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Chapter 1

Introduction

The demand for greener standards of living and production in today’s world has
steered the world’s different industries towards the development of more efficient
systems without compromising in quality and/or reliability. One of the outcomes
of such a philosophy is the further development of energy storage systems. These
systems include an energy storage device, usually batteries or ultracapacitors, and
a power converter, often a DC-AC converter. The tandem load-converter-battery is
more and more commonplace, and the electric car is probably its maximum exponent.
It can also be found in trams and metros, where an energy storage system is used to
recover energy from the braking, but it also may allow for running without catenary
between stops. An example of these are Taiwan’s and Seville’s trams, developed by
CAF P&A. Even elevators are starting to incorporate energy storage systems, such
as the Zero Energy Lift concept of Orona, where an elevator may run only on some
initial charge of a battery, consuming from the grid just enough to compensate for
the loses in the system.

Not only in transportation this tandem finds purpose. With the growth of re-
newable energies, and its spread to domestic level, the electrical grid becomes more
and more populated with stochastic energy sources. The user’s goal for installing
these technologies in the household may well be zero balance in their energy bill or
even profit. Regardless the case, an energy storage system is required for maximum
benefit. Panasonic’s E3/DC can be taken as an example.

To meet the efficiency goals, when designing the controller, the dynamics of the
load, the battery and the converter must be under constant consideration.

Batteries are restrictive components that impose some constraints in the way
they can deliver power, both in time and value. Furthermore, the load’s performance
demands must be met. The problem is to bring both systems to terms, meeting the
performance goals without straining the energy storage system beyond it’s limits,
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2 Chapter 1. Introduction

minimizing losses, and prolonging its useful life. Finally, converters are non-linear
devices whose controllers are usually developed to work optimally around different
working points, however more sophisticated strategies can be investigated.
The aim of the thesis is to cover the different topics inside these type of systems,
which can be summarized as follows:

• Modeling of batteries, converters and typical loads such as AC motors, etc.

• Estimation of the load and state of charge of the battery

• Control of power converters

Because the topic is wide, and it would be impossible to consider all the tech-
nologies and possibilities. A catenary free tram has been chosen as case study. The
reason for choosing this system is that it allows for modelling of power converters,
battery packs and a load. Another pecualirity of this system is that all technolo-
gies considered are mature, however the industry keeps aproaching control in a very
conservative manner. As a matter of factor, to use as a base to compare the control
developed in this thesis, a control strategy that resembles that of the industry has
been considered.

1.1 Structure of this work

This work is divided in five chapters, including this introduction. Chapter 2 covers
the modeling of the system. It starts by describing the system, and continues with an
introduction to batteries. It follows by describing the basics about power converters,
and induction motors. At the end the sections dedicated to each subsystem the mod-
els produced are presented along with some simulation results. Chapter 3 covers the
design of a controller that resembles those used in the industry. The scheme is based
on controlling the individual subsystems such that their individual effort allows for
the system to achieve an adequate performance. The controllers employed are linear.
The section starts by covering the battery state of charge estimator, and some results
on online parameter estimation of the battery are shown. It follows by describing
the design of a cascaded loop for the DC-DC converter. The idea is current can be
controlled individually under the assumption that its dynamics are faster than those
attach to the voltage. This will serve as the inner loop. An outer loop is then used
to control the current, where the manipulated variable is the current reference for
the inner loop. The chapter follows with the design of a speed and current control
for the induction motor. Some of the practices show in the literature and used,
and a controller is designed. Furthermore, a Kalman filter is used for estimation of
the flux and angle of the rotor flux. This is certainly the most interesting part of
this chapter, as it employs a non-linear coordinate transformations, and clever use
of reference frames to attain control of the system. The chapter concludes with an
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analysis of the control system as a whole. Chapter 4 cover the development of Model
Predictive Control for the system. Due to the computationally intensive nature of
the approach, low sampling frequencies are imposed. Therefore, the current loops de-
veloped in Chapter 3 for the DC-DC converter and induction machine are employed.
The task of the MPC is then to compute the optimal references for this loops, based
on the energy stored in the capacitor and the battery. Hence, MPC developed is
an holistic approach to the control of the system. The chapter starts by posing the
reciding horizon problem. The next section covers the creation a linear model that
captures the system behavior. The system needs to resembles the actual system, but
not so convoluted that imposes unrealistic computational requirements. The chapter
continues by covering the constraints. This are obtained from the system spectifica-
tions, but also dynamics. Finally reference tracking in Model Predicted Control is
introduced. Unfortunately, no results can be shown for MPC. The thesis closes with
Chapter 5, where the results of the thesis are discussed.

Yet a last remark. A very relevant conclusion is obtained at the end of 4, if not
of the technical type, but that should be clear for anyone working in the field, or for
the same, any field.

1.2 Methods

All the models derived in this project have been derived from first principle analysis.
Furthermore, the value of the parameters in the system can be easily found in the
literature and industrial suppliers when applies.

Because of the dimension of the system under consideration, only simulation re-
sults are shown. It must be said however, that with exception of the battery, the
simulation models used in the thesis are quite accurate. This is because all the sys-
tems covered, again saving the battery, are very deterministic and the parameter can
be usually easily determined or even directly measured.

It should mentioned as well that this is a prospective work, with no real life
application considered, despite that pragmatism has been main philosophy during
most of the development of this work. Despite the ideal aim of this text, application
can easily be found for all the theory covered here.





Chapter 2

Modeling

2.1 Introduction

This chapter covers the modeling of the system. The system at hand is the whole
traction set of tram, this includes:

• A battery pack that works as a power source

• A DC-DC converter that regulates the rate at which power is drawn from the
battery

• An DC-AC converter that serves as actuation for an induction Motor

• An induction motor

For a single tram, more than one set exists. As a matter of fact a typical configuration
would be the one shown in figure 2.1. In the figure above a tram with two traction

Battery MotorConverter

Figure 2.1: Top view of the tram with two traction cars. Each battery is connected to two inverters,
that are in turn connected to two motors.

cars is shown. Each traction car features a battery pack, two traction converters
with two motors per traction converter. In an effort to simplify the model, while
retaining all the important features, some assumptions have been made:

5



6 Chapter 2. Modeling

• There is no slip on the wheels

• There are no mechanical brakes

• The mechanical load is shared equally among the eight motors of the system

• As a consequence, a single motor is modeled for an inverter with halved power
rating

• In the same manner, the battery is downsized to a fourth of its actual size

The first assumption has implication in the mechanical model. Since it is not
the focus of this work to model the tram to detail, it can be safely disregarded.
The second assumption has bigger impact however. By removing the possibility of
a mechanical brake, the tram relies exclusively on the motor to stop movement. Of
course, in a real applications mechanical brakes exist. The consequence is a higher
reliance on the motor speed control, but also bigger return of energy to the battery
during braking, hence, higher. The third assumption is a simplifaction of the actual
system. Differences in the motor mechanical loads may happen for many reasons:
different friction coefficients, unbalanced share of mass inside the car, speed differ-
ences between the motors in the inside of the curve and outside, etc. Because it is
impossible to account for all the situations in the time allocated for this work, the
decision to assume equal load sharing has been made. The following assumption is
a consequence of the third assumption. Finally, the fifth assumption, is yet again
another simplification of the actual system. The deviation from reality resides in
that during real life operation, the different loading of the motors connected to a
single battery pack will impact the inner state of the battery, while in the considered
model, the battery state depends exclusively on the actions of the motor considered.

The model presented in this chapter is summarized in figure 2.2. Each model
output is an input for the two contiguous systems. Thus the battery model computes
the voltage of the battery at every instant. The DCDC converter model uses the
motor’s current and battery voltage to comput the battery current and bus voltage.
Finally the induction motor’s model compute the bus current and torque from the
speed of the load and the bus voltage.

Battery pack DC-DC converter
Inverter

Mechanical load

Vbatt

ibatt

vbus

ibus

τ

ω

and
Induction Motor

Figure 2.2: Top view of the tram with two traction cars. Each battery is connected to two inverters,
that are in turn connected to two motors.

The chapters starts by describing the battery pack model in section 2.2. It
starts introducing how batteries work, followed by a brief description of the different
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modeling approaches in the literature. The section ends with a model of the battery
pack. In section 2.3 the basic theory about power electronic converters is laid down.
This is used to later develope a switched model, as well as a Generalized Average
Model, for the DC-DC converter in section 2.4. Furthermore, section 2.5 describes
the inverter and Space Vector Modulation. Finally, section 2.6 covers the model of
the induction motor. The two phase induction model that is used for simulation is
covered. A model that can be used for control design, know as field oriented model,
is then derived upon the two phase model. Furthermore, the transformation from
and to the different frames in which the motor is represented are covered.

2.2 Battery model

Batteries are electrochemical devices that store electrical energy. When electric volt-
age is applied to the batteries and a current starts to flow into them a series of chemi-
cal reactions occur that store the energy as a electrical potential, or voltage, between
the two electrodes. The process by which this happens strongly depends on the
chemistry. During this work only Li-ion batteries are considered. Non-rechargeable
batteries are usually known as primary batteries, while rechargeable are known as
secondary batteries. From now on, for the sake of brevity, the term battery will be
used univocally for secondary batteries.

The smallest working unit inside a battery is the cell. In many cases, specially in
portable electronics and small toys, the battery consists on a single cell. In bigger ap-
pliances, industrial equipment and vehicles a battery consist of many cells connected
in series and parallel. This are usually referred to as battery packs. Sometimes, when
talking about battery packs, the term may also include the helper electronics that
keep the internal cells balanced, controls the cooling and provide information about
the state of the battery. This is known as Battery Management System (BMS). In
the sequel when referring to the battery pack, the BMS is not accounted for unless
explicitly stated.

What follows is a series of explanations on the concepts needed for modeling the
battery pack. At the end of the section the model is described.

2.2.1 Single cell models

Battery models are presented in the literature mostly as single cell models. There
exist essentially two types of approaches to model batteries: electrochemical models
and electrical equivalent models. Electrochemical models try to model the chemical
reactions inside a cell using the Butler-Volmer equation for electrochemical kinetics
[26][29]. This models are obviously very dependent on the chemistry of the cell. On
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top of that, they make use of a high number of parameters and are very complex,
which makes them not practical for the use in this work. Electrical equivalent models
try to capture the electrical behavior of the cell by means of an equivalent circuit,
most usually consisting on an RC network and some numerical, experiment based,
approximations of the insides of the cell [19][31][22]. Because of its simplicity, yet
accurate simulation value, this is the approach chosen for this work.

Equivalent circuit

An electrical circuit is used to capture the dynamic electrical behavior of the cell.
The circuit consists on at least one RC network connected in series to a variable
voltage source, known as open circuit voltage (OCV). How the OCV is modeled
will be treated later. The series impedances (RC networks) in the circuit are often

Uoc

R1

C1

Rn

Cn

Rs

Vbatt

ibatt

Vc1 Vcn

Figure 2.3: Model of a battery cell

given some physical meaning in the literature [18][17], as it may be the electrolyte’s
resistance, ion diffusion, polarization,etc. Other approach is just looking at the cell
from a purely behavioral perspective, and set the time constants of the circuity based
on experiments, as in [24][15]. Time constants are determined from experimentation,
by exciting the batteries within some specific bandwidth of interest. Additionally,
the impedance is often made dependent of the state of charge [24][31][18]. The OCV
and SoC are explained in the sequel.

State of charge and open circuit voltage

State of Charge (SoC) and Open Circuit Voltage (OCV) concepts are strongly related.
State of charge is often stated as the amount of energy stored in the battery. However
most of the time it is computed as the amounts of coulombs or Ah (Ampere-hour)
in the battery:

SoC = SoC(0) +
t∫

0

i

C
dt (2.1)
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where:
i is the battery current [A]
C is the capacity of the battery [A · s]

Indeed, the SoC, when computed as (2.1), it is hardly a measure of energy, as
Ah or As (Ampere-second) are not equivalent to Jules or Watt-hours. However it is
still a valid metric, and it is in fact a very reliable indicator of energy. In (2.1) the
value of SoC will takes values from 0 to 1, instead of the usual 0% to 100%.

