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Abstract

The respiratory drive of the individual patient is of clinical interest
to the clinician as this parameter might contribute to an improved
treatment. The physiological theories of the mechanisms of respira-
tory drive is well described. The respiratory control consists mainly
of two chemoreflexes that respond to arterial carbon dioxide and oxy-
gen pressure referred to as the central and the peripheral drive con-
trol respectively.

Measuring the respiratory drive and determining the contributions
of the different drives is not a trivial task. In order to do so a set of
mathematical models can be used. Using a sample of arterial blood
gas and clinically available parameters for pulmonary gas exchange
obtained with the bedside tool ALPE, the respiratory drive of the pa-
tient can be parameterized and changes in the patient’s respiration
due to change in ventilator settings can be estimated.

The current version of the model of respiratory drive parameterizes
the central drive threshold of the patient. The model have not previ-
ously been tested on patients with spontaneous breathing and with
no mechanical ventilation.

This thesis introduces a novel method for parameterization and es-
timation of the peripheral drive of spontaneously breathing patients.
The patients included in the selected test group are diagnosed with
COPD. This patient group is known to have a reduced central drive.
Reduction in central drive poses a threat to the patient, because an
increased arterial oxygen pressure may then cause hypoventilation
and hypoxemia. Patients submitted to oxygen treatment as in the
post-operative period may experience increased arterial oxygen pres-
sure.

Four simple parameter estimation methods are tested in order to es-
timate the peripheral drive in six spontaneously breathing patients.
The methods includes a parameter estimation of different peripheral
drive parameters using a grid search algorithm. The four methods of
parameter estimation are evaluated both by visually inspection and
calculation of mean squared error between measured and estimated
alveolar ventilation.

Parameterization of the peripheral drive may be used to describe and
predict respiratory response to changes in oxygen treatment at the
bedside.
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Resumé

Viden om en patients respiratoriske drive kan bidrage til en forbedret
behandling. De fysiologiske teorier bag respirationskontrol beskriver,
at respirationen hovedsageligt er styret af to kemoreflekser, der rea-
gerer på ændringer i arterielle tryk af kuldioxid og oxygen. Den kul-
dioxidfølsomme refleks kaldes det centrale drive og den oxygenføl-
somme refleks kaldes det perifere drive.

Det er ikke trivielt at bestemme de to drives bidrag til den samlede
ventilation, da de ikke kan måles direkte. Der er udviklet et sæt af
matematiske modeller, der kan estimere ventilationsbidragene ud fra
en arteriel blodgas-prøve og parametre for respiratorisk gasudvek-
sling der er tilgængelig fra det kliniske måleudstyr ALPE. Det respi-
ratoriske drive kan herved parametriseres for en patient, hvilket kan
hjælpe til at give beslutningsstøtte i forhold til ændring af respira-
torindstillinger.

Den nuværende version af modellen kan parametrisere en patients
centrale drive, men er ikke tidligere blevet testet på patienter med
spontan vejrtrækning, der ikke er i respiratorbehandling.

Denne specialeopgave introducerer en metode til parametrisering
og estimering af perifert drive for patienter med spontan vejrtrækn-
ing. Den inkluderede patientgruppe består af patienter diagnos-
ticeret med KOL. Denne patientgruppe er blandt andet karakteriseret
ved nedsat centrale drive. Nedsat centralt drive kan være farligt, hvis
patienten er under oxygenbehandling, da øget arterielt ilttryk kan
medføre hypo-ventilation og hypoxæmi grundet.

Fire simple parameterestimeringsmetoder er blevet testet for at es-
timere det perifere drive i seks KOL-patienter med spontan vejrtrækn-
ing. Metoderne estimerer forskellige perifere drive-parametre, som
kan beskrive hvordan ændringer i inspiratoriske iltfraktioner kan
påvirke ventilationen. Metoderne er baseret på en grid-search algo-
ritme. De tre metoder er vurderet ud fra visuel inspektion af resul-
tater samt udregning af mean squared error imellem de målte og es-
timerede værdier for alveolær ventilation.

Parametrisering af det perifere drive kan være brugbart til at beskrive
og forudsige respiratorisk respons til ændringer i oxygen behandling.
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Preface

This project is written by Esben Bolvig Mark and Kasper Sørensen as
the master’s thesis in the M.Sc. in Biomedical Engineering and Infor-
matics at Aalborg University, spring 2015.

The thesis is divided into four main parts: Background, Method, Re-
sults and Synthesis. A basic understanding of the human respiratory
physiology is required by the reader to fully understand the content
of this thesis.

Literature in the project are stated using the Harvard-method, with
the following syntax: [Author’s last name, Publication year]. The
reader can find more information about the references in the litera-
ture list, where the references are listed in alphabetic order according
to the author’s last name.

References to figures, tables, chapters and so forth are stated accord-
ing to what object is referred to and in what section it is placed. The
first figure placed in chapter two will therefore be referred to as Fig-
ure 2.1. The next will be Figure 2.2 and so forth.

Esben Bolvig Mark Kasper Sørensen

Spring - 2015 - Aalborg University
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PART I

BACKGROUND
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CHAPTER 1

Introduction

The respiratory drive of the individual patient, and especially those
in need of mechanical ventilation, is a subject of interest for re-
searchers [Duffin, 2005; Larraza et al., 2014]. Estimation of indi-
vidual respiratory drive will allow clinical staff to optimize patient
treatment [Larraza et al., 2014]. The theories of the respiratory con-
trol centers are well established, thus there exists an understanding
of how respiratory ventilation is affected by changes in arterial oxy-
gen (PaO2) and arterial carbon dioxide (PaCO2) [Duffin, 2005; Lumb,
2010]. These theories are based on the effects of the central and pe-
ripheral chemoreceptors on the respiratory ventilation.

Measurement of respiratory drive in the individual patient is not a
trivial task. A set of mathematical models with the purpose of esti-
mating the underlying chemical components of the respiratory drive,
pulmonary gas exchange, blood acid-base status and lung mechan-
ics have been developed [Duffin, 2005; Larraza et al., 2014; Rees &
Andreasen, 2005; Rees et al., 2002]. These models parameterize,
among others, the chemical components for the individual patient
and can thereby be used to estimate the individual respiratory drive.
The models have been clinically tested on 12 mechanical ventilated,
spontaneously breathing patients. The models have been evaluated
and adequately describes data for the patients for who the models
were tested [Larraza et al., 2015a,b].

The models have not been tested on spontaneous breathing patients,
who are not mechanical ventilated. A patient group of interest is
patients in the post-operative period. In the post-operative period
where the effect of anesthesia is still wearing off, pulmonary oxygena-
tion might be impaired [Hedenstierna, 2012]. In the post-operative
period, modulations of the respiratory drive is thought of to be diffi-
cult to predict, but is of great value for the clinicians.

The knowledge of individual patient respiratory drive response might
help to predict unwanted complications of post-operative apnoea or
hypoxia [Lumb, 2010].

1.1 Project Aim
Establish whether and how a modeling approach may be used to es-
timate respiratory peripheral drive in spontaneously breathing pa-
tients.
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1. INTRODUCTION

1.2 Solution Strategy
The approach to solve the project aim is divided into three main
parts.

Part I: Background
The first part of this project consists of an introduction to the phys-
iology of the respiratory chemoreceptor control. This part aims to
describe the two main components of the respiratory drive, namely
the central and peripheral drive. Furthermore the physiologic sec-
tion will explain how the respiratory drive response is impaired in
some patients in the post-operative period. This will provide an un-
derstanding of why it is of clinical value to estimate a patient’s respi-
ratory response.

Part II: Methods
The next part of this project aims to explain one of the current mod-
els for estimating respiratory drive. Understanding the respiratory
model will allow for identification of the limitations associated with
using the model.
This part will furthermore examine the model’s estimation of periph-
eral drive response in order to evaluate whether or not the model can
be used to adequately describe patients’ respiratory drive in a patient
group, that has not previously been examined with the model. As the
model’s central respiratory response estimation has previously been
evaluated by Larraza et al., 2015a,b, this project will focus on the pe-
ripheral drive response and hence the response to changes in oxygen
(hypoxia).
The chapter “Peripheral Drive Modeling” will describe the steps that
were carried out in order to develop a method for parameterization
of the peripheral drive.
A novel method for estimating peripheral drive will be proposed. This
method aims to parameterize the peripheral drive to give a patient
specific estimation of the patients response to changes in oxygen.

Part III: Results
The methods for estimation of peripheral drive will be evaluated us-
ing patient data obtained from a clinical trial. These patients are diag-
nosed with COPD and are thereby members of a patient group known
to have an impaired central drive [Larraza et al., 2015b; Lumb, 2010].
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CHAPTER 2

Physiology

2.1 Chemical Control of Respiration

The pressure of carbon dioxide in the blood (PaCO2) is controlled by
the respiratory chemoreflexes to ensure that the hydrogen ion con-
centration [H+] is within the constrained limits for protein function
[Duffin, 2005].

The respiratory chemoreflexes are produced by two types of chemore-
ceptors, central and peripheral, which are named accordingly to their
location compared to the respiratory center in the medulla [Hall,
2010]. The functions of the two chemoreceptors will be described in
the following sections.

2.1.1 Central Chemoreceptors

The respiratory center located in the medulla oblangata is not by it-
self affected directly by changes in blood concentrations of PCO2 and
[H+] [Hall, 2010]. A chemosensitive area located 0.2 millimeter be-
neath the surface in the medulla is highly sensible to changes in arte-
rial PCO2 or [H+] ion concentrations in the blood. This area is referred
to as the central chemoreceptors and its primary function is to excite
other areas in the respiratory center to control the respiration pattern
[Hall, 2010].

