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Preface

This thesis is composed by Mark Philip Philipsen and Morten Bornø Jensen
from November 2014 to June 2015. It constitutes a master’s thesis in computer
engineering with specialization in "Vision, Graphics and Interactive Systems"
from Aalborg University, Denmark. The majority of the work has been carried
out abroad at the Computer Vision and Robotics Research (CVRR) Laboratory
and Laboratory for Intelligent and Safe Automobiles (LISA), at University of
California, San Diego (UCSD), USA.
Throughout the report several external sources are used, these will be referred
to when used the first time. The reference is seen as a number in square brackets
like this: [#]. The number refers to the source in the bibliography, which is
attached at the end of this report. In the bibliography the books are described
with its author, title, pages, publishers, edition, and year. Online sources, like
web pages, will be described with its author, title, URL, and the date it has
been read and downloaded. This bibliography is auto generated by BibTex.
The enclosed CD contains a PDF copy of the project and the source code of
the developed systems.
Figures and tables are numbered according to which chapter they appear in, i.e.
the first figure in Chapter 7 has the number 7.1, the second figure has number
7.2 etc. Appendices are found at the end of the report, and are referred to with
A,B,C,...

Aalborg University, June 3, 2015

Mark Philip Philipsen
<markpp@gmail.com>

Morten Bornø Jensen
<mbornoe@gmail.com>
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Chapter 1

Introduction

The introduction begins with a motivation for this master’s thesis. This is
followed by an overview of our work and contributions. The work has been
research oriented, therefore the report is structured in separate parts rather
than in an ordinary linear product development flow.

1.1 Motivation
The automobile revolution in the early 20th century led to a massive increase in
road transportation and contemporary road networks was incapable of handling
the rapidly increasing traffic load. To allow for efficient and safe transporta-
tion, traffic control devices (TCD) were developed for guiding, regulating, and
warning drivers. TCDs are elements of the infrastructure that communicate to
the drivers, examples are: signs, signaling lights, and pavement markings [17].
In 2011 a total of 253,108,389 vehicles were registered in the USA [49], such
a high number of vehicles on the road will result in crashes. Intersections are
especially prone to crashes, since vehicles from two or more roads need to cross
paths. According to [50] approximately 40 percent of the estimated 5,811,000
crashes that occurred in the USA in 2008 were intersection-related crashes. In
733,000 of these, one or more occupants suffered injuries and 7,421 were fatal
crashes. Awareness and safety at intersections is therefore very important and
improvements can potentially save a substantial number of lives and reduce the
$1.16 trillion bill associated with motor-vehicle related accidents [51].

Since the automobile revolution, safety systems have been given gradually more
and more attention. Some of the first most notable systems introduced were
power steering and anti-blocking systems, which helped the drivers by increas-
ing the maneuverability during both regular driving but also during emergency
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CHAPTER 1. INTRODUCTION

procedures. Ultimately companies such as Google, Daimler, and Tesla wish to
make the driving experience fully autonomous. In fact Chris Urmson, director
of Google’s self-drive car, has fully autonomous cars on the road within the
next five years as an ambition [3]. Regards of whether autonomous vehicles are
five years, or decades away, the problems and challenges that are present right
now, such as the many accidents at intersections, must be addressed. There-
fore until autonomous vehicles becomes a reality, it is important to address
how safety can be improved by developing Driver Assistance Systems (DAS).

Transportation is a major part of peoples lives, their health and well being
is directly related to the efficiency, safety, and cleanness of the transporta-
tion systems. To improve the current transportation systems, innovation, and
development in sensing, communication, and processing is necessary [46, 37].
The future perspectives of intelligent transportation systems are autonomous
networks of vehicles and infrastructure, where transportation is ordered on de-
mand from transport service providers. The high initial expenditure, worries,
and effort required when owning and driving private vehicles will no longer be
necessary [45]. In the meantime and as long as humans are in the loop, DAS are
an important part of reducing the number of fatalities and injuries. Some DAS
are already implemented in vehicles available to consumers. Examples of these
are adaptive cruise control, collision avoidance with active braking, and blind
spot detection. Google’s self driving cars have safely driven more than 700,000
miles, which raises the public question whether the technology challenges and
issues are solved. Though some of the above problems have been solved, there
still remain a large set of problems and challenges that remains to be solved.
Google’s cars rely significantly on data that have been collected multiple times
on the exact test route prior to the test. This data is examined by both hu-
mans and computers to provide a prior map of the location’s key features in
the traffic scene which is essential for self driving [47]. This also lead to a main
problem that these prior maps must be collected all around the world, and
even more challenging, kept updated. The weather has a great impact on the
driving performance for humans and adverse weather conditions challenges the
car’s video cameras. In fact Google is yet to drive in snow and reach reliability
during heavy rain. A self driving car must also be able to robustly detect and
recognize traffic lights in all kinds of weather and light conditions.

A large set of problems and challenges remains to be solved. Some of these are
retaining performance under less then ideal conditions, such as adverse weather
conditions and during both day and night. These are some of the computer vi-
sion problems that are not yet solved: vehicle detection, traffic sign recognition,
pedestrian detection, traffic light recognition, and traffic scene understanding.

2



1.2. SCOPE OF PROJECT

Intersections are some of the most demanding challenges drivers must handle.
Navigating intersections requires awareness of surrounding objects, selecting
lane, awareness of signs and signals, making stop, or proceed decision while
maintaining lane position, appropriate speed, and turn rate. Unlike for traffic
sign recognition (TLR) and pedestrian detection, no surveys of TLR research
exist. Furthermore, most published TLR systems are evaluated based on lo-
cal datasets with a limited number of traffic lights (TLs) and little variation.
This makes comparison between existing methods and new contributions diffi-
cult. Inspiration for further improvements can be found by looking at research
done on similar computer vision problems. For traffic sign recognition [29, 26]
explains how the focus has shifted from heuristic model-based detection to
learning-based approaches and the problem is considered solved on a subset of
signs. The same is the case with pedestrian detection, where [12] shows how a
learning-based detectors based on Integral Channel Features (ICF) or the even
faster and slightly better Aggregated Channel Features (ACF) outperform the
other approaches. While research on sign and pedestrian detection has mostly
moved on, the same is not the case for TL detection where the majority rely
on some sort of color and/or shape filter for detection.

Apart from active safety, some research in causes for accidents is done offline by
the processing of comprehensive collections of data. These types of studies are
designated Naturalistic Driving Studies (NDS) when based on data captured
in naturalistic settings. NDS are the study of data from everyday driving,
where a wide range of data are collected and analyzed. From the collected
data researchers tries to identify parameters that may cause traffic accidents,
this is primarily done by manual annotation of the data. Since this very is
expensive and time consuming the extent of such studies are currently limited.
By putting effort into automatic data reduction in NDS the workload can be
substantially lightened and the scope and quality of studies extended. The
purpose is to provide insight and identify the patterns and behaviors of drivers
leading up to, and during, near-crashes and crashes.

1.2 Scope of Project
The scope of this project is solving problems and challenges at intersections.
The scope is threefold:

• Develop a system that can do vehicle detection using stereo vision for
automatic data reduction for five NDS events mainly related to intersec-
tions.

3



CHAPTER 1. INTRODUCTION

• Provide an overview of research in TLR. Collect and annotate a large
diverse dataset for TLR and propose a standardized evaluation approach.

• Apply a state of the art detector to the TL detection problem and com-
pare it to conventional heuristic model-based TL detectors.

1.3 Work and Contributions
This section provides an overview and introduction to the work and contribu-
tions made in this project.

1.3.1 Vehicle Detection and Tracking for NDS at inter-
sections

In chapter 3 we introduce our conference paper on Stereo-based Event Detection
for Naturalistic Driving Studies which was accepted for the 2015 IEEE Intelli-
gent Vehicles Symposium (IV) in Seoul, South Korea. In it we propose stereo
vision based vehicle detection and tracking in intersections for data reduction
with NDS in mind. From the tracked vehicles’ location in 3D, five NDS events
are automatically detected and a NDS rapport is generated.
The main contributions are:

• Using stereo vision for automatic data reduction for NDS on both day
and nighttime data, with focus on intersections.

• Introducing a new NDS event: Average distance to vehicles directly in
front of the ego vehicle.

The paper along with related information can be found in chapter 3.

1.3.2 Traffic light recognition surveys
In chapter 4 we introduce our journal paper Vision for Looking at Traffic Lights:
Issues, Survey, and Perspectives, which is submitted for IEEE Transactions on
Intelligent Transportation Systems (ITS). In the journal paper relevant TLR
research back to 2004 is surveyed. The survey is however primarily focused on
research made from 2009 and onward. We provide an overview of the methods
employed for detection, classification, and tracking as well as the used color
spaces and features. In the conference edition we limit the scope to the problem
of detecting TLs, which we consider the main challenge in TLR. By looking at
the evaluation of current research in TLR we conclude that the introduction

4



1.3. WORK AND CONTRIBUTIONS

of a common evaluation practice will significantly help advancement in the
area. This includes settling on descriptive and meaningful evaluation metrics
as well as the introduction of challenging public training and test datasets.
In order to get these practices and the datasets public as fast as possible,
they are first described in our conference paper Emerging Trends for Traffic
Lights: Detection and Evaluation, which is submitted for the 2015 IEEE 18th
International Conference on Intelligent Transportation Systems (ITSC) in Las
Palmas de Gran Canaria, Spain. This serves as a predecessor to the journal
paper which provides a more in-depth review of current research and description
of evaluation methodology and proposal for future evaluation.

Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives

The main contributions of the journal paper are:

1. Provide an overview of current TLR papers’ method choices and contri-
butions.

2. Introduce a common evaluation procedure for future TLR systems.

Emerging Trends for Traffic Lights: Detection and Evaluation

The main contributions of the conference paper are:

1. Provide an overview of 4 recent TLR papers’ approaches to detection .

2. Introduce a common evaluation procedure for TL detectors.

3. Publish an extensive high resolution, annotated, stereo video database,
with day and night video sequences.

The papers along with relevant information can be found in chapter 4.

1.3.3 Traffic Light Detection for DAS
In chapter 5 we introduce our conference paper on Traffic Light Detection:
A Learning Algorithm and Evaluations on Challenging Dataset, which is sub-
mitted for the 2015 IEEE 18th International Conference on Intelligent Trans-
portation Systems (ITSC) in Las Palmas de Gran Canaria, Spain. The main
contributions are:

• Recognizing traffic light in an DAS use case under adverse conditions.

5



CHAPTER 1. INTRODUCTION

• Be the first to apply the ACF learning-based traffic light detector suc-
cessfully.

• Using depth from stereo vision to improve performance of traffic light
recognition system.

The paper along with relevant information can be found in chapter 5.

1.3.4 Database
Common for all four papers is our collected high resolution, stereo video dataset,
with both day and night video sequences. The collection, processing, and or-
ganization of this large amount of data are described in chapter 6. The main
contributions are:

• Collection of a comprehensive stereo vision video database with both day
and night time sequences.

• Annotation of ground truth in both training and evaluation video se-
quences.

1.4 Appendices
In addition to the contributions from the papers listed above, much of the work
which constitutes the basis for our research is described in the appendices. The
most noteworthy work will be presented in this section.

1.4.1 Hardware
Throughout the development of this project, various hardware have been used.
In appendix B these are listed together with some Triclops API code snip-
pets used together with Point Grey’s Bumblebee XB3. The main work in the
hardware chapter is:

• CUDA implementation of V-disparity generation.

• Capture and on the fly rectification of RGB stereo image pairs.

1.4.2 Software
In appendix C an introduction to the toolboxes used for conducting the research
done with this project is presented.

6



1.5. READER’S GUIDE

1.5 Reader’s Guide
This master’s thesis revolves around computer vision and machine learning
applied to solve problems in the traffic scene. All of the considered problems
are seen from the perspective of an ego vehicle, therefore the proposed are
meant to function on a moving platform. Our research covers state of the art
visual DAS and NDS. With the purpose of DAS in mind we specifically look
at TLR at intersections. For NDS automatic event registration we detect and
track vehicles using passive stereo vision in both day and night scenes. As part
of our research, hours of stereo video material has been collected under varying
conditions for training and testing the developed systems. Our research has
spawned four papers, one on NDS, one where a state of the art learning based
detector is applied to TLD and two surveys on TLD and TLR, respectively. The
papers will be presented in self-contained chapters, where they are introduced
and motivated for. Relevant methods are described in depth in the theory
chapter 2. The methods will be referenced from their respective chapters: 3,
4, and 5. For the TLD and TLR survey papers, a large stereo image database
is collected and presented in chapter 6.

7





Chapter 2

Theory

Through the research done as part of the master’s thesis a wide range of inter-
esting methods and concepts have been encountered. A selection of the most
essential methods and concepts for our thesis are explained in detail in this
chapter. The chapter will thus be referenced from the chapters which include
work that rely on the methods and concepts explained here.

2.1 Color Spaces
Image segmentation is a central part of computer vision, the purpose is dividing
an image into meaningful regions [8]. In this section segmentation of color
images will be discussed along with a number of relevant color representations.
In digital imaging, color is described using color models. The models represent
colors using three numbers withing ranges, specified according to the needed
precision. There exists many representations of color, each with their own
forces. An important part of successful image processing is selecting a suitable
color space. Table 2.1 gives an overview of some essential terminology when
dealing with light and color. Throughout this section [40] and [36] are used
extensively.

BGR/RGB

BGR is a reordering of the channels of the well known RGB color space. When
reading images into a program using OpenCV this is the default color space
and channel ordering. RGB is an additive color model where the addition of
the red, green, and blue channels is used to represent a wide range or colors.
RGB is the color model used in most color input and output devices, such as,
displays and digital cameras, where pixels consists of red, green, and blue light
emitters or photocells.

9



CHAPTER 2. THEORY

Table 2.1: Light and color terminology.

Name Description

Intensity Linear measure of radiated energy, in a relevant spectrum
Luminance Perceived power of light, described by a non-linear function of the

spectral sensitivity of human vision
Hue Perceived color, dependents on the most prominent wavelengths
Saturation Perceived colorfulness, dependents on the concentration around the

prominent wavelengths

(a) BGR. (b) Channel B. (c) Channel G. (d) Channel R.

Figure 2.1: Traffic scene represented in the BGR(RGB) color space.

XYZ

The XYZ color space is defined by the International Commission on Illumina-
tion (CIE). It consists of X, Y (luminance) and Z. The value of each of the
components are positive and proportional to the radiated energy.

CIE LUV

The LUV color space is defined by the International Commission on Illumina-
tion (CIE). L (Luminance), U and V.

(a) XYZ. (b) Channel X. (c) Channel Y. (d) Channel Z.

Figure 2.2: Traffic scene represented in the XYZ color space.

10



2.2. STEREO VISION

(a) LUV. (b) Channel L. (c) Channel U. (d) Channel V.

Figure 2.3: Traffic scene represented in the LUV color space.

(a) YCrCb. (b) Channel Y. (c) Channel Cr. (d) Channel Cb.

Figure 2.4: Traffic scene represented in the YCrCb color space.

YCrCb
In YCrCb, Y is the luma, Cr is the red difference and Cb is the blue difference.

HSV
HSV specify hue, saturation and value in a cylindrical color representation.

2.2 Stereo Vision
Depth from stereo vision forms the basis for most of the work done in this
thesis, hence it is essential to have a thorough understanding of the underlying
theory. In this chapter the theory behind the inner workings of a stereo camera
will be explained, followed by an explanation of calibration process. Hereafter,

(a) HSV. (b) Channel H. (c) Channel S. (d) Channel V.

Figure 2.5: Traffic scene represented in the HSV color space.
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CHAPTER 2. THEORY

some of the potential issues that may arise when capturing stereo data are
discussed. Finally, a number of open source stereo matching algorithms are
analyzed and compared.

2.2.1 Camera Model
The pinhole model is used for projecting 3D world coordinates onto a 2D image
plane, where the effect of a lens is disregarded and for simplicity’s sake the only
light allowed to pass through to the image plane is light from a point traveling
along a single straight path through a pinhole. The pinhole model is illustrated
in Figure 2.9, where Figure 2.6a shows the principal from a angle showing all
3 dimensions, and Figure 2.6b shows only 2 dimensions. The camera center is
defined as the origin in a euclidean coordinate system, which is denoted as C in
Figure 2.6a, in same figure the image plane is shown which has z-distance from
the origin on the focal length, f, also described as Z = f . This is also indicated
in Figure 2.6b where the image plane is denoted as p, and the distance from the
center to image plane is f. A point in world coordinates, i.e X = (X, Y, Z)T , is
projected onto the image plane where the line from camera center to the point
X meet the image plane. In Figure 2.6a this is seen as the line between, C
and X, and the point x is the point where the line meets the image plane, also
referred to as the principal point. [19]

(a) (b)

Figure 2.6: [19, pp. 154]

By simple trigonometry, the remapping point X from world coordinates to
image plane coordinates can be described as seen in equation (2.1).

(X, Y, Z)T ⇒ (f X
Z
, f
Y

Z
, f
Z

Z
)T (2.1)

The last image coordinate in the equation on the left can be left ignored, as
it can be reduced to f, which will remain a constant indicating the image plan
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will remain constant on the Z-axis. A final equation description a projection
from world to image plane coordinates is there defined in equation (2.2).

(X, Y, Z)T ⇒ (f X
Z
, f
Y

Z
)T (2.2)

The homogeneous coordinates for mapping between homogeneous vectors of
world and image points can be written as the matrix multiplication seen in
equation (2.3). 

X
Y
Z
1

⇒
fXfY
Z

 =


f 0

f 0
f 0
1 0

 ·

X
Y
Z
1

 (2.3)

2.2.2 Camera calibration
Throughout this section, cite [19] and [1] are heavily used.

Intrinsic
The intrinsic parameters are parameters describing the camera internally.

Principal point offset Equation (2.2) assumes the origin coordinate in the
image plane is the principal point. However, the center might be not be lo-
cated there due to manufacturer’s assembling accuracy. An offset is therefore
introduced to equation (2.2), as seen in equation (2.4).

(X, Y, Z)T ⇒ (f X
Z

+ px, f
Y

Z
+ py)T (2.4)

Which can be rewritten to equation (2.5). This expression is also present in
equation (2.3).

M =

f px

f py

1

 (2.5)

Non-equal scales in both axial directions Depending on the camera,
there might be some unequal scale factors present in each direction, resulting
in the images being distorted. For preventing unequal axis’ directions, the
pixel dimensions in the x and y direction is taking into consideration as mx

and my in the x and y direction, respectively. A new remapping expression can
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be derived, seen in equation, by multiplying the pixel dimensions to equation
(2.5).

M =

f px

f py

1

 ·
mx

my

1

 =

f ·mx px ·mx

f ·my py ·my

1

 (2.6)

Finally, equation (2.6) can be shortened to equation (2.7).

M =

αx x0
αy y0

1

 (2.7)

Skew Though most cameras have almost perfectly rectangular pixels, their
might be case where the pixels are skewed. An skew, s, factor is therefore
introduced for taking the skew from non-rectangular pixels into account. A
final intrinsic paramter matrix, or camera matrix m, is seen in equation (2.8).

M =

αx s x0
αy y0

1

 (2.8)

Extrinsic
The extrinsic parameters are parameters describing the relation between the
camera coordinates and the world coordinates. These are the rotation matrix,
R, which describes the rotation between the world coordinates and the camera
coordinates. The vector t which describes the translation between the origin
of the world coordinate system to the origin of the camera coordinates. The
transformation to world coordinates is needed to compare the camera coordi-
nates with camera coordinates from a different camera. A combination of both
intrinsic and extrinsic parameters gives the project P where P = M[R|t], which
transforms world coordinates to homogeneous image pixel.

Calibration
When using multiple cameras, and the goal is to find points in a different camera
coordinate, space results in equation (2.3) no longer being applicable as this is
used for world point in the same camera coordinates. However, if points from
a different camera, such as in the case of a stereo camera rig, one point must
be used in the other cameras coordinate space. The camera’s coordinate space
from camera 2 must therefore be scaled and translated to be represented in the
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coordinate space of camera 1. The rotation and translation is also defined as
the extrinsic parameters, which maps world space to camera space as previous
mentioned. This is seen in the 3x4 matrix, denoted in equation (2.9). [19,
Equation (6.3)]

X
Y
Z
1

⇒
fXfY
Z

 =


f 0

f 0
f 0
1 0

 ·
r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

 ·

X
Y
Z
1

 (2.9)

Finally the intrinsic parameters is included, and a final mapping expression can
therefore be denoted as seen in equation 2.10. [19, Equation (6.4)]. The

X
Y
Z
1

⇒
fXfY
Z

 =

αx s x0
αy y0

1

 ·
r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

 ·

X
Y
Z
1

 (2.10)

Equation 2.10 is sometimes reffered to as the projection matrix, which can be
denoted as seen in equation 2.11

P = M [R|t] (2.11)
An illustration of all the steps involved is seen in Figure 2.7, where the entire
process is called projection matrix and is similarly denoted as seen in equation
(2.11).

Figure 2.7

Rectification
The purpose of the rectification in two-view geometry is to simplify the corre-
sponding point problem when trying to find two points in two stereo images.
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By rectifying a set of images has alligned epipolar lines such they are horizontal
lines in the set of image.
In Figure 2.8 epipoles are denoted as e and e’ which is placed on the line
between two origins where it meets the left and right image plane, respectively.
The epipolar line, l, is the line between the epipole and the principal point, x. In
Figure 2.8 the corresponding epipolar line in the right image plane is marked
with a purple line. The corresponding coordinate in the right image plane
must lie on the purple epipolar line. For easier searching for the corresponding

Figure 2.8: Illustration of epipolar line.

pixel in two image planes, it is desirable to rectify the image planes as seen in
Figure 2.9a, such that the corresponding points problem becomes an 1D search
problem on the horizontal epipolar lines. This is illustrated in Figure 2.9a as
the golden image plane, which have aligned epipolar lines from the two gray
image planes. An example of this is seen in Figure 2.9b.

(a) (b)

Figure 2.9: (a) Illustration of rectification. (b) Example of rectification. [2]
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2.2.3 Automatic camera calibration
For finding the intrinsic and extrinsic paramteres needed for rectification, var-
ious toolboxes are available for doing so. Generally a camera calibration is
done by using a planar checkerboard with known dimensions, boxes size, and
number of boxes in the given checkerboard. An example is seen in Figure ,
where there are For calculating a accurate camera calibration it is very impor-
tant that these definitions are accurate. Furthermore, experiences show that it
is advantageously to first calibrate the individual camera one at the time, to
make sure that the entire image plane is being calibrated. A series of calibra-
tion image is seen in Figure 2.10. Where the Figure 2.10a and Figure 2.10c has
line drawn upon the checkerboard to indicate where corners have been found.
By finding the corners, which relation is known due to the prior definitions of
the checkerboard, the intrinsic and extrinsic parameters are found.

(a) (b)

(c) (d)

Figure 2.10: (a) Image 0 (b) Image 0 rectified (c) Image 1 (d) Image 1 rectified.
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OpenCV OpenCV provides a function for automatic corner detection, as
well as a function that can do the calibration based on the found corner points.
This makes the calibration process really simple with OpenCV. [34]

Camera Calibration Toolbox for Matlab This toolbox is not as auto-
mated as the approach described for OpenCV, as the user must manually
select the area of the checkerboard in each image, hereafter the corners are
extracted. This might be considered a little comprehensive if including a large
set of calibration images. [5]

Triclops API Triclops does not provide a toolbox for automatic camera cal-
ibration, instead it provides access to the Bumblebee camera’s factory calibra-
tion located in the cameras own memory. Additionally, it provides functions for
rectifying, disparity calculation and projection to 3D, using the very precises
factory calibration [42]. Throughout this project the Triclops API has been
used.

2.2.4 Stereo Matching Algorithms
Two types of stereo vision exist, sparse and dense stereo. Sparse stereo is
created based on matches between a few points in the stereo pair whereas dense
stereo is calculated from matches between every pixel in the stereo pair. In
this rapport we will primarily concern with dense stereo vision. Finding stereo
correspondence is the basis for determining depth from two or more images, it
essentially consist of matching locations in these images and assigning a label,
the disparity, based on the offset between the matches. Matching is done based
on one of the following image location descriptors:

Pixel descriptor A pixel descriptor use the intensity or color of single pixels
when matching pixel pairs along the epipolar lines. Relying on information
from a single pixel makes the methods that uses a pixel descriptor fast but also
sensitive to noise.

Block descriptor A block descriptor use the intensity or color of multiple
pixels located within a window around a center pixel. Blocks in the reference
image are then each matched with blocks along the epipolar lines in the search
image. Relying on information a block of pixels makes the methods that uses
a block descriptor slow but less sensitive to noise, with the drawback of less
details and staircase artifacts.
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Feature descriptor A feature descriptor is found in information rich areas
where transitions in intensity or color are found. Methods that use feature
descriptors for matching are usually fast because only a fraction of matches
needs to be done. However, this only holds if the feature extraction is also fast.
A drawback of feature based correspondence methods is a rather spares depth
map, especially in monotone areas of the images.

Scharstein and Szeliski makes a thorough analysis of existing dense stereo corre-
spondence algorithms in [43]. As part of this analysis they establish a taxonomy
and standard structure that most stereo correspondence algorithms follows.

Matching cost computation Matching cost is a measure of the similarity
between a location in the reference image and each of the candidate locations
in the search image.

Cost aggregation Local methods take into consideration the matching cost
of nearby pixels. Where global methods often skips this step and instead rely
on minimizing the global energy measure in the next step.

Disparity computation/optimization For local methods this step simply
consist of choosing the disparity with the lowest cost between a pixel in the
reference image and a pixel in the search image. Since a matches are found
using a winner takes all strategy is used, the same pixel in the search image
may be assigned as the match for several pixels in the reference image. This
will be a problem in regions with little variation and in case of occlusion, where
the object is only visible to one of the cameras.
Global methods can e.g look for the optimal matches for all descriptors along
the epipolar line as well as apply a smoothness constrain, which rely on the
assumption that disparity does not vary much on surfaces, this is effective at
limiting outliers in the disparity estimates in textureless regions.

Disparity refinement Since most stereo correspondence algorithms returns
discrete disparity estimates, the resulting disparity map will appear layered.
This can be mitigated by using more discrete disparity levels. Alternatively,
refinements can be done in postprocessing by e.g. curve fitting. Median filters
can smooth spurious disparity estimates and holes from e.g. occlusion can be
filled by propagating neighboring disparity estimates.

The stereo correspondence algorithms that are studied in this thesis are selected
based on the availability of their implementation and their performance. Each
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algorithm will be described using Scharstein and Szeliski’s taxonomy.

2.2.5 Stereo correspondence algorithms
Common for most stereo correspondence algorithms is that they search for
matches along the corresponding image rows in the rectified image pairs. This
search is usually limited to an interval defined to be between the minimum
number of disparities that are expected, translating to the furthest distance that
disparities should be calculated for, and the maximum disparity, translating to
the closest distance where disparities should be calculated. This defines the
horopter, which is the feasible volume of the disparity map. Other than the
disparity range, the horopter’s size is set by the some of the stereo camera’s
physical properties, baseline, focal length and pixel size.

OpenCV Block Matching (BM) for CPU and GPU

BM is one of the most basic matching algorithm, this results in high speed exe-
cution but poor results in difficult scenarios. Before computing matching costs,
the image pair is prefiltered with a sobel filter in order to eliminate differences
in brightness and enhance texture[6].

Matching cost computation A number of small blocks consisting of pixels
within a fixed window W in the right image IR are each compared with the
corresponding reference block in the left image IL by using the sum of absolute
differences(SAD). The blocks in the right image all have different offsets u
compared to the reference block. The SAD function can be seen in (2.12).

∑
(i,j)∈W

|IL(i, j)− IR(i+ u, j)| (2.12)

Matches are found along the epipolar lines, which after rectification corresponds
to image rows. The best match is the match with the smallest SAD. the offset
u for this match is set to be the disparity at that match’s coordinate (i, j).
To save CPU cycles, the algorithm does not calculate SAD from scratch every
time, instead it can often rely on the fact that each reference block is offset by
one column of pixels compared to the previous one and simply add the new col-
umn of pixel values while also subtracting the now irrelevant column belonging
to previous block.

Cost aggregation Pixel intensity is aggregated within each block.
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Disparity computation/optimization The reference block resulting in the
smallest SAD is selected as the match in a winner takes all strategy. Matching
is only done in regions with strong texturing, low texture regions are left black.
This is determined by a texture threshold placed on the SAD window.

Disparity refinement False matches are filtered out if (2.13) is not satisfied.

uniquenessRatio >
matchvalue−minvalue

minvalue
(2.13)

Because BM is using block matching, matches in boundary regions where the
blocks contain both for- and background will alternate between high and low
disparity, resulting in so called speckles. These are filtered by only retaining
a match if the minimum and maximum disparity within a speckle window lies
within a small range.

OpenCV’s CPU and GPU implementations of K. Konolige’s BM stereo corre-
spondence algorithm [24] takes the parameters seen in table 2.2.

Table 2.2: OpenCV BM parameters.

Parameter Description Used setting

NumDisparities Search range in pixels corresponding to
maximum disparity - minimum dispar-
ity

64

MinDisparity All parameters can be set automatically
by using one of three available presets

96

PreFilterCap Truncation value for prefiltered image
pixels

31

TextureThreshold Determine if region is textured enough
for matching

3

UniquenessRatio Accept the computed disparity d* only
if SAD(d) >= SAD(d*)*(1 + unique-
nessRatio/100.) for any d != d*+/-1
within the search range

15

SpeckleWindowSize Size of speckle window, which is used to
eliminate noisy transitions

60

SpeckleRange Tolerance to variation within speckle
window

24

Disp12MaxDiff Max difference in the left-right consis-
tency check

4

BlockSize Size of block used for matching. Must
be odd, since the block is centered on
the current pixel

9

The results of running OpenCV’s CPU implementation of block matching on
two different sets of images can be seen in Figure 2.11 and 2.12.
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Figure 2.11: Disparity from day scene using OpenCV’s CPU BM implementation.

Figure 2.12: Disparity from night scene using OpenCV’s CPU BM implementation.

The results of running OpenCV’s GPU implementation of block matching on
two different sets of images can be seen in Figure 2.13 and 2.14.

Figure 2.13: Disparity from day scene using OpenCV’s GPU BM implementation.

From Figure 2.11, 2.12, 2.13 and 2.14 it is clear that the GPU implementation
produce a significantly better disparity map.

Table 2.3 shows the execution time of the two BM implementations on two
different sets of 1280x960 images.
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Figure 2.14: Disparity from night scene using OpenCV’s GPU BM implementation.

Table 2.3: OpenCV BM timing on two different sets of 1280x960 images.

Processing unit Scene Computation time

CPU Day scene 32.3 ms
CPU Night scene 46.4 ms
GPU Day scene 63.6 ms
GPU Night scene 64.9 ms

OpenCV Semi-Global Block Matching (SGBM) for CPU

SGBM is probably the most successful matching algorithm because of it’s speed
and performance. It uses point wise matching cost and a smoothness term.

Matching cost computation Pixel blocks correspondence cost is calculated
for all disparities in the search space.

Cost aggregation The smoothed path cost is calculated in a number of di-
rections for each disparity.

Disparity computation/optimization The disparity resulting in the small-
est path cost is selected for each pixel.

Disparity refinement A speckle filter and a left-right consistency check can
be applied.

OpenCV has a modified CPU implementation of H. Hirschmuller’s SGBM
stereo correspondence algorithm [20, 21], it takes the following parameters:
The results of running OpenCV’s CPU implementation of semi-global block
matching can be seen in Figure 2.15 and 2.16.
Table 2.5 shows the execution time of the SGBM implementations on two
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Table 2.4: OpenCV SGBM(CPU).