Open circuit voltage is the driving voltage in the battery. This is the voltage
generated by the chemical reactions, and it is very dependent on the SoC. This is
the reason it is also sometimes used to determined the SoC of the battery, instead
of current integration. The profile and behavior of this voltage depends very much
on the chemistry of the battery. In this work the focus is on Li-ion batteries, and
the OCV behavior for other chemistries is of no consequence to it. The main char-
acteristics of the Li-ion batteries’ SoC-OCV profiles is its flatness, making it difficult
to be used as SoC indicator. Additionally, Li-ion batteries present hysteresis in the
OCV [19]. In [19] the model of the hysteresis is purely data driven. The OCV is

Figure 2.4: Hysteresis phenomena during charge and discharge of li-ion battery [4]

mapped for different values of SoC and computed at each instant. Similarly, in [4],
a polynomial approximation is used. In [17], hysteresis is approximated using the
following equation:

V̇h = − 1
β
i (sign(i)Vh − Vhmax) (2.2)

Voc = Uoc + Vh (2.3)
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where:
Vhmax is the maximum deviation from the mean VOC due to the hysteresis [V]
Vh is the deviation from the mean VOC due to hysteresis [V]
Uoc is the mean value of the VOC [V]
β is a constant obtained empirically [A · s]

The resulting behavior can be seen in figure 2.5. In equation (2.2), Vh, cannot take

State of Charge [%]
20 30 40 50 60 70 80 90 100

O
C

V
[V

]

340

360

380
Open voltage current

State of Charge [%]
0 10 20 30 40 50 60 70 80 90 100

V
h

[V
]

-20

0

20

Hysteresis

Figure 2.5: Open circuit voltage and hysteresis as model by the equations presented

values bigger or smaller than ±Vhmax . Notice that when Vh reaches the value Vhmax
when charging (i > 0), its derivative is zero. Same effect when discharging. This
limitation is therefore symmetric, which fits the behavior shown in [19]. The term
1
β i relates the dynamics of the hysteresis to the current. This is the chosen method
to model the hysteresis, as it doesn’t require extensive data and long experiments.
Finally, the mean voltage Uoc is modeled by means of a nth order polynomial fitted
from data.

2.2.2 Battery pack

Batteries consists of several cells connected in series and parallel to attain the energy
and voltage goals of the system. As opposed to the cell models, it is relatively diffi-
cult to find models for battery packs in the literature. In some cases, a model for a
single cell is developed under the assumption that the battery pack can be modeled
by stacking several cell models [17][24]. For small packs this is doable, but for a big
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system it’s not convenient because of the computational load. A different approach
consists on considering the pack as a single battery, producing a model similar to the
single cell model, but accounting for the phenomena due to the difference between
cells [18]. Finally, in [15] it is proposed to model the battery pack itself under the
assumption that it is well designed. That is, cells don’t present big variations and
inside the pack no big temperature gaps exist. This is the approach taken, as it is
assumed that the battery pack has already being designed with purpose. Addition-
ally, it doesn’t require a characterization of how the cell parameters distribute as in
[24] and [18].

2.2.3 Model

The model is summarized now. Equations for the RC network and SoC are linear:

V̇c1

V̇c2
...

V̇cn
˙SoC


=



− 1
R1C1

0 . . . 0
0 − 1

R2C2
0 . . . 0

... . . . ...
0 . . . − 1

RnCn
0

0 . . . 0 0


·



Vc1

Vc2
...

Vcn
SoC


+



1
C1
1
C2
...

1
Cn
1
C


· i (2.4)

The equations describing OCV behavior are:

UOC =
n∑
k=0

ak · SoC(t)k (2.5)

V̇h = − 1
β
i (Vhmax + sign(i)Vh) (2.6)

Voc = UOC + Vh (2.7)

Finally the output voltage of the battery is:

Vbatt =
∑
n

Vcn + Voc (2.8)

Before concluding this section, a simulation of the battery model subjected to an
arbitrary train of pulses is shown in figure 2.6.

2.3 Power electronic converters

Power electronic converters, power converters, or simply, converters, are electronic
systems that use high power versions of common semiconductors, like bipolar tran-
sistors, MOSFETS, diodes, or specialized ones like IGBTS or thyristors, to "shape"
electrical energy. Different converter topologies can achieve different purposes like
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Figure 2.6: Voltage, battery current, and state of charge of the battery when subjected to a train
of current pulses
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• Rectification: converting an AC voltage or current into DC.

• Amplification

• Inversion: converting an AC voltage or current into DC

This section covers the modeling of power converters for simulation but it also gives
hints on the mathematical modeling of the converters for control purposes. Some
references to understand power electronics converters are [20][2]. They cover power
converters from the design point of view, including the basic topologies. However
they give good insight on the necessary concepts and help understanding the behav-
ior of any type of converter, and therefore they are very useful for modeling. [27]
covers modeling of the converters and most usual control techniques, and it even
goes into non-linear control of converters. Finally, [28] make some interesting points
from the mathematical perspective when it comes to modeling of control converters,
treating them as switched systems. It also includes a chapter on simulation, where
it addresses the difficulties and options when simulating power electronic converters.

The purpose of this section is to show the modeling of both the inverter and
an interleaved dc-dc power converter. During the modeling, some assumptions have
been made:

• Switches are ideal. This implies:
Switching is instantaneous. That is there is no continuous transition from

open to close or vice versa
When open, resistance is infinity. When close resistance is zero

• Switching frequency is constant. This true for most of the practical converters
as well.

Instantaneous switching is a fair assumption, with an important implication. Switch-
ing from an open state to a close state, and vice versa, happens in a few microseconds,
or even nanoseconds. This indeed mean that their effect on the dynamics is negligi-
ble. However, when the switch closes, voltage accross the switch decays while current
rises, and the opposite when it open. This transition translates into switching losses,
and by considering instant transitions, they will not be accounted for in the model.
There is a powerful reason not include them, and is that they are difficult to model
accurately, and because of the fast transition, it would slow simulation even further.
Furthermore, even though this losses are big in absolute terms, they are not so big
in relative terms, reaching some converters efficiencies of 99%.

Modeling of power converters will first be addressed with a simple example. Then
the inverter and the interleaved dc-dc converter will be addressed.
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2.3.1 Boost converter example

In the literature, one can find many examples where a buck converter is used to cover
the basics on power converters [20][28]. The reason to choose the slightly more com-
plicated boost converter to explain power converters is that it shows the important
role of the inductance in many topologies. The converter in (2.7) is the classical boost

C

D

R

L

vd iL
vo

S

Figure 2.7: Boost converter

converter. The boost converter is also known as step-up converter, as it transforms a
dc electrical voltage into a another dc voltage of higher value. In practice, the boost
converter is not implemented as shown in the figure, however it serves its didactic
purpose the same.

The boost converter works as follows. First consider that there is a voltage vo
across capacitor C, bigger than voltage vd and switch S is open. Some current iL is
flowing through L. When the switch S is closed, a current iL starts flowing through
the inductance L. Notice that when the switch S is closed, the voltage across it is
zero. This results in the circuit equivalent shown in figure 2.8. The converter can

C

R

L

vd iL
vo

Figure 2.8: Mode 1: The diode separates the converter into two circuits

be modeled as two separated circuits. One with the inductor and the source, the
other including the capacitor and the resistance. This separation is due to the diode
D, which blocks any current flowing from the capacitor through the switch. This
results in a current of increasing value that flows through inductor L, while capacitor
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C discharges through R:

diL
dt

= vd
L

(2.9)

dvo
dt

= − vo
RC

(2.10)

When the switch S opens again, current stops flowing through it. The current iL
don’t have any other path that is is not through D and into C and R, effectively
charging C and increasing its voltage, and therefore output voltage. This can be
shown again as an equivalent circuit in figure 2.9.

C

D

R

L

vd iL
vo

Figure 2.9: Mode 2: Current goes through the diode and into the load

The resulting equations are

diL
dt

= vd − vo
L

(2.11)

dvo
dt

= 1
C

(
iL −

vo
R

)
(2.12)

Under the initial assumption that vo > vd, the current iL starts decreasing in value.
Figure 2.10 summarizes this behavior.
From this equations one can deduce the important role the inductance plays in the
converter. When the switch opens, the inductance forces the current to keep flowing,
effectively adding its own voltage to the input voltage vd. By controlling the time the
switch is on and off, one can control the input-output voltage ratio. As a matter of
fact, the steady state ratio depends only on this. This can be shown using equations
(2.9) and (2.11). During steady-state, the mean value of iL doesn’t change, and
assuming a big enough capacitor C, the drop in the output voltage during the off
period is negligible. This implies that during the off (S = 0) period, iL decreases
as much as it increased during the on (S = 1) period. Or in other words, the area
under vL in figure 2.10 during the on period is the same as during the off period:

vd · ton = − (vd − vo) · toff (2.13)
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t

t

vd

vd − vo

vdton

toff

ton

S = 1 S = 0vL(t)

iL(t)

Figure 2.10: Current and voltage in a boost converter during steady-state operation

Dividing both sides by the switching period Tsw = 1
Fsw

, and introducing a term δ,
known as duty ratio:

ton + toff
Tsw

= 1 (2.14)

ton
Tsw

= δ (2.15)

toff
Tsw

= 1− δ (2.16)

Vd · δ = − (Vd − Vo) · (1− δ) (2.17)
Vo
Vd

= 1
1− δ (2.18)

When the converter behaves like this, it is known as continuous-mode operation or
continuous conduction mode. However it may happen that the current iL drops to
zero while the switch is off and before it turns on again.

This may easily happen when the load is too big, and therefore the current
decreases faster. When this happens, it is known as discontinuous-mode operation or
discontinuous conduction mode. The existence of a discontinuous mode is common in
converters that include a fly-wheeling diode. During discontinuous mode the circuit
looks like figure 2.12. And the resulting equations are:

diL
dt

= 0 (2.19)

dvo
dt

= − Vo
RC

(2.20)
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t

t

vd

vd − vo

vdton

toff

ton

S = 1 S = 0vL(t)

iL(t)

iL(t) = 0

ti>0 < toff

Figure 2.11: The boost converter going into discontinuous mode operation. The current drops to
zero before the end of the switching period

C

R

L

vd iL
vo

Figure 2.12: Mode 3: Discontinuous conduction mode

From the explanation given so far, one may deduce that power converters can be
modeled indeed as switched linear systems. A set of linear models describe the
different modes of operation, and a selection function decides the model at each
instant. That is

ẋ(t) =
m∑
i=1

qi (t, x(t)) (Aix (t) +Biu(t)) (2.21)
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where:
Ai is the A matrix of mode i
Bi is the B matrix of mode i
qi is a selection function that may only take values 0 or 1
x is the state vector
u is the input vector

If there is no discontinuous mode, the selection of models depends exclusively on
what switches are active, which in turn depends on the modulation, which can be
PWM, space vector, etc. However, if discontinuous modes exist, then the selection
function must consider also the states. Consider the following modes on the boost
converter:

• Mode 1: Equations (2.9) - (2.10)

• Mode 2: Equations (2.11) - (2.12)

• Mode 3: Equations (2.19) - (2.20)

When in mode 1, and the current falls to zero, it must jump to the model correspond-
ing to the discontinuous conduction mode, mode 3. This behavior can be captured
with a finite state machine as in figure 2.13.

S == 0

S == 1

S == 1 S == 0
iL ≤ 0

Mode 1 Mode 2

Mode 3

Figure 2.13: Automaton describing the behavior of the boost converter

Switching frequencies of a power converters are in the order of hundreds of kHz
for small converters, and a few kHz or even hundreds of Hz for bigger converters.
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This makes simulation of a few seconds a very computationally heavy task. For long
simulation where the average behavior is more relevant an averaged model is used.
The averaging of switched systems is covered in detail in [28], where the switching
function in (2.21) plays a determinant role. Averagign of the converters in this work
is covered in the next two sections for the DC-DC converter and the inverter.

2.4 Interleaved boost converter

The converter topology presented here is an interleaved bidirectional DC-DC con-
verter. The interleaved term refers to the use of two or more branches of switching
cells, properly shifted in phase to minimize current ripple. Furthermore, power may
flow both ways in the converter, therefore is a bidirectional converter. Finally, DC-
DC is in reference to the type voltage on both sides of the converter. This converter
is the buffer between battery pack and inverter. This sections covers the modeling

L1

L2

S+
1

S−1 S−2

S+
2

C

Vbatt

Vbus

Figure 2.14: Bidirectional interleaved boost converter

of the converter. The modeling of the converter is done in two steps. A first step
is a detailed analysis of the different modes of the converter. A converter may be
viewed as a hybrid system, and in consequence it will go through a series of discrete
states that in turn can be individually modeled as dynamical systems. To avoid
confusion between the term state in the sense of state-space, and the discrete states
of the hybrid system, the latter will be referred to as modes. Since the switching
frequency of the converter is usually in the range of kHz, only the slow dynamics are
of interest, i.e. the average dynamics. Consequently the next step is to obtain the
average dynamics from the switched dynamics, what it is known as a Generalized
Average Model (GAM) [27].

2.4.1 Switched model

To analyze the behavior of this converter, it is more convenient to start with a single
branch. Once the concept has been grasped it may be expanded further. Some
simplifying assumptions are made on top of the already stated in section 2.3:
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• Inductances are designed so that they don’t reach saturation

• Both switches in a single branch can’t be closed at the same time

• Modulation is PWM.

