
Applied Hartree-Fock
methods

Atomic and diatomic energy computations

Anders Larsen

Rolf Sommer Poulsen

Supervisor :

Thomas Garm Pedersen

Masters project

Department of Physics
Aalborg University

Denmark
Spring, 2015

ii

Department of Physics and
Nanotechnology

Aalborg University
http://www.aau.dk

Title:
Applied Hartree-Fock methods

Theme:
Atomic and diatomic energy calcula-
tions

Project Period:
Spring semester 2015

Project Group:
anro-F15

Participants:
Anders Larsen
Rolf Sommer Poulsen

Supervisor:
Thomas Garm Pedersen

Copies: 4

Page Numbers: 68

Date of Completion:
June 2, 2015

Abstract:

The aim of this project was to
calculate the electron and poten-
tial energy functions of diatomic
molecules using the Hartree-Fock
method. In this report the theory be-
hind the Hartree-Fock method is de-
rived, explained and the implementa-
tion through Hartree-Fock-Roothaan
equations has been presented.
To demonstrate the Hartree-Fock
method of central field problems it
was used to calculate the electron en-
ergy of neutral atoms from Z = 1
through Z = 103, as well as for an-
ions and cations of the 52 first ele-
ments with good accuracy.
Calculations on static atomic polar-
izabilities has been attempted. Re-
sults for the Hydrogen atom has been
presented, but further research is
needed for the rest of the atoms.
Applying a Cartesian Gaussian ba-
sis the energy functions and potential
energy functions of the molecules H2,
HeH, He2, LiH and Li2 were calcu-
lated. The calculations yielded am-
biguous results and need further re-
search.

The content of this report is freely available, but publication (with reference) may only be

pursued due to agreement with the author.

http://www.aau.dk

iv

Institut for Fysik og Nanoteknologi
Aalborg Universitet
http://www.aau.dk

Titel:
Applied Hartree-Fock methods

Tema:
Atomic and diatomic energy calcula-
tions

Projektperiode:
Spring semester 2015

Projektgruppe:
anro-F15

Deltagere:
Anders Larsen
Rolf Sommer Poulsen

Vejleder:
Thomas Garm Pedersen

Oplag: 4

Sidetal: 68

Afleveringsdato:
2. juni 2015

Abstract:

Målet med dette projekt var at be-
regne elektron energier og potentialer
for diatomare molekyler ved anven-
delse af Hartree-Fock metoder. I den-
ne rapport udledes og forklares teo-
rien bag Hartree-Fock metoden, og
implementeringen gennem Hartree-
Fock-Roothaan ligningerne er blevet
præsenteret.
For at demonstrere Hartree-Fock me-
toden anvendt p̊a et centralpotential-
problem er elektronenergierne for
atomerne Z = 1 til og med Z =
103 blevet beregnet, ligesom energi-
erne for anioner og kationer for de 52
første atomer er præsenteret med ac-
ceptabel nøjagtighed.
Beregninger for atomare polarisabili-
teter er blevet forsøgt. Resultater for
Hydrogen er præsenteret, men yderli-
gere undersøgelser er nødvendige for
de resterende atomer.
Ved at anvende en kartesisk Gaus-
sisk basis er elektronenergier og po-
tentialer for molekylerne H2, HeH,
He2, LiH and Li2 blevet beregnet. Da
beregningerne viser tvetydige resul-
tater er der brug for nærmere un-
dersøgelser.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) m̊a kun ske

efter aftale med forfatterne.

http://www.aau.dk

vi

Preface

This report is written by two FYS10 students during the spring of 2015 at
Aalborg University. The aim of the report is to model multi-particle quantum
mechanical systems, namely electron energies of atoms and diatomic molecules.
Furthermore the project sought to calculate the polarizability of the elements
using the Hartree-Fock method.

The target group is students who are familiar with basic quantum mechanics,
differential equations, calculus and linear algebra.

Figures and equations will be denoted and referred to with two numbers
like (x.y) where x denotes the chapter and y denotes the number of the given
figure or equation. Citations are referred to using the Vancouver method where
a reference is denoted by a number like [3]. In the report the following notations
have been used: A vector named r is denoted r. A unit vector in the z-direction
is denoted in ez The complex conjugate of a is denoted a∗, matrices are denoted
like M and operators are denoted like Ĥ.

The report is typeset in LATEX. Illustrations are made in TikZ and all cal-
culations and figures have been produced in Python 3.0 using matplotlib, the
numpy and scipy packages. To some of the analytical calculations the CAS-tool
Wolfram Mathematica 10 has been used.

The used scripts are presented on a DVD attachment in appendix D

Anders Larsen Rolf Sommer Poulsen

viii

Contents

1 Preliminaries 1
1.1 The many-electron problem . 1
1.2 The Aufbau principle . 2
1.3 The Adiabatic approximation . 2
1.4 Slater Determinants . 4
1.5 Matrix operations on Slater Determinants 4
1.6 The Hartree-Fock equations . 6
1.7 The Hartree-Fock-Roothaan equations 9

2 Implementation for atoms 11
2.1 Gaussian basis functions . 11
2.2 The matrix elements . 12
2.3 Self Consistent Field procedure 13
2.4 Convergence schemes . 13
2.5 Results . 15
2.6 Discussion . 17
2.7 Ions . 18
2.8 Conclusion . 21

3 Polarizability calculations 23
3.1 Polarizability . 23
3.2 The Hamiltonian with an external electric field 23
3.3 Implementation . 24
3.4 Results . 24

4 Implementation for molecules 27
4.1 Calculation of molecular matrix elements 27
4.2 Procedure . 34
4.3 Results . 35
4.4 Discussion . 37
4.5 Vibrational states . 40
4.6 Conclusion . 44

5 Conclusion 45

A Matrix elements for atomic calculations 47
A.1 The coulomb elements . 47
A.2 The exchange elements . 48

ix

x CONTENTS

B Hermite Polynomials 51

C Python code 53
C.1 Hartree Fock.py . 53
C.2 Polarizability.py . 56
C.3 Molecules.py . 60
C.4 Vibrational Diatomic.py . 63

D DVD with code 65

Chapter 1

Preliminaries

The statements of this chapter can be found in any typical text book on quantum
mechanics such as [3] or [1].

1.1 The many-electron problem

As it is commonly known the single electron Schrödinger equation in atomic
units for a single-nucleus atom is(

−1

2
∇2 − Z

r

)
ψ = Eψ. (1.1)

Let the Hamiltonian for this problem here forward be denoted ĥi such that

ĥi = −1

2
∇2
i −

Z

ri
. (1.2)

Adding N electrons to the atom gives rise to an electron repulsion term so that
the Hamiltonian becomes(

N∑
i=1

ĥi +

N∑
i<j

1

rij

)
Ψ = EΨ. (1.3)

The collected wave functions, Ψ, contains information about both the spacial
coordinates and spin of all electrons. Moreover the term

rij = |ri − rj | (1.4)

simply describes the distance between two electrons.
If the many-electron Hamiltonian is introduced as

Ĥ =

N∑
i=1

ĥi +

N∑
i<j

1

rij
, (1.5)

the collected Schrödinger equation for the many-electron atom becomes

ĤΨ = EΨ. (1.6)

1

2 CHAPTER 1. PRELIMINARIES

1.2 The Aufbau principle

In order to understand and investigate the electronic energies of the atoms it is
important to know the electronic states around the nucleus. More specifically
the electron configuration of the atom is desired. Using numerous chemical and
spectroscopic evidence a few guidelines for placing electrons around the nucleus
of the atom have been derived. These rules are known as the Aufbau principle.

The idea behind the Aufbau principle is that the formation of an atom can
be considered as a successive capturing of electrons and maintaining them in
their most stable conditions. In this way the hydrogen atom is created when a
proton capture a single electron and holding it in its most stable state called
the 1s orbital. The chemical and spectroscopic evidence suggests that a given
spacial state only can hold two electrons resulting in the fact that the electrons
of the Lithium atom are in two different spacial states. Since the atom tend to
be in the most stable condition the two different spacial states of the Lithium
atom must be the ones with the lowest possible energies being the 1s and 2s
orbitals. The electron configuration of Lithium is then stated as 1s22s1. Using
this procedure the Aufbau principle can be stated as the following rules:

The electron configuration of an element may be determined by
filling the orbitals after increasing values of n+ l. For a fixed value
of n+ l orbitals with lower n-values are filled first.

Here n is the principal quantum number whereas l is the azimuthal quantum
number.

Due to repulsion between electrons and the nucleus not all electron configu-
rations obey the Aufbau principle but its a good guideline for the construction
of atoms.

1.3 The Adiabatic approximation

In all the quantum mechanical calculations of this project the adiabatic approxi-
mation also known as the Born-Oppenheimer approximation is used to simplify
the problems. The approximation assumes that because the electrons are so
much lighter than the nuclei they rearrange instantaneously according to the
positions of the nuclei. In this picture the nuclei can be considered as stationary
and independent of the electron motion such that the molecular wave function
may be written

Ψmol (x,ρ) = Ψ (x;ρ)κ (ρ) , (1.7)

where x denotes the spin and radial coordinates of the electrons and ρ denotes
the coordinates of the nuclei. Hereby the molecular wave function is written as a
product of an electron wave function Ψ (x;ρ) of electrons at x assuming that the
nuclei are at position ρ and a nuclear wave function κ (ρ). This approximation
yields a easy way to implement the quantum mechanical calculations used in
this project. Consider a system consisting of N electrons and M nuclei the
Hamiltonian neglecting spin in atomic units yields

Ĥmol =−
M∑
k=1

1

2Mk
∇2
k +

M∑
k<l

ZkZl
rkl

−
N∑
i=1

1

2
∇2
i −

M∑
k=1

N∑
i=1

Zk
rik

+

N∑
i<j

1

rij
, (1.8)

1.3. THE ADIABATIC APPROXIMATION 3

where k and l labels the nuclei and i and j the electrons. Mk is the mass of the
kth nucleus. Using this Hamiltonian the molecular Schrödinger equation may
be written as

ĤmolΨmol (x,ρ) = EmolΨmol (x,ρ) . (1.9)

We rewrite the molecular Hamiltonian as

Ĥmol =−
M∑
k=1

1

2Mk
∇2
k +

M∑
k<l

ZkZl
rkl

+ Ĥ, (1.10)

where

Ĥ =
∑
i

ĥi +
∑
i<j

1

rij
(1.11)

is an electronic Hamiltonian concerning the coordinates of the electrons.

Using the Born-Oppenheimer approximation in equation 1.7 we can write
the Schrödinger equation as

−1

Ψ (x;ρ)κ (ρ)

M∑
k=1

1

2Mk
∇2
kΨ (x;ρ)κ (ρ) +

M∑
k<l

ZkZl
rkl

+
1

Ψ (x;ρ)
ĤΨ (x;ρ)

= Emol. (1.12)

If we then assume that Ψ (x;ρ) varies very slowly with ρ we may write

−1

κ (ρ)

M∑
k=1

1

2Mk
∇2
kκ (ρ) +

M∑
k<l

ZkZl
rkl

+
1

Ψ (x;ρ)
ĤΨ (x;ρ) = Emol. (1.13)

From this equation it is clear that the third term, which is the only term re-
garding electron coordinates, must simplify to a function independent from x.
Calling this function E (ρ) we get the requirement

ĤΨ (x;ρ) = E (ρ) Ψ (x;ρ) . (1.14)

Using this the Schrödinger equation may be written as(
−

M∑
k=1

1

2Mk
∇2
k + U (ρ)

)
κ (ρ) = Emolκ (ρ) , (1.15)

where

U (ρ) = E (ρ) +

M∑
k<l

ZkZl
rkl

. (1.16)

Now the Schrödinger equation of the entire system is written as two separate
equations. One regarding the electrons, 1.14, which must be solved for every
nuclear configurations and yields the electronic energy function E (ρ). The other
equation, 1.15, is the Schrödinger equation of the nuclei. The function U (ρ)
is called the potential energy function and is the sum of the electronic energy
function and the nuclear repulsion.

4 CHAPTER 1. PRELIMINARIES

1.4 Slater Determinants

When calculating quantum mechanical problems the aim is to find a wave func-
tion which is a solution to the Schrödinger equation in equation 1.6. This wave
function does not only describe the motion of one electron but instead it ex-
plains the behaviour of all the electrons of the calculated system. One way of
constructing such a wave function is the so-called Hartree product defined as
the product of all the one-electron wave functions of the system

Ψ (x) = ψ1 (x1)ψ2 (x2) · · ·ψN (xN) . (1.17)

However this approach of defining the many-electron wave function is not valid
for electrons due to the Pauli exclusion principle. This states that the wave
function of electrons should be antisymmetric, a property the wave function
in equation 1.17 does not possess. However by specific permutations of the
arguments of the one-electron wave functions in equation 1.17 one can create an
antisymmetrical many-electron wave function. This permutation is then called
the Slater determinant and is defined to be

Ψ (x) = |ψ1ψ2 · · ·ψN | =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1 (x1) ψ1 (x2) · · · ψ1 (xN)
ψ2 (x1) ψ2 (x2) · · · ψ2 (xN)

...
...

. . .
...

ψN (x1) ψN (x2) . . . ψN (xN)

∣∣∣∣∣∣∣∣∣ . (1.18)

It is assumed that the single electron wave functions are orthonormal. Due to
the mathematical properties of the determinant the Slater determinant obey
the antisymmetric behaviour of the many-electron wave function.

1.5 Matrix operations on Slater Determinants

This section aims to derive rules for calculating matrix elements of the form
〈Ψ |F̂ |Ψ′〉 for different operators acting on the Slater determinants.

The Slater determinant may be written as

Ψ = |ψ1ψ2 · · ·ψN | =
√

1

N !

∑
P

(−1)
p
P̂ψ1 (x1)ψ2 (x2) · · ·ψN (xN) , (1.19)

where P̂ is a permutation operator acting on the arguments such that

P̂ψ1 (x1)ψ2 (x2) · · ·ψN (xN) = ψ1 (Px1)ψ2 (Px2) · · ·ψN (PxN) , (1.20)

with P as a permutation. The sum of equation 1.19 is over all the N ! permuta-
tions and p denotes the number of transpositions required to generate the given
permutation. The matrix element 〈Ψ |F̂ |Ψ′〉 is given by

〈Ψ |F̂ |Ψ′〉 =

∫
Ψ∗F̂Ψ′dx, (1.21)

where dx = dx1dx2 · · · dxN . By using the reformulation of the Slater determi-
nant in equation 1.19 on Ψ, a general term in the N ! sums become

(−1)
p 1

N !

∫
ψ∗1 (Px1)ψ∗2 (Px2) · · ·ψ∗N (PxN) F̂Ψ′dx. (1.22)

1.5. MATRIX OPERATIONS ON SLATER DETERMINANTS 5

If Ψ′ is expanded using equation 1.19 the factor (−1)
p

cancels and if the inte-
gration variable x1 is switched with Px1 up to xN and PxN and assuming that
F̂ is symmetric the expression in equation 1.22 becomes

1

N !