The chemosensitive area in the medulla is almost only excited by hy-
drogen ions, but hydrogen ions in the blood can not directly cross
the blood-brain barrier. The medulla oblangata is like the rest of the
brain protected by the blood-brain barrier, which is impairing the
diffusion of charged ions from arterial blood to cerebrospinal fluid
(CSF) [Hall, 2010]. Change in blood PCO2 is much more effective in
comparison to change in hydrogen ion concentration in reaching the
chemosensitive area and hereby influence the respiration. Carbon
dioxide has little direct effect in stimulating the chemosensitive area,
but by reacting with water from the tissue, the carbon dioxide is trans-
formed into carbonic acid and further into hydrogen and bicarbonate
ions, which have a direct stimulating effect on the respiration [Hall,
2010]. Hereby the central chemoreceptors are contributing to the res-
piratory drive by adding a hypercarbic sensitive drive, which further-
more is the most contributing drive to breath in a healthy person.
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2. PHYSIOLOGY

2.1.1.1 Carbon Dioxide / Ventilation Response Curve

The PCO2 /ventilation response curve describes how changes to the
arterial PCO2 affect the respiratory minute volume see Figure 2.1
[Lumb, 2010]. This linear response is manifested as an increased
minute volume, if arterial PCO2 is raised. The raised ventilation en-
sures that excess CO2 is expelled from the blood, thereby lowering
the alveolar PCO2 to a normal level.
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Figure 2.1: Stylistic PCO2 /ventilation response curve. In this example arte-
rial PO2 is assumed to be a normal 12 kPa. Two cases of respira-
tory response to change in PCO2 are presented, see further expla-
nation in the text. Drawn with inspiration from [Lumb, 2010].

A typical normal PCO2 /ventilation response curve has a slope of 15
l·min−1·kPa−1 as shown in Figure 2.1. The intercept at zero venti-
lation is 4.8 kPa for a typical normal case [Lumb, 2010]. The slope
and the intercept at zero ventilation defines the linear relationship
between ventilation and arterial PCO2 and can be described by Equa-
tion 2.1a with S being the slope and B the intercept at zero ventila-
tion. For a normal situation this would yield a curve described by
Equation 2.1b. It should be noted that this normal curve is subject to
a wide variation among individuals [Lumb, 2010].

ventilation = S · (PCO2 −B) (2.1a)

ventilation = 15
l

mi n ·kPa
· (PCO2 −4.8kPa) (2.1b)

In Figure 2.1 the intersection between the broken curve and the
PCO2 /ventilation response curve indicates normal PCO2 and ventila-
tion. The broken line represents ventilation at zero inspired PCO2 for
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2.1. Chemical Control of Respiration

normal metabolic rate [Lumb, 2010]. The broken line thereby repre-
sents changes to arterial PCO2 caused by changing ventilation at nor-
mal inspired CO2 (≈ 0 kPa).

Figure 2.1 shows two possible cases of change in ventilation based
on PaCO2 below the broken line for the normal situation. In the first
case, ventilation decreases linearly with respect to PaCO2. The in-
tersection between the PaCO2 curve and the X-axis is known as the
apnoeic threshold [Lumb, 2010]. If PaCO2 is decreased below this
threshold apnoea may occur for some patients.

In the second case, drawn as a “hockey stick” see Figure 2.1, the ven-
tilation does not decrease regardless of the decrease in arterial PCO2 .
This is most commonly the case in humans [Lumb, 2010].

2.1.2 Peripheral Chemoreceptors

The peripheral chemoreceptors are unlike the central chemorecep-
tors located outside the brain and the respiratory center. These
chemoreceptors are located in the carotid bodies and the aortic bod-
ies, with the majority of receptors in the carotid bodies, why they are
at all time exposed to arterial blood. The peripheral chemoreceptors
are important in detecting change in blood oxygen pressure [Hall,
2010].

The chemoreceptors are stimulated when the arterial PO2 is decreas-
ing [Lumb, 2010], why the peripheral chemoreceptors are sensitive
to hypoxemia. The excitation rate of the receptors are peaking in the
range of arterial PO2 from 4 to 8 kPa (normal values of arterial PO2 are
10-13.3 kPa) [Hall, 2010].

Change in PaCO2 and [H+] likewise have an effect on the periph-
eral chemoreceptors [Hall, 2010]. The effect is though approximately
seven times higher in the central chemoreceptors compared to the
peripheral, why it for practical reasons often can be ignored. The pe-
ripheral chemoreceptors are reacting five times more rapidly to stim-
ulation than the central receptors, thus the stimulation can be im-
portant in exercise despite the lower response to changes in blood
concentration [Hall, 2010].

2.1.2.1 Oxygen / Ventilation Response Curve

Just as with the respiratory response to changes in arterial PCO2 the
respiratory response to changes in arterial PO2 can be visualized. In
Figure 2.2 a stylistic example shows how changes to arterial PO2 af-
fects the respiratory ventilation [Lumb, 2010]. The blue line in Fig-
ure 2.2 resembles normal arterial PO2 . The green and red line illus-
trates high and low arterial PO2 respectively. In Figure 2.2 it is seen
that a 6.6 fold increase in arterial PO2 only has little effect on the respi-
ratory response to changes in arterial PCO2 compared to the respira-
tory response of a relatively low decrease in arterial PO2 . Hence lower-
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2. PHYSIOLOGY

ing inspired O2 and thereby lowering arterial PO2 will cause rapid in-
crease in respiratory ventilation as response to a rise in arterial PCO2 ,
compared to a normal situation [Lumb, 2010].
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Figure 2.2: Stylistic PCO2 /ventilation response curve for three different sit-
uations of arterial PO2 . Drawn with inspiration from [Lumb,
2010].

2.2 Respiratory Depression
Most anesthesia and analgesia have an effect on the chemical and
metabolic control of respiration [Dahan & Teppema, 2003]. The drug
administration to patients undergoing surgery is in focus due to this
effect. This section will discuss the respiratory depression caused by
anesthesia and analgesia, as these drugs can still be found in patients
in the postoperative period.

2.2.1 The Effect of Opioids on Respiration

The respiratory response to changes in PaCO2 (the central drive, Dc )
in non medicated healthy people is generally more important than
the response to changes in PaO2 (the peripheral drive, Dp ) [Fran-
cisco, 2007]. When medicated, the brain’s respiratory response to
a change in PaO2 can be depressed resulting in low activation of
the lung musculature. In general, opioids decrease the respiratory
frequency and tidal volume through several mechanisms originated
from various anatomical locations [Bailey, 1996]. The opioids are
binding at the ventral surface of the medulla resulting in a blunted
central respiratory drive response to changes in PaCO2 [Bailey, 1996].
The reduced central drive makes patients dependent on the periph-
eral drive to maintain an adequate respiration. The depression of
Dc are dose-dependent for all µ-receptor agonists like morphine and
fentanyl [Bailey, 1996].
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2.2. Respiratory Depression

The peripheral drive Dp can likewise be depressed by opioids. When
Dp is depressed, the respiratory response to hypoxemia is reduced,
which can be fatal to a non-monitored patient [Bailey, 1996]. The
total depression of the respiratory drive to breath in terms of the
PaCO2/ventilation response curve, described in Section 2.1.1.1, can
be seen as a depression and right-shift of the response slope meaning
a low sensitivity to changes in PaCO2 and risk of hypercarbia.

Both epidural and intrathecal opioids can lead to a delayed respira-
tory depression with peak depression 4-8 hours after administration
and can depress respiration in up to 24 hours [Bailey, 1996]. This im-
plies the importance of patient monitoring to avoid hypoxemia.

Opioids can furthermore be used to increase the respiration in pa-
tients suffering from thoracic or abdominal pain [Bailey, 1996; Fran-
cisco, 2007]. Analgesia can in these patients contribute to increased
tidal volume, lung volume, stabilizing respiratory rate, cough and re-
sult in improved gas exchange [Bailey, 1996].

2.2.2 Postoperative Respiratory Depression

All patients undergoing surgery with anesthesia are in risk of de-
veloping postoperative respiratory depression [Dahan & Teppema,
2003]. Patients with impaired respiratory drive, sleeping disorders,
COPD, neurological disorders and patients being female, elderly,
hypo-ventilating or obese are in higher risk of developing respiratory
depression when getting administered opioids and anesthesia [Da-
han & Teppema, 2003; Francisco, 2007]. Postoperative hypoxemia
can e.g. be caused by delayed wound healing, wound infection, my-
ocardial ischemia, tachycardia and acute cognitive disturbances [Da-
han & Teppema, 2003].

Out of the total amount of adverse drug events, respiratory events
are only contributing with as little as 0.5-1.2%, but are represent in
12.3% of life threatening drug-induced diseases and furthermore 25-
30% of the drug-induced deaths [Francisco, 2007]. These numbers
emphasize how critical the condition of impaired respiration can be
despite the relative low prevalence.

Most experimental studies of respiratory response of medicine are
based upon measurements on healthy volunteers affected by only
the one tested medication Dahan & Teppema [2003]. The effect
of combined medications is often not studied Dahan & Teppema
[2003], which can complicate the administration of anesthesia in pre-
medicated patients, who often are stressed by multiple conditions
and medications.

Sleep and especially REM-sleep can contribute to a decreased respi-
ration and a decreased response to hypercarbia [Bailey, 1996], which
furthermore is increasing the respiratory depression. When sleeping
and during anesthesia, the wakefulness drive to breathe (Dw ) is de-

9



2. PHYSIOLOGY

creased [Duffin, 2005]. Impaired breathing during sleep is a common
condition, why special attention is required to these patients to avoid
hypoxemia [Dahan & Teppema, 2003].

Hypoxemia caused by respiratory depression can be developed up to
five days postoperative with highest risk 2-3 days postoperative [Bai-
ley, 1996; Hedenstierna, 2012; Rosenberg et al., 1994].

COPD patients do often have an impaired central respiratory drive
because of a long term increased PaCO2, see Section 2.3. Because
of the increased PaCO2 they are dependent on their peripheral drive
to breath, and therefore oxygen treatment can be dangerous and in
worst case result in apnoea [Francisco, 2007; Lumb, 2010].