Parameter Description Used setting

NumDisparities Search range in pixels corresponding to
maximum disparity - minimum dispar-
ity

64

MinDisparity All parameters can be set automatically
by using one of three available presets

96

PreFilterCap Truncation value for prefiltered image
pixels

31

TextureThreshold Determine if region is textured enough
for matching

3

UniquenessRatio Accept the computed disparity d* only
if SAD(d) >= SAD(d*)*(1 + unique-
nessRatio/100.) for any d != d*+/-1
within the search range

15

SpeckleWindowSize Size of speckle window, which is used to
eliminate noisy transitions

60

SpeckleRange Tolerance to variation within speckle
window

24

Disp12MaxDiff Max difference in the left-right consis-
tency check

4

BlockSize Size of block used for matching. Must
be odd, since the block is centered on
the current pixel

9

Mode Determine of the algorithm considers 5
or 8 directions use MODE_HH for 8

MODE_SGBM

P1 Controls disparity smoothness, large
values gives a smoother disparity, P2 >
P1 is required

8 ∗ 3 ∗ BlockSize ∗
BlockSize

P2 Controls disparity smoothness, large
values gives a smoother disparity, P2 >
P1 is required

32 ∗ 3 ∗BlockSize ∗
BlockSize

different sets of 1280x960 images.

2.2.6 Post-processing of disparity map
Disparity maps are usually filled with noise and holed regions, caused by bad
matches and occlusion. Some of these errors can be cleaned up with processing.
The BM and SGBM implementations above employ speckle filters and left-right
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Figure 2.15: Disparity from day scene using OpenCV’s CPU SGBM implementation.

Figure 2.16: Disparity from night scene using OpenCV’s CPU SGBM implementation.

Table 2.5: OpenCV SGBM timing on two different sets of 1280x960 images.

Processing unit Scene Computation time

CPU Day scene 483.677 ms
CPU Night scene 477.119 ms

consistency checks for this.

Pixel consistency check

By looking at the value of a pixel in the previous frame and comparing it
with the value in the current frame, a significant amount of noise can be re-
moved. This check is based on the assumption that it is uncommon for correctly
matched disparity pixels to erratically change value from frame to frame. In
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case of movement, this check will result in a dark edge around the moving
objects in the disparity map.

LRRL-consistency check

By searching for a match in both direction and determining if the match is
consistent in both directions, the issues with the winner takes all strategy can
be somewhat mitigated, but at the significant cost of double the amount of
searches.

Stereo image pyramid
A dense disparity map is estimated for each level in the stereo image pyramid
independently from each other. Then the reliable disparity estimates selected
from each pyramid level are combined into one disparity image. The selection
is based on a disparity validity measure that reflects the disparity estimation
quality. The validity measure is calculated based on the disparity deviations D
in a rectangular shaped window [16].

2.2.7 Segmentation methods of disparity maps
For the calculated disparity map to be useful it must be segmented. The
following methods can be used for extrapolating meaning from disparity maps.

K-means

K-means is a fast and simple unsupervised clustering algorithm, that finds a
location for the K center points, which if the correct K was assigned, usually
end up in the ideal centers of the distribution of points. However, it requires
initialization in the form of a number K center points.

Mean-shift

Mean-shift, locates the maxima of a density function. It can be used to detect
the modes of a density, which means it can cluster the feature vectors very
effectively. I can be prone to return outliers.

Spectral clustering

Spectral clustering with Nyströms method is based on pairwise comparison
between all possible couples of points. It performs better than the other meth-
ods, but is very expensive in terms of resources. The measurement between
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all points requires the construction of a graph with nodes for each point and
edges between all couples. With Nyströms method the graph is approximated
based on the integral eigenvalue problem, this allows the method to approach
the speed of the other methods.

UV Map

An UV map can be generated from a regular map, where of the V-disparity
map examines the vertical coordinates in an (u,v) input image coordinate im-
age and is constructed using an disparity map, e.g. from the SGM algorithm.
V-disparity was proposed in [25] for aiding obstacle detection from stereo vi-
sion by generating a good representation of the road surface, regardless of it’s
gradient. V-disparity is calculated by accumulating the occurrences of pixel
value in images rows in a (u,v) disparity map. The results is essentially a 255
binned histogram for each row. These histograms are represented in a matrix
measuring 255 times number of rows. In this matrix distinct planes from the
disparity map will be visible as clear lines. Many other objects will stand out
as small vertical lines from the dominant diagonal line originating from the
disparity pixels belonging to the road surface.

Figure 2.17: Correspondence between V-disparity and input disparity map.

The U-disparity map is generated using the horizontal coordinates. Histograms

27



CHAPTER 2. THEORY

are calculated for each row in the disparity. Significant surfaces in the disparity
map, e.g. roads surfaces, will then show up as lines in the v-disparity. By lo-
cating this exact line, segmentation of objects becomes easier. The line can be
found using Hough Line, which is a voting scheme for finding lines in a distri-
bution of points or with RANSAC which is an iterative method for estimating
parameters based on a number of samples

2.3 Learning-based Traffic Light Detection

For both pedestrian[14] and traffic sign recognition [29] integral channel fea-
tures(ICF) and aggregated channel features(ACF) have provided great results.
For our learning based detector we utilize an ACF, but as ACF is based on ICF,
ICF is examined in order to give a better understand for ACF. In this section
we describe both features. The descriptions are based on [12, 14, 13, 15].

2.3.1 Integral Channel Features
ICF is using the integral image for speeding up computations. An integral
image is seen in Figure 2.18, where the concept is illustrated. The integral image
functions as a look-up table where each entry corresponds to the summation
of all pixels above and to the left of the same index in the original image. The
purpose is to reduce the number of operations needed for calculating the area
of a rectangle.

Figure 2.18: Example of integral image. [10]

Before using the integral image to extract features, we first need to look into
the channels from where they are going to be extracted. A channel is basically
a transformation of the original image. Examples are shown in Figure 2.19,
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where an input image is converted into multiple channels including different
color spaces, edges, and thresholds.

Figure 2.19: Examples of possible channels. [15]

The features are then extracted from each of these channels using sums over
local rectangular areas. This idea is very similar to the Haar-like features
introduced in [52]. In Figure 2.20 (a) a first-order integral channel feature is
seen, which is the sum inside a given rectangular area. A second-order Haar-
like feature is seen in Figure 2.20 (b), where two first-order areas are combined,
e.g. the difference between two first-order features. A higher order of Haar-like
feature is seen in 2.20 (c). Finally, 2.20 (d) shows the generation of a histogram
based on multiple channels, e.g. histogram of oriented gradients.

Figure 2.20: ICF channels features. [15]

It is clear that there are a large set of possible channels, in practice for ICF a
large pool of randomly selected first-order candidate features are created based
on the e.g. the following channels: grayscale, LUV, gradient histograms, and
gradient magnitude. Higher order features can optionally be calculated and
used with the first-order features.

2.3.2 Aggregated Channel Features
As mentioned in the beginning of this section ACF is based ICF, and it is there-
fore conceptually the same in most aspects. ACF is presented to work on the
following 10 channels: normalized gradient magnitude, histogram of oriented
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gradients (6 channels), and LUV color channels. The key difference between
ACF and ICF is the way they construct the features. Instead of computing
the relatively heavy integral image, ACF simply smooth and downsample the
channels and features can be found with single pixel look-ups in the "aggre-
gated" channels. Which also result in ACF being faster than ICF, as the ICF
must construct the integral images and compute the sum of rectangular areas
which are more expensive than single pixel lookups. The flow of ACF detector
training is seen in Figure 2.21.

Figure 2.21: Flow of ACF detector training. [12]

Traditionally a feature pyramid is constructed by scaling the entire image and
then computing all channels for every scale. This is illustrated in Figure 2.22,
where scales are sampled with 4 scales per octave. This is a very costly, espe-
cially considering scenarios where the number of scales reach more than 10 per
octave.

Figure 2.22: Traditionally pipeline for a feature pyramid. [12]

The feature pyramid proposed for ACF in [12], is created slightly different.
Instead of downsampling the image and then recalculating the channels at
every single scale, the fast feature pyramid only downsamples and recalculate
the channels once per octave (1, 1/2, 1/4). This approach is seen in Figure 2.23
and can also be used with ICF with improved FPS performance. The remaining
scales between two calculated octaves, are computed by approximating the
features calculated at the octaves.
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Figure 2.23: Proposed pipeline for fast feature pyramids. [12]

The computation of the remaining scales is done using the power law for scaling.
For estimating the scaling factor, λ, one must perform a series of experiments
as λ is different for each channel, Ω. This is done using Equation (2.14), where
N is the number of object/natural image patches. The idea is to plot µs versus
scale, s, in log-log plot, which result in a straight line which corresponds to the
scaling factor, λ.

µs = 1
N

N∑
i=1

fΩ(Is)
fΩ(I) (2.14)

In [12], this is done for pedestrian detection. Figure ?? shows the result of this
for six different channels across 24 scales. By examining the figures it is clear
that all of the channels comply with the power law, as a straight slope on a
log-log plot is strong indication hereof.

Figure 2.24: Estimating the power law feature scaling. [12]

The procedure for training and using the ACF cascade in practice based on
Piotr’s Computer Vision Matlab Toolbox can be found in appendix C.1.6.
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For both ICF and ACF, AdaBoost is usually used for selecting the learners
that are best at distinguishing the object [31]. For applying the detector to an
image, a sliding window of a predefined size is used across multiple scales.

2.4 Heuristic Model-based Traffic Light Detec-
tion

In the paper we present two heuristic model-based approaches for solving the
traffic light detection problem. In addition to back projection and spotlight,
we also looked into using a Gaussian mixture model. In this section, all three
methods will be described.

2.4.1 Back Projection
Back projection is usually used for image segmentation of finding objects of
interest in an image. The main idea is to create a histogram of an image
containing the object of interest. This histogram is then used to back-project
over a different input image. The output of this is a new image with same
dimension as the input image. The output image will however be grayscale,
where more white pixels indicates a higher probability of the object of interest
being at this exact pixel. The idea is illustrated with a skin segmentation of a
hand in Figure 2.25, and in Figure 2.25b, the probabilities of a pixel belonging
to the skin is clearly illustrated by varying intensity of white. Similarly, a
histogram of specific colors can be used to segment specific objects from the
remainder of the image.

(a) (b)

Figure 2.25: (a) Test Image (c) Back projected test image.[33]
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2.4.2 Spotlight
TL detection by spotlight detection rely on the top-hat transform proposed
by [27]. It is used to isolate areas that are either brighter(Top Hat) or dim-
mer(Black Hat) than surrounding pixels. The operations works by finding the
difference between an image and the same image subjected to either the mor-
phological open or close operation shown in equation (2.15) and (2.16) [6].

topHat(img) = img −Open(img) (2.15)

The open operation enlarges small holes and dips, so by subtracting Open(img)
from img, all peaks are revealed.

blackHat(img) = Close(img)− img (2.16)

The close operation enlarges small peaks and raises, so by subtracting img from
Close(img), all valleys are revealed.

The Top Hat operation is used for spotlight detection, as we are interested in
isolating bright spots. The size of bright spots found by Top Hat is determined
by the structural element size and the number of iterations with which the
open operation is applied. The result of using two different parameter settings
can be seen in Figure 2.26.
The output of the Top Hat operation usually provide a lot of candidates. These
must be filtered using BLOB analysis and clever tricks. This could e.g. be by
weighting candidates based on their position and by filtering based on BLOB
metrics such as:

• Ratio between width and height of bounding box

• Ratio between the convex area of BLOB and area of bounding box

• Ratio between area of floodfilled BLOB and area of bounding box

2.4.3 Gaussian Mixture Model
The idea of using a Gaussian Mixture Model(GMM) is to create a GMM based
upon a set of training images with variation of given object. A normal distri-
bution with a mean and variance is found by doing so. If we have multiple
objects, multiple mixture components are created. We do in other words train
a supervised GMM classifier. The GMM classifier is used for examining each
pixel in the test image. The classifier will determine the probabilities of the
pixel belonging to each component. If this probability complies with a defined
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(a) Input image.

(b) Top-Hat with structuring element size set to 5x5 and using 3 iterations.

(c) Top-Hat with structuring element size set to 5x5 and using 6 iterations.

Figure 2.26: Examples of Top Hat operation applied with two different sets of parameters.

threshold, the pixel is labeled to belong to a given component. For doing this,
OpenCV’s implementation is used. Interestingly their GMM implementation
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is called expectation-maximization(EM) algorithm, which, by theory, is an al-
gorithm to obtain maximum likelihood on unsupervised data and thereby able
to estimate GMM. [44, 4, 9]. An example of a GMM with three components is
seen in Figure 2.27.

Figure 2.27: Example of GMM with three components.

2.5 Tracking
All of the tracking used in each stage will be described sequentially throughout
this section.Tracking is a central issue in computer vision[28, Ch. 9]. The task
of following an object over time is needed in many applications. Following
an object over time in a video-feed can be seen as a number of points in a
coordinate system. When connecting these points, a curve is created over
time. This curve is denoted as a trajectory. A trajectory may not only be
based on a position of an object, but can also contain such entries as velocity,
acceleration, size, shape etc. This can be denoted as a state vector. The formal
definition of tracking is then to find the trajectory of the object’s state. This
can be formulated as labeling a new object to the existing trajectories. A known
framework for tracking is the predict-match-update framework. The idea is to
first detect an object in one image and then predict where it approximately
will be in the next image. To estimate where the next position will be, two
typical types of info can be used. This is either motion or appearance. Motion
is information about object movements. If the state is known at time, t, we
wish to predict the state of time, t + 1. For this a motion model, also called
a predictor, is introduced. A predictor explains how an object is moving. The
simplest predictor is a 0th order predictor, which uses the object’s position at
time t. The 0th order predictor can predict a region in the next image where
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the object must be within. By adding velocity and acceleration, it is possible to
create a 1st and 2nd order predictor. Examples of a 0th and 1st order predictor
are seen in Equation (2.19). By using the motion model, a ROI is found in
the next image. If tracking multiple objects the estimated ROI can be used to
match objects, with previous objects.

pt+1 = vmax + pt 0th Order predictor (2.17)
pt+1 = vt∆t + pt 1st Order predictor (2.18)

pt+1 = 1
2at∆2

t + vt∆t + p(t) 2nd Order predictor (2.19)

Appearance is the second type of information which can be used for tracking.
This includes using features to track objects. This can be used in the match
step, to find the best match for a detected object. If an object from time
t + 1 is matched with an object from time t, the information of the object is
then updated. This finalizes the predict-match-update framework. Tracking
has uses in many parts of our research but saw only limited use. Some of the
algorithms that was investigated are explained in this section.

2.5.1 Kalman Filter
Kalman Filter is an algorithm that uses a series of measurements observed over
time, to recursively estimate the next outcome. Throughout the report, the
theory about Kalman Filter is based on [53], and has previously been used in
[38]. As illustrated in Figure 2.28, the main idea can be divided into an iterative
process containing two steps: predict and update. The first step, predict, is to
predict or projecting forward in time based on the current information, or in
other words to obtain the prior estimates for the next time step. The second
step, update, is using the information gained from the prior estimate and the
actual measurement to obtain an improved posterior estimate.
By iterating between these steps, one is able to estimate the next time state,
k, based on the previous state, k − 1.

Figure 2.28: Main idea of a Kalman filter.[53, Figure 1-1]
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Predict The system will use Kalman Filter to predict position in the next
image. Kalman Filter assumes a state at time k to be evolved from time (k−1).
A state can be expressed by the state equation (process model) seen in Equation
(2.20).

x̂−k = Ax̂k−1 +Buk−1 + wk−1 (2.20)
x̂−k = Ax̂k−1 (2.21)

The use of Kalman Filter in this system will use no control input and assumes
the noise to be gaussian and equal in the entire system. Therefore, the state
equation can be reduced to Equation (2.21). This equation is used to obtain
an estimate for the next time step.

Update The update step uses new observation to update the knowledge to
reach a posterior estimate. Equation (2.22) shows the measurement equation.
This is the measurement of a new observation, which is used to correct the
current prediction model. H is the observation matrix, used to map the state
space into observation space. In the system H = 1, as there is no mapping
between the spaces.

zk = Hxk + vk (2.22)

Based on prior and posterior estimates, a correction of the estimated state at
time k is made. The correction equation is seen in Equation (2.23) where x̂−k
is the prior estimation from Equation (2.21). zk −Hx̂−k gives the difference of
the predicted and the actual measurements.

x̂k = x̂−k +Kk(zk −Hx̂−k ) (2.23)

Kk is the Kalman gain which is used to decide how much trust you have in the
the prior estimate x̂−k , as it is used to determine how much the estimate should
be changed according to the new measurement. The Kalman gain is calculated
based on the prior covariance error. If the prior error variance, P−k , is large, this
would imply that the variation of the state is large, and the prior estimation
should be discarded and a new estimation made based on new measurements
as it is trusted more. Oppositely, if the prior error variance is small or zero, the
predicted estimate is not varying much, which would imply that the estimate
should not change much.
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After the correction step, the posterior covariance error is calculated, which in
next iteration is used to calculate the new prior error covariance.

2.5.2 Meanshift
The meanshift algorithm tries to find the center of a pixel distribution by
calculating the mean pixel location within a window and iterating until the new
mean location does not shift any more. Figure 2.29 shows how the meanshift
algorithm iterates towards the center of the distribution. The initial window
is marked with blue and denoted C1, and has a center point marked with a
blue rectangle denoted C1o. The actual centroid of the points within the initial
window is however not located at C1o. The centroid of the points is denoted
C1r and is seen with blue filled circle. The idea of meanshift is to move the
search window to this new center point. This procedure is done until the center
point of the search windows is converged towards the center of distribution.

Figure 2.29: Meanshift window converging to the center of the distribution.[30]

The pixel distribution can e.g. be created using histogram back projection.
This is done by creating a histogram based on the selection of color pixels that
belong to the object that must be tracked. The histogram is then used to
determine the probability that a certain pixel, in the whole image, belongs to
the object from which the sample pixels come from. This leaves a one-channel
image where whiter pixels form the distribution of possible object pixels. To
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improve the result of the back projection, the probabilities of pixels can be
weighed based on how rare the color is in the entire image. More theory of back
projection can be found in subsection 2.4.1. An example of using meanshift for
tracking an object during a video sequence is seen in Figure 2.30.

(a) (b) (c)

Figure 2.30: Example of meanshift tracking. [35]

2.5.3 Camshift
Continuously Adaptive Meanshift (camshift) is an extension of the meanshift
algorithm that allow the search window size and rotation to adapt accordingly
to the target [7]. The first step of camshift is to apply meanshift with a given
initial window and wait until the algorithm converges. The idea of camshift is
to adjust the search window size such as cases where objects moves closer or
further away from the camera we adjust the search window size accordingly. [7]
introduces camshift to be able to track faces, and adjusts the search window
to be scaled in an elliptical matter as the face is somewhat elliptical. The
search window is being scaled according to the current window size, but for
each iteration where a defined accuracy is not meet, the window size will be
kept increased and mean shift is executed again with updated search window
size. An example of using the camshift algorithm for tracking is seen in Figure
2.31. By comparing it with Figure 2.30 it is clear that the detection window
scale according to the object.

(a) . (b) (c)

Figure 2.31: Example of camshift tracking. [35]
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Chapter 3

Vehicle Detection and Tracking
for NDS at intersections

Our first task upon arrival at the LISA lab was to investigate detection based
on depth from a passive stereo vision system would be able to outperform
monocular approaches at vehicle detection. Ongoing research in the lab was
addressing this problem using in standard monocular video. But as monocu-
lar detectors are limited to appearance based detection, obstacles, in this case
vehicles, can be difficult to detect in certain situations. Problematic cases are
e.g. partial occlusion, unfamiliar vehicles, unfamiliar viewpoints and changing
illumination. This leads to late or missed detections. Before reaching a con-
clusion on this question, we shifted onto working on a more specific variety
of the vehicle detection problem. The focus would be on vehicle detection in
intersection using stereo vision under challenging conditions, where many of
the issues that monocular detectors normally struggles with are found. This
research then resulted in the paper Day and Night-Time Drive Analysis using
Stereo Vision for Naturalistic Driving Studies, which was accepted for the 2015
IEEE Intelligent Vehicles Symposium (IV) in Seoul, South Korea.

3.1 Day and Night-Time Drive Analysis us-
ing Stereo Vision for Naturalistic Driving
Studies

In the paper Day and Night-Time Drive Analysis using Stereo Vision for Natu-
ralistic Driving Studies we propose doing object detection in 3D and incorporate
ego-motion compensation when tracking and mapping of moving vehicles. The
purpose is to use these tracks for detecting NDS events.
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Mohan M. Trivedi1, Andreas Møgelmose2, and Thomas B. Moeslund2

Abstract— In order to understand dangerous situations in
the driving environment, naturalistic driving studies (NDS)
are conducted by collecting and analyzing data from sensors
looking inside and outside of the car. Manually processing
the overwhelming amounts of data that are generated in
such studies is very comprehensive. We propose a method
for automatic data reduction for NDS based on stereo vision
vehicle detection and tracking during day- and nighttime. The
developed system can automatically register five NDS events,
mainly related to intersections, from an existing NDS dictionary.
We propose a new drive event which takes advantage of the
extra dimension provided by stereo vision.In total, six drive
events are selected on the basis of them being problematic to
detect automatically using conventional monocular computer
vision approaches. The proposed system is evaluated on day-
and nighttime data, resulting in drive analysis report. The
proposed system reach an overall precision of 0.78 and an
overall recall of 0.72.

I. INTRODUCTION & MOTIVATION

In 2011 a total of 253,108,389 vehicles were registered in
the USA [1], with this many vehicles on the road, crashes are
going to happen. In order to analyze the causes of crashes, a
lot of research has been done in naturalistic driving studies
(NDS). NDS are the study of data from everyday driving,
where a wide range of data are collected and analyzed.
The purpose is to provide insight into the patterns and
behaviors of drivers leading up to and during near-crashes
and crashes. [2] defines the scope of understanding vehicular
traffic behavior from video as being able to analyze and
recognize moving behavioral patterns and being able to
describe them using natural language.

The two most notable NDS are the 100-car study [3]
and the Strategic Highway Research Program(SHRP) [4],
[5], which try to determine patterns and factors impacting
the driver’s behavior on the road. Discovering these patterns
and factors could provide an indication of what sometimes
leads to crashes. The previously mentioned 100-car study
is based on data captured from 2 million miles on the
road, corresponding to nearly 4,300 hours of data, captured
from 240 different drivers in the span of 1 year. In the
more recent SHRP study, nearly 3,100 drivers have been
collecting data from six different places in the USA during
the 3-year study. The information is collected with a variety
of sensors, providing data such as speed, GPS-position,
vehicle dynamics, and video footage covering 360◦around

1Computer Vision and Robotics Research Laboratory, UC San Diego, La
Jolla, CA 92093-0434, USA

2Visual Analysis of People Laboratory, Aalborg University, 9000 Aal-
borg, Denmark.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Automatically detectable data and events. Green is
ego-vehicle, red is other vehicles. (a) Avg. vehicles in front
of ego-vehicle (b) Distance to rear-end of front vehicle. (c)
Vehicle turn to opposite direction. (d) Vehicle turn left across
path. (e) Vehicle drive straight across path. (f) Vehicle turn
to same direction.

the vehicle. All this data is not straightforward to analyze.
In [6] the NDS data is categorized into:

• Low-level: sensor data e.g. position from GPS.
• Mid-level: drive events e.g. lane changes or traffic

density information.
• High-level: high level semantics e.g. driver behavior or

driving styles.

In [7], [8], data reduction for NDS is carried out manually
by trained personnel, e.g. hand-labeling a sequence of video
footage. The hand-labeling of events must be consistent,
therefore a dictionary, such as the one found in [9] is used.
This NDS dictionary was adapted in SHRP. If processing of
the collected data could be automated, it would allow for
more comprehensive studies. 61% of daytime and 38% of
night time crashes involve multiple vehicles [10], therefore
NDS events based on detection and tracking of other
vehicles are essential. Since a disproportionate number of
crashes happen at night [11], it is important to also to detect
vehicles during nighttime. Intersection are especially prone
to crashes, since vehicles need to cross paths. To the best
of the authors’ knowledge, non of the current published
work in the area of data reduction for NDS, utilize stereo
vision for automatic drive analysis. [12] detects objects’ 3D
location and orientation in intersection traffic scenes using
scene information from stereo images. However, it is not
used for NDS, nor evaluated on nighttime data. In [13], the
symmetry and color rear-lamp pairs are utilized for detection
and tracking. A similar approach is used in [14], where



the proposed system is limited to only consider scenarios
where vehicles are fully visible. The same paper provides
a brief overview of how monocular vehicle detection has
trouble dealing with variations in lighting, weather, changing
vehicle shape, and color. The most notable issue with these
approaches is that the detection is highly depended on both
rear-lamps being visible. Stereo vision is used in [15] to
track a vehicle after detecting it using monocular vision.
The purpose of introducing stereo vision is to make their
system more robust to occlusion. This is also discussed in
[16], where the introduction of 3D shows promising results
and alleviate some occlusion issues. Most vehicle detection
is done in the monocular domain, as e.g in [17] where
lane detection is included for localizing and tracking the
vehicles and in [18] where parts of vehicles are detected
and tracking, the same paper remarks that detecting the
turning vehicles in intersection is especially challenging.
Monocular systems which aspire to detect vehicle from all
possible viewpoints and under changing light conditions,
requires a large amount of varied training data.

In this paper, we introduce a stereo vision system for
automatic NDS data reduction on both day- and nighttime
data. This enables detection and tracking of vehicles in
scenarios that would be problematic for monocular detectors.
The proposed system will handle a handful of NDS events,
which especially benefit from the extra dimension in stereo
vision. The treated NDS events are illustrated in Figure 1.

The contributions made in this paper are:
• Using stereo vision for automatic data reduction for

NDS on both day- and nighttime data, with focus on
intersections (Figure 1c, 1d, 1e, 1f).

• Using stereo vision for determining the average number
of vehicles in front of the ego-vehicle. (Figure 1a).

• Introducing a new NDS event: Average distance to
vehicles directly in front of the ego-vehicle. (Figure 1b).

The rest of the paper is organized as follows: In Section
II, related work in the area of data reduction for NDS is
presented followed by an overview of recent work on stereo
vision for obstacle detection on roads. An overview of the
developed system and the drive semantics that we wish to
label automatically are presented in Section III. In section IV
the methods which constitute the system are presented. The
results are discussed in Section V, followed by concluding
remarks in Section VI.

II. RELATED WORK

Before developing a stereo vision system to be used for
generating a drive analysis report, we briefly present some of
the recent research published with regards to automatic NDS
data reduction. Furthermore, we introduce some of the recent
and most notable work in the field of object detection with
stereo vision. This is limited only consider stereo vision with
the purpose of either improving the disparity with regard to
object detection in traffic scenes and work that utilizes stereo
vision for vehicle detection.

A. NDS Data Reduction

In [19], the statistics of near-crashes and crashes are used
to identify factors related to driver associated risks, such as
age, experience, gender, and demographic. Similar studies
are conducted in [20], where results show that near-crash
and crash percentage among teenagers were 75 % lower in
the presence of adult passengers and 96 % higher among
teenagers with risky friends. In [21] NDS are used to quantify
distracting activities from e.g. a mobile phone, that results in
loss of concentration. Results show that a driver in average
is engaged in a distracting activity every 6 minutes, which
could results in a near-crash or crash.

The process for manual data reduction for NDS is quite
comprehensive and time consuming, it is therefore desirable
to automate it by e.g. applying computer vision to understand
the traffic scene. An example of one such study is seen
in [6], where monocular computer vision and information
from the CAN bus is used to automatically detect 23 drive
events, including lane position, vehicle localization within
lanes, vehicle speed, traffic density, and road curvature. In
[22], a system is developed for automatic labeling driver
behavior events with regards to overtaking and receding
vehicle detection. This type of system is categorized as
Looking-In and Looking-Out(LiLo), which is discussed in
depth in [23]. LiLo fits well with using multiple inputs
to understand the driver’s behavior. An example of Li is
[24] where driver behavior with respect to hand activity is
evaluated.

B. Object Detection Using Stereo Vision

In [25], a review of the research conducted since 2005
in both monocular and stereo vision with respect to vision-
based vehicle detection is presented. Before 2005, [26]
conducted a review of on-road vehicle detection. Most of
the research published with regard to vehicle detection is
evaluating the methods on data, representing a limited part
of the challenges. In [27] the accurate and efficient Semi-
Global Matching(SGM) is introduced. SGM make use of
epipolar geometry, and in most cases a set of rectified stereo
images. Horizontal lines in the images are used as a scan
lines, matches are then found with a 1D disparity search. A
match for a pixel in the left image is found in the right image
by searching through the corresponding horizontal line and
locating the most similar block to a reference block around
the original pixel in the left image. The offset between these
pixels is known as the disparity, which is directly related to
the distance to the corresponding object. In the same paper,
the LR-RL-consistency check is proposed for reducing noise
in the calculated disparity image.

In [28], [29], the so-called v-disparity is generated and
used for separating objects from the ground/road surface. The
v-disparity examines the vertical coordinates in a (u,v) image
coordinate system and is constructed using a disparity map
from, e.g. the SGM algorithm. What is especially histograms
are calculated for each row in the disparity. Significant
surfaces in the disparity map will then show up as lines in
the v-disparity.



Fig. 2: Flow diagram of the developed system, illustrated with both day- and nighttime data.

In [30], 6D-vision is introduced, where features are found
in the left monocular image and then located in 3D by
using the stereo images. For each feature point, a Kalman
filter is used to estimate a 6D vector consisting of the 3D
position and 3D motion vector. [30] is able to do ego-
motion compensation by identifying the static 6D points.
The predicted static world points are then compared to the
remaining points to isolate the ego-motion. In [31], this
work is continued and by using 6D-vision, tracked feature
points are represented as stixels, which is a vertical areas of
equal disparity. The tracked objects are being classified using
prior knowledge of vehicle shapes. Alternatively, objects
can be classified using clustering in the disparity map, as
seen in [28]. In [32], [33], temporal and scene priors from
good conditions are used with the purpose of improving
the disparity map in adverse weather conditions, such as
night, rain, and snow. Using these priors, the object detection
rate improves on a database of 3000 frames including bad
weather while reducing the false positive rate.

III. SYSTEM OVERVIEW

The flow of the system is shown in Figure 2. A Bumblebee
XB3 stereo camera is used to acquire stereo image pairs with
a capture speed of 16 FPS in an resolution of 1280x960.
These images are rectified using the factory calibration. A
disparity map is generated and noisy pixels are removed.
The road surface is removed using the detected line in a
corresponding v-disparity. The remaining pixels are consid-
ered vehicle candidate pixels. These pixels are projected into
3D world coordinates and outliers are removed. Clusters are
found by grouping points that are close neighbors. Each
sufficiently big cluster is regarded as a detected vehicle. The
clusters’ center points are used for nearest neighbor tracking
between frames and for determining the distances from ego-
vehicle to detected vehicles. Before the detected vehicles’
movement between frames is determined, their movement is
adjusted according to the ego-vehicles motion. Finally, the
vehicles are tracked, and NDS event are detected and logged
in a drive analysis report.

IV. METHODS

In this section all of the methods which are used in the
proposed system are presented. The section is divided into
subsections corresponding to the stages seen in Figure 2.

A. Generate Disparity Map & Noise Removal

Stereo images captured under poor conditions may contain
very dark, very bright, or otherwise untextured regions
causing noise and artifacts in the disparity map. Besides
this, inconsistencies between the image pairs may arise in
an uncontrolled environment e.g. because of reflections in
the camera lenses. A noisy disparity map is bound to lead to
problems later in the system, therefore the disparity map is
post-processed in an attempt to reduce the number of noisy
pixels. Figure 3 shows an examples of a two noisy disparity
image in the left box. In the right box, the two corresponding
noise reduced disparity images are seen.

Fig. 3: Examples of raw day and night-time disparity maps
and the corresponding noise reduced disparity maps.

1) LR-RL consistency check: By using first left and then
right image as reference, when searching for matches in
the stereo pair, a so called LR-RL consistency check is
done. The LR-RL consistency check is used a little dif-
ferently compared to the original proposal in [27] and the
implementation provided by OpenCV. We wish to keep as
many disparity pixels as possible for later stages. In case of
a disparity difference in the consistency check, the lowest



value is simply selected as the output pixel, rather than
discarding the pixel entirely. The result this modified LR-
RL consistency check versus the traditional, with a maximum
disparity difference of 5 is seen in Figure 4.