∫
ψ∗1 (x1)ψ∗2 (x2) · · ·ψ∗N (xN) F̂Ψ′dx. (1.23)

By adding N ! of these identical terms an expression for the matrix element
〈Ψ |F̂ |Ψ′〉 is obtained

〈Ψ |F̂ |Ψ′〉 =

∫
ψ∗1 (x1)ψ∗2 (x2) · · ·ψ∗N (xN) F̂Ψ′dx. (1.24)

The matrix element still needs to be evaluated under the assumptions that F̂
is either a sum of one-electron operators or two-electron operators. In the first
case the following rules can be obtained

a. 〈Ψ |F̂ |Ψ′〉 = 0
if Ψ and Ψ′ differ in more than one spin orbital.

b. 〈Ψ |F̂ |Ψ′〉 = 〈ψk |f̂ |ψ′k〉
if Ψ′ may be obtained from Ψ by replacing ψ′k with ψk.

c. 〈Ψ |F̂ |Ψ〉 =
∑N
i=1 〈ψi |f̂ |ψi〉

(1.25)

The first rule comes from the fact that the contribution of f̂ (x1) to the matrix
element is ∑

P

(−1)
P 〈ψ1 |f̂ (x1)|ψ′P1〉 〈ψ2 |ψ′P2 〉 · · · 〈ψN |ψ′PN 〉 , (1.26)

where ψ′Pi is the permutation of ψ′i rising from the expansion of Ψ′ in equation
1.24. The contribution in equation 1.26 vanishes unless

ψ′P2 = ψ2, . . . , ψ
′
PN = ψN . (1.27)

The same approach can be made for f̂ (x2) up to f̂ (xN) thereby yielding the
first rule in 1.25. For the second rule consider the case

Ψ = |ψ1ψ2 · · ·ψk−1ψkψk+1 · · ·ψN | (1.28)

Ψ′ = |ψ1ψ2 · · ·ψk−1ψ
′
kψk+1 · · ·ψN | (1.29)

Assume that ψk and ψ′k are in identical positions. The contribution to the
matrix element is then∑

P

(−1)
P 〈ψ1 |ψ′P1 〉 · · · 〈ψk |f̂ (xk)|ψ′Pk〉 · · · 〈ψN |ψ′PN 〉 , (1.30)

but since only the identity permutation can contribute due to orthogonality
the only contribution to the matrix element must be 〈ψk |f̂ (xk)|ψ′k〉 thereby
showing the second rule. The third rule is obtained since the contribution of
f̂ (x1) must be that of equation 1.26 since the conditions in equation 1.27 are

6 CHAPTER 1. PRELIMINARIES

present. Since the same approach can be taken for f̂ (x2) up to f̂ (xN) the
matrix element must be given by the third rule of 1.25.

When the operator F̂ is a sum of two-electron operators the following rules
can be stated

a. 〈Ψ |F̂ |Ψ′〉 = 0
if Ψ and Ψ′ differ in more than two spin orbitals.

b. 〈Ψ |F̂ |Ψ′〉 = 〈ψkψl |f̂ |ψ′kψ′l〉 − 〈ψkψl |f̂ |ψ′lψ′k〉 ,
if Ψ′ may be obtained from Ψ by replacing ψ′k by ψk and ψ′l by ψl.

c. 〈Ψ |F̂ |Ψ′〉 =
∑
l 6=k (〈ψkψl |f̂ |ψ′kψ′l〉 − 〈ψkψl |f̂ |ψ′lψ′k〉) ,

if Ψ′ may be obtained from Ψ by replacing ψ′k by ψk.

d. 〈Ψ |F̂ |Ψ〉 = 1
2

∑N
k=1

∑N
l=1 (〈ψkψl |f̂ |ψkψl〉 − 〈ψkψl |f̂ |ψlψk〉) .

(1.31)
Since the argument for the rules in 1.31 are very similar to the rules in 1.25 they
will not be mentioned here.

1.6 The Hartree-Fock equations

The Hartree-Fock equations are derived from applying the variational princi-
ple to Slater determinants. Small variations of the type ψi + δψi in the wave
functions result in a higher energy so it is preferable to minimise the variation

δ 〈Ψ |Ĥ|Ψ〉 = 0 (1.32)

The expectation value of the Hamiltonian, and hence the energy, is

〈Ψ |Ĥ|Ψ〉 =

N∑
i=1

〈ψi |ĥi|ψi〉+

N∑
i<j

(〈
ψiψj

∣∣ 1
rij

∣∣ψiψj〉− 〈ψiψj ∣∣ 1
rij

∣∣ψjψi〉) .
(1.33)

Applying the variation ψi+δψi and only considering variations of the first order
gives

δ 〈Ψ |Ĥ|Ψ〉 =

N∑
i=1

〈δψi |ĥi|ψi〉+

N∑
i<j

(〈
δψiψj

∣∣ 1
rij

∣∣ψiψj〉− 〈δψiψj ∣∣ 1
rij

∣∣ψjψi〉)+

N∑
i=1

〈ψi |ĥi| δψi〉+

N∑
i<j

(〈
ψiψj

∣∣ 1
rij

∣∣ δψiψj〉− 〈ψiψj ∣∣ 1
rij

∣∣ψjδψi〉) .
(1.34)

It is required that the spin orbitals are orthogonal even under the variation as
described by

δ 〈ψi |ψj 〉 = 〈δψi |ψj 〉+ 〈ψi |δψj 〉 = 0. (1.35)

Introducing the Fock operator

F̂ = ĥ+

N∑
j=1

(Ĵ ′j − K̂ ′j) (1.36)

1.6. THE HARTREE-FOCK EQUATIONS 7

where

Ĵ ′jψ (x1) =

∫
ψj (x2)

∗
ψj (x2) 1

rij
dx2ψ (x1), (1.37)

and

K̂ ′jψ (x1) =

∫
ψj (x2)

∗
ψ (x2) 1

rij
dx2ψj (x1), (1.38)

are the Coulomb and exchange operators of the electrons. This greatly reduces
the variation term

δ 〈Ψ |Ĥ|Ψ〉 =

N∑
i=1

(〈δψi |F̂ |ψi〉+ 〈ψi |F̂ | δψi〉) = 0 (1.39)

If we only consider variations on a single spin orbital that

δψi = cψλ, δψk = 0, k 6= i (1.40)

that is, only if the functions is divided into an occupied function space of the
form

ψI =

N∑
k=1

ckψk (1.41)

and a complementary function space of the unoccupied orbitals

ψII =

∞∑
µ=N+1

cµψµ. (1.42)

Spin orbitals belonging to the occupied function space are denoted with Roman
subscripts and the unoccupied spin orbitals are denoted with Greek subscripts
accordingly. The variations of equation 1.40 correspond to variations of a single
spin orbital into the unoccupied function space. Inserting this into equation
1.39 gives

c∗ 〈ψλ |F̂ |ψi〉+ c 〈ψi |F̂ |ψλ〉 = 0, (1.43)

and replacing ic and multiplying by i gives

c∗ 〈ψλ |F̂ |ψi〉 − c 〈ψi |F̂ |ψλ〉 = 0. (1.44)

This implies that both terms must cancel out. This result holds for every
combination of occupied and unoccupied spin orbitals, and thus

F̂ψi =

N∑
k=1

εkiψk +

∞∑
µ=N+1

εµiψµ (1.45)

must terminate after the N ’th term. The coefficients can be determined as

εki = 〈ψk |F̂ |ψi〉 , (1.46)

εµi = 〈ψµ |F̂ |ψi〉 , (1.47)

but the second one vanish due to equation 1.43 and equation 1.44. Lastly we
arrive at the Hartree-Fock equations

F̂ψi =

N∑
k=1

εkiψk, i = 1, 2, . . . , N. (1.48)

8 CHAPTER 1. PRELIMINARIES

The eigenvalues εij from equation 1.48 is called Lagrangian multipliers which
can be derived from the requirement that

I = 〈Ψ |Ĥ|Ψ〉 −
N∑
i=1

N∑
i=1

εij 〈ψi |ψj 〉 (1.49)

should be minimum for all variations of ψi’s and ψj ’s.
By a unitary transformation of a matrix with elements εij and by choosing

a suitable linear combination of spin orbitals the Hartree-Fock equations can
take on the following canonical form

F̂ψi = εiψi. (1.50)

By assuming the spin orbitals are eigenfunctions of ŝz and that the Slater
determinant is ordered so that the n first spin orbitals are spin up and the
following N − n are spin down

Ψ (x1, x2, . . . , xN) = |
+

ψ1

+

ψ2 . . .
+

ψn−1

+

ψn
−

ψn+1 . . .
−

ψN−1

−
ψN | (1.51)

Integrating over the spin coordinate in the Coulomb and exchange operators
gives

Ĵ ′jψ (x1) = Ĵjψ (r1) K̂ ′jψ (x1) = δ (msi,msj) K̂jψ (r1) (1.52)

and thus there is no exchange interaction between electrons with opposite spins.
When the Fock operator operates on a spin up orbital it only counts exchange
interactions from the first n terms and vice versa. The Hartree-Fock equation
yields two solutions

F̂ ↑ψi = εiψi. i = 1, 2, . . . , n (1.53)

F̂ ↓ψi = εiψi. i = n+ 1, n+ 2, . . . , N (1.54)

The Fock operators under spin restrictions are then

F̂ ↑ = ĥ+

N∑
j=1

Ĵ ′j −
n∑
j=1

K̂ ′j (1.55)

F̂ ↓ = ĥ+

N∑
j=1

Ĵ ′j −
N∑

j=n+1

K̂ ′j (1.56)

The physical significance of the eigenvalues εi of equation 1.50 can be ex-
amined by determining them through equation 1.50 by left multiplication and
integrating obtaining

εi = 〈ψi |ĥ|ψi〉+

N∑
j=1

〈ψi |Ĵ ′j − K̂ ′j |ψi〉 (1.57)

If compared to equation 1.33 then it is easily recognized that the energy is found
by

E =

N∑
i=1

εi −
N∑
i<j

〈ψi |Ĵ ′j − K̂ ′j |ψi〉 (1.58)

1.7. THE HARTREE-FOCK-ROOTHAAN EQUATIONS 9

or accordingly

E =
1

2

N∑
i=1

(εi + 〈ψi |ĥi|ψi〉) . (1.59)

The Hartree-Fock equations have now been derived, however in their present
form they are still very hard to implement in order to get decent results. One way
of solving this problem is by introducing the Hartree-Fock-Roothaan equations.

1.7 The Hartree-Fock-Roothaan equations

Solving multiple electron problems is generally an analytically impossible task.
Clemens C. J. Roothaan sought to find an approximating solution where each of
the spin orbitals can be expressed as a linear combination of hydrogenic orbitals

ψµ =
∑
p

cpµϕpµ (x). (1.60)

The subscript µ is short for the set of quantum numbers describing the given
electron. The goal is to determine the coefficients or weights of the individual
hydrogenic orbitals. By taking the Hartree-Fock operator of equation 1.55 and
letting it operate on ψµ yields

ĥψµ +

N∑
i=1

Ĵiψµ −
n∑
i=1

K̂iψµ = εiψµ. (1.61)

By writing ψµ as in equation 1.60 and left multiplying by 〈ϕpµ| we obtain the
following relation

∑
q

cqµ 〈ϕpµ |ĥ|ϕqµ〉+
∑
q

N∑
i=1

cqµ 〈ϕpµ |Ĵi|ϕqµ〉 −
∑
q

n∑
i=1

cqµ 〈ϕpµ |K̂i|ϕqµ〉

= εµ
∑
q

cqµ 〈ϕpµ |ϕqµ 〉 .

(1.62)

By introducing the matrix elements

hpqµ = 〈ϕpµ |ĥ|ϕqµ〉 (1.63)

Spqµ = 〈ϕpµ |ϕqµ 〉 (1.64)

Jpqµ =

N∑
i=1

〈ϕpµ |Ĵi|ϕqµ〉 (1.65)

Kpq
µ =

n∑
i=1

〈ϕpµ |K̂i|ϕqµ〉 (1.66)

the relation becomes∑
q

cqµh
pq
µ +

∑
q

cqµJ
pq
µ −

∑
q

cqµK
pq
µ = εµ

∑
q

cqµS
pq
µ , (1.67)

10 CHAPTER 1. PRELIMINARIES

where each choice of p gives a new equation. The collected set of equations for
p and q can be described by a matrix equation

Fµcµ = εµSµcµ (1.68)

where Fµ = hµ + Jµ −Kµ. Similar derivation can be performed for the opposite
spin. This is a generalised eigenvalue problem where εµ is the eigenvalue for the
linear combinations determined by the expansion coefficients contained in cµ.
The eigenvalues are by some referred to as orbital energies [13].

Since the basis is not necessarily orthonormal the equations has to be prop-
erly normalised as determined by

cµSµcµ = 1. (1.69)

We are now ready to implement the Hartree-Fock-Roothaan theory and
thereby calculate the electron energies starting with atoms. This consists of
choosing an appropriate basis and make it possible to calculate the necessary
matrix elements.

Chapter 2

Implementation for atoms

Now that the general Hartree-Fock theory have been derived and improved
using the Hartree-Fock-Roothaan equations, it is possible to use the equations
to calculate the electron energy of the atoms. In this chapter the implementation
of the Hartree-Fock theory will be described and results of electronic energies
of the elements will be presented and discussed.

As mentioned in 1.7 the implementation of the equations will be a lot easier
if a known basis is used such that the problem reduces to solving eigenvalue
problems. In this project we use the Gaussian basis functions [2].

2.1 Gaussian basis functions

The known basis function used in equation 1.60 can generally be written as

ϕiµ (x) = Rnl (r)Ylm (θ, φ) ηγs (ς) , (2.1)

where Rnl (r) contains the radial part of the atomic orbital, Ylm (θ, φ) a spherical
harmonic function and ηγs (ς) a function taking care of the spin. The spherical
harmonics and spin functions are often well defined, however the use of the ra-
dial part of the orbital function vary from method to method. Different type
of functions have both advantages and disadvantages. As mentioned we imple-
ment Gaussian functions as the radial part of the known basis functions. The
advantages of the Gaussian functions is that the matrix elements are easier cal-
culated however the functions does not have the close nor long range behaviour
of a proper orbital. We compensate for this by using several different Gaussian
functions. The un-normalised Gaussian function of an electron centred around
atom i positioned at Ri may be written

Rnl (r) = rl e−bi|r−Ri|2 . (2.2)

The reason why the computation of the matrix elements are much easier using
Gaussian functions as the known basis is due to the Gaussian product theorem.
This theorem states multiplying for example two s-type orbitals yields

Rs,i (r)Rs,j (r) = e−bi|r−Ri|2 e−bj |r−Rj |2

= e−γij e−bij |r−Rij |2 , (2.3)

11

12 CHAPTER 2. IMPLEMENTATION FOR ATOMS

where

bij = bi + bj , γij =
bibj
bij
|Ri −Rj |2 , Rij =

biRi + bjRj

bij
. (2.4)

This means that the product of two Gaussian functions located on different
atoms still is a Gaussian function located on a virtual point in between the two
atoms.

