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Reading guide
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Abstrakt

Reducering af dimensionen af signal egenskaber (RDSE) er et essentielt
trin i mønster genkendelse. Kliniske studier lider ofte af et højt antal af
signal egenskaber og et lavt antal observationer, hvor RDSE ofte er nød-
vendigt for at fjerne redundante signal egenskaber og for at undgå over-
tilpasning af klassifikatøren. Litteratur, som omhandler RDSE, fokuser
primært på RDSE’s evne til at forbedre klassificeringen. RDSE’s evne til
at forbedre robusthed inden for mønstergenkendelse bliver derimod ofte
overset i litteraturen. Dette er til trods for at litteraturen rapporterer
stor variation i biologiske signaler optaget over forskellige dage/sessioner.
Formålet med dette projekt var at undersøge hvilke RDSE-metoder,
der medvirker til den mest robuste klassificering over flere dage. Dette
blev undersøgt ved at analysere otte RDSE-metoder på to forskellige
datasæt: 1) Elektromyografi (EMG)-data optaget over 3 dage, hvor otte
forsøgspersoner udførte syv forskellige håndbevægelser, 2) Elektroence-
falografi (EEG)-data optaget over 7 dage, hvor syv forsøgspersoner ud-
førte to forskellige dorsalflektioner. Efter filtrering og segmentering af
datasættene, blev henholdsvis 90 og 72 signal egenskaber udtrukket
af EMG og EEG-datasættet. Dimension af signal egenskaberne blev
herefter reduceret med følgende otte RDSE-metoder, som blev udvalgt
på baggrund af en litteratur gennemgang:

• Principal component analysis (PCA)
• Fisher discriminant analysis (FDA)
• Kernel principal component analysis (KPCA)
• Nonparametric discriminant analysis (NDA)
• Independent component analysis (ICA)
• Nonparametric weighted feature extraction (NWFE)
• Neighbourhood components analysis (NCA)
• Maximally collapsing metric learning (MCML)

RDSE-metoder blev evalueret med klassifikatørerne linear discriminant
analysis (LDA) og Support vector machine (SVM). Robustheden af
RDSE-metoderne blev evalueret gennem to senarier, ét senarie hvor
RDSE-projektionen og klassifikatørerne blev trænet hver dag, og ét
senarie hvor RDSE-projektionen og klassifikatørerne kun blev trænet den
første dag.
Resultaterne for EMG, viste at NCA havde en høj klassifiseringsnø-
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jagtighed og var den mest robuste RDSE-metode, for begge senarier af
træning. Resultaterne for EMG, viste at KPCA havde den højest klas-
sifiseringsnøjagtighed og var blandt de mest robuste RDSE-metoder, for
begge senarier af træning.
Det kan gennem dette projekt konkluderes, at RDSE-metoder kan
forbedre robustheden. Ved implementering af RDSE-metoder i et klas-
sifiseringsystem, anbefales det, at man tester forskellige RDSE-metoder,
for at finde den metode der passer det givne signal bedst.
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Investigation of feature reduction methods for
improving EMG and EEG pattern recognition

robustness
Author: Astrid Clausen Nørgaard

A�������
Robustness of pattern recognition receives little attention in literature dealing with feature reduction, despite that
current literature reports inconsistency and day-to-day / session-to-session variation in biomedical signals. This article
aims to investigate the robustness of eight feature reduction methods for data recorded over multiple days. The feature
reduction methods were tested on two dataset: 1) Electromyography (EMG)-data recorded during three days, where
eight subjects performed seven di�erent hand movements and 2) Electroencephalography (EEG)-data recorded during
seven days, where seven subjects performed two di�erent dorsi�exions. The results show that features reduction has a
great impact on the performance and robustness of EMG and EEG classi�cation. For EMG, Nonparametric discriminant
analysis (NDA) showed high classi�cation accuracies and was the most robust feature reduction method. For EEG,
Kernel principal component analysis (KPCA) showed the highest classi�cation accuracies and was among the most
robust feature reduction methods. In conclusion, feature reduction must be included, when designing a classi�cation
system that is robust over time, but it is recommended to test the di�erent methods for feature reduction, to �nd the
method that �ts the given data the best.

Keywords: Feature reduction · Dimension reduction · Robustness · EEG · EMG · LDA ·
SVM · Pattern recognition

1 I�����������
Feature reduction is an essential step in biomedical pat-
tern recognition [19, 17]. Clinical studies are often ham-
pered by a large number of features and low number
of observations, also known as the curse of dimensional-
ity. Therefore reduction of features is often necessary
to remove redundant features and to avoid over�tting.
Furthermore it has been shown that feature reduction
can improve the classi�cation accuracy, when comparing
with no feature reduction [19].
Some of the most commonly used feature reduction
methods for biomedical signals includes Principal Com-
ponent Analysis (PCA) and Fishers Discriminant Analy-
sis (FDA). These methods are widely tested in the litera-
ture, and are often used as a benchmark when testing a
new method for feature reduction [24, 18, 7]. Current lit-
erature dealing with feature reduction mainly focuses on
feature reduction’s ability to improve the classi�cation
accuracy [24]. However, when dealing with EMG classi�-
cation, the following three properties has been suggested
to ensure a high quality feature space [2, 22, 5, 4, 28, 16]:

1. Maximum class separability: A high quality feature
space should have maximum class separability or
minimum overlap, to ensures high classi�cation
accuracy.

2. Robustness: A high quality feature space should be
able to adapt time-varying changes.

3. Complexity: The computational complexity of the
feature space should be kept low.

Maximum class separability and complexity are well stud-
ied in current literature [24, 3, 29]. However, robustness
receives little attention in literature dealing with feature
reduction. This is despite that current literature reports
inconsistency and day-to-day / session-to-session vari-
ation in biological signals [27, 1]. An investigation of
how well feature reduction methods can handle these
inconsistency, and make the classi�cation more robust is
therefore needed [1].

1.1 Related Work

Literature dealing with EMG-classi�cation is often bro-
ken down in the three signal processing components:
feature extraction, dimensionality reduction and classi�-
cation. Studies by Kaufmann et al. [12] and Phinyomark
et al. [23] have investigated robustness for classi�er and
feature extraction respectively.
Kaufmann et al. recorded EMG data during 21 days. Five
di�erent classi�ers (k-nearest-neighbor, linear discrimi-
nant analysis, decision trees, arti�cial neural networks
and support vector machines) were compared when clas-
sifying ten di�erent hand movements. The results show
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that the classi�cation accuracies gradually decrease dur-
ing the 21 days, if the classi�er was not retrained with
current data. However, LDA only dropped 3.6 % during
the 21 days and was found to be the most robust classi�er
[12].
Phinyomark et al. [23] used the same EMG data as Kauf-
mann et al. to investigate the robustness of 50 time-
domain and frequency-domain features. Sample entropy
was the most robust feature and showed a classi�cation
accuracy at 93.37 % when the classi�er (LDA) was not
retrained with current data. This was only 2.45 % lower
compared to when the classi�er was retrained [23].
Studies dealing with dimensionality reduction and ro-
bustness, are not investigated in any current literature.

1.2 Aim

The aim of this study is to investigate which of eight
feature reduction method that produces the most robust
performance. This will be studied though the following
four objectives:

1. Investigate robustness of eight feature reduction
methods across multiple days, when the classi�er
and feature projection are retrained.

2. Investigate robustness of eight feature reduction
methods across multiple days, when the classi�er
and feature projection are not retrained.

3. Investigate the general performance and the robust-
ness eight feature reduction methods compared to
the original feature space.

4. Investigate the number of features needed for the
feature reduction methods to show the highest per-
formance.

The aim will be investigated by use of two datasets:

• EMG-data from three di�erent days, where eight
subjects performed seven di�erent hand move-
ments.

• EEG-data from seven di�erent days, where seven
subjects performed two di�erent dorsi�exions.

2 M������
2.1 EMG experiment

The experiment was performed over three separate days
with two and four days in between.

Subjects
The EMG data were collected from eight healthy
volunteers (three women and �ve men) with mean age
of 25 ± 1 year. All subjects were right handed and none
of the subjects had any known sensory-motor de�cits.
All subjects gave their written informed consent to
participate in the study.

Recording
The EMG signals were recorded with an analog EMG
ampli�er (AnEMG12, OT Bioelettronica, Italy) at a
frequency of 2 kHz. The signals were digitalized using
a 16-bit ADC and recorded by the software, Mr. Kick
(Knud Larsen, SMI, Aalborg University).