(a) (b)

Fig. 4: (a) Traditional LR-RL consistency check. (b) Pro-
posed LR-RL consistency check.

2) Temporal consistency check: By looking at the value
of a pixel in the previous frame and comparing it with the
value in the current frame, a significant amount of noise
can be removed. This check is based on the assumption
that it is uncommon for correctly matched disparity pixels
to erratically change value from frame to frame. In case of
movement, this check will result in a dark edge around the
moving objects in the disparity map.

3) Monocular color check: Large uniform regions are
problematic when calculating the disparity map as they may
result in artifacts and noise. Especially in night scenes, a
large part of the images consist of dark regions. The same
is the case in brightly lit scenes. Over and under exposure
can be handled to some degree by adjusting the camera
accordingly. Regions are removed by searching for pixels
with values very close to either of the extremes in the left
monocular RGB image. As these pixels are considered as
sources of noise, they are simply masked out in the disparity
map.

B. Road Surface Removal

The noise reduced disparity map contains disparities for
road surface pixels and obstacle pixels. Since the vehicles
that must be detected are found among the obstacle pixels,
the disparity pixels associated with the road surface must be
removed.

1) Road surface detection using v-disparity: The road
surface is found by searching for the most significant line in
the v-disparity using RANSAC. This method will not work
well unless parts of the road surface is visible. In cases where
a satisfactory line cannot be found, the last good line is used
for road surface removal. Additionally, the line parameters
are filtered using a Kalman filter to smooth out faulty road
surface estimations. The calculated line is then used as a
threshold for determining if pixels belong to objects above
the road surface.

C. Project To Point Cloud & Cloud Filtering

1) Projecting disparity image to 3D point cloud: Using
the camera’s focal length f (in pixels) and baseline b(in
meters), along with the calculated disparity d(in pixels), the
actual distance z to objects in the camera’s view can be

found. The remaining x and y components of the world co-
ordinate are the column and row index of the disparity pixel.
Equation (1) shows the relations that make this possible.

z =
f ·B
d

x =
col · z
f

y =
row · z

f
(1)

Only disparity map pixels above a certain threshold are
projected to 3D world points. This is due to the expo-
nentially increasing inaccuracy with lower disparity values,
which makes it difficult to determine whether point is noise,
background, or in fact belong to an object.

D. Vehicle Segmentation in Point Cloud

The acquired point cloud is preprocessed in the following
steps in order to clean up the data points for segmentation
into clusters constituting vehicles.

1) A pass through filter removes near and distant points.
These point degrade performance and can be removed
since they are of little interest.

2) Remaining points are downsampled using a voxel grid,
insuring an even distribution of points and greatly
reduces the number of points, resulting in a reduced
processing time.

3) Outlier removal based on mean distance to neighbor-
ing points compared to a global mean and standard
deviation.

Clusters are found by creating a k-d tree which organizes
points according to their distance to neighbors, this enables
efficient searches in the 3D point cloud.

E. Vehicle Tracking

In order to understand what other drivers are doing in
relation to the ego-vehicle, their vehicles must be tracked.
This is done based on the center point of each of the
segmented clusters, these center points are filtered using a
Kalman filter in order to make the prediction of a match in
the following frame more accurate. The best match is found
using the euclidean distance between the predicted center
point and the segmented center point in the next frame.

F. Visual Ego-Motion Compensation

For compensating for the subject vehicle’s ego-motion
while e.g. approaching an intersection, we utilize the LIB-
VISO2: C++ Library for Visual Odometry 2 which can
calculate the translation and rotation between moving frames
captured by stereo camera. For further explanation we refer
to [34].

G. NDS Event Detection

For all detected vehicles, individual frame to frame move-
ments are categorized to form a basis for determining which
NDS events have occurred. Figure 5 shows the different
movements that are detected. Based on the movements, a
histogram is created and used for classifying the NDS event
type. The arrows symbolizes vectors between vehicle center
points and the attached letters indicate the movement type.



Fig. 5: Movements detected by the system. Every movement
is seen from the viewpoint of the ego-vehicle. S (same
direction), SR (same direction and towards the right), SL
(same direction and towards the left), O (opposite direction),
OR (opposite direction and towards the right), OL (opposite
direction and towards the left), R (right), L (left).

In addition to the movements seen in Figure 5, a category
is created for cases where little or no movement are detected.
This category is labeled OO. A movement histogram is
created for each vehicle, where a bin corresponds to one
type of movement. The histogram is matched to a training
histogram for each of the NDS events. Figure 6 shows an
example on one such histogram.

Fig. 6: Example of histogram of detected movements.

The following four NDS event are each described by
specific training histograms.

• Other vehicle turn left across path.
• Other vehicle turn onto opposite direction.
• Other vehicle drive straight across path.
• Other vehicle turn onto same direction.

Additionally, we quantify the existing NDS event, Average
number of cars in front of ego-vehicle. The total number of
detected vehicles is recorded for each frame throughout the
entire video sequence and the average is calculated when
the NDS rapport is generated. The purpose is to quantify the
traffic scene density, by the average number of vehicles in
front for the ego-vehicle. Finally we propose a new NDS
event which is the average distance to the rear end of the
vehicle directly in front of the ego-vehicle. This is meant as
a measure of the ego-vehicle driver’s aggressiveness.

V. RESULTS
The system is evaluated based on 14 day and 12 night

video sequences. In each sequence the occurrence of each
event, also referred to as the ground truth (GT) is manu-
ally hand-labeled. Precision and recall are found using the
system output(SO), correctly detected events(TP), incorrectly

detected events(FP), and finally missed events(FN). Precision
and recall are calculated according to (2).

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(2)

Precision is the ratio of correct event detections compared
to the actual number of events. Recall is the ratio of correct
event detections compared to the total number of detections.

In Figure 7, an example of the NDS event left turn across
Path is seen. The blue cross represents the cluster’s center of
mass, the blue text, next to the blue circle, is the measured
distance from ego-vehicle to the vehicle’s closest point. The
blue text stating, "R" and "OR" next to the green circle, tells
that the detected vehicles’ movements are determined to be
right and opposite right movement, respectively.

Fig. 7: Partially occluded vehicle detected in a left turn.

In Table I the results are shown. The 12 nighttime video
sequences consists of a total of 3933 frames. The 14 daytime
videos consists a total of 4992 frames. A result of e.g 35/32
corresponds to 32 manually annotated GT events and 35
system detections. For calculating the precision and recall,
each classification done by the system is manually defined
as either a TP, FP, or FN. The listed precision and recall
numbers are a total from both day- and nighttime data.

TABLE I: Summary of drive analysis from NDS. Results are
listed as [SO/GT]. P and R are abbreviations for precision
and recall.

Drive Behavior Event Daytime Nighttime P R
Right - straight across path 35/32 5/19 0.95 0.63
Left - straight across path 45/34 11/33 0.87 0.67
Left turn across path 5/5 20/1 0.75 1
Turn onto opposite dir. 32/37 41/15 0.68 0.93
Short turn onto same dir. 7/5 9/5 0.63 1
Long turn onto same dir. 1/16 1/8 1 0.09
Avg. number of cars 1.67/1.74 1.6/1.3 NA NA
Avg. distance to car 8.73 m 10.98 m NA NA

Table I indicates that the proposed system is able to handle
most of the events. However, the system often had difficulties
with detecting vehicle far away, especially at night, resulting
in poor performance for vehicles turning onto the same
direction. The average distance to the vehicle in front of
the ego-vehicle was found to be shorter during the daytime,
which could indicate people are using a larger safety distance
when the visibility is decreased, or it might be a result of
lower traffic density in those hours.

Future improvements to the system includes creating a
mask using top-hat morphology instead of the monocular



color check for removing big texture-less regions. The color
check method removes big parts of black and white vehicles.
It was not possible to verify the accuracy of the measured
average distance to vehicles, based on the video clips that
were used for testing. Finding the ground truth using a laser
range finder would be interesting to establish the accuracy
of the distance measurements. The ego-motion compensation
proved useful, but the estimates were noisy at times. The
exact motion of the vehicle can alternatively be extracted
from the CAN bus. More significant was the impact from
the tracked center points of vehicles, which would shift
back and fourth based on the quality of the disparity map.
These two issues were the main contributors to wrong event
classifications. The varying performance can be attributed
to the difficult conditions under which much of the image
data was collected. Most false negatives were a result of
occlusions or incorrect road surface detection.

VI. CONCLUSION

We presented a system using stereo vision for automatic
data reduction in NDS with focus on intersections and dis-
tance measurements. The use of stereo vision is considered
beneficial, especially in scenarios such as the one seen in
Figure 7. The system proved to work in both day and
nighttime conditions with a drop in overall performance
for the night sequences. Experiments show very promising
detection, trajectory, and automatic event classification rates
with an overall precision of 0.78 and recall of 0.72.

Future work includes looking at additional NDS events
where stereo vision can be utilized and identifying the exact
accuracy of the distance measurements achieved with stereo
vision.
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Chapter 4

Traffic Light Recognition Survey

The literature survey which forms the basis for our two TLR survey papers
is done by literature search using the following keywords: traffic, light, signal,
detection, recognition. Additional research not captured by the search is found
by looking up references in the found articles.

4.1 Vision for Looking at Traffic Lights: Is-
sues, Survey, and Perspectives

Currently no survey of TLR research exists. We provide an overview of the
methods employed for detection, classification and tracking as well as the used
color spaces and features in relevant TLR research back to 2004, but primarily
focused on research made from 2009 and onward. By looking at the evaluation
of current research in TLR we conclude that the introduction of a common
evaluation practice will significantly help advancement in the area. This in-
cludes settling on descriptive and meaningful evaluation metrics as well as the
introduction of a challenging public training and testset. Our journal paper:
Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives, which is
submitted for IEEE Transactions on Intelligent Transportation Systems (ITS),
gives an extensive overview of existing research and provides an in-depth re-
view of the current evaluation methodology as well introduce our proposal for
a common future evaluation procedure.
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Vision for Looking at Traffic Lights: Issues, Survey,
and Perspectives

Mark P. Philipsen, Morten B. Jensen, Andreas Møgelmose, Thomas B. Moeslund, and Mohan M. Trivedi

Abstract—This paper provides an overview of recent work
on the problem of traffic light recognition (TLR). The aim is
to elucidate which areas have been thoroughly researched and
which have not, thereby uncovering opportunities for further
improvement. An overview of the applied methods and note-
worthy contributions from a wide range of recent papers is
presented, along with the corresponding evaluation results. The
evaluation of TLR systems is studied and discussed in depth and
we propose a common evaluation procedure, which will improve
future evaluation and ease comparison. To provide a shared basis
for comparing future TLR systems we publish an extensive public
database based on footage from US roads. The database contains
annotated stereo sequences, captured under varying light and
weather conditions, which should challenge future TLR systems.

Index Terms—Traffic light recognition, traffic signal recog-
nition, object detection, computer vision, machine learning,
intelligent transportation system, active safety, driver assistance
systems

I. INTRODUCTION

THE automobile revolution in the early 20th century
led to a massive increase in road transportation and

contemporary road network was incapable of handling the
rapidly increasing traffic load. To allow for efficient and safe
transportation, traffic control devices (TCD) were developed
for guiding, regulating, and warning drivers. TCDs are
elements of the infrastructure that communicate to the drivers,
examples are: signs, signaling lights and pavement markings
[1]. Figure 1 shows an example of a road scene with some of
the many TCDs. TCDs are especially important in complex

Fig. 1: Traffic Control Devices (TCD) for safe and efficient
traffic flow.

environments such as intersections, where a lot of information
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needs to be communicated. Informing drivers is a balance
between providing sufficient information while avoiding
to burden and distract the drivers excessively. A driver’s
cognitive ability is limited by the amount of information and
the time available to comprehend the information. Thereby,
high speed and overwhelming amounts of information can
lead to errors from stress and oversights [1]. TCDs are
installed to make traffic run smoothly and safely by guiding
road users and assigning the road resource fairly. For TCDs
to function properly, all road users are required to abide,
otherwise dangerous situations occur. In some cases drivers
purposely disregarded the TCDs as e.g. over 1/3 of Americans
admit to having purposefully run a red light during the past
month [2]. In many cases failure to comply is unintentional
and caused by misunderstandings, negligence, or faulty
TCDs. Most of the time when driving, a person’s attention is
divided among driving tasks such as changing lane, activating
turn signals, adjusting the speed, reading signs etc. while also
listening to the radio, snacking, and thinking about what is
for dinner. For all of this to be possible at the same time,
much of it happens unconsciously and based on expectations
of what will happen. When the unexpected suddenly happens
it is perceived with an added delay. In emergency situations
a decision of whether to dodge or break must be made.
The additional mental load associated with making decisions
increases the reaction time further. A considerable share of
crashes are a result of delayed reaction time caused by failure
to recognize a hazardous situation before a crash becomes
inevitable. The complex task of driving is easy most of the
time to an experienced driver, because many driving subtasks
are automated. The tasks have been practiced over and over
with little variation and they become a fixed sequence of
actions. When such tasks have be come automated, they
become effortless. When driving is easy and the driver is
unfocused, critical events are easy to miss. Stressful driving
on the contrary means that the driver is very focused and
attentive. Therefore a lot of effort is put into the task of
driving which quickly leads to fatigue. Inexperienced drivers
under complex driving conditions are in particular exposed to
this and may become overloaded resulting in missed critical
events [3].

Unlike for sign recognition and pedestrian detection, no
surveys of TLR research exist. Furthermore, most published
TLR systems are evaluated based on local datasets with
a limited number of traffic lights(TLs) and little variation.
This makes comparison between existing methods and new
contributions difficult. The contributions made in this survey
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paper are thus threefold:
1) Provide an overview of current TLR papers’ method

choices and contributions.
2) Introduce a common evaluation procedure for future

TLR systems.
3) Publish an expanded high resolution, annotated, stereo

video database, with day and night video sequences.
The paper is organized as follows: Section II provides

an introduction to driver assistance systems (DAS). Section
III talks in general about computer vision systems for TLR.
Section IV, gives an overview of the possible appearances of
TLs, along with common challenges that TLR systems are
subject to. In section V a decomposition of TLR systems is
presented, which enables easy comparison between the recent
work. In section VI recent work is examined and the applied
methods are summarized, followed by overview tables with
methods and evaluation results. Section VII reviews the way
TLR system performance has been evaluated up to this point.
Following this we propose five metrics that we suggest should
be used to evaluate TLR systems. In section VIII, we present a
new stereo database for evaluation of future TLR systems. In
section IX, experiences, and future possibilities are discussed.
Finally, section X rounds of with summarizing and concluding
on the findings made through out the paper.

II. DRIVER ASSISTANCE SYSTEMS

The efficiency and advancement of surface transportation
systems is an influencing factor in the productivity of
nations. They fundamentally affect the time spend on
transportation and the mobility of the workforce. They impact
the environment and energy consumption, which in turn
dictate foreign policy. Since transportation is a major part of
peoples lives, their health and well being is directly related
to the efficiency, safety and cleanness of the transportation
systems. To improve the current transportation systems,
innovation and development in sensing, communication, and
processing is necessary [4], [5]. The future perspective of
intelligent transportation systems is autonomous networks of
vehicles and infrastructure, were transportation is ordered on
demand from transport service providers. The high initial
expenditure, worries, and effort required when owning and
driving private vehicles will no longer be necessary [6]. In the
meantime and as long as humans are in the loop, DAS is an
important part of reducing the number of fatalities and injuries.

Traffic accidents are one of the major causes of death
around the world. In addition to the distressed caused by the
loss of life and mobility, the monetary cost runs in billions of
dollars [7]. The countries with the highest fatality rates are
middle-income countries, which recently have experienced a
rapid motorization. High income countries are experienced
steadily falling fatality rates for half a century due to the
implementation of a long list of legislative, emergency care,
vehicle safety, and road environment measures. At first people
needed to be forced to be safe through regulations, which was
something that began in the 1960s [8]. With the introduction
of New Car Assessment Program (NCAP) in 1978, safety

became a significant parameter for people when buying cars.
Since then, car manufacturers have fought to reach high
scores in safety tests [3]. DAS are increasingly becoming
part of safety ratings and are valuable selling points. Since
people’s attention tend to be divided and occasionally fails
to sense potential dangers in time, lives can be saved by
having DAS monitor the environment and depending on
the situation either warn or intervene. Since the purpose
of DAS it to support the driver, it must make up for the
deficiencies of the driver. An example of a driver deficiency
where DAS potentially can support the driver is noticing and
recognizing TCDs. Studies show that drivers notice some
TCDs better than others, speed limit signs are almost always
noticed, while signs warning about pedestrian crossings are
mostly overlooked [9]. A traffic sign recognition system for
DAS should therefore foremost be warning about pedestrian
crossings.

Currently the focus of research in computer vision systems
for vehicles is divided in two. Major industrial research
groups, such as Daimlar and Google, are investing heavily
in autonomous vehicles and attempt to make computer vision
based system for the existing infrastructure. Other research
done by academic institutions, such as the LISA lab at UC
San Diego and LaRA at ParisTech, are targeting DAS, which
is already available to consumers in some high-end models
from car manufacturers such as Audi, BMW, Mercedes-Benz,
Tesla, Volvo, etc.. Existing commercial DAS capabilities in-
clude, warning of impending collisions, emergency breaking,
automatic lane changing, keeping the advertised speed limit,
and adaptive cruise control. In addition to DAS directly
implemented as part of the car, DAS has been seen imple-
mented on mobile platforms. As smartphones are becoming
more powerful both in terms of processing power and an
expanding array of powerful sensors such as, cameras, GPS,
accelerometers, and gyroscopes. In [10], [11], driver advisory
applications are introduced providing several services using an
iPhone mounted inside the car, with the camera facing the road
in front of the car. DAS related research can also be applied
elsewhere, e.g. to help visual impaired navigate in the traffic
scene as seen in [12].

III. ROLE OF COMPUTER VISION IN TRAFFIC LIGHT
RECOGNITION

For all parts of DAS the urban environment possesses
a wealth of challenges, especially to systems that rely on
computer vision. An important challenge is recognizing TLs
at intersections. In 2012, 683 people died and 133,000 people
were injured in crashes that involved red light running in the
USA [13]. Ideally, TLs should be able to communicate both
visually and using infrastructure to vehicle (I2V) by means
of radio communication. Introducing I2V on a large scale
requires substantial investments in infrastructure, which is
unlikely in the near future. When some form of computer
controlled automation is involved in controlling dangerous
objects such as vehicles, safety and reliability are of utmost
importance. Examples of dangerous scenarios, where DAS
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(a)

(b)

Fig. 2: A fused DAS system in intersection scenarios. (a)
safe/legal to turn right on red?. (b) Assistance in the dilemma
zone.

is involved, could be a false positive caused by e.g., a tail
light or pedestrian crossing light, resulting in the system
determining that a red light is imminent, when this is not
the case. This might lead to unnecessary distraction of the
driver, or even affecting the driver to perform an emergency
braking operation. Worse yet, if a red light is missed or miss
classified as green, it could potentially lead to the driver
accidentally running a red light. Intersections are some of
the most complex challenges that drivers encounter, making
recognition of TLs an integral part of DAS in the transitional
period between manually controlled cars and the introduction
of I2V for TL or a fully autonomous networks of cars.

Intersections are some of the most demanding challenges
the driver must navigate. Navigating intersections requires
awareness of surrounding objects, selecting lane, awareness
of signs and signals, making stop or proceed decision while
maintaining lane position, appropriate speed and turn rate.
At intersections with TLs, the yellow light dilemma present
drivers with a decision of whether it is safe/possible to stop
before entering the intersection or to keep going and cross
the intersection. The interval where this decision have to be
made for most people were found to be in the range of
2.5-5.5 seconds before entering the intersection [14]. Outside
the interval the decision it typically quite clear. The reaction
times of drivers is slowest in the center of the interval,
where the decision is the most difficult. Common reasons
for unintentional red light running are: distraction from e.g.
conversing or manipulating infotainment equipment, speeding
to make it through the intersection in time, and aggressive
driving by closely following the car in front [15]. Figure 2
shows two scenarios where information from different sensors
and intelligent systems can provide improved DAS.

Before delving into the research made in TLR, it is
interesting to examine the state of related computer vision
problems: traffic sign recognition, pedestrian detection,
taillight detection, and headlight detection. When identifying
challenges and solutions for TLR, the challenges, methods,
and experience from published work in related computer
vision problems can be helpful. The related computer vision
problems often, include comparable challenges to those found
in TLR. Traffic sign recognition and pedestrian detection
are research topics that have been addressed extensively. For
traffic sign recognition, [9] provides an overview up until
2012. Recently, the focus has shifted from heuristic model
based detection to learning based approaches and the problem
is considered solved on a subset of signs [16], [17]. Detection
of traffic signs, pedestrians, and vehicles during varying
lighting, viewpoints and weather conditions is challenging.
Traffic signs usually consist of retroreflective materials [18],
which make them visible at night by reflecting light from
headlights. Retroreflective materials are difficult to capture
well with cameras and many of the useful features may be
lost, making detection and recognition of the sign impossible.
Additionally, the perceived colors of objects change with the
lighting and models must therefore tolerate large variations in
color. All of these issues suggest that relying solely on color
is problematic, therefore shape information is useful for sign
detection. An example of the use of shape information is
seen in [19]. Though TLs do not have the same retroreflective
material problems, optimal camera settings are essential for all
computer vision systems. A robust vision based DAS system
that works under changing lighting, at varying distances, and
under mixed weather conditions is a difficult task as stated in
[20], where a concluding remark is to look into a cross-over
procedures for handling environmental transitions. For both
traffic signs and TLs, the angle between the ego-vehicle and
the sign or TL will impact the perceived shape of the object,
resulting in a new shape variation.

Determining the relevance of both TLs and traffic signs
is a major challenge and the solution rely on incorporating
information from other systems, such as lane detection and
GPS. Most vehicle detection and brake light detection at
night utilize monocular cameras and rely on the symmetry
of tail and head lights for detecting vehicles as in [21], [22],
[23], [24], [25], [26]. In [27] head and tail light detection is
done using cues from lane detection, the purpose is to make
a system that can automatically switch between high-beam to
low-beam. Vehicle detection using tail and headlight detection
is facing similar challenges as TLR with regards to false
detections from atypical vehicles, billboards, and pedestrian
crossing lights. A recent paper on lane detection is [28], where
a context aware framework for lane detection is introduced,
this can significantly reduce the required computational
demand by scaling the detection algorithm based of the state
of the ego-vehicle and the road context. The same paper
references several comprehensive surveys of lane estimation
techniques, one being [29], where work done across multiple
modalities is reviewed. In [30], [31] the gaze and attention
of the driver is determined. This is essential information
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(a) (b)

Fig. 3: (a) San Diego, California. (b) Cincinnati, Ohio.

for DAS, since it can be used to determine if the driver
should be notified as e.g. in [32] where the driver is alerted
and safety systems are engaged if the driver is inattentive
for a prolonged period of time. While research on sign
recognition and pedestrian detection has mostly shifted from
heuristic models to learning based detection, as [33] shows
how learning based detectors using Integral Channel Features
(ICF) or the even faster and slightly better Aggregated
Channel Features (ACF) outperform other approaches. The
elsewhere successful learning based approaches have not yet
been thoroughly tested for TLR where the vast majority of
published work, rely on manually specified color and shape
models.

IV. TRAFFIC LIGHTS: CONVENTIONS, STRUCTURE,
DYNAMICS, AND CHALLENGES

Worldwide there are large variations in TL designs; how-
ever, all follow a few general guidelines. A TL consists of a
box that holds differently colored, and sometimes differently
shaped lamps. The orientation, color, size, and shape of the
box will vary country to country and even city to city. An
example of differently oriented and colored TLs within the
USA is seen in Figure 3. As evident in Figure 3(a), there are
two methods for mounting TLs, suspended and supported. The
latter has proven the most difficult for existing TLR systems,
this is discussed in subsection IV-A.

TLs are by design made to stand out and be easily visible by
using bright uniformly colored lamps surrounded by a uniform,
often dark box. The purpose of a TL is the same across the
world, it must safely regulate the traffic flow, while warning
drivers about the state of the intersection ahead. The most
common TL configuration is the basic red-yellow-green signal,
where each state indicates whether a driver should stop, be
prepared to stop, or keep driving. A variety of other TLs have
been created as a result of more complex intersections. Figure
4 shows some of the allowed vertical configurations of TLs in
California.

Fig. 4: Examples of vertical TLs found in California. [34]

For increasing road safety and making it easier for drivers
when driving across states, the TLs in the USA are regulated

by the Federal Highway Administration in the Manual
on Uniform Traffic Control Devices[35]. Most countries in
Europe have signed the Vienna Convention on Road Signs and
Signals [36], requiring TLs to meet a common international
standard.

Besides the various configurations of TLs, the state se-
quence is an important characteristics of a TL. An example of
a state sequence for the basic red-yellow-green light is shown
in Figure 5.

Fig. 5: Basic TL sequence for states: green, yellow, red, and
no TL.

A TLR system for DAS must, in addition to detecting and
recognizing TLs, be able to figure out which of the recognized
TLs have relevance to the ego-vehicle. Figure 6 shows an
example of a complex traffic scene where three upcoming
intersections are all visible at the same time. One of the
intersections contains turn lanes that are accompanied by their
own independent TLs. Ideally, the TLR system should be able
to incorporate detailed information about the specific TLs in
it’s evaluation of relevance. An example would be for the
system to disregard TLs that only apply to buses or determine
whether, at specific time slots during the day, intersections
allow for turning right on red. To make this possible, and to
enable TLR for use in DAS, the position and the planed route
of the ego-vehicle must be taken into account.

Fig. 6: Complex traffic scene with three visible upcoming
intersections and turn lanes, each with their associated TLs.

A. Challenges in recognizing traffic lights

Although TLs are made to be easily recognizable, influences
from the environment and sometimes sub-optimal placement
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can make successful detection and recognition difficult, if not
impossible. Issues include:

• Color tone shifting and halo disturbances because of
influences from the atmosphere and glass that the light
passes through[37]. Fig. 7(c).

• Occlusion and partial occlusion because of other objects
or oblique viewing angles[37]. This is especially a prob-
lem with supported TLs [38], [39], [40]. Fig. 7(e),(f),(g).

• Incomplete shapes because of malfunctioning lights[37]
or dirty lamps 7. Fig. 7(a),(b).

• False positives from, brake lights, reflections,
billboards[41], [42], and pedestrian crossing lamps.
Fig. 7(h).

• Changes in lighting due to adverse weather conditions
and the positioning of the sun and other light sources.
Fig. 7(d),(k),(l).

• Mismatch between camera’s shutter speed and TL LED’s
duty cycle. Fig. 7(i),(j).

Inconsistencies in TL lamps can be caused by dirt, defects,
or the relatively slow duty cycle of the LEDs. The duty cycle is
high enough for the human eye not to notice that the lights are
actually blinking. Issues arise when a camera uses fast shutter
speeds, leading to some frames not contain a lit TL lamp.
Saturation is another aspect that can influence the appearance
of the lights. With transition between day and night, the
camera parameters must be adjusted to let the optimal amount
of light in and avoid under or over-saturation. [43] introduces
an adaptive camera setting system, that change the shutter and
gain settings based upon based on the luminosity of the pixels
in the upper part of the image.

V. TRAFFIC LIGHT RECOGNITION FOR DRIVER
ASSISTANCE SYSTEMS

Most computer vision problems can be divided into three
sub problems, detection, classification, and tracking. The flow
of a typical computer vision system, which handles each of the
sub problems is illustrated in Figure 8. A similar breakdown
is done for traffic sign recognition in [9].

The detection and classification stages are executed
sequentially on each frame, whereas the tracking stage
feeds back spatial and temporal information between frames.
For TLR both the detection and classification stages are
comparable to the equivalent stages in traffic sign recognition.
Tracking of TLs differs, since signs are static and TLs change
states, as it is illustrated in Figure 5. The detection problem is
concerned with locating TL candidates. Classification is done
based on features extracted from the detected candidates.
Tracking uses temporal information about location and TL
state when tracking TLs through a sequence of frames.
A TLR system that addresses the mentioned problems can
therefore be broken into 4 stages: detection, feature extraction,
classification, and tracking.

In addition to recognizing TLs, a TLR system for DAS
must communicate the gathered information to the driver,
preferably in a way that is non-intrusive and adds as little
as possible to the cognitive load of the driver. Information

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 7: (a) Examples of frames from the collected dataset.

Fig. 8: A common breakdown of a DAS computer vision
system.



PHILIPSEN et al.: VISION FOR LOOKING AT TRAFFIC LIGHTS: ISSUES, SURVEY, AND PERSPECTIVES 6

about the driver’s attention can be used to activate a given
safety system in case driver is inattentive or to determine
whether a driver has noticed a specific object and should be
made aware of it. Hence, fusion of data from looking-in and
looking-out sensors can be used [44]. In [45] a large set of
looking-in activities: head pose estimation, hand and foot
tracking; and looking-out activities: vehicle parameters, lane
and road geometry analysis, and surround vehicle trajectories,
are fused together to predict driver behavior. The presentation
aspect of DAS is outside the scope of this paper.

A major challenge for TLR systems in relation to DAS
is determining whether a TL is relevant to the ego-vehicle.
The relevance of a TL is closely connected to it’s placement.
There might at one time be several TLs visible to the driver,
each possibly in different light states. In such complex cases
the assistance system needs to be able to determine which
TL is relevant to the driver, a task that can be difficult, even
to a human. For this to work, information about the location
and direction of the ego-vehicle must be matched with the
locations of the TLs. The most advanced system for solving
this problem is seen in [41], where a guess is made based
on the intersection width and the estimated orientation of the
TLs. An alternative and less dynamic approach is used in
[38], where the route is recorded beforehand and relevant TLs
are manually annotated offline. Features are extracted in the
annotated regions, and the system is then able to recognize
the relevant TLs on that specific route.

VI. TRAFFIC LIGHT RECOGNITION: STATE-OF-THE-ART

In this section, we present an overview the approaches used
for TLR in the surveyed work. TLR systems are divided into
four stages; detection, feature extraction, classification, and
tracking, as the breakdown was described in chapter V. In
addition to the mentioned four stages, we break down papers
based on applied color spaces, since some related work e.g.
[43] emphasizes color space analysis and choices.

Table I shows an overview of recent and notable research in
relation to TLR done by academic institutions. Table II show
a similar overview for research introduced from the industry.
It should be noted that some of the papers presents more than
one approach, whereof only the best performing approach is
listed. Since some of the papers focus on only parts of the
problem, all fields are not consistently filled in, also in a few
cases it is not apparent which exact methods were used. The
paper overview covers papers from 2009-2014, with a single
exception of an interesting 2004 paper [46] which forms the
basis for the more recent paper [38].

A. Color space

As color is essential for understanding TLs, it is used
extensively in most recent work, usually for segmenting ROI
and classifying the TL’s state. A wide variety of color spaces
are used, the RGB color space is often discussed, as it usually
is the color space in which input images are represented.
Because color and intensity information are mixed in the all
the channels of the RGB color space, the information is usually

converted to another color space for processing. [42], [11] are
the only studies, where RGB is the primary color space. The
same author group also utilizes the YCbCr color space in [47].
[48] uses both RGB and YCbCr, in two separate stages, RGB
is used for localizing the box of the TL, whereas YCbCr is
used for detecting the arrow TL. Normalized RGB is used
both by it self, as in [49] and combined with RGB as in [43],
[50], [51].

[52], [53], [40], [39] use grayscale for initial ROI
segmentation in the form of spot light detection. The HSV
and HSI color spaces are well represented by their use in
[54], [55], [56], [52], [57], and [58], [59], respectively. [37]
uses IHLS which is an improved HLS color model that
separates chromatic and achromatic objects well. A few
papers, namely [53], [40], [39], rely purely on grayscale,
hence, their systems must function using only intensity and
shape information. Other work that use grayscale, is [60],
where normalized grayscale is used in addition to CIELab
and HSV. [61] intially use grayscale for finding ROIs, inside
the segmented ROIs they then use HSV to detect the state of
the TL.