Having determined the appropriate basis function we are now ready to cal-
culate the atomic matrix elements.

2.2 The matrix elements

The four different matrix elements to be calculated are given by equation 1.63
through equation 1.66. Only the last two integrals are troublesome due to
the 1/rij term. Using Gaussian basis functions the overlap and single electron
energy integrals can be calculated straightforward to

hijµ = −1

2
(bi,nl + bj,nl)

−5/2−l (
(bi,nl + bj,nl)

3/2
ZΓ(l + 1)− 2bi,nlbj,nlΓ(5/2 + l)

)
(2.5)

Sijµ =
1

2
(bi,nl + bj,nl)

−3/2−l
Γ(3/2 + l), (2.6)

where l is the azimuthal quantum number of the electron, Z the nucleus elec-
tronic charge and Γ(x) is the Gamma function. However in order to evaluate
the two electron matrix elements it is an advantage to express 1/rij in terms of
the integration variables. Often the reciprocal distance is expanded in terms of
spherical harmonics [13]. Doing so the term is given by

1

rij
=
∑
l,m

4π

2l + 1
Y ∗lm (θ1, φ1)Y ∗lm (θ2, φ2)

rminl

rmaxl+1

, (2.7)

where rmin = min(r1, r2) and rmax = max(r1, r2). Using the Gaussian basis
functions and equation 2.7 the matrix elements may be expressed as

J ijµλ =
∑

ciλcjλ
∑
l,m

4π

2l + 1
〈Yl1,m1 |Y ∗lm (θ1, φ1)|Yl1,m1〉

× 〈Yl2,m2 |Y ∗lm (θ2, φ2)|Yl2,m2〉 J (2.8)

and

Kij
µλ =

∑
ciλcjλ

∑
l,m

4π

2l + 1
〈Yl1,m1

|Y ∗lm (θ1, φ1)|Yl2,m2
〉

× 〈Yl2,m2 |Y ∗lm (θ2, φ2)|Yl1,m1〉K, (2.9)

2.3. SELF CONSISTENT FIELD PROCEDURE 13

where J and K are integrals involving the radial part of the wavefunctions and
are given by

J =

∫ ∞
0

∫ ∞
0

r2l1+2
1 r2l2+2

2 e−(bi,n1l1
+bj,n1l1

)r21 e−(bp,n2l2
+q,n2l2

)r22
rminl

rmaxl+1

dr1dr2

(2.10)

K =

∫ ∞
0

∫ ∞
0

rl1+l2+2
1 rl1+l2+2

2 e−(bi,n1l1
+p,n2l2

)r21 e−(bj,n2l2
+bq,n1l1

)r22
rminl

rmaxl+1

dr1dr2.

(2.11)

A way of evaluating these integrals is by splitting one of the integrals into two
separate integrals. One going from 0 to r1 and another going from r1 to ∞. In
this way rmin = r2 and rmax = r1 in the first integral and vice versa in the other
and the radial integrals may then be written

J =

∫ ∞
0

r2l1+2
1 e−(bi,n1l1

+bj,n1l1
)r21

(∫ r1

0

r2l2+2
2 e−(bp,n2l2

+bq,n2l2
)r22

rl2
rl+1
1

dr2

+

∫ ∞
r1

r2l2+2
2 e−(bp,n2l2

+bq,n2l2
)r22

rl1
rl+1
2

dr2

)
dr1

(2.12)

K =

∫ ∞
0

rl1+l2+2
1 e−(bi,n1l1

+bj,n2l2
)r21

(∫ r1

0

rl1+l2+2
2 e−(bq,n2l2

2q+bp,n1l1
)r22

rl2
rl+1
1

dr2

+

∫ ∞
r1

rl1+l2+2
2 e−(bq,n2l2

+bp,n1l1
)r22

rl1
rl+1
2

dr2

)
dr1

(2.13)

From here the matrix elements may be calculated using a CAS-program. We
have used Mathematica, and the calculation of the matrix elements can be seen
in appendix A.

2.3 Self Consistent Field procedure

In the Hartree-Fock theory equation 1.68 is often solved using the Self Consistent
Field method. This is due to the fact that in order to create the Fock-operator
used in equation 1.68 one actually needs a solution to the problem. In the
Self Consistent Field method one starts with a reasonable guess of the desired
wave functions and from these construct the Fock-operator and solve equation
1.68. Using the obtained solution one creates another Fock-operator and from
it obtain a new solution. The method stops when the difference between two
consecutive solutions is insignificant. However in order to reach this convergence
of the solutions one might implement effective convergence schemes.

2.4 Convergence schemes

A great effort has been put into the problem of making the solutions of Hartree-
Fock problems converge faster. This is of course of computational interest since

14 CHAPTER 2. IMPLEMENTATION FOR ATOMS

the convergence can be quite time consuming but iterations can also approach an
infinite loop between two or more solutions. In order to overcome this problem
we have implemented Pulay mixing named after Peter Pulay who introduced
direct inversion of the iterative subspace (DIIS) or simply Pulay mixing in order
to accelerate and stabilise the convergence of Hartree-Fock methods [9].

Pulay mixing

After each iteration we obtain a set of vectors of coefficients that in a linear
combination determined the weight of the basis function, of which the coefficient
represents. Let the solution coefficient vector at iteration i be denoted ci. As
the solution increments through iterations we consider a residuum vector at step
i defined as

∆ci = ci+1 − ci. (2.14)

Pulay made the assumption that the final solution coefficient vector, cf , can be
approximated as a linear combination of the previous

cf =

m∑
i

pici (2.15)

where the size of m determines the amount of previous steps to be taken into
consideration. In practise this number rarely exceeds the number 5 as there
has been shown no considerable improvement using more previous steps. The
coefficients pi are obtained by requiring that the associated residual vector

∆c =

m∑
i

pi (∆ci) (2.16)

approaches zero in a least-squares sense. We also need the constraint that the
coefficients pi add to one

1 =

m∑
i

pi. (2.17)

In order to accept this last requirement we can write each of the solutions, ci,
as a sum between the final solution and an error term

ci = cf + ei (2.18)

Putting this into equation 2.15 yields

cf =

m∑
i

pi (cf + ei)

= cf

m∑
i

pi +

m∑
i

piei (2.19)

Through the iterations the second term should vanish as the error approaches
zero. This leaves only the first term so in order to make the above relation valid
the coefficients must sum to one as assumed.

2.5. RESULTS 15

We wish to minimise the norm of the residuum vector

〈∆c |∆c 〉 =

m∑
ij

p∗i pj 〈∆ci |∆cj 〉 (2.20)

Exchanging Bij = 〈∆ci |∆cj 〉, the requirements can be satisfied by minimizing
the following function with Lagrangian multiplier, λ

L =

m∑
ij

p∗iBijpj − λ
(

1−
m∑
i

pi

)
(2.21)

Assuming real quantities, we can minimize L with respect to a coefficient pk to
obtain

∂L
∂pk

= 0 =

m∑
i

piBik +

m∑
j

pjBkj − λ

= 2

m∑
i

piBik − λ (2.22)

We can absorb the factor of 2 into λ to obtain the following matrix equation
B11 B12 · · · B1m −1
B21 B22 · · · B2m −1

...
...

. . .
...

...
Bm1 Bm2 · · · Bmm −1
−1 −1 · · · −1 0

p1

p2

...
pm
λ

 =

0
0
...
0
−1

 . (2.23)

Solving this matrix equation yields the optimum linear combination coefficients
for the previous term coefficients in order to minimise the residuum vector.
Thus the new predicted optimal term coefficient vector can be found by using
equation 2.15.

Using Pulay mixing and the calculated matrix functions we are ready to
calculate the electron energies of the elements.

2.5 Results

The script used for the calculations is presented in appendix C.1
The atomic computations has been carried out using a set of uncontracted

Gaussian basis set developed by [5], that has been shown to be chemically
reliable even in larger molecules.

The results are shown in table form through table 2.1. The results are com-
pared with those of [5] showing some quite accurate resemblance. The energy
difference are presented in figure 2.1 showing a maximum energy difference of
around 1 Hartree.

Z Atom name Configuration E (Computed) E (From [5])

1 Hydrogen 1s1 -0.49994557 -0.49994557

Table 2.1: Computed atomic energies from H through L compared with the
calculations of [5]. Energy units are in Hartrees (Continued on next page).

16 CHAPTER 2. IMPLEMENTATION FOR ATOMS

Z Atom name Configuration E (Computed) E (From [5])

2 Helium 1s2 -2.86115334 -2.86115334
3 Lithium 1s22s1 -7.43271968 -7.43269569
4 Beryllium 1s22s2 -14.5729681 -14.5729681
5 Boron 1s22s22p1 -24.4144654 -24.5289676
6 Carbon 1s22s22p2 -37.5310547 -37.6884715
7 Nitrogen 1s22s22p3 -54.4042654 -54.4007133
8 Oxygen 1s22s22p4 -74.6191049 -74.8090732
9 Fluorine 1s22s22p5 -99.1639672 -99.4088900

10 Neon 1s22s22p6 -128.546472 -128.546472
11 Sodium [Ne]3s1 -161.858600 -161.858570
12 Magnesium [Ne]3s2 -199.614215 -199.614215
13 Aluminum [Ne]3s23p1 -241.802199 -241.876368
14 Silicon [Ne]3s23p2 -288.757442 -288.853976
15 Phosphorus [Ne]3s23p3 -340.718822 -340.718336
16 Sulfur [Ne]3s23p4 -397.384664 -397.504352
17 Chlorine [Ne]3s23p5 -459.338687 -459.481433
18 Argon [Ne]3s23p6 -526.816781 -526.816781
19 Potassium [Ar]4s1 -599.164348 -599.164292
20 Calcium [Ar]4s2 -676.757668 -676.757668
21 Scandium [Ar]4s23d1 -759.553865 -759.735143
22 Titanium [Ar]4s23d2 -848.054450 -848.405360
23 Vanadium [Ar]4s23d3 -942.482641 -942.883632
24 Chromium [Ar]4s13d5 -1043.35589 -1043.35553
25 Manganese [Ar]4s23d5 -1149.86888 -1149.86538
26 Iron [Ar]4s23d6 -1262.18252 -1262.44269
27 Cobalt [Ar]4s23d7 -1380.93099 -1381.41347
28 Nickel [Ar]4s23d8 -1506.33054 -1506.86971
29 Copper [Ar]4s13d10 -1638.96277 -1638.96228
30 Zinc [Ar]4s23d10 -1777.84664 -1777.84664
31 Gallium [Ar]4s23d104p1 -1923.18595 -1923.26029
32 Germanium [Ar]4s23d104p2 -2075.26686 -2075.35902
33 Arsenic [Ar]4s23d104p3 -2234.23911 -2234.23794
34 Selenium [Ar]4s23d104p4 -2399.75947 -2399.86687
35 Bromine [Ar]4s23d104p5 -2572.31642 -2572.44056
36 Krypton [Ar]4s23d104p6 -2752.05419 -2752.05419
37 Rubidium [Kr]5s1 -2938.35681 -2938.35673
38 Strontium [Kr]5s2 -3131.54500 -3131.54500
39 Yttrium [Kr]5s24d1 -3331.55545 -3331.68347
40 Zirconium [Kr]5s24d2 -3538.75135 -3538.99434
41 Niobium [Kr]5s14d4 -3753.43518 -3753.59688
42 Molybdenum [Kr]5s14d5 -3975.55206 -3975.54863
43 Technetium [Kr]5s24d5 -4204.79397 -4204.78792
44 Ruthenium [Kr]5s14d7 -4441.23215 -4441.53853
45 Rhodium [Kr]5s14d8 -4685.53924 -4685.88071
46 Palladium [Kr]4d10 -4937.91980 -4937.91980
47 Silver [Kr]5s14d10 -5197.69786 -5197.69740
48 Cadmium [Kr]5s24d10 -5465.13210 -5465.13210
49 Indium [Kr]5s24d105p1 -5740.10075 -5740.16830
50 Tin [Kr]5s24d105p2 -6022.84999 -6022.93086
51 Antimony [Kr]5s24d105p3 -6313.48607 -6313.48449
52 Tellurium [Kr]5s24d105p4 -6611.69122 -6611.78321
53 Iodine [Kr]5s24d105p5 -6917.87550 -6917.98003
54 Xenon [Kr]5s24d105p6 -7232.13748 -7232.13748
55 Cesium [Xe]6s1 -7553.93311 -7553.93302
56 Barium [Xe]6s2 -7883.54325 -7883.54325
57 Lanthanum [Xe]6s25d1 -8220.95071 -8221.06620
58 Cerium [Xe]6s24f15d1 -8566.37167 -8566.87215
59 Praseodymium [Xe]6s24f3 -8920.39371 -8921.18034
60 Neodium [Xe]6s24f4 -9283.04490 -9283.88222
61 Promethium [Xe]6s24f5 -9654.39094 -9655.09820

Table 2.1: Computed atomic energies from H through L compared with the
calculations of [5]. Energy units are in Hartrees (Continued on next page).