2.2.3 Treatment of Respiratory Depression

Opioid induced respiratory depression can easily be treated, but the
challenge lies in detecting patients in risk in time. The depression is
not dangerous if detected within the first minutes, but 5-10 minutes
with severe hypoxemia can cause irreversible nerve damage [Bailey,
1996]. By monitoring respiration, pupillary constriction, level of se-
dation and gas exchange, the patients in risk can be identified [Fran-
cisco, 2007]. Verbal and tactile stimulation or oxygen treatment ad-
ministered in nasal catheter are sufficient treatment to avoid hypox-
emia in most patients [Bailey, 1996]. In patients with severe respira-
tory depressions and especially respiratory acidosis or apnoea, addi-
tional treatment is necessary.

Naloxane is the most frequent used medicine to treat respiratory
depression, and even small doses help patients with spontaneous
breathing. If administered in larger doses, naloxane can contribute
to higher risk of hypertension, stroke and pulmonary oedema, why
respiratory depression must be treated with care and sufficient mon-
itoring [Bailey, 1996], but new methods to describe respiration would
be useful to provide better care [Francisco, 2007].

2.3 Respiratory Response in COPD patients
As with patients who are under the influence of opioids, patients with
COPD can suffer from decreased central drive response [Bailey, 1996;
Larraza et al., 2015b]. The central drive response is reduced due to
high arterial Base Excess (BE) and HCO−

3 [Larraza et al., 2015b]. The
increased HCO−

3 concentration alters the bicarbonate buffering sys-
tem thereby making patients with COPD less responsive to changes
in CO2 and in some cases leaving only the peripheral chemorecep-
tor in control of the breathing [Lumb, 2010]. If the central drive is
impaired in such a way that only the peripheral drive is controlling
the patients breathing, oxygen treatment may pose a threat to the pa-
tient. Elevating inspired oxygen could cause the patient to lower or
even stop breathing and hence cause hypercapnia [Lumb, 2010].

10



2.4. Summary

2.4 Summary
The respiration in healthy people is controlled by chemorereflexes,
which respond to changes in PaCO2 and PaO2. The central drive to
breathe (hypercarbia sensitive) is the primary drive to breathe. Pa-
tients with depressed central drive caused by e.g. opioids or COPD
are dependent on their peripheral drive, why they are more suscep-
tible of developing hypoxamia. New methods to estimate respiratory
drive parameters is of clinical value when identifying patients in risk
of developing hypoxamia and when aiding optimal respiratory treat-
ment [Larraza et al., 2015a,b].

On this basis the following will describe an already existing model of
the respiratory drive response in order to find out whether or not this
model can be used when describing patients peripheral respiratory
drive.
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CHAPTER 3

Description of the Respiratory Control
Model

The following chapter will describe the physiologic model that will
be used throughout the project. The model will be referred to as the
“RDRIVE model”.

The RDRIVE model uses input parameters estimated by a decision
support system (DSS) called INVENT [Larraza et al., 2014]. INVENT
is developed as a model-based DSS for selecting optimal ventilator
settings [Rees, 2011].

The RDRIVE model consists of six mathematical model components.
These six models respectively describes:

• Ventilation and pulmonary gas exchange
• Oxygenation and acid-base status of blood
• Acid-base status of CSF
• Cardiac output, arterial and mixed venous pools
• Interstitial fluid, tissue buffering and metabolism
• Chemoreflex respiratory control

In Figure 3.1 an abstract model of the set of models is presented. The
gray boxes in Figure 3.1 show measured data, available from clinical
measurements. This data is obtained from measurement of the pul-
monary gas exchange and measurement of arterial blood gas [Larraza
et al., 2015b]. Parameters written in the circles and square rectangu-
lar boxes with white background in Figure 3.1 are estimated by the
model.

Figure 3.1 shows the four models, marked with green, that is used
and described in this thesis. This includes a model describing pul-
monary gas exchange, a model describing the blood acid-base com-
partment, a model describing the CSF acid-base compartment and
lastly the respiratory drive model, which all individually contributes
to the control of respiration. This chapter aims to give an introduc-
tion to each of these components and explain why they are included
in the RDRIVE model.
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3. DESCRIPTION OF THE RESPIRATORY CONTROL MODEL

Figure 3.1: The structure of the mathematical model used to parameterize
the respiratory drive. The diagram is drawn with inspiration
from [Larraza et al., 2015b].

3.1 Ventilation and Pulmonary Gas Exchange

The first sub-model represents pulmonary gas exchange, see Fig-
ure 3.1. Gas exchange is modeled using three compartments, of
which one is describing non-ventilated blood (pulmonary shunt)
where no gas exchange occurs. The other two compartments are both
ventilated and perfused and they are representing the gas exchange
between alveoli and capillaries. This three compartmental model is
shown in Figure 3.2.

Using the three compartments, an estimation of the match/mis-
match in the ventilation/perfusion ratio and the fraction of shunted
blood can be calculated. The input data used in the model are arte-
rial blood saturation measured with pulse oximetry and several gas
volumes sampled with a gas analyzer [Thomsen et al., 2014].

The model of ventilation and pulmonary gas exchange, represented
by Equation 3.1, estimates the two parameters PaO2 and PaCO2. The
relationship between PaO2 and PaCO2 and fraction of expired O2

(Fet O2) and CO2 (FetCO2) [Karbing et al., 2011; Kjærgaard et al., 2003;
Larraza et al., 2015b].
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3.2. Oxygenation and Blood Acid-Base Status

Pulmonary
artery

Pulmonary
vein

Figure 3.2: Overview of the three compartmental model used in ALPE. Re-
drawn from [Larraza et al., 2014].

PaO2, PaCO2 = gas exchange(Fet O2, FetCO2) (3.1)

A way to use the gas exchange model is in the clinical bedside tool
“Automatic Lung Parameter Estimator” (ALPE) [Rees et al., 2002].
This tool parameterizes gas exchange, by estimating high and low
ventilation/perfusion mismatch and shunt fraction [Rees et al., 2002;
Thomsen et al., 2013]. This parameterization is done by varying Fi O2

in 3-5 steps, and measuring SpO2 and Fet O2 in each step when steady
state levels are reached [Thomsen et al., 2013]. The measurements
can then be used to estimate the pulmonary gas exchange parame-
ters. The fundamental assumption in this model is a state of equilib-
rium between alveolar and capillary gases. The main output of the
gas exchange model is an estimation of pulmonary shunt and venti-
lation/perfusion ratio. This sub-model is well-documented and has
previously been tested in clinical settings [Karbing et al., 2011, 2007;
Thomsen et al., 2014].

3.2 Oxygenation and Blood Acid-Base Status
The second sub-model is used to simulate the acid-base chemistry
of blood, see the “Blood Acid-Base” box in Figure 3.1. This model is
based upon the mixing of venous blood with blood with elevated O2

and reduced CO2 levels [Rees et al., 2010]. The mixing of blood with
different O2 and CO2 levels is in normal conditions happening, when
shunted pulmonary blood mixes with lung capillary blood [Rees et
al., 2002].
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3. DESCRIPTION OF THE RESPIRATORY CONTROL MODEL

This mathematical model of acid-base chemistry of blood is based
upon a system of 28 equations which are formulated by considering
mass action1 and mass balance2. These equations are solved simul-
taneously using six variables. The six variables are each representing
a blood component [Rees & Andreasen, 2005; Rees et al., 2010]:

• Carbon dioxide (CO2)
• SID (Strong Ion Difference - Buffer Base)
• Hemoglobin in erythrocytes (Hb(RH)b N H+

3 )
• Atot (weak acid)
• Oxygen (O2)
• 2,3-diphoshoglycerate (DPG)

The model includes the acid-base and oxygenation of red blood cells
along with the binding of O2, CO2 and H+ ions on hemoglobin, which
previous physiological blood status models described by Siggaard-
Andersen, 1974; Stewart, 1983 and Siggaard-Andersen et al., 1988 do
not include.

The chemical reactions shown in Equation 3.2 describe, that CO2

can react with water to form bicarbonate (HCO−
3 ) and hydrogen ions

(H+):

H++HCO−
3 � H2O +CO2 (3.2)

This reaction describes how the pH-status in blood changes due to
the level of CO2 in the blood.

In general, the model describes the relationship between PaO2, PaCO2,
oxygenation and acid-base status, which is represented by Equa-
tion 3.3 [Larraza et al., 2015b].

pH a, SaO2 = blood acid base(PaO2, PaCO2) (3.3)

Using pHa, PaO2, PaCO2, SaO2, bicarbonate concentration (HCO−
3 )

and hemoglobin concentrations taken from a measurement of arte-
rial blood gas, and measured values of V̇O2 and V̇CO2, the model is
tuned to the individual patient [Larraza et al., 2015b]. The values for
PaO2 and PaCO2 can be estimated from the gas exchange model, see
Equation 3.1.

To summarize the functionality of this part of the model, the acid-
base status of blood needs to be estimated in order to calculate the
acid-base status of CSF and hereby the resulting influence on the res-
piratory chemoreceptors.

1Prediction of behavior of solutions in dynamic equilibrium.
2Conservation of mass in a system.

18



3.3. Acid-Base Status of Cerebral Spinal Fluid

3.3 Acid-Base Status of Cerebral Spinal Fluid
The CSF acid-base status, see Figure 3.1, is based upon the cere-
brospinal fluid acid-base model presented by Duffin, 2005. The
model describes the relation between CSF acid-base status and PCO2.
The PCO2 in CSF is equivalent to arterial PCO2 , when brain produced
CO2 is added [Duffin, 2005].

In total, seven equations are used to describe the model of CSF acid-
base. These equations are solved simultaneously, in order to estimate
the strong ion difference (SID) in CSF (SI Dcs f ). The estimated value
is assumed to be constant due to the blood-brain barrier’s ability of
constraining the ion exchange [Larraza et al., 2014].

The model can deal with altering base excess (BE) describing metabolic
acidosis3 or metabolic alkalosis4 [Larraza et al., 2014]. The estimation
of SI Dcs f allows simulation of the alterations in the central chemore-
ceptor signaling [H+

cs f ] and thereby changes to the respiratory drive
[Larraza et al., 2014].

