close to the structural models as possible, which is why the
case structure of the calculating state mimics the appearance of the compartment model
of figure 8.8 with its in- and outflow characteristics, as depicted in figure 9.9.

The user input is called via local variable and independent of the selected unit converted
to mg/dl to have a basis for the necessary calculations that follow. The initial alanine
concentration is stored in a global variable and converted to mg/dl as well (A). The subVI
handling the conversion is depicted in figure 9.10.

For the first loop iteration these values are input into the for-loop as initial values for
the calculations and queued by LabVIEWs enqueue function (B). To avoid further wires
the values from the while-loop are passed via local variablesto the subVI CL, where they
will be input into the differential equations, as described in section 9.3 (C). The output
of the equations is handled with functional global variables, as glucose is an input and
it was passed on the idea of adding extra wires for the reverse reactions and feedback to
keep the VI better structured. Figure 9.11 depicts the block diagram of calc blood as
a representative for all functional global variables, which are unique to every organ cell:
blood cells (blood), neurons (brain), myocytes (muscle), hepatocytes (liver), and cells of
the renal cortex (kidney) (D).

The output values (mmol/l) are scaled to organ level by multiplying them with the
respective organ volume in liter (E). They are subsequently converted to mg/dl (F) and
scaled with the perfusion of the respective organ in dl (G). For organs that consume and
produce a particular metabolite the output is split in positive and negative values by a
case structure and input into an compound array to be summed (H). This compound
array represents the respective metabolite compartment and emphasizes the structure
of the for-loop, which is mimicking the the compartment model structure presented in
figures 8.8 and 8.9. Consequently the summation of the in- and outflow values (negative
inflow represents outflow) represents the difference equation 8.8a for ∆t = 1min, as one
loop iteration represents one minute. Therefore the rate change can be read directly
by indicators (Ka, Kb, Kc). The change in concentrations requires the point by point
integration of the array values.
As the default direction for the chemical reactions in this model is the direction of
glycolysis, lactate and alanine are generally viewed as output and glucose generally as
input. Therefore the values of lactate and alanine can be directly dequeued and input
into their respective compartment (I), (J). The in- and outflow values can be directly red
by indicators and and therefore the contribution of each organ to the respective metabolite
in the blood, as well as its uptake (K1), (K2). The values input into the main indicators
are called by local variables, again to avoid unnecessary wires and matched to the user
defined input units by the subVI presented in figure 9.12. The results are displayed on
the front panel (M).

When all loop iterations are completed, the calculating state is left for the waiting for
input state, where the LED that was activated upon entering the state calculating is
turned off indicating the finished calculations to the user (N).
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Figure 9.10: The figure shows the subVI, which defines the user input as mg/dl

Figure 9.11: The figure shows the subVI CalcBlood.vi, which contains the feedback values for the ODE VI
presented in section 9.3

Figure 9.12: The figure shows the subVI, which matches the units of the in- and output by converting
them if necessary

9.3 Handling the Model Equations

The differential equations are each handled separately in their respective subVI. Figure
9.13 depicts the organization of the subVI for the cellular level.
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Figure 9.13: The figure shows the subVI CL (SubVI).vi from the calculating state

Figures 9.14 to 9.18 depict the subVI structures of the respective cells, which is close to
the respective structural models presented in chapter 8. Every subVI in those figures is
handling the respective differential equation. The typical LabVIEW characteristic that
the wires are the variables becomes very clear by comparing figures to the respective
structural.

Figure 9.14: The figure shows the subVI for the blood cells
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Figure 9.15: The figure shows the subVI for the neurons

Figure 9.16: The figure shows the subVI for the myocytes
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Figure 9.17: The figure shows the subVI for the hepatocytes

Figure 9.18: The figure shows the subVI for the cells of the renal cortex
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The simple diagram of figure 9.19 schematically illustrates how the program handles
the differential equations, which directly relates to the forward and backward feedback
regulations of reactions that characterize the intra cellular carbohydrate metabolism
and have been presented in the structural models of the respective organs in chapter
8 [Mulukutla et al., 2014].