2.6. DISCUSSION 17

Z Atom name Configuration E (Computed) E (From [5])

62 Samarium [Xe]6s24f6 -10034.5278 -10034.9517
63 Europium [Xe]6s24f7 -10423.5496 -10423.5421
64 Gadolinium [Xe]6s24f75d1 -10820.5365 -10820.6604
65 Terbium [Xe]6s24f9 -11225.8464 -11226.5674
66 Dysprosium [Xe]6s24f10 -11640.4860 -11641.4515
67 Holmium [Xe]6s24f11 -12064.2689 -12065.2887
68 Erbium [Xe]6s24f12 -12497.2944 -12498.1516
69 Thulium [Xe]6s24f13 -12939.6584 -12940.1731
70 Ytterbium [Xe]6s24f14 -13391.4548 -13391.4548
71 Lutecium [Xe]6s24f145d1 -13851.6806 -13851.8067
72 Hafnium [Xe]6s24f145d2 -14321.0157 -14321.2486
73 Tantalum [Xe]6s24f145d3 -14799.5544 -14799.8114
74 Tungsten [Xe]6s24f145d4 -15287.3729 -15287.5451
75 Rhenium [Xe]6s24f145d5 -15784.5427 -15784.5320
76 Osmium [Xe]6s24f145d6 -16290.4713 -16290.6474
77 Iridium [Xe]6s24f145d7 -16805.8003 -16806.1119
78 Platinum [Xe]6s14f145d9 -17330.8587 -17331.0686
79 Gold [Xe]6s14f145d10 -17865.3992 -17865.3987
80 Mercury [Xe]6s24f145d10 -18408.9902 -18408.9902
81 Tallium [Xe]6s24f145d106p1 -18961.7587 -18961.8237
82 Lead [Xe]6s24f145d106p2 -19523.9305 -19524.0070
83 Bismuth [Xe]6s24f145d106p3 -20095.5875 -20095.5854
84 Polonium [Xe]6s24f145d106p4 -20676.4142 -20676.4999
85 Astatine [Xe]6s24f145d106p5 -21266.7841 -21266.8807
86 Radon [Xe]6s24f145d106p6 -21866.7713 -21866.7713
87 Francium [Ra]7s1 -22475.8581 -22475.8580
88 Radium [Ra]7s2 -23094.3030 -23094.3030
89 Actinium [Ra]7s26d1 -23722.0873 -23722.1915
90 Thorium [Ra]7s26d2 -24359.4372 -24359.6219
91 Protoactinium [Ra]7s25f26d1 -25006.5117 -25007.1092
92 Uranium [Ra]7s25f36d1 -25663.5826 -25664.3376
93 Neptunium [Ra]7s25f46d1 -26330.6626 -26331.4543
94 Plutonium [Ra]7s25f6 -27008.4196 -27008.7186
95 Americium [Ra]7s25f7 -27695.8997 -27695.8864
96 Curium [Ra]7s25f76d1 -28392.6577 -28392.7704
97 Berkelium [Ra]7s25f9 -29099.5106 -29099.8308
98 Californium [Ra]7s25f10 -29816.6874 -29817.4180
99 Einsteinium [Ra]7s25f11 -30544.2078 -30544.9712

100 Fermium [Ra]7s25f12 -31282.1408 -31282.7766
101 Mendelevium [Ra]7s25f13 -32030.5533 -32030.9320
102 Nobelium [Ra]7s25f14 -32789.5111 -32789.5111
103 Lawrencium [Ra]7s25f147p1 -33557.6110 -33557.9495

Table 2.1: Computed atomic energies from H through L compared with the cal-
culations of [5]. Energy units are in Hartrees (Continued from previous pages).

2.6 Discussion

When studying table 2.1 it is immediately clear that the results are in very
good agreement to the calculated values of [5]. However there are some atoms
where the difference is rather large. Atoms like Holnium where the difference
is about one Ha. To gain a better overview we plot the difference as a function
of the atomic number. The result of this can be seen in figure 2.1. One might
think more electrons leads to larger deviations, but figure 2.1 proves that this is

18 CHAPTER 2. IMPLEMENTATION FOR ATOMS

10 20 30 40 50 60 70 80 90 100
Z

0.0

0.2

0.4

0.6

0.8

1.0

∆
E

/H
ar

tr
ee

Energy difference from the results of Koga

Figure 2.1: Energy difference between our computed atomic energies and those
of [5]. The atoms are sorted after element number.

not the case. Instead the main reason why the calculations for some atoms are
inaccurate is due to an approximation used in the implementation. To simplify
the calculations we have adopted what can be called a spherical average. By
adopting the spherical average we do not distinguish electrons with the same
angular momentum projections. To investigate this inaccuracy we have plotted
the differences as a function of the total angular momentum. The result can
be seen in figure 2.2. As seen in the figure the calculations become increasingly
inaccurate as the total angular momentum increases. What is also noticed
is that when the total angular momentum is zero, physically meaning that the
atom has filled shells, the calculations become exact. This is due to the fact that
when the total angular momentum is zero the spherical average approximation
becomes exact.

The Hartree-Fock method is not limited by the total charge of the given
problem. To investigate this the next section calculates the electron energy of
the anions and cations of the 52 first elements.

2.7 Ions

Using the Hartree-Fock method virtually any configuration of core charge and
number of electrons can be applied. Optimal basis sets for ions can be found in
[6], but in this section we implemented another, simpler approach for our ionic
calculations.

In order to keep the task of finding the appropriate electron configuration
as simple as possible, we loaded the basis set and electron configuration for the
appropriate atom belonging to the number of electrons and then corrected the
nuclear charge. If the ion to be computed was Zn, where n is the net charge of
the ion, we loaded the electron configuration and basis set of the neutral atom

2.7. IONS 19

S P D F G H I
Total angular momentum

0.0

0.2

0.4

0.6

0.8

1.0
∆
E

/H
ar

tr
ee

Energy difference from the results of Koga
Sorted after total angular momentum

Figure 2.2: Energy difference between our computed atomic energies and those
of [5]. The atoms are sorted after total angular momentum.

(Z − n) and corrected the nuclear charge to that of Z.
We realised that this implementation was not exactly too accurate in describ-

ing the ions for the following reason. As the charge of the core is increased so
is the coulomb attraction between electrons and core, thus pulling the electrons
towards the center and vice versa if the core charge is reduced. This may not
be depicted in the used basis, since this is optimised for the neutral atoms. Our
solution to this was to add 4 basis functions to each azimuthal basis, two diffuse
exponents 1

2bl,min and 1
4bl,min, where bl,min was the former smallest Gaussian

exponent for the azimuthal value l. Likewise we added 2bl,min and 4bl,min for
better depiction of the electrons close to the core.

Results are given in table 2.2. The Numerical Hartree-Fock limit values
(NMF) is given in [6] which also yielded more accurate results for the energies.
However, our results shows how the case of neutral atoms can be put into the
case of ions in a simple matter. Also many of the results are accurate down to
the 5th or 6th figure, so the approximations done to the electron configurations
and basis is not entirely in error.

Further research need to be conducted to determine the reasons for the
errors. Are they related to electron configurations in error, or are they manifes-
tations of the spherical average as in the atoms?

Z Symbol Energies (Hartree)

Anions Cations
Our results NMF Our results NMF

2 He -1.998686244 -2.829773837
3 Li -7.232887583 -7.236415201 -7.405404957 -7.428232061

Table 2.2: Computed ionic energies from H through Te compared with the
calculations of [6]. Energy units are in Hartrees. NMF values are the numerical
Hartree-Fock limit of the given configuration (Continued on next page)

20 CHAPTER 2. IMPLEMENTATION FOR ATOMS

Z Symbol Energies (Hartree)

Anions Cations
Our results NMF Our results NMF

4 Be -14.27397675 -14.27739481 -14.46426381
5 B -24.23629313 -24.23757518 -24.40619392 -24.51922137
6 C -37.11311415 -37.29222377 -37.69814209 -37.70884362
7 N -53.66997517 -53.88800501 -54.18510745 -54.32195889
8 O -74.37649652 -74.37260568 -74.59947209 -74.78974593
9 F -98.57046183 -98.83172020 -99.44815874 -99.45945391

10 Ne -127.5086495 -127.8178141 -128.5082245
11 Na -161.6757598 -161.6769626 -161.8279992 -161.8551260
12 Mg -199.3604662 -199.3718097 -199.5233196
13 Al -241.6667369 -241.6746705 -241.7935389 -241.8782653
14 Si -288.4665366 -288.5731311 -288.8785902 -288.8896602
15 P -340.2240030 -340.3497759 -340.5932184 -340.6988736
16 S -397.1731064 -397.1731828 -397.4126215 -397.5384302
17 Cl -458.8984458 -459.0485907 -459.5680776 -459.5769253
18 Ar -526.1035653 -526.2745343 -526.7900620
19 K -599.0165109 -599.0175794 -599.1456809 -599.1619170
20 Ca -676.5641364 -676.5700126 -676.5624412
21 Sc -759.4579119 -759.5391440 -759.4345725 -759.6887738
22 Ti -847.8030832 -848.2034008 -848.0509535 -848.3725498
23 V -942.0556906 -942.6707837 -942.7517567 -942.8631322
24 Cr -1042.406419 -1043.139393 -1043.321945 -1043.337097
25 Mn -1149.648030 -1149.649383 -1149.529828 -1149.729110
26 Fe -1262.126273 -1262.213012 -1261.971903 -1262.367074
27 Co -1380.679266 -1381.128750 -1380.882061 -1381.351810
28 Ni -1505.859484 -1506.591099 -1570.483454 -1506.821133
29 Cu -1637.859898 -1638.728242 -1638.940294 -1638.964145
30 Zn -1777.564036 -1777.567545 -1777.745649
31 Ga -1923.055879 -1923.059722 -1923.177982 -1923.260381
32 Ge -2074.983722 -2075.086491 -2075.386442 -2075.394742
33 As -2233.773329 -2233.888335 -2234.127078 -2234.222940
34 Se -2399.558847 -2399.558574 -2399.792972 -2399.904726
35 Br -2571.915145 -2572.045211 -2572.529689 -2572.536273
36 Kr -2751.423206 -2751.567394 -2752.031895
37 Rb -2938.218921 -2938.219931 -2938.342206 -2938.354900
38 Sr -3131.367043 -3131.373777 -3131.378175
39 Y -3331.467796 -3331.472882 -3331.461714 -3331.683116
40 Zr -3538.538111 -3538.809305 -3538.809241 -3538.994500
41 Nb -3752.920050 -3753.389513 -3753.555146 -3753.578216
42 Mo -3975.055632 -3975.333703 -3975.520048 -3975.526268
43 Tc -4204.595304 -4204.594360 -4204.430695 -4204.764631
44 Ru -4441.133156 -4441.321956 -4441.164831 -4441.528477
45 Rh -4685.219380 -4685.664172 -4685.709565 -4685.875582
46 Pd -4937.161218 -4937.675930 -4937.888076 -4937.891544
47 Ag -5197.479958 -5197.481334 -5197.682097 -5197.700050
48 Cd -5464.876405 -5464.878609 -5465.045432

Table 2.2: Computed ionic energies from H through Te compared with the
calculations of [6]. Energy units are in Hartrees. NMF values are the numerical
Hartree-Fock limit of the given configuration (Continued on next page)

2.8. CONCLUSION 21

Z Symbol Energies (Hartree)

Anions Cations
Our results NMF Our results NMF

49 In -5739.975893 -5739.978392 -5740.101561 -5740.175141
50 Sn -6022.588935 -6022.678323 -6022.966041 -6022.972657
51 Sb -6313.067201 -6313.165941 -6313.398175 -6313.481518
52 Te -6611.503815 -6611.503394 -6611.731825 -6611.827949

Table 2.2: Computed ionic energies from H through Te compared with the
calculations of [6]. Energy units are in Hartrees. NMF values are the numerical
Hartree-Fock limit of the given configuration.

2.8 Conclusion

In this chapter the electron energies of atoms Z = 1 through Z = 103 have
been calculated with acceptable accuracy when compared to [5]. Likewise the
energies of anions and cations from Z = 1 through Z = 52 has been calculated
and compared with [6] and yielded acceptable results with respect to the used
basis set. Any deviations in the electron energy of the atoms are likely to rise
from the fact that the calculations adopts a spherical average approximation.
However for the ions the deviation may also rise from the fact that the used
basis has not been optimised to the given problems.

22 CHAPTER 2. IMPLEMENTATION FOR ATOMS

Chapter 3

Polarizability calculations

Now that the electronic energies of the elements have been calculated we won-
dered if is was possible to calculate the atomic polarizability of the elements
using the Hartree-Fock theory. Similar calculations has been performed by [11],
[12] and [14] on which we base this chapter.

3.1 Polarizability

When an external electric field is applied to electronic systems the charged
particles will shift accordingly to the applied field. This is known as an induced
dipole

p = αE, (3.1)

where p is the induced dipole moment, E is the applied electric field and α is the
dipole polarizability. The resulting energy change can be expanded in a Taylor
series assuming a static electric field

E = E(0) + EE(1) + E2E(2) + . . . (3.2)

The first order term is the so-called permanent dipole moment, however the
second order term is related to the dipole polarizability α in the sense that

E2E(2) = −1

2
αE2 (3.3)

By applying an external static field to the Fock-operator on should be able
to obtain expressions for the energy corresponding to a certain external field
strength and hence determine the polarizability, α.

3.2 The Hamiltonian with an external electric
field

An external electric field is applied in the ez-direction giving rise to the poten-
tial, zE , where E is the field strength. The perturbation to the Hamiltonian is
then

∆ĤE = ẑE . (3.4)

23

24 CHAPTER 3. POLARIZABILITY CALCULATIONS

This can be solved separately from the usual Hamiltonian matrix and involves
integrals of the form

〈ψµ |ẑE|ψλ〉 = E
∫ ∞
−∞

∫ 2π

0

∫ π

0

ψ∗µψλ cos(θ) r3 sin(θ) dφdθdr, (3.5)

where ẑ = r cos(θ) has been used. Since ẑ is an odd operator this integral will
vanish when the electrons have the same angular momentum.

The integrals has been evaluated in Wolfram Mathematica to

〈ψi,l=0 |ẑE|ψj,l=1〉 =
E
√

3π

8 (bi + bj)
5/2

(3.6)

〈ψi,l=1 |ẑE|ψj,l=0〉 = 〈ψi,l=0 |ẑE|ψj,l=1〉

〈ψi,l=1 |ẑE|ψj,l=2〉 =
E
√

15π

8 (bi + bj)
7/2

(3.7)

〈ψi,l=2 |ẑE|ψj,l=1〉 = 〈ψi,l=1 |ẑE|ψj,l=2〉

〈ψi,l=2 |ẑE|ψj,l=3〉 =
9E
√

35π

32 (bi + bj)
9/2

(3.8)

〈ψi,l=3 |ẑE|ψj,l=2〉 = 〈ψi,l=2 |ẑE|ψj,l=3〉 .

The rest of the integrals vanishes. The Hamiltonian with an applied electron
field is then the usual Hamiltonian of chapter 2 added with the polarization
elements in equations 3.6 to 3.8.

3.3 Implementation

As mentioned in the previous section, ẑE is an odd function so the expectation
value vanishes for same angular momenta. This will cause the effect of an
external electric field seem to vanish for atoms with only s-orbitals occupied.

This is of course not the case so we needed to adapt an p-basis for the atoms
with no angular momenta. This has been implemented in the sense that the or-
bital exponents belonging to the outermost angular momentum has been copied
to the following angular momentum. Atoms with only s-orbitals gets both s-
and p-orbitals, atoms with both s- and p-orbitals gets an additional d-basis etc.
We find the polarizability by calculating the electron energy as a function of the
field strength. According to equation 3.3 when the electron energies are plotted
as a function of the field strength a parabola should appear. From this we fit
the second-degree polynomial thereby obtaining the polarizability.

3.4 Results

The script used for the calculations is presented in appendix C.2
During the project we have tried to calculate the polarizabilities of the ele-

ments. However we have only managed to get a decent result when working with
Hydrogen. We know that the error is caused by the fact that the Coulomb and
exchange matrix elements were not correctly calculated. However when dealing
with Hydrogen they effectively vanish, which is why we, when cancelling these

3.4. RESULTS 25

−0.0015 −0.0010 −0.0005 0.0000 0.0005 0.0010 0.0015

Electric field strength, E / a.u.