Experimental procedure
After preparation with electrode gel, one pair of
Ag/AgCl surface electrodes (Ambu Neuroline 720) was
placed on the following �ve positions:

1. The pronator teres muscle
2. The �exor digitorum super�cialis muscle and �exor

carpi radialis muscle
3. The �exor carpi ulnaris muscle
4. The extensor digitorum muscle
5. The extensor carpi ulnaris muscle and extensor

carpi radialis muscle

The positions of the electrodes is shown on Figure 1.
Furthermore, a wrist-band was placed around the

!
!

Figure 1: The position of the electrodes.

subject’s wrist as reference electrode. Data was recorded
during a steady-state medium contraction with the
right hand of the following seven hand movements:
hand closing (HC), hand opening (HO), wrist �exion
(WF), wrist extension (WE), wrist supination (WS), wrist
pronation(WP) and pinch grip (PG). Further data was
recorded during rest. The total number of classes was
thereby eight. The hand movements are shown on
Figure 2. Each movement was performed four times.

The position of the electrodes was marked after
each session, to ensure identical placement of the
electrodes at each day.
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Figure 2: Hand movements: hand closing (HC), hand opening (HO), wrist �exion (WF), wrist extension (WE), wrist supination (WS), wrist
pronation (WP) and pinch grip (PG). Selection of hand movements are inspired by [23]

2.2 EEG experiment

In order to make a more general conclusion of robustness
of the feature reduction methods, an EEG dataset was
analysed in this study. The experiment was performed
two times per week for four weeks and one session at
week eight. This makes it possible to analyse robustness
for an extended period of time. The EEG experiment
was conducted by Rasmus Wiberg Nedergaard [20] and
data was used with permission from Rasmus Wiberg
Nedergaard. Further description of the experiment can
be seen in his master thesis [20].

Subjects
The EEG data were collected from seven healthy
volunteers (one woman and six men), with mean age
of 26 ± 1 year. None of the subjects had any known
neurological disorders and disorders of their right foot
or ankle. All subjects gave their written informed
consent before participation [20].

Recording
The EEG signals were recorded with an EEG ampli-
�er (Nuamps Express, Neuroscan) and a 32 channel
Quick-Cap (Neuroscan) at a frequency of 500 Hz. The
signals were digitally converted with 32 bits accuracy.
Furthermore, force was sampled with 2000 Hz from a
force transducer mounted on a foot pedal, and displayed
by the software Mr. Kick (Knud Larsen, SMI, Aalborg
University) [20].

Experimental procedure
The electrodes were placed at F3, F4, C3, C4, Cz, P3, P4
and Pz according to the 10-20 system [20]. A reference
was placed on the right mastoid bone and the ground
electrode was placed at the nasion. The impedance of
the electrodes were kept below 5 k�. Three MVC forces
of a dorsi�exion of the right ankle was initially recorded
at each session. The subjects performed two kind of
dorsi�exions at force of 20 % of the highest MVC. 1) a
fast movement, reaching the target force after 0.5 s, and
2) a slow movement, reaching the target force after 3 s.
This study used the part of the experiment, where the
subjects performed 2 x 30 movements of fast and slow

dorsi�exions in randomised order. A trigger was sent at
the beginning of each movement to be able to split the
continuous recording into epochs.
Data from week 2 was excluded in this study due
to technical errors in the recordings. Data from the
remaining seven days was included in the study [20].

2.3 Data analysis

Preprossesing of EMG data
The data was bandpass �ltered using a fourth order
Butterworth bandpass �lter with cut-o� frequencies at
20 and 400 Hz. Furthermore, the data was �ltered with a
narrow notch bandstop to remove 50-Hz noise. This was
followed by a windowing with a segment length of 250
ms with an overlap of 150 ms.

Feature extraction of EMG data
The following features were extracted from the �ltered
EMG data from all �ve channels:

1. Mean Absolute Value
2. Wilson Amplitude, threshold = 10mV

3. Zero Crossing, threshold = 10mV

4. Slope Sign Changes, threshold = 16mV

5. Variance Of EMG
6. Wave Length
7. Root Mean Square
8. Mean Frequence
9. Mean Power
10. Median Frequence
11. 6 Autoregressive coe�cients, order = 6
12. Sample Entropy, m = 2, r = 0.2 ◊ ‡

1

13. Approximate Entropy m = 2, r = 0.2 ◊ ‡

2

The dimension of the original feature space was thereby
90.
1-11 are all common used features in EMG classi�cation
[21, 23]. Sample entropy and approximate entropy are
extracted due to their robustness found in the study by
Phinyomark et al. [23].
The value of the parameters are based on the suggestion

1m=embedded dimension, r=tolerance. See worksheets, chapter 4
2m=embedded dimension, r=tolerance. See worksheets, chapter 4
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in the literature [23].
More information about the extracted EMG features can
be found in the worksheets in chapter 4.

Preprossesing of EEG data
The data was bandpass �ltered using a fourth order
Butterworth bandpass �lter with cut-o� frequencies at
0.5 and 5 Hz. The signals were split into epochs with a
segment length of 5 s via the trigger.

Feature extraction of EEG data
Features was extracted from the movement-related
cortical potentials (MRCP), which is a low frequency
negative shifts, that are associated with planning
and execution of a voluntary movement [10]. The
mean MRCP for the two movements, across channels
and subject, can be seen on Figure 3. Time domain
features like mean, max, slope and intersection are often
extracted from the MRCP [10]. The chosen features are
based on visual inspection of Figure 3.
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Figure 3: Mean MRCP from two movements, slow and fast. 0 s is
the time of the movement onset.

The following features were extracted from the �ltered
EEG data from all nine channels:

1. Mean amplitude from -0.5 s to 0.5 s
2. Mean amplitude from -1 s to 0 s
3. Point of maximum negativity
4. Maximum negativity
5. Slope of a linear regression from -1 s to 0 s
6. Intersection of a linear regression from -1 s to 0 s
7. Slope of a linear regression from 0 s to 1 s
8. Intersection of a linear regression from 0 s to 1 s

The dimension of the original feature space was thereby
72.

2.4 Feature reduction

The following nine methods were used to reduce the
features. The selection of methods is based on the

literature review in the worksheets (chapter 2). The
worksheets further contain a mathematical approach of
the used methods (chapter 3).

PCA
Principal Component Analysis (PCA) is one of the most
popular methods for dimensionality reduction [18]. PCA
seeks to maximise the variance in the data by mapping
the data into a linear subspace, containing the principal
components. The �rst principal components describes
the most variance in the data, and so forth, and is found
on the basis of the eigenvectors and eigenvalues [6].

FDA
Fisher discriminant analysis (FDA) is another popular
method for feature reduction. FDA is a supervised
method that seeks to maximise the between-class scatter
matrix, and minimise the within-class scatter matrix [6].

KPCA
Kernel principal component analysis (KPCA) is a variant
of PCA that uses a nonlinear kernel function, rather
than the original linear function, before �nding the
eigenvectors and the eigenvalues of the kernel matrix
[8]. Di�erent kernels was tested on both datasets, and a
Gaussian radial basis function (‡ = 30) showed the best
results on average, and was therefore implemented.

NDA
Nonparametric discriminant analysis (NDA) is similar
to FDA as it also relies on the scatter matrixes. NDA
however de�nes a nonparametric between-class scatter
matrix [11].

ICA
Independent Component Analysis (ICA) is a blind
source separation technique, that separates a dataset
into independent, non-Gaussian subcomponents [19, 3].
The goal of ICA is to �nd the features that are most
independent from each other [8] and is in this study
implemented by the FastICA method.

NWFE
Nonparametric Weighted Feature Extraction (NWFE) is
a feature reduction method, which idea is to compute
the weighted mean by weighing every sample di�erently.
On the basis of the weighted mean the nonparametric
between-class and within-class scatter matrices are
de�ned [13].

NCA
Neighborhood Components Analysis (NCA) is a
supervised method, that seeks to �nd a Mahalanobis
distance metric for k-nearest-neighbours (kNN) that
optimizes the leave-one-out error on the training set
[17]. The optimization problem are non-convex and
relies on a gradient based iterative algorithm,
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MCML
Maximally Collapsing Metric Learning (MCML) is
a supervised method, which is similar to NCA, and
also relies on the Mahalanobis distance metric for
k-nearest neighbours. MCML di�ers from NCA, as the
optimization problem is convex for MCML [7].