L

S+

S−

C

iL
vC

ibus

Vbatt

Figure 2.15: Bidirectional boost converter with a single branch

Following the procedure established in the previous section, and considering the
previous assumptions, two modes can be identified. With equations:

C

L

Vbatt

iL

vC ibus C

L

Vbatt

iL

vC ibus

(a) (b)

Figure 2.16: Modes: (a) Mode 1, (b) Mode 2

Mode 1: (2.22)
diL
dt

= Vbatt
L

(2.23)

dvC
dt

= − ibus
C

(2.24)

Mode 2: (2.25)
diL
dt

= Vbatt − vc
L

(2.26)

dvC
dt

= −ibus + iL
C

(2.27)

There exists yet another mode, a discontinuous conduction mode, possible when
both switches are open at the same time. Since during normal operation that is
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not possible, the mode has been ignored, which simplifies the analysis greatly. The
outputs of the model are, as shown in 2.2 the battery current ibatt, and the bus
voltage Vbus:

ibatt = iL (2.28)
Vbus = vc (2.29)

The converter as it is now, is indeed a simpler version of the boost converter shown
in the previous section. As a matter of fact adding a second branch it is as simple as
considering the new branch as an independent converter, sharing the state variable
vC and with ibatt = iL1 + iL1 .
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Figure 2.17: Output voltage and input current of the DCDC interleaved converter when started

Some simulation results are shown in figure 2.17. Figure 2.18 shows a detail of the
current in the inductances of the converter. Notice how in the lower figure, the
currents tesselate. This because the duty ratio is of 50%, i.e. the current in both
branches show a perfectly shifted current. In the upper figure however, the duty
cycle is of 20%, which results in the current ripple shown. This explain why is it
important to work around on duty ratio of said value. Furthermore, the battery pack
is designed so its voltage matches half the inverters nominal voltage.

2.4.2 Generalized average model

Because of the hybrid nature of power converters, it is difficult to design a controller
based on the switched model. Certainly, some techniques exist to control said sys-
tems, as stabilization via a Common Lyapunov function [7]. However because of the
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Figure 2.18: Tesselation of the inductor currents and current ripple
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high switching frequency of these systems, it is not possible to develop a controller
able to work between transitions. A different approach is to exploit this feature of
converters to generate an average model from which a controller can be derived. This
is possible due to the time-scale separation between the dynamics of the dynamical
system and the time variations of the derivative of the states [28], that is, the switch-
ing from mode to mode (and therefore its associated continuous system) is faster
than the global dynamics themselves.

Consider a switched system described by the following expression

ẋ(t) =
m∑
i=1

qi (t) (Aix (t) +Biu(t)) (2.30)

where:
Ai is the A matrix of mode i
Bi is the B matrix of mode i
qi is a selection function that may only take values 0 or 1
x is the state vector
u is the input vector

Under the assumption of constant cycle time, i.e. constant switching frequency,
the averaged model of this system is computed as follows [28]

ẋ(t) =
t∫

t−T

m∑
i=1

qi (s) (Aix (s) +Biu(s)) ds (2.31)

Since

di(t) =
t∫

t−T

qi(s)ds (2.32)

where di(t) is the duty ratio of mode i

ẋ(t) =
m∑
i=1

di(t) (Aix (t) +Biu(t)) (2.33)

which can be interpreted as a weighting of the modes based on how long time the
system spends on each. The issue with this approach is its inability to capture higher
dynamics of the system or AC behavior [28][27]. As a matter of fact, this "classical"
averaged model is an special case of what is refer to in [27] as Generalized Averaged
Model (GAM),or Dynamic Phasor Model in [28] and [30]. Under the scope of GAM
approach, the classical averaged model would only consider the zero order harmonic,
whereas the GAM considers an arbitrary number of harmonics. In the case of the in-
terleaved converter, going for orders beyond the fundamental adds no intrinsic value
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to the model itself. However since the procedure doesn’t get overly convoluted when
obtaining the GAM, it is still preferred, in the eventual case that the model wants
to be extended.

Figure 2.19 shows the equivalent electrical diagrams of the converter in figure 2.14.

L1

L2

C

Vbatt

Vbus

q2Vbusq1Vbus

iL1q1 + iL2q2

Figure 2.19: Bidirectional boost converter with a single branch

The converter has been separated in two by the switching branches. The circuit in
the left side correspond to the battery side, while the right side is the bus side. The
switching branches have been replaced by two voltage sources in the left-side and a
current source in the right side. From the point of view of the inductances, when
the switches are turned on and off, a voltage swinging from 0 to vC appears on one
of the ends. This can be seen by comparing equations (2.23) and (2.26). Similarly,
on the capacitor side, it is seen as a current swinging from 0 to iL. In the case
of the interleaved converter, currents from both inductances go into the capacitor.
Variables q1 and q2 are described by the switching functions. In this case switching
functions of constant frequency and variable width. Variables q1 and q2 take values
{0, 1} depending on the state of S+

1 :

qi =


1 S+

i = 1, S−i = 0
0 S+

i = 0, S−i = 1
not defined S+

i = 0, S−i = 0
(2.34)

During normal operation it won’t happen that both switches are open at the same
time, thus no need to find a definition for qi in that case. Writing the equations for
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figure 2.19

diL1

dt
= 1
L

(Vbatt − vCq1) (2.35)

diL2

dt
= 1
L

(Vbatt − vCq2) (2.36)

dvC
dt

= 1
C

(iL1q1 + iL2q2 − ibus) (2.37)

The idea behind the GAM is to find the Fourier transform of the above equations

〈x〉k = 1
T

t∫
t−T

x (τ) e−jkωτdτ (2.38)

Notice how the transform in (2.38) is different from the usual transform in that this
one is windowed over a period T , corresponding to the switching period. This is
how the ’averaging’ happens. Consider the 0 harmonic (i.e. k = 0), that’s indeed
the average value over a switching period. Additional harmonics capture higher
order dynamics introduced by the switching. The transform (2.38) can be applied to
equations (2.35) to (2.37) using the following expression, obtained from taking the
time derivative of (2.38) [27]

d〈x〉k
dt

= −jkω〈x〉k + 〈dx
dt
〉k (2.39)

This expression shows an imaginary part for k > 0. As previously stated, for this
converter, only the 0 harmonic is of interest (one could say, the DC component).
However, if it were the case that an AC stage existed, harmonics of higher order
would be relevant. In that case the imaginary part could be treated as an additional
state variable. Now, applying (2.39) to (2.35)-(2.37)

d〈iL1〉0
dt

= 〈diL1

dt
〉0 = 1

L
(〈Vbatt〉0 − 〈vCq1〉0) (2.40)

d〈iL2〉0
dt

= 〈diL2

dt
〉0 = 1

L
(〈Vbatt〉0 − 〈vCq2〉0) (2.41)

d〈vC〉0
dt

= 〈dvC
dt
〉0 = 1

C
(〈iL1q1〉0 + 〈iL2q2〉0 − 〈ibus〉0) (2.42)

As shown in [27]

〈x · y〉k =
∑
i

〈x〉k−i〈y〉i (2.43)

then it follows for k = 0

〈x · y〉0 = · · ·+ 〈x〉1〈y〉−1 + 〈x〉0〈y〉0 + 〈x〉−1〈y〉1 + . . . (2.44)
≈ 〈x〉0〈y〉0 (2.45)
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It is also at this point, by neglecting the effect of the higher harmonics, where the
"classical" averaged method may fail to properly capture the dynamics of the con-
verter. Equations (2.40)-(2.42) can now be expanded

d〈iL1〉0
dt

= 1
L

(〈Vbatt〉0 − 〈vC〉0〈q1〉0) (2.46)

d〈iL2〉0
dt

= 1
L

(〈Vbatt〉0 − 〈vC〉0〈q2〉0) (2.47)

d〈vC〉0
dt

= 1
C

(〈iL1〉0〈q1〉0 + 〈iL2〉0〈q2〉0 − 〈ibus〉0) (2.48)

Now the Fourier transform of (2.38) can be applied to q1 and q2 separately. It should
be noted that these are square signals with width t and period T such that:

di = t

T
(2.49)

Then their Fourier transform is:

〈qi〉k =

di(t) k = 0
j

k2π(e−jk2πdi) − 1 k 6= 0 (2.50)

where

d(t) = d1(t) = d2(t) (2.51)

Where d(t) is indeed the duty ratio, and the value of the DC component of switching
function. Then the Generalized Average Model of the interleaved boost converter
considering only the 0 harmonic is:

d〈iL〉0
dt

= 2
L

(〈Vbatt〉0 − 〈vC〉0d(t)) (2.52)

d〈vC〉0
dt

= 1
C

(2〈iL〉0d(t)− 〈ibus〉0) (2.53)

Writing it in matrix form and removing the notation for the Fourier transform of
state variables:

˙[
iL
vC

]
=
[

0 − 1
L

2
C 0

]
︸ ︷︷ ︸

A

·
[
iL
vC

]
︸ ︷︷ ︸
x

d+
[

1
L 0
0 − 1

C

]
︸ ︷︷ ︸

D

·
[
Vbatt
ibus

]
︸ ︷︷ ︸

δ

(2.54)

Notice that the state variables in this model are not the actual variables of the
system, but their windowed harmonics.
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2.4.3 Switched model vs. GAM

Simulation results are shown now comparing the GAM and the Switched mode.
Figure 2.20 shows the switched model and GAM, where a step on the load has been
performed at around the 1 second mark. It can be seen the GAM tracks almost
perfectly the average dynamics.
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Figure 2.20: Comparison between the GAM and the switched model

An interesting detail that can be observed from the top figure, showing the output
voltage of the converter, is that the ripple on the voltage also increases after the load
step. Had the GAM also considered higher order harmonics, this change in ripple
could have been accounted for. However the complexity that this would have added
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to the model was deemed unnecessary. In converters with lower switching frequencies
( < 1kHz ), or lower inductances and capacitor values, the ripple can be rather high
and have an important impact in the behavior of the converter. In those cases a
higher order GAM would be justified.

2.5 SVM Inverter

The objective of this section is to describe the inverter. An inverter is a power
electronics converter that transforms a DC voltage into an AC voltage of the desired
amplitude and frequency. The figure shows the electrical diagram of said converter.
Many variations of inverters exists. In this work a bi-level three-phase is covered. The
two-level term refers to the number of voltage levels that can yield. This definition
is rather arbitrary based on how this voltage levels are counted, therefore sometimes
it can be found that this converter is referred to as a three-level converter. In the
sequel it will be referred plainly as inverter.

S+
2

S−2 S−1

S+
1

vd

S+
2

S−2

va
vb
vc

Figure 2.21: Inverter

Consider the converter in the figure, when switches S+
1 and S−2 , voltage between

terminals Va and Vb becomes:

vab = va − vb = vd (2.55)

If, on the other hand S−1 and S+
2 are closed, then:

vab = −vd (2.56)

Thus, with the right combination of switches an alternating voltage can be obtained
from a positive voltage. It only remains to find the appropriate switching sequence
to obtain a voltage of the desired amplitude and frequency. This is determine dy the
modulation. An example would be PWM. A three phase sinusoidal can be compared
against a triangular signal, that in turn would trigger the corresponding switch. How-
ever industry standard is what is known as Space Vector Modulation (SVM) that
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Switching combination Space Vector vab vbc vca vα vβ

S̄1S̄2S̄3 v0 0 0 0 0 0

S1S̄2S̄3 v1 vd 0 −vd vd 0

S1S2S̄3 v2 0 vd −vd 1
2vd

√
3

2 vd

S̄1S2S̄3 v3 −vd vd 0 −1
2vd

√
3

2 vd

S̄1S2S3 v4 −vd 0 vd −vd 0

S̄1S̄2S3 v5 0 −vd vd −1
2vd −

√
3

2 vd

S1S̄2S3 v6 vd −vd 0 1
2vd −

√
3

2 vd

S1S2S3 v7 0 0 0 0 0

Table 2.1: Output voltages for each switching combination and the αβ equivalent. Sn = 1 and
Sn = 0 are referred to as Sn and S̄n respectively.

will be covered in the sequel. The reason for SVM to be preferred over PWM has to
do both with bus voltage utilization, as shown in [2], and lower harmonic content of
the resulting signal.