There is no clear tendency towards using one particular
color space. Some recent work has begun combining channels
from multiple color spaces, as seen in [60], [43] and to some
degree [62]. In [63], [64], the CieLab color space is used to
create a new channel by multiplying the Lightness with the
sum of the a and b channels.

B. Detection

TLR systems usually look for a selection of TL components.
In Figure 9, components such as the colored lamps and
various shapes are seen. The structural relationship between
the components is also used.

Fig. 9: A supported TL and the different components that TLR
systems search for in a basic TL.

A simple and widely used approach to detection is using
predefined color density thresholds for each TL state color,
this is done in [42], [47], [51], [55], [64], [52], [49], [41], [57],
[59], [37], [11]. As mentioned in the color space subsection, a
new tendency combining several channels from different color
spaces to provide additional information. In [43], [50], fuzzy
clustering is introduced to generate unique representations
of a given color. Opposite to regular clustering, sometimes
called hard clustering, data points in fuzzy clustering can
belong to more than one cluster; the association degree to
clusters can vary, meaning that a data point can have a higher
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probability of belonging to one cluster. This approach provides
a different way of grouping data points [65]. A promising
detection approach is spotlight detection using the white top
hat operation, this is done on grey scale image in [52], [53],
[40], [39]. In [54], the V channel from the HSV color space
is used instead. In [38], [46], various detection approaches are
presented. The best performing a trained Gaussian-distribution
pixel classifier, created based on several thousands manually
annotated color images. Other approaches include finding
circles using generalized Hough transform on Sobel based gra-
dient directions and matched filter detection based on template
matching. Since the last two methods cannot by themselves
determine the color of the light, a gray value detector is
used to determine which light is turned on. Lastly, [38], [46]
also test a cascading classifier based on Haar features, which
outperform their other approaches, except for the Gaussian
color classifier. A popular approach to improving the detection,
can be seen in [38], [46], [56], [41], [54], where an off-line
database containing prior knowledge of TL locations is used.
This is done using accurate GPS measurements and manual
annotation of areas with TLs in pre-captured image sequences.
[11] only use the GPS coordinates to activate the detection
system when approaching a preannotated intersections. In [56]
they store hue and saturation histograms of each TL during
the initial TL mapping. This helps with handling differences
in the light emitting properties of individual TLs. In [41] they,
also annotate the possible states of the individual lights to
further reduce false positives. Preliminary segmentation leaves
BLOB candidates. This is followed by interpretation or further
segmentation in the form of filtering. Most recent work applies
BLOB analysis in various degrees to either remove noise or
calculate BLOB properties. [53], [40], [42], [39], [47], [48],
[52], [58], [59] removes noise by looking at a selection of
BLOB features, from relative position of elements such as
circles, squares, rectangles, spots, containers, to size, aspect
ratio, shape, etc.. An example is [52] where they look at
the BLOBs’ size, aspect ratio, circular shape, holed regions,
and the estimated height in world coordinates. [59] employs
region growing using seed points from their found BLOBs
to perform a border property check between found BLOBs
and their corresponding grown regions. Other BLOB analysis
includes doing bounding box analysis as in [43], [50], [51],
[54], [55], where the goal is to locate the TL box such that the
state within it can be estimated. Alternatively to finding the
shape from BLOBs, [49], [61] applies a Sobel Kernel to get an
edge map and applies Hough transform in order to find either
circular shapes or boxes. Hough transform is also used in [11]
on an edge map generating using a Laplace edge detection
filter.

The contribution of [49] is a modified version of the
circular Hough transform, which looks for filled circles, and
outperforms the conventional circular Hough transform in
locating TL lamps. In [62] they improve this idea further
by also looking for circles around active lights. [37] first
apply a Laplacian filter that extracts a clear boundary,
disregarding halo effects, before looking for approximate
ellipses in the canny edge pixels around candidate BLOBs.
Their approximate ellipse detection is the main contribution.

In [64], [63], fast radial symmetry is used for finding circles,
followed by local maximum and minimum for finding
the exact parameters of the given circle. [61] finds object
boundaries using morphological operations and thresholding,
from these borders they use topological analysis to locate
rectangles that represent TL candidates.

Generally, the first step of segmentation is to isolate ROI
by using either, clustering, distributions, or thresholds. This is
followed by either looking for circular objects using Hough
transform or fast radial symmetry, or BLOB analysis to isolate
candidate TLs. Furthermore, using prior knowledge of the
route, geographical and temporal information can drastically
reduce the ROI, hence reduce the computational requirements
and the number of bad candidates.

C. Feature Extraction

A common feature for classification is color as seen in [43],
[50], [51], [38], [46], [61], [54], [60], [41], [58], [49], [62],
where the color densities from segmented areas are used. In
[59] color from the HSI space is used for template matching. In
[56], [52] the features are based on HSV histograms. Besides
color, other common features are the shape and structural
information from the TL. Shape information includes a wide
variety of features, such as aspect ratio, size, and area. Struc-
tural information requires some prior knowledge of the shapes
that constitute the entire TL, both the case container and their
belonging lamps. The structural information is the relatives
position between the circles, rectangles, spots, and containers
that constitute the entire TL. A TL lamp and the surrounding
container is, in many cases, easily distinguishable from the
background, making shape, and structural information popular
features. Shape information is both combined with structural
information in [53], [40], [39], but also color features as in
[43], [50], [51], [60], [49], [62]. In [54], [11], color, shape,
and structural information are used as features. In [42], a mix
of BLOB width, height, center coordinate, area, extent, sum
of pixels, brightness moment, and geometric moment are used
as features for their SVM classifier.

More advanced feature descriptors are seen in [55], where
edge information in the form of Histogram of Oriented
Gradients (HoG), in nine directions, are used as features for
image regions containing TL containers. [48] does the same
but uses 2D Gabor Wavelets features instead of HoG and
[57], [47] uses Haar features. [37] relies on spatial texture
layout for classification, specifically they calculate a Local
Binary Pattern (LBP) histogram for the entire TL as well as
for five equally sized regions in each color channel, before
creating a feature vector consisting of the concatenated LBP
histograms.

The majority of papers employ empirically determined mod-
els for TL color, shape, and structural information for finding
TL candidates and estimating their states. A few papers use
extracted features based on image transforms and classifying
the resulting feature vectors against a database of learned
models.
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D. Classification

As described in the features subsection, much of the recent
work uses color, shape, and structural information in the
segmented areas as features for determining the state of TL
candidates. [54] utilize a fusion between scores from struc-
ture, shape, color, and geolocation information to determine
whether a TL should exist at the found position. [61] simply
estimate the state to be the winner of a majority count on the
number of pixels within empirically determined thresholds.
[58] decides on a TL state for the entire segmented frame
based on a contradiction scheme that selects the optimal light
from TL position and size.

In [38], [46], a neural network is used for determining the
state of the found TLs. [59] applies template matching by
normalized cross correlation. [40], [39], [53] use adaptive
template matching. [52] uses SVM for classification based
on HSV histograms. [40] compares their proposed adaptive
template matching system with a learning based system,
which uses a cascade classifier trained with AdaBoost
on Haar features. Their model based approach proved to
substantially outperform their learning based approach. [57]
also uses an AdaBoost trained classifier based on Haar
features. [37] applies SVM to classify LBP feature vectors in
order to determine the state of a TL from it’s spatial texture
layout. [47] tries two learning based approach, with cascading
classifiers using Haar features and a model based approach
which uses Haar-like features for determining the state for
the found TLs. Also here, the learning based approaches lose.

The majority of papers apply a classifier on extracted
features and finds the best match by comparison with a number
of trained states. A smaller, but still significant, amount of
papers detect state by matching templates.

E. Tracking

As evident in Table I and II, 13 out of 27 papers make use of
some form of tracking. Tracking is commonly used for noise
reduction by suppressing false positives and handling dropout
due to e.g. occlusion. The correlation tracking used in [54],
[38], [46], relies on the fact that a given detected TL’s state
is unlikely to shift sporadically in a sequence of frames. E.g.,
when a series of red states is detected, it is most likely that the
next state in the upcoming frame will be red again. Similarly,
if the state has changed and is green for a series of frames, it
is likely that the state has in fact changed to green.

Temporal tracking is used to examine previous frames and
determine whether a candidate has been found in the same
area earlier and whether it may have the same properties
as a given candidate in the current frame. This is a simple
and straightforward approach used in [50], [51]. To reduce
computational load CAMSHIFT is used In [57] to track a
given candidate across frames based on its appearance. [52]
employs multiple target temporal tracking using predictions of
the location of TL from the speed of the ego vehicle. This
would allow for validation of state changes and smoothed
recognition confidence. Additionally, they modify top hat
kernel size, saturation, and intensity thresholds when TLs are

about to disappear from the FOV, in order to enable recognition
for as long as possible. [58] propose a temporal decision
scheme that makes a final classification based on the temporal
consistency of their classification. This proved to reduce wrong
detections by a third.

Before reaching the final state verdict, [52] inputs the
detected state from their classifier into a range of HMMs, one
for each possible type of TL and one for a non-TL objects.
The model which best fits the detected sequence of states is
then selected as the final estimated state. [61] also employs
HMM, although only for a single TL type. [43] estimates
the distance to TLs using inverse perspective mapping and
tests both a Kalman filter and a particle filter for tracking
the relative movement between vehicle and TL. Tls are then
filtered based on their consistency in position and color. In
[53], an Interacting Multiple Model filter is used for keeping
track of both state and position of a given TL. The prediction
in the model is using Kalman filters to keep track of the state
and the position in time. For establishing the state, a Markov
chain with weighted probabilities is used for finding the
current state based on posterior states, originally introduced
in [66]. [56] uses prior maps and a histogram filter to adjust
the localization mismatch between predict and actual TL area.

Tracking is mostly used to filter out noise and handle lone
failed detections, caused e.g. by occlusion. In most of the
surveyed papers, this is done by a simple temporal consistency
check. A few of the papers use tracking in a more advanced
manner by incorporating prior probabilities. A single paper
use tracking to locate previous detections in future frames.

VII. EVALUATION

In the reviewed work on TLR, a wide variety of approaches
are used to evaluate performance of the proposed systems.
Often, the exact evaluation criteria are not clearly described,
making a direct comparison impossible. In addition, the data
the proposed systems are evaluated on, is usually a local
collection gathered by the authors themselves and not a
publicly available dataset. The local datasets are often small
in size and contain little variation in environmental conditions.
Challenges similar to the VIVA Challenge [67] or The KITTI
Vision Benchmark Suite [68], are not present for TLR.

A. System evaluation

In the traffic sign detection survey presented in [9], an
overview of the results from all the surveyed traffic sign
detection papers are summarized with the number of positives
and negatives in the evaluation datasets and four measures,
namely: Best detection rate, false positives for best detection,
mean detection rate, and mean false positives rates. However,
the recent and noteworthy papers reviewed in this paper are
frequently using the three measures: precision, recall, and
accuracy. For summarizing the results with regards to TLR,
these three measures are selected and defined in equation (1),
(2) and (3). TP, FP, FN are abbreviations for true positives,
false positives and false negatives. Table III shows the results
and the specifications of the evaluation data from the recent
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TABLE I: recent Academic studies in TLR. Colors indicate paper group affiliation. Corresponding evaluation results and datasets
for each paper are available in Table III. Abbreviations: Connected component analysis (CCA), support vector machine (SVM),
hidden Markov model (HMM)

Paper Year Color
Space(s)

Detection Features Classification Tracking

[43] 2014 RGB,
RGB-N

Fuzzy clustering, CCA, BLOB analysis Color, shape - Kalman filter, particle filter

[50] 2013 RGB,
RGB-N

Fuzzy clustering, CCA, BLOB analysis Color, shape - Temporal filtering

[51] 2012 RGB,
RGB-N

Clustering, BLOB analysis Color, shape - Temporal filtering

[53] 2014 Grayscale Top-hat spot light detection, BLOB analysis Shape, structure Adaptive template matching Interacting Multiple Model

[40] 2009 Grayscale Top-hat spot light detection, BLOB analysis Shape, structure Adaptive template matching -

[39] 2009 Grayscale Top-hat spot light detection, BLOB analysis Shape, structure Adaptive template matching -

[42] 2013 RGB Color thresholding, BLOB shape filtering BLOB features,
brightness moments,
geometric moments

SVM -

[47] 2011 YCbCr Color thresholding, BLOB shape filter-
ing(width to height ratio, sum of pixels,
BLOB area to bounding rectangle ratio)

Haar-like features Adaptive multi-class classifier
trained using AdaBoost

-

[62] 2010 RGB,
RGB-N

Pixel clustering in RGB/RGB-N, edge map
with Sobel kernel, modified(filled) circle
Hough transform for neighborhood

Color, shape Color of best circle -

[49] 2009 RGB-N Color thresholding, edge map with Sobel
kernel, modified(filled) circle Hough trans-
form

Color, shape Color of best circle -

[61] 2014 Grayscale,
HSV

Rectangles from topological analysis of
edges

Color Majority pixel count HMM

[54] 2014 HSV Top-hat spot light detection, BLOB analysis Color, shape, structure Fusion of color, shape, structure
scores, and geolocation informa-
tion

Correlation tracking

[55] 2014 HSV Color thresholding, BLOB analysis HoG SVM -

[60] 2014 Norm.
grayscale,
CIELab,
HSV

Prior knowledge of TL location Color, shape Convolutional neural network -

[64] 2014 CIELab Color thresholding, radial symmetry, local
maximum and minimum, shape filtering

- - -

[48] 2012 RGB,
YCbCr

BLOB analysis 2D Gabor wavelet Nearest neighbor -

[63] 2012 CIELab Color difference enhancement, neighbor-
hood image filling, radial Symmetry

Color - -

[11] 2012 RGB Color thresholding, edge map with Laplace
filter, circle Hough transform, shape filtering

Color, shape, structure Color -

[59] 2011 HSI Color thresholding, dimensionality and bor-
der property check

Color Normalized cross correlation tem-
plate matching

-

[37] 2011 IHLS Color thresholding, Laplacian filter for
boundary extraction, approximate ellipses
based on edge pixels from canny

LBP features SVM -

[56] 2011 HSV Prior knowledge of traffic light location HS histograms Histogram back-projection scores Histogram filter

[52] 2010 HSV Top-hat spot light detection, Color threshold-
ing, CCA, BLOB analysis

Concatenated HSV
histogram

SVM HMM and temporal tracking
using ego motion

[57] 2010 HSV Color thresholding, morphological operation Haar features AdaBoost trained classifier CAMSHIFT

[58] 2009 HSI Gaussian-distributed classifier, BLOB analy-
sis, temporal information

Color Global contradiction solving
scheme

Temporal filtering/decision
scheme

TABLE II: Recent studies in TLR from industry. Colors indicate paper group affiliation. Corresponding evaluation results and
datasets for each paper are available in Table IV.

Paper Year Color
Space(s)

Detection Features Classification Tracking

[38] 2013 - Prior knowledge of TL location, Gaussian-
distribution classifier

Color Neural network Correlation tracking

[46] 2004 - Prior knowledge of TL location, Gaussian-
distribution classifier

Color Neural network Correlation tracking

[41] 2011 - Prior knowledge of TL location and state
sequence

Color, shape Color and BLOB geometry Temporal filtering
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noteworthy TLR papers from academic institutions. Table
IV show similar results and specifications from noteworthy
research contributed from the industry.

Precision =
TP

TP + FP
(1)

A Precision close to one indicates that all the recognized TL
states are in fact correctly recognized.

Recall =
TP

TP + FN
(2)

A recall close to one indicates that all the TL states, in a given
video sequence, were correctly recognized by the proposed
system.

Accuracy =
TP

TP + FN + FP
(3)

The recognition rate, or accuracy, is the overall recognition
rate taking true positives, false negatives, and false positives
into consideration. An accuracy close to one indicates that the
system detects all TLs with no false positives. Traditionally,
true negatives are also included in the calculated accuracy as
follows from equation (3), but true negatives are rarely used
in evaluations of TLR systems.

Since papers have different goals, the proposed systems
can be evaluated very differently. In [38] the presented sys-
tem includes lane recognition, localization, motion estimation,
pedestrian recognition, vehicle detection, and TLR. The sys-
tem was evaluated on the 100 km long Bertha Benz Memorial
Route, under real traffic conditions. Their conclusion states
that the presented system drove the route fully autonomously.
As impressive as this is, they do not disclose any quantitative
measure of the TLR system’s performance.

Direct comparison of the results between all of the surveyed
papers is not feasible, due to the differences in evaluation
methodology and testing data. One example of this is papers
such as [38], where the scope is a complete autonomous
system that must complete a specific challenge.Other examples
is that many papers do not clearly define detection rate,
recognition rate, etc., when reporting results. Generally, the
detection rate is mentioned as the term describing the ratio
between correct TL recognitions and the ground truth in a
given video sequence. This term is equal to the recall term
as seen in equation (2). The recognition rate is considered the
same as overall accuracy as seen in equation (3). When this
term is used without a clear definition, the recognition rate
results are published as accuracy in Table III.

Besides the problems with lacking definition of terminology,
different criteria are sometimes used for deciding when a TL
recognized and registered as a true positive. An example of
this is seen in [40], [39], where a TL is noted as a true
positive if a TL is recognized once in the series of frames
where it appears. Hence, for a false negative to be noted a
TL must not be detected once in the entire video sequence.
This aspect is an important notation, as such differences in
evaluation practice leads to skewed results, since it is a much
harder task to recognize a TL in every frame it appears in. For
future evaluations, we suggest evaluating FPs, TPs on a frame
by frame basis, as this gives a more complete representation
of a given system’s performance.

Table III indicates that many of the surveyed systems
performs in the high 90 % in recall, precision, and accuracy.
Some of the best performing systems rely on high detail maps
of TL position and type. In addition to significantly easing
the task of detecting TLs, prior maps can be matched with an
exact route. As long as the ego-vehicle follows this route, the
problem of determining which TLs are relevant to the ego-
vehicle can be disregarded. In relation to using such systems
for DAS in consumer vehicles, an overwhelming amount of
data needs to be collected, maintained, and distributed.

The surveyed papers are in most cases evaluated on data
captured by themselves, hence the data cannot be directly
compared. The conditions of the captured data are in most
cases poorly described which is also greatly visible in Table
III where some just present they used data captured during the
day. Furthermore, the table show that some datasets contain
as little as 35 TL, which do not constitute a valid basis for
evaluating a system for DAS. Nearly half of the papers that
have defined their dataset specifications are using a dataset
with under 3,000 positives. The current best performing is
therefore hard to conclude as the exact conditions of all
the dataset is not known. [43] is the best system based on
dataset size, ground truth, and conditions information, but also
as the system are utilizing adaptive image acquisition and
tracking. Another notable system is presented in [38], where
a autonomous driving car using TLR has driven 100 km fully
automatically in public traffic. The performance of only the
TLR system is not published making it impossible to directly
compare it to other work.

B. Future evaluation

A variety of ways can be used to evaluate TLR systems,
examples are recognition rate, detection rate, recall, precision,
true positive rate, false positive rate, false positives per frame,
confusion matrix, F1-score, etc.. When evaluating a system,
it is important to define how a given term is mathematically
defined, preventing any doubt of what is meant with recog-
nition rate, detection rate, and accuracy. By doing so, the
comparability with others work becomes easier. Furthermore,
specific details about the dataset a system was evaluated on
are important for making a fair assessment possible. A very
important term to define clearly is what a true positive is. We
suggest using PASCAL overlap criterion introduced in [69],
which define a true positive as a detection where the detected
bounding box area cover atleast 50 % of the annotated ground
truth bounding box area, which is also seen in equation (4).

a0 =
area(Bd ∩Bgt)

area(Bd ∪Bgt)
≥ 0.5 (4)

Where a0 denotes the overlap ratio between the detected
bounding box Bd and the ground truth bounding box Bgt.
Bd ∩Bgt denotes the intersection of the detected and ground
truth bounding boxes, and Bd ∪Bgt denotes their union. The
PASCAL overlap criterion is also illustrated in Figure 10,
where the red detection area do not satisfy the requirement
of an overlapping ratio of 50 %. This requirement is however
satisfied with the green detection area.



PHILIPSEN et al.: VISION FOR LOOKING AT TRAFFIC LIGHTS: ISSUES, SURVEY, AND PERSPECTIVES 11

TABLE III: Evaluation datasets and corresponding result of recent academic studies in TLR. Colors indicate paper group
affiliation. The abbreviation RCMP indicates evaluation on the Robotics Centre of Mines ParisTech dataset, RCMP- indicates
evaluation on part of the dataset and RCMP+ indicates that additional private datasets was used for evaluation. For Ground
Truth, # of frames indicates # of frames with a minimum of 1 TL in it. The terms Recognition Rate and Detection Rate are
considered equivalent to Accuracy and Recall, respectively.

Paper Year Dataset Size
[Frames]

Ground
Truth

Resolution
[Pixels]

Conditions Pr
[%]

Re
[%]

Ac
[%]

[43] 2014 Local 75,258 19,083
frames

752x480 Day, night 99.38 98.24 99.39

[50] 2013 Local 16,176 4,600
frames

752x480 Night 98.04 - -

[51] 2012 Local 27,000 14,000
frames

752x480 Day, night 90.32 - -

[53] 2014 Local - - - - 97.6 87.57 97.6

[40] 2009 RCMP+ >11,179 10,339 TLs 640x480 Day 84.5 53.5 -

[39] 2009 RCMP+ >11,179 >9,168 TLs 640x480 Day 95.38 98.41 -

[42] 2013 Local 16,080 12,703
frames

620x480 Night - 93.53 -

[47] 2011 Local 30,540 16,561
frames

620x480 - - 93.80 -

[62] 2010 Local 35 35 TLs - - - - 89

[49] 2009 Local 30 30 TLs - - - - 86.67

[61] 2014 Local 649 446 TLs 648x488 Multiple light conditions 99.59 92.19 94.45

[54] 2014 Local 3,767 - - Good, challenging, very challenging - - 96.07

[55] 2014 Local - - 640x480 Multiple light conditions and cluttered
backgrounds

- - -

[60] 2014 Local 3,351 3,351 TLs - Afternoon, dusk - - 97.83

[64] 2014 Local 70 142 TLs 240x320 - 84.93 87.32 -

[48] 2012 Local 5,000 - 1392x1040 Direct sunlight, backlighting, cloudy
and sunny.

- - 91.00

[63] 2012 RCMP 11,179 9,168 TLs 640x480 Day 61.22 93.75 -

[11] 2012 Local 7,311 - - Day - 89.9 -

[59] 2011 RCMP- 5,553 5,553
frames

640x480 - 96.95 94.4 -

[37] 2011 Local 714 763 TLs 640x480 Sunny, cloudy, rainy 34.51 94.63 95.01

[56] 2011 Local - - 1280x1024 Noon, dusk, night 81.46 77.98 92.85

[52] 2010 Local - 2,867 TLs 512x384 - - - 89.6

[57] 2010 Local - - 780x580 - - - -

[58] 2009 Local 6,630 - 640x480 - - - 98.81

Fig. 10: PASCAL overlap criterion

For visualizing the results, a confusion matrix provide a
quick overview of the overall performance of a system, but
also the performance for specific object classes, in this case
red, yellow, and green TLs. An example of a confusion matrix
is seen in Table V, dark grey indicates the variables, and
brighter grey indicate either ground truth or system classi-
fication output. By using these numbers, recall, precision, and
accuracy can be calculated as seen in the blue fields.

In [70], it is stated that using the overall accuracy on
an unevenly distributed dataset is misleading. The overall
accuracy does not explain much about the smaller classes in

TABLE V: Confusion matrix for evaluation of a skewed
dataset.

System classification

Red Yellow Green

700 17 170
Recall

G
ro

un
d

Tr
ut

h Red 700 100% 0% 0% 100%

Yellow 17 0% 100% 0% 100%

Green 170 0% 0% 100% 100%

Precision 100% 100% 100% 100%

the dataset. Because of the variation in TLs, which is discussed
in section IV, it is unlikely that any collected dataset will have
an even distribution between the classes of TLs. The standard
red and green TLs would have many more occurrences in a
dataset compared to yellow and all of the arrow lights. To
illustrate the problem, an example would be a system that
reaches an overall accuracy of 85% on the two biggest classes,
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TABLE IV: Evaluation datasets and corresponding result from recent industrial studies in TLR. Colors indicate paper group
affiliation. For Ground Truth, # of frames indicates # of frames with a minimum of 1 TL in it. The terms Recognition Rate
and Detection Rate are considered equivalent to Accuracy and Recall, respectively.

Paper Year Dataset Size
[Frames]

Ground
Truth

Resolution
[Pixels]

Conditions Pr
[%]

Re
[%]

Ac
[%]

[38] 2013 Local - - - 100 km in real world - - -

[46] 2004 Local - - - - - >95 -

[41] 2011 Local - 1,383
frames

2040x1080 Morning, afternoon, night 99.65 61.94 93.63

and the remaining 15% are spread out on several minor and
less frequent classes, such as the arrow variations. In such a
case, a system that can reach high recall and precision rates
on major classes, will also reach a high accuracy even though
the system might is not able to recognize the less frequent
classes. A result indicating this is highly problematic as a FP
in smaller classes, such as red arrow left, might cause critical
and deadly accidents. In [70] various methods for coping with
skewed datasets are presented. These are precision, recall,
F-measure, Receiver Operator Characteristic (ROC) curve,
cost curve, and Precision-Recall (PR) curve, which can be
used to interpret if a given system has problems with less
frequent classes. In [71], the relationship between ROC curves
and PR curves is discussed. The common and widely used
ROC curve is used for publishing results from a given system
with a binary, positive or negative, decision approach. A ROC
curve is generated by plotting the True Positive Rate (TPR)
as function of the False Positive Rate (FPR), where the TPR
is equivalent to recall. The FPR indicates the ratio of false
classifications that are mistakenly registered as a TL. The TPR
and FPR definitions are seen in equation (5) and (6).

True Positive Rate =
TP

TP + FN
(5)

False Positive Rate =
FP

FP + TN
(6)

The PR curve is generated by using precision and recall
defined in equation (1) and (2). Unlike with ROC curves,
PR curves do not use true negatives, as it simply plots the
precision as a function to the recall. The following is a simple
example used for comparing ROC and PR curves. Consider
two different approaches for recognizing TL, both approaches
are evaluated on the same video sequence of 10,000 frames,
which contains a total of 2000 frames with one visible TL
in each frame providing a ground truth of 2000. Approach
1 recognizes 2000 TLs in the sequence whereof 1900 are
correctly recognized. Approach 2 recognizes 2500 TLs in the
sequence whereof 1900 are correct. In Table VI and VII the
corresponding results from each results are seen.

TABLE VI: Results from
approach 1.

TP: 1,900 FN: 100

FP: 100 TN: 7900

TABLE VII: Results
from approach 2.

TP: 1,900 FN: 100

FP: 600 TN: 7400

From the information above the TPR and FPR for ROC,
and the precision and recall for PR are calculated:

Approach 1
TPR 0.95
FPR 0.0125

Recall 0.95
Precision 0.95

Approach 2
TPR 0.95
FPR 0.075

Recall 0.95
Precision 0.76

By comparing the results marked with bold from above
approaches, it is clear that the difference of 0.0625 using
FPR is quite small, compared to a difference of 0.19 using
precision.The increased number of false positives has a higher
impact on the PR curve than on the FPR used in ROC curves.
For evaluation of systems where the amount of true negative
is either not available or not interesting, the PR curves should
be used, otherwise ROC. For a evaluation of TLR the true
negative would in most cases not be present nor interesting.
This will change if considering a system that recognize all
TLs, and needs to determine which are of interest to the
driver. The number of true negatives will be the TLs that are
rejected as being of interest to the user. For a final results,
both [71] and [70] mention the Area-Under-Curve (AUC) as
an alternative to the traditional accuracy measure. The AUC
can be used as a final measure for both ROC and PR curves,
where a higher number indicates a better performance. Using
AUC for measuring the accuracy of a given system gives an
insight into the ability for recognizing TLs. AN AUC of 100%
would indicate the system works perfectly. The results should
also include at what pixel area each TL was first detected.
Such a metric is essential for TLR to be useful for DAS, as it
must be able to detect and recognize TLs at a proper distance,
providing time to react upon the information. The pixel area
is calculated according to equation (7).

Pixel area = area(Bd ∩Bgt) (7)

For future publications, we suggest evaluating the proposed
TLR systems with DAS in mind. Therefore we propose
that DAS related TLR systems should be evaluated as on
a frame-to-frame basis instead TL over the visible timeline.
Furthermore, a proposed system accuracy should be calculated
using AUC on a PR curve. The proposed evaluation terms are
listed below:

• True positives are defined according to the PASCAL
overlap criterion.

• Precision, as seen in equation (1)
• Recall, as seen in equation (2)
• Area-Under-Curve on Precision-Recall curves
• Confusion matrix.
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• Pixel area at which the true positive is first recognized,
calculated as seen in equation (7).

VIII. TRAFFIC LIGHT DATABASE

As it was concluded in the traffic sign survey paper [9], the
general approach for testing and validating a proposed method
is use a privately collected dataset. This is considered sufficient
for preliminary testing and validation. But, when trying to
estimate the contribution made in a paper, it becomes difficult
to compare the work with others’.

The only publicly available dataset is provided by Robotics
Centre of Mines ParisTech in France. The dataset consists of
11,179 frames from a single 8m 49s long video. It contains
9,168 hand-labeled instances of TLs. More information about
this dataset can be found in Table VIII. An alternative to using
either of the two TL databases found in Table VIII, could be to
use existing traffic sign databases, but as the name suggests,
these are focused on traffic signs rather than TLs. In [9] it
is stated that as of 2012, at least six different traffic sign
databases were publicly available, of which two contain video
recordings.

In [73] an overview of vehicle detection systems based on
both monocular and stereo vision since 2005 is provided. Both
monocular and stereo vision are widely used for solving this
problem, but an interesting finding in this work is the stereo
vision bottom-up paradigm which consist of visual odometry,
feature points in 3D, and distinguishing static from moving
points, which is also mentioned in [74].The motivation for
having a public TL database with stereo images is therefore
high as all three parts in this paradigm can help reduce the
amount of false positives. This notion is reinforced in [75]
where the main technical challenges in urban environments
are occlusions, shadow silhouettes, and dense traffic. The
introduction of stereo has shown promising result in relation
to solving these challenges.

The database that is collected and released together with this
paper is focused on TLR and contains TLs that are found in
San Diego, California, USA. The database provides four day
and two nighttime sequences for testing. These test sequences
23 minutes and 9 seconds of driving in Pacific Beach and La
Jolla, San Diego. The stereo image pairs are acquired using
the Point Grey’s Bumblebee XB3 (BBX3-13S2C-60) which
contains three lenses which capture images with a resolution
of 1280 x 960, each with a Field of View(FoV) of 60◦.The
stereo camera supports two different baselines, 12 and 24
cm, whereof a baseline of 24 cm is used for the LISA TL
database. The stereo images are uncompressed and rectified on
the fly. Bumblebee XB3 is mounted in the center of the roof of
the capturing vehicle which is connected to a laptop through
the interface standard IEEE-1394b, sometimes refereed to as
FireWire 800.

Besides the five test sequences, we provide twelve shorter
video sequences consisting of TLs collected in the northern
part of San Diego. These are intended for training and addi-
tional testing. They are organized as seen in Table IX, which
gives a detailed overview of all the video sequences that are
made available with this paper. The gain and shutter speed

were manually set to avoid over saturation as well as limit
flickering of the TLs. For all day clips, a shutter speed of
1/5000 sec and a gain of 0 are used. For all night clips, a
shutter speed of 1/100 sec and a gain of 8 are used. A Triclops
calibration file is provided along with the stereo images, this
file contains the factory calibration of the used Bumblebee
XB3 camera, for use with the Point Grey’s Triclops SDK.