2.5 Evaluation of feature space

The features space was evaluated by calculating the
classi�cation accuracies using Linear Discriminant
Analysis (LDA) and Support Vector Machines (SVM).

LDA
LDA was chosen because of its robustness found by
Kaufmann et al. [12]. Additionally LDA is a simple
classi�er, that is computationally e�cient, and it does
not require any adjustment of parameter [23]. However,
LDA is limited when the number of features are high
compared to the number of samples, often referred to as
”large p small n” [25]. Hence, it is not possible to evaluate
the full original feature space with LDA, and LDA will
only be tested with the projected features.

SVM
SVM are well known for being able to deal with a high
dimensional feature space [24]. Furthermore, it was
found to be the second most robust classi�er in the study
by Kaufmann et al. [12]. SVM, one-against-all with a
linear kernel, will be used to evaluate the full original
feature space as well as the projected feature space.

2.6 Evaluation of robustness

The measurement for robustness was chosen to be the
standard deviation between days, as suggested in [9].
The robustness across the multiple days was tested with
and without retraining of the classi�er and the feature
reduction projection.

Retraining:
Four-fold cross-validation was used, when the classi�er
and the feature reduction projection was retrained. The
data was partitioned into four equal folds, e.g. the EMG
data was split into four folds containing eight samples
each. In each fold all eight classes was represented.
Three of the four fold was used as training data, and
the cross-validation process was performed by testing
all four di�erent combinations of training and test data
for each of the four folds. The classi�cation and the
feature reduction projection were therefore performed
four times with four di�erent combinations of training
and test data. The mean of the four classi�cation errors
was presented.

No retraining:
When testing the robustness without retaining of the
classi�er and the feature reduction projection, day 1

acted as training data, and day 2 and day 3 etc. acted as
test data.

2.7 Evaluation of number of features

The number of features was optimised, so that the
number of features that gave the highest classi�cation
accuracy, was chosen. This was chosen rather than
using a �xed number of features, e.g. based on a certain
percentage of the explained variability for PCA, as this
may not necessarily show the highest classi�cation
accuracy.

Statistics:
To test if the results were robust across days, the non-
parametric Friedman test was used, as the assumptions
for ANOVA (equal variance and sphericity) was not
met for all data. For p-values below 0,05 a Bonferroni
Post Hoc test was used. Three Friedman tests were
performed, with the following three aims:

• Test for di�erences between the days.
• Test for di�erences between the feature reduction
methods.

• Test for di�erences between retrain and no retrain.

3 R������
3.1 EMG

Retrain
The average EMG classi�cation accuracies for LDA and
SVM across subjects, are presented in Table 1. These re-
sults are obtained by using the retrained data and 4-fold
cross validation. On average, it is seen that NDA shows
the highest classi�cation accuracy when classifying with
LDA. It is also seen that NDA is the most robust method,
with the lowest standard deviation. PCA also shows the
high classi�cation accuracy when classifying with both
LDA and SVM, but the robustness of PCA is lower than
most of the other methods.
It should also be noted that SVM shows a lower classi�-
cation accuracies for all methods and also shows a lower
robustness.
The original feature space was only outperformed by
three of the feature reduction methods (PCA, NWFE and
NDA) when classifying with SVM.
A signi�cant change was found between the days for
ICA classi�ed with SVM. The post hoc test showed a
statistical signi�cant di�erence between day 2 and day 3
(p = 0.03).
Furthermore, a signi�cant di�erence between the meth-
ods was found, where p was < 0.01 for both LDA and
SVM. The post hoc test showed the following statistical
signi�cant di�erences:

• ICA was signi�cant di�erent from NCA when clas-
sifying with LDA (p = 0.02)
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• ICA was signi�cant di�erent from NCA when clas-
sifying with SVM (p = 0.03)

• ICA was signi�cant di�erent from PCA when clas-
sifying with SVM (p = 0.02)

Table 1: Mean classi�cation accuracies across subjects, with re-
trained EMG data.

LDA

Method Day 1 Day 2 Day 3 Mean ± std p

PCA 89.8 95.7 94.5 93.4 ± 3.1 0.09
FDA 68.0 75.4 73.0 72.1 ± 3.8 0.35
KPCA 87.5 85.5 83.6 85.5 ± 2.0 0.27
NDA 93.4 95.3 94.9 94.5 ± 1.0 0.84
ICA 44.1 45.3 42.6 44.0 ± 1.4 0.37
NWFE 79.3 84.8 81.3 81.8 ± 2.8 0.38
NCA 87.9 90.2 89.5 89.2 ± 1.2 0.76
MCML 89.1 92.2 89.1 90.1 ± 1.8 0.26

SVM

Method Day 1 Day 2 Day 3 Mean ± std p

PCA 83.2 78.5 75.8 79.2 ± 3.8 0.34
FDA 58.2 59.8 62.9 60.3 ± 2.4 0.61
KPCA 55.5 56.3 49.2 53.6 ± 3.9 0.64
NDA 79.3 79.7 73.8 77.6 ± 3.3 0.24
ICA 26.2 22.7 28.5 25.8 ± 2.9 *0.03
NWFE 77.0 72.7 70.7 73.4 ± 3.2 0.30
NCA 65.6 64.8 60.5 63.7 ± 2.7 0.52
MCML 68.8 64.5 61.7 65.0 ± 3.5 0.42

Orig. feat. 69.9 68.8 64.5 67.7 ± 2.9 0.39

No retrain
Table 2 shows the average EMG classi�cation accuracies
across subjects when LDA and SVM and the feature
projection was not retained. NWFE shows an average
classi�cation accuracy at 94.3 % when classifying with
LDA. The classi�cation accuracies obtained by SVM are
again lower than for LDA, and the highest classi�cation
accuracy for SVM is NDA (77.7 %). NDA also shows a
very robust performance, both when classifying with
LDA and SVM.
Beside ICA, all feature reduction methods show higher
classi�cation accuracies than the original feature space.
The feature reduction methods also improved the
robustness.
In the statistical tests, no signi�cant changes were found
between the days.
Furthermore, no signi�cant di�erence between the
methods was found when classifying with LDA (p=0.06).
However, a signi�cant di�erence between the methods
was found, when classifying with SVM (p=0.04). The
post hoc test showed a statistical signi�cant di�erence
between ICA and NDA (p = 0.05).

Table 2: Mean classi�cation accuracies across subjects, where day
1 acted as training data, and day 2 and 3 as test data.

LDA

Method Day 2 Day 3 Mean ± std p

PCA 87.9 85.2 86.5 ± 1.9 0.41
FDA 78.5 72.7 75.6 ± 4.1 0.16
KPCA 88.7 81.6 85.2 ± 5.0 0.06
NDA 89.1 89.1 89.1 ± 0.0 0.56
ICA 45.3 39.8 42.6 ± 3.9 0.48
NWFE 96.5 92.2 94.3 ± 3.0 0.32
NCA 87.5 81.6 84.6 ± 4.1 0.41
MCML 85.9 83.6 84.8 ± 1.7 0.65

SVM

Method Day 2 Day 3 Mean ± std p

PCA 75.8 74.2 75.0 ± 1.1 0.41
FDA 54.7 58.6 56.6 ± 2.8 0.10
KPCA 73.4 69.5 71.5 ± 2.8 0.48
NDA 78.1 77.3 77.7 ± 0.6 0.32
ICA 41.0 35.5 38.3 ± 3.9 0.10
NWFE 64.8 57.0 60.9 ± 5.5 0.18
NCA 77.3 73.4 75.4 ± 2.8 0.48
MCML 77.3 75.4 76.4 ± 1.4 0.48

Org. feat. 60.9 50.8 55.9 ± 7.2 0.16

Retrain vs. no retrain
The mean di�erences between retrain and no retrain
are seen in Table 3. A negative value indicates lower
performance when not being retrained and vice versa.
The results from the statistical tests show that most
methods have a signi�cant di�erences between retrain
and no retrain. Some of the methods showed a higher
performance when not being retrained, e.g. NWFE with
LDA as classi�er showed 11.3% higher classi�cation
accuracy, than when being retrained.