−0.000007

−0.000006

−0.000005

−0.000004

−0.000003

−0.000002

−0.000001
E

ne
rg

ie
s,

E
/H

ar
tr

ee
−4.99947×10−1

Energy levels with applied external electric field
Results for Z = 1, Hydrogen

Figure 3.1: Plot of electron energies as a function of a static field strength for a
hydrogen atom.

integrals, obtained reasonably results for the polarizability of Hydrogen. A plot
of the electron energies as a function of the field strength of hydrogen can be
seen in figure 3.1. From his plot we have obtained a polarizability for hydrogen
of 4.47a3

0. The actual value is 4.50a3
0 [10]. When trying to calculate the polariz-

ability of the next element Helium we already see deviations of about 300%. We
conclude therefore that our Coulomb and exchange matrix elements are wrong.

However since we are not able to calculate the polarizability of the other
atoms, we instead try to improve the calculations on Hydrogen. We do this by
increasing the basis size by adding two smaller exponents to the wave functions.
These additions are respectively one half and quarter of the smallest exponent
of the used basis. By doing this the calculated polarizability of Hydrogen be-
comes 4.50a3

0. We can thereby conclude that we have managed to calculate the
polarizability of Hydrogen to an acceptable accuracy.

26 CHAPTER 3. POLARIZABILITY CALCULATIONS

Chapter 4

Implementation for
molecules

Now that the electron energy of the elements and some ions have been calculated,
it is time to implement the Hartree-Fock theory to calculate electronic energies
and bond length of different molecules. In this chapter the bond length of
diatomic molecules consisting of atoms with electrons orbiting in s-orbitals will
be calculated. The chapter will not only present the results but also try to
discuss and explain the flaws and inaccuracy of the calculations. As in chapter
2 we need to calculate the matrix elements of the theory.

4.1 Calculation of molecular matrix elements

This section aims to present a derivation of a method used to analytically evalu-
ate the given integrals present in the molecular Hartree-Fock calculations of the
project. The analytical expressions will be given for un-normalised Cartesian
Gaussian functions. This section is based on [8].

Strategy

The strategy of the analytical derivation is to rewrite the Cartesian Gaussian
functions in such a way that the given integrals, one needs to compute is done
over a simple Gaussian function, that of an s-type Gaussian orbital. In order to
determine the higher Gaussian orbitals appropriate operators are then used on
these integrals. The method of this chapter uses the Gaussian Product Theorem
described in section 2.1. Furthermore the Gaussian functions are rewritten with
the use of Hermite polynomials which are described in appendix B.

The Hermite polynomials are given by

Hn (x) = n!

b 12nc∑
m=0

(−1)m(2x)n−2m

m! (n− 2m)!
. (4.1)

The expansion of a given monomial in term of a Hermite polynomial is given

27

28 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

by

xn =
n!

2n

b 12nc∑
m=0

Hn−2m(x)

m! (n− 2m)!
. (4.2)

Furthermore the Rodrigues’ formula regarding Hermite polynomials reads

Hn (x) =
(−1)n

exp(−x2)

dn

dxn
e−x

2

. (4.3)

Using equations 4.1 to 4.3 a given Gaussian orbital may be written as a product
of a appropriate operator and a Gaussian function exemplified here with the
x-component of an arbitrary Gaussian Type Orbital

(x−Ax)
l

e−b(x−Ax)2 =
l!

2l

b 12 lc∑
i=0

1

i! (l − 2i)!bl−i
∂l−2i

∂Axl−2i
e−b(x−Ax)2 (4.4)

Using these equations as foundation it is possible to derive the analytical ex-
pression of the molecular matrix elements.

Analytical derivations of the elements

In this section the matrix elements will be derived using the x-component of
an arbitrary Gaussian orbital as an example in the overlap, kinetic, nuclear
attraction and electron repulsion integral. During the derivation it is assumed
that the electron states may be described by the following four un-normalized
Gaussian orbitals

φA (r) = (x−Ax)
l1 (y −Ay)

n1 (z −Az)m1 e−b1(r−A)2 (4.5)

φB (r) = (x−Bx)
l2 (y −By)

n2 (z −Bz)m2 e−b2(r−B)2 (4.6)

φC (r) = (x− Cx)
l3 (y − Cy)

n3 (z − Cz)m3 e−b3(r−C)2 (4.7)

φD (r) = (x−Dx)
l4 (y −Dy)

n4 (z −Dz)m4 e−b4(r−D)2 (4.8)

The overlap integral

The overlap integral is defined as

〈A |B 〉 =

∫ ∞
−∞

φA (r)φB (r) dr. (4.9)

Using the Gaussian product theorem and equation 4.4 the x-component of an
arbitrary overlap may be written

〈A |B 〉x =
l1!l2!

2l1+l2

b 12 l1c∑
i1=0

b 12 l2c∑
i2=0

(i1!i2!(l1 − 2i1)!(l2 − 2i2)!bl1−i11 bl2−i22)
−1

× ∂l1−2i1

∂Axl1−2i1

∂l2−2i2

∂Bxl2−2i2
e−ηp(Ax−Bx)2 . (4.10)

4.1. CALCULATION OF MOLECULAR MATRIX ELEMENTS 29

Using equations 4.1 and 4.3 the derivatives with the respect to atom positions
are found to be

∂k1

∂Axk1
∂k2

∂Bxk2
e−ηp(Ax−Bx)2 =(−1)kη

1
2k
p Hk (

√
ηp (Ax−Bx)) e−ηp(Ax−Bx)2

=(−1)kk!

1
2k∑
i=0

(−1i)2k−2iηk−ip (Ax−Bx)
k−2i

i!(k − 2i)!

× e−ηp(Ax−Bx)2 , (4.11)

where k = k1 + k2. If the same in done for the y and z component any overlap
matrix element may be written as

〈A |B 〉 =

(
π

γp

)3/2

e−ηp(A−B)2
∑
i1,i2,o

Sx
∑
j1,j2,p

Sy
∑
k1,k2,q

Sz, (4.12)

where

∑
i1,i2,o

Sx =
(−1)l1 l1!l2!

γl1+l2
p

b 12 l1c∑
i1=0

b 12 l2c∑
i2=0

b 12 Ωc∑
o=0

(−1)oΩ!bl2−i1−2i2−o
1 bl1−2i1−i2−o

2

4i1+i2+oi1!i2!o!

× γ
2(i1+i2)+o
p (Ax−Bx)

Ω−2o

(l1 − 2i1)!(l2 − 2i2)!(Ω− 2o)!
, (4.13)

where Ω = l1 + l2 − 2(i1 + i2). Sy and Sz are defined in a similar manner.

Kinetic integral

The kinetic integral is a one-electron term and is defined as〈
A
∣∣∣−1

2
∇2
∣∣∣B〉 = −1

2

∫ ∞
−∞

φA∇2φBdr. (4.14)

Applying the Laplacian to the second Gaussian orbital any x-component may
be written

−1

2
∇2 (x−Bx)

l2 e−b2(x−Bx)2 = e−b2(x−Bx)2

×
(
b2 (2l2 + 1) (x−Bx)

l2 − 2b22 (x−Bx)
l2+2

− 1

2
l2 (l2 − 1) (x−Bx)

l2−2

)
(4.15)

In this way the kinetic integral is written as a sum of individual overlap integrals
each with different angular momenta. Using this fact the kinetic integral of any
Gaussian orbitals is found to be〈

A
∣∣∣−1

2
∇2
∣∣∣B〉 =

1

2

(
b2 (4 (l2 +m2 + n2) + 6) 〈A |B 〉

− 4b22 (〈A |B, l2 + 2 〉+ 〈A |B,m2 + 2 〉+ 〈A |B,n2 + 2 〉)
− l2 (l2 − 1) 〈A |B, l2 − 2 〉 −m2 (m2 − 1) 〈A |B,m2 − 2 〉

−m2 (m2 − 1) 〈A |B,m2 − 2 〉
)
, (4.16)

30 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

where the notation

|B, l2 + 2〉 = (x−Bx)
l2+2

(y −By)
n2 (z −Bz)m2 e−b1(r−B)2 (4.17)

has been used.

Nuclear attraction integral

Using the notation rc = ‖r − rc‖ the nuclear attraction integral can be defined
as 〈

A
∣∣∣−Zc

rc

∣∣∣B〉 = −Zc
∫ ∞
−∞

φA
1

rc
φBdr (4.18)

By using the known integral result

1

2

√
π

a
=

∫ ∞
0

e−ax
2

dx, (4.19)

the denominator of equation 4.18 may be written as

1

‖r − rc‖
=

2√
π

∫ ∞
0

e−u
2(r−rc)2du. (4.20)

equation 4.18 may then be written as〈
A
∣∣∣−Zc

rc

∣∣∣B〉 =− 2Zc√
π

∫ ∞
−∞

∫ ∞
0

e−b1(r−A)2−b2(r−B)2−u2(r−rc)2dudr

=
2Zc√
π

e−ηp(A−B)2
∫ ∞

0

e−γpP
2−u2r2

cdu

×
∫ ∞
−∞

e−(γp+u2)r2+2(γpP+u2rc)rdr (4.21)

where the Gaussian product theorem has been used. The last integral in equa-
tion 4.21 can be solved by using the relation∫ ∞

0

e−(au2+2bu+c)du =

√
π

4a

(
1− Φ

(
b√
a

))
e(b2−ac)/a,

which implies ∫ ∞
−∞

e−(au2+2bu)du =

√
π

a
e(b2)/a. (4.22)

Using this relation 4.21 becomes〈
A
∣∣∣−Zc

rc

∣∣∣B〉 = −2πZc e−ηp(A−B)2
∫ ∞

0

(γp + u2)
−3/2

e−γpu
2(P−rc)2/(γp+u2)

(4.23)
By a change of variables to

t2 = u2 (γp + u2) ⇒ du =
(γp + u2)

3/2

γp
dt, (4.24)

4.1. CALCULATION OF MOLECULAR MATRIX ELEMENTS 31

using these the new limits of the integral are obvious and equation 4.21 becomes〈
A
∣∣∣−Zc

rc

∣∣∣B〉 = −2πZc
γp

e−ηp(A−B)2
∫ 1

0

e−γp(P−rc)2t2dt. (4.25)

From here we identify that the expression is similar to equation 4.10 but with
two functions to differentiate. The differentiation of exp(−ηp (A−B)

2
) is

found earlier, and by using Leibniz’s theorem for differentiating a product the
x-component of the differentiation of the integral becomes

∂j1

∂Aj1x

∂j2

∂Bj2x

∫ 1

0

e−γp(P−rc)2t2dt =bj11 b
j2
2 j!

b 12 jc∑
u=0

(−1)j+u2j−2u(Px − rcx)j−2u

u!(j − 2u)!γup

×
∫ 1

0

t2(j−u) e−γp(P−rc)2t2dt, (4.26)

where j = j1 + j2. The last integral also appears for the y− and z-components,
and can be evaluated by

Fν(u) =

∫ 1

0

t2ν e−ut
2

dt =
(2ν)!

2ν!

(√
π

4νuν+1/2
Φ(
√
u)−

ν−1∑
k=0

(ν − k)!

4k(2ν − 2k)!uk+1

)
.

(4.27)
Using this equation 4.26 may be written

∂j1

∂Aj1x

∂j2

∂Bj2x

∫ 1

0

e−γp(P−rc)2t2dt =bj11 b
j2
2 j!

b 12 jc∑
u=0

(−1)j+u2j−2u(Px − rcx)j−2u

u!(j − 2u)!γup

× Fj−u (γp (P − rc)2
) (4.28)

From this, one can find that the complete expression for the nuclear attraction
integral is given by〈

A
∣∣∣−Zc

rc

∣∣∣B〉 =− 2πZc
γp

e−ηp(A−B)2
∑
i1,i2,
o1,o2,
r,u

Ax
∑
j1,j2,
p1,p2,
s,v

Ay

×
∑
k1,k2,
q1,q2,
t,w

Az2Fν (γp (P − rc)2
) , (4.29)

where

γp = b1 + b2, ηp =
b1b2
γp

, P =
1

γp
(b1A+ b2B) (4.30)

and ∑
i1,i2,
o1,o2,
r,u

Ax =(−1)l1+l2 l1!l2!
∑
i1

∑
i2

∑
o1

∑
o2

∑
r

(−1)o2+r(o1 + o2)!

4i1+i2+ri1!i2!o1!o2!r!

× bo2−i1−r1 bo1−i2−r2 (Ax −Bx)o1+o2−2r

(l1 − 2i1 − o1)!(l2 − 2i2 − o2)!(o1 + o2 − 2r)!

×
∑
u

(−1)uµx!(Px − rcx)µx−2u

4uu!(µx − 2u)!γo1+o2−r+u
p

, (4.31)

32 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

where µx = l1 + l2 − 2(i1 + i2)− o1 − o2 and ν = µx + µy + µz − u− v −w. Ay
and Az are defined in a similar way for the y− and z-components. The limits
of the sums are

i1 = 0→
⌊1

2
l1

⌋
, i2 = 0→

⌊1

2
l2

⌋
, o1 = 0→ l1 − 2i1,

o2 = 0→ l1 − 2i2, r = 0→
⌊1

2
(o1 + o2)

⌋
, u = 0→

⌊1

2
µx

⌋
.

Coulomb and Exchange integrals

Both the Coulomb and exchange integrals are so-called two-electron integrals.
In order to calculate them we present them as an electron repulsion integral
defined as〈

A,C
∣∣∣ 1

r12

∣∣∣B,D〉 =

∫ ∞
−∞

∫ ∞
−∞

φA(r1)φC(r1)φB(r2)φD(r2)

|r1 − r2|
dr1dr2 (4.32)

By appropriate modification of basis coefficients one can create both the Coulomb
and the exchange integral from equation 4.32. To solve the integral the denom-
inator is found in a similar way as in equation 4.20 and using the Gaussian
product theorem and some rewriting to use the function in equation 4.22 the
integral can be written〈

A,C
∣∣∣ 1

r12

∣∣∣B,D〉 =
2√
π

e−ηp(A−B)2 e−ηq(C−D)2

×
∫ ∞

0

∫ ∞
−∞

∫ ∞
−∞

e−u
2r2

2−γpP−γq(r2−Q)2

× e−((γp+u2)r2
1−2(γpP+u2r2)·r1)dr1dr2du, (4.33)

where

γp = b1 + b2, γq = b3 + b4, ηp =
b1b2
γp

, ηq =
b3b4
γq

,

P =
1

γp
(b1A+ b2B) , Q =

1

γq
(b3C + b4D) .