Since both switches in a single branch cannot be closed at the same time, the
state of a branch can be summarized as:

Sn =

1 S+
n = 1;S−n = 0

0 S+
n = 0;S−n = 1

(2.57)

Table 2.1 covers all possible switch combinations and its respective voltage output.
The rationale behind SVM is each switch combination can be represented as voltage
vectors in αβ coordinates. This is shown in figure 2.22 and table 2.1. For the
converter under study, there exist 6 active vectors, v1 through v6, and two null
vectors v0 and v7. Voltage references to the inverter are given in αβ, and it
is reconstructed as a linear combination of the three closest realizable vectors. For
instance, a reference voltage v∗αβ that falls between vectors v1 and v2 will be produced
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v0, v7 v1

v2v3

v4

v5 v6

θ

∣∣∣v∗αβ∣∣∣t1

t2
α

β

Figure 2.22: Space vector disposition in the αβ axis. Notice vectors v0 and v7 are in the origin.

by switching between this vectors as follows:

vαβ = v1t1 + v2t2 + v0t0 (2.58)

t1 =

∣∣∣v∗αβ∣∣∣
√

3vd
2

Tsw sin
(
π

3 − θ
)

(2.59)

t2 =

∣∣∣v∗αβ∣∣∣
√

3vd
2

Tsw sin (θ) (2.60)

t0 = Tsw − t1 − t2 (2.61)

where:
tn is the time spent in vector vn [ s ]∣∣∣v∗αβ∣∣∣ is the amplitude of the reference signal [ V ]
θ is the angle of the reference signal [rad]
vd is the bus voltage [V]

The maximum achievable voltage amplitude |vαβ|max corresponds to the voltage lying
in the circle inscribed inside the hexagon in figure 2.22, that is:

|vαβ|max =
√

3
2 vd (2.62)

Since the switches are ideal, the simulation model of the inverter reduces to a
mapping from the bus voltage vd to the output voltages vab, vbc, vcd defined by the
modulation, as follows:

vab = vd (S1(t)− S2(t)) (2.63)
vbc = vd (S2(t)− S3(t)) (2.64)
vca = vd (S3(t)− S1(t)) (2.65)
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where the switching signals S1 through S2 are determined by the times in (2.59)-
(2.59). Furthermore, the bus current id, can be computed from the load currents ia,
ib and ic and the switching at each instant, as follows:

id = ia(t)S1(t) + ib(t)S2(t) + ic(t)S3(t) (2.66)

While the load currents iabc(t) are of course determined by the connected load:

diabc
dt

= f (t, iabc, vabc) (2.67)

where

vabc =

vabvbc
vca

 (2.68)

The voltage produced is then a combination of steps, that on average resemble the
reference voltage. The reference voltage v∗αβ is shown together with the actual output
voltage in figure 2.23. The resulting current for an inductive load is shown as well. It
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Figure 2.23: Output inverter voltage and current

should result obvious then that the inverter doesn’t have dynamics of itself, and just
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defines a mapping from vd to vabc and from iabc to id as shown by equations (2.63) -
(2.66). As a result, the averaged model of the inverter reduces to assuming that it
can indeed reproduce any voltage reference ideally.

2.6 Induction Machine

An induction or asynchronous motor is an electrical machine that transforms elec-
trical energy into mechanical energy. The machine was invented by Nikola Tesla and
Galileo Ferraris independently in 1887 and 1885 respectively. An induction motor
works by generating a rotating magnetic field by means of a set of coils in its stators.
This coils are effectively placed 120◦ from each other (Figure 2.24), which coincides
with phase shift in a three phase voltage. The magnetic field revolves at the speed of
the frequency of the supplied electric voltage. The rotor of the induction machines
consists in a series of coils connected to each other, oriented towards those of the
stator. As a matter of fact, the most common design of the rotor is the one known
as squirrel cage. It consists on two rings connected by spokes, and it resembles the
aforementioned cage. Because of the rotating field the stator, currents appear in
the rotor, that in turn produces its own magnetic field (back mmf). The interaction
between these magnetic fields generates a force that makes the rotor turn. Since
the voltage on the rotor will only appear when it is subjected to a magnetic field of
varying magnitude, if the rotor reaches synchronous speed, i.e. the same speed as
the rotating field generated by the stator, no current appears in the rotor, and no
back mmf exists and no torque generation. This means that the induction machine
won’t reach synchronous speed, thus the name, asynchronous motor. Further more,
the difference between the rotor speed and the synchronous speed is called slip. Gen-
erally speaking, the higher the slip, the stronger the generated torque.

The model for the induction machine is well established, and ample information
can be found in the literature [1][32][13]. However, the explanations given in [33]
are clear and concise, and it has been reference followed for the sequel. Regardless,
it must be said that it is the same model as the one presented in the other given
references.

The model presented in this paper make some assumptions, as follows:

• Iron losses are neglected

• Magnetic saturation is neglected

Both are difficult to quantify and are dependent on the temperature. Iron losses are
usually small and difficult to model. While magnetic saturation introduces additional
non-linearities in the equations due to the B-H curve, machines are designed to stay
within the linear part of the curve during normal operation.
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2.6.1 Three phase model equations

A set of variables are first defined for the physical magnitudes that play a role in the
model:

u =

uaub
uc

 i =

iaib
ic

 ψ =

ψaψb
ψc


Being u, i and ψ the stator’s voltage, current and linkage flux respectively. Current
and flux are related as follows:

ψ = L(θ) · i (2.69)

where:
θ the position of the rotor [rad]
L(θ) is the inductance matrix [H]

The inductance matrix is a 3 dimension square matrix with varying parameters
that describes the magnetic path between phases in the stator. The voltage equations
in the stator are:

u = R · i+ dψ

dt
(2.70)

where:
R is a diagonal matrix [Ω]

The first term accounts for the voltage drop due to the electric electric resistance
of electric circuit. The second term is the voltage induced by the magnetic fields of
the machine. The inductance matrix determines the contribution of each magnetic
field to the voltage. The torque is given by:

Tem = 1
2 i
T dL(θ)

dθ
i (2.71)

where:
Tem is the electromagnetic torque [N ·m]

In the case of balanced operation, the following expression holds:

ia + ib + ic = 0 (2.72)

Meaning that one of the currents can be expressed using the other two. From here
it can be deduced that a reduction of the model is possible without loss of general-
ization. This is indeed the case, and the resulting model is known as 2-phase model
of the induction machine.
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2.6.2 2-phase model

An induction machine has 3 coils distributed on its circumference. Each one produces
a magnetic fields of varying magnitude. The resulting field is the rotating magnetic
field that drives the rotor. Consider its three components:

stator

a

b′c′

a′

b c

a

b ′
c ′

a ′

b

c θ(t)
rotor

Figure 2.24: Relative position of the stator and rotor coils. Entry points of the coils are denoted
a, bc while the reciprocal are denoted a′, b′, c′

Fabc =

FaFb
Fc


Where the magneto-motive force (mmf) F is:

Fs = N · i (2.73)

where:
N number of turns [ ]

Because of (2.73) and (2.72), Fabc can be expressed using only two axis, as long
as N is the same for each phase, which is true all motors. This is done by imposing
two αβ axes over the abc axes, as in figure 2.25 . The projection of abc over αβ gives

α0 = ao −
1
2b0 −

1
2c0 (2.74)

β0 = −
√

3
2 b0 +

√
3

2 c0 (2.75)

Since the resulting mmf is the same, a 3-phase machine can be represented by a
2-phase. Consider now the following equations for the 2-phase machine.
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Figure 2.25: Projection of the abc axis over the αβ axis

These are the stator equations:

uαs = Rsiαs + dψαs
dt

(2.76)

uβs = Rsiβs + dψαs
dt

(2.77)

And the rotor equations:

0 = Rriαr + dψαr
dt

(2.78)

0 = Rriβr + dψαr
dt

(2.79)

The relation between currents and fluxes is
ψαs
ψβs
ψαr
ψβr

 =


Ls 0 Lm cos(θ) −Lm sin(θ)
0 Ls Lm sin(θ) −Lm cos(θ)

Lm cos(θ) Lm sin(θ) Lr 0
−Lm sin(θ) Lm cos(θ) 0 Lr

 ·

iαs
iβs
iαr
iβr

 (2.80)

Finally the torque is computed as follows:

Tem = 3
2p (ψαsiβs − ψβsiαs) (2.81)

This model can be directly implemented for simulation. However since voltage and
current are 3-phase, they need to be transformed using relations (2.74) and (2.75).
This transformation is known as Clarke transformation and it is a transformation
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from R3 to R3. The missing term in the αβ coordinates is γ, which is zero if the 3
phases are balanced. From abc to αβγ, the transformation is:

T = 2
3

1 −1
2 −1

2
0

√
3

2 −
√

3
2

1
2

1
2

1
2

 (2.82)

The inverse:

T−1 =

 1 0 1
−1

2

√
3

2 1
−1

2 −
√

3
2 1

 (2.83)

The constant in front of the transformation matrix in (2.82) changes its properties.
For now it is enough to say that when it is 2

3 , the transformation is invariant in
terms of impedance and inductance [33]. This is important, because it means that the
parameters of the 3-phase machine can be used directly for it 2-phase representation.
As a drawback, the transformation is not power invariant. However, this is not an
issue, as the following is always true:

Pαβ = 2
3Pabc (2.84)

As a final note, yet another transformation is often performed. It consists on es-
tablishing another reference frame, called dq0, that rotates with the rotor, thus elim-
inating the trigonometric and time dependent variables from the equations, which
makes the design of a controller easier and it will be covered in the next section. The
model in αβ is only used for simulation. Of which some results are shown in 2.26.
Notice in the lower figure, that when the motor reaches synchronism, the fluxes sta-
bilize. This is because the rotor is now rotating at the same speed than the stator’s
electrical field.

2.7 Field Oriented Model

The model in coordinates αβ has been established in the previous worksheet. The
main issue with this model is the presence of trigonometric functions through the
inductance matrix, which make the analysis complicated. To address this issue a
transformation can be introduced that translates the system into a rotating refer-
ence frame, such that these trigonometric functions disappear. Furthermore, this
section covers how the system is transformed into this new reference frame and its
implications. A control strategy, known as Field Oriented Control (FOC), or also
Vector Control, is derived from this model. This is covered in section 3.2.6.
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Figure 2.26: Simulation results of the induction motor. Voltage of constant magnitude and fre-
quency is applied. The motor revs by itself up to synchronous (close) speed
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2.7.1 Moving reference frame

Consider two sinusoidal currents iα and iβ, in αβ coordinates with frequency ω = dθ
dt .

Since α and β are in quadrature, it can be written:

iαβ = iα + jiβ (2.85)

where j is the imaginary unit.
Now consider a frame dq rotating over αβ at the same frequency ω as the currents.
The currents iα and iβ can then be projected onto dq, to obtain id and iq[

id
iq

]
=
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

]
·
[
iα
iβ

]
(2.86)

Or similarly

idq = id + jiq = iαβe
−jθ (2.87)

In this new frame, as long as it rotates at the same frequency as the original currents,
idq are not sinusoidal. Furthermore, would the frame dq be in phase with iα, idq would
then be the amplitudes of iα and iβ. By applying this new frame to the αβ model,

αs

βs

d

q

θid

iq

is
iβ

iα

ωs

Figure 2.27: Projection of magnitudes in αβ axis over the moving dq axis

the steady state sinusoidal behavior of the state variables can be removed. For the
reader’s sake, the model is repeated here.
The stator equations are

uαs = Rsiαs + dψαs
dt

(2.88)

uβs = Rsiβs + dψαs
dt

(2.89)

And the rotor equations

0 = Rriαr + dψαr
dt

(2.90)

0 = Rriβr + dψαr
dt

(2.91)
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The relation between currents and fluxes is
ψαs
ψβs
ψαr
ψβr

 =


Ls 0 Lm cos(θ) −Lm sin(θ)
0 Ls Lm sin(θ) −Lm cos(θ)

Lm cos(θ) Lm sin(θ) Lr 0
−Lm sin(θ) Lm cos(θ) 0 Lr

 ·

iαs
iβs
iαr
iβr

 (2.92)

It is convenient to have both rotor and stator equations in the same reference frame.
It will be seen that when so, the variable inductance matrix of (2.92) will become
constant.
To see that this is possible and still benefit from the advantages of a rotating frame,
some investigation must be carried on. Let θs be the stator’s current phase, then
stator’s frequency is

dθs
dt

= ωs (2.93)

While the rotor’s speed is

ωm = p · Ω (2.94)

where:
p is the number of pairs of poles [ . ]
Ω is the mechanical speed of the shaft [ rad

s ]

The induced currents in the rotor circuit then have frequency ωslip = ωs − ωm. This
means that the current vector rotates around the rotor at frequency ωslip, which in
turn rotates at ωm, therefore rotating at a total frequency of ωslip+ωm = ωs. Indeed,
the rotor current vector (and therefore the flux vector) rotates at the same speed as
the stator’s, and by transforming rotor variables to a moving frame with speed ωs,
they will attain constant values at steady state.
Before transforming the rotor variables, it should be noted that in the αβ model, the
rotor variables were already expressed in a moving frame, that rotated with the rotor
speed ωm. As a matter of fact, in said model, if the motor would ever reached syn-
chronous speed, then ωslip = 0 and iαβr would attain constant values. To transform
the rotor variables to the new frame it can be done by multiplying the old variables
by e−jθslip

idqr = iαβr · e−jθslip (2.95)
ψdqr = ψαβr · e−jθslip (2.96)

While stator variables need to be multiplied by e−jθs

udqs = uαβs · e−jθs (2.97)
idqs = iαβs · e−jθs (2.98)
ψdqs = ψαβs · e−jθs (2.99)
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Because now rotor and stator variables are in the same frame, the inductances main-
tain their relative positions. Then the resulting inductance matrix is then

ψds
ψqs
ψdr
ψqr

 =


Ls 0 Lm 0
0 Ls 0 Lm
Lm 0 Lr 0
0 Lm 0 Lr

 ·

ids
iqs
idr
iqr

 (2.100)

Applying Clarke’s and then Parke’s transformation to (2.92), or using equations
(2.95) to (2.99), whould result in the same.