The model describing CSF acid-base status and PaCO2 can be de-
scribed as Equation 3.4. The model is tuned to the patient using
PaCO2 from a ABG [Larraza et al., 2015b]. From PaCO2 the SI Dcs f

can be calculated.

pHcs f = CSF acid base(PaCO2) (3.4)

This sub-model is included to model how changes in ion concentra-
tions in the CSF affects the respiratory center and the following res-
piratory response. The respiratory response is further described in
Section 3.4.

3.4 Chemoreflex Respiratory Control
The last of the sub-models described in this project is the model of
respiratory control (“Respiratory Drive” in Figure 3.1). The respira-
tory control and respiratory drive can be described by the following
seven parameters besides [H+

a ] and [H+
cs f ], Larraza et al. [2014]:

The respiratory drive, and hereby the alveolar ventilation (V̇A) and
total drive to breathe, is the sum of the three drives Dp , Dc and Dw ,
[Duffin, 2005], see Equation 3.5.

V̇A = Dp +Dc +Dw (3.5)

Dp is the respiratory drive contribution from the peripheral chemore-
ceptors and is described by a linear function of the difference be-
tween the peripheral chemoreceptor threshold (Tp ) and the arterial

3Reduced bicarbonate and base excess.
4Increased bicarbonate and base excess.
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3. DESCRIPTION OF THE RESPIRATORY CONTROL MODEL

Symbol Name Normal Value Unit

Dp Peripheral drive N/A l ·mi n−1

Dc Central drive N/A l ·mi n−1

Dw Wakefulness drive 2 - 7 l ·mi n−1

Sp Peripheral chemoreceptor sensitivity 0.29 l ·mi n−1(nmol · l−1)
Sc Central chemoreceptor sensitivity 1.78 l ·mi n−1(nmol · l−1)
Tp Peripheral chemoreceptor threshold 37.75 nmol · l−1

Tc Central chemoreceptor threshold 45.24 nmol · l−1

Table 3.1: Parameters and constants used in the chemoreflex respiratory
control model Duffin [2005]; Larraza et al. [2014].

hydrogen ion concentration [H+
a ], [Duffin, 2005; Larraza et al., 2014],

see Equation 3.6.

Dp = Sp ([H+
a ]−Tp ), if Dp <−1 then Dp =−1 (3.6)

The sensitivity of the peripheral chemoreceptors Sp is equal to the
slope of this linear function. If Dp is below -1 it is determined to be
equal to -1 because the drive is limited to only add a small depres-
sion to V̇A. The logic behind using a negative value of Dp is to model
apnoea if both Dp and Dc is depressed Larraza et al. [2014].

Dc is likewise the respiratory drive contribution from the central
chemoreceptors located in the medulla. Dc is a linear function deter-
mined by the difference between the central chemoreceptor thresh-
old (Tc ) and the CSF hydrogen ion concentration [H+

cs f ], see Equa-
tion 3.7 [Duffin, 2005; Larraza et al., 2014].

Dc = Sc ([H+
cs f ]−Tc ), if Dc <−1 then Dc =−1 (3.7)

The sensitivity of the central chemoreceptors Sc is equal to the slope
of the linear function. If Dc is below -1 it is determined to be equal to
-1 because the drive is limited to only add a small depression to V̇A.
The logic behind using a negative value of Dp is to model apnoea if
both Dp and Dc is depressed Larraza et al. [2014].

The mathematical model of the respiratory drive is used to estimate
Tc , that being the threshold for which the concentration of hydrogen
ion in CSF affects the central drive and thereby the ventilation [Lar-
raza et al., 2015b]. This model is tuned using pHa from a ABG, V̇O2

and V̇CO2.
The respiratory drive model is described by Equation 3.8.

V̇Aexp = respiratory drive(PaO2, pHa , pHcs f ) (3.8)
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3.5. Usage of The Model

Dw is the third contribution to V̇A, as described in Equation 3.5. Dw is
the wakefulness drive, which represent the behavioral component of
breathing and is thereby considered independent of the Dc and Dp .
When unconscious, the Dw is equal to zero contribution to the drive
to breathe. The normal value of Dw in a healthy person is by Duffin,
2005 described to be 7 l ·mi n−1 (minute volume). In this model, the
normal value of Dw is determined to be 2 l ·mi n−1 (V̇A) indicating
that Dw is not the drive with most contribution to ventilation in pa-
tients during mechanical ventilation to whom the model is originally
designed to [Larraza et al., 2014].

3.5 Usage of The Model
The model estimates the value for Tc by numerical optimization.
This optimization process simultaneously solves the four models de-
scribed by equations: 3.1, 3.2, 3.4 and 3.8.
As described, the model uses measured inputs from the ALPE mea-
surement (describing pulmonary gas exchange) and arterial blood
gas. During the optimization a value of pHa is estimated by the
model and the difference between this simulated value of pHa and
the measured value of pHa from the ABG is minimized [Larraza et
al., 2015b].
When the numerical optimization is completed the estimated values
for the central respiratory drive can be used, when simulating change
in ventilator treatment [Larraza et al., 2015b].

The RDRIVE model in its current state is not designed to estimate
the parameters describing the patient’s peripheral respiratory drive.
Therefore, this thesis aims to develop a simple method for estima-
tion of the parameters that are involved in describing the peripheral
drive.
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CHAPTER 4

Peripheral Drive Modeling

This chapter will examine whether the estimation of peripheral drive
in the RDRIVE model adequately describes the total drive to breathe.

An overview of the methods used throughout this thesis is shown in
Figure 4.1, where the final model is representing a new method for
parametrization of the peripheral drive.

Figure 4.1: Methods used to model respiratory peripheral drive parameters.
Adapted from [Cobelli & Carson, 2008].

The peripheral chemoreflex model is representing the underlying
physiology and the included parameters can be directly related to
physiological parameters in theory. On this basis the modeling of
the peripheral drive will include the model equations and parame-
ters previously described in Section 3.4. The concept of Figure 4.1 is
that the model development is an iterative process, where the model
output continuously gets compared with the real system output in
order to change the model structure to best fit experimental data.
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4. PERIPHERAL DRIVE MODELING

The elements in Figure 4.1 represent three parts in the model proce-
dure [Cobelli & Carson, 2008]:

• Model formulation
• Model identification
• Model validation

The model formulation will provide a more detailed description of
the peripheral drive model and a specification of the relationship be-
tween parameters and variables.

The model identification will specify the structure of the model and
examine the unknown parameters which needs to be considered be-
fore the model can be completed. The identification process will be
performed by using data from simulated experiments and noise-free
data obtained from the literature. The goal of this section is to address
whether the experimental data is sufficient to estimate all unknown
parameters or if the model complexity is too high [Cobelli & Carson,
2008].

The model validation represents the results of the parameter estima-
tion. This part will examine whether the model is sufficiently descrip-
tive for the intended purpose of describing peripheral drive in spon-
taneously breathing patients.

For the ease of reading, the method of estimating the parameters
in the peripheral drive will be described as the “O2-RDRIVE model”
throughout this thesis.
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CHAPTER 5

Model Formulation

It is important to consider that the degree of complexity in the math-
ematical formulation of the model needs to be consistent with the
intended purpose of the model [Cobelli & Carson, 2008]. The O2-
RDRIVE is a sub-model of the comprehensive full body RDRIVE
model. The models are a conceptual representation of the underly-
ing physiology based upon the methods and assumptions described
in Chapter 3. Hereby it is clearly stated, that the mathematical model
is an approximation of the underlying physiological system, where
e.g. the respiratory chemoreflex response of man is assumed to be as
described in the literature by Duffin and Larraza et al..

As discussed in Section 3.4, the peripheral drive is dependent on the
parameters Po2, A and Tp , which all are modeled as constants in the
RDRIVE model, [Larraza et al., 2014], see equations Equation 5.1 and
Equation 5.2.

Sp = A

PaO2 −Po2
(5.1)

where Sp is the peripheral drive sensitivity to oxygen and PaO2 is
the arterial oxygen pressure. The value of Po2 in Equation 5.1 is re-
ferred to as “the oxygen pressure for maximum sensitivity before fail-
ure” [Duffin, 2005]. A is an area constant for the relation between Sp

and PaO2. The peripheral drive is, in terms of [H+
a ] estimated with

Equation 5.2.

Dp = Sp ([H+
a ]−Tp ) (5.2)

where [H+
a ] is the blood hydrogen concentration, which is estimated

by the RDRIVE model. Tp is the peripheral chemoreceptor threshold.
The constant values used in the RDRIVE model for the parameters
Po2, A and Tp are originally described by Duffin, 2005 and can be
seen in Table 5.1:
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5. MODEL FORMULATION

Symbol Description Normal Value Unit

A Area constant 2.33 l · kPa (min · nM · l−1)−1

Po2 Maximum oxygen sensitivity 4.00 kPa
Tp Peripheral chemoreceptor threshold 37.75 nmol · l−1

Table 5.1: Normal values for peripheral drive parameters used in the
RDRIVE model.

The two equations, 5.1 and 5.2, represent the mathematical repre-
sentation of the conceptual model of the peripheral drive. In order
to investigate how well this simplification of the respiratory system
describes patient data, the model will be evaluated with noise-free
and noise polluted simulated data, see Section 6.3 and patient data,
Chapter 7. The individual model parameters will identified in the fol-
lowing chapter Chapter 6.
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CHAPTER 6

Model Identification

Preliminary analysis of the RDRIVE model’s ability to describe pe-
ripheral drive in spontaneously breathing patients has shown that
the model does not adequately describe the peripheral drive for some
patients with depressed central drive. Therefore, the peripheral drive
response to changes in the three model parameters Po2, A and Tp

will now be examined by performing simulated experiments with the
model equations Equation 5.1 and Equation 5.2. The goal of the ex-
periments is to identify which parameters are most important in the
model, which will be further discussed in Section 6.1.