To use equation 4.22 we identify a = γp + u2 and b = γpP + u2r2 and after
integration over r1 the integral becomes〈

A,C
∣∣∣ 1

r12

∣∣∣B,D〉 =2π e−ηp(A−B)2 e−ηq(C−D)2

×
∫ ∞
−∞

∫ ∞
0

(γp + u2)
−3/2

e(γpP+u2r2)
2
/(γp+u2)

× e−u
2r2

2−γq(r2+Q)2dudr2. (4.34)

Again to use equation 4.22 we rearrange such that a = (γpγq+(γp+γq)u
2)/(γp+

u2) and b = (γpu
2P + (γp +u2)γqQ)/(γp +u2) and after integration over r2 we

4.1. CALCULATION OF MOLECULAR MATRIX ELEMENTS 33

obtain

〈
A,C

∣∣∣ 1

r12

∣∣∣B,D〉 =
2π5/2

(γp + γq)3/2
e−ηp(A−B)2 e−ηq(C−D)2

×
∫ ∞

0

(η + u2)−3/2 e−ηu
2(P−Q)2/(η+u2)du, (4.35)

with η =
γpγq
γp+γq

. By changing variables to t2 = u2

η+u2 we can write

〈
A,C

∣∣∣ 1

r12

∣∣∣B,D〉 =
2π5/2

γpγq(γp + γq)1/2
e−ηp(A−B)2 e−ηq(C−D)2

∫ 1

0

e−ηt
2(P−Q)2dt.

(4.36)

In a similar fashion as with the nuclear attraction integral the x-component of
the differentiation of the last integral becomes

∂j1

∂Aj1x

∂j2

∂Bj2x

∂j3

∂Cj3x

∂j4

∂Dj4
x

∫ 1

0

e−ηt
2(P−Q)2dt

=
bj11 b

j2
2 b

j3
3 b

j4
4

γj1+j2
p γj3+j4

q

j!

b 12 jc∑
u=0

(−1)u+j1+j2(Px −Qx)j−2uηj−u

u!(j − 2u)!

× Fj−u (η(P −Q)2) , (4.37)

with j = j1 + j2 + j3 + j4 and similar for the y− and z−component. Since
the differentiation of exp(−ηq (C −D)

2
) is similar to the differentiation of

exp(−ηp (A−B)
2
) the complete solution to the electron repulsive integral be-

comes

〈
A,C

∣∣∣ 1

r12

∣∣∣B,D〉 =
π5/2

γpγq
√
γp + γq

e−ηp(A−B)2 e−ηq(C−D)2

×
∑

i1,i2,i3,i4,
o1,o2,o3,o4,
r1,r2,u

Jx
∑

j1,j2,j3,j4,
p1,p2,p3,p4,
s1,s2,v

Jy
∑

k1,k2,k3,k4,
q1,q2,q3,q4,
t1,t2,w

Jz

× 2Fν(η(P −Q)2), (4.38)

where

γp = b1 + b2, γq = b3 + b4, ηp =
b1b2
γp

, ηq =
b3b4
γq

,

P =
1

γp
(b1A+ b2B) , Q =

1

γq
(b3C + b4D) , η =

γpγq
γp + γq

,

34 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

and ∑
i1,i2,i3,i4,
o1,o2,o3,o4,
r1,r2,u

Jx =
(−1)l1+l2 l1!l2!

γl1+l2
p

∑
i1

∑
i2

∑
o1

∑
o2

∑
r1

(−1)o2+r1(o1 + o2)!

4i1+i2+r1i1!i2!o1!o2!r1!

× bo2−i1−r11 bo1−i2−r12 γ
2(i1+i2)+r1
p (Ax −Bx)o1+o2−2r1

(l1 − 2i1 − o1)!(l2 − 2i2 − o2)!(o1 + o2 − 2r1)!

× l3!l4!

γl3+l4
q

∑
i3

∑
i4

∑
o3

∑
o4

∑
r2

(−1)o3+r2(o3 + o4)!

4i3+i4+r2i3!i4!o3!o4!r2!

× bo4−i3−r23 bo3−i4−r24 γ
2(i3+i4)+r2
q (Cx −Dx)o3+o4−2r2

(l3 − 2i3 − o3)!(l4 − 2i4 − o4)!(o3 + o4 − 2r2)!

×
∑
u

(−1)uµx!ηµx−u(Px −Qx)µx−2u

4uu!(µx − 2u)!
, (4.39)

where

µx = l1 + l2 + l3 + l4 − 2(i1 + i2 + i3 + i4)− o1 − o2 − o3 − o4

ν = µx + µy + µz − u− v − w.
The limits of the sums are given by

i1 = 0→
⌊1

2
l1

⌋
, i2 = 0→

⌊1

2
l2

⌋
, i3 = 0→

⌊1

2
l3

⌋
,

i4 = 0→
⌊1

2
l4

⌋
, o1 = 0→ l1 − 2i1, o2 = 0→ l2 − 2i2, o3 = 0→ l3 − 2i3,

o4 = 0→ l4 − 2i4, r1 = 0→
⌊1

2
(o1 + o2)

⌋
,

r2 = 0→
⌊1

2
(o3 + o4)

⌋
, u = 0→

⌊1

2
µx

⌋
The y− and z-components are calculated in a similar manner.

4.2 Procedure

Using the matrix elements and the Born-Oppenheimer approximation we try to
calculate the bond length of a few molecules. These molecules are: H2, HeH,
LiH, He2 and Li2. In the calculations we have used much of the same procedure
as we did in chapter 2. However since the electron configuration is different for
the molecules we have changed the interactions such that the configuration of
the molecules behaves accordingly to the Aufbau Principle. So in principle we
just place two atoms at a distance away from each other and then use the matrix
elements of the appropriate molecule. To further simplify the calculations we
always place one of the atoms in origin and the other along the z−axis such that
the distance between the atoms only depend on one parameter. The positions
of the molecules can be seen in figure 4.1

The results are shown as plots of the electronic energy and the potential
energy function as a function of the internuclear distance in the next section

4.3. RESULTS 35

A

x

y

R

B
z

Figure 4.1: A diatomic molecule with nuclei centered at A and B. The internu-
clear axis is chosen as the z-axis.

4.3 Results

Here we show the calculations of the electron energy and potential energy func-
tions as a function of the internuclear distance of the molecules H2, HeH, LiH,
He2 and Li2.

The scripts used to perform the calculations can be found in appendix C.3

0 1 2 3 4 5 6 7 8
R / Bohr radii

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

E
ne

rg
y

/H
ar

tr
ee

Electron energy and effective potentials for H2

E

V

Rmin = 1.38 Bohr

Figure 4.2: Electron energy and potential energy function as a function of in-
ternuclear distance for H2. The bond length is marked with a red cross.

36 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

0 2 4 6 8 10 12
R / Bohr radii

-8

-7

-6

-5

-4

-3

-2

E
ne

rg
y

/H
ar

tr
ee

Electron energy and effective potentials for HeH

E

V

Rmin = 9.36 Bohr

Figure 4.3: Electron energy and potential energy function as a function of in-
ternuclear distance for HeH. The bond length is marked with a red cross.

0 1 2 3 4 5 6 7 8
R / Bohr radii

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

E
ne

rg
y

/H
ar

tr
ee

Electron energy and effective potentials for LiH

E

V

Rmin = 3.13 Bohr

Figure 4.4: Electron energy and potential energy function as a function of in-
ternuclear distance for LiH. The bond length is marked with a red cross.

4.4. DISCUSSION 37

0 2 4 6 8 10 12
R / Bohr radii

-35

-30

-25

-20

-15

E
ne

rg
y

/H
ar

tr
ee

Electron energy and effective potentials for Li2

E

V

Rmin = 7.62 Bohr

Figure 4.5: Electron energy and potential energy function as a function of in-
ternuclear distance for Li2. The bond length is marked with a red cross.

0 2 4 6 8 10 12
R / Bohr radii

-14

-12

-10

-8

-6

-4

E
ne

rg
y

/H
ar

tr
ee

Electron energy and effective potentials for He2

E

V

Rmin = 7.9 Bohr

Figure 4.6: Electron energy and potential energy function as a function of in-
ternuclear distance for He2. The bond length is marked with a red cross.

4.4 Discussion

This section aims to discuss the results of the calculation of the electron energy
and the potential energy functions of the different molecules.. At first we study
the electron energies of the molecule. In all the molecules the total electron
energy graphs have shape as expected. However as the internuclear distance

38 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

tends towards infinity we notice that the energy gets above the sum of the
electron energy of the atoms of which the molecule is composed. Hereby goes
the electron energy of H2 above two times the energy of the hydrogen atom
which is −0.4999 Ha, and similar for the other molecules. This result is a
known mathematical flaw of the Hartee-Fock method as the used basis only
uses coupled molecular orbitals. For large R the constituent atoms should tend
to dissociate into separated atoms but our basis does not allow that. In the
other limit as the distance tends towards zero the results obey our expectations.
In this limit the electron energy tends towards the electron energy of the atom
which has the same number of electrons as the molecule. This is of course
expected since at R = 0 the problem basically becomes a central field problem
as the one solved for the atoms.

When studying the potential energy function of the molecules also these look
as expected. The limit value of the potential energy function as R→∞ should
be the same as the electron energy since the nuclear repulsion term tends to
zero as the internuclear distance tends towards infinity. The nuclear repulsion
term is also responsible for the limit of the potential energy functions as the
internuclear distance tends to zero. In this limit the potential energy tends to
infinity because of the repulsion of the positive nucleus. The most interesting
thing to gather from the potential energy functions is the bond length of the
molecules, which per definition is the distance at which the potential energy
function reaches a minimum. However in the figures of section 4.3 it is difficult
to see the exact minimum, so here we bring figures where the minimum of the
potential energy functions of the molecules He2, LiH and Li2 are highlighted.

2 4 6 8 10 12
R / Bohr radii

-5.730

-5.725

-5.720

-5.715

-5.710

-5.705

-5.700

E
ne

rg
y

/H
ar

tr
ee

Electron energy and effective potentials for He2

V

Rmin = 7.9 Bohr

Figure 4.7: Plot showing the minimum potential energy function and bond
length of He2

4.4. DISCUSSION 39

1 2 3 4 5 6 7 8
R / Bohr radii

-7.98

-7.97

-7.96

-7.95

-7.94

-7.93
E

ne
rg

y
/H

ar
tr

ee
Electron energy and effective potentials for LiH

V

Rmin = 3.13 Bohr

Figure 4.8: Plot showing the minimum potential energy function and bond
length of LiH

2 4 6 8 10 12
R / Bohr radii

-14.88

-14.86

-14.84

-14.82

-14.80

-14.78

E
ne

rg
y

/H
ar

tr
ee

Electron energy and effective potentials for Li2

V

Rmin = 5.41 Bohr

Figure 4.9: Plot showing the minimum potential energy function and bond
length of Li2

The figures clearly show the potential well causing a specific bond length for
the molecules LiH and Li2. We notice however that in the HeH molecule the
potential energy function does not form a specific potential well, thereby causing
a very weak bonding between the Hydrogen and the Helium atoms. The same
is seen when the potential energy function of He2 is studied. This finding agrees
with the fact that Helium is an inert gas. The bond lengths of the molecules

40 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

can be found summarized in the following table.

Molecule Our Re Referrence Re [4]

H2 1.38 1.4011
HeH 9.36 -
LiH 3.13 3.015
He2 7.9 5.61
Li2 5.41 5.051

Table 4.1: Calculated and actual bond length of the molecules from [4]. All
units are in Bohr radii.

We notice that the bond lengths in general are calculated fairly well with
the exceptions of the molecules containing the Helium atom.

In order to compare the results of the calculations on another parameter
than the bond length, the next section aims to calculate the vibrational states
of the molecules in order to compare the calculated dissociation energy with
experimental values.

4.5 Vibrational states

The dissociation energy is defined as the energy of the lowest electron energy
and the limit value of the potential energy functions as R approaches infinity.
In order to compare the calculations using the dissociation energy we first need
to find the vibrational states of the molecules. Introducing a coordinate shift of
the constituent atoms of the molecule and describing their positions in terms of
the translational motion of their centre of mass as well as their relative motion
with respect to each other, the relative motion can be separated in both a
rotational and a vibrational Schrödinger equation [3]. The one of interest here
is the vibrational one

−~2

2µ

d2φ(x)

dx2
+ V (x)φ(x) = Evibφ(x), (4.40)

where µ = M1M2

M1+M2
is the reduced mass of the nuclei and V (x) is the effective

potential given by the solution to the Hartree-Fock equations of this particular
molecule. x if the difference from the positions of the nuclei to the equilibrium
distance.

Now, in order to solve the Schrödinger equation consider trial functions of
the form

φ =
∑
m

cmχm, (4.41)

where χn form a complete orthogonal set as solutions to the Schrödinger equa-
tion without the potential

− ~
2µ

d2χm (x)

dx2
= Emχm (x) , (4.42)

4.5. VIBRATIONAL STATES 41

with eigenvalues Em. Assuming all χm to be normalised the orthogonality
condition requires that

〈χm |χn 〉 = δmn, (4.43)

which will be exploited later on. By substituting equation 4.41 into equation
4.40 we get {

− ~
2µ

d2

dx2
+ V (x)

}∑
m

cmχm = Evib

∑
m

cmχm, (4.44)

of which we can multiply by the complex conjugate of φ and integrate yielding∑
n

∑
m

c∗ncm 〈χn |T̂ + V (x)|χm〉 =
∑
n

∑
m

Evibc
∗
ncm 〈χn |χm 〉. (4.45)

The left side of this equation can be split up into two component whereas the
first component becomes〈

χn

∣∣∣∣− ~
2µ

d2

dx2

∣∣∣∣χm〉 = Em 〈χn |χm 〉 = Emδnm, (4.46)

and the second part becomes just

〈χn |V (x)|χm〉 =

∫
χ∗nV (x)χmdx ≡ Vnm. (4.47)

Equation 4.45 can in fact be described by a matrix equation

Hc = Evibc, (4.48)

of which the elements Hnm = Emδnm + Vnm can be evaluated by applying
functions that obey equation 4.42. By raising two infinitely tall potential walls
in the potential, one close to x = −Re and another wall on the other side of the
quantum well, the trial functions can be thought of as standing sine waves as
in an infinitely deep quantum well yielding

χn (x) = (2/d)
1/2

sin
nπx

d
, n = 1, 2, 3, 4, 5, ... (4.49)

where d is the distance between the raised quantum walls and χn is normalised.
Substituting χn into equation 4.42 gives rise to the eigenvalues

En =
1

2µ

(nπ
d

)2

. (4.50)

After which only Vnm stands to be numerically evaluated.
The script used for the calculations is presented in appendix C.4
Results are given in figures 4.10, 4.11 and 4.12. Dissociation energies are

given from the bottom of the quantum well, De, and from the lowest vibrational
state, D0. Furthermore the lowest vibrational transition is given, ωe. All units
are in Hartrees. Wave functions are normalised arbitrarily to fit the energy
scale. The dissociation energies are found with respect to the sum of the single-
atom energies of the molecules. The energy scale has been shifted so that this

42 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

0.5 1.0 1.5 2.0 2.5 3.0

R / Bohr radii

− 0.12

− 0.10

− 0.08

− 0.06

− 0.04

− 0.02

0.00

E
n
e
rg
y
 /
 H
a
rt
re
e

Vibrational states for H2
 De =0.12847. D0 =0.11809. ωe =0.019929.