Figure 9.19: The figure shows the conversion of metabolite B from A and further to C in the respective
VI. The forward reaction is handled by LabView’s queue operations and the reverse reaction is an additive
modification to the input inside the loop using a Shift Register. The feedback reads and writes values from
and to functional global variables that are updated for every loop iteration and initialized with 0.

Figures 9.20, 9.21, and 9.22 depict the irreversible GLUT1, the moderately complex
reaction v6, and lumped reaction v7 from chapter 7.3 and illustrate the increasing
complexity of the reactions by the increased programming effort.

As the basis for the other VI, the GLUT1 is described as a representative for all reactions
and the expansions are mentioned for the rest.
Number of loop iterations and correction factor are handled by the subVI LoopCalc and
IntCalc, respectively, as depicted in figures 9.23 and 9.24 (A).

IntCalc determines the integral steps and correction factor by which each value is divided
in order to calculate for e.g. 10 minutes, when a step size of .6s is requested by the
user, which corresponds to 1000 loop iterations. Usually one loop iteration represents one
minute. Therefore 1000 loop iterations divided by 100 that is the step size reduction from
60s to 0.6s, equals 10 minutes. The step size definition is presented in figure 9.25 (A1).

The input to the ODE is called from local and global variables (B) and sent into a formula
node (C). The result from the calculation is compared to the sign of the input value
for the substrate metabolite that is to be converted into the product metabolite (D).
A positive sign means input in the reaction in the direction of glycolysis. A negative
sign corresponds to demand and therefore gluconeogenesis direction. At equilibrium the
change in rate, which in fact is exactly what is being calculated in the formula node, is
equal to 0 and neither forward or reverse reaction occur. In the unidirectional reactions
and transport processes any reverse reaction is ignored and therefore set to 0 (D). However,
they are calculated separately for reversible reactions, which is the reason for the increased
complexity of e.g. v6 in figure 9.21. After the change in rate corresponding to the change
in input is calculated it is integrated by the LabVIEWs point by point integration function
(E). The output is stored in a shift register for reference in the next loop iteration. On the
other hand it is added to the initial value of the product to yield the total concentration of
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Figure 9.23: The figure shows the subVI LoopCalc (SubVI).vi

Figure 9.24: The figure shows the subVI IntCalc (SubVI).vi

Figure 9.25: The figure shows the VI StepSize.vi

a metabolite inside a cell. To avoid double count from the integration, the concentration
value from the previous loop iteration is subtracted (F). In case the small integration
steps were chosen, the result is now scaled by dividing with 100 and then enqueued into
the uniquely named queue function (H) to serve as input for the following reaction, as
depicted in figures 9.14 to 9.18.
In addition to the processes mentioned for figure 9.20, the VI presented in figure 9.21
calculates the reverse reaction (A). This influences the output of the product in glycolysis
direction in case substrate is produced upon negative input. Therefore the substrate
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output is subtracted from the product output (B) and the substrate output matched
by a logic query regarding positive or negative input values (B). Both outputs are then
enqueued into the queue function and saved to a functional global variable that will be
used to provide an input value for the next adjacent reaction (D) (input from previous
reaction). At the same time the value of the substrate input is adjusted to the potentially
produced output (E).
Additional modifications of the VI are necessary for reactions that consume/produce ATP
or NADH + H+. As presented in figure 9.22, the values for those cosubstrates are being
called from functional global variables (A) that directly influence the amount of ADP
or NAD+ by the dependency described in equation 7.4a and implemented in the subVI
presented in figure 9.26 (B).

Figure 9.26: The figure shows the A2_N1_dependency(SubVI).vi, which esures the boundary conditions
for the total amount of nucleotides and redox coenzymes in the cell

Moreover, the produced/consumed amount of nucleotides and redox coenzymes is
determined by the concentration of the produced substrate and it has therefore to
be determined which substrate is produced (forward/reverse reaction) to update the
respective functional global variable (C).
Special boundary conditions like not consuming glycogen, when there is none available
in the cell or producing it when the storage capacities are already reached have been
implemented as well in the respective VI and work similar to those shown for the presented
representatives GLUT1, v6, and v7.