The alveolar ventilation for a simulated healthy patient is estimated
with the RDRIVE model using the normal values as shown in Ta-
ble 5.1. The simulations are performed as experiments, where the
inspired oxygen fraction is changed to examine the ventilatory re-
sponse. The following three figures will illustrate how the parame-
ters individually affect the drive when simulating changes in arterial
oxygen pressure, see Figure 6.1, Figure 6.2 and Figure 6.3. The blood
parameters pH , BE and SI Dcs f are held constant during the simu-
lations, as it is assumed that these parameters do not change when
changing the inspired oxygen in a short period [Larraza et al., 2014].
As these values are held constant the central drive is also assumed
not to change.

As seen in Figure 6.1, the sensitivity of Dp is decreased with a lower
value of Po2 while Dp is highly increased by a higher value of Po2.
This relationship is expected because as seen in Equation 5.1, an in-
crease in Po2 will reduce Sp and vice versa.
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Figure 6.1: Experiment of peripheral drive sensitivity to changes in Po2 in
a healthy person. Data is simulated. The blue line represent the
original RDRIVE response. A and Tp are set to normal values as
shown in Table 5.1.
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Figure 6.2: Experiment of peripheral drive sensitivity to changes in A in a
healthy person. Data is simulated. The blue line represent the
original RDRIVE response. Po2 and Tp are set to normal values
as shown in Table 5.1.

Figure 6.2 shows how V̇A is increased by an increase in A and de-
creased by a decrease in A much like the response by changes in Po2.

In Figure 6.3 it is shown that V̇A is decreased by an increase in the
value of Tp while V̇A is increased by a decrease in Tp .
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6.1. The Identifiability Problem

5 10 15 20 25 30

4

4.5

5

5.5

6

6.5

Arterial PO2 [kPa]

A
lv

eo
la

r
ve

n
ti

la
ti

o
n

[l
·m

in
−1

]

Alveolar ventilation, Tp change

Tp = 36.7e-09

Tp = 37.7e-09

Tp = 38.7e-09

Figure 6.3: Experiment of peripheral drive sensitivity to changes in Tp in a
healthy person. Data is simulated. The blue line represent the
original RDRIVE response. Po2 and A are set to normal values
as shown in Table 5.1.

The above experiments clearly states that Dp is dependent on the pa-
rameters Po2, A and Tp in a simulated healthy person. By inspec-
tion of the respiratory responses of the three experiments, one would
suspect, that the three parameters are not all needed to describe the
peripheral drive adequately. This leads to the definition of the iden-
tifiability problem, which will be presented in the following section.

6.1 The Identifiability Problem

Is it theoretical possible to uniquely estimate all unknown parame-
ters in a mathematical model? If all data is complete and noise-free
this would not be a problem, [Cobelli & Carson, 2008]. In this model
however the test data is not noise-free and there are (at least) three
unknown parameters in the sub-model, which are simplified by the
two peripheral drive equations Equation 5.1 and Equation 5.2. There
exists two solutions to this dilemma, either reduce the complexity of
the model or add additional measurement data [Cobelli & Carson,
2008]. The latter solution implies that additional measured variables
are required to provide more accurate estimations of the unknown
parameters. As the RDRIVE model is thought of to be a simple clin-
ical bedside tool [Larraza et al., 2015a,b], which also applies for the
O2-RDRIVE model. On this basis no additional measurements are
wanted as these will complicate the usability.

The identifiability problem is addressed in the formulation and iden-
tification part of the modeling strategy to test if the proposed model
can describe ideal and noise-free data [Cobelli & Carson, 2008]. The
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6. MODEL IDENTIFICATION

model will be tested on noise-free data in Section 6.3. If the model
can not describe ideal data, there is no possibility that the model can
describe real data [Cobelli & Carson, 2008].

Before the model is tested, the unknown parameters will be identified
to ensure, that they can be uniquely identified. The peripheral drive
sensitivity is described by the following equation, where the parame-
ters A and Po2 are replaced by the parameters P1 and P2 in order to
simplify the expression, see Equation 6.1.

Sp (PaO2) = A

PaO2 −Po2
= P1

PaO2 −P2
(6.1)

The relation between the peripheral drive and the drive sensitivity is
shown in Equation 6.2.

Dp (PaO2) = Sp (PaO2) · (H+−Tp ) ·109 (6.2)

H+ is a patient specific estimation of arterial hydrogen ion concen-
tration, which is assumed not to change between the ALPE measure-
ments, why it will be replaced by the constant K . Tp is the third un-
known parameter, which will be denoted P3, see Equation 6.3.

Dp (PaO2) = Sp (PaO2) · (K −P3) ·109 (6.3)

P̂3 = (K −P3) ·109 (6.4)

By inspection of the P3 parameter, it is only dependent on K and the
scalar 109, why it can be represented by the parameter P̂3, see Equa-
tion 6.4. The boundaries for which this is true is described in Ta-
ble 6.1. By using this notation, the drive equation can be rewritten
as:

Dp (PaO2) = Sp (PaO2) · P̂3 =
P1 · P̂3

PaO2 −P2
(6.5)

The drive is now expressed in terms of the parameters P1, P2 and P̂3.
However it is easily seen, that it is not possible to obtain an unique
solution for the unknown parameters P1 and P̂3. Hence, they are in-
terchangeable and each of the two parameters has two solutions to
the same output.

When returning to the original expression of the drive equations, the
above analysis states that either A or Tp should be held constant dur-
ing the parameter estimation in order to provide unique patient spe-
cific parameters.
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6.2. Parameter Estimation Methods

Parameter Boundaries

By inspection of the drive equations Equation 5.1 and Equation 5.2,
the parameter boundaries will now be analyzed for where each of the
three unknown parameters gives most physiological sense.

The lower boundary for Po2 is set to be ≈ 0 kPa, which ensures
that Po2 can always take values below PaO2 - a requirement for the
RDRIVE model not to fail. The upper boundary is set to be no higher
than the PaO2. The upper boundary ensures that the peripheral drive
sensitivity is not negative. The A parameter is an area constant for the
relation between Sp and PaO2, and is empirical chosen to be studied
in the interval from 1 to 50. In order to provide a physiological mean-
ingful drive estimation, the value of Tp should be lower than the pa-
tient specific [H+

a ], because it represents a threshold value for when
the peripheral drive should increase. The lower boundary is empiri-
cally chosen, see Table 6.1.

Parameter Unit Lower boundary Upper boundary

A [l · kPa (min · nM · l−1)−1] 1 50
Po2 [kPa] ≈ 0 PaO2

Tp [nmol/l] 30 [H+
a ]

Table 6.1: Physiological meaningful limits for the three unknown periph-
eral drive parameters.

With this knowledge in mind, the parameter estimation methods will
be discussed in the following section.

6.2 Parameter Estimation Methods

The goal of using the O2-RDRIVE model is to describe the specific pa-
tients’ peripheral drive parameters. The parameters used to describe
Dp are in the RDRIVE-model assumed to be constant in the estima-
tion of the central drive. To better describe the respiratory drive in
patients with spontaneous breathing, the parameters describing Dp

must be assumed not to be the same for every person. Hereby (some
of) the unknown parameters A, Tp and Po2 must be estimated to the
individual patient to better describe its peripheral drive.

Figure 6.4 provides an overview of how the specific patient respira-
tory drive parameters will be estimated using the RDRIVE and O2-
RDRIVE models.

First the central drive (Dc ) needs to be estimated. This will be done
using the RDRIVE-model. Using the RDRIVE model Dp is assumed to
be constant. To minimize the possible bias this will have on the over-
all estimation of ventilation, the estimation of Dc will be performed
to the highest available Fi O2 measurement. At highest Fi O2 the influ-
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6. MODEL IDENTIFICATION

Figure 6.4: Overview of the respiratory drive estimation using the O2-
RDRIVE model. The methods are further described in the text.

ence of Dp is assumed to be as low as possible, indicated by the red
arrow in Figure 6.5.
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Figure 6.5: Experiment of peripheral drive sensitivity in a simulated healthy
patient. The red arrow marks a high value of oxygen pressure,
where the Dp contribution to total ventilation is low compared
to the measurements at low oxygen pressure marked by the red
circles. The four red circles corresponds to Fet O2 at 0.12, 0.14,
0.16 and 0.23.

The alveolar ventilation simulation in Figure 6.5 is performed as an
experiment, where the inspired oxygen fraction is changed. The red
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6.2. Parameter Estimation Methods

circles in Figure 6.5 represent ALPE measurement points at Fet O2 =
0.12, 0.14, 0.16 and 0.23 corresponding to the arterial PO2 shown on
the x-axis in the figure.

It is assumed that Dc is not dependent on Fi O2, why it is assumed
constant in the estimations of Dp parameters. As described by Duffin,
2005 Dw represents the drive to breath when awake, that can not be
directly related to neither Dc or Dp . In this thesis, Dw is estimated as
described in Section 6.4.

Dp can be estimated as in Equation 6.6.

Dp = V̇A−Dc −Dw (6.6)

The next step is to estimate the parameters A, Tp and Po2 using the
drive equations 5.1 and 5.2.

The unknown parameters will be estimated by using a grid search
method. Each parameter will be tested within the predefined inter-
val, see table Table 6.1.

The parameters will be evaluated by the goodness of fit according to
the weighed residual sum of squares (WRSS) between the measured
ventilation to each of the 4-5 ALPE data points, yi , and the estimated
V̇A (the sum of the three drives) denoted by zi . The error function is
described in Equation 6.7.

WRSS =
N∑

i=1
wi (zi − yi )2 (6.7)

where wi symbolizes the weigh used at each observation i and N
symbolizes the total number of observations. The observation at
highest inspired oxygen fraction is believed to be more accurate. On
this basis, WRSS will be calculated in two ways: In the first way the
weigh at all points are equal. In the second way the weigh at the high-
est Fi O2 is weighed five times higher than the other observations.