Table 3: Mean di�erence between retrain and no retrain, EMG

Method LDA SVM

Mean di�.
betw. retrain
& no retrain

p
Mean di�.

betw. retrain
& no retrain

p

PCA -8.6 *0.01 -2.1 0.26
FDA 1.4 0.71 -4.7 0.06
KPCA 0.6 1.00 18.8 *0.03
NDA -6.1 0.10 1.0 0.48
ICA -1.4 1.00 12.7 *0.00
NWFE 11.3 *0.00 -10.7 *0.01
NCA -5.3 0.06 12.7 *0.03
MCML -5.9 *0.03 13.3 *0.01

Org. feat. -10.7 0.16

Number of features
Table 4 shows the median of required features to obtain
the highest EMG classi�cation accuracies across subjects.
NWFE is the method that requires the lowest number
of features, both for LDA and SVM, and when being
retained and not retrained. The number of features using
NWFE are reduced from 90 features to 6 and 7.
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Table 4: Median of the required features across subjects to obtain
the presented EMG classi�cation accuracies.

Method LDA SVM
Retrain No retrain Retrain No retrain

PCA 6 9 6 8
FDA 6 6 10 17
KPCA 9 12 6 20
NDA 6 9 6 13
ICA 10 19 6 27
NWFE 6 6 6 7
NCA 7 8 7 17
MCML 7 13 7 20

3.2 EEG

Retrain
The average EEG classi�cation accuracies across subjects,
for LDA and SVM are presented in Table 5. On average,
KPCA shows the highest classi�cation accuracy for both
LDA and SVM. KPCA also shows a robust performance,
as the standard diviations are among the lowest.
The original feature space is only outperformed by KPCA
and NWFE.
In the statistical tests, signi�cant changes between the
days were found at three of the tests. The post hoc test
showed the following statistical signi�cant di�erences:

• NCA using SVM: week 1 - day 2 and week 4 - day 1
(p = 0.05)

• MCML using SVM: week 3 - day 2 and week 4 - day
2 (p = 0.05)

• NDA using SVM: week 1 - day 2 and week 3 - day 2
(p = 0.04)

Furthermore, a signi�cant di�erence between the meth-
ods was found, where p was < 0.01 for both LDA and
SVM. The post hoc test showed the following statistical
signi�cant di�erences:

• KPCA was signi�cant di�erent from FDA (p=0.02),
PCA (p=0.04) and ICA(p=0.02) when classifying
with LDA.

• KPCA was signi�cant di�erent from FDA (p=0.01),
ICA (p=0.01) and MCML (p=0.05) when classifying
with SVM.

• FDA was signi�cant di�erent from KPCA (p=0.01),
NWFE (p=0.05) and orig. feat. (p=0.05) when classi-
fying with SVM.

No retrain
Table 6 shows the average EEG classi�cation accuracies,
when LDA and SVM and the feature projection was not
retained. KPCA shows the best average classi�cation
accuracy and the most robust performance, for both
LDA and SVM. All methods, expect ICA, show a higher
average classi�cation accuracy than the original feature
space.
In the statistical tests, signi�cant changes between the
days were found at three of the test. The post hoc test
showed the following statistical signi�cant di�erences:

• NCA using LDA: week 4 - day 1 and week 8 (p =
0.04)

• NWFE using SVM: week 1 - day 2 and week 8 (p =
0.03)

• NCA using SVM: week 4 - day 1 and week 8 (p =
0.05)

• MCML using SVM: week 4 - day 1 and week 8 (p =
0.02)

Furthermore, a signi�cant di�erence between the meth-
ods was found, where p was < 0.01 for both LDA and
SVM. The post hoc test showed the following statistical
signi�cant di�erences:

• KPCA was signi�cant di�erent from FDA (p=0.01),
ICA (p=0.02) and NWFE (p=0.03) when classifying
with LDA.

• PCA was signi�cant di�erent from FDA (p=0.03),
ICA (p=0.04) when classifying with LDA.

• KPCA was signi�cant di�erent from ICA (p=0.02)
and orig. feat. (p=0.03) when classifying with SVM.

• PCA was signi�cant di�erent from ICA (p=0.05) and
orig. feat. (p=0.05) when classifying with SVM.

Retrain vs. no retrain
The mean di�erences between retrain and no retrain
are seen in Table 7. A negative value indicates lower
performance when not being retrained and vice versa.
The results from the statistical tests show that non of the
methods have a signi�cant di�erences between retrain
and no retrain.

Table 7: Mean di�erence between retrain and no retrain, EEG

Method LDA SVM

Mean di�.
betw. retrain
& no retrain

p
Mean di�.

betw. retrain
& no retrain

p

PCA 1.2 0.71 1.2 0.71
FDA 2.1 0.71 1.4 0.71
KPCA -4.7 0.06 -3.3 0.26
NCA -2.4 0.26 -1.3 0.06
ICA -1.1 0.71 0.4 0.71
NWFE -5.0 0.06 -4.4 0.26
MCML -2.0 0.26 -0.6 0.71
NDA -0.6 0.71 -0.1 0.26

Orig. feat. -6.8 0.26

Number of features
Table 8 shows the median of required features to ob-
tain the highest EEG classi�cation accuracies across sub-
jects. Similar to the results found for EMG, NWFE is the
method that on average requires the lowest number of
features.
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Table 5: Mean classi�cation accuracies across subjects, with retrained EEG data.

LDA

Method Week 1
Day 1

Week 1
Day 2

Week 3
Day 1

Week 3
Day 2

Week 4
Day 1

Week 4
Day 2

Week 8
Day 1

Mean ± std p

PCA 64.9 72.3 65.8 62.9 65.2 71.2 72.4 67.8 ± 4.0 0.11
FDA 63.7 64.8 67.1 62.7 62.9 62.9 65.3 64.2 ± 1.6 0.42
KPCA 74.4 83.1 75.4 76.3 74.8 77.2 77.3 76.9 ± 2.9 0.62
NDA 65.7 74.5 64.6 65.6 64.8 73.5 71.2 68.6 ± 4.3 0.06
ICA 64.9 68.0 62.9 66.3 63.5 64.0 65.8 65.1 ± 1.8 0.52
NWFE 65.9 75.8 66.6 66.8 71.2 69.3 68.4 69.2 ± 3.5 0.51
NCA 65.4 72.7 67.2 62.9 67.1 71.5 72.0 68.4 ± 3.7 0.06
MCML 65.2 73.5 66.3 66.1 63.3 71.8 71.6 68.2 ± 4.0 0.07

SVM

Method Week 1
Day 1

Week 1
Day 2

Week 3
Day 1

Week 3
Day 2

Week 4
Day 1

Week 4
Day 2

Week 8
Day 1

Mean ± std p

PCA 64.5 71.8 67.1 62.0 64.2 71.8 70.9 67.5 ± 4.1 0.19
FDA 59.1 64.7 64.5 63.3 62.8 64.0 67.0 63.5 ± 2.4 0.42
KPCA 73.2 82.0 73.7 75.5 73.5 75.9 74.6 75.5 ± 3.1 0.31
NDA 65.7 74.3 65.0 63.8 64.4 72.2 69.6 67.8 ± 4.2 *0.02
ICA 64.2 63.1 61.4 64.1 64.5 64.0 63.4 63.5 ± 1.0 0.81
NWFE 67.8 75.9 67.5 68.8 73.0 71.5 69.0 70.5 ± 3.1 0.63
NCA 64.4 73.3 65.3 63.9 63.5 69.1 69.3 67.0 ± 3.7 *0.02
MCML 63.6 71.4 63.7 62.0 63.2 73.0 71.4 66.9 ± 4.8 *0.01

Orig. feat. 66.8 78.4 68.5 68.7 69.3 70.1 70.8 70.4 ± 3.8 0.11

Table 6: Mean classi�cation accuracies across subjects, where day 1 acted as training data, and day 2, day 3 ect. as test data.