9.3.1 Output Plots

Example plots for the reaction VI are given in figures 9.27 to 9.46. They present the
test data obtained from running equation v6 of table 7.24 in a test VI to verify and test
the function for plausible output before encapsulating it in the VI presented in figure
9.21 and thus in the main program. They are shown as a representative example of
all reaction VI, as they were built from the same program basis. Each figure depicts a
sine input with an amplitude of 5 and a cycle of 1.4 over the duration of 10 min as the
top graph. This input is then varied in phase over the group (0, 90, 180, and 270 deg)
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and offset over the image series (0, 2, 6, -2, and -6 mM). Bottom and middle graph of
each figure depict the output of reverse and forward reaction, respectively. The result
is a simulation of all possible inputs to the equation e.g positive/negative. The initial
concentration of the output metabolite of the reverse reaction is set equal to the input
metabolite concentration and the initial concentration of the metabolite synthesized in the
forward reaction is constantly fixed to 5mM . Therefore the effect of the varied offset can
be shown in relation to the initial conditions of both metabolites. As a result, situations
of complete forward or reverse reactions can be observed in figures 9.35 to 9.38 and 9.43
to 9.46, respectively. A side effect the sine input the constant concentration of the sum
of the converted molecules, which can be expressed by adding the two output graphs of
the reverse and forward reaction. This has been used to develop the output logic of the
reverse reaction, as presented in figure 9.21, and verify the values of both outputs.

Figure 9.27: The figure shows the output of v6 upon the input sine
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Figure 9.28: The figure shows the output of v6 upon the input sine
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Figure 9.29: The figure shows the output of v6 upon the input sine
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Figure 9.30: The figure shows the output of v6 upon the input sine
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Figure 9.31: The figure shows the output of v6 upon the input sine
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Figure 9.32: The figure shows the output of v6 upon the input sine
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Figure 9.33: The figure shows the output of v6 upon the input sine
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Figure 9.34: The figure shows the output of v6 upon the input sine
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Figure 9.35: The figure shows the output of v6 upon the input sine
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Figure 9.36: The figure shows the output of v6 upon the input sine
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Figure 9.37: The figure shows the output of v6 upon the input sine
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Figure 9.38: The figure shows the output of v6 upon the input sine

122



Figure 9.39: The figure shows the output of v6 upon the input sine
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Figure 9.40: The figure shows the output of v6 upon the input sine
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Figure 9.41: The figure shows the output of v6 upon the input sine
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Figure 9.42: The figure shows the output of v6 upon the input sine
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Figure 9.43: The figure shows the output of v6 upon the input sine
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Figure 9.44: The figure shows the output of v6 upon the input sine
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Figure 9.45: The figure shows the output of v6 upon the input sine
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Figure 9.46: The figure shows the output of v6 upon the input sine
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Part IV

Synthesis
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Chapter 10

Discussion

10.1 Applicability of the Model

This project aimed at developing a computerized model to simulate the Cori cycle in ICU
patients suffering from critical illness. The more distant perspective of that development
is a decision support system that would support physicians in their prediction for the
progression of critical illness in a patient e.g. sepsis. It was recently affirmed that
the increased use of decision support systems in clinical environments improves the
performance of physicians. However, it remains debatable on whether costs could be
reduced and patient outcome improved at the same time [?]. However, decision support
does not imply to replace the physician but improving the basis upon which situations are
being and decisions are being made. Neither is it supposed do induce a kind of dependency
of the physician on the system. An advantage for the implementation of the presented
model as a decision support system is its intuitive and user friendly interface that might
give options but really requires only little input to work. The thus far limited options
could easily be expanded upon, as the model is quite modular in its entire structure. A
simple modification could be to include more parameters in the Stress Level pointer slide
to modify the normal metabolism.