As earlier discussed, it is not preliminary known how many of the
three unknown drive parameters that will best describe the patients
seen from a physiological perspective. However, by the analysis of the
identifiability problem in Section 6.1 it is decided not to include the
parameter A in the grid search, hence it will be held constant at the
original value proposed by Larraza et al. [2014], see Table 5.1.
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6. MODEL IDENTIFICATION

The grid search method will be performed in five unique combina-
tions of the unknown parameters set as either variable or constants:

• Two parameter grid search
Tp and Po2: A is held constant

• One parameter grid search
Po2: A and Tp are held constant
Tp : A and Po2 are held constant
Tp -strategy: Tp is estimated first and then held constant while
estimating Po2

• RDRIVE
RDRIVE: A, Po2 and Tp are held constant

Before testing the parameter estimation methods on patient data, the
methods will be tested on noise-free data in the following section.

6.3 Parameter Estimation using Noise-Free Data
This section aims to test the O2-RDRIVE model’s methods of pa-
rameter estimation as described in the section above. The tests will
be done with the use of noise free data, which is generated by the
RDRIVE model itself. Besides testing the methods on the noise free
data, the methods will be tested on the same simulation data with re-
spectively 3% and 5% added white noise (uncorrelated).
The O2-RDRIVE estimation methods will be tested both with and
without weighing in the error function (see Equation 6.7), in order
to compare the results with how the parametrization will be per-
formed with the real data set in Chapter 7. The estimation methods
are expected to provide an accuracy equivalent with the amplitude of
added noise evaluated by their mean squared error accordingly.

In Table 6.2 the mean squared error between measured and esti-
mated V̇A is listed. In Figure 6.6(a) the noise free data from the model
is plotted along with the estimated V̇A produced by the five meth-
ods. As seen from the Table 6.2 and Figure 6.6(a) the estimated V̇A
describes the simulated V̇A from the model adequately.

In Figure 6.6(b) random noise within 3% of the measured V̇A have
been added to the noise free data from the RDRIVE model. This is
done in order to test whether or not the parameter estimation meth-
ods of the O2-RDRIVE model are able to estimate V̇A in noise polluted
data. As seen in Figure 6.6(b) all the estimation methods estimates an
almost identical V̇A and none of the methods succeed in estimating
an accurate V̇A at 0.14 and 0.16 Fet O2.

The MSE between the original data and the 3% noise polluted data is:
10.1 ·10−3 (l/min)2. As seen in Table 6.2 the MSE between estimated
V̇A for 3% noise polluted data and the simulated V̇A with no noise has
a mean error for all methods of: 9.63 ·10−3 (l/min)2. This mean error
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Constants Noise free 3% noise 5% noise 5% noise and weighed

Estimation method MSE [(l/min)2]

RDRIVE A, Tp , Po2 6.93·10−4 9.66·10−3 0.0903 0.0903
O2-RDRIVE. 1 param. A, Tp 1.33·10−4 9.65·10−3 0.0564 0.0607
O2-RDRIVE. 1 param. A, Po2 2.13·10−4 9.63·10−3 0.0576 0.0714
O2-RDRIVE. 2 param. A 0.91·10−4 9.56·10−3 0.0564 0.0693
O2-RDRIVE. Tp-strategy A 2.03·10−4 9.63·10−3 0.0575 0.0589
Mean Error All Methods 2.66·10−4 9.63·10−3 0.0636 0.0701

Table 6.2: Parameter estimations using the four methods on noise free data
and data with 3% and 5% added noise.
MSE between simulated and 3% noise polluted data: 10.1·10−3

(l/min)2. MSE between simulated and 5% noise polluted data:
0.0956 (l/min)2.

is almost identical to the MSE between simulated V̇A with no noise
and simulated V̇A with 3% noise. This indicates that the five tested
methods describes V̇A adequately in this evaluation.

The same trend is seen with parameter estimation at simulated data
with 5% noise pollution. The MSE between estimated V̇A for 5% noise
polluted data and the simulated V̇A with no noise has a mean error for
all methods of: 0.0636 (l/min)2. As in the evaluation above, this mean
error is almost identical to the MSE between simulated V̇A with no
noise and V̇A with 5% noise. This again indicates that the five tested
methods describes V̇A adequately in this evaluation.

It should be noted, that the MSE listed for the noise polluted simu-
lated data in Table 6.2 is between that data and the estimated V̇A -
not between simulated data with no noise and estimated V̇A.

The MSE for parameter estimation with the weighing is also listed in
Table 6.2. The MSE is almost identical but though a bit larger, than
the MSE obtained without the weighing. The weighing is though
used throughout the results in Chapter 7, as this method is consid-
ered more physiological correct.

Table 6.2 shows that all the methods adequately estimates V̇A in the
noise free data. The RDRIVE model is the only one of the five meth-
ods that has a conspicuous more inaccurate result in the other three
data set, when noise is added. It is stated, that there is only a lit-
tle difference in MSE between the estimation methods (with the O2-
RDRIVE, however the parameters can only be related to the physiol-
ogy if they can be uniquely identified for the specific patient. To ana-
lyze whether this is possible the error functions related to the shown
MSEs in Table 6.2 will be presented in Figure 6.7, Figure 6.8, Figure 6.9
and Figure 6.10.
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Figure 6.6: Peripheral drive parameter estimations using noise free and
noise polluted data. The data is simulated with the RDRIVE
model. Symbol explanation is placed in Figure 6.6(a). Notice
that the V̇A from the RDRIVE simulation (green circles) is the
same for the four tests.
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6.3. Parameter Estimation using Noise-Free Data

Figure 6.7 and Figure 6.8 show the error functions of the param-
eter estimations from Figure 6.6. The error functions of the Tp -
estimations are shown in the left side figures (Figure 6.7(a), Fig-
ure 6.7(c), Figure 6.8(a) and Figure 6.8(c)). The Tp -estimations are in
all four examples able to locate the global error minimum relatively
close to the original Tp -value of 37.75 nmol· l−1 despite added noise.

3.4 3.5 3.6 3.7 3.8 3.9 4

·10−8

0

1

2

3

4

5

Tp-value [mol/L]

E
rr

o
r

Fu
n

ct
io

n
[(

l/
m

in
)2

]

Error Function O2-RDRIVE - Tp - noise free

Error Function
Lowest Error

(a) Error function. Estimation of Tp - noise
free.

1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

Po2-value [kPa]

E
rr

o
r

Fu
n

ct
io

n
[(

l/
m

in
)2

]

Error Function O2-RDRIVE - Po2 - noise free

Error Function
Lowest Error

(b) Error function. Estimation of Po2 - noise
free.
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(c) Error function. Estimation of Tp - 3% noise.
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Figure 6.7: Error functions between estimated and measured V̇A for Tp and
Po2 respectively. Simulations both with and without noise.
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6. MODEL IDENTIFICATION

The error functions of the Po2-estimations are shown in the right side
figures (Figure 6.7(b), Figure 6.7(d), Figure 6.8(b) and Figure 6.8(d)).
By inspecting the best Po2 found in the simulation data with 5%
noise, Figure 6.8(b) and Figure 6.8(d), the estimated Po2 is approx-
imately 6 kPa which is 2 kPa from the original 4 kPa which is indicat-
ing, that the Po2-parameter for itself may not uniquely describe Dp

for a patient.
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(a) Error function. Estimation of Tp - 5 %
noise.
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(b) Error function. Estimation of Po2 - 5 %
noise.
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(c) Error function. Estimation of Tp - 5 % noise -
weigh 5.
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Figure 6.8: Error function between estimated and measured va for Tp and
Po2 respectively. Simulations with noise both with and without
weighing.
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6.3. Parameter Estimation using Noise-Free Data

The error functions for the two parameter grid search of Tp and
Po2 can be seen in Figure 6.9. These four sub-figures show the 3-
dimensional error functions using the color scale from yellow to blue,
where dark blue indicate lowest error. The same trend of a low error
(dark blue) going in a line across the plots from left to right are seen in
all the figures. The area of equally low error indicates that the values
of both Tp and Po2 can not be uniquely identified in the simulation
data, hence the same results are expected in real patient data. On this
basis the two parameter grid search method is not used.
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(b) Error function. Estimation of Tp and Po2 - 3 % noise.
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Figure 6.9: 2D visualization of the 3D Error functions between estimated
and simulated V̇A for Tp and Po2. The more dark blue, the lower
the error value. Simulations with noise both with and without
weighing.
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6. MODEL IDENTIFICATION

In order to obtain the low MSE found by the two parameter grid
search method and to combine this with unique identifiability for the
parameters, the Tp -strategy was tested. This method first estimates
Tp , where A and Po2 are constants, and then estimates Po2 to the
estimated Tp -value. The error function is illustrated in Figure 6.10.
The logic behind this method, is that the Tp -parameter can uniquely
be identified alone as indicated by the red line in Figure 6.10(a). In
Figure 6.10(a) Tp has a low error in the dark blue area. By using the
patient-specific value of Tp , the Po2 value can now be estimated with
a reasonable low error. Tp is chosen to be estimated first as this pa-
rameter is thought to provide best physiological meaning.
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(a) Estimation of Tp for simulated data with 5% noise. The high
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36.73·10−9 mol/L.
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(b) Estimation of Po2 using the estimated Tp value
from Figure 6.10(a).

Figure 6.10: Error functions between estimated and simulated V̇A for Tp-
strategy. Tp are estimated first as indicated with the red line in
Figure 6.7(a). Po2 is estimated with the found Tp . No weighs
are used in the error function in Figure 6.7(b)

To validate, that the estimated values of Tp and Po2 using the Tp -
strategy can uniquely be found for the simulated data, the estimated
Po2 will be used to estimate the Tp value, hence using the method in
backwards order. The validation will be performed on the simulation
data with 5% added noise and weighs used in the error calculation.
By using this backwards-validation method, Tp is estimated to 36.76
nmol/l with a difference of 0.03 nmol/l from the first estimation. On
this basis the Tp -strategy is believed to uniquely estimate the param-
eters. As seen in Figure 6.10(b), the estimated Po2 is close to 3 kPa,
which is an error of approximately 1 kPa from the original simulated
ideal data Po2 value. By comparing this result with the best Po2 es-
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6.4. Wakefulness Drive Estimation

timation using the Po2 method alone, see Figure 6.8(d), Po2 is closer
to the original value (4 kPa) using the Tp -strategy.