LDA

Method Week 1
Day 2

Week 3
Day 1

Week 3
Day 2

Week 4
Day 1

Week 4
Day 2

Week 8
Day 1

Mean ± std p

PCA 74.3 68.2 71.5 65.4 68.5 69.0 69.5 ± 3.1 0.07
FDA 67.7 61.1 62.4 64.1 62.9 62.8 63.5 ± 2.3 0.67
KPCA 72.3 72.4 74.4 71.1 73.5 72.5 72.7 ± 1.1 0.86
NDA 72.4 68.0 69.4 65.0 67.2 68.5 68.4 ± 2.4 0.74
ICA 68.5 62.2 63.8 62.7 61.2 65.5 64.0 ± 2.7 0.30
NWFE 70.2 62.5 64.6 63.4 65.1 62.6 64.7 ± 2.9 0.13
NCA 68.9 65.7 63.1 63.9 66.7 70.7 66.5 ± 2.9 *0.02
MCML 68.8 65.3 64.6 66.1 65.6 70.3 66.8 ± 2.3 0.19

SVM

Method Week 1
Day 2

Week 3
Day 1

Week 3
Day 2

Week 4
Day 1

Week 4
Day 2

Week 8
Day 1

Mean ± std p

PCA 72.9 69.0 67.6 65.9 68.6 71.1 69.2 ± 2.5 0.14
FDA 72.1 64.5 63.8 63.8 63.8 66.9 65.8 ± 3.3 0.58
KPCA 74.4 72.8 73.2 69.2 74.2 71.6 72.5 ± 1.9 0.39
NDA 71.5 67.6 66.9 65.7 68.2 68.9 68.1 ± 2.0 0.30
ICA 66.7 61.5 64.3 62.9 61.5 65.9 63.8 ± 2.2 0.21
NWFE 70.9 64.6 67.0 64.8 67.5 64.6 66.6 ± 2.5 *0.03
NCA 66.7 65.4 63.1 63.6 68.0 69.9 66.1 ± 2.6 *0.01
MCML 69.8 67.2 62.9 63.8 65.9 71.3 66.8 ± 3.3 *0.03

Orig. feat. 69.3 63.5 62.8 60.9 65.1 63.3 64.1 ± 2.8 0.13

. .
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Table 8: Median of the required features across subjects to obtain
the presented EEG classi�cation accuracies.

Method LDA SVM
Retrain No retrain Retrain No retrain

PCA 12 22 12 23
FDA 13 20 10 20
KPCA 16 17 12 18
ICA 13 18 11 15
NWFE 2 7 9 16
NCA 14 13 11 18
MCML 16 18 13 16
NCA 15 22 10 21

4 D���������
The four aforementioned objectives will be discussed
along with a discussion of the methodology.

1. Robustness of feature reduction methods, retrain
For EMG, NDA showed the highest and most robust
classi�cation accuracy obtained by LDA. This is similar
to results found in previous literature, where NDA
showed to outperform e.g. FDA and PCA [15, 11]. The
high robustness for NDA has however never been
reported before.
Also PCA showed high classi�cation accuracy for both
LDA and SVM. This was unexpected, as several studies
report that PCA shows lower classi�cation accuracy
when comparing to e.g. FDA, NWFE and ICA [5, 28, 24].
For EEG the results di�er from EMG, as KPCA showed
high and robust classi�cation accuracy, and KPCA was
signi�cant di�erent from many of the other methods.
It is seen from the results, that the choice of feature
reduction, can be a trade o� between robustness and
classi�cation accuracy. For instance, PCA showed one of
the high average performances for both EMG and EEG,
but also showed a poor robustness. A general conclusion
of which feature reduction method that shows the most
robust classi�cation accuracy when retraining cannot be
be drawn.

2. Robustness of feature reduction methods, no retrain
For EMG, NWFE showed a high classi�cation accuracy
at 94.3 % when classifying with LDA. This is 11.3 %
higher compared to the retrain-test. Compared to studies
that investigated robustness of EMG classi�cation, drops
of 3.6 % for the most robust classi�er and 2.45 % for the
most robust feature are reported [12, 23]. These studies
was however recorded during 21 days.
NWFE was not the most robust feature reduction within
the no retrain-test, but is still within an acceptable range.
NDA was the most robust feature reduction method, just
like it also was seen in the retrain-test.
For EEG, KPCA showed the highest classi�cation
accuracy for both LDA and SVM (76.9 % and 75.5 %).
This is 4.7 % and 3.3 % lower than when comparing to
the retrain-test, which is quite similar to the results
found in [12, 23].

KPCA was also found to be one of the most robust
feature reduction methods within the no retrain-test.
When testing over multiple days, studies report that re-
training sessions can be necessary each day to overcome
time variations in the signals [14, 26]. In this study,
many of the methods showed no signi�cant di�erence
between the retrain-test and the no retrain-test. The
results found in this study, thereby indicates, that
this retraining session might not be necessary, if an
appropriate feature reduction method is used.

3. Robustness and performance of feature reduction
methods compared to the original feature space
For EMG, retrain-test, PCA, NWFE and NDA showed
better performance than the original features, but did
not tend to improve the robustness.
For EMG, no retrain-test, all feature reduction methods,
except ICA, showed higher performance than the
original feature space. Also, the robustness for the no
retrain-test, was improved for all feature reduction
methods.
For EEG, most feature reduction methods did not show
to have the same positive impact on the results, when
comparing to the original feature space. A signi�cant
di�erence between the original features and KPCA for
the no retrain-test was however found.

4. Dimension
It was found that NWFE needed the fewest number of
features for both EMG and EEG. The number of features
for NWFE was reduced from 90 to 6-7 features for EMG,
and from 72 to 2-16 for EEG.
These results are similar to the results found in previous
literature [16]. It was found that NWFE needed the
lowest number of features compared to PCA and FDA
[16]. NWFE might thereby be able to overcome the curse
of dimensionality-phenomena.

5. Methodology
It should be considered if an experiment recorded over
three days are enough to evaluate the robustness. Ideally,
the EMG experiment should have been recorded over
an extended period of time, to draw a more certain
conclusion about the robustness.
Also, the methodology for the no retrain-test should be
considered. Four-fold cross validation was not applied in
the no retrain-test. The number for training samples for
e.g. EMG was therefore increased from 24 to 32. This
might be the reason for big di�erences between the
retrain-test and no-retrain test, e.g. for NWFE which
showed an increase of 11.3 % in the no retrain-test for
EMG.

6. Conclusion
This study was the �rst of its kind to investigate
robustness of feature reduction methods. The aim of
this study was to investigate eight feature reduction
methods and their ability to produces robust per-
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formance. Feature reduction shows to have a great
impact on the performance and robustness of EMG
and EEG classi�cation. For EMG, NDA showed high
classi�cation accuracies and was the most robust feature
reduction methods. For EEG, KPCA showed the highest
classi�cation accuracies and was among the most robust
feature reduction methods.
In order to make a classi�cation system that is robust
over time and can adapt time-varying changes, feature
reduction must be included. However, it is recommended
to test the di�erent methods for feature reduction, to
�nd the method that �ts the given data best, as the
results were highly dependent of the signal and the
classi�er.
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List of abbreviations 1
Table 1.1: List of abbreviations, feature reduction methods

PCA Principal component analysis
FDA Fisher discriminant analysis
KPCA Kernel principal component analysis
NDA Nonparametric discriminant analysis
ICA Independent component analysis
NWFE Nonparametric weighted feature extraction
NCA Neighbourhood components analysis
MCML Maximally collapsing metric learning
NLDA Nonlinear discriminant analysis
SOFM Self-organizing feature maps
NFA Nonparametric feature analysis
NLPCA Nonlinear principal component analysis
LPP Locality preserving projection
LLE Locally linear embedding
CCA Canonical correlation analysis
DBFE Decision boundary feature extraction
BDFS Bhattacharyya distance feature selection
CMM Correlative Matrix Mapping
NMCML Non Convex MCML
KLDA Kernel LDA
BM Bayesian method
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1. List of abbreviations

Table 1.2: List of abbreviations, classifiers

SVM Support vector machine
kNN k-nearest neighbors
NBC Naive Bayes classifier
MLP Multilayer perceptron
GMM Gaussian mixture model
NN Neural network
PNN Orobabilistic neural network
LMkNN Local mean k-nearest neighbors
RF Random forest
DT Decision Trees
MCS Multiple classifier systems
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Literature Review 2
The purpose of this chapter is to give an overview of the current research
dealing with feature reduction. The selected feature reduction methods
in the article are based on this literature review.

2.1 Methods for the literature review

The following keywords were used during the literature search:

• Feature reduction
• Dimension reduction
• Feature extraction
• Feature projection

Furthermore, chain search was also used, where the references in the
already found literature, was investigated.
Only studies that tested two or more methods were included in this
review.
The literature will be presented in tables containing:

• The reference
• The data used in the article
• The feature reduction methods used in the article
• The applied classifiers in the article
• A short conclusion of the article

Please notice, that some of the articles reoccur in the tables, e.g. an
article dealing with PCA and FDA, will occur in both Table 2.1 and
Table 2.2.
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2. Literature Review

2.2 PCA

Principal Component Analysis (PCA) is one of the most popular unsu-
pervised linear method for dimensionality reduction [Martis et al., 2013].
PCA seeks to maximise the variance in the data by mapping the data
into a linear subspace, containing the principal components. PCA is of-
ten used as a benchmark in the literature, why there are many studies
dealing with PCA.
Only literature dealing with biological signals will be presented in this
section. Literature dealing with PCA can be seen in Table 2.1.
It is seen that PCA, despite being a popular method, is outperformed
by most other methods.