Each sequence in the database comes with hand labeled
annotations for the left frame. Annotations for a given video
sequence contain the following information: frame number,
rectangular area around the lit TL lamp, and it’s state. In [38],
ground truths are labeled down to 2x2 pixels following that a
vehicle approaching a TL with 70 km/h should time to ma-
neuver 80 meters before reaching the TL. Their system should
therefore detection TLs as far as 100 meters, corresponding to
2x2 pixels with the specified camera setup. Similar to [38], we
suggest recognizing TLs at 80 meter, based on the an approach
at 50 km/h. Given that time should be allowed for detecting
TLs for 5 consecutive frames with the camera capturing at 16
FPS, the first detection of TLs should be at 85 meters. This
corresponds to detecting TLs of sizes down to 4x4 pixels.
Labeling is therefore done for every visible TL lamp if it
meets this size criteria. An example of annotated TL lamps
is seen in Figure 11.

Fig. 11: Green rectangles illustrate annotated green TLs, red
rectangles illustrate annotated red TLs.

The LISA Traffic Light Database is made freely available
at http://cvrr.ucsd.edu/LISA/datasets.html for educational, re-
search, and non-profit purposes.

IX. DISCUSSION AND PERSPECTIVES

In this section we discuss the current trends and perspectives
based on the surveyed work on TLR.

The current state of TLR is difficult to determine as eval-
uation is done on local datasets and with different evalua-
tion methodology. For maintaining and advancing research
on TLR, the introduction and use of public TL datasets
and common evaluation methodology is essential. This will
enable newcomers and established research groups in both the
academic and industrial domain to efficiently compare new
approaches to already published work. Until now, it required
substantial effort to gain an overview of the state of TLR
research, since no survey existed. The scope of current work
vary significantly, spanning from simple TL detection in the
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TABLE VIII: Overview of current public TL databases. Ambiguous means that it could not be decided whether the light was
a TL during annotation, these are ignored when evaluating.

Robotics Centre of Mines ParisTech[72] LISA Traffic Light Database

#Classes 4 (green, orange, red & ambiguous) 7 (go, go forward, go left, warning, warning left, stop, & stop left)

#Frames / #Annotations 11,179 / 9,168 46,416 / 89,388

Image resolution 640 x 480 8-bit RGB 1280 x 960 8-bit RGB

Stereo images No Yes

Place of origin Paris, France San Diego, USA

Video included Yes 8min 49s. @25FPS Yes 44min 24s. @16FPS

Description 1 urban day time sequence 4 test sequences ≥ 5min and 18 clips ≤ 2min 49s, morning, evening, night

TABLE IX: Overview of the video sequences in LISA Traffic Light Database.

Sequence name Description # Frames # Annotations # TLs Length Classes

Day seq. 1 morning, urban, backlight 4,800 10,267 25 5min Go, warning, warning left, stop, stop left

Day seq. 2 evening, urban 9,586 11,154 29 6min 10s Go, go forward, go left, warning, stop, stop left

Night seq. 1 night, urban 4,992 18,889 25 5min 11s Go, go left, warning, stop, stop left

Night seq. 2 night, urban 6,533 23,776 54 6min 48s Go, go left, warning, stop, stop left

Day clip 1 evening, urban, lens flare 2,161 6,474 10 2min 15s Go, stop

Day clip 2 evening, urban 1,031 2,230 6 1min 4s Go, go left, warning left, stop, stop left

Day clip 3 evening, urban 643 1,087 3 40s Go, warning, stop

Day clip 4 evening, urban 397 859 8 24s Go

Day clip 5 morning, urban 2,667 9,717 8 2min 46s Go, go left, warning, warning left, stop, stop left

Day clip 6 morning, urban 468 1,215 4 29s Go, stop, stop left

Day clip 7 morning, urban 2,718 8,189 10 2min 49s Go, go left, warning, warning left, stop, stop left

Day clip 8 morning, urban 1,040 2,025 8 1min 4s Go, go left, stop, stop left

Day clip 9 morning, urban 960 1,264 4 59s Go, go left, warning left, stop, stop left

Day clip 10 morning, urban 48 109 4 3s Go, stop

Day clip 11 morning, urban 1,052 1,268 6 1min 5s Go, stop

Day clip 12 morning, urban 152 229 3 9s Go

Day clip 13 evening, urban 693 873 8 43s Go, warning, stop

Night clip 1 night, urban 591 1,885 8 36s Go

Night clip 2 night, urban 2,299 4,205 25 2min 24s Go, go left, warning, stop, stop left

Night clip 3 night, urban 1,051 1,476 14 1min 6s Go, go left, warning left, stop, stop left

Night clip 4 night, urban 1,104 2,538 9 1min 9s Go, warning, stop

Night clip 5 night, urban 1,453 3,242 19 1min 31s Go, go left, warning, stop, stop left

46,418 112,971 290 44min 24s

academic domain, to development from industry of systems
robust enough to be used in autonomous systems as seen with
[38]. In the academic domain a large set approaches for solving
the issues related to TLR have been introduced. This have
been beneficial to the industry which has been able to adapt
some of these findings with success. As a consequence of
the different scopes, current evaluation data is captured under
different conditions and for different purposes. The ideal TLR
benchmark should provide a large variation in environmental
conditions, similar to The KITTI Vision Benchmark Suite
presented in [68] for e.g. stereo evaluation, and the VIVA
challenge [67] for hands, face, and traffic signs. Currently
[72] provides a benchmark with the only publicly available
dataset. The dataset is not widely used and is limited to one
environment type. A comparison between the dataset and the
LISA TL dataset released along with this paper is located
in Table VIII. When TLR systems eventually matures, the
evaluation metrics should evolve to include weighted penalties
for missed or wrong recognitions based on the severity of the

error. Furthermore, the distance where TLR systems are first
able to successfully recognize a TL is very relevant and should
also be part of the evaluation.

The papers that seems to perform the best and are widely
cited are [46], [38], [41] from the industry, and [56], [54]
from academic institutions. The approaches from these
papers rely on prior maps of TL location and properties,
which makes it possible to achieve solid performance under
challenging conditions. Such systems can reduce the number
of false positives substantially, because they know where TLs
should and should not be. Systems relying on precise maps
have a big advantage over conventional systems. The price is
less flexibility and high cost, since the maps must be kept up
to date for the systems to function.

The paradigm change seen in traffic sign recognition, and
pedestrian detection from model-based to learning based
detection has not yet happened for TLR. This is underlined
by examining Table I where detection of candidate TLs is
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TABLE X: DAS applications proposed in recent studies on TLR.

DAS feature Description Requirements References

Dashboard visualization Help driver by showing TL state in dashboard, where will
be easily visible. Particularly useful for people with color
vision deficiency.

TLR recognition and lane understanding [52], [43]

Get going alert Help driver by drawing attention to the recently switched
green light

TLR recognition [52]

Warn driver of red TL Help driver by drawing attention to upcoming red TL in
intersections

TLR recognition, intersection, and lane understanding [64], [54], [42]

Stop at red lights Enable autonomous vehicle to stop at red light TLR recognition and lane understanding [52]

Accurate stop at red lights Smooth braking towards stop line at red TL TLR recognition, stop line, and lane understanding [43]

Stop and go Enable vehicle to stop engine when waiting at a red light TLR recognition [52], [43]

entirely based on heuristic models. This raises the question
whether such model-based approaches outperforms learning
based approaches. Since only the best performing approach
from each paper is listed in Table I, it is not apparent
that [40], [46] developed learning based TL detectors to
compared with their model-based systems. The learning
based approaches utilize cascading classifiers based on Haar
features. In [46] the approach based on the learning based
detector reaches a recognition rate of 90 % against 95 % for
the best performing color based approach. Their model-based
approaches are able to run in real time, while the cascading
classifier is approximately a factor of ten slower. In [40]
the model-based approach consistently achieves significantly
better precision and similar recall. Detection of TL candidates
using learning based detectors has not been researched
sufficiently. Other features, that have proved useful elsewhere
should be investigated e.g. HoG, LBP, ICF, and ACF.

The additional information that stereo vision provides is
rarely used, one exception to this is [46] where stereo vision
is used to measure real world distance and size of detected
objects. Doing this resulted in a ten fold decrease in false
candidates, along with the benefits that knowing distance
and size gives to tracking. Stereo vision cues could be
considered as an additional feature channel, or for rejecting
false positives from e.g. tail lights and reflections. In other
areas stereo vision has proven useful, in [75] it is discussed
how stereo vision can improve the robustness of computer
vision systems. In [76] vehicle detection at night is assisted
by a stereo vision 3D edges extractor, while in [77], vehicle
detection rely solely on stereo vision for both day- and
nighttime data.

Less than half of the TLR papers include tracking. The
most popular tracking method is a simple temporal consistency
check. This efficiently suppress FPs and lone FNs. A few
papers uses more advanced and sophisticated tracking, such
as HMM, IMM, and CAMSHIFT. This is an area that must
be researched further as tracking is known to increase perfor-
mance as seen in [16] where introduction of tracking of traffic
signs significantly reduced the number of FPs. For vehicle
detection, [78] has similarly increased performance based on
vehicle tracking fused with lane localization and tracking.

DAS TLR Applications

There are several applications in which TLR can be used
in DAS. In Table X, DAS and autonomous applications
of TLR which are mentioned in the surveyed papers are
listed along with their requirements. Fusion of systems and
data from multiple sensors can greatly improve the overall
capabilities of DAS. In [32], [31] the driver’s attention is
measured using cameras looking inside the car. In [30] a
first person view camera is used for capturing. The driver’s
registered attention can e.g. be used to activate safety
systems in case of the driver being inattentive. By fusing
TL recognition with looking-in systems which e.g detect
the driver’s eye gaze, it can be determined whether or not
the driver have noticed the TL and if the driver should
be made aware of it. Other properties to decide if the
driver should be informed are the TL’s detectability and
discriminability as discussed in [79]. Velocity information
from the CAN bus can also be obtained to help determining if
the vehicle is slowing down while approaching the TL. A lot
of applications require fusion of information from multiple
systems, this includes most of the application seen in Table X.

Understanding the traffic scene is necessary as seen
with the use of intersection and lane information. A major
challenge for TLR in complex intersections is to determine
which TLs are relevant to the driver. Selecting the biggest
and closest one, as in [12], is a simplistic way of determining
which lights to adhere to. In complex intersections, this will
not be sufficient and more intelligent approaches must be
applied. So far the most intelligent systems for solving this
problem is seen in [41], where a guess is made based on
the intersection width and the estimated orientation of the
TLs. An alternative and less dynamic approach was seen in
[38], where relevant TLs are manually annotated before hand.
Features are extracted in the annotated regions and the system
is then able to recognize the relevant TLs on that specific route.

TLR can potentially help people who tend to experience
visual fatigue and decrease the stress level while driving.
This is especially true for people with color vision deficiency
or similar challenges. As mentioned in the introduction, a
large portion of accidents are connected intersections and
red light running. Integration of TLR systems in cars can
reduce these accidents. Furthermore, the integration of TLR
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system and DAS in cars could to some degree be implemented
on smartphones as seen with [11]. Other applications for a
developed TLR system is to use it for naturalistic driving
studies (NDS) analysis by automatic detection of events related
to e.g. red running at intersections. Something similar is done
with lane detection in [80], where a set of NDS events are
identified and quantified.

Directions

Even though the Daimler group in Germany and the VisLab
group in Italy, have successfully managed to make autonomous
vehicles drive on public roads, the TLR problem is not
considered solved. Under many conditions, TLR systems will
be challenged and experience errors. This is mainly due to
changing weather and light conditions. To overcome these
challenges, TLR systems should be able to adapt parameters
throughout the TLR pipeline to the changing conditions.
Another major problem that still remains to be solved is
determining the relevance of recognized TLs. More research
should be made into extending TLR for DAS with lane
detection, detailed maps and other traffic scene information.

X. CONCLUDING REMARKS

This survey presented an overview of the current state of
traffic light recognition (TLR) research in relation to driver as-
sistance systems. The approaches from the surveyed paper was
divided into color spaces, detection, features, state detection,
and tracking. There is no clear tendency towards using one
particular color space. Some recent work has begun combining
channels from multiple color spaces to create a combined color
space that separates the relevant traffic light (TL) colors well.
Most detection approaches rely on color or shape for finding
TL candidates other rely on spotlight detection in a single
intensity channel. BLOB analysis is generally used to remove
bad TL candidates, this is done based on prior knowledge of
the properties of TL BLOBs. Furthermore, some of the best
performing approaches use detailed maps of the route and
temporal information to improve performance. Many papers
utilize manually specified models of TLs, which consist of
color, shape, and structural features, to do state detection of
TL candidates. Other use trained features such as HoG, LBP
and 2D Gabor wavelets, classified using SVM. A few rely on
template matching or neural networks using the color and/or
shape. The tracking stage is dominated by temporal filtering,
while more advanced approaches include HMM, IMM, and
CAMSHIFT.

TLR is dominated by model based approaches, espe-
cially for finding TL candidates. This raises the question of
whether model based approaches outperform learning based
approaches for TLR. Based on the limited experiences with
learning based detection this question cannot yet be answered.
Additionally, because the systems are evaluated using different
methodology and on very different datasets it is not clear
which approaches are the best. Only one public database with
TLs is currently available and, it is not widely used. We have
therefore contributed a new database, the LISA Traffic Light
Database, which contains TLs captured with a stereo camera

in San Diego, USA under varying conditions. The database is
suppose to enable comparable evaluation on a large and varied
dataset, and provides the possibility of including stereo vision
for improving TLR. The dataset should eventually be included
in a challenge or benchmark similar to the VIVA Challenge
[67] or The KITTI Vision Benchmark Suite [68].
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CHAPTER 4. TRAFFIC LIGHT RECOGNITION SURVEY

A major part of our work on TLR is the extensive stereo dataset of TLs which
is described in both survey papers and more in depth in Chapter 6.

4.2 Emerging Trends for Traffic Lights: Detec-
tion and Evaluation

The conference paper Emerging Trends for Traffic Lights: Detection and Eval-
uation, which is submitted to the IEEE Intelligent Transportation Systems
Conference (ITSC), 2015. It focuses on the problem of detecting TLs, which
we consider the main challenge in TLR. An overview of four recent approaches
to detection are presented in order to give a feel for the state of the field. We
introduce our preferred evaluation procedure of detectors together with the
LISA traffic light dataset, in order to encourage researchers to train, evaluate
and compare their work using this dataset.
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Mark P. Philipsen1,2, Morten B. Jensen1,2,
Andreas Møgelmose1, Thomas B. Moeslund1, and Mohan M. Trivedi2

Abstract— Research in traffic light recognition (TLR) has
stagnated compared to related computer vision areas, such
as pedestrian detection and and traffic sign recognition. We
focus on the detection sub-problem, since this is the most
challenging problem and solving this is the key to a successful
TLR system. Evaluation of existing systems is currently limited
primarily to small local datasets. In order to provide a common
basis for comparison of future TLR research an extensive
public database is collected based on footage from US roads.
The database consists of both test and training data, totaling
48,048 frames and 90,767 annotated traffic lights, captured in
both night and day scenarios with varying light and weather
conditions.

I. INTRODUCTION

Driver assistance systems are gaining a lot of momentum
currently, as evident in top models from many prominent
car manufacturers. Recognition of traffic lights (TLs) could
be a desirable addition but judging by the state of current
research in this area, consumer ready systems are not on the
immediate horizon. Traffic light recognition (TLR) consists
of three sub-problems, detection, classification, and tracking.
Figure 1 illustrates the typical flow of such a computer
vision system. A similar breakdown is done for traffic sign
recognition in [1].

Fig. 1: Breakdown of a vision based TLR system.

The detection and classification stages are executed se-
quentially on each frame, whereas the tracking stage feeds
back spatial and temporal information between frames. For
TLR both the detection and classification stages are com-
parable to the equivalent stages in traffic sign recognition.
Tracking of TLs differs, since signs are static and TLs
change states. More about the coventions, structure and
dynamics of TLs in section II. The detection problem covers
locating desired candidate TLs. Candidates are either rejected
or accepted in the classification stage based on features
extracted from the detected candidates. Furthermore, the

1Visual Analysis of People Laboratory, Aalborg University, 9000 Aal-
borg, Denmark.

2Computer Vision and Robotics Research Laboratory, UC San Diego, La
Jolla, CA 92093-0434, USA

state of accepted candidates is determined. In tracking the
location and state of TLs are tracked through a frame
sequence. Since detection of TL candidates is the foundation
for a successful classification and tracking we will focus
exclusively on this for the remainder of this paper. Unlike
for sign recognition and pedestrian detection, no surveys of
TLR research exist. The purpose of this paper is to highlight
some prominent approaches to TL detection from a few
recent papers, as well as describe a common procedure for
evaluation of such detectors. Most of the research current
published is evaluated based on local datasets with a limited
number of TLs and little variation. This makes comparison
between existing methods and new contributions difficult. We
introduce a comprehensive TL dataset along with a proposal
for a common evaluation procedure for traffic light detectors.
The KITTI Vision Benchmark Suite[2] benchmark various
applications, such as stereo, object detection, and odometry,
with the purpose of reducing the bias and providing real-
world test scenarios with a high set of difficulties. The
recently introduced VIVA Challenge is also used for to bench-
marking a large set of difficult tasks associated with drivers,
occupants, vehicle dynamics, and vehicle surroundings. The
VIVA Challenge include hands, face, and sign datasets cap-
tured under challenging naturalistic driver settings. The TL
dataset published with this work is eventually going to be
included in the VIVA Challenge.

The contributions made in this survey paper are thus
threefold:

1) Provide an overview of 4 recent TLR papers’ ap-
proaches to detection .

2) Introduce a common evaluation procedure for TL de-
tectors.

3) Publish an extensive high resolution, annotated, stereo
video database, with day and night video sequences.

The paper is organized as follows: Section II, gives an
overview of the possible appearances of TLs, along with
common challenges that TL detection systems are subject
to. Related research is summarized in section III. In section
IV, we present a new database for evaluation of TL detection
systems. Finally, section VI rounds of with some concluding
remarks.

II. TRAFFIC LIGHTS: STRUCTURE AND CHALLENGES

Traffic lights are by design made to stand out and be easily
visible by using bright uniformly colored lamps surrounded
by a uniform, often dark box. The purpose of a TL is the
same across the world, it must safely regulate the traffic
flow, while warning drivers about the state of the intersection



ahead. The most common TL configuration is the basic red-
yellow-green signal, where each state indicates whether a
driver should stop, be prepared to stop, or keep driving.
Worldwide there are large variations in TL designs; however,
all follow a few general guidelines. A TL consists of a
box that holds differently colored, and sometimes differently
shaped lamps. The orientation, color, size, and shape of
the box will vary country to country and even city to city.
In the U.S. TLs are regulated by the Federal Highway
Administration in the Manual on Uniform Traffic Control
Devices [3] and most European countries have signed the
Vienna Convention on Road Signs and Signals [4], requiring
TLs to meet a common international standard.

A. Challenges in recognizing traffic lights

Although TLs are made to be easily recognizable, in-
fluences from the environment and sometimes sub-optimal
placement can make successful detection difficult, if not
impossible. Issues include:

• Color tone shifting and halo disturbances because of
influences from the atmosphere and glass that the light
passes through[5]. Fig. 2(c).

• Occlusion and partial occlusion because of other objects
or oblique viewing angles[5]. This is especially a prob-
lem with supported TLs [6], [7], [8]. Fig. 2(e),(f),(g).

• Incomplete shapes because of malfunctioning lights[5]
or dirty lamps 2. Fig. 2(a),(b).

• False positives from, brake lights, reflections,
billboards[9], [10], and pedestrian crossing lamps.
Fig. 2(h).

• Changes in lighting due to adverse weather conditions
and the positioning of the sun and other light sources.
Fig. 2(d),(k),(l).

• Mismatch between camera’s shutter speed and TL
LED’s duty cycle. Fig. 2(i),(j).

Inconsistencies in TL lamps can be caused by dirt, defects, or
the relatively slow duty cycle of the LEDs. The duty cycle
is high enough for the human eye not to notice that the
lights are actually blinking. Issues arise when a camera uses
fast shutter speeds, leading to some frames not contain a
lit TL lamp. Saturation is another aspect that can influence
the appearance of the lights. When transitioning between
day and night, the camera parameters must be adjusted to
let the optimal amount of light in and avoid under or over-
saturation. [11] introduces an adaptive camera setting system,
that change the shutter and gain settings based upon based on
the luminosity of the pixels in the upper part of the image.

III. RELATED WORK

Common for [12], [8], [7] is a TL detector which relies
purely on intensity from grayscale images. This has the
advantage of being more robust to color distortion. Areas
brighter than their surroundings are segmented using the
white top-hat mophology operation, which leads to an initial
high number of false candidates. False candidates are filtered
out based on the shape information. Specifically, rejection is
done based on criteria such as, dimension ratio, the BLOB

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 2: (a) Examples of TLs from the collected dataset.

being hole free and approximately convex. Furthermore,
the areas of BLOBs are compared to the areas of regions
grown from extrema in the original grayscale image. This is
especially effective for removing false candidates big bright
areas such as the sky. This detector relies heavily on a
competent classifier for further rejection and state estimation,
since the number of false candidates is very high and color
information is not available. The detector manages to find
90% of all TLs in the testset.

[13] begins by detecting the vanishing line and thereby



reducing the search area considerably, relying on the as-
sumption that TLs will only appear above this line. They
then apply the the white top-hat operation as [12], [8],
[7] did, on the intensity channel V from a HSV image.
What is left is filter based on statistical measurements of
the hue and saturation ranges of red and green lights. All
pixels outside these ranges are rejected while the remaining
pixels are selected as candidates. Remaining BLOBs are
filtered based on size and height-width ratio. They then
look for black bounding boxes around the BLOBs based on
gradient information and the blackness of the inside of box
candidates. Their system reaches an accuracy of 85%.

[10] extracts candidate BLOBs from RGB images by
applying a color distance transform proposed in [14]. The
transform emphasizes the chosen color in an intensity im-
age, which is thresholded to remove to suppressed colors.
This is followed by shape filtering to reduce noise using
width/height ratio and the solidity of BLOBs. The solidity
is calculated based on the ratio between the area of the
BLOB and it’s bounding box. When evaluating their system,
they count a success if the TL was detected just once in
the sequence, this allows them to reach a detection rate of
93.53%.

An easy way of improving the segmentation is to reduce
the search area. This could be achieved by only looking in
the upper half of the input image. A more precise way to
reduce the searching window is seen in [9], where an off-
line database containing prior knowledge of TL locations
is used. The off-line database is created using the input
image combined with accurate GPS measurements, and then
manually hand-label the areas with TLs on a pre-captured
image sequences. Given that the route which the TLR system
is used upon is hand-labeled, such an off-line database can
reduce the searching window and the detection problem
significantly. However, collecting and maintaining such a
database is very comprehensive. Besides using prior knowl-
edge, [9] use the color and shape information for filtering.

IV. LISA TRAFFIC LIGHT DATABASE

As it was concluded in the traffic sign survey paper [1],
the general approach for testing and validating a proposed
method is to use a privately collected dataset. This is con-
sidered sufficient for preliminary testing and validation. But,
when trying to estimate the performance of a contribution,
it becomes difficult to compare the work with others’. The
only currently public dataset is provided by Robotics Centre
of Mines ParisTech in France. The dataset consists of 11,179
frames from a single 8m 49s long video. It contains 9,168
hand-labeled instances of TLs. More information about this
dataset can be found in Table I.

A public TL database should support the three part stereo
vision bottom-up paradigm described in [16]. [16] provides
an overview of vehicle detection systems based on both
monocular and stereo vision since 2005. Both monocular and
stereo vision are widely used for solving this problem, but an
interesting finding in this work is the stereo vision bottom-up
paradigm which consist of visual odometry, feature points in

3D, and distinguishing static from moving points, which is
also mentioned in [17]. The motivation for having a public
TL database with stereo images is therefore that all three
parts in this paradigm can help reduce the amount of false
positives. This notion is reinforced in [18] where the main
technical challenges in urban environments are occlusions,
shadow silhouettes, and dense traffic. The introduction of
stereo has shown promising result in relation to solving these
challenges.

The database that is collected and released together with
this paper is focused on TLR and contains TLs that are
found in San Diego, California, USA. The database provides
two day and two nighttime sequences for testing. The stereo
image pairs are acquired using the Point Grey’s Bumblebee
XB3 (BBX3-13S2C-60) with a resolution of 1280 x 960,
each with a Field of View(FoV) of 60◦. The stereo camera
supports two different baselines, 12 and 24 cm, whereof a
baseline of 24 cm is used for the LISA TL database. The
stereo images are uncompressed and rectified on the fly, and
captured with a frame rate of 16 FPS. Capturing was done
by mounting the stereo camera in the center of the roof on
the capturing vehicle.

Besides the four test sequences, we provide 18 shorter
video sequences consisting of TLs collected in the northern
part of San Diego. These are intended for training and
additional testing. They are organized as seen in Table II,
which gives a detailed overview of all the video sequences
that are made available with this paper. The number of
annotations is the accumulated number of hand-labeled TLs
on a frame-by-frame bases. The number of traffic lights is
the physical number of TLs in the real world. The gain and
shutter speed were manually set to avoid oversaturation as
well as limit flickering of the TLs. For all day clips, a shutter
speed of 1/5000 sec and a gain of 0 are used. For all night
clips, a shutter speed of 0.0625 and a gain of 8 are used.
A Triclops calibration file is provided along with the stereo
images. This file contains the factory calibration of the used
Bumblebee XB3 camera, to be used with the Point Grey’s
Triclops SDK.

Each sequence in the database comes with hand labeled
annotations for the left frame stereo frame. Annotations for
a given video sequence contains the following information:
frame number, rectangular area around the lit traffic light
lamp, and the state of that area. Labeling is done for every
visibly lit TL lamp.

An example of annotated TL lamps is seen in Figure 3.
The LISA Traffic Light Database is made freely available

at http://cvrr.ucsd.edu/LISA/datasets.html
for educational, research, and non-profit purposes.

V. EVALUATION

A wide variety of approaches and metrics have been used
to evaluate detector performance. A standardized method-
ology would make comparison more straightforward. For
evaluations on the LISA Traffic Light database we suggest
using: precision and recall, which are defined in equation (1)
and (2). TP, FP, and FN are abbreviations for true positives,



TABLE I: Overview of current public TL databases.

Robotics Centre of Mines ParisTech[15] LISA Traffic Light Database

# Classes 4 (green, orange, red & ambiguous) 7 (go, go forward, go left, warning, warning left, stop, & stop left)
# Images 11,179 48,048
Annotations 9,168 90,767
Image
resolution

640 x 480 8-bit RGB 1280 x 960 8-bit RGB

Color Yes Yes
Stereo images No Yes
Place of origin Paris, France San Diego, USA
Video included Yes Yes
Description 1 day time sequence in urban environment(downtown Paris) 4 sequences and 18 clips, each with different environment, e.g. Morning,

evening, and night

TABLE II: Overview of the video sequences in LISA Traffic Light Database.

Sequence name Description # Frames # Annotations # TLs Length Classes

Day sequence 1 morning, urban 4,800 10,267 25 5.00 min Go, warning, warning left, stop, stop left

Day sequence 2 evening, urban 9,586 11,154 29 6.10 min Go, go forward, go left, warning, stop, stop left

Night sequence 1 night, urban 4,976 7,949 17 5.11 min Go, warning, stop

Night sequence 2 night, urban 6,528 8,693 21 6.48 min Go, warning, stop

Day clip 1 evening, urban, lens flare 2,161 6,474 10 2.15 min Go, stop

Day clip 2 evening, urban 1,031 2,230 6 1.04 min Go, go left, warning left, stop, stop left

Day clip 3 evening, urban 643 1,087 3 0.40 min Go, warning, stop

Day clip 4 evening, urban 397 859 8 0.24 min Go

Day clip 5 morning, urban 2,667 9,717 8 2.46 min Go, go left, warning, warning left, stop, stop left

Day clip 6 morning, urban 468 1,215 4 0.29 min Go, stop, stop left

Day clip 7 morning, urban 2,718 8,189 10 2.49 min Go, go left, warning, warning left, stop, stop left

Day clip 8 morning, urban 1,040 2,025 8 1.04 min Go, go left, stop, stop left

Day clip 9 morning, urban 960 1,264 4 0.59 min Go, go left, warning left, stop, stop left

Day clip 10 morning, urban 48 109 4 0.02 min Go, stop

Day clip 11 morning, urban 1,052 1,268 6 1.05 min Go, stop

Day clip 12 morning, urban 152 229 3 0.09 min Go

Day clip 13 evening, urban 693 873 8 0.43 min Go, warning, stop

Night clip 1 night, urban 2,560 4,231 9 2.40 min Go, warning, stop

Night clip 2 night, urban 1,264 2,946 5 1.19 min Go, warning, stop

Night clip 3 night, urban 352 539 3 0.22 min Go, warning, stop

Night clip 4 night, urban 2,560 5,578 11 2.40 min Go, warning, stop

Night clip 5 night, urban 1,392 3,871 6 1.27 min Go, warning, stop

48,048 90,767 208 46.1 min

Fig. 3: Example of annotated traffic light lamps.

false positives and false negatives. The TPs, FPs and FNs
should be evaluated on a per frame basis.

Precision =
TP

TP + FP
(1)

Precision is the ratio of correct TL detections compared to
the actual number of TLs.

Recall =
TP

TP + FN
(2)

Recall is the ratio of correct TL detections compared to the
total number of detections.

For presenting and evaluating the overall system perfor-
mance, we suggest generating a precision-recall curve and
using the area-under-curve (AUC) as measure. A high AUC
indicates good performance, an AUC of 100% indicates a
perfect system for the testset. An example of a precision-
recall curve is seen in Figure 4.

To determine TPs, the Pascal criterion is used:

a0 =
area(Bd ∩Bgt)

area(Bd ∪Bgt)
≥ 0.5 (3)

a0 denotes the overlap ratio between the detected bound-
ing box Bd and the ground truth bounding box Bgt. (Bd ∩



Fig. 4: Example of a precision-recall curve

Bgt) denotes the intersection of the detected and ground truth
bounding boxes, and (Bd ∪Bgt) denotes their union.

For future publications, we suggest evaluating the pro-
posed TLR systems with DAS in mind. Therefore we propose
that DAS related TLR systems are evaluated on a frame-
by-frame basis. Furthermore, a proposed system accuracy
should be calculated using AUC on a PR curve. The proposed
evaluation terms are listed below:

• True positives are defined according to the PASCAL
overlap criterion.

• Precision, as seen in equation (1)
• Recall, as seen in equation (2)
• Area-under-curve on Precision-Recall curves

VI. CONCLUDING REMARKS

We have presented an overview of four state of the art
traffic light detection methods published in recent papers on
traffic light recognition (TLR). Three of these method rely on
color or shape information for detecting TL candidates and
one rely on spotlight detection in a single intensity channel.

Because the systems are evaluated using different method-
ology and on very different datasets it is not clear which
approaches are the best. Only one public database with
TLs is currently available and, it is not widely used. We
have therefore contributed with a new database, the LISA
Traffic Light Database, which contains TLs captured using
a stereo camera on roads in San Diego, USA under varying
conditions. The database is supposed to enable comparable
evaluation on a large and varied dataset, and provides the
possibility of including stereo vision for improving TLR. The
dataset will eventually be included in in the VIVA Challenge
[19].
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Chapter 5

Traffic Light Detection for DAS

After surveying recent research on TLR we wanted to implement our own TL
detectors to test on the new LISA Traffic Light Database. The most notable
detector is a state of the art learning based detector based on aggregated chan-
nel features. In addition to the learning based detector we implemented three
heuristic model-based detectors inspired by experience and the surveyed re-
search. Only two of these were included in the paper for comparison with the
learning based detector. Since the LISA Traffic Light dataset contains stereo
image pairs, we developed a stereo vision based candidate filter based on TL
candidates’ height above the road surface. This extension to our detectors was
not included in the paper, but it is described and evaluated in section 5.2.