Figure 4.10: Vibrational states for H2. All energy units are in Hartrees. Wave
functions are normalised arbitrarily to fit the energy scale. The dissociation
energies are found with respect to the sum of the single-atom energies of the
molecules. The energy scale has been shifted so that this sum og the single-atom
energies is zero.

sum of the single-atom energies is zero. The mass of the Hydrogen nucleus is
taken to be mH = 1836me, where me is the mass of an electron. The Lithium
atom is taken to be 7mH as it most often consists of 3 protons and 4 neutrons.

The Dihydrogen molecule exhibits 7 vibrational states, but we note that the
net potential exceeds the sum of single-atom energies. The quantum well is
therefore expected to be too shallow and there may be more vibrational states.
This is confirmed by the dissociation energy, D0, which is found to be 0.11809
Hartree. For comparison [4] found this value to be 0.16457 Hartree. This
confirms the suspicion of the quantum well being too shallow. The ωe value of
[4] is 0.01057 Hartree, which suggests a wider quantum well than ours, since
narrow quantum wells result in rotational states farther apart.

The LiH molecule exhibits 11 vibrational states and compared to the disso-
ciation energy, D0, of [4] of 0.08926 Hartree, our result of 0.03636 Hartree is far
from accurate. This looks like the case of the H2 molecule and can be explained
accordingly.

The Li2 molecule exhibits some unexpected properties. The energies of the
potential lies above the reference energy of the sum of single-atom energies. This
suggests no bound state for this molecule, but a bound state is documented by
[4] with a dissociation energy of 0.03844 Hartree. This behaviour needs further
research.

4.5. VIBRATIONAL STATES 43

2 3 4 5 6 7

R / Bohr radii

− 0.040

− 0.035

− 0.030

− 0.025

− 0.020

− 0.015

− 0.010

− 0.005

0.000

E
n
e
rg
y
 /
 H
a
rt
re
e

Vibrational states for LiH
 De =0.03937. D0 =0.03636. ωe =0.0059.

Figure 4.11: Vibrational states for LiH. All energy units are in Hartrees. Wave
functions are normalised arbitrarily to fit the energy scale. The dissociation
energies are found with respect to the sum of the single-atom energies of the
molecules. The energy scale has been shifted so that this sum og the single-atom
energies is zero.

2 4 6 8 10 12

R / Bohr radii

0.00

0.01

0.02

0.03

0.04

0.05

E
n
e
rg
y
 /
 H
a
rt
re
e

Vibrational states for Li2
 De =-0.00318. D0 =-0.00387. ωe =0.001388.

Figure 4.12: Vibrational states for Li2. All energy units are in Hartrees. Wave
functions are normalised arbitrarily to fit the energy scale. The dissociation
energies are found with respect to the sum of the single-atom energies of the
molecules. The energy scale has been shifted so that this sum og the single-atom
energies is zero.

44 CHAPTER 4. IMPLEMENTATION FOR MOLECULES

4.6 Conclusion

In this chapter the electronic energy as a function of the internuclear distance
as well as the potential energy functions of different diatomic molecules have
been calculated. The calculations yielded an electronic energy function that
behaves according to our expectations of all the molecules. The behaviour of
the potential energy function also matches our expectations and the calculated
bond length agrees quite well to experimental data. The results of the molecules
HeH and He2 shows very weak bondings and long bond lengths agreeing to
the fact that Helium is an inert gas. When comparing the calculations with
experimental data of the dissociations energy the picture is very different. In
these calculations the agreement between theory and experimental results is
very low. In the molecules H2 and LiH the disagreement is due to a flaw of
the Hartree-Fock method where the energy scale exceeds the sum of the single-
atom energies thereby resulting in a wrong shaped quantum well. However in
the molecule Li2 it is noticed that the potential energy functions does not reach
below the sum of the single-atom energies thereby not encouraging to a bond
formation.

Chapter 5

Conclusion

The aim of this project was to calculate the electron and potential energy func-
tions of diatomic molecules using the Hartree-Fock method. In this report the
theory behind the Hartree-Fock method is derived, explained and the imple-
mentation through Hartree-Fock-Roothaan equations has been presented.

Using Gaussian-type orbitals the theory was implemented in calculation of
the electron energy of the elements. To ensure convergence of the Self Consistent
Field procedure, Pulay mixing was implemented. To demonstrate the Hartree-
Fock method of central field problems it was used to calculate the electron
energy of neutral atoms from Z = 1 through Z = 103, as well as for anions
and cations of the 52 first elements with good accuracy. The deviations of the
calculations are mostly due to the spherical average approximation adapted in
the method. However the inaccuracy of the ionic calculations may be caused by
the not fully optimised basis functions.

Using the electron energy of the elements the project sought to calculate the
polarizability of the elements using the Hartree-Fock method. We were unable
to compute good results but we suspect this is due to the Coulomb and exchange
matrices. This needs further research.

Finally the Hartree-Fock method was implemented for diatomic molecules.
Cartesian Gaussian basis functions were used to calculate the molecular matrix
elements analytically. Using these matrix elements the energy functions and po-
tential energy functions of the molecules H2, HeH, He2, LiH and Li2 were calcu-
lated. The calculations yielded ambiguous results. The calculated bond lengths
showed reasonable agreements to experimental results whereas comparisons in
dissociation energies and vibrational states yielded unacceptable precision.

45

46 CHAPTER 5. CONCLUSION

Appendix A

Matrix elements for atomic
calculations

This appendix contains the Coulomb and exchange matrix elements used in the
atomic calculations. The following has been computed using Wolfram Mathe-
matica 10. Each basis function, φiµ, where µ contains the significant quantum
numbers of the electron, consists of the radial Gaussian basis and an angular
part. Let the angular part be determined by the azimuthal quantum number
and the respective Gaussian basis function by the Gaussian coefficient.

A.1 The coulomb elements

Introducing the notation

Jnli,nlj = 〈φi,nliφj,nlj |Ĵ |φi′,n′l′i
φj′,n′l′j

〉 , (A.1)

and the definitions p = bi + bj and q = bi′ + bj′ the Coulomb matrix elements
may be written:

Jns,ns =

√
π

8pq
√
p+ q

(A.2)

Jns,np =
3p+ 2q

2p(p+ q)
(A.3)

Jns,nd =
15p2 + 20pq + 8q2

4p2(p+ q)2
(A.4)

Jns,nf =
3 (35p3 + 70p2q + 56pq2 + 16q3)

8p3(p+ q)3
(A.5)

47

48 APPENDIX A. MATRIX ELEMENTS FOR ATOMIC CALCULATIONS

Jnp,ns =
2p+ 3q

2q(p+ q)
(A.6)

Jnp,np =
3 (2p2 + 5pq + 2q2)

4pq(p+ q)2
(A.7)

Jnp,nd =
3 (10p3 + 35p2q + 28pq2 + 8q3)

8p2q(p+ q)3
(A.8)

Jnp,nf =
3 (70p4 + 315p3q + 378p2q2 + 216pq3 + 48q4)

16p3q(p+ q)4
(A.9)

Jnd,ns =
8p2 + 20pq + 15q2

4q2(p+ q)2
(A.10)

Jnd,np =
3 (8p3 + 28p2q + 35pq2 + 10q3)

8pq2(p+ q)3
(A.11)

Jnd,nd =
15 (8p4 + 36p3q + 63p2q2 + 36pq3 + 8q4)

16p2q2(p+ q)4
(A.12)

Jnd,nf =
15 (56p5 + 308p4q + 693p3q2 + 594p2q3 + 264pq4 + 48q5)

32p3q2(p+ q)5
(A.13)

Jnf,ns =
3 (16p3 + 56p2q + 70pq2 + 35q3)

8q3(p+ q)3
(A.14)

Jnf,np =
3 (48p4 + 216p3q + 378p2q2 + 315pq3 + 70q4)

16pq3(p+ q)4
(A.15)

Jnf,nd =
15 (48p5 + 264p4q + 594p3q2 + 693p2q3 + 308pq4 + 56q5)

32p2q3(p+ q)5
(A.16)

Jnf,nf =
315 (16p6 + 104p5q + 286p4q2 + 429p3q3 + 286p2q4 + 104pq5 + 16q6)

64p3q3(p+ q)6

(A.17)

A.2 The exchange elements

For the exchange matrix elements we have that p = bi + bj′ and q = bj + bi′

Kns,ns =

√
π

8pq
√
p+ q

(A.18)

Knp,ns =
1

2(p+ q)
(A.19)

Knd,ns =
3

4(p+ q)2
(A.20)

Knf,ns =
15

8(p+ q)3
(A.21)

A.2. THE EXCHANGE ELEMENTS 49

Kns,ns =
1

2(p+ q)
(A.22)

Knp,ns =
2p2 + 7pq + 2q2

4pq(p+ q)2
(A.23)

Knd,ns =
4p2 + 23pq + 4q2

8pq(p+ q)3
(A.24)

Knf,ns =
3 (6p2 + 47pq + 6q2)

16pq(p+ q)4
(A.25)

Kns,ns =
3

4(p+ q)2
(A.26)

Knp,ns =
4p2 + 23pq + 4q2

8pq(p+ q)3
(A.27)

Knd,ns =
3 (8p4 + 40p3q + 99p2q2 + 40pq3 + 8q4)

16p2q2(p+ q)4
(A.28)

Knf,ns =
9 (8p4 + 52p3q + 193p2q2 + 52pq3 + 8q4)

32p2q2(p+ q)5
(A.29)

Kns,ns =
15

8(p+ q)3
(A.30)

Knp,ns =
3 (6p2 + 47pq + 6q2)

16pq(p+ q)4
(A.31)

Knd,ns =
9 (8p4 + 52p3q + 193p2q2 + 52pq3 + 8q4)

32p2q2(p+ q)5
(A.32)

Knf,ns =
9 (80p6 + 552p5q + 1698p4q2 + 3607p3q3 + 1698p2q4 + 552pq5 + 80q6)

64p3q3(p+ q)6

(A.33)

50 APPENDIX A. MATRIX ELEMENTS FOR ATOMIC CALCULATIONS

Appendix B

Hermite Polynomials

This appendix describe the Hermite polynomials used to calculate the molecular
matrix elements of the project. The section is written with the aid of [3] and
[7]. Solutions to the differential equation

∂2F

∂x2
− 2x

∂F

∂x
+ 2nF = 0 (B.1)

are called Hermite polynomials and are often denoted Hn(x). There are several
ways of calculating the Hermite polynomials like the independent definition

Hn(x) = (−1)n ex
2 ∂n

∂xn
e−x

2

. (B.2)

However they may also be calculated using the formula

Hn(x) =

bn/2c∑
k=0

(−1)kn!

k!(n− 2k)!
(2x)n−2k (B.3)

From these the first few Hermite polynomials can be found to be

H0(x) = 1 H1(x) = 2x H2(x) = 4x2 − 2 H3(x) = 8x2 − 12x (B.4)

When normalized the Hermite polynomials form an orthonormal set on the
interval (−∞,∞) such that

〈Hn |Hm 〉 =

∫ ∞
−∞

Hn(x)∗Hm(x)dx = δnm. (B.5)

Using the properties of the Hermite polynomials it is possible to analytically
solve quite difficult problems.

51

52 APPENDIX B. HERMITE POLYNOMIALS

Appendix C

Python code

C.1 Hartree Fock.py

1 ’’’
2 Created on Mar 3, 2015
3
4 @author: anders
5 ’’’
6 from Classes import LoadAtom , Atom
7 from numpy import dot , transpose , conj , divide , sqrt , add , zeros ,

multiply ,\
8 round , sum , copy , argmax
9 from scipy.linalg.decomp import eigh

10 from numpy.linalg.linalg import solve
11 from numpy.core.umath import subtract
12 from MatrixFunctions_Atoms import BuildTotalMatrices
13 from Petersson_Hellsing import BuildAtomicMatrices
14
15 def threedot(m1,m2 ,m3):
16
17 return dot(transpose(conj(m1)),dot(m2,m3))
18
19 def Normalise(c,S):
20
21 for i in range(len(c)):
22 norm = threedot(c[i],S,c[i])
23 c[i] = divide(c[i],sqrt(norm))
24
25 return c
26
27 def Eigenstates(H,S):
28
29 E,c = eigh(H,S)
30 c = transpose(c)
31 c = Normalise(c, S)
32
33 return E, c
34
35 def UpdateHF(NumberOfElectrons ,nList ,lList ,sList ,s,C,H0 ,J,K):
36
37 H = copy(H0)
38
39 for p in range(len(C[0])):
40 for q in range(p,len(C[0])):
41 Sum = 0
42 pold = 0
43 lold = 0
44 sold = 0
45 dH = 0
46 for e in range(NumberOfElectrons):
47 if(nList[e] != pold or\

53

54 APPENDIX C. PYTHON CODE

48 lList[e] != lold or\
49 sList[e] != sold):
50 dH = threedot(C[e], J[p][q], C[e])
51 if(sList[e] == s):
52 dH = dH - threedot(C[e], K[p][q], C[e])
53 pold = nList[e]
54 lold = lList[e]
55 sold = sList[e]
56 Sum = Sum + dH
57 H[p][q] = H0[p][q] + Sum
58 H[q][p] = H[p][q]
59
60 return H
61
62 def HartreeFock(H,S,J,K,MatrixIndices ,NumberOfElectrons ,

nList ,lList ,sList):
63
64 E = [None]* NumberOfElectrons
65 C0 = [None]* NumberOfElectrons
66 C = copy(C0)
67 Cpulay = [[]]* NumberOfElectrons
68 Esumold = 1
69 H0 = copy(H)
70
71 for it in range (100):
72 #print(it)
73 for s in range(-1,2,2):
74 if(it >0):
75 H = UpdateHF(NumberOfElectrons ,nList ,lList ,sList ,s,C,H0 ,J,K)
76 E0, c = Eigenstates(H,S)
77 OrbitalIndex = OrbitalAnalyser(E0 , c, MatrixIndices)
78 for e in range(NumberOfElectrons):
79 if(sList[e] == s):
80 E[e] = E0[OrbitalIndex[nList[e]][lList[e]]]
81 C0[e] = c[OrbitalIndex[nList[e]][lList[e]]]
82 if(C0[e] != None and C0[e][0] < 0):
83 C0[e] = multiply(-1,C0[e])
84 Cpulay , C = Pulay(Cpulay ,C0,S,NumberOfElectrons)
85 Esum = sum(E)
86 if(abs(Esum/Esumold -1) <1e-10):
87 break
88 Esumold = Esum
89
90 return H0, E, C
91
92 def CoefficientMix(C,C0 ,S,alpha =0.5):
93
94 if(C[0] == None):
95 return C0
96
97 for e in range(len(C)):
98 C[e] = add(multiply(alpha ,C0[e]),multiply(1-alpha ,C[e]))
99