Table 2.1: Literature dealing with PCA

Article Data Methods Classifier Conclusion

[Subasi & Gursoy, 2010] EEG
PCA
FDA
ICA

SVM PCA was outperformed
by FDA and ICA.

[Lin et al., 2008] EEG
PCA
FDA
NWFE

KNN
NBC

PCA was outperformed
by NWFE, but showed
better performance
than FDA.

[Yang et al., 2013] EMG PCA
NWFE SVM PCA was outperformed

by NWFE.

[Chu et al., 2007] EMG

PCA
FCA
NLDA
SOFM

MLP

PCA showed lower per-
formance than NLDA
and FDA, but better
than SOFM.

[Giri et al., 2013] ECG
PCA
FDA
ICA

SVM
GMM
PNN
kNN

PCA showed the high-
est average performance
across four classifiers,
but ICA with GMM
as classifier showed the
highest performance.

[Martis et al., 2013] ECG
PCA
LDA
ICA

SVM
NN
PNN

PCA with PNN as clas-
sifier, showed a higher
performance than FDA,
but lower performance
than ICA.
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2.3. FDA

2.3 FDA

FDA is another popular method for feature reduction. FDA is a super-
vised method, that seeks to maximise the between-class scatter matrix,
and minimising the within-class scatter matrix [Giri et al., 2013]. Only
literature dealing with biological signals will be presented for FDA, see
Table 2.2.
It is seen that FDA, is outperformed by most other methods.

Table 2.2: Literature dealing with FDA

Article Data Methods Classifier Conclusion

[Subasi & Gursoy, 2010] EEG
FDA
PCA
ICA

SVM

FDA showed a better
performance than PCA,
but was outperformed
by ICA.

[Lin et al., 2008] EEG
PCA
FDA
NWFE

kNN
NBC

FDA was outperformed
by both NWFE and
PCA.

[Chu et al., 2007] EMG

FCA
PCA
NLDA
SOFM

MLP

FDA showed a higher
performance than
PCA and SOFM, but
was outperformed by
NLDA.

[Kamavuako et al., 2014] EMG
FDA
NDA
NFA

kNN
LMkNN

FDA was outperformed
by the other methods.

[Giri et al., 2013] ECG
FDA
PCA
ICA

SVM
GMM
PNN
kNN

FDA was outperformed
by PCA and ICA.

[Martis et al., 2013] ECG
FDA
PCA
ICA

SVM
NN
PNN

FDA was outperformed
by PCA and ICA.
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2.4 KPCA

Kernel principal component analysis (KPCA) is a variant of PCA that
uses a nonlinear kernel function, rather than the original linear [K. Huang
et al., 2003]. Literature dealing with ICA can be seen in Table 2.3. In
general KPCA shows good performance in the literature, but there was
not found any literature that investigates KPCA and biological signals.

Table 2.3: Literature dealing with KPCA

Article Data Methods Classifier Conclusion

[Castaings et al., 2010] Image

KPCA
PCA
NWFE
BDFS
DBFE

SVM
RF

The study tested two
different datasets and
KPCA was in gen-
eral outperformed by
NWFE and BDFS, but
showed better results
than PCA and DBFE.

[K. Huang et al., 2003] Image

KPCA
PCA
ICA
NLPCA

SVM

KPCA outperformed
the other tested feature
reduction methods.
Four feature selec-
tion methods was also
tested, and they all
showed higher perfor-
mance than KPCA.

[W. Huang & Yin, 2012] Image

KPCA
PCA
LPP
LLE
ISOMAP
CCA

kNN
soft
k-NN
LDA
SVM

On average, LPP and
LLE outperformed the
other methods, and
KPCA showed similar
results to the remaining
methods.

[Cao et al., 2003]
Seven
various
datasets

KPCA
PCA
ICA

SVM
KPCA showed the high-
est performance for all
tested datasets.
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2.5 NDA

NDA is a nonparametric method, that is similar to FDA as it also relies
on the scatter matrixes. Literature dealing with NDA can be seen in
Table 2.8. NDA shows good performance, when comparing to traditional
methods, but is outperformed by NFA.

Table 2.4: Literature dealing with MCML

Article Data Methods Classifier Conclusion

[Kamavuako et al., 2014] EMG
NDA
FDA
NFA

kNN
LMkNN

NDA showed better per-
formance than FDA,
but was outperformed
by NFA

[Li et al., 2009] Image

NDA
PCA
FDA
BM
KLDA

MCS
NDA outperformed the
other methods for both
of the tested datasets.
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2.6 ICA

ICA is a blind source separation technique, that separates a dataset into
independent, non-Gaussian subcomponents [Cao et al., 2003; Mwangi et
al., 2014].
Literature dealing with ICA can be seen in Table 2.5. ICA outperforms
PCA and FDA for the litterature dealing with EEG and ECG, but was
outperformed by KPCA in litterature dealing with image and other var-
ious datasets.

Table 2.5: Literature dealing with ICA

Article Data Methods Classifier Conclusion

[Subasi & Gursoy, 2010] EEG
ICA
PCA
FDA

SVM
ICA showed higher per-
formance than PCA and
FDA.

[Martis et al., 2013] ECG
ICA
PCA
FDA

SVM
NN
PNN

ICA with PNN as clas-
sifier showed higher per-
formance than any the
other combination of
classifier and feature re-
duction methods.

[Giri et al., 2013] ECG
ICA
PCA
FDA

SVM
GMM
PNN
KNN

ICA with GMM as clas-
sifier showed higher per-
formance than any the
other combinations of
classifier and feature re-
duction methods.

[K. Huang et al., 2003] Image

ICA
PCA
KPCA
NLPCA

SVM

ICA showed higher per-
formance than NLPCA,
but was outperformed
by KPCA and PCA.

[Cao et al., 2003]
Seven
various
datasets

ICA
PCA
KPCA

SVM

ICA showed higher per-
formance than PCA,
but is outperformed by
KPCA.

34



2.7. NWFE

2.7 NWFE

NWFE is a new nonparametric feature reduction method.
Literature dealing with NWFE can be seen in Table 2.6. NWFE shows
to outperform many of the other methods.

Table 2.6: Literature dealing with NWFE

Article Data Methods Classifier Conclusion

[Yang et al., 2013] EMG
NWFE
PCA
KPCA

SVM NWFE outperformed
PCA

[Lin et al., 2008] EEG
NWFE
PCA
FDA

KNN
NBC

NWFE outperformed
all the other methods
for both of the tested
classifiers.

[Castaings et al., 2010] Image

NWFE
PCA
KPCA
BDFS
DBFE

SVM
RF

On average NWFE
outperformed the other
methods, for the two
tested datasets.
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2.8 NCA

NCA is a supervised method, that seeks to find a Mahalnobis distance
metric for kNN that optimises the leave-one-out error on the training set
[Manit & Youngkong, 2011].
Literature dealing with NCA can be seen in Table 2.7. NCA shows
high performance, and outperforms most methods, except NMCML and
MCML in [Globerson & Roweis, 2005].

Table 2.7: Literature dealing with NCA

Article Data Methods Classifier Conclusion

[Manit & Youngkong, 2011] EMG

NCA
PCA
FDA
LPP

SVM NCA outperformed the
other methods.

[Soto et al., 2011] Image

NCA
FDA
MCML
CMM
CCA

kNN
DT
SVM

NCA using kNN-
classification was the
combination that
showed the highest
performance

[Goldberger et al., 2004] Six variuos
datasets

NCA
PCA
FDA

kNN
NCA outperformed the
other methods for all
datasets.

[Globerson & Roweis, 2005] Six various
datasets

NCA
NMCML
MCML

kNN
NCA was outperformed
by NMCML and MCML
on average.
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2.9 MCML

MCML is a supervised method, which is similar to NCA, and also relies
on the Mahalanobis distance metric for k-nearest neighbours [Globerson
& Roweis, 2005].
Literature dealing with MCML can be seen in Table 2.8. MCML shows
various results, and is e.g. outperformed by NCA in one study [Soto et
al., 2011], and is better than NCA in another study [Globerson & Roweis,
2005].

Table 2.8: Literature dealing with MCML

Article Data Methods Classifier Conclusion

[Soto et al., 2011] Image

MCML
FDA
NCA
CMM
CCA

kNN
DT
SVM

In general MCML was
outperformed by NCA
and CMM.