6.4 Wakefulness Drive Estimation
The wakefulness drive is by Ainslie & Duffin described to be the drive
to breathe, that is independent on chemoreflexes and absent during
sleep. From Duffin, 2005 Dw is assumed to add 7 l/min to the minute
volume equal to a V̇A at 5.2 l/min (assuming a normal respiratory fre-
quency at 12 breaths/min and 150 ml dead space). The value of Dw is
only added to the total drive to breath, when the two chemoreflexes
are activated [Duffin, 2005]. Hereby it should be noted, that Dw is
used by Larraza et al. as a constant ventilation contribution (2 l/min)
to add up the chemoreflex ventilation.

The original value of a Dw contribution of 2 l/min from the RDRIVE
model will at first be used in the parameter estimation in this thesis.
However, by preliminary analysis of the peripheral drive estimation,
the value of Dw can have a considerable effect on the estimated val-
ues of V̇A. This can be the case, if the RDRIVE-estimated Dc plus Dw

are larger than the measured V̇A at the high Fi O2 (implying a neg-
ative Dp ). The estimation of drive parameters is largely effected by
the weigh used in the error function at the high Fi O2 measurement
resulting in non-accurate estimations of V̇A.

To solve this problem, the value of Dw will be considered in each pa-
tient to ensure, that the combined value of Dw and Dc is lower than
the measured V̇A at the highest Fi O2 measurement. If they are higher,
the residual between the two values will be subtracted from Dw . The
pseudo code for this is listed in Listing 6.1. This procedure is found
to provide better estimation results and assumed to being ascribed to
the physiological description of the parameter.

Listing 6.1: Pseudo code for the calculation of Dw

i f ( ( VAesti ( High FiO2 )) >(VAmeas( High FiO2 ) ) )
Dw = 2 − ( VAesti ( High FiO2)−VAmeas( High FiO2 ) ) ;
e lse

Dw = 2 ;
end

6.5 Measurement Data
The RDRIVE model will be tested on respiration measurements from
6 COPD patients. These patients are chosen from a cohort of COPD
patients used in a previous study [Thomsen et al., 2012].

The experimental data is measured with the clinical tool ALPE, [Thom-
sen et al., 2013], which is described in Section 3.1. COPD patients
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6. MODEL IDENTIFICATION

have a depressed central drive, why they are more dependent on their
peripheral drive, see Section 2.3. The literature states that ventilation
response should increase as response to decreased inspired oxygen
fractions [Lumb, 2010]. The respiratory response function of inspired
oxygen is expected to be an exponential decreasing function, as the
peripheral drive sensitivity is from the literature assumed to increase
in response to low arterial oxygen [Duffin, 2005; Larraza et al., 2014].

The test of the model will therefore be focused on patient data, which
show increased ventilation to decreased inspired oxygen. By inspec-
tion of the available patient data, 6 patients show this response, why
they will represent the experimental data, see Table 6.3.

Patient Sex Age PaCO2 PaO2 BMI COPD diagnose f s f A2 f 2 BE

1 M 75 4.65 10.40 21 Severe 0.01 0.72 0.99 -0.64
2 M 76 6.54 8.89 29 Severe 0.10 0.83 0.99 4.49
3 M 81 4.40 11.40 24 Moderate 0.04 0.56 0.91 -2.60
4 M 53 5.70 8.40 27 Very severe 0.13 0.77 0.99 1.55
5 M 62 4.84 8.78 24 Very severe 0.13 0.55 0.64 -0.37
6 M 66 5.50 10.4 34 Moderate 0.04 0.66 0.97 2.12

Table 6.3: Patient demographics

As seen in the patient demographics, the patients are all diagnosed
with moderate or worse COPD diagnosis. The gas exchange param-
eters ( f s, f A2 and f 2) indicate that some of the patients are having
respiratory impairments (patient 4 and 5 showing 13% shunt for in-
stance). However the blood parameter BE show that only two pa-
tients are outside the normal range of -2 to 2.

6.5.0.1 Measurement Errors

Measurement errors are always present [Cobelli & Carson, 2008].
There exist some known errors which are correlated with the mea-
sured ventilation data. Firstly, from a physiological point of view, the
ventilation measurements were expected to be more consistent in re-
sponse to low inspired oxygen fractions. This unexpected respiratory
response is shown in Figure 6.11. From Figure 6.11 it can be seen that
the V̇A at 0.14 Fet O2 is higher than the V̇A measured at 0.12 Fet O2.
This situation is unexpected. This could be due to difficulties in re-
lation to the measurements them-self, where the patients needed to
breath through an oxygen mask, which applies more resistance than
normal breathing.

The blood sample measurement was performed when the patients
breathed atmospheric air. The arterial blood parameters are ex-
pected to change due to changed inspired oxygen, why the ventila-
tion measurement at all other times can not be related to measured
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Figure 6.11: Patient example of unexpected V̇A response to change in oxy-
gen.

blood values, e.g. blood oxygen pressure. Furthermore, the per-
formed blood sample itself can have an effect on ventilation, because
the patients experienced some stress related with fear and pain of the
arterial puncture. This affect is believed to be seen in the first two
ALPE-measurements.

The measurement equipment can likewise cause measurement er-
rors. The measurement accuracy of the pulse oximeter is related
with an error of ±2 %, which can affect the estimations of the ALPE-
parameters, which are used throughout the RDRIVE-model. Gas and
flow measurements are likewise believed to contribute with a small
error contribution. From a theoretical point of view, it can be diffi-
cult to account for several errors simultaneously [Cobelli & Carson,
2008].
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RESULTS
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CHAPTER 7

Model Validation

The following section will represent the results of the four different
methods of parameter estimation that was described in Section 6.2.

The results will be represented as plots of the estimated and mea-
sured V̇A for all patients in order to illustrate how the parameter es-
timation affects the estimation of V̇A, compared to the estimated V̇A
from the RDRIVE model, see Figure 7.1. For each patient the plot will
contain:

• Measured V̇A for that patient
• Estimated V̇A using the RDRIVE model
• Estimated V̇A using the O2-RDRIVE model with estimated T p
• Estimated V̇A using the O2-RDRIVE model with estimated Po2
• Estimated V̇A using the O2-RDRIVE Tp -strategy with estimated

Tp and Po2

Besides the measured and estimated V̇A, the error functions for esti-
mation of Tp and Po2 are illustrated, see Figure 7.2 and Figure 7.3.

The results will be discussed in Chapter 8.
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7. MODEL VALIDATION

7.1 Evaluation of Estimated and Measured V̇A
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(d) Patient no. 4
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(e) Patient no. 5
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Figure 7.1: Estimated and measured V̇A for the 6 patients and all four pa-
rameter estimation methods. Each symbol represents an estima-
tion method. Please see the symbol description in the plot for
Patient no. 1
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7.2. Error Functions of Tp parameterization

7.2 Error Functions of Tp parameterization
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(a) Patient no. 1.
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(b) Patient no. 2
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(c) Patient no. 3
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(d) Patient no. 4
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(e) Patient no. 5

3.2 3.3 3.4 3.5 3.6 3.7 3.8

·10−8

0

2

4

6

8

10

Tp-value [mol/l]

E
rr

o
r

Fu
n

ct
io

n
[(

l/
m

in
)2

]

Error Function - Patient no. 6

Error Function
Lowest Error

(f ) Patient no. 6

Figure 7.2: Error Function between measured and estimated V̇A when esti-
mating Tp using the O2-RDRIVE model.
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7.3 Error Functions of Po2 parameterization
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(b) Patient no. 2
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(c) Patient no. 3
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(d) Patient no. 4
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(e) Patient no. 5
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Figure 7.3: Error Function between measured and estimated V̇A when esti-
mating Po2 using the O2-RDRIVE model.
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7.4 Result tables
The results are shown in tables for which the mean error between the
estimated V̇A and the measured V̇A is represented for every patient.
The mean error is used as not all patients have the same number of
measurements of V̇A. Besides the mean error the estimated patient
parameter(s) for that particular method is represented.

Table 7.1 lists the mean squared error for each patient with the use
of the RDRIVE model. Table 7.2 lists the mean squared error and the
estimated Tp -value, when using the O2-RDRIVE model. Likewise Ta-
ble 7.3 lists the mean squared error and estimated value of Po2, when
using the O2-RDRIVE model. Table 7.4 lists the results when estimat-
ing Tp first and then Po2.

In Table 7.5 the summed mean squared error between measured and
estimated V̇A is listed for all the tested methods.

Table 7.6 lists the means of the three peripheral drive parameters for
all six patients. These three values are a mean of the values, found for
the three parameters estimated using the Tp -strategy. The A value is
constant for all patients.

Patient no. Mean Squared Error
[(l/min)2]

1 0.493
2 0.019
3 0.665
4 0.294
5 0.092
6 1.275

Table 7.1: Result of estimation with the RDRIVE model. Mean squared error
between measured V̇A and estimated V̇A. A = 2.3733 l · kPa (min ·
nM · l−1)−1, Tp = 37.748 nmol/l and Po2 = 4 kPa.

Patient no. Mean Squared Error Estimated Tp

[(l/min)2] [nmol/l]

1 0.303 35.122
2 0.022 37.631
3 0.366 36.08
4 0.228 36.532
5 0.075 37.092
6 0.967 35.004

Table 7.2: Result of parameter estimation of Tp . Mean squared error be-
tween measured V̇A and estimated V̇A. A = 2.3733 l · kPa (min
· nM · l−1)−1 and Po2 = 4 kPa.
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Patient no. Mean Squared Error Estimated Po2
[(l/min)2] [kPa]

1 1.224 0.001
2 0.020 4.135
3 0.169 8.289
4 0.421 5.218
5 0,214 0.001
6 0.516 9.282

Table 7.3: Result of parameter estimation of Po2. Mean squared error be-
tween measured V̇A and estimated V̇A. Tp = 37.748 nmol and A =
2.3733 l · kPa (min · nM · l−1)−1.