10.2 Validation of the Model

The purpose of this model was fairly specific and therefore limited to begin with, which
is reflected e.g. by parameter definitions such as the increased lactate-pyruvate ratio at
steady state, which is increased to 16. There is also the muscle mass estimated on the lower
boundary of possible values. However, the the general basis of the model was the normal
healthy metabolism that was only intended to be tweaked during the validation process.
The idea was to use controls to manipulate the flow into and out of the compartment,
according to the data from chapter 6 to fit the model observations. Once satisfied the
offset values could all be hardwired into the program. Over all, program changes are
achieved with relative little effort due to the modular structure throughout the program
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ensuring flexibility. The program could also very well be adapted to a similar purpose by
keeping the state machine and switching program fragments in the calculation state.

10.3 Strengths and Weaknesses of the Model

The greatest weakness of the model is its incomplete implementation as a computer
program. Therefore it is impossible to validate it, even though there has been plenty
of suitable data compiled in chapter 6 for validation. The model therefore fails at the
ultimate criterion for a model - its predictive value, which is practically inexistent at this
point of development. Admittedly the model is fully programmed and computerized, but
does run. Moreover, its fair level of complexity, compared to a more simple compartment
model with simpler equations and a more direct approach to use e.g. measured data
from the level the model is supposed to operate might be problematic. However, even
though following LabVIEW recommendations in terms of design pattern and testing code
fragments before implementation, the program could not be completed in time before the
deadline of this project. Since LabVIEW itself does not issue a clear error code it is
assumed that most likely a programming error occurred that prevents the program from
properly executing such as not correctly wiring components together or using incorrect
LabVIEW functions. The most likely reason is a failed synchronization of the multiple
loops in the cellular level.
Apart from that a lot of simplifications were made for the model. Intracellular inhibitory
regulation by metabolites other then those already present were ignored. This includes
the strong effect of AMP as a sign for acute energy demand. Another example is the
feedback effect of FBP on ldhase! (ldhase!) which were partly ignored for programming
convenience, partly considering the aimed application. However these effects can be added
easily when deemed necessary. For the application in critically ill it was assumed to be of
lesser importance to as accurately as possible describe every conceivable detailed aspect
of intracellular the metabolism and favor a more rough approach in this regard.
One could argue, that the available mass of input parameters based on the measurements
of various species and isoenzymes with no coherency is not much better than simply
guessing those parameters. Especially when, as mentioned in chapter 2, isoenzymes may
have quite detrimental properties under only slight varying conditions. However, it has to
be said that those parameters listed on databases like BRENDA are more or less the only
available data source there is and it is doubtful that measured blood values for metabolite
concentrations would actually exhibit less of a spread in their measurement results.
During the modeling process it was noticed that some of the model equations provided
by the referenced sources could not be applied for various reasons one being e.g. the
incompatibility of unit parameters with the equation. Therefore a great deal of rare was
put into the creation of the model equation bey extensively cross-referencing equation
multiple articles and own efforts that consider stoichiometry, reaction mechanism, and
suitable degree of complexity for the scope of application to provide the best possible
basis for the subsequent development steps. A big advantage of the developed model is
therefore its deep grounding in reality and solid base of development by relying heavily
on measured data and background informations over simplifications. There are a lot of
enzyme mechanisms documented and evaluated and the general mathematical description
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Michaelis-Menten kinetic is intuitive. By looking at single reaction chains of the very
complex structure, that is the human body, let alone a diseased human body, parameters
to tweak the model with are fond in abundance and potentially suggest a high degree of
accuracy as well as flexibility in its predictions. Moreover, as far as could be told, a model
of this complexity has not been attempted to build before. Most metabolic models tend
to focus on single cell organisms e.g. yeast or one organ e.g. liver, ultimately making this
quite unique.
Theoretically, the model should be able to perform as desired, especially with the option of
regulating certain parameters stepwise through a realistic range to resemblance of reality.
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Chapter 11

Conclusion

The capabilities and and acceptance of decision support systems grows regardless of
implementation problems at the workplace [?]. Therefor it is believed that the developed
model will reach its full potential once it has been a little further developed. It certainly
needs to be validated first to make any claims. The model can deliver relevant data be
an effective support in an ICU, as it is user friendly, comprehensible, and easy to operate
within its limitations for critically ill patients.
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