Finally by substituting equations (2.95) - (2.99) into (2.88) - (2.91), the dq model
of the induction machine is obtained

uds = Rsids + dψds
dt
− ωsψqs (2.101)

uqs = Rsiqs + dψqs
dt

+ ωsψds (2.102)

0 = Rridr + dψdr
dt
− ωslipψqr (2.103)

0 = Rriqr + dψqr
dt

+ ωslipψdr (2.104)

And the torque results in

T = 3
2p (ψqr idr − ψdr iqr) (2.105)

2.7.2 Field Oriented Control

Field Oriented Control (FOC) of an induction machine, also referred to as Vector
Control, is a control strategy that tries to force the induction machine to function
as a doubly-fed DC machine, and therefore obtaining better torque response. This
is achieved by using the rotor flux as the reference for the dq transformation, thus
the name, field oriented. In figure 2.28, the cross section of a doubly-fed DC ma-
chine is shown. In this machine the flux φF is orthogonal to current IA. It is the
interaction between these two physical magnitudes that creates the force that causes
the rotor to turn. Because of the construction of this machine, current IA is always
orthogonal to flux φF , and therefore the torque is constant. The idea behind FOC
is that if the rotor’s flux ψµ angle, or orientation, is known at all time, then the
phase of the stator current vector is can be controlled to be orthogonal to the rotor’s
flux, achieving then constant torque. Additionally, by setting the reference to fol-
low flux’s orientation, ids and iqs are effectively decoupled from the torque expression.
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Figure 2.28: Cross section of a doubly-fed DC machine, and the would be equivalent variables in
the induction machine

Starting with the rotor flux equations in (2.100), the d axis will be aligned with
he rotor flux, then it must follow that

ψqr = 0 = Lmiqs + Lriqr (2.106)

iqr = −Lm
Lr

iqs (2.107)

For ψdr will capture the total rotor flux. This flux can be made proportional to some
current iµ. This can be interpreted as the magnetizing current of the rotor. Then it
follows that

ψdr = Lmids + Lridr (2.108)
= Lmiµ (2.109)

idr = Lm
Lr

(iµ − ids) (2.110)

Introducing this results in the rotor equations (2.103) and (2.104)

ωslip = Rr
Lr

iqs
iµ

(2.111)

Lr
Rr

diµ
dt

+ iµ = ids (2.112)

From (2.112) it can already be seen that the rotor flux now depends exclusively on id,
meaning that by manipulating id, the magnitude of the rotor flux can be controlled.
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Furthermore, the torque equation becomes

T = 3
2p (ψqr idr − ψdr iqr) (2.113)

= 3
2p
Lm
Lr

iqsψdr (2.114)

In this new reference frame, as it can be deduced from observing equations (2.112)
and (2.114), iqs regulates the torque, while ids is the excitation current.

It is still necessary to transform the stator equations to this new frame. This is
done by introducing (2.110) and (2.107) into the stator fluxes ψds and ψqs , and these
in turn into the stator equations (2.101) and (2.102)

uds = Rsids + σLs
dids
dt

+ (1− σ)Ls
diµ
dt
− ωsσLsiqs (2.115)

uqs = Rsiqs + σLs
diqs
dt

+ ωs (σLsids + (1− σ)Lsiµ) (2.116)

where σ is the total leakage coefficient [13][11] and equal to

σ = 1− L2
m

LsLr
(2.117)

It only remains to obtain the frequency ωs. Since ωslip is known from equation
(2.111), and the motor speed ωm can be measured

ωs = ωslip + ωm (2.118)

= Rr
Lr

iqs
iµ

+ ωm (2.119)

Summarizing, the model in field oriented coordinates of the induction machine is

Stator equations: (2.120)

uds = Rsids + σLs
dids
dt

+ (1− σ)Ls
diµ
dt
− ωsσLsiqs (2.121)

uqs = Rsiqs + σLs
diqs
dt

+ ωs (σLsids + (1− σ)Lsiµ) (2.122)

Rotor equations: (2.123)
Lr
Rr

diµ
dt

+ iµ = ids (2.124)

The new model decouples the rotor equations and allow for easier control of the
motor through ids and iqs . However stator equations are still coupled. Furthermore,
magnitude and orientation of the rotor flux must be known for this controller be
effective, which is not the case in many real world applications [11][1][13]. Thus a
flux observer must be implemented. This, together with the controller design, is
covered in section 3.2.6.
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Control objectives and design

3.1 Controller design: Industry Approach

The aim of this chapter is to cover the controllers designed for the system at hand.
The approach taken is the same as in the industry, with a focus on pragmatism and no
small amount of conservatism. However the first section, of this chapter, 3.2, starts
with a topic slightly off the remain sections. It is the estimation of the batterie’s
state of charge by means of an Extended Kalman Filter.The differentiating aspect
of it is that parameter estimation is also perform on-line by the filter, that treats
two key parameters as states. In section 3.2.4 the design of a cascaded PI controller
of the interleaved converter is covered. Section 3.2.6 covers the design of a Field
Oriented Control (FOC) controller for the induction machine. Furthermore, an Ex-
tended Kalman Filter (EKF) has been designed to keep track of the non-measurable
states. This part of the report concludes in section 3.2.10 with simulation results
and a commentary on the performance of the controller.

As it is shown in figure 3.1, each subsystem is controlled independently. This
strategy features a voltage regulator for the interleaved converter around some de-
sired operating point, and a speed controller fro the induction motor. During acceler-
ation, power is drawn from the bus, and the voltage drops. The voltage regulator will
try to keep the voltage at the set-point value bv drawing current from the battery.
During braking, the opposite happens. Power is drawn from the motor into the bus.
This causes the bus voltage to rise. Indeed, the voltage regulator, in order to keep
the voltage at the set point, will pour the excess back into the battery. As it will be
shown,this strategy is simple and effective, but it presents some drawbacks. During
acceleration, the motor could benefit from higher bus voltage, however the opposite
happens. Furthermore, no considerations on energy efficiency are done.
This control strategy resembles the industry usual approach, and examples may be
found in many publications. This strategy features linear controllers, PID mostly,

43
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Figure 3.1: Diagram of the control structure described in this chapter. CC: Current controllers;
VC: Voltage Controller; SC: Speed Controller

combined with heuristics to achieve the desired performance.

3.2 Battery state estimation

The objective of this section is to present an estimator for the battery so that the
state of charge (SoC) can be known. Keeping track of the SoC is important as the
voltage of the battery depends on it, and therefore has an impact in how much power
can be delivered by it in any given instant. Furthermore, if the internal states of
the battery can be observed, design of the controller for the converter attached will
benefit.

The first approach consists on using a linear model to obtain the hidden states of
the battery. The main objective of this estimation is indeed, to keep track of state of
charge (SoC). A possible approach is just to integrate the current going in and out
of the battery pack. This is known as Coulomb counting. Two issues with Coulomb
counting are:

• Initial condition, i.e. initial SoC, may not be known, and therefore a permanent
offset of the estimation will be carried over during the whole process.

• A priori, no feedback is available on the SoC, therefore the estimation will
unavoidably deviate.

The first issue can ideally be addressed by keeping track of the Coulomb balance
during the whole life of the battery. For obvious reasons this is highly unlikely to
happen. Another approach would be to use those moments when the SoC of the
battery is known to update the SoC, namely after a full charge or a full discharge.
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However, depending on the application this may not happen at all.

The literature on SoC estimation is extense, yet no solution seems to have pushed
through as a de facto standard. The most popular solution is the use of an Extended
Kalman Filter (EKF) after an intensive characterizations of the cell as in [36]. As
it is well known, batteries present many uncertainties and time-varying parameters,
which in opinion of many authors, puts in question the robustness of said algorithm
[3][16], who opt instead for H∞ filters.

Since the exact modeling and characterization of a battery pack reaches out of the
scope of this thesis, the design of the estimator will be carried under some simplifying
assumptions:

• The battery pack is well known

• The history of the battery pack is also known

• Long term (month / years) aging effects over the battery pack are neglected.

The first assumption is fair, in which battery pack models are thoroughly character-
ized before its widespread use. For specimens of the same model obviously variations
may exists, and that will be accounted for. The second and third assumption are
related. Aging processes span for the total life of the battery. As the case study in-
vestigates the behavior of the system for periods of length from a few seconds to some
tens of minutes, actual changes in the battery cannot be observed during operation.
Furthermore, the second assumption implies the existence of a Battery Managing
System (BMS) that keeps track of the history of the battery and slow changes in
capacity, impedance,... etc.

For this reason and despite the well funded issues concerning robustness, the
approach taken will make use of a EKF to keep track of the SoC. The main objective
of the estimation is to obtain a good enough estimate of open circuit voltage (OCV),
that as already stated in the previous worksheet is closely related with the SoC.
To add some robustness to the estimation, on-line parameter estimation of the time
constants in the battery model will be carried on.

3.2.1 Linear model and estimation

It is convenient to show first how the estimation work under close to ideal condi-
tions to understand the relevance of a proper OCV-to-SoC mapping. For that, the
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following linear model of the battery is used:
V̇c1

V̇c2
˙SoC
i̇

 =


− 1
R1C1

0 0 1
C1

0 − 1
R2C2

0 1
C2

0 0 0 1
C

0 0 0 0


︸ ︷︷ ︸

A

·


Vc1

Vc2

SoC
i

 (3.1)

[
V

i

]
=
[
1 1 K 0
0 0 0 1

]
︸ ︷︷ ︸

C

·


Vc1

Vc2

SoC
i

+
[
Voffset

0

]
(3.2)

where:
A is the state matrix [ . ]
C is the output matrix [ . ]
K is a constant that maps SoC to OCV [V]
Voffset is the offset of the mapping [V]

The model in (3.2) is linear. The current has been introduced as a state with zero
dynamics in an effort to improve estimation as now the A matrix reflects how it is
affected by it. Furthermore, the hysteresis effect over the OCV has been neglected
and the nth degree polynomial substituted by a linear coefficient K. Figure ?? shows
it’s approximation
The following results put in highlight the importance of the SoC-to-OCV mapping
and therefore the estimation of OCV. Non surprisingly, the Kalman Filter (not an
EKF yet, since no nonlinearities have been accounted for in the model) performs
well and it is able to estimate correctly the different states. More importantly, the
results show that when the OCV can be observed the SoC can be corrected, even for
completely disparate initial conditions. Obviously, as the OCV mapping has been
approximated by a linear function the SoC extracted is not exact. A better approx-
imation of this mapping may yield a better estimate of the SoC. The downside of
relying so heavily on the OCV for SoC determination is that there is no such thing as
a perfect characterization of its behavior, as it depends on temperature [31][19], his-
tory, and of course it changes slightly from battery to battery, even in the same model
and chemistry. All in all, as long as the estimate is used with the due precaution it
serves its purpose.

3.2.2 EKF and parameter estimation

As already mentioned, the robustness of the EKF is put in question because of its
reliance on a model. When the issue are time varying parameters, the solution at
hand is on-line estimation of said parameters. This works especially well when the
variation of this parameters can be modeled and/or enough information is available
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to keep track of this changes, which doesn’t seem to be the case for batteries. Efforts
have been made to model changes due to temperature [31][14] and aging [29], which
may help with estimation. Again the main issue with this approaches are the long
and thorough characterization processes, not to mention that these are always done
at cell level. When it comes to information available, the only direct measurements
available are current and output voltage, and in the case that a thermal model would
be available, temperature.
Not everything is lost however. The behavior of the battery may contribute to
estimation to some degree. Under certain conditions some states can be observed
better. Two cases can easily be shown with the following examples:

• During long rests (no current), the open circuit voltage can be observed directly
through the output voltage

• Time constant separation in the battery allows for online identification when
excited close to the proper frequency

The first example is self explanatory when (3.2) is considered. After a long rest, Vc1

and Vc2 will be close to zero, and therefore V ≈ K · SoC + Voffset. The second case
depends on choosing time constants far enough apart and would only work under
the assumption that enough excitation of the mode exists.
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All said, an EKF is implemented with an extended state vector that includes the
time constants of the model.