Patient no. Mean Squared Error Estimated Tp value Estimated Po2
[(l/min)2] [nmol/l] [kPa]

1 0.209 35.122 6.222
2 0.093 37.631 3.798
3 0.427 36.08 5.697
4 0.225 36.532 4.087
5 0.148 37.092 6.603
6 0.539 35 6.624

Table 7.4: Result of parameter estimation with the Tp -strategy. Mean
squared error between measured V̇A and estimated V̇A. A = 2.3733
l · kPa (min · nM · l−1)−1.

Tested method RDRIVE Tp -estimated Po2-estimated Tp -strategy
Mean error

0.394 0.300 0.427 0.189
[(l /mi n)2]

Table 7.5: Summed mean squared error between measured and estimated
V̇A for all patients for the four tested methods.

Parameter Tp (± SD) [nmol/l] Po2 (± SD) [kPa] A [l · kPa (min · nM · l−1)−1]
Mean Patient 36.243 (0.962) 5.505 (1.15) 2.3733

Table 7.6: Mean value of the three parameters used to describe the periph-
eral drive using the Tp -strategy.
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CHAPTER 8

Discussion

The discussion consists of three sections. The first section will discuss
the results in this thesis, the next section will discuss the assumptions
that were made in order to perform the parameterization of the pe-
ripheral respiratory drive and the last section will discuss the useful-
ness of the O2-RDRIVE model.

In the postoperative period where anesthesia and analgesia are still
wearing off the respiratory drive might be impaired because of these
drugs. Furthermore, patients diagnosed with COPD are known to
have a decreased central respiratory response to CO2 [Larraza et al.,
2015b; Lumb, 2010]. If the peripheral drive in this patient group is
also impaired, the patients could be less responsive to changes in
oxygen as well as changes in CO2. Hence it is assessed that param-
eterization of the respiratory drive can help clinicians in optimizing
patient treatment thereby avoiding unwanted situations like postop-
erative hypoxemia. Recent studies have shown that a modeling ap-
proach can be used to parameterize the central drive from clinically
available data [Larraza et al., 2015a,b, 2014].

Through this discussion, the aspects of whether and how a model-
ing approach may be used to estimate peripheral respiratory drive in
patients with spontaneous breathing will be discussed.

8.1 Discussion of the Results
Using a novel method for parameterization of the peripheral drive in
spontaneously breathing patient, V̇A have been estimated for six pa-
tients as seen Figure 7.1 in Chapter 7. The results are evaluated both
by reviewing the mean squared error to assess if each of the four dif-
ferent methods are estimating the peripheral drive accurately, and by
visual inspection of the results in Figure 7.1. As the mean squared
error only describes an overall error between the measured and esti-
mated values of V̇A, the visual inspection of the results is just as im-
portant.

In Figure 7.1 it can be seen, that for Patient no. 2 and no. 4, all the
methods seems to give a good estimation of V̇A. For Patient no. 2,
the RDRIVE model estimates V̇A with a low error of 0.019 (l/min)2.
For this patient, arterial pressure of oxygen and arterial concentra-
tion of H+ matches the RDRIVE model’s threshold value of Po2 and
Tp in such a way, that the estimation of V̇A is accurate. This is though
not the coincident for the rest of the patients, why these standard
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threshold values are found not to provide a reliable estimation of V̇A.
The accuracy of the RDRIVE model’s description of peripheral drive
is consistent if the patient specific blood hydrogen ion concentration
coincide with the constant parameter of Tp , why the RDRIVE model
will provide seemingly good estimations of V̇A in Patient no. 2.

What should be noted is, that in the estimation of V̇A at Fi O2 = 21%
(FeO2 ≈ 15-16%), the RDRIVE model does estimate within a relatively
small margin of error for all patients. This could indicate, that even
though the estimation of the central drive is done at the highest avail-
able Fi O2 for the individual patient, the “starting point” for the esti-
mation of the parameters for the O2-RDRIVE model is offset.

The offset is only corrected in the estimation method of Po2. In Fig-
ure 7.1 it can be seen that estimation of Po2 before estimation of V̇A
gives an estimation of V̇A at high Fi O2 that is close to the measured
V̇A. Furthermore the estimation of Po2 estimates V̇A at low Fi O2 with
a small error in all patients except Patient no. 1 and no. 5. For these
two patients, it can be seen in Figure 7.3(a) and Figure 7.3(e) that the
lowest error is located at Po2 ≈ 0. Visual inspection of the error func-
tion indicates, that a lower error could be found, if the values of Po2
was allowed to adapt to values below zero.

The method of estimating Tp before estimation of V̇A does not cor-
rect for the aforementioned offset in starting point V̇A. In Patient no.
2 and no. 4 it does estimate V̇A adequately, but for the rest of the pa-
tients, the sensitivity to oxygen is too low. This makes estimation of
V̇A at high Fi O2 inadequate.

As mentioned in Section 6.2 the grid search algorithm was designed
to weigh the error between estimated and measured V̇A greater at
highest Fi O2 than at the other measurement points. It was tested how
a larger weighing would alter the aforementioned offset. Increasing
the weighing does (naturally) give a more accurate estimation of V̇A
at the high Fi O2 level, but the response to changes in Fi O2 is then
depressed. A higher weighing was on this basis discarded.

The Tp -strategy is the method that, for the six patients, best describes
the change in V̇A when changing Fi O2. The method is not most accu-
rate for all patients, as it is seen in Figure 7.1, but one should keep in
mind that the measured V̇A is polluted with noise and in some cases
(like in Figure 7.1(a), Figure 7.1(e) and Figure 7.1(f)), the measured
V̇A-response is non-expected. The expected response to lower Fi O2

in short periods of time is an increase in respiratory response [As-
mussen & Nielsen, 1957].

Table 7.4 shows the results of estimating V̇A with the Tp -strategy. The
values of Tp is believed to best describe the specific patient response
to oxygen, because Tp can be related to arterial hydrogen ion con-
centrations and is the physically definition of peripheral chemoreflex
threshold. By inspection of the results, patient no. 2, 4 and 5 have
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the highest estimated Tp of the six patients, however there is small
difference to the rest of the patients’ estimated Tp . Table 7.6 lists the
mean parameter values obtained from the Tp -strategy and thereby
describes a “mean COPD patient” in terms of respiratory drive pa-
rameters. From Table 7.6 the values indicate, that this specific pa-
tient group needs a lower threshold for Tp (36.243 nmol/l for the pa-
tient group vs. 37.748 nmol/l from [Larraza et al., 2014]) and a higher
threshold for Po2 (5.505 kPa for the patient group vs. 4 kPa from [Lar-
raza et al., 2014]).
This indicates that more patient specific parameter values could give
a more accurate estimation of the patients actual response to changes
in inspired oxygen.

8.2 Discussion of the Assumptions

This sections aims to discus some of the assumptions made in the
use of the RDRIVE model and further in the parameterization of the
peripheral drive.

Throughout the estimation of V̇A the arterial blood gases are assumed
to be constant. Only the value of arterial PO2 is recalculated for all
values of Fi O2. This assumption is done on basis of previous use of all
the models used in this thesis [Larraza et al., 2014; Rees & Andreasen,
2005] and will not be discussed further.

The wakefullness is in this thesis used as a factor that corrects for the
difference between measured and estimated V̇A at the highest Fi O2.
This assumption was done, as there to the best of our knowledge does
not exist a clear definition of the wakefullness drive. Duffin uses a
minute ventilation value of 7 l/min for Dw whereas Larraza et al. uses
a V̇A value of 2 l/min for Dw . The latter is used because it “in combi-
nation with disfacilitation for -1 l ·mi n−1 from both central and pe-
ripheral drives allows the simulation of apnea” - cited from [Larraza
et al., 2014]. Because of the unknown definition of Dw and the differ-
ent applications by Larraza et al. and Duffin, we decided to use the
value as a factor for correction. The value of Dw is thereby allowed to
change and describes the “extra V̇A” from Dc to the estimated V̇A.

8.3 Usefulness of O2-RDRIVE

The investigated methods to estimate peripheral drive parameters
provide in general a more accurate description of V̇A in the included
COPD patient group compared with using the RDRIVE model. Esti-
mation of peripheral chemoreflex threshold (Tp ) followed by an esti-
mation of oxygen sensitivity (Po2) is found to be the best method to
describe peripheral drive in regards to both lowest MSE and unique
identifiability. This could be useful in both the patient group de-
scribed in this thesis, but also in patients in general as knowledge
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about the individual patient’s respiratory response could help clini-
cians to provide better respiratory treatment to the patient.

A clinical example of the usefulness of the O2-RDRIVE model could
be when treating COPD patients with mechanical ventilator support.
The COPD patient group needs special attention because of the as-
sociated risk of hypo-ventilation caused by the dependence of their
peripheral drive. The Dw parameters Tp and Po2 might be quantified
to be used in decision support to find a maximum tolerated increase
in inspired oxygen.

Patent for the RDRIVE model has been applied and the model is as-
sumed to be a part of the already existing clinical bedside tool BEA-
CON, that can be used for optimization of respiratory treatment.

The “mean COPD patient” represented in Table 7.6 illustrates that the
parameters found in this patient group do not coincide with the pa-
tient group described by Larraza et al., 2015a,b, as only one patient in
the COPD patient group can get the ventilation response adequately
described by the RDRIVE model alone. This indicates that specific
parameterization of the peripheral drive parameters gives a better
description of the respiratory response in a patient group with im-
paired central drive.

8.4 Conclusion
In this thesis a novel method for individual patient parameterization
of peripheral drive has been proposed and evaluated in a COPD pa-
tient group. The method may be used to describe and predict pa-
tients response to changes in oxygen treatment at the bedside.
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