[Globerson & Roweis, 2005]
Six
variuos
datasets

MCML
NMCML
NCA

kNN

MCML and NMCML
show similar results, but
both methods showed
better results than NCA
on average.
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Mathematical

approach for the

feature reduction

methods 3
This chapter gives an overview of the mathematical approaches used in
this study. All methods was implemented in Matlab 2015A.

3.1 PCA

The step by step procedure for PCA is as follows [Giri et al., 2013]:

1. Center the feature dataset by subtracting the mean of the dataset,
x.

x = x ° 1
N

NX

i=1
x

i

(3.1)

2. Calculate the covariance matrix (ß) of the centered dataset, where
m̄ defines the mean vector and N defines the number of dimensions.

ß= 1
N

{(x °m̄)(x °m̄)T } (3.2)

3. Calculate the eigenvectors (V ) and the eigenvalues (D) of the co-
variance matrix.

V ·ß=V ·D (3.3)

4. Sort the eigenvectors according to decreasing eigenvalues.
5. Choose the number of desired principal component.
6. Project the training data by multiplying the centered training data

and the eigenvectors.
7. Project the test data by multiplying the centered test data and the

eigenvectors.
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3. Mathematical approach for the feature reduction methods

3.2 FDA

The step by step procedure for FDA is as follows [Giri et al., 2013;
Kamavuako et al., 2014]:

1. Calculate the between-class scatter matrix:

S

b

=
LX

i=1

X

x

j

2C

i

(x

j

°m̄

i

)(x

j

°m̄

i

)T (3.4)

2. Calculate the within-class scatter matrix:

S

w

=
LX

i=1
n

i

(m̄

i

°m̄)(m̄

i

°m̄)T (3.5)

3. Calculate the eigenvectors and eigenvalues of (S

w

)°1
S

b

4. Sort the eigenvectors according to decreasing eigenvalues.
5. Project the training data by multiplying the training data and the

eigenvectors.
6. Project the test data by multiplying the test data and the eigen-

vectors.

3.3 KPCA

The step by step procedure for KPCA is as follows [K. Huang et al.,
2003; Kuzmin & Warmuth, 2007; Kwok & Tsang, 2004]:

1. Construct the kernel matrix, where x defines the the dataset. The
value of æ was chosen to be 30 in this study.

K (x, x

T ) = exp(° |x °x

T |2
2æ2 ) (3.6)

2. Center the kernel matrix, where 1
N

defines a N xN matrix where
each element in the matrix is 1/N

K

0
n

= K °1
N

·K °K ·1
N

+1
N

·K ·1
N

(3.7)

3. Calculate the eigenvectors (V ) and the eigenvalues (D) of the cen-
tered kernel matrix, K

n

.

V ·K

n

=V ·D (3.8)

4. Sort the eigenvectors according to decreasing eigenvalues.
5. Choose the number of desired principal component.
6. Project the training data by multiplying the centered kernel matrix

with the eigenvectors.
7. Construct a centered kernel matrix of the test data and project the

test data by multiplying with the eigenvectors.
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3.4 NDA

The step by step procedure for NDA is as follows [Kamavuako et al.,
2014]:

1. Calculate the within-class scatter matrix:

S

w

=
LX

i=1
n

i

(m̄

i

°m̄)(m̄

i

°m̄)T (3.9)

2. Calculate the weighting function !(i , j , l )

!(i , j , l ) =
mi n{d

Æ(x

i

l

, N N

k

(x

i

l

, i )),d

Æ(x

i

l

, N N

k

(x

i

l

, i )}

d

Æ(x

i

l

, N N

k

(x

i

l

, i )),d

Æ(x

i

l

, N N

k

(x

i

l

, i )
(3.10)

where d denotes the Euclidian distance, Æ controls speed of the
changing, regard to the distance ratio and x

i

l

denotes the feature
vector, l , in class i .

3. Calculate the between-class scatter matrix:

S

b

=
cX

i=1

cX

j=1
j 6=i

N

iX

l=1
!(i , j , l ) · (x

i

l

°m

j

(x

i

l

)) · (x

i

l

°m

j

(x

i

l

))T (3.11)

4. Calculate the eigenvectors and eigenvalues of (S

w

)°1
S

b

5. Sort the eigenvectors according to decreasing eigenvalues.
6. Project the training data by multiplying the training data and the

eigenvectors.
7. Project the test data by multiplying the test data and the eigen-

vectors.

3.5 ICA

ICA is a blind source separation technique, that separates a dataset into
independent, non-Gaussian subcomponents [Cao et al., 2003; Mwangi et
al., 2014]. ICA assumes that the dataset x is a linear mixture with the
source signal, s, and seeks to find this signal:

x = A · s (3.12)

The step by step procedure for ICA is as follows [Cao et al., 2003; Martis
et al., 2013]:

1. Center the feature dataset by subtracting the mean of the dataset,
x.

x = x ° 1
N

NX

i=1
x

i

(3.13)
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3. Mathematical approach for the feature reduction methods

2. Whitening of the dataset, to ensure that the dataset is Gaussian:

x̃ =V D

°1/2
V

T

x (3.14)

where V DV

T can be obtained by calculating the covariance matrix:

ß=V DV

T (3.15)

3. Selection of the independence criteria. FastICA was implemented
in this study:

a) Set a random initial weight vector w

b) Calculate W

+

W

+ = E {xg (W T

x)}°E {g

0(W T

x)} ·W (3.16)

Where the non-quadratic function for this study was chosen
to be g (u) = u

3. E denotes the expected value.
c) Normalise W

+

W

+ =W

+/||W +|| (3.17)

d) Repeat until W

+ is converged.
4. When W is converged, its inverse A is calculated.
5. Project the training data by multiplying the whitened training data

and the output from the independence criteria.
6. Project the test data by multiplying the whitened test data and

the output from the independence criteria.

ICA was implemented by using fastICA.m developed by Hugo Gvert.

3.6 NWFE

The step by step procedure for NWFE is as follows [Kuo & Landgrebe,
2004]:

1. Calculate the distance matrix as follows:

w

(i , j )
l k

= di st (x

t

(i ), x

k

(i )°1

n

jP
t=1

di st (x

t

(i ), x

k

(i )°1
(3.18)

2. Calculate the weighted means M

j

(x

(i )
k

) by using the distance matrix
w

(i , j )
lk

M

j

(x

l

(i )) =
N

jX

k=1
w

(i , j )
lk

x

( j )
k

(3.19)
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3. Calculate the weight of the scatter matrix:

∏
i , j

l

=
di st (x

(i )
l

, M

j

(x

l

(i )°1

N

jP
k=1

di st (x

(i )
t

, M

j

(x

t

(i )°1

(3.20)

4. Calculate the nonparametric between-class scatter matrix:

S

b

=
LX

i=1
P

i

LX

j=1
j 6=i

N

iX

k=1

∏
i , j

k

n

i

·
≥
x

(i )
k

°M

j

(x

(i )
k

)
¥
·
≥
x

(i )
k

°M

j

(x

(i )
k

)
¥

T

(3.21)

5. Calculate the nonparametric within-class scatter matrix and regu-
larise it:

S

w

=
LX

i=1
P

i

N

iX

k=1

∏
i , j

k

n

i

·
≥
x

(i )
k

°M

j

(x

(i )
k

)
¥
·
≥
x

(i )
k

°M

j

(x

(i )
k

)
¥

T

(3.22)

S

w

= 0.5S

w

+0.5di ag (S

w

) (3.23)

6. Calculate the eigenvectors and eigenvalues of (S

w

)°1
S

b

7. Sort the eigenvectors according to decreasing eigenvalues.
8. Project the training data by multiplying the training data and the

eigenvectors.
9. Project the test data by multiplying the test data and the eigen-

vectors.