5.1 Traffic Light Detection: A Learning Al-
gorithm and Evaluations on Challenging
Dataset

The majority of recent work in the domain of TLD is using heuristic model-
based approaches. Previous attempts at using learning-based detectors based
on Haar-like features have been unsuccessful. In related areas learning-based
approaches have gained traction. Examples of areas where learning-based ap-
proaches are now the state of the art are pedestrian detection and traffic sign
recognition. It would therefore be interesting to apply a state of the art object
detector to the TL detection problem. One learning-based and two model-based
approaches have been developed and compared using the LISA Traffic Light
Database. We have submitted the paper Traffic Light Detection: A Learning
Algorithm and Evaluations on Challenging Dataset, to the IEEE Intelligent
Transportation Systems Conference (ITSC), 2015, based on our findings.
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CHAPTER 5. TRAFFIC LIGHT DETECTION FOR DAS

Furthermore, we have been looking into utilizing stereo vision for filtering TL
candidates based on their height above the road surface. This extension was
not included in the paper but the system is described in section 5.2 along with
the evaluation results. For any introductory theory about stereo vision, refer
to section 2.2. The hardware used throughout this paper is described in ap-
pendix B. The learning-based approaches are implemented in Matlab, and the
model-based and stereo-vision approaches are developed in c++ using PCL
and OpenCV. For more information about the used libraries, refer to appendix
C.

The paper is found on the following pages.
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Traffic Light Detection: A Learning Algorithm and Evaluations on
Challenging Dataset

Mark P. Philipsen1,2, Morten B. Jensen1,2,
Andreas Møgelmose1, Thomas B. Moeslund1, and Mohan M. Trivedi2

Abstract— Traffic light recognition (TLR) is an integral part
of any intelligent vehicle, which must function in the existing
infrastructure. Pedestrian and sign detection have recently seen
great improvements due to the introduction of learning based
detectors using integral channel features. A similar push have
not yet been seen for the detection sub-problem of TLR, where
detection is dominated by methods based on heuristic models.

Evaluation of existing systems is currently limited primarily
to small local datasets. In order to provide a common basis for
comparing future TLR research an extensive public database
is collected based on footage from US roads. The database
consists of both test and training data, totaling 48,048 frames
and 90,767 annotated traffic lights, captured under a varying
light and weather conditions.

The learning based detector achieves an AUC of around 0.5,
which is more than an order of magnitude better than the two
heuristic model-based detectors.

I. INTRODUCTION

Recognition of traffic lights (TLs) is an integral part of
Driver Assistance Systems(DAS) in the transitional period
between manually controlled cars and a fully autonomous
network of cars. Currently the focus of research in computer
vision systems for vehicles is divided in two. Major industrial
research groups, such as Daimlar and Google, are invest-
ing heavily in autonomous vehicles and attempt to make
computer vision based system for the existing infrastructure.
Other research done by academic institutions, such as the
LISA lab at UC San Diego and LaRA at ParisTech, are
targeting DAS, which is already available to consumers in
some high-end models. Existing commercial DAS capabil-
ities include, warning of impending collisions, emergency
breaking, automatic lane changing, keeping the advertised
speed limit, and adaptive cruise control. For all parts of DAS
the urban environment posses a lot of challenges, especially
to the systems that rely on computer vision. One of the most
important challenge here is detecting and recognizing TLs at
intersections. Ideally, the TLs should be able to communicate
both visually and using radio communication. However,
this requires investments in infrastructure, something that is
usually not a high priority.

When some form of computer controlled automation
is involved with dangerous objects such as cars, safety
and reliability is of utmost importance. The worst case
scenarios would be a false positive from e.g. a tail light
resulting in the assistance system determining that a red

1Visual Analysis of People Laboratory, Aalborg University, 9000 Aal-
borg, Denmark.

2Computer Vision and Robotics Research Laboratory, UC San Diego, La
Jolla, CA 92093-0434, USA

light is imminent when it is not the case and unnecessarily
distracting the driver, or worse affecting the driver to
perform an emergency braking operation. Most current
research is focused on detection and recognition during
day time with plenty of light, which makes it much easier
to reject false positives, from e.g. tail lights, street lights
and various reflections. An exception is a system proposed
by Google in [1], where a prior map of the location of
TLs makes it possible for their system to achieve solid
performance even at night. The same system is able to
reduce the number of false positives substantially when it
knows where the traffic signal should, and should not be.

Inspiration for further improvements can be found by look-
ing at research done on similar computer vision problems.
For sign recognition [2], [3] explain how the focus has shifted
from heuristic model-based detection to learning based ap-
proaches and the problem is considered solved on a subset
of signs. The same is the case with pedestrian detection,
where [4] shows how a learning based detectors based on
Integral Channel Features(ICF) or the even faster and slightly
better Aggregated Channel Features(ACF) outperform the
other approaches. While research on sign and pedestrian
detection has mostly moved on, the same is not the case
for TL detection where the majority rely on some sort of
color and/or shape filter for detection.

Research related to pedestrian and traffic signs have
benefited greatly from high amount of public datasets
made available through various benchmarks, such as the
KITTI Vision Benchmark Suite[5] and VIVA Challenge [6].
Currently only one public TL dataset is available, which is
the dataset published by LaRA at ParisTech. The dataset
consist of 11,179 frames from a 8min and 49sec long
drive in Paris. In order to provide a common basis for
comparing future TLR research an extensive public database
is collected based on footage from US roads captured under
varying light and weather conditions. Each test sequence
consists of a continuous drive in an urban environment
providing lots of frames with and without TLs.

The purpose of this paper is to compare two heuristic
TL detection methods to a state-of-the-art learning based
detector relying on ACF. Learning based detectors relying
on Haar features have been applied in earlier research [7],
[8], [9], without much success. This is therefore the first
successful learning based detector applied to the TL detec-
tion problem. Evaluation and comparison between the three



approaches is done on daytime sequences from the extensive
and difficult LISA Traffic Light Database. The contributions
are thus threefold:

1) First successful application of a state-of-the-art learn-
ing based detector for TL detection.

2) Comparison between two heuristic TL detection ap-
proaches and a learning based detector using ACF.

3) Introduce the first evaluation based on the public LISA
Traffic Light Database.

The paper is organized as follows: Relevant research is
summarized in section II. In section III we present the
proposed methods, followed by evaluation of the TL detec-
tors in section IV. Finally, section V rounds of with some
concluding remarks.

II. RELATED WORK

Recent work published in the area of traffic light recog-
nition is reviewed, before developing a traffic recognition
system to be used for DAS. For a more extensive overview
of the TLR domain, we refer to [10].

A. Traffic Light Recognition

Common for [11], [9], [12] is a TL detector which relies
purely on intensity from grayscale images. This has the
advantage of being more robust to color distortion. Areas
brighter than their surroundings are segmented using the
white top-hat mophology operation, which leads to an initial
high number of candidates. False candidates are filtered
out based on shape information. Specifically, rejection is
done based on criteria such as, dimension ratio, the BLOB
being free of holes and approximately convex. Furthermore,
the areas of BLOBs are compared to the areas of regions
grown from extrema in the original grayscale image. This is
especially effective for removing false candidates big bright
areas such as the sky. This detector relies heavily on a
competent classifier for further rejection and state estimation,
since the number of false candidates is very high and color
information is not available. The detector manages to find
90% of all TLs in the testset.

[13] begins by detecting the vanishing line and thereby
reducing the search area considerably, relying on the as-
sumption that TLs will only appear above this line. They
then apply the the white top-hat operation as [11], [9],
[12] did, on the intensity channel V from a HSV image.
What is left is filter based on statistical measurements of
the hue and saturation ranges of red and green lights. All
pixels outside these ranges are rejected while the remaining
pixels are selected as candidates. Remaining BLOBs are
filtered based on size and height-width ratio. They then
look for black bounding boxes around the BLOBs based on
gradient information and the blackness of the inside of box
candidates. Their system reaches an accuracy of 85%.

[14] extracts candidate BLOBs from RGB images by
applying a color distance transform proposed in [15]. The
transform emphasizes the chosen color in an intensity im-
age, which is thresholded to remove to suppressed colors.
This is followed by shape filtering to reduce noise using

width/height ratio and the solidity of BLOBs. The solidity
is calculated based on the ratio between the area of the
BLOB and it’s bounding box. When evaluating their system,
they count a success if the TL was detected just once in
the sequence, this allows them to reach a detection rate of
93,53%.

III. METHODS

In this section all of the methods which are used in the
proposed system are presented. The section is divided into
two subsection. In the first subsection the learning based
detector is described. The second subsection explains the
tracking used for improving the output of the detector.

A. Learning based detection

In this subsection we apply the successful ACF detector
to the TL detection problem. The learning based detection
is similar to the approach seen in [16] for traffic signs. We
use the Matlab toolbox provided by [17]. The learning based
detection system is described in the following three parts:

1) Features: The learning based detector is based on
features from 10 channels as described in [18]. A channel
refers to different representations of the input image. The 10
different channels include 6 gradient histogram channels, 1
for unoriented gradient magnitude, and 3 for the channels
in the CIE-LUV color space. First-order Haar-like features
are used for all channels, which basically are summations
of rectangular image regions in the channels. This procedure
is speeded up using the widely known integral image. Fi-
nally, the features are evaluated using a modified AdaBoost
classifier with depth-2 decision trees as weak learners.

2) Training: Training is done using 14,106 positive TL
samples with a resolution of 20x40 and 42,125 negative
samples from 200 carefully selected frames without TLs.
In Figure 1 four examples of the positives used for the
learning based detector are seen. Similarly, Figure 2 shows
two examples of frames used for negatives.

(a) (b) (c) (d)

Fig. 1: Positive samples for learning based detector.

The classifier is trained with Adaboost based on the
features extracted from the positive samples. We train 4
cascade stages, 1st stage consists of 10 weak learners, 2nd
stages of 100, 3rd stage of 1000, and 4th stage of 20000.
In the 4th stage, the training algorithm convergent at 3136
weak learners.

3) Detection: We use a 20x40 sliding window across an
integral image of each of the 10 channels in the test image.



(a) (b)

Fig. 2: Negative samples for learning based detector.

B. Heuristic model based detection

We want to compare the learning based detector to more
conventional detectors based on heuristic models. The first
approach is based on back projection of trained color his-
tograms of the three TL colors. The second approach is
purely relying on intensity information for spotlight detec-
tion.

1) Detection by Back Projection: Back projection begins
with the generation of color distribution histograms. These
histograms are created from 10 specifically selected training
samples for each color, green, yellow, and red. Based on the
U and V channels of the LUV color space a 2D histogram
is created for each of the colors. The histograms are min-
max normalized before they are used for back projection.
The resulting back projection is thresholded to remove low
probability pixels. TLs are found using BLOB analysis, and
size, shape information is used to generate confidence scores
for each BLOB. The specific metrics are listed here:

• Ratio between width and height of bounding box
• Mean value inside bounding box in the back projection

image
• Mean value inside bounding box in the intensity image
• Ratio between area of floodfilled BLOB and area of

bounding box
2) Detection by Spotlight Detection: Spotlights are found

in the intensity channel L from the LUV colorspace using the
white top-hat morphology operation. This method has been
used in a significant fraction of recent TLR papers [11], [9],
[12], [13], [19]. The found spotlight are scored based on the
listed metrics.

• Ratio between width and height of bounding box
• Ratio between the convex area of BLOB and area of

bounding box
• Ratio between area of floodfilled BLOB and area of

bounding box

IV. EVALUATION

The systems are evaluated based upon the following five
criteria:

• True positives are defined according to the PASCAL
overlap criterion.

• Precision, as seen in equation (1)
• Recall, as seen in equation (2)
• Area-under-curve on Precision-Recall curves

Precision =
TP

TP + FP
(1)

Precision is the ratio of correct TL detections compared
to the actual number of TLs.

Recall =
TP

TP + FN
(2)

Recall is the ratio of correct TL detections compared to the
total number of detections.

For presenting and evaluating the overall system perfor-
mance, we use a precision-recall curve and using the area-
under-curve (AUC) as measure. A high AUC indicates good
performance, an AUC of 100% indicates a perfect system
for the testset.

All systems are evaluated on the two test day sequences
from the LISA Traffic Light Database1. This provides a total
of frame number of 14,386, and a total ground truth of
21,421 annotated TLs. Additional information of the video
sequences can be found in Table I. The resolution of the
LISA Traffic Light Database is 1280x960. We however only
use the upper half of the images, which gives a system
evaluation time of an average 0.67 seconds per frame.

Fig. 3: Precision-Recall curve of day sequence 1.

Fig. 4: Precision-Recall curve of day sequence 2.

In Figures 3 and 4 show the precision-recall curves for day
sequences 1 and 2. From Figure 3 it is clear that the learning
based detector far outperforms the other detectors in both
precision and recall when evaluated on sequence 1. The same
is also seen in Figure 4, though the spotlight approach reach
a higher recall than both ACF and color back projection.
This however comes with very low precision because the
detector detects a large number of false positives. From both

1Freely available at http://cvrr.ucsd.edu/LISA/datasets.
html for educational, research, and non-profit purposes.



TABLE I: Overview of the daytime test sequences in LISA Traffic Light Database.

Sequence name Description # Frames # Annotations # TLs Length

Day sequence 1 morning, urban 4,800 10,267 25 5.00 min

Day sequence 2 evening, urban 9,586 11,154 29 6.10 min

14,386 21,421 54 11.1 min

Figure 3 and 4 we can also see that the confidence metrics
defined in subsection III-B for the model-based detectors are
bad at discriminating between TLs and non TL spotlights.
It is apparent that for especially the spotlight detector false
candidates obtain a better score than actual TLs.

In Figure 5 two detection images from the learning based
system is seen. The green bounding box is the positive
detected TLs, and the red bounding box is false positives.
The true positive detected TLs have a score around 400, and
the false positives have a score around 200 making it easy
to discard them.

(a)

(b)

Fig. 5: Detections by the learning based detector.

V. CONCLUDING REMARKS

We have compared a learning based detector based on ag-
gregated channel features to two detectors based on heuristic
models. The learning based detector reached the best AUC,
because of the high precision, while the spotlight detection
achieved the highest recall a the cost of a very low precision.
For detectors recall is usually the most important parameter,
since many of the false positives can be removed in later
stages, but false negatives are lost for good. The learning
based detector achieves an AUC of around 0.5, which is
more than an order of magnitude better than the two heuristic
model-based detectors.

On top of the detectors we would like to implement
tracking to reduce the number of false positives and false

negatives. Stereo vision could be used to filter out false
positives by looking at the detected TL candidates’ height
above the road surface as well as their size and shape. 3D
information can also be used to improve tracking precision.
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5.2. STEREO VISION EXTENSION

5.2 Stereo Vision Extension

In addition to the learning- and model-based approaches, we also looked into
utilizing stereo vision for rejecting false TL candidates. This did not make it
into a paper but could be useful in future TLR systems. The system system
rejects candidates outside a feasible height above the road. Moreover, utiliz-
ing stereo vision enables candidate filtering based on 3D shape and context,
something which would be interesting to investigate further. The stereo ex-
tension is integrated with each of the two model based detectors described in
Traffic Light Detection: A Learning Algorithm and Evaluations on Challenging
Dataset. Figure 5.1 shows the composition our preliminary stereo vision aided
TL detectors.

Figure 5.1: System composition of stereo vision aided TL detector.

The spotlight and backprojection detectors as well as their candidate evaluators
are described in the paper. Additionally, the techniques behind the detectors
are explained in the theory chapter 2. What remains is the stereo extension
which is described below.

5.2.1 Disparity map generation

The introduction of depth information is in this case done using a disparity map
generated from stereo image pairs. The stereo correspondences are found using
OpenCV’s GPU implementation of the block matching algorithm proposed by
K. Konolige’s BM in [24]. We use different parameter for calculating the top
and bottom half of the input image pairs. This is done because the bottom half
is used for road surface localization where a relatively dense disparity map is
necessary, since the road surface is mostly uniform we avoid using prefiltering
and strict matching criteria. For the upper half is usually less uniform therefore
the filtering and matching criteria can be more strict without losing too much
information. Figure 5.2a shows the upper and lower parts of the disparity map
combined in one.
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CHAPTER 5. TRAFFIC LIGHT DETECTION FOR DAS

(a) Combined upper and lower disparity map. (b) v-disp.

5.2.2 Road surface localization

For determining the TLs’ height above the road surface the road surface is
located in the point cloud, but only after getting a rough localization in the
v-disparity and using it to remove potentially distracting measurements. The
v-disparity is calculated from the disparity map on the GPU as it is described
in appendix B. Figure 5.2b shows the v-disparity the disparity map.

In the v-disparity the most prominent line is found using RANSAC. In cases
where a satisfactory line cannot be found, the latest good line is used. Addi-
tionally, the line parameters are filtered using a Kalman filter to smooth out
faulty road surface estimations. The calculated line is then used as a threshold
for determining if disparity pixels belongs to the road surface. What remains
is a disparity map containing only disparity pixels from the road surface and
objects above it. These remaining disparity pixels if projected into 3D, would
result in the point cloud seen in Figure 5.3. Since we assume that the road
surface is located in the bottom half of the image, only pixels from this re-
gion are projected to 3D. The result can be seen in Figure 5.3b. The ground
plane is estimated by running RANSAC on the point cloud, resulting in a plane
consisting of the points seen in Figure 5.3c.
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(a) (b) (c)

Figure 5.3: Visualization of point clouds: (a) Full scene, only for scene understanding. (b)
Lower half of scene, used for the actual road surface localization. (c) Resulting best estimate
of road surface.

5.2.3 Projecting candidates to 3D and distance to plane
When TL candidates are detected their ROI is projected to 3D and the voxel,
in this small point cloud, which is closest to the camera is used as the 3D
coordinate for the TL candidate. The distance between this point and the
localized road surface is then found.

5.2.4 Height filtering
Based on the found height candidates are filtered by only keeping TL candidates
which are between 2 and 8 meters above the road surface. Figure 5.4 shows the
detected TL candidates and their height above the road surface. The size of
the circles around detections signifies the detector confidence. The lines from
the detections shows the length from the detection to the projection onto the
road surface.

Figure 5.4: Blue: spotlight detections, red: histogram back-projection detections, pur-
ple: detetions by both spotlight and backprojection. Lines from detections to road surface
illustrates the height of detected TL candidates.
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5.3 Results
Figure 5.5 shows the height filtered TL candidates.

Figure 5.5: Results(first row): Back-projection(left), Spotlight(right). Raw detector out-
put(middel row): Back-projection(left), Spotlight(right). Disparity map(bottom row): Top
half(left), Bottom half(right).

Figure 5.6 and 5.7 show the result of adding the stereo extension to the two
heuristic detectors.

Figure 5.6: PR curve comparing regular detectors to detectors with the stereo extension.

It is clear that the added height criterion removes a significant part of the FPs
but it also rejects a substantial amount of actual TLs.
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Figure 5.7: PR curve comparing regular detectors to detectors with the stereo extension.
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Chapter 6

Database

Image data is fundamental for research in computer vision. Since insufficient
data is publicly available it was necessary to capture several hours of video data
for this master thesis. Each of the four papers which were submitted during
the thesis period relies on our own data in varying degrees. In this chapter we
present each datasets and the structure of the accompanying annotations as
well as the setup for acquiring the data.

6.1 Datasets
The datasets are mostly organized and annotated using a rather simple struc-
ture. This structure was used in an existing vehicle rear end dataset, which
we were to extend. Since our annotation tool was build with this structure in
mind, we kept it when later annotating TLs. However, since our TL dataset is
supposed to be released in the VIVA challenge, the accompanying annotations
will also be available in a format which is in line with the annotations for the
VIVA traffic sign database. It is preferable to streamline datasets in the chal-
lenge, since it will enable tool reuse and compatibility.

The simple annotation structure which is stored in txt files exemplified in list-
ing 6.1. Each frame which contain annotations gets a line beginning with the
frame number from the video sequence. Values are tab-separated so after the
first tab comes the number of annotation in the frame, followed by the tab-
separated coordinates for the upper left corner of the first annotation and the
width and height of the annotation. If there is more than 1 annotation in the
frame, the coordinates and dimensions are inserted one after the other. This
simplified annotation structure, which does not take TL class into considera-
tion, is intended to keep the complexity of our annotation tool down. Similarly
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we wanted to keep the data collected in a few files. Therefore frames are not
extracted into separate image files, but are kept in video containers.

1 frame N annotat ions Upper l e f t x−coord1 Upper l e f t y−coord1 Width1
Height1 . . . Upper x−coordN Upper l e f t y−coordN WidthN HeightN

Listing 6.1: Iterator(safe) method for copying image elements to 1D array.

Since the TLR dataset is meant to be published in the VIVA challenge, we
adapt the more complex structure which is already used for the LISA traffic
sign database. Here the annotations are stored as 1 annotation per line with the
addition of information such as class tag and file path to individual image files.
With this structure the annotations are stored in a csv file which is compatible
with the tools made for the traffic sign datasbase. The structure of the comma
separated files are exemplified in listing 6.2.

1 Filename ; Annotation tag ; Upper l e f t corner X; Upper l e f t corner Y; Lower r i g h t
corner X; Lower r i g h t corner Y; Occluded ,On another road ; Or ig in f i l e ; Or ig in
frame number ; Or ig in t rack ; Or ig in t rack frame number

Listing 6.2: Iterator(safe) method for copying image elements to 1D array.

The database is mostly captured in San Diego, California, USA. A single clip
used for NDS is captured in Las Vegas, Nevada, USA. The stereo image pairs
are acquired using the Point Grey’s Bumblebee XB3 (BBX3-13S2C-60) which
is constructed with three lenses which each capture images with a resolution
of 1280 x 960. Each lens has a with a horizontal Field of View(FoV) of 66°.
The stereo camera supports two different baselines, 12 and 24 cm, whereof a
baseline of 24 cm is used for the LISA TL database. The stereo images are
uncompressed and rectified on the fly. The Bumblebee XB3 is mounted in the
center of the roof of the capturing vehicle and is connected to a laptop through
the IEEE-1394b interface, sometimes refereed to as FireWire 800.

A Triclops calibration file is provided along with the database, this file con-
tains the factory calibration of our Bumblebee XB3 camera. This calibration
is provided for use with the Point Grey’s Triclops SDK, but is unnecessary for
most purposes since the image pairs are provided in rectified state. The focal
length in pixels of the camera is calculated[41] to be 1612.77 pixels in equation
(6.1) and the wide baseline is 0.239813 meters.

1.25998 ∗ 1280pixels = 1612.77pixels (6.1)

The collected database is divided into three parts, each for a specific purpose:
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6.1. DATASETS

6.1.1 Rear ends of vehicles at night

As part of ongoing research in the lab, we were tasked with collecting and
annotating rear ends of vehicles at night, primarily on highways. This served
as additional data for training and testing a monocular detector for nighttime
detection of rear-end of vehicles on highways. In this process we selected 8,922
frames of which 5,069 were annotated with 9,761 annotations of rear ends. To
do this we began the development of our own annotation tool. Figure 6.1 shows
the improvements the Ravi’s monocular detector caused by the addition of our
training data.

Figure 6.1: White squares are GT, red are detections from detector trained on our data,
yellow are detections from detector trained on other data.
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6.1.2 Intersecting vehicles at day and night-time

The dataset for evaluating stereo vehicle detection for NDS events during both
day and nighttime, is recorded with the purpose of capturing vehicles and
road surfaces while preserving as much information as possible. Therefore the
camera shutter speed was set to be as long as possible(max. 1/16 sec.) and gain
was set medium-high at 8 when recording at night. For day-time recordings
the shutter speed was adjusted to let in the maximum amount of light, while
avoiding overexposure, gain was set low. The video clips are primarily recorded
leading up to intersections and while stopped at red lights, which is where most
of relevant NDS event takes place. This dataset is unannotated and evaluation
must therefore be done under manual supervision. Evaluation was done on 13
day clips totaling 1269.9 MB and 16 night totaling 856.7 MB, this translates
in to roughly 18 minutes of video.

6.1.3 LISA Traffic Light Database

This is the most prominent of our collected databases. It contributes waste
amounts of annotated stereo imaging for training and testing TLR systems.
The database contains two day and two nighttime sequences for testing. These
test sequences amounts to a total of 23 minutes and 9 seconds of driving in
Pacific Beach, San Diego. The long continuous test sequences serves to give
a realistic understanding of the performance of TLR systems, since they must
function well hen multiple TLs are visible at widely different distances as well
as when no TL is insight. Besides the four test sequences, we provide 18 shorter
video clips consisting of TLs collected in the northern part of San Diego. These
are intended for training and initial testing. They are organized as seen in Table
6.1, which gives a detailed overview of all the annotated video sequences and
clips. Camera gain and shutter speed were manually set to avoid over exposure
as well as limit flickering of the TLs. For all day-time recordings, a shutter
speed of 1/5000 sec and a gain of 0 was used. For all night-time recordings, a
shutter speed of 1/100 sec and a gain of 8 was used.

Publication

The LISA Traffic Light Database is made public at http://cvrr.ucsd.edu/
LISA/datasets.html and in the second half of 2015 it will be integrated as
part of the second iteration of the VIVA challenge which will be located at
http://cvrr.ucsd.edu/vivachallenge/.
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Table 6.1: Overview of the video sequences in LISA Traffic Light Database.

Sequence
name

Description # Frames # Annota-
tions

#
TLs

Length Classes

Day seq. 1 morning, urban, back-
light

4,800 10,267 25 5min Go, warning, warning left, stop, stop left

Day seq. 2 evening, urban 9,586 11,154 29 6min 10s Go, go forward, go left, warning, stop, stop left
Night seq. 1 night, urban 4,992 18,889 25 5min 11s Go, go left, warning, stop, stop left
Night seq. 2 night, urban 6,533 23,776 54 6min 48s Go, go left, warning, stop, stop left

Day clip 1 evening, urban, lens
flare

2,161 6,474 10 2min 15s Go, stop

Day clip 2 evening, urban 1,031 2,230 6 1min 4s Go, go left, warning left, stop, stop left
Day clip 3 evening, urban 643 1,087 3 40s Go, warning, stop
Day clip 4 evening, urban 397 859 8 24s Go
Day clip 5 morning, urban 2,667 9,717 8 2min 46s Go, go left, warning, warning left, stop, stop

left
Day clip 6 morning, urban 468 1,215 4 29s Go, stop, stop left
Day clip 7 morning, urban 2,718 8,189 10 2min 49s Go, go left, warning, warning left, stop, stop

left
Day clip 8 morning, urban 1,040 2,025 8 1min 4s Go, go left, stop, stop left
Day clip 9 morning, urban 960 1,264 4 59s Go, go left, warning left, stop, stop left
Day clip 10 morning, urban 48 109 4 3s Go, stop
Day clip 11 morning, urban 1,052 1,268 6 1min 5s Go, stop
Day clip 12 morning, urban 152 229 3 9s Go
Day clip 13 evening, urban 693 873 8 43s Go, warning, stop
Night clip 1 night, urban 591 1,885 8 36s Go
Night clip 2 night, urban 2,299 4,205 25 2min 24s Go, go left, warning, stop, stop left
Night clip 3 night, urban 1,051 1,476 14 1min 6s Go, go left, warning left, stop, stop left
Night clip 4 night, urban 1,104 2,538 9 1min 9s Go, warning, stop
Night clip 5 night, urban 1,453 3,242 19 1min 31s Go, go left, warning, stop, stop left

46,418 112,971 290 44min 24s

6.2 Video Annotator

For annotating the large number of video captured, a semi-automatic video
annotation tool has been developed. Originally the annotation tool was de-
veloped to annotate vehicle’s rear-end as this was the first task during this
project. This only required a few main functions of the tool: Annotate a video
on a frame-by-frame basis, use left and right mouse click to mark a rectangular
area in the frame, and finally convert all the annotation into a common syntax
and print them to an annotation file. Later the annotation tool was developed
further and optimized towards annotating traffic lights. For increasing the an-
notation time, the color-based tracking method meanshift and it’s extension,
CAMSHIFT, were used to predict the position of a given annotation in the next
frame. Furthermore, the tool utilizes the middle mouse button for creating a
rectangular box based on the flood filling algorithm. Such that by moving the
mouse over a lit traffic light followed by a middle mouse click.
To start annotating a video sequence, one must compile the c++ program, by
using the CMakeLists.txt. When this is done, the annotation program is started
using the annotateVideo executable. The first argument for annotateVideo is
the path to the video sequences. The second argument is from which frame the
user wish to start annotating from. An example of this is seen in Figure 6.2,
where a few frames have been annotated and the string that is outputted to
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Figure 6.2: Syntax for starting the annotation tool and annotation prints in terminal.

the annotation file is printed in the terminal.
An annotation proposed by either prediction, manually annotation with left
and right click, or flood filling annotation is marked with a purple outline in
the frame, and as seen with the keyboard shortcuts in Table 6.3, the current
proposed annotation can be accepted or rejected. This will result in respec-
tively, a green outline or black outline of the proposed annotation as seen in
Figure 6.3. In same figure, a small window is visible in upper left corner.
This window contain a small zoomed area around the mouse position, such it
becomes easier to be more accurate while annotating manually.
When all the desired objects are annotated in a frame, the user can either
save annotation and proceed to next frame by pressing ’d’, save annotation;
and proceed and predict annotations in next frame by pressing ’s’, or finally
quit the program by pressing ’q’. If s is pressed, the tool will proceed to next
frame and draw white rectangles on the frame which represent the predicted
rectangle based on previous annotations. These are accepted or rejected by
sequentially marking them with a purple color and either accepting or rejecting
them, which will make them green or black. After this the user can reannotate
objects with the mouse if some of the predicted annotations are not accurate,
an then proceed to next frame by using same procedure as just described.
Finally when all the frames have been annotated, the tool will close down and
an annotation file can be found in the annotation tool directory.
The frames used for training and testing a monocular classifier for nighttime
detection of rear-end of vehicles on highways.
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Figure 6.3: Three saved annotation and one rejected annotation.

Table 6.2: Keyboards shortcuts for video annotator tool.

Operation Shortcut

Save current annotation(s) and proceed to next frame d
Save current annotation(s), proceed to next frame, and
apply CAMSHIFT to previous annotations in current
frame

s

Ignore selected area z
Ignore selected area i
Quit the program ESC
Quit the program q

Table 6.3: Mouse usage for video annotator tool.

Operation Shortcut

Mark top left corner of the rectangle Left click
Mark bottom right corner of the rectangle Right click
Use flood fill in center of color to create rectangle
around it

Middle click
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Chapter 7

Conclusion

This master’s thesis revolves around computer vision and machine learning ap-
plied to solve problems in the traffic scene. Specifically problems and challenges
related to intersections as mentioned in the scope of the project in section 1.2.
Most of the work have been carried out during our 7-month stay with the Labo-
ratory of Intelligent & Safe Automobiles (LISA), and the Computer Vision and
Robotics Research Laboratory (CVRR) at University of California, San Diego
(UCSD). Our work has been research oriented rather than the traditional prob-
lem oriented approach affiliated with previous semesters at Aalborg University.
The report structure is therefore more loose with rather independent chapters.

The main theme in this report has been traffic light detection (TLD), but the
report has also included the use of stereo vision for vehicle detection at inter-
sections with the purpose of automatic data reduction for Naturalistic Driving
Studies (NDS). The work resulted in four papers, whereof one has been been
accepted and the remaining three are submitted for review.

A major problem for TLD compared to other traffic related problems, such as
traffic sign detection, has been the absence of a proper overview of the current
traffic light recognition (TLR) research. To address this problem, a comprehen-
sive journal survey paper has been compiled containing an overview of state of
the art research. From the review of existing literature it was clear that there
is a need for a large public traffic light dataset with mixed weather and light
conditions. It is also nessesary to establish a standardized procedure for eval-
uating TLD systems, in order to facilitate comparison of methods. Therefore
the LISA Traffic Light Database has been captured and features more than
110,000 annotations of traffic lights captured in stereo under both day and
night conditions. The dataset is captured on southern Californian roads, and
contains full stereo video tracks making tracking and detection using stereo
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vision algorithms possible.