A =



−K̂τ1 −V̂c1 0 0 0 1
C1

0 0 0 0 0 0
0 0 −K̂τ2 −V̂c2 0 1

C2
0 0 0 0 0 0
0 0 0 0 0 1

C

0 0 0 0 0 0


C =

[
1 0 1 0 K 0
0 0 0 0 0 1

]
(3.3)

x =



Vc1

Kτ1

Vc2

Kτ2

SoC
i


(3.4)

where:
Kτ1 is 1

τ1
[ s−1 ]

Kτ2 is 1
τ2

[ s−1 ]

The equations are the same as (3.2). However with extension of the state vector, the
matrices A and C must be extended in consequence.

3.2.3 Simulation results of the estimator

Simulation results are shown comparing the performance of the EKF with on-line
parameter estimation to the Kalman Filter. Both estimators start with same initial
conditions. The model parameters for both filters are not the actual parameters
of the estimated system. The objective is to compare and determine if the on-line
parameter estimation does indeed improve the estimation of the SoC. Figure 3.4 show
the behavior of the estimator with on-line parameter estimation. It can be seen that
the estimate of VRC1 is accurate, while VRC2 it is quite off all the time. This may easily
be due to the lack of excitation on that frequency. The estimation of the open circuit
voltage is as well rather off. Paradoxically, the estimate of SoC is rather accurate,
except for the cases when the SoC wanders off the approximated OCV region, as
around 180 seconds mark. Figure 3.5 shows how the estimate of the parameters go
towards a different value than the actual. The explanation for this is that the filter
is using them as a free variable to compensate for other model deviations, like the
unnacounted histeresys effect or the approximation of the OCV. In the case for the
Kalman filter with no parameter estimation, figure 3.3, the estimation of the different
states is good even though the parameters are off. OCV presents less deviations than
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in the parameter estimation case. However, the estimation of the SoC is quite off,
compared to that of the parameter estimation case.
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Figure 3.5: Actual value of the parameters and their respective estimates

3.2.4 Interleaved DC-DC converter

Recall the model of the averaged DC-DC converter (2.4.2), in section 2.4.2. It is
repeated here:

˙[
iL
vC

]
=
[

0 − 1
L

2
C 0

]
·
[
iL
vC

]
· d+

[
1
L 0
0 − 1

C

]
·
[
Vbatt
ibus

]
(3.5)

where d is indeed the manipulated variable. Consider first the steady state charac-
teristics of (3.5). By setting the derivative of the first equation to zero, the input
output voltage ratio can be obtained:

vC
Vbatt

= 1
d

(3.6)

Remember that d ∈ [0, 1]. By inspecting the above equation, it can be deduced that
a higher value of d, results in a lower input-output ratio. The complement d̄ of d is
therefore introduced:

d = 1− d̄ (3.7)
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As a result (3.5) yields:

˙[
iL
vC

]
=
[

0 − 1
L

2
C 0

]
·
[
iL
vC

]
·
(
1− d̄

)
+
[

1
L 0
0 − 1

C

]
·
[
Vbatt
ibus

]
(3.8)

Under the assumption that the time constant associated to the current dynamics is
smaller than that of the voltage, a cascade controller is presented, with an inner for
the current, and an outer loop for the voltage. This is shown in the following figure.
This is a common approach, derived from implementations where current control is

Σ Σ Σ

0.5

fiLPPI

iL

vC

i∗Lv∗C d fvL

Figure 3.6: Cascaded controller, with a inner current loop and an outer voltage loop

implemented in hardware with high gains or even hysteresis control. A discrete im-
plementation is of course possible as well. Additionally, this implementation permits
the introduction of input current limitation, which is coherent with the needs of the
battery. The present scheme uses a proportional controller for the current loop, and
pure integral action in the voltage loop.

Following this logic a current feedback loop is designed. Starting with the first
equation in (3.8):

diL
dt

= 1
L

(
Vbatt − vC ·

(
1− d̄

))
(3.9)

Consider the following control law:

d̄ = 0.5−KĩL (3.10)

with

ĩL = i∗L − iL (3.11)

where i∗L is the set point. Furthermore, assume that the outer voltage loop does
indeed work, and it is significantly slower than the current loop. Then i∗L and vC
can be assumed constant. The same reasoning is applied to the battery behavior,
resulting in that Vbatt is assumed constant as well. When iL is close to the reference
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ĩL ≈ 0 and d̄ ≈ 0.5. From the steady state analysis of (3.9) the ratio between Vbatt
and vC is:

vC
Vbatt

= 1
1− d̄

(3.12)

which for d̄ = 0.5 results in vC = 2Vbatt. Furthermore, under the assumption that
the outer loop is slow relative to the inner loop then di∗L

dt ≈ 0. All before considered,
(3.9) becomes

dĩL
dt

= vc
L
KĩL (3.13)

ĩL = e
vC
L
K (3.14)

K < 0 can be chosen to achieve the desired convergence rate. Of course in the
presence of a non considered disturbance a steady state error will appear. Since the
objective is control of the bus voltage, this is of no consequence. Furthermore, it is
expected that the integral action in the voltage loop will compensate for it.

Assuming now that the current loop does indeed work, and that shows faster
dynamics than the voltage loop, the bus capacitor voltage balance equation can be
rewritten as:

dvC
dt

= 1
C

(i∗L − ibus) (3.15)

In the same way introducing a proportional action stabilizes the system. Furthermore
an integral action is introduced to compensate for the disturbance ibus. Then:

i∗L = KP (v∗C − vC) +KI

∫ t

0
v∗C − vCdt (3.16)

Combining it with (3.15), the following system of equations is obtained:

dvC
dt

= 1
C

(
KP (v∗C − vC) + ĩI − ibus

)
(3.17)

dĩI
dt

= KI (v∗C − vC) (3.18)

By selecting KP and KI appropriately the convergence rate of the system towards
the reference can be freely selected, as long as remains slower than the inner loop.

3.2.5 Simulation results

Some simulation results are now shown. Figure (3.7) shows the converter going from
a voltage control mode, to a current control mode. An step on the voltage reference
has been performed at on 4. The result is that for a constant load, the current will
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Figure 3.7: The inner loop takes the control once the voltage controller saturates

increase with the voltage. It happens however that the incresea in current in the
outgoing side, needs to be match with a current higher than the limit of 500A. The
results is that the voltage loop saturates, and the current loop takes over. In figure
3.8 an step on the load has been carried on second 10.The current increses, this time
below the saturation limit. Notice the effect on the voltage.

3.2.6 Induction Machine

In section 2.7 the idea behind Field Oriented Control was explained, and a model in
field oriented coordinates was obtained. More specifically, the model was described
in rotor flux coordinates. This point reached, many approaches to control the system
exist in the literature. The most common approaches are known as direct and indi-
rect FOC. The exact definition of each vary from source to source. In general, direct
FOC refers to the case when all measurements are available, while indirect refers to
the case when only speed and stator currents can be measured [13][1][23]. Many other
approaches exists in the literature, these include the use of linear parameter variant
controllers [10], passivity based controllers [23], and sliding mode controllers [21]. In
the author’s view, the are two reasons that motivate the existence of such variety
of controllers for induction motors. First, the induction motor has been for many
years, and still is, the workhorse in any industry that uses electrical motors, which
encourages the search for ever improving performance. And second, even though the
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Figure 3.8: A step load is performed in the converter. The overshoot on the current propagates
to the voltage

existing controllers are a usable solution, and a de facto standard exists, no controller
yet exists that can address all the issues that the system presents. The objective of
this section is therefore is to obtain a controller for the motor that present good
enough performance in the application range, without wondering too deep in the
existing state of the art.

One of the assumptions made during the development of the model for the in-
duction machine, and therefore this controller, is time-invariance. This is not the
case in a real motor, and it is in fact the motivation for many of the references cited
above. Even when this feature is neglected, the system remains non-linear and com-
plex enough to motivate the investigation of different approaches. As consequence
two controllers are presented in this section. The first is a classical indirect FOC, as
described in [1] and [13], but using a linear state feedback control law, instead of the
more classical PID approach. For reference in the following sections, the model for
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the motor as it was shown in section 2.7 is rewritten here in a more compact form:

did
dt

= − Rs
Lsσ

id −
1− σ
σ

(
id − iµ
τr

)
+
(

1
τr

iq
iµ

+ ωm

)
iq + 1

Lsσ
ud (3.19)

diq
dt

= − Rs
Lsσ

iq −
(

1
τr

iq
iµ

+ ωm

)
id −

(
1
τr

iq
iµ

+ ωm

)
1− σ
σ

iµ + 1
Lsσ

uq (3.20)

diµ
dt

= id − iµ
τr

(3.21)

dωm
dt

= 3
2p

2 L
2
m

JLr
iqiµ −

C

J
ωm −

pτL
J

(3.22)

where:
τr is the time constant Lr

Rr
of the rotor’s electrical circuit [ s ]

3.2.7 Indirect Field Oriented Control

Indirect FOC assumes that fine control of the stator currents id and iq can be
achieved. When this is true, the rotor magnetizing current iµ can be independently
controlled through id in equation (3.21). If iµ is kept constant, then the torque,
first term in the right-hand side of (3.22), is proportional to iq. Indeed looking
at equations (3.19) and (3.20), to find a controller for id, iq may proof challenging.
Furthermore, current iµ is not available as a measurement, and needs to be estimated.

A solution to the control of currents id and iq is hardware implemented high-gain
current loops [13]. This is suitable for high frequency inverters [1], with switching
frequencies in the order of the tens of kHz, and current source inverters (CSI). Un-
fortunately the inverter consider here runs closer to 1 kHz for efficiency reasons.
Therefore, the current dynamics must be accounted for. In the figure above, the
diagram for the classical implementation of indirect FOC is shown. The idea is to
cancel the non-linear terms in equations (3.19) and (3.20) by using the following
expressions:

ud = Lsσ

(
vd −

(
1
τr

iq
iµ

+ ωm

)
iq

)
(3.23)

uq = Lsσ

(
vq +

(
1
τr

iq
iµ

+ ωm

)
id + ωm

1− σ
σ

iµ

)
(3.24)

where:
vd is the auxiliary input signal for the d axis [ V ]
vd is the auxiliary input signal for the q axis [ V ]

Indeed this decoupling, as it is referred to in the literature, assumes that a per-
fect cancellation can be achieved. However iµ must be estimated, and convergence
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Figure 3.9: Control structure of FOC controller

of the estimate towards the actual value is asymptotic at best, and so will be the
decoupling, as pointed out in [23]. Furthermore, during implementation, the exact
value of τr can not be known, as Rr is highly dependent on the temperature. The
consequence is loss of performance, but not of stability, as it was shown in [35] that
the method is globally stable, allowing for a 200% error in the estimate of Rr.

After the decoupling, the resulting system is linear:

did
dt

= − Rs
Lsσ

id −
1− σ
σ

(
id − iµ
τr

)
+ vd (3.25)

diq
dt

= − Rs
Lsσ

iq −
1− σ
στr

iq + vq (3.26)

diµ
dt

= id − iµ
τr

(3.27)

A state feedback controller has been developed for the above model. Furthermore,
under the assumption that the nonlinearities removed from the original model can
be compensated by the integral action, the controller has been tested for the system
both with decoupling and without it.
As it can be seen in figure 3.10, both controllers present a similar performance

in terms of convergence speed and overshoot. Furthermore, the control action is
similar, which leads to the conclusion that the integral action is able to cope with
the neglected nonlinearities. Furthermore, the nonlinearity cancellation is not well
defined for iµ = 0, which pushes the linear controller with no nonlinearity cancellation
as the chosen control option.
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Figure 3.10: Performance of the LQR current controller, with and without using cancellation of
non-linearities
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3.2.8 State estimation

As already mentioned, only measurements of id and iq are available. Therefore, iµ
must be estimated. In much of the literature where FOC is presented [1][13][23], an
open loop estimation is proposed.

îµ = id
1
τr

+ s
(3.28)

Looking at equation (3.27) one can understand how this may work, as iµ will converge
towards id regardless of any deviation of τr from the actual value. Furthermore, in
many of the schemes presented so far, iµ is meant to remain constant, or vary slowly
at most. As a matter of fact, it is not uncommon to find implementations where
the estimate of iµ is replaced by its "asymptotic certainty equivalent" (page 386 in
[23]), i.e. the reference value of id. On a slightly different topic, this is the reason
the second term in (3.25) is often neglected during control design in some of the
literature (see section on decoupling in [13]).