3.7 NCA

The step by step procedure for NCA is as follows [Goldberger et al.,
2004]:

1. Center the feature dataset by substracting the mean of the dataset,
x.

x = x ° 1
N

NX

o=1
x

i

(3.24)

2. Calculate the mahalanobis metrix of the samples {x1, x2, .., x

N

} with
the belonging labels {y1, y2, .., y

N

}:

d(x

i

, x

j

) = (Ax

i

° Ax

j

)T (Ax

i

° Ax

j

) (3.25)

3. NCA is aiming to find A that maximises the nearest neighbor clas-
sification. The optimisation criterion is implemented by use of
”soft-neighbor”-approach, where p

i j

must be calculated:

p

i j

=
exp(°||Ax

i

° Ax

j

||2
P

k 6=i

exp(°||Ax

i

° Ax

k

||2)
, p

i i

= 0 (3.26)
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3. Mathematical approach for the feature reduction methods

4. p

i

, the probability that a point i will be classified correctly is cal-
culated:

p

i

=
X

j2C

i

p

i j

(3.27)

C

i

= { j |y
j

= y

i

} (3.28)

5. The optimisation criterion f (A) is calculated as the sum of all the
probabilities of a correctly classification:

f (A) =
X

i

p

i

(3.29)

6. A is finally optimised by the gradient rule:
@ f

@A

= 2A

X

i

(p

i

X

k

p

i k

x

i k

x

T

i k

°
X

j2C

i

p

i j

x

i j

x

T

i j

) (3.30)

7. Project the training data by multiplying the centered training data
and A.

8. Project the test data by multiplying the centered test data and A.

NCA was implemented by using the Matlab Toolbox for Dimensionality
Reduction developed by Laurens van der Maaten.

3.8 MCML

The step by step procedure for MCML is as follows [Globerson & Roweis,
2005]:

1. Center the feature dataset by substracting the mean of the dataset,
x.

x = x ° 1
N

NX

o=1
x

i

(3.31)

2. Calculate the mahalanobis metrix of the samples {x1, x2, .., x

N

} with
the belonging labels {y1, y2, .., y

N

}:

d(x

i

, x

j

|A) = d

A

i j

= (x

i

°x

j

)T

A(x

i

°x

j

) (3.32)

where A denotes the PSD matrix.
3. Calculate the conditional probabilities p

A( j |i ) and the conditional
distribution p0( j |i )

p

A( j |i ) =
exp°d

A

i j

P
k 6=i

exp°d

A

i k

, i 6= j (3.33)

p0( j |i )_
(

1 y

i

= y

j

0 = y

i

6= y

j

(3.34)
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3.8. MCML

4. Minimise A by the the Kullback–Leibler (KL) divergence between
p0 and p

A:

min
A

=
X

i

K L[p0( j |i )|p A( j |i )] (3.35)

5. Project the training data by multiplying the centered training data
and A.

6. Project the test data by multiplying the centered test data and A.

MCML was implemented by using the Matlab Toolbox for Dimensional-
ity Reduction developed by Laurens van der Maaten.
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Feature extraction -

EMG 4
This chapter describes the features extracted from the EMG. The fea-
tures extracted from the EEG will not be described, due to their sim-
plicity. Throughout this chapter x

i

denotes the signal in segment i , and
N denotes the length of x

i

.

4.1 Mean Absolute Value

Mean Absolute Value (MAV) is a frequently used feature within EMG
pattern recognition. It is calculated by taking the mean of the absolute
amplitude of the signal [Phinyomark et al., 2012]:

M AV = 1
N

NX

i=1
|x

i

| (4.1)

4.2 Zero Crossing

Zero crossing (ZC) contains information about the frequencies, but is
defined in the time domain. It is defined by the number of time the
value of the signal crosses a certain threshold. The threshold for this
study is 10mV . It is calculated as follows [Phinyomark et al., 2012]:

ZC =
N°1X

i=1
[sg n(x

i

· x

i+1
\

|x
i

°x

i+1|∏ thr eshol d ] (4.2)

4.3 Wilson Amplitude

Wilson Amplitude (WAMP) also contains information about the frequen-
cies but defined in the time domain. It reflects the contraction force and
the firing of motor units. It is defined by the number of time the differ-
ence between two amplitudes exceeds a certain threshold. The threshold
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for this study is 10mV . It is calculated as follows [Phinyomark et al.,
2012]:

W AMP =
N°1X

i=1
[ f (|x

i

°x

i+1|)] (4.3)

f (x) =
(

1, x ∏ thr eshol d

0, other wi se

(4.4)

4.4 Slope Sign Changes

Slope Sign Changes (SSC) also contains information about the frequen-
cies, but defined in the time domain. It is defines as the number of times
the slopes of the signal changes sign, above a certain threshold. The
threshold for this study is thr eshol d = 10mV . It is calculated as follows
[Phinyomark et al., 2012]:

SSC =
N°1X

i=2
[ f ([x

i

°x

i°1) · (x

i

°x

i 01)]] (4.5)

f (x) =
(

1, x ∏ thr eshol d

0, other wi se

(4.6)

4.5 Variance Of EMG

Variance Of EMG (VAR) is defined as [Phinyomark et al., 2012]:

V AR = 1
N °1

NX

i=1
x

2
i

(4.7)

4.6 Wave Length

Wave length is the cumulative length of the signal, and is calculated as
follows [Phinyomark et al., 2012]:

RMS =
N°1X

i=1
|x

i+1 °x

i

| (4.8)

4.7 Root Mean Square

Root Mean Square (SMS) is another frequently used feature within EMG
pattern recognition, and is calculated as follows [Phinyomark et al., 2012]:
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4.8. Mean Frequency

RMS =

vuut 1
N

NX

i=1
x

2
i

(4.9)

4.8 Mean Frequency

Mean frequency (MNF) is a common used frequency domain feature.
The mean frequency is defines by [Phinyomark et al., 2012]:

M N F =
MX

j=1
f

j

P

j

± MX

j=1
P

j

(4.10)

f

j

denotes the frequency in the frequency bin j , P

j

denotes the power in
the frequency bin j and M is the total number of bins.

4.9 Median Frequency

Median Frequency (MDF) is another popular feature from the frequency
domain, and is calculated as follows [Phinyomark et al., 2012]:

MDF = 1
2

MX

j=1
P

j

(4.11)

4.10 Mean Power

Median Frequency (MNP) of the power spectrum is defined as [Phiny-
omark et al., 2012]:

M N P =
MX

j=1
P

j

M (4.12)

4.11 Autoregressive coe�cients

Autoregressive (AR) model is defined as follows [Phinyomark et al.,
2012]:

x

i

=
PX

p=1
a

p

§x

i°p

+w

i

(4.13)

where P denotes the order of the model, which was chosen to be 6 in this
study. w

i

denotes the white noise error.
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4. Feature extraction - EMG

4.12 Sample Entropy

Sample Entropy (SampEn) can be found as follows [Kumar & Dewal,
2011]:

1. Form a m vector based on the original EMG data (x

n

= x1, x2, ..., x(N )):

X

m

(i ) = [x(i ), x(i +1), ..., x(i +m °1)],1 ∑ i ∑ N °m +1 (4.14)

where m is defined as 2 in this study.

2. Calculate the distance between X

m

(i ) and X

m

( j ) as follows:

d [X

m

(i ), X

m

( j )] = max

k=0,...,m°1(|x(i +k)°x( j +k)|)2 (4.15)

3. Calculate the Sample Entropy:

SampEn = l i m{°ln[
A

m

r

B

m

r

]} (4.16)

where A

m

r

defines the number for vector pairs having a distance < r
of length m+1, and B

m

r

defines the number for vector pairs having
a distance < r of length m. r is set to r = 0.2£æ in this study.

4.13 Approximate Entropy

Approximate Entropy (ApEn) can be found as follows [Kumar & Dewal,
2011]:

1. Form a vector of subsequences of X = [x(1), x(2), .., x(N )]:

x(i ) = [x(i ), x(i +1), x(i +2), ..., x(i +m°1)],1 ∑ i ∑ N °m (4.17)

where m is defined as 2 in this study.

2. Calculate the distance between X (i ) and X ( j ) as follows:

d [x(i ), x( j )] = max

k=0,...,m°1|x(i +k)°x( j +k)| (4.18)

3. Find M

m(i ), the number of times the distance is above r. r is set
to r = 0.2£æ in this study. Calculate:

C

m

r

(i ) = M

m(i )
N °m +1

, f or i = 1, ..., N °m +1 (4.19)

4. Then find the mean logarithm of C

m

r

(i ):

√m

r

= 1
N °m +1

N°m+1X

i=1
lnC

m

r

(i ) (4.20)
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4.13. Approximate Entropy

5. Repeat the calculations for m +1.

6. Calculate the ApEn:

ApEn = l i m(√m

r

°√m+1
r

) (4.21)

where A

m

r

defines the number for vector pairs having a distance < r
of length m+1, and B

m

r

defines the number for vector pairs having
a distance < r of length m. r is set to r = 0.2£æ in this study.
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