Finally, several traffic light detectors have been developed featuring two heuris-
tic model based, one learning based. Additionally a stereo vision based exten-
sion have been tested for rejecting false traffic light candidates based on their
height above the road surface. A comparative analysis of the detectors is done
and shows that our learning based approaches outperforms our model based
approaches.
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Appendix B

Hardware

B.1 Computer
The all of the software developed as part of this thesis was tested on the hard-
ware described in the tables below.

Table B.1: Technical specification of MacBook Pro Retina, 15-inch, Late 2013

MacBook Pro Retina, 15-inch, Late 2013

Processor 2.3 GHz i7-4850HQ
Memory 16 GB 1600 MHz PC3-12800
Storage 512 GB PCIe 3.0 SSD

Graphics
Intel Iris Pro 5200 1536 MB shared
Nvidia GeForce GT 750M with 2 GB GDDR5

Each of these machines run OS X Yosemite, Windows 7 and Ubuntu 12.04/Ubuntu
14.04

B.2 Camera
Most stereo matching is based on the assumption that pixels belonging to the
same objects have the same same intensity/color, in other words, they are
radiometrically similar. However, radiometric differences in the image pairs
will arias due to differences in the cameras, vignetting, image noise. This is not
apparent in the datasets that stereo matching methods are usually compared
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based on e.g. the unnaturally clean Middlebury stereo data set, Tsukuba. Some
examples of types of image noise are listed below [23]:

• Fixed pattern noise is usually a result of long exposure and differences in
the responses of individual sensor cells.

• Random noise is usually significant with low exposure.

– Gaussian noise caused by poor illumination, high temperature and
noise in the electronic circuitry.

– Salt-and-pepper noise caused by analog-to-digital conversion errors
and bit errors in transmission.

– Shot noise is caused by the discrete nature of photons which follows
a Poisson distribution, this type of noise is particularly noticeable in
the lighter parts of an image. This effect is proportionally reduced
with the amount of photons allowed in.

• Banding noise usually is a result of excessive brightness or due to faulty
image sensor readout.

Furthermore differences may arise due to reflective surfaces, which will reflected
different amounts of light depend on the viewing angle. This problem will only
get bigger with increases in baseline length. Since precalibration cannot fix
all of these issues, it can be expected that some radiometric differences will
be present when the matching algorithm is put to work. The effects of the
radiometric differences can be mitigated by applying filters such as mean and
Laplacian of Gaussian, this comes with the drawback of blurred disparity maps
[22].
Stereo image data is captured with Point Grey’s Bumblebee XB3. The speci-
fication of the used Bumblebee camera can be seen in the table below:

B.2.1 Triclops API
Interaction of the Bumblebee camera is done through the libdc1394 firewire
camera library. This library allows for full camera control, video capture,
multi-camera/multi-adapter support, multi-platform (Linux/OSX/Windows),
colorspace conversion functions and multiple de-bayering algorithms. Point
Grey provides a pgrlibdcstereo package which essentially is a wrapper library
for libdc1394 that makes it easier to work with the stereo camera. Together
with the propitiatory Triclops library the following steps are done during stereo
image capture and rectification.
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Table B.2: Technical specification of Bumblebee XB3(BBX3-13S2C-60)

Bumblebee XB3(BBX3-13S2C-60)

Resolution 1280 x 960
FPS 16
Color Yes
Focal Length 6 mm

Baselines
12 cm
24 cm

Sensor Sony ICX445 CCD
Sensor Format 1/3"
Pixel Size 3.75 µm square
Connection IEEE-1394b (800Mb/s)

B.2.2 Setting Camera type
To work with the camera, we need to initialize an stereocamera object and set
the capture mode. This is seen in code example (B.1).

1 PGRStereoCamera_t stereoCamera ;
2 // query information about this stereo camera
3 e r r = queryStereoCamera ( camera , &stereoCamera ) ;
4 i f ( e r r != DC1394_SUCCESS )
5 {
6 f p r i n t f ( s tde r r , " Cannot query a l l in fo rmat ion from camera\n" ) ;
7 cleanup_and_exit ( camera ) ;
8 }
9
10 i f ( stereoCamera . nBytesPerPixel != 2)
11 {
12 // can’t handle XB3 3 bytes per pixel
13 f p r i n t f ( s tde r r , " Example has not been updated to work with XB3 in 3 camera

mode yet ! \ n " ) ;
14 cleanup_and_exit ( stereoCamera . camera ) ;
15 }
16
17 // set the capture mode
18 p r i n t f ( " S e t t i n g s t e r e o video capture mode\n " ) ;
19 e r r = setStereoVideoCapture (&stereoCamera ) ;
20 i f ( e r r != DC1394_SUCCESS)
21 {
22 f p r i n t f ( s tde r r , " Could not s e t up video capture mode\n " ) ;
23 cleanup_and_exit ( stereoCamera . camera ) ;
24 }

Listing B.1: Set the Camera
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B.2.3 Segmentation fault fix
Parts of the Triclops API is apparently not thread safe, therefore it is necessary
to limit the number of threads to 1, to avoid segmentation fault 11.

1 e= triclopsSetMaxThreadCount ( t r i c l o p s , 1) ; //Important to avoid
segmentation fault

2 i f ( e != Tric lopsErrorOk )
3 {
4 f p r i n t f ( s tde r r , " triclopsSetMaxThreadCount f a i l e d ! \ n " ) ;
5 t r i c l ops Des t royCon text ( t r i c l o p s ) ;
6 cleanup_and_exit ( camera ) ;
7 return 1 ;
8 }

Listing B.2: limit thread count to 1

B.2.4 Getting camera context(calibration)
To project into 3D point clouds, one needs to know the focal length in pixels.
As we use the factory calibration we need to extract the calibration content
from the camera. This is done as seen in code example B.3.

1 // get calibration and stuff from camera
2
3 p r i n t f ( " Gett ing Tr ic lopsContext from camera ( s l ow ly ) . . . \n " ) ;
4 e = getTriclopsContextFromCamera(&stereoCamera , &t r i c l o p s ) ;
5 i f ( e != Tric lopsErrorOk )
6 {
7 f p r i n t f ( s tde r r , "Can ’ t get context from camera\n " ) ;
8 cleanup_and_exit ( camera ) ;
9 return 1 ;

10 }
11 p r i n t f ( " . . . done\n " ) ;
12
13 p r i n t f ( " Saving Tr ic lopsContext from camera . . . \n " ) ;
14 e = tr i c l opsWr i t eDe fau l tContextToFi l e ( t r i c l o p s , " t r i c l o p s . c a l " ) ;
15 i f ( e != Tric lopsErrorOk )
16 {
17 f p r i n t f ( s tde r r , "Can ’ t save context from camera\n " ) ;
18 cleanup_and_exit ( camera ) ;
19 return 1 ;
20 }
21 p r i n t f ( " . . . done\n " ) ;
22 }

Listing B.3: Extract and save camera content

B.2.5 Setting shutter speed
Through the libdc1394 library it is possible to access and set the camera gain
and shutter speed. The exact values will be adjusted as a compromise between
the following measures in the resulting images.
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• low gain - low intensity but little noise

• high gain - high intensity but lots of noise and artifacts

Image example:

• low shutter speed - high intensity and less prone to problems with AC
lighting but lots of blur and oversaturation

• high shutter speed - low intensity and more prone to problems with AC
lighting but sharp and less oversaturation

Image example:
The listing below shows how the camera’s gain is set using dc1394

1 //set gain to manual
2 e r r = dc1394_feature_set_power ( stereoCamera . camera , DC1394_FEATURE_GAIN,

DC1394_ON) ;
3 dc1394_feature_set_mode ( stereoCamera . camera , DC1394_FEATURE_GAIN,

DC1394_FEATURE_MODE_MANUAL) ;
4 e r r = dc1394_feature_set_absolute_contro l ( stereoCamera . camera ,

DC1394_FEATURE_GAIN, DC1394_ON) ;
5 e r r = dc1394_feature_set_absolute_value ( stereoCamera . camera ,

DC1394_FEATURE_GAIN, gain ) ;

Listing B.4: Setting camera gain

The listing below shows how the camera’s shutter speed is set using dc1394
1 //set shutter to manual [minShut: 0.000003 maxShut: 0.020847]
2 e r r = dc1394_feature_set_power ( stereoCamera . camera , DC1394_FEATURE_SHUTTER,

DC1394_ON) ;
3 dc1394_feature_set_mode ( stereoCamera . camera , DC1394_FEATURE_SHUTTER,

DC1394_FEATURE_MODE_MANUAL) ;
4 e r r = dc1394_feature_set_absolute_contro l ( stereoCamera . camera ,

DC1394_FEATURE_SHUTTER, DC1394_ON) ;
5 e r r = dc1394_feature_set_absolute_value ( stereoCamera . camera ,

DC1394_FEATURE_SHUTTER, shutterSpeed ) ;
6
7 e r r = dc1394_feature_get_absolute_value ( stereoCamera . camera ,

DC1394_FEATURE_SHUTTER, &s ) ;
8 e r r = dc1394_feature_get_absolute_value ( stereoCamera . camera ,

DC1394_FEATURE_GAIN, &g ) ;
9 p r i n t f ( " S e t t i n g s s e t to ; ga in : %f s h u t t e r : %f \n " , g , s ) ;

Listing B.5: Setting camera shutter speed

B.2.6 Getting full RGB images from the camera(api buffer
fix)
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1 // size of buffer for all images at mono8
2 unsigned int n B u f f e r S i z e = stereoCamera . nRows ∗
3 stereoCamera . nCols ∗
4 stereoCamera . nBytesPerPixe l ;
5 // allocate a buffer to hold the de−interleaved images
6 unsigned char∗ pucDeInte r lacedBuf f e r = new unsigned char [ n B u f f e r S i z e ] ;
7 unsigned char∗ pucRGBBuffer = new unsigned char [ 3 ∗ n B u f f e r S i z e ] ;
8 unsigned char∗ pucRightBuf fer = new unsigned char [ 3 ∗ n B u f f e r S i z e ] ;
9 unsigned char∗ pucLe f tBuf f e r = new unsigned char [ 3 ∗ n B u f f e r S i z e ] ;

10 unsigned char∗ pucRightRGB = NULL;
11 unsigned char∗ pucLeftRGB = NULL;
12 unsigned char∗ pucCenterRGB = NULL;
13
14 Tr i c l ops Input inputLeft , inputRight ;

Listing B.6: Initializing image buffers

1 // get the images from the capture buffer and do all required processing
2 // note: produces a TriclopsInput that can be used for stereo processing
3 extract ImagesColor (&stereoCamera ,
4 DC1394_BAYER_METHOD_NEAREST,
5 pucDeInter lacedBuf fe r ,
6 pucRGBBuffer ,
7 pucRightBuffer ,
8 pucLeftBuf fer ,
9 &pucRightRGB ,

10 &pucLeftRGB ,
11 &pucCenterRGB ,
12 &inputRight ,
13 &inputLe f t
14 ) ;
15
16 Tric lopsColorImage l e f tTr i Img , r ightTr i Img ;
17
18 e = t r i c l o p s R e c t i f y C o l o r I m a g e ( t r i c l o p s , TriCam_RIGHT, &inputRight , &

r ightTr i Img ) ;
19 e = t r i c l o p s R e c t i f y C o l o r I m a g e ( t r i c l o p s , TriCam_LEFT, &inputLef t , &

l e f t T r i I m g ) ;
20
21 vector <Mat> channe l sLe f t , channe lsRight ;
22
23 cv : : Mat b l u e L e f t ( stereoImageHight , stereoImageWidth , CV_8UC1, l e f t T r i I m g .

blue ) ;
24 cv : : Mat greenLe f t ( stereoImageHight , stereoImageWidth , CV_8UC1, l e f t T r i I m g .

green ) ;
25 cv : : Mat redLe f t ( stereoImageHight , stereoImageWidth , CV_8UC1, l e f t T r i I m g .

red ) ;
26
27 cv : : Mat blueRight ( stereoImageHight , stereoImageWidth , CV_8UC1, r ightTr i Img

. blue ) ;
28 cv : : Mat greenRight ( stereoImageHight , stereoImageWidth , CV_8UC1,

r ightTr i Img . green ) ;
29 cv : : Mat redRight ( stereoImageHight , stereoImageWidth , CV_8UC1, r ightTr i Img .

red ) ;
30
31 channe l sLe f t . push_back ( b l u e L e f t ) ;
32 channe l sLe f t . push_back ( g reenLe f t ) ;
33 channe l sLe f t . push_back ( r edLe f t ) ;
34
35 channelsRight . push_back ( blueRight ) ;
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36 channe lsRight . push_back ( greenRight ) ;
37 channe lsRight . push_back ( redRight ) ;
38
39 Mat le f t ImageRect , r ightImageRect ;
40
41 merge ( channe l sLe f t , l e f t ImageRect ) ;
42 merge ( channelsRight , r ightImageRect ) ;

Listing B.7: modified extractImageColor function

By default the function extractImagesColor() in the pgrlibdcstereo library for
some reason return pTriclopsInput as a pointer to only the green channel. This
means a lot of information is lost. Therefore the library is changes and recom-
pile so the buffer pointed to by pTriclopsInput contain all 3 color channels.

1 unsigned char∗ pucGrabBuffer = frame−>image ;
2
3 i f ( stereoCamera−>nBytesPerPixe l == 2 )
4 {
5 // de−interlace the 16 bit data into 2 bayer tile pattern images
6 dc1394_de inter lace_stereo ( pucGrabBuffer ,
7 pucDeInter leaved ,
8 stereoCamera−>nCols ,
9 2∗ stereoCamera−>nRows ) ;
10 // extract color from the bayer tile image
11 // note: this will alias colors on the top and bottom rows
12 dc1394_bayer_decoding_8bit ( pucDeInter leaved ,
13 pucRGB,
14 stereoCamera−>nCols ,
15 2∗ stereoCamera−>nRows ,
16 stereoCamera−>bayerTi le ,
17 bayerMethod ) ;
18 // now deinterlace the RGB Buffer to extract the green channel
19 // The green channel is a quick and dirty approximation to the mono
20 // equivalent of the image and can be used for stereo processing
21 dc1394_deinter lace_rgb ( pucRGB + 3 ∗ stereoCamera−>nRows ∗ stereoCamera

−>nCols ,
22 pucLeft ,
23 stereoCamera−>nCols ,
24 3∗ stereoCamera−>nRows ) ;
25 dc1394_deinter lace_rgb ( pucRGB,
26 pucRight ,
27 stereoCamera−>nCols ,
28 3∗ stereoCamera−>nRows ) ;
29
30 ∗ppucRightRGB = pucRGB ;
31 ∗ppucLeftRGB = pucRGB + 3 ∗ stereoCamera−>nRows ∗ stereoCamera−>nCols ;
32 ∗ppucCenterRGB = ∗ppucLeftRGB ;
33 }
34
35 pTr ic lops InputLe f t−>inputType = TriInp_RGB ;
36 pTr ic lops InputLe f t−>nrows = stereoCamera−>nRows ;
37 pTr ic lops InputLe f t−>n c o l s = stereoCamera−>nCols ;
38 pTr ic lops InputLe f t−>rowinc = stereoCamera−>nCols ;
39 pTr ic lops InputLe f t−>u . rgb . red = pucLeft +2∗ stereoCamera−>nRows ∗

stereoCamera−>nCols ;
40 pTr ic lops InputLe f t−>u . rgb . green = pucLeft +1∗ stereoCamera−>nRows ∗

stereoCamera−>nCols ;
41 pTr ic lops InputLe f t−>u . rgb . b lue = pucLeft +0∗ stereoCamera−>nRows ∗

stereoCamera−>nCols ;
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42
43 pTric lopsInputRight−>inputType = TriInp_RGB ;
44 pTric lopsInputRight−>nrows = stereoCamera−>nRows ;
45 pTric lopsInputRight−>n c o l s = stereoCamera−>nCols ;
46 pTric lopsInputRight−>rowinc = stereoCamera−>nCols ;
47 pTric lopsInputRight−>u . rgb . red = pucRight +2∗ stereoCamera−>nRows ∗

stereoCamera−>nCols ;
48 pTric lopsInputRight−>u . rgb . green = pucRight +1∗ stereoCamera−>nRows ∗

stereoCamera−>nCols ;
49 pTric lopsInputRight−>u . rgb . b lue = pucRight +0∗ stereoCamera−>nRows ∗

stereoCamera−>nCols ; ;
50
51 // return buffer for use
52 dc1394_capture_enqueue ( stereoCamera−>camera , frame ) ;

Listing B.8: changing pgrlibdcstereo to return full 3 channel RGB image

B.2.7 Rectifying color images
The 3 channel RGB images returned by extractImagesColor() can then be
passed to triclopsRectifyColorImage() where they are rectified using the triclops
context that was extracted from the camera earlier. Afterwards all that is left
is to assemble channels from the rectified TriclopsColorImages to two Mat type
RGB images.

1 Tric lopsColorImage l e f tTr i Img , r ightTr i Img ;
2
3 e = t r i c l o p s R e c t i f y C o l o r I m a g e ( t r i c l o p s , TriCam_RIGHT, &inputRight , &

r ightTr i Img ) ;
4 e = t r i c l o p s R e c t i f y C o l o r I m a g e ( t r i c l o p s , TriCam_LEFT, &inputLef t , &

l e f t T r i I m g ) ;
5
6 vector <Mat> channe l sLe f t , channe lsRight ;
7
8 cv : : Mat b l u e L e f t ( myImageHeight , myImageWidth , CV_8UC1, l e f t T r i I m g . blue ) ;
9 cv : : Mat greenLe f t ( myImageHeight , myImageWidth , CV_8UC1, l e f t T r i I m g . green ) ;

10 cv : : Mat redLe f t ( myImageHeight , myImageWidth , CV_8UC1, l e f t T r i I m g . red ) ;
11
12 cv : : Mat blueRight ( myImageHeight , myImageWidth , CV_8UC1, r ightTr i Img . blue ) ;
13 cv : : Mat greenRight ( myImageHeight , myImageWidth , CV_8UC1, r ightTr i Img . green

) ;
14 cv : : Mat redRight ( myImageHeight , myImageWidth , CV_8UC1, r ightTr i Img . red ) ;
15
16 channe l sLe f t . push_back ( b l u e L e f t ) ;
17 channe l sLe f t . push_back ( g reenLe f t ) ;
18 channe l sLe f t . push_back ( r edLe f t ) ;
19
20 channelsRight . push_back ( blueRight ) ;
21 channelsRight . push_back ( greenRight ) ;
22 channelsRight . push_back ( redRight ) ;
23
24 Mat le f t ImageRect , r ightImageRect ;
25
26 merge ( channe l sLe f t , l e f t ImageRect ) ;
27 merge ( channelsRight , r ightImageRect ) ;

Listing B.9: rectifying and composing color images
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When the program terminates, wee clean up the buffers.

B.2.8 Cleaning up

1 p r i n t f ( " Stop t r a n s m i s s i o n \n " ) ;
2 i f ( dc1394_video_set_transmiss ion ( stereoCamera . camera , DC1394_OFF ) !=

DC1394_SUCCESS)
3 {
4 f p r i n t f ( s tde r r , " Couldn ’ t stop the camera ?\n" ) ;
5 }
6
7 i f ( pucDeInte r lacedBuf f e r )
8 delete [ ] pucDeInte r lacedBuf f e r ;
9 i f ( pucRGBBuffer )
10 delete [ ] pucRGBBuffer ;
11 i f ( pucRightBuffer )
12 delete [ ] pucRightBuf fer ;
13 i f ( pucLe f tBuf f e r )
14 delete [ ] pucLe f tBuf f e r ;

Listing B.10: cleaning up

B.3 CUDA
A important tool for reducing execution time of expensive algorithms is the
GPU. For Nvidia GPUs this can be done using the CUDA toolkit. For speed-
ing up some of the programs developed as part of this thesis, the CUDA capable
GPU described in table B.3 was available. Much of the following information
originates from a Parallel programming course by Udacity [48].

CUDA allows for programming of both CPU and GPU in the same program.
The CUDA compiler splits the program in CPU and GPU instructions.

CUDA programming

Programming for GPUs that supports CUDA is done in CUDA C and CUDA
C++, which essentially are extended versions of the standard C and C++ lan-
guages. The extensions enables execution of special functions, called kernels, in
parallel on the GPU. Using the terminology associated with CUDA program-
ming, the CPU and it’s associated memory is called the host, whereas GPU and
it’s memory is referred to as the device. The host manages it’s own memory as
well as the device memory. This means that in a typical CUDA program the
host allocates and initialize data on the host, followed by memory allocation
on the device. The data the must be processed on the device is uploaded and
kernels are executed on that data. The resulting data is finally downloaded
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Table B.3: Technical specifications for GeForce GT 750M CUDA Capabilities.

GeForce GT 750M CUDA Capability

CUDA Driver Version 7.0
CUDA Capability 3.0
Total Memory 2048 MB

CUDA Cores
2 Multiprocessors(MP)

192 CUDA Cores per MP
GPU Clock 926 MHz
Threads per MP 2048
Threads per block 1024
Warp size 32
Block dimension (x,y,z) (1024, 1024, 64)

from device to host memory. Figure B.1 shows the software layers involved in
a CUDA program. CUDA Runtime(CUDART) creates an abstraction layer on
top of parts of the driver API, this layer hides some of the explicit resource
management and facilitates easier integration into C++ code by enabling a
simple way for kernel invocation.
When programming for the GPU a kernel program must look like a serial pro-
gram for one thread. Before kernels can be executed the the structure of the
threads that will be executing the kernels must be set. Each thread have it’s
own memory. Threads are organized in blocks, each with it’s own memory
shared between the threads. The blocks are the organized in grids which ac-
cess global memory.

With CUDA there are two additions to the ordinary C and C++ syntax: Triple
angle brackets are used when calling device code from host code.

1 mykernel<<<N,M, ( shared mem per block in bytes )>>>(in1 , in2 , out1 ) ;

Listing B.11: triple angle brackets function call

N and M are parameter that have to do with the number of blocks and ...
when executing the kernel on the GPU. N and M determine the number of
times the function is executed e.i the number of blocks and the number of
threads per block respectively. Following the angle brackets are input and
output variables. These must be allocated on the device by the CPU before
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Figure B.1: Hierarchy of the layers involved in CUDA programming.[54]

the kernel is launched. N and M can be 1, 2 or 3D grids, it deaults to 1D. A
3D grid of blocks is initialized with dim3(x,y,z). dim3(x,1,1)==(dim3,x)==x
Device code is written in functions with the keyword

1 __global__ void mykernel ( void )
2 {
3 . . .
4 }

Listing B.12: device function

1 __global__ void add ( int ∗a , int ∗b , int ∗c )
2 {
3 ∗c = ∗a + ∗b ;
4 }

Listing B.13: device function
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Since the function runs on the device, variables must be located in device
memory. A typical memory flow of CPU+GPU program:

1 cudaMalloc ( ) // CPU allocates memory on GPU
2 cudaMemcpy ( ) // Copying data from CPU to GPU
3 " k e r n e l launch " by CPU onto GPU where i t p r o c e s s the data
4 cudaMemcpy ( ) // Copying data back to CPU from GPU
5 cudaFree ( ) // Release memory resources on GPU

Listing B.14: device function

Memory handling is done from the host:
1 int main ( void ) {
2 int a , b , c ; // host copies of a, b, c
3 int ∗d_a , ∗d_b , ∗d_c ; // device copies of a, b, c
4 int s i z e = s izeof ( int ) ;
5 // Allocate space for device copies of a, b, c
6 cudaMalloc ( ( void ∗∗)&d_a , s i z e ) ;
7 cudaMalloc ( ( void ∗∗)&d_b , s i z e ) ;
8 cudaMalloc ( ( void ∗∗)&d_c , s i z e ) ;
9 // Setup input values

10 a = 2 ;
11 b = 7 ;
12 // Copy inputs to device
13 cudaMemcpy(d_a , &a , s i z e , cudaMemcpyHostToDevice ) ;
14 cudaMemcpy(d_b , &b , s i z e , cudaMemcpyHostToDevice ) ;
15 // Launch add() kernel on GPU
16 add<<<1,1>>>(d_a , d_b , d_c) ;
17 // Copy result back to host
18 cudaMemcpy(&c , d_c , s i z e , cudaMemcpyDeviceToHost ) ;
19 // Cleanup
20 cudaFree (d_a) ; cudaFree (d_b) ; cudaFree (d_c) ;
21 return 0 ;
22 }

Listing B.15: device function

Kernels run asynchronously on the GPU so control is returned to the CPU
immediately. When results are to be transferred back to the CPU, it must be
insured that the GPU is done.

1 cudaMemcpy ( ) //Blocks the CPU until the copy is complete
2 Copy beg ins when a l l preced ing CUDA c a l l s have completed
3 cudaMemcpyAsync ( ) //Asynchronous, does not block the CPU
4 cudaDeviceSynchronize ( ) //Blocks the CPU until all preceding CUDA calls have

completed

Listing B.16: device function

Parallel communication patterns

When initialization parallelization, there exists communication patterns. These
are briefly described below:
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Map: 1 to 1 correspondence between input and output. E.g. conversion of 3
channel color image to single channel grayscale.

Gather: many to 1 correspondence between input and output. E.g. image
blurring.

Scatter: 1 to many correspondence between input and output. In part of the
program the write location is calculated. Problem multiple threads may try to
write to the same location at the same time. E.g. histogram calculation from
image.

Stencil: Stencil is a fixed pattern where neighboring values in an array/ma-
trix are accessed. Lots of data reuse/overlap in memory access. E.g. the sobel
filter kernel.

Reduce: all to 1 correspondence between input and output. E.g. summation.

Scan and sort: all to all correspondence between input and output. E.g.
finding the median.
With some of the communication patterns above it is necessary to introduce
synchronization between the treads and/or blocks. One form is called a barrier
e.g.

1 __syncthreads ( ) ;

Listing B.17: barriers

CUDA makes no guaranties about when and on which sm a specific thread
block will run. This allows for great efficiency and scaleability. CUDA does
however guarantee that all thread in a block are executed on the same SM at
the same time and all blocks in a kernel finish before blocks in from a following
kernel are executed.

Efficient GPU usage

Arithmetic intensity When doing GPU programming desirable to obtain
as high arithmetic intensity as possible, this relationship can be seen in equation
(B.1).

arithmeticintensity = timespendonmathoperations

timespendonmemoryoperations
(B.1)
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Additionally, since threads on the GPU have access to three layers of memory,
data should be placed in the closest and fastest when possible. Figure B.2 illus-
trates the memory hierarchy. Speed wise the memory is ordered local(registers)
> shared > global.

Figure B.2: Hierarchy of the memory layers involved in CUDA programming.[39]

Use coalesced global memory access when possible, meaning adjacent threads
should access contiguous chunks of memory. This can in many cases be done
by transposing the data structure.

Thread divergence The threads should follow the same paths through the
code when possible. Threads diverge due to if and else and different threads
doing loops different number of times.

CPU vs GPU

The CPU strengths:

1. CPU has higher clock speed, more cycles per second - power and heat
limited.

2. CPU does more instructions per cycle - instruction set and cost limited.
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CPU uses complex control hardware - flexibility, optimized for low latency.

A CPU analogy would be a rally car, which has a low passenger capacity but
is able to quickly get to the finish.

The GPU strengths:

1. GPU used less power per calculation.

2. GPU scales well.

GPU Little control but lots of computation hardware - restricted but power
efficient, optimized for high throughput(pixels/second)

A CPU analogy would be a school bus, which has a high passenger capacity
but is slow and might need to take a longer and more passable route to the
finish. It is said that: "The GPU does not get out of bed for less than 1000
threads [48]".

Integrating custom CUDA with OpenCV CUDA

Interfacing with OpenCV gpuMat using CUDA data pointer is necessary if
GPU memory is access through OpenCv’s API and the assigned memory needs
to be accessed using standard CUDA.

1 //You can create GpuMat object for existed pointer and GpuMat will not delete
this memory in destructor:

2
3 void∗ data ;
4 s i z e_t step ;
5 cudaMalloc2D(&data , &step , width ∗ s izeof ( f loat ) , he ight ) ;
6 GpuMat mat( height , width , CV_32FC1, ( uchar ∗) data , s tep ) ; /cv : : gpu : : GpuMat dst

( height , width , CV_32F, d_Ptr ) ;
7 gpu : : bitwize_not (mat , mat) ;
8 cudaFree ( data ) ;
9
10 // And you can get device pointer from GpuMat with ptr<> method:
11 f loat ∗ data = mat . ptr<f loat >() ;
12 s i z e_t step = mat . s tep ;

Listing B.18: gpumatCUDA

CUDA implementation example for OpenCV

The following CUDA kernel calculates V-disparity.
1 __global__
2 void vdispKerne l ( unsigned char∗ image ,
3 unsigned int ∗ vdispImage ,
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4 int numRows , int numCols , int vdispNumRows , int
vdispNumCols )

5 {
6 int index_x = blockIdx . x ∗ blockDim . x + threadIdx . x ;
7 int index_y = blockIdx . y ∗ blockDim . y + threadIdx . y ;
8
9 // map the two 2D indices to a single linear, 1D index

10 int grid_width = gridDim . x ∗ blockDim . x ;
11 int index = index_y ∗ grid_width + index_x ;
12
13 int vdispIdx = ( ( index /( numCols−1) ) ∗255) + image [ index ] ;
14 atomicAdd(&vdispImage [ vdispIdx ] , 1 ) ;
15 }

Listing B.19: gpumatCUDA

Table B.4 shows the difference in computation time between calculating V-
disparity on CPU and GPU.

Table B.4: V-disparity timing from CPU and GPU.

Processing unit Computation time

CPU 12.9 ms
GPU 1.6 ms
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Software

C.1 Libraries and toolboxes

C.1.1 OpenCV
OpenCV is an open source library originally started by Intel, it contains a
collection of 2500 optimized computer vision and machine learning algorithms.
The majority of the algorithms are implemented for CPU, but many are also
available for GPU[32]. Everything that is developed as part of this master
thesis is developed using OpenCV’s C++ API.

C.1.2 PCL
PCL is an open source library that was started by some of the people at Willow
garage.
PCL e.g allows for easy organization of 3D points into a point cloud structure,
optimized filtering and visualization.

C.1.3 libviso
LIBVISO2 is a C++ library for visual odometry. It enables 6 DOF for ego
motion estimation for a camera through a sequence of monocular or stereo
images. The library is accompanied by publication [18].

C.1.4 Specialized libraries
In addition to the primary libraries that was just mentioned, the following
specialized libraries are used, mostly because they are used extensively by the
primary libraries.
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Eigen Contains SSE optimized linear algebra, vector and matrix operations.

FLANN Contains data structures such as kd-tree, which enables efficient
nearest neighbor searches.

QHull Contains operations for finding convex hull.

C.1.5 Matlab toolbox
Piotr’s Computer Vision Matlab Toolbox [11] has been used together with the
regular Matlab environment. The description found on the webpage define
the purpose of the toolbox very well: "This toolbox is meant to facilitate the
manipulation of images and video in Matlab. Its purpose is to complement,
not replace, Matlab’s Image Processing Toolbox, and in fact it requires that the
Matlab Image Toolbox be installed. ". The content of the toolbox consists of 7
parts: channels, classify, detector, filters, images, matlab, and videos. In this
project only 2 of these have been used, namely: channels and detector. The
aggregated channels and their content are described in [12, 14, 13, 15].

C.1.6 Creating a Aggregated Channel Features Object
Detector

In this project we have utilzed Aggregated Channel Features (ACF) for detect-
ing traffic lights. In order to train a cascading classifier based on these, both
positive and negative sample images must be obtained. Positives samples con-
sist of image with the object of interest. Negatives samples should not contain
any instances of the desired objects.
Piotr’s Computer Vision Matlab Toolbox provides a great and easy tool for
training an ACF based detector. In code example C.1 the opts=acfTrain()
command is seen, which basically is the creation of an options object for the
acfTrain function. This is followed by a large set of options settings, whereof
only some are used in the same code example. The modelDs defines the model’s
dimensions in terms of height and width. This region can be extended using
the model dimension padding, modelDsPad. An important notation is that
dimensions of modelDsPad must be of same size of pre-cropped positive sam-
ples. The pBoost argurments defines parameters for AdaBoost. Code example
C.1 uses pre-cropped positives samples, but regular full size negative images.
Finally, all of the input parameters are used for model training.