A topic that in the author’s view has a big impact on the estimation, and it is
often neglected in the literature, is the estimation of the rotor field angle αµ, which is
needed for the transformation to dq-axis, and it is key for FOC. This angle is simply
found by integration:

˙̂αµ = ω̂s = ωm + 1
τr

iq

îµ
(3.29)

One may see that since iq is found by means of α̂µ in the rotation defined by (2.86),
iq turns out to be itself an estimate, which depends on α̂µ. Thus in open loop, an
error in the estimation of any of the two variables will propagate, and will of course
deteriorate the performance of the controller.

Despite the many concerns raised in [23] about the "separation principle" not
holding for this specific case, observer design for flux estimation is a prolific topic as
shown by the numerous existing publications, some examples are [11][25][12] and [5].
Consider now equations (3.19), (3.20), (3.21) and (3.29) as a model for estimation.
With output: [

iα
iβ

]
=
[

cos (αµ) sin (αµ)
− sin (αµ) cos (αµ)

]−1

·
[
id
iq

]
(3.30)

With ωm available as a measurement. The presence of a singularity in iµ = 0 forces
the designer to make use of heuristics to avoid instability of the filter close to the
singularity. Furthermore, rotor flux angle αµ cannot be estimated if (3.30) is not
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included as part of the model. And when included, its sinusoidal nature makes esti-
mation difficult.

A more suitable model is then required for estimation. Equations (2.101) - (2.104)
in Section 2.7 are a description of the motor on dq axis rotating at an arbitrary speed
ωs. If an static reference frame is chosen, i.e. ωs = 0, the following model is obtained:

did
dt

= 1
Lsσ

ud −
(
Rs
Lsσ

+ 1− σ
στr

)
id + Lm

σLsLrτr
Ψd + Lm

σLsLr
ωmΨq (3.31)

diq
dt

= 1
Lsσ

uq −
(
Rs
Lsσ

+ 1− σ
στr

)
iq −

Lm
σLsLr

ωmΨd + Lm
σLsLrτr

Ψq (3.32)

dΨd

dt
= Lm

τr
id −

1
τr

Ψd − ωmΨq (3.33)

dΨq

dt
= Lm

taur
iq + ωmΨd −

1
τr

Ψq (3.34)

In order to build the EKF, the Jacobian of the system equations needs to be
computed:

J =


−
(
Rs
Lsσ

+ 1−σ
στr

)
0 Lm

σLsLrτr
Lm

σLsLr
ωm

0 −
(
Rs
Lsσ

+ 1−σ
στr

)
− Lm
σLsLr

ωm
Lm

σLsLrτr
Lm
τr

0 − 1
τr

−ωm
0 Lm

dt ωm − 1
τr

 (3.35)

As opposed to the rotor flux reference frame model, this one is well defined for all
values. Furthermore, rotor flux angle can be computed as:

α̂µ = arctan Ψ̂q

Ψ̂d

(3.36)

Since both Ψd and Ψq are observable, is possible to keep accurate track of αµ, re-
gardless of parameter deviation. Rotor current can be computed, as follows:

îµ =

√
Ψ2
d + Ψ2

q

Lm
(3.37)

It should also be noted that there is no need to measure the input voltage ud and
uq, as it can be computed from as it is the same as the voltage reference introduced
to the inverter. However, this must be considered during the tuning process. As was
shown in section 2.5, the output voltage of the inverter is far from continuous, there-
fore the expected current will present a ripple. When tuning the EKF, this ripple
has been considered as noise in the measurement. Furthermore, as the control input
considered by the filter differs from the actual input to the system, the covariance
for the states affected, i.e. id and iq, has been set 10 times bigger than those of the
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remaining two.

Figure 3.11 shows the performance of the filter. Because of the concerns in the
literature on the robustness of the filter respect variations in the Rr parameter, the
filter has been run for the same set of data with both the right value of Rr and with a
deviation of 200%. To improve the prediction step, a 4th order Runge-Kutta (RK4)
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Figure 3.11: Estimation of the rotor flux with the right value of Rr and 200% off

algorithm has been used instead of the usual Euler integration. The following figure
shows the performance of the filter using Euler’s integration and RK4, and different
time steps.
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Figure 3.12: Estimation using a Euler integration and 100µs sampling rate
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3.2.9 Simulation results of the observer based controller of the mo-
tor

The performance of the controller is shown here. A speed loop has been built on
top of the current loop. This loop gives computes the torque command, which is
proportional to current iq. Figure 3.13 shows the motor following the command.
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Figure 3.13: Motor speed following the reference

It is worth it to compare the behavior with that of the open loop in figure 2.26.
Once taken care of the current, the only reamining dynamics are the mechanical
dynamics. Figure 3.14 shows the response of the current when following a pulse
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Figure 3.14: Insert Caption

train reference. Despite of the noisy measurements, the comman following is very
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good.Furthermore, the rotor current, proportional to the rotor flux, reveals the effect
of the cross-coupling between id and iq. Because of the noisy data, the same effect
can hardly be observed in id.

3.2.10 Performance of the classical control approach

Simulation results are shown for the whole system. The same speed command is
given as in the previous case. Command following of the bus voltage, battery current,
motor speed and iq is shown in figure 3.15. In general, performance is good. Notice
the notch the braking produces in the bus voltage. Also the jump in current in the
battery. Figure 3.16 Shows a situation where the battery has low charge. This can
be seen because of the fast descent of the battery voltage shown in the lower figure.
The consequence of this is that the for the same power drawn from the battery,
more current is need. However, the current is limited, and the bus voltage drops
inexorably, until the bus collapses.
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Chapter 4

Model Predictive Control

4.1 Model Predictive Control Approach

In Model Predictive Control, the optimal control input is found by solving online
a constrained optimization problem. The problem is posed as follows for a discrete
system:

min
u

Ψ (xk+N ) +
N−1∑
i=0

J (xk+i, uk+i) (4.1a)

s.t.
xk+i+1 = f(xk+i, uk+i) (4.1b)
xk+i ∈ X (4.1c)
uk+i ∈ U (4.1d)
xk+N ∈ T (4.1e)

where:
f(xk, uk) is the set of equations describing the system dynamics
X is the set of all possible (constrained) states
U is the set of all possible (constrained) inputs
T is the set of all states so that if xk ∈ T , xk+1 ∈ T

The solution to the above problem is the control input for the next N time
instants. In this sense, the control input has been computed considering not only
how the system will behave in the foreseeable future, as opposed to considering
just the current state on traditional controllers. This foreseeable future is know as
horizon. Furthermore, the problem considers the constraints imposed by the system
and actuators and, if feasible, finds the optimal trajectory inside said constraints.
Under the following assumptions, the solution to (4.1) stabilizes the system [9]:

A1: The terminal state satisfies the state constraints, i.e. T ⊆ X

67
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A2: The control constraint is satisfied for xk+N , i.e. u ∈ U ,∀x ∈ T

A3: Ψ is a local Lyapunov function, i.e. Ψ(x, u) + J(x, u) ≤ 0, ∀x ∈ T

The control input obtained by solving problem (4.1) as stated, will try to bring
all the states to the origin. The problem can be modified to track a reference r by
shifting the origin to a reference state xr:

min
u

Ψ (xk+N − xr) +
N−1∑
i=0

J (xk+i − xr, uk+i − ur) (4.2a)

s.t.
xk+i+1 = f(xk+i, uk+i) (4.2b)
xk+i ∈ X (4.2c)
uk+i ∈ U (4.2d)
xk+N ∈ T (xr) (4.2e)

Where xr and ur can be found by solving:

min
xr,ur

uTr Rur (4.3a)

s.t.
f(xr, ur) = 0 (4.3b)
h(xr, ur) = r (4.3c)
umin ≤ ur ≤ umax (4.3d)

where:
h(xk, uk) is a function mapping the states to the outputs of the system
umax is the maximum input ur
umin is the minimum input ur
So far nothing has been said about the nature of the system f(x, u). Some results

in non-linear model predictive control can be found in [34]. It is however for linear
systems that most of the proofs and results can be found, as it can be seen in [9]. In
the sequel the work will be restricted to linear systems.

In this section an MPC for the system described in the 2 is presented. First
a linear model of the system is obtained, then the system constraints are set. Be-
cause of the computational load of solving an optimization problem, the sampling
time cannot be very fast. For a given horizon, the smaller the sampling time, the
more variables and the more computationally intensive the problem becomes. Fur-
thermore, the horizon has to be long enough to cover a whole transient to be effective.
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In an effort to keep the problem simple, and allow slow sampling time, the cur-
rent for the battery and motor are controlled independently. Therefore the problem
reduces to finding the references for said loops. The controllers are the same as those
presented in sections 3.2.4 and 3.2.6.

4.2 MPC model

Problem (4.3) will be used to obtain the optimal control for a linear system:

xk+1 = Axk +Buk (4.4)
yk = Cxk +Duk (4.5)

The variables chosen as states are:

x =


vc1

vc2

soc

vd
Ω

 (4.6)

where:
vcn is the voltage of the n RC circuit of the battery [V]
soc is the state of charge of the battery [.]
vd is the bus voltage [V]
Ω is the mechanical speed of the motor [ rads ]

It has already been said that the control inputs to the system are the current
references of the battery and the motor:

u =
[
ibatt
iq

]
(4.7)

Here, iq is equivalent to the torque reference. The dynamic equations for the
battery have already been described in section 2.2 in 2, and are repeated here:

dvc1

dt
= − 1

τ1
vc1 −

1
C1
ibatt (4.8)

dvc2

dt
= − 1

τ2
vc2 −

1
C2
ibatt (4.9)

dSoC

dt
= − 1

C
(4.10)

The model of the DC-DC converter is omitted because of its fast dynamics.Only the
energy transfer from the bus to the battery and from the bus to the motor has been
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considered. The energy stored in the capacitor is:

Ebus(t) = 1
2Cv

2
bus(t) =

∫ t

0
Pbatt(t)− Pm(t)dt (4.11)

where:
C is the capacitance of the bus capacitor [F]
Pbatt is the power poured into the bus from the battery [W]
Pm is the power drawn from bus by the motor [W]

Furthermore:

Pbatt(t) = vbatt(t) · ibatt(t) (4.12)
Pm(t) = 3/2 · Re (vs(t) · i∗s(t)) (4.13)

where:
vbatt is the battery voltage [V]
vs is the stator voltage in dq [V]
is is the stator current in dq [W]

The voltage balance equation for the bus can then be obtained by taking the time
derivative of (4.11):

dvbus
dt

= Pbatt(t)
Cvbus(t)

− Pm(t)
Cvbus(t)

(4.14)

The first term in the above equation can be simplified by expanding it and making
a few assumptions:

Pbatt(t)
Cvbus(t)

= vbatt(t) · ibatt(t)
Cvbus(t)

(4.15)

To minimize ripple in the battery current ibatt, the duty ratio should be kept as close
to d ≈ 0.5 as possible. As a result vbus(t) ≈ 2vbatt(t). Then the above expression
reduces to:

Pbatt(t)
vbus(t)

= ibatt(t)
2C (4.16)

Obtaining a linear expression for Pm(t)
Cvbus(t)

is less straight forward. Starting with the
definition of electrical power [13] for the motor:

Pm(t) = 3
2 · Re (vs(t) · i∗s(t)) (4.17)

= 3
2 · Re ((ud(t) + juq(t)) · (id(t)− jiq(t))) (4.18)

= 3
2 (ud(t)id(t) + uq(t)iq(t)) (4.19)
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Where id is kept constant by the motor current controller, and iq is an input of the
MPC model. Furthermore, their dynamics are faster than the sampling rate of the
MPC controller and consequently they set between sampling instants. Then it is
reasonable to assume that they are exactly equal to their respective reference values.
Voltages ud and uq can then be found by setting the time derivatives to zero in (3.19)
- (3.21) and solving for ud and uq:

ud = −Lsσωmiq −
Lsσ

iµτr
i2q (4.20)

uq = Ls
τr
iq + Lsiµωm (4.21)

Introducing this result back in (4.19), an expression for the power is found:

Pm = 3
2

(
(1− σ) Ls

τr
i2q + (1− σ)Lsiµiqωm

)
(4.22)

Before introducing it in (4.14), the expression needs to be linearized:

Pm
CVbus

= 3
2C

(
(1− σ) Ls

τr

i2q
vbus

+ (1− σ)Ls
iµiqωm
vbus

)
(4.23)

Choosing an operating point:

iq = iq0 (4.24)
ωm = ωm0 (4.25)
vbus = vbus0 (4.26)

iµ = 1
Lm

(4.27)

The expression is linearized for id, ωm and vbus:

Pm
Cvbus

= 3
2C

((1− σ)Ls
vbus0

(2iq0

τr
+ ωm0

Lm

)
iq + (1− σ) Lsiq0

Lmvbus0

ωm

−(1− σ)Ls
v2
bus0

(
i2q0

τr
+ iq0ωm0

Lm

)
vbus

)

Only the mechanical dynamics equation is left:

dΩ
dt

= − 1
J

Ω− K

J
Ω + 3

2
Lm
Lr

piq (4.28)

where:
J is the moment of inertia [N ·m2]
p is the number of pairs of poles [.]
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Then the system in matrix form can be stated as follows:

A =


−Ts
τ1

0 0 0 0
0 −Ts

τ1
0 0 0

0 0 1 0 0
0 0 0 −aTs −b
0 0 0 0 −KTs

J

 (4.29)

where Ts is the time step and:

a = −3
2

(1− σ)Ls
Cv2

bus0

(
i2q0

τr
+ iq0ωm0

Lm

)
(4.30)

b = 3
2 (1− σ) Lsiq0

LmCvbus0

(4.31)

Furthermore the input matrix B is:

B =


− Ts
C1

0
− Ts
C2

0
− Ts
CAs

0
Ts
2C −c
0 3

2
Lm
Lr
pTs

 (4.32)

where:

c = 3
2

(1− σ)Ls
Cvbus0

(2iq0

τr
+ ωm0

Lm

)
(4.33)

4.3 State and input constraints

In the previous section linear dynamics of the system have been defined. Additional
constraints are imposed to the states and inputs. These are derived from the system
specifications of the different components of the system.