1 %% Set up ACF Detector
2 opts=ac fTra in ( ) ;
3

122



C.1. LIBRARIES AND TOOLBOXES

4 opts . modelDs=[40 2 0 ] ;
5 opts . modelDsPad=[50 2 5 ] ;
6 opts . pPyramid . pChns . pColor . smooth=0;
7 opts . nWeak=[10 100 2 0 0 0 ] ;
8 opts . pBoost . pTree . maxDepth=2;
9 opts . pBoost . d i s c r e t e =0;

10 opts . pBoost . pTree . f r a c F t r s =1/16;
11 opts . nNeg=25000;
12 opts . nAccNeg=50000;
13 opts . pPyramid . pChns . pGradHist . s o f t B i n =1; opts . p J i t t e r=s t r u c t ( ’ f l i p ’ , 1 ) ;
14
15 opts . posWinDir=[ dataDir ’ / t r a i n / pos ’ ] ;
16 opts . negImgDir=[ dataDir ’ / t r a i n /neg ’ ] ;
17
18 opts . pPyramid . pChns . shr ink =1;
19 opts . name=’ models / Li sa+’ ;
20
21 %% Train ACF Detector
22 d e t e c t o r = ac fTra in ( opts ) ;

Listing C.1: Setup and train the ACF based detector.

Only certain modifications can be done after training the detector. More in-
formation can be found in acfModify.m from the toolbox. In code example
C.2 only cascThr and cascCal are modified for reaching a better recall. These
parameters adjust the threshold and calibrations for the constant soft cascades.

1 %% Modify ACF Detector
2 pModify=s t r u c t ( ’ cascThr ’ , 0 . 5 , ’ cascCal ’ , 0 . 1 ) ;
3 d e t e c t o r=acfModify ( detector , pModify ) ;

Listing C.2: Modify the detector post training.

Finally, the trained detector is applied on input images. In code example C.3
the trained ACF based detector is applied on all frames from the input video
sequence ’dayclip2.avi’. The output of the detector is a set of bounding boxes
with a confidence level. For preventing bounding boxes with a large amount
of overlap, the type argument max is used for discarding bounding boxes with
the lowest confidence in case of major overlap.

1 videoObj = VideoReader ( ’ dayc l ip2 . av i ’ ) ;
2 get ( videoObj ) ;
3 nFrames = f l o o r ( videoObj . NumberOfFrame) ;
4
5 f o r frameNumber = 1 : nFrames
6 frame = read ( videoObj , frameNumber ) ;
7 imgLoi = imcrop ( frame , [ 0 0 1280 960/2 ] ) ; % Cropping to upper h a l f o f l e f t

image .
8 bbs = ac fDetec t ( imgLoi , d e t e c t o r ) ;
9 bbsOverlap = bbNms( bbs , ’ type ’ , ’max ’ ) ; % I f l a r g e over lap , the bb with

the lower s c o r e i s suppressed .
10 end

Listing C.3: Loading a video sequence and using the trained ACF based detector.

For plotting the bounding boxes on the frame, the bbApply.m provides a useful
drawing function. It can also be used for drawing the ground truth bounding
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boxes when these are loaded. This could be done similar to what is seen in
code example C.4 where all content from a txt file is read into array.

1 %% Fetch ground truth
2 annotat ion = text read ( ’ enlargedBB−dayc l ip2 . txt ’ , ’%s ’ , ’ d e l i m i t e r ’ , ’ \n ’ , ’

whitespace ’ , ’ ’ ) ;
3 array ( s i z e ( annotation , 1 ) ) =0;
4 f o r i =1: s i z e ( annotation , 1 )
5 l i n e = ( s t r s p l i t ( char ( annotat ion ( i , 1 ) ) ) ) ;
6 f o r j =1: s i z e ( l i n e , 2 )
7 array ( i , j ) = s t r2doub l e ( l i n e (1 , j ) ) ;
8 end
9 end

Listing C.4: Load in ground truth

For the LISA Traffic Light database, the ground truth txt file syntax is "<fra-
meNumber> <numberOfObjects> <upperLeftCorner> <upperLeftCornerY>
<width> <height>". The four last parameters are scaled according to the
number of objects in the frame. An example of plotting the ground truth
bounding boxes on the frame is seen code example C.5.

1 f o r i = 1 : s i z e ( annotation , 1 ) ;
2 i f ( frameNumber−1)==array ( i , 1 ) ; % We s t a r t annos from 0 , matlab index

from 1
3 numObjects = array ( i , 2 ) ;
4 % Convert to bbApply syntax
5 gtBB( numObjects , 4 ) =0;
6 f o r j =1:numObjects
7 gtBB( j , 1 ) = array ( i , (3+(4∗ ( j−1) ) ) ) ;
8 gtBB( j , 2 ) = array ( i , (4+(4∗ ( j−1) ) ) ) ;
9 gtBB( j , 3 ) = array ( i , (5+(4∗ ( j−1) ) ) ) ;

10 gtBB( j , 4 ) = array ( i , (6+(4∗ ( j−1) ) ) ) ;
11
12 end
13 bbApply ( ’ draw ’ ,gtBB , ’b ’ ) ;
14 end
15 end

Listing C.5: Plotting ground truth bounding boxes

C.1.7 Optimization for Image Indexing
In this section useful optimizations for operating on images are explained.

Image indexation

Indexation and scanning through image matrices is a very common operation
in image processing, it is therefore important to do it as efficiently as possible.
Code example C.6 shows the simplest and safest way of indexing an image in
OpenCV.
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1 f o r ( int32_t v=0; v<nCols ; v++) {
2 f o r ( int32_t u=0; u<nRows ; u++) {
3 img_data [ k ] = ( uint8_t ) image . at<uchar >(u , v ) ;
4 k++;
5 }
6 }

Listing C.6: Iterator(safe) method for copying image elements to 1D array.

The average execution time of a 1280x500 image was found to be around 5.97
ms.

Code example C.7 shows a faster image indexation approach, which acquire
a pointer for each row and increment it for the columns. For continuously
allocated images if nCols is can be set to nCols * nRows and nRows is then set
to 1.

1 f o r ( int32_t i = 0 ; i < nRows ; ++i ) {
2 valueP = image . ptr<uchar >( i ) ;
3 f o r ( int32_t j = 0 ; j < nCols ; ++j ) {
4 img_data [ k ] = ( uint8_t ) valueP [ j ] ;
5 k++;
6 }
7 }

Listing C.7: Pointer(fast) method for copying image elements to 1D array.

The average execution time of a 1280x500 image was found to be around 2.15
ms.
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Appendix D

Installation guides for thesis
essential software

D.1 Installing OpenCV with CUDA support
in OSX

Installing OpenCV with CUDA support on OSX is now possible without serious
complications since CUDA 7 beta release. Previous versions of CUDA would
only compile with the libstdc++, which was the standard library in earlier
versions of OSX before the transition from gcc to llvm, which uses the newer
libc++.
In Listing ?? the easy installation of OpenCV without CUDA support is
shown, this procedure can also be recommended as a first step before com-
piling OpenCV with CUDA support, since homebrew will automatically install
many of the needed dependencies.

1 $ brew tap homebrew/ s c i e n c e
2
3 $ brew i n s t a l l opencv −−with−f fmpeg −−with−tbb −−with−t e s t s −−with−qt

Listing D.1: brew install OpenCV.

This should result in a working OpenCV installation without CUDA.
You should now have installed all the required packages for installing OpenCV.
Next, you need to download OpenCV from http://opencv.org/downloads.
html. For our approach we used OpenCV 2.4.10 for Linux. When you have
downloaded your OpenCV distribution, we advice to move the directory from
the "Downloads" directory, as you experience show that this folder are some-
times completed erase as a result of a lot of unorganized files.
In order to get OpenCV with CUDA support, first download and install CUDA
7.0 from nvidia’s homepage. You can check your compute Capability at https:
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//developer.nvidia.com/cuda-gpus. E.g the graphic card used throughout
this approach is a NVIDIA GeForce GT 750M, which has a compute capability
of 3.0. When done download the source code for OpenCV. Before compiling
OpenCV, make sure that earlier installations are gone. If homebrew was used
the command ’brew uninstall opencv’ will do the job.
Start a terminal (ctrl+t), and go through the steps seen in Listing D.13. Before
executing "make -j8", you should look through the makefile to check whether
all the modules are correctly selected. E.g check if CUDA is included. Please
note, that this process may take a few hours to complete.

1 $ cd opencv −2.4.10
2 $ mkdir bu i ld
3 $ cd bu i ld
4 $ cmake −D WITH_TBB=ON −D BUILD_NEW_PYTHON_SUPPORT=ON −D WITH_V4L=ON −D

INSTALL_C_EXAMPLES=ON −D INSTALL_PYTHON_EXAMPLES=ON −D BUILD_EXAMPLES=ON −
D WITH_QT=ON −D WITH_VTK=ON −D WITH_OPENGL=ON −D WITH_CUDA=ON −D
CUDA_ARCH_BIN=3.0 −D WITH_TIFF=OFF −D WITH_OPENEXR=OFF . .

5 $ make −j 8
6 $ sudo make i n s t a l l

Listing D.2: Compile and install OpenCV with CUDA.

To install the OpenCV 3.0 Beta along with the experimental modules, download
OpenCV and OpenCV_Contrib from https://github.com/Itseez

1 $ cd <opencv_location >/
2
3 $ mkdir bu i ld
4
5 $ cd bu i ld
6
7 $ cmake −D WITH_TBB=ON −D WITH_V4L=ON −D WITH_QT=ON −D WITH_VTK=ON −D

WITH_TIFF=OFF −D WITH_OPENGL=ON −D WITH_CUDA=ON −D CUDA_ARCH_BIN=3.0 −D
WITH_OPENEXR=OFF −DOPENCV_EXTRA_MODULES_PATH=</opencv_contrib /modules> . .

8
9 $ make −j 8

10
11 $ sudo make i n s t a l l

Listing D.3: Install OpenCV3 with contrib modules.
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D.2 Installing Windows 7 on recent Macs
Installing Windows 7 through Bootcamp.
Since newer Macs only have USB3 and Windows 7 doesn’t support that by
default, you will have no mouse or keyboard for installation if the installation
isn’t done with the following steps:

1. Have a Windows 7 image file ready somewhere on your Mac as well as a
<8GB USB drive.

2. Open Boot Camp Assistant, check all 3 boxes – make boot disk, download
software and partition disk. Go through screens until it ends at a screen
where all you can do is click quit.

3. Reopen Boot Camp Assistant and this time CHECK THE THIRD BOX
ONLY, the one to partition your drive. Be sure to leave the first two
unchecked. Choose your partition size (make it big <100GB if you later
need Ubuntu also). When Boot Camp is done partitioning the disk it
will automatically quit Boot Camp and reboot your computer, which it
didn’t do the first time.

4. As computer is automatically rebooting, hold down alt/option key until
you see screen where you can choose to boot up from Mac HD or your
windows USB. Select the ’windows’ drive.

5. This time when you get to the first Windows 7 screen, you should have
a nice big fat white cursor that works.

When you start your new Windows 7 OS you might want to remove the pagefile
and disable hibernation, since they each by default take up the amount of RAM
your Mac has on your SSD also. With an SSD and plenty of RAM they are
really not necessary.
Disable The Paging File:

1. Right-click Computer

2. Select Properties

3. Select Advanced system settings

4. Select the Advanced tab and then the Performance radio button

5. Select the Change box under Virtual memory
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6. Un-check Automatically manage paging file size for all drives

7. Select No paging file, and click the Set button

8. Select OK to allow and restart.

Disable Hibernation:

1. Type "cmd" in the Start menu search box

2. Right-click on the cmd program and select Run as Administrator

3. In the command line, type "powercfg -h off"

4. Once completed, the command prompt returns and you can close it.
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D.3 Installing OpenCV with CUDA support
in Windows

Installing OpenCV with Cuda support on Windows 7 have the following Pre-
requisites:

• CMake

• Cuda 6.5 64 bit

• OpenCV 2.4.10

• Visual Studio 2013

• Intel TBB(optional)

• Python(optional)

The procedure is as follows:

1. Install CMake, CUDA, Python and Visual Studio

2. Download Intel TBB and OpenCV to a permanent location

3. Open CMake

(a) Select Source Folder to opencv/source
(b) Select Output Folder to opencv/build
(c) Press ‘Configure’
(d) Choose Visual Studio 12 2013 Win64
(e) CMake settings round 1.

i. Cancel BUILD_DOCS and BUILD_EXAMPLES
ii. CMAKE_LINKER must be Visual Studio 12.0 for vs2013
iii. Cancel CUDA_ATTACH_VS_BUILD_RULE_TO_CUDA_FILE,

to avoid some CUDA related errors
iv. Choose WITH_CUBLAS, WITH_CUDA, WITH_OPENGL,

WITH_TBB
v. Press Configure to refresh

(f) CMake settings round 2.
i. Set include path for tbb, to <TBB permanent loca-

tion>lib\intel64\vc12
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ii. Press ‘Configure’ to refresh
(g) Press ‘Generate’ to create OpenCV.sln in output folder
(h) Add ‘#include <algorithm>’ to “opencv-

2.4.10\modules\gpu\src\nvidia\core\NCV.cu”. Otherwise you’ll
have ‘max’ undefined error.

(i) Compile OpenCV.sln
i. If any of your libraries (OpenCV, tbb, Python, etc.) is in

“C:\Program Files”, you need to run Visual Studio 2013 as ad-
ministrator before you open the solution file with it.

ii. We suggest building the ‘opencv_core’ and ‘opencv_gpu’ first.
Otherwise it’ll take hours before you find an error.

iii. You can right click ‘ALL_BUILD’ to build the entire OpenCV.
iv. After that build ‘INSTALL’
v. Build ‘ALL_BUILD’ and ‘INSTALL’ in Release mode again.
vi. The building took around 2 hours for each mode on my PC.

(j) The final compiled OpenCV lib(+CUDA) can be found in ‘Output
Folder’\install

Creating a project a OpenCV/CUDA capable VS project

1. Create new Visual C++ Win32 Console Application

2. In the Solution Explorer, right click on the project and select ‘Properties’

(a) Add ‘<dir>\opencv\build\install\include’ to ‘Configuration Prop-
erties’ ->‘C/C++’ ->‘Additional Include Directories’

(b) Add <dir>\opencv\build\install\x64\vc12\lib’ to ‘Configuration
Properties’ ->‘Linker’ ->‘Additional Library Directories’

(c) Add the following libs to ‘Configuration Properties’ ->‘Linker’ -
>‘Input’ ->‘Additional Dependencies’
i. opencv_calib3d2410d.lib;opencv_contrib2410d.lib;opencv_

core2410d.lib;opencv_features2d2410d.lib;opencv_flann2410d.
lib;opencv_gpu2410d.lib;opencv_highgui2410d.lib;opencv_
imgproc2410d.lib;opencv_legacy2410d.lib;opencv_ml2410d.
lib;opencv_nonfree2410d.lib;opencv_objdetect2410d.lib;
opencv_photo2410d.lib;opencv_stitching2410d.lib;opencv_
superres2410d.lib;opencv_ts2410d.lib;opencv_video2410d.
lib;opencv_videostab2410d.lib
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3. Change from Win32 to x64 in the configuration manager

4. OpenCV code including cuda functions should now be able to compile
and run

This configuration should be done in VS debug mode, the same configura-
tion needs to be done in release mode if you wish to build release software
with the small difference, that the OpenCV libs then should be named e.g.
opencv_calib3d2410.lib instead of opencv_calib3d2410d.lib. The d is for some
extra debug functionality.
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D.4 Installing Ubuntu throughWindows using
Wubi

For installing Ubuntu we utilize Wubi. Wubi is an officially supported installer
for Windows XP, Vista and 7 users that allows Ubuntu to be installed and
uninstalled in a safe, easy way as with any other Windows application. To read
more about Wubi, go to https://wiki.ubuntu.com/WubiGuide, whereof most
of the content in this section is derived from. This guide contain instructions
for two versions of Ubuntu namely, 12.04 and 14.04. The old version 12.04 is
the most straight forward to install, but it may have issues on modern SSDs.
14.04 comes with a newer file system and will work better, however 14.04 is not
well supported for use with Wubi, therefore a number of hacks must be applied
to get it running.
For Ubuntu 12.04 LTS the steps are as follows:

1. Boot up in Windows 7.

2. Go to http://releases.ubuntu.com, and select the version you wish to
use. In this case "12.04/".

3. Scroll to the button, and download "wubi.exe".

4. Right click on wubi.exe, and select "Run as administrator".

5. A windows called, "Ubuntu Setup" should now start up. In the top of the
Window it should say "You are about to install Ubuntu-12.04".

6. The installation drive should be set to c:, which is the startup drive on
the Windows 7 partition.

7. Select a proper installation size. Note: Ubuntu recommends 15 GB or
minimum of 8 GB.

8. Select what language you wish to have in you Ubuntu OS.

9. Enter a username and password.

10. Press install, and a download of the installation files(Approx. 700 mb)
should begin. Afterwards you are requested to reboot.

11. Remember to hold the command key on rebooting until the first boot
loader is seen. Select Windows partition in first boot loader, and Ubuntu
in second boot loader. The installation will continue for another 10-15
minutes and the machine will reboot again.
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For Ubuntu 14.04 LTS the steps are as follows:

1. Boot up in Windows 7.

2. Go to http://releases.ubuntu.com, and select the version you wish to
use. In this case "14.04.1/".

3. Scroll to the button, and download "wubi.exe".

4. In the same list locate and download "ubuntu-14.04.1-desktop-amd64.iso".

5. Make sure that the two are located in the same folder and disconnect
from the internet".

6. Right click on wubi.exe, and select "Run as administrator".

7. A windows called, "Ubuntu Setup" should now start up. In the top of the
Window it should say "You are about to install Ubuntu-14.04".

8. The installation drive should be set to c:, which is the startup drive on
the Windows 7 partition.

9. Select a proper installation size. Note: Ubuntu recommends 15 GB or
minimum of 8 GB.

10. Select what language you wish to have in you Ubuntu OS.

11. Enter a username and password.

12. Press install, and wait a short while until you are requested to reboot,
reconnect to the internet before restarting.

13. Remember to hold the command key on rebooting until the first boot
loader is showing. Select Windows partition in first boot loader, and
Ubuntu in second boot loader. The installation will continue for another
10-15 minutes and the machine will reboot again.

14. Again remember to hold the command key on rebooting until the first
boot loader is showing. Select Windows partition followed by Ubuntu in
second. At this point you should be presented with a grub menu, where
you can either wait/press ’enter’ to continue or among one of the alterna-
tives press ’e’ to edit the Ubuntu entry. In the entry change permission
from ro to rw as shown in the next step.

135

http://releases.ubuntu.com


APPENDIX D. INSTALLATION GUIDES FOR THESIS ESSENTIAL
SOFTWARE

15. Change: linux\boot\vmlinuz-3.13.0-32-generic
root=UUID=55B018A020A3F99A loop=\ubuntu\disks\root.disk
ro rootflags=sync quiet splash $ vt_ handoff to:
linux\boot\vmlinuz-3.13.0-32-generic root=UUID=55B018A020A3F99A
loop=\ubuntu\disks\root.disk rw rootflags=sync quiet splash $ vt_
handoff

16. Alternative: If you were not presented with the option to press ’e’ you
must hold down ’shift’ directly after selecting Ubuntu in the second boot-
loader to reveal it.

17. When done, press ’control’ + ’x’ to proceed with boot up.

18. Optional: To avoid having to do the last couple of steps every time you
boot, make it semi-permanent by entering to commands seen below.

1 $ sudo sed − i s / ’ ro ’/ ’ rw ’/ g / e tc /grub . d/10 _lupin
2
3 $ sudo update−grub

Listing D.4: Semi-permanent 14.04 boot fix

1 $ sudo nano / e tc / d e f a u l t /grub
2
3 update GRUB_CMDLINE_LINUX to hold :
4
5 GRUB_CMDLINE_LINUX=" l i b a t a . f o r c e=noncq "
6
7 $ sudo update−grub

Listing D.5: SSD fix

Ubuntu in one form or another should now be installed on your Windows 7
partition. You can check this by navigating, in Windows 7, to your c: direc-
tory and see that a folder called "ubuntu" is created.

Before starting working and compiling your code in Ubuntu, the authors strongly
recommends installing MacFan which is a program for controlling fan settings.
To do this, follow the steps in Listing D.6.

1 $ sudo add−apt−r e p o s i t o r y ppa : mactel−support /ppa
2
3 $ sudo apt−get update
4
5 $ sudo apt−get i n s t a l l macfanct ld
6
7 $ macfanct ld

Listing D.6: Install MacFan
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Note that the authors tried to install a 32-bit version of Ubuntu. There however
seemed to be some problems with the drivers, such that the installation of
Ubuntu 32-bit could not be finished. The authors therefore recommend using
the 64-bit from the beginning.
If you however wish to install the 32-bit version of Ubuntu, you should use the
following steps. But please note, that the authors has not been able to get
Ubuntu version to work.

1. Boot up in Windows 7.

2. Go to http://releases.ubuntu.com, and select the version you wish to
use. In this case "12.04/".

3. Scroll to the button, and download "wubi.exe".

4. Right-click Wubi.exe and select "Create Shortcut".

5. Right-click the shortcut, select Properties, and modify the Target line,
i.e: "C:\Documents\<user>\Desktop\wubi.exe"--32bit

6. Right click the shortcut and select "Run as administrator".

7. Follow the same steps as above (from step 5).
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D.5 Installing CUDA in Ubuntu
The first step is to download the CUDA toolkit repo, and as we have installed
a 64-bit version of Ubuntu, a 64-bit version of the Cuda Toolkit is used. Down-
load the DEB file for CUDA 6.5 (cuda-repo-ubuntu1204_6.5-14_amd64.deb)
from NVIDIA’s homepage. Next, open a terminal and follow the steps seen in
Listing D.7. Note, never do an "sudo apt-get upgrade", experience indicates
this crashes the touchpad and other drivers in Ubuntu.

1 $ sudo dpkg − i cuda−repo−ubuntu1204_6.5−14_amd64 . deb
2
3 $ sudo apt−get update
4
5 $ sudo apt−get i n s t a l l cuda

Listing D.7: Install CUDA.

After installing CUDA, we wish to include CUDA in our environment, this is
done by adding some paths to your .bashrc file, as seen in Listing D.8.

1 $ sudo g e d i t . bashrc
2 Copy f o l l o w i n g l i n e s i n t o . bashrc :
3 export PATH=/usr / l o c a l /cuda−6.5/ bin :$PATH
4 export LD_LIBRARY_PATH=/usr / l o c a l /cuda−6.5/ l i b :$LD_LIBRARY_PATH
5 export LD_LIBRARY_PATH=/usr / l o c a l /cuda−6.5/ l i b 6 4 :$LD_LIBRARY_PATH
6
7 $ sudo reboot

Listing D.8: Modify bashrc

You should now reboot your computer into Ubuntu again. To do this, it is
important to remember to hold down the alt/option key while rebooting, and
select the Windows option in the first boot loader, followed by Ubuntu in the
second boot loader. When booted up, we wish to verify that CUDA is correctly
installed. To do so, follow the steps seen in Listing D.10.

1 $ cd / usr / l o c a l /cuda−6.5/ samples /1 _ U t i l i t i e s / deviceQuery
2
3 $ sudo make
4
5 $ . / deviceQuery

Listing D.9: Verify CUDA installation.

After performing these steps, you should see some specifications of your Nvidia
graphics card and the CUDA installation in the terminal.
In some cases desktop elements such as the menu and side bar will disappear
in the following restarts after installed a new graphics driver. This problem is
still not solved but if it happens it might be helpful to do some of the following.

1
2 When at the black desktop p r e s s ’ c t r l ’+ ’ a l t ’+ ’ f1 ’ to a c c e s s t ty1
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3 I n s t a l l the compiz s e t t i n g s manager i f nece s sa ry
4 $ sudo apt−get i n s t a l l compizconf ig−s e t t i n g s−manager
5
6 Run i t :
7 $ export DISPLAY=:0
8 $ ccsm
9

10 To a c c e s s i t p r e s s ’ c t r l ’+ ’ a l t ’+ ’ f7 ’ to get back to the desktop
11
12 f i n d and enable the Unity p lug in
13
14 everyth ing should s p r i n g back i n t o p lace but i t does not .

Listing D.10: Graphics problems.
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D.6 Installing OpenCV with CUDA support
in Ubuntu

Installing OpenCV with Cuda support on Ubuntu should be rather straightfor-
ward, experiments however show that a lot of problems come up. To prevent
issues, two main things must be in order. First of all, you will need to in-
stall quite a lot of packages on your computer BEFORE installing OpenCV.
Naturally you will need to make sure that your installing of CUDA is already
working (see section D.5). OpenCV should work with both cpp and python
compiler.
The approach that we have had success with is seen in below listnings. It
should be noted, that all the packages may not be required for your specific
application, this approach is directed for our Master Thesis.
In Listing D.12 the installation of all the preliminary packages are seen.

1 $ sudo apt−get update
2
3 $ sudo apt−get i n s t a l l bui ld−e s s e n t i a l cmake pkg−c o n f i g
4
5 $ sudo apt−get i n s t a l l l i b t i f f 4 −dev l i b j a s p e r−dev l i b g t k 2 .0−dev l i b s w s c a l e−dev
6 l i b v 4 l−dev l i b x i n e−dev l ibdc1394−22−dev z l ib1g−dev l ibpng−dev l ibopenexr−dev
7 l i b g d a l−dev l i b t h e o r a−dev l ibx264−dev yasm l i b f a a c−dev l i b v 4 l−dev l i b x i n e−dev
8 l ib tbb−dev l i b e i g e n 3−dev python−numpy python3−dev python3−tk python3−numpy

Listing D.11: Install required package.

ffmpeg
1 $ sudo apt−add−r e p o s i t o r y ppa : mc3man/ trusty−media
2 $ sudo apt−get update
3 $ sudo apt−get i n s t a l l f fmpeg gstreamer0 .10− f fmpeg

Listing D.12: Install required package.

You should now have installed all the required packages for installing OpenCV.
Next, you need to download OpenCV from http://opencv.org/downloads.
html. For our approach we used OpenCV 2.4.9 for Linux. When you have
downloaded your OpenCV distribution, we advice to move the directory from
the "Downloads" directory, as you experience show that this folder are some-
times completed erase as a result of a lot of unorganized files.
Start a terminal (ctrl+t), and go through the steps seen in Listing D.13. Before
executing "make -j8", you should look through the makefile to check whether
all the modules are correctly selected. I.e check if CUDA is included. Please
note, that this process may take a few hours to complete.

1 $ cd <opencv_location >/
2
3 $ mkdir bu i ld
4
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5 $ cd bu i ld
6
7 $ cmake −D CMAKE_CXX_COMPILER=/usr / bin /g++ −D WITH_CUDA=ON −D
8 BUILD_NEW_PYTHON_SUPPORT=ON −D WITH_V4L=ON −D INSTALL_C_EXAMPLES=ON
9 −D INSTALL_PYTHON_EXAMPLES=ON −D BUILD_EXAMPLES=ON −D WITH_QT=ON −D

10 WITH_OPENGL=ON −D BUILD_DOCS=ON BUILD_EXAMPLES=ON −D BUILD_opencv_python=ON
11 −D BUILD_opencv_java=OFF . .
12
13 $ make −j 8
14
15 $ sudo make i n s t a l l

Listing D.13: Install OpenCV.

OpenCV should now successfully be installed on your Ubuntu distribution. For
checking and verifying this, open a terminal and go through the steps seen in
Listing D.14, or alternatively open a terminal, import cv in a python shell.

1 $ cd <opencv_location >/samples /c
2
3 & . / b u i l d _ a l l . sh
4
5 & . / f a c e d e t e c t l ena . jpg

Listing D.14: Verify OpenCV is correctly installed.

If you are having problems with missing dependencies, take look at Listing
D.15. This Listing show 6 dependencies our approach could not locate, so we
found them manually and created a symbolic link for them.

1 $ sudo ln −s / usr / l o c a l /cuda−6.5/ l i b 6 4 / l i b c u f f t . so / usr / l i b / l i b c u f f t . so
2 $ sudo ln −s / usr / l o c a l /cuda−6.5/ l i b 6 4 / l ibnpps . so / usr / l i b / l ibnpps . so
3 $ sudo ln −s / usr / l o c a l /cuda−6.5/ l i b 6 4 / l i b n p p i . so / usr / l i b / l i b n p p i . so
4 $ sudo ln −s / usr / l o c a l /cuda−6.5/ l i b 6 4 / l ibnppc . so / usr / l i b / l ibnppc . so
5 $ sudo ln −s / usr / l o c a l /cuda−6.5/ l i b 6 4 / l i b c u d a r t . so / usr / l i b / l i b c u d a r t . so
6
7 $ sudo l d c o n f i g

Listing D.15: Create symbolic links for missing dependencies.

Finally, verify that CUDA is correctly working with OpenCV. To do this, follow
the steps seen in Listing D.16. Please note, that you have to copy and modify
the build_all.sh file to the samples/gpu directory.

1 $ cd <opencv_location >/samples /gpu
2
3 & . / b u i l d _ a l l . sh
4
5 & . / stereo_match <image_left> <image_right>

Listing D.16: Verify OpenCV is correctly installed.

A final note, be aware that graphic cards has a varying CUDA compute ca-
pability, and all graphic cards are therefore not able to do utilize all methods
on the GPU. You can check your compute Capability at https://developer.
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nvidia.com/cuda-gpus. I.e the graphic card used throughout this approach
is a NVIDIA GeForce GT 750M, which has a compute capability of 3.0.
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D.7 Installing Flycapture and Triclops APIs
form Point Grey

These are the steps needed for getting the proprietary Flycapture and Triclops
libraries working on Ubuntu 12.04 64 bit.

D.7.1 Flycapture
Before installing Triclops, Flycapture needs to be installed. However, it also
have some dependencies which should be installed first as shown in Listing

1 I n s t a l l f l y c a p t u r e p r e r e q u i s i t e s :
2 $ sudo apt−get i n s t a l l l ibraw1394−11 l i b g t k 2 .0−0 libgtkmm−2.4−dev libglademm

−2.4−dev libgtkglextmm−x11−1.2−dev l ibusb −1.0−0
3
4 Execute f l y c a p t u r e i n s t a l l s c r i p t :
5 $ sudo sh i n s t a l l _ f l y c a p t u r e . sh

Listing D.17: installing Flycapture and dependencies

D.7.2 Triclops

1 $ sudo dpkg − i t r i c l o p s −3 . 4 . 0 . 1_amd64 . deb

Listing D.18: installing triclops

In addition to the two required Point Grey libraries, a program called Coriander
can be useful for testing camera settings.

D.7.3 Coriander

1 $ sudo apt−get i n s t a l l c o r i a n d e r

Listing D.19: installing coriander
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D.8 Installing PCL
PCL is short for Point Cloud Library..

D.8.1 PCL
Before installing Triclops, Flycapture needs to be installed. However, it also
have some dependencies which should be installed first as shown in Listing

1 sudo apt−get update && sudo apt−get i n s t a l l bui ld−e s s e n t i a l
2
3 sudo apt−get i n s t a l l g++ l i b b o o s t−a l l−dev l i b e i g e n 3−dev l i b f l a n n−dev l ibvtk5−

dev
4 l i b q h u l l−dev libgomp1 openni−dev
5
6 I n s t a l l p r e b u i l t b i n a r i e s :
7
8 sudo add−apt−r e p o s i t o r y ppa : v−launchpad−jochen−s p r i c k e r h o f−de/ pc l
9 sudo apt−get update

10 sudo apt−get i n s t a l l l i b p c l−a l l

Listing D.20: installing PCL and dependencies
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