4.3.1 Constraints imposed by the battery

There is a maximum and a minimum voltage the battery may attain, as well as
maximum and minimum charge capacity:

vbmin ≤ vc1 + vc2 + k · soc+ voffset ≤ vbmax (4.34)
socmin ≤ soc ≤ socmax (4.35)
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where:
vbmin is the minimum allowed voltage of the battery [V]
vbmin is the maximum allowed voltage of the battery [V]
k is the slope of the linear approximation of the OCV [V]
voffset is the offset voltage of said approximation [V]

Finally, constraints for the battery charging and discharging current can be chosen
based on manufacturer specifications:

−idsch ≤ ib ≤ ich (4.36)

where:
idsch is the maximum discharging current [A]
ich is the maximum charging current [A]

4.3.2 Contraints imposed by the DC-DC converter

There also exists a hardware limitation on the duty ratio that the DC-DC converter
can achieve, and therefore on the voltage ratio between the battery and the bus
voltage. Furthermore, it is desirable that ratio is as closed to 2 as possible. Therefore
two additional constraints are defined:

vdmin ≤ vd ≤ vdmax (4.37)
vd = 2 · (vc1 + vc2 + k · soc+ voffset) (4.38)

This last constraint, relating the battery voltage and the bus voltage is very restrictive
as it is. To minimize this restriction an additional variable εd is introduced:

|vd − 2 · (vc1 + vc2 + k · soc+ voffset)| ≤ εd (4.39)

Then εd serves as a free variable, that will be minimized together with the rest of
the variables, while allowing for some discrepancy in the original equality constraint.
The higher the corresponding weight in the objective, the lower the discrepancy, and
vice versa.

4.3.3 Constraints imposed by the induction motor

By nameplate data, there is a maximum current imax at which the motor may operate
in a continuous manner. This limits current iq as follows:

i2max ≤
3
2
(
i2d + i2q

)
(4.40)

Since id is kept constant by the controller, the boundary of iq can easily be found.
Furthermore, the steady state behavior impose constraints on the torque. Since the
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torque is proportional to iq, the limit can be found by analyzing (3.20) in steady
state:

iq = τr
Ls
uq −

τr
Lm

pΩ (4.41)

The maximum achievable voltage uq is:

|uq| ≤
2

3
√

3
vd (4.42)

Therefore the constraint can be written as function of two of the states:

− 2
3
√

3
τr
Ls
vd −

τr
Lm

pΩ ≤ iq ≤
2

3
√

3
τr
Ls
vd −

τr
Lm

pΩ (4.43)

It turns out that in the case at hand the lower bound defined by the constraint in
(4.40) is more restrictive than the one defined in the left-hand side of (4.43), and can
be ignored.
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Figure 4.1: Current (Torque) speed of the motor. Crossed by Voltage speed charateristic. Notice
this is logarithmic scale.

Furthermore, constraint (4.43) defines a very steep relation between iq and Ω.
This allows to transform it into an state constraint as follows:

Ω ≤ 2
3
√

3
Lm
Ls

vd −
Lm
pτr

iqmax (4.44)

This can be interpreted as the maximum speed that can be achieved for a given
bus voltage vd. Both constraints are shown in the figure above. Notice the mentioned
steep descent of the voltage close before the maximum achievable speed defined by
(4.44).



4.3. State and input constraints 75

4.3.4 Summary of the constraitns

The constraints are now set in a way that they are easy to deal with. Starting with
the state inequality constraints, they are introduced as:

glim− ≤ Gxk+i ≤ glim+ (4.45)

where G is:

G =


1 1 k 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 2

3
√

3Lm
Ls

−Ω

 (4.46)

The limits glim+ and glim− are:

glim+ =


vbmax
socmax
vdmax
vdmax

 glim− =


vbmin
socmin
vdmin

Lm
pτr
iqmax

 (4.47)

A single equality constraint exist. It is rewritten here in matrix form for consistency:

Dxk+i + εdk+i = d (4.48)

where D is:

D =
[
−2 −2 −2k 1 0

]
(4.49)

and d:

d = −2voffset (4.50)

The input constraints can be written as:

ulim− ≤ u ≤ ulim+ (4.51)

with:

ulim+ =
[
idsch
iqmax

]
ulim− =

[
−ich
−iqmax

]
(4.52)
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4.3.5 Objective function

The objective function measures the performance of the controller. Hence the objec-
tive function should capture the goals of the controller. In most cases, this included,
the main goal is to reach the reference with the minimum effort, i.e. minimizing the
control input. Furthermore, losses in the motor and battery should be minimized as
well, and therefore will be included in the objective.

The MPC problem is posed as a convex problem. Quadratic forms are then chosen
for the objective. This is not only convenient on its convexity, but also because power
losses can be expressed in quadratic terms. This knowledge can be used to define
the objective.

J(x, u) = xTk+NSxk+N +
N−1∑
i=0

xTk+iQxk+i + uTk+iRuk+i + εTk+iEεk+i (4.53)

where:
Q ≥ 0
R ≥ 0

Appropriate values for Q and R can be found from the system characteristics. Q
will be derived from the states, starting with vCn , losses PRn on the parallel resistor
Rn can be described as function of the state itself:

PRn =
v2
Cn

Rn
(4.54)

Furthermore, losses due to mechanical friction PΩ can be described as:

PΩ = KΩ2 (4.55)

The remaining two states have no impact on the power efficiency nor are required to
attain low values, therefore, their weights can be chosen arbitrarily small as long as
Q remains positive definite. This yields the following Q matrix:

Q =



1
R2

1
0 0 0 0

0 1
R2

0 0 0
0 0 qsoc 0 0
0 0 0 qbus 0
0 0 0 0 K

 (4.56)

As for the inputs, iq can be related to the losses in the motor’s stator as follows:

Ps = i2qRs (4.57)
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Furthermore, and additional weight can be set to penalize excessive input by using
the maximum allowed current as follows:

rs = 1
i2max

(4.58)

Corresponding weights for ibatt can be chosen in the same way:

rbatt = 1
i2dsch

(4.59)

Hence R is:

R =

Rsi2max+1
i2max

0
0 1

i2
dsch

 (4.60)

4.3.6 Reference tracking

In this section the original problem is modified to allow reference tracking. Starting
with problem (4.2):

min
u

(xk+N − xr)P (xk+N − xr) +
N−1∑
i=0

(xk+i − xr)T Q (xk+i − xr) + uk+i − urTR (uk+i − ur)

(4.61a)
s.t.

xk+i+1 = Axk+i +Buk+i (4.61b)
d = Dxk+i + εdk+i (4.61c)
glim− ≤ Gxk+i ≤ glim+ (4.61d)
ulim− ≤ u ≤ ulim+ (4.61e)

Furthermore, problem (4.3) needs to be solved to find the references:

min
xr,ur

uTr Rur (4.62a)

s.t. [
A− I B

C 0

] [
xr
ur

]
=
[
0
r

]
(4.62b)

umin ≤ ur ≤ umax (4.62c)

Fortunately, the solution to the above problem can be written as a linear mapping
from the reference to the states and control input:[

xr
ur

]
=
[
Πx

Πu

]
r (4.63)
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Feasibility can be increased by introducing an artificial reference as variable [8][6],
and then penalizing its deviation from the original. Let the artificial reference be rs,
then the reference state and inputs are xs and us. The final form of the problem is
now stated:

min
u

Jk (4.64a)

s.t.
xk+i+1 = Axk+i +Buk+i (4.64b)
d = Dxk+i + εdk+i (4.64c)
glim− ≤ Gxk+i ≤ glim+ (4.64d)
ulim− ≤ u ≤ ulim+ (4.64e)
xs = Πxrs (4.64f)
us = Πurs (4.64g)

where Jk is:

Jk = (xk+N − xs)P (xk+N − xr) + (r − rs)W (r − rs)

+
N−1∑
i=0

(xk+i − xs)T Q (xk+i − xs) + (uk+i − us)T R (uk+i − us)
(4.65)

4.4 Conclusion

Unfortunately, the few results that had been obtained for this chapter cannot be
shown. Regardless, some lessons can be learned by the set up of the problem alone,
as has been exposed in this section. The first is that when trying to apply MPC on a
complex system, a way must be found so the system is a linear as possible. The usual
linearization techniques not always yields good results. This can be seen from the
developement of equations 4.14 and on. Keeping the system as energy level, while
leaving dynamics to hierarchically lower controllers is probably the smartest way to
apply MPC to a sustem like this. Finally, still on the topic of MPC, the introduction
reference while reatining all the stability properties is a difficult topic, but also an
interesting research are that should see more developement.

The last conclussion on this specific chapter, but perhaps the most general of all,
is that version control is important. Specially when working on topics for the first
time. Mistakes are made and solutions are not always easy to find.... but making a
copy of the version that works (’or sort of works’) can save many wake nights. One
should have known by now... but that is a topic for another report.
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Conclusion

Regretfully, very little can be obtained of the thesis as the work is not finished. If
any, a summary of the work done, and some of the acquired knowledge.

The thesis has covered quite throughly, although under certain assumptions, the
modeling of the traction set of a tram. A model of the battery pack has been devel-
oped, not before analyzing the extensive existing literature. Furthermore, modeling
of power converters have been covered as well, explaining the theory behind a pow-
erful tool such as the Generalized Average Models. The model for the well known
induction motor has been reviewed. Not only that, but the thesis has made intensive
use of the rotating frame and space vector theory in order to achieve control of the
motor. Relevant in this same topic, is also the way the EKF has been build, to bring
observability to a model where it wasn’t obvious. Furthermore, this happens to be
through a series of nonlinear transformation and within a very noisy context. Finally
the whole control system has been evaluated, tested and reviewed.

The sad point to make, is the lack of the MPC that was the focus of the thesis.
This leaves the reader, and the author, without the opportunity to being able to
compare how both control perform. It may well be this is the reason the industry
never really decided to step into modern control theory.

With this bittersweet (more bitter, than sweet) after taste, it has been though,
revealing. The limitations of linear systems at some point, compared to its power
at some other, make for an interesting topic. When dealing with the motor, for
instance, the first attempt to control it was via linearization, which leads to how
to choose the operating point without including the speed of the motor in it. This
frustrating procedure, leads later to surprise when just removing the ugly terms out
of the equation and adding integral action turns into success. Same happened when
dealing with the MPC, this time with the lesson learned: try to look at it smart.

79



80 Chapter 5. Conclusion

Results weren’t perfect, but satisfactory enough. Wondering into the documentation
available for MPC, one realizes that is because by limiting oneself to linear systems,
that things such as ensuring feasibility and stability are possible. And despite all
their limitation, they work, with the due care, as representations of non-linear sys-
tems.

Once again, a final off-topic remark. Cato the Elder used to finish his speeches
by saying: "Ceterum censeo Carthaginem esse delendam", which revealed his ob-
session with the destruction of Carthage as a necessity for Rome. The author has
now claimed on of such obsessions form himself, and coined a sentence for himself:
"Furthermore, I consider that server side version must be updated regularly".

To the reader: The most sincere thanks from the author, for taking the time and
the dedication to read this thesis. That despite the outcome, it has been a pleasure
to write, and to feel free to wonder into any corner curiosity guided.
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