100 C = Normalise(C, S)
101
102 return C
103
104 def Pulay(Cpulay ,C0,S,NumberOfElectrons):
105
106 for e in range(NumberOfElectrons):
107 tempCpulay = copy(Cpulay[e])
108 tempCpulay = tempCpulay.tolist ()
109
110 if(len(tempCpulay) < 5):
111 tempCpulay.append(C0[e])
112 else:
113 for i in range(len(tempCpulay) -1):
114 tempCpulay[i] = tempCpulay[i+1]
115 tempCpulay [-1] = C0[e]
116
117 if(len(tempCpulay)==5):
118 residual = list()
119 for k in range(len(tempCpulay) -1):
120 op = subtract(tempCpulay[k+1], tempCpulay[k])

C.1. HARTREE FOCK.PY 55

121 residual.append(op)
122
123 M = zeros([len(residual)+1,len(residual)+1])
124
125 for i in range(len(residual)+1):
126 for j in range(len(residual)+1):
127 if((i == len(residual) or j == len(residual)) and i != j):
128 M[i][j] = -1
129 elif(i == len(residual) and j == len(residual)):
130 M[i][j] = 0
131 else:
132 M[i][j] = dot(residual[i],residual[j])
133
134 N = zeros([len(residual)+1])
135 N[-1] = -1
136 x = solve(M,N)
137 tempC = 0
138 for i in range(len(tempCpulay)):
139 tempC = tempC+multiply(x[i],tempCpulay[i])
140
141 Cpulay[e] = tempCpulay
142 alpha = 0.5
143 C0[e] = add(multiply(alpha ,C0[e]),multiply(1-alpha ,tempC))
144
145 C = Normalise(C0, S)
146
147 return Cpulay , C
148
149 def TotalEnergy(Atom ,H,E,C):
150
151 Sum = 0
152 for e in range(Atom.Configuration.Z+Atom.Configuration.Ion):
153 Sum = Sum + E[e]
154 Sum = Sum + threedot(C[e], H, C[e])
155
156 return round(Sum/2,10)
157
158 def OrbitalAnalyser(E,C,MatrixIndices):
159
160 startI = MatrixIndices [0]
161 endI = MatrixIndices [1]
162 tempIndex = [[] ,[]]
163 n = [1,2,3,4]
164
165 for e in range(len(E)):
166 Sum = [0]* len(C[0])
167 for l in range(len(startI)):
168 Sum[l] = sum(abs(C[e][startI[l]:endI[l]]))
169 lorb = argmax(Sum)
170 tempIndex [0]. append(n[lorb])
171 tempIndex [1]. append(lorb)
172 n[lorb] = n[lorb] + 1
173
174 OrbitalIndex = zeros ([max(tempIndex [0]) +1 ,4])
175
176 for i in range(len(tempIndex [0])):
177 OrbitalIndex[tempIndex [0][i]][tempIndex [1][i]] = i
178
179 return OrbitalIndex
180
181 def RunOneAtom(Z,Ion):
182
183 Atom = LoadAtom(Z,False ,True ,Ion)
184
185 print(’Atom loaded: ’+str(Atom.Configuration.Z)+’: ’+Atom.Name)
186
187 BestEnergy = 10000
188
189 H,S,J,K,MatrixIndices = BuildTotalMatrices(Atom)
190
191 H,E,C = HartreeFock(H,S,J,K,MatrixIndices ,\
192 Atom.Configuration.NumberOfElectrons ,\
193 Atom.Configuration.Principal ,\
194 Atom.Configuration.Azimuthal ,\

56 APPENDIX C. PYTHON CODE

195 Atom.Configuration.Spin)
196
197 Energy = TotalEnergy(Atom ,H,E,C)
198
199 return Energy
200
201 if __name__ == ’__main__ ’:
202
203 pass

C.2 Polarizability.py

1 ’’’
2 Created on Mar 3, 2015
3
4 @author: anders
5 ’’’
6 from Classes import LoadAtom , Atom
7 from numpy import dot , transpose , conj , divide , sqrt , add , zeros ,

multiply ,\
8 round , sum , copy , argmax , pi , empty , polyfit
9 from scipy.linalg.decomp import eigh

10 from MatrixFunctions_Atoms import Hamiltonian0Matrix , OverlapMatrix ,
CoulombMatrix_new ,\

11 ExchangeMatrix_new
12 from numpy.linalg.linalg import solve
13 from numpy.core.umath import subtract
14 from matplotlib.pyplot import plot , show , subplots , rc
15
16 def threedot(m1,m2 ,m3):
17
18 return dot(transpose(conj(m1)),dot(m2,m3))
19
20 def Normalise(c,S):
21
22 for i in range(len(c)):
23 norm = threedot(c[i],S,c[i])
24 c[i] = divide(c[i],sqrt(norm))
25
26 return c
27
28 def Eigenstates(H,S):
29
30 E,c = eigh(H,S)
31 c = transpose(c)
32 c = Normalise(c, S)
33
34 return E, c
35
36 def UpdateHF(Atom ,s,C,H0,J,K):
37
38 H = copy(H0)
39
40 for p in range(len(C[0])):
41 for q in range(len(C[0])):
42 Sum = 0
43 pold = 0
44 lold = 0
45 sold = 0
46 for e in range(Atom.Configuration.Z):
47 if(Atom.Configuration.Principal[e] != pold or\
48 Atom.Configuration.Azimuthal[e] != lold or\
49 Atom.Configuration.Spin[e] != sold):
50 dH = threedot(C[e], J[p][q], C[e])
51 if(Atom.Configuration.Spin[e] == s):
52 dH = dH - threedot(C[e], K[p][q], C[e])
53 pold = Atom.Configuration.Principal[e]
54 lold = Atom.Configuration.Azimuthal[e]
55 sold = Atom.Configuration.Spin[e]
56 Sum = Sum + dH
57 print(’p=’+str(p)+’ q=’+str(q)+’ Sum=’+str(Sum))
58 H[p][q] = H[p][q] + Sum

C.2. POLARIZABILITY.PY 57

59 #H[q][p] = H[p][q]
60
61 return H
62
63 def BuildTotalMatrices(Atom ,basisConst):
64
65 for l in range(Atom.Basis.lmax +1):
66 if(l==0):
67 startI = [0]
68 endI = [Atom.Basis.NumberOfBasisFunctions[l]]
69 else:
70 startI.append(endI [-1])
71 endI.append(startI [-1]+ Atom.Basis.NumberOfBasisFunctions[l])
72 Hamilton = zeros ([endI[-1],endI [-1]])
73 Overlap = zeros ([endI[-1],endI [-1]])
74 Coulomb = zeros ([endI[-1],endI[-1],endI[-1],endI [-1]])
75 Exchange = zeros ([endI[-1],endI[-1],endI[-1],endI [-1]])
76 MatrixIndices = [startI , endI]
77
78 polCoefficients = list()
79
80 for i in range(len(Atom.Basis.Coefficients)):
81 polCoefficients.append(multiply(Atom.Basis.Coefficients[i],basisConst))
82
83 for l1 in range(Atom.Basis.lmax +1):
84 Hamilton[startI[l1]:endI[l1],startI[l1]:endI[l1]] =

Hamiltonian0Matrix(polCoefficients ,l1 ,Atom.Configuration.Z)
85 Overlap[startI[l1]:endI[l1],startI[l1]:endI[l1]] =

OverlapMatrix(polCoefficients ,l1)
86 for l2 in range(Atom.Basis.lmax +1):
87 Coulomb[startI[l1]:endI[l1],startI[l1]:endI[l1],\
88 startI[l2]:endI[l2],startI[l2]:endI[l2]] =

CoulombMatrix_new(polCoefficients ,l1 ,l2)
89 Exchange[startI[l1]:endI[l1],startI[l1]:endI[l1],\
90 startI[l2]:endI[l2],startI[l2]:endI[l2]] =

ExchangeMatrix_new(polCoefficients ,l1 ,l2)
91
92 return Hamilton , Overlap , Coulomb , Exchange , MatrixIndices
93
94 def BuildPolarizationMatrix(Atom ,EField ,MatrixIndices):
95
96 builtpolMatrix = zeros([MatrixIndices [1][-1], MatrixIndices [1][-1]])
97
98 for l1 in range(Atom.Basis.lmax +1):
99 for l2 in range(Atom.Basis.lmax +1):

100 builtpolMatrix[MatrixIndices [0][l1]: MatrixIndices [1][l1],
MatrixIndices [0][l2]: MatrixIndices [1][l2]] \

101 = PolarizationMatrix(Atom.Basis.Coefficients , l1, l2, EField)
102
103 return builtpolMatrix
104
105 def HartreeFock(Atom ,EField ,C=None ,basisConst =1):
106
107 H,S,J,K,MatrixIndices = BuildTotalMatrices(Atom ,basisConst)
108 E = [None]*Atom.Configuration.Z
109 C0 = [None]*Atom.Configuration.Z
110 Cpulay = [[]]* Atom.Configuration.Z
111 Esumold = 1
112 polarizationM = BuildPolarizationMatrix(Atom , EField , MatrixIndices)
113 H0 = copy(add(H,polarizationM))
114 H = copy(H0)
115
116 for it in range (100):
117 for s in range(-1,2,2):
118 if(it >0 or C != None):
119 H = UpdateHF(Atom ,s,C,H0 ,J,K)
120 E0, c = Eigenstates(H,S)
121 OrbitalIndex = OrbitalAnalyser(E0, c, MatrixIndices)
122 for e in range(Atom.Configuration.Z):
123 if(Atom.Configuration.Spin[e] == s):
124 E[e] = E0[OrbitalIndex[Atom.Configuration.Principal[e]][

Atom.Configuration.Azimuthal[e]]]
125 C0[e] = c[OrbitalIndex[Atom.Configuration.Principal[e]][

Atom.Configuration.Azimuthal[e]]]

58 APPENDIX C. PYTHON CODE

126 if(C0[e] != None and C0[e][0] < 0):
127 C0[e] = multiply(-1,C0[e])
128 Cpulay , C = Pulay(Cpulay ,C0,S,Atom.Configuration.Z)
129 Esum = sum(E)
130 print(’it=’+str(it))
131 if(abs(Esum/Esumold -1) <1e-10):
132 break
133 Esumold = Esum
134 return H0, E, C
135
136 def CoefficientMix(C,C0 ,S,alpha =0.5):
137
138 if(C[0] == None):
139 return C0
140
141 for e in range(len(C)):
142 C[e] = add(multiply(alpha ,C0[e]),multiply(1-alpha ,C[e]))
143
144 C = Normalise(C, S)
145
146 return C
147
148 def Pulay(Cpulay ,C0,S,Z):
149
150 for e in range(Z):
151 tempCpulay = copy(Cpulay[e])
152 tempCpulay = tempCpulay.tolist ()
153
154 if(len(tempCpulay) < 5):
155 tempCpulay.append(C0[e])
156 else:
157 for i in range(len(tempCpulay) -1):
158 tempCpulay[i] = tempCpulay[i+1]
159 tempCpulay [-1] = C0[e]
160
161 if(len(tempCpulay)==5):
162 residual = list()
163 for k in range(len(tempCpulay) -1):
164 op = subtract(tempCpulay[k+1], tempCpulay[k])
165 residual.append(op)
166
167 M = zeros([len(residual)+1,len(residual)+1])
168
169 for i in range(len(residual)+1):
170 for j in range(len(residual)+1):
171 if((i == len(residual) or j == len(residual)) and i != j):
172 M[i][j] = -1
173 elif(i == len(residual) and j == len(residual)):
174 M[i][j] = 0
175 else:
176 M[i][j] = dot(residual[i],residual[j])
177
178 N = zeros([len(residual)+1])
179 N[-1] = -1
180 x = solve(M,N)
181 tempC = 0
182 for i in range(len(tempCpulay)):
183 tempC = tempC+multiply(x[i],tempCpulay[i])
184
185 Cpulay[e] = tempCpulay
186 alpha = 0.5
187 C0[e] = add(multiply(alpha ,C0[e]),multiply(1-alpha ,tempC))
188
189 C = Normalise(C0, S)
190
191 return Cpulay , C
192
193 def TotalEnergy(Atom ,H,E,C):
194
195 Sum = 0
196 for e in range(Atom.Configuration.Z):
197 Sum = Sum + E[e]
198 Sum = Sum + threedot(C[e], H, C[e])
199

C.2. POLARIZABILITY.PY 59

200 return round(Sum/2,10)
201
202 def OrbitalAnalyser(E,C,MatrixIndices):
203
204 startI = MatrixIndices [0]
205 endI = MatrixIndices [1]
206 tempIndex = [[] ,[]]
207 n = [1,2,3,4]
208
209 for e in range(len(E)):
210 Sum = [0]* len(C[0])
211 for l in range(len(startI)):
212 Sum[l] = sum(abs(C[e][startI[l]:endI[l]]))
213 lorb = argmax(Sum)
214 tempIndex [0]. append(n[lorb])
215 tempIndex [1]. append(lorb)
216 n[lorb] = n[lorb] + 1
217
218 OrbitalIndex = zeros ([max(tempIndex [0]) +1 ,4])
219
220 for i in range(len(tempIndex [0])):
221 OrbitalIndex[tempIndex [0][i]][tempIndex [1][i]] = i
222
223 return OrbitalIndex
224
225 def PolarizationElement(bi,bj,li ,lj,EField):
226
227 if((li == 0 and lj == 1) or (li == 1 and lj == 0)):
228 return (EField *(3*pi)**(0.5))/(8*(bi + bj)**(5/2))
229 elif((li == 1 and lj == 2) or (li == 2 and lj == 1)):
230 return (EField *(15*pi)**(0.5))/(8*(bi + bj)**(7/2))
231 elif((li == 2 and lj == 3) or (li == 3 and lj == 2)):
232 return (9* EField *(35* pi)**(0.5))/(32*(bi + bj)**(9/2))
233 else:
234 return 0
235
236 def PolarizationMatrix(Basis ,li ,lj,EField):
237
238 polarizationMatrix = zeros ([len(Basis[li]),len(Basis[lj])])
239
240 for i in range(len(Basis[li])):
241 for j in range(len(Basis[lj])):
242 polarizationMatrix[i][j] = PolarizationElement(Basis[li][i],

Basis[lj][j], li, lj , EField)
243
244 return polarizationMatrix
245
246 def RunOneAtom(Z):
247
248 Atom = LoadAtom(Z,False ,True ,True)
249
250 print(’Atom loaded: ’+str(Atom.Configuration.Z)+’: ’+Atom.Name)
251
252 Eknold = list()
253 res = 10
254 Efieldmax = 0.001
255
256 EField = empty(res+1)
257 for i in range(len(EField)):
258 if(i==0):
259 EField[i] = -Efieldmax
260 else:
261 EField[i] = EField[i -1]+2* Efieldmax/res
262
263 #polConstRel = [0.8 ,0.9 ,1 ,1.1 ,1.2]
264 H,E,Czero = HartreeFock(Atom , 0)
265
266 for i in range(len(EField)):
267 bestEnergy = 1000
268 #for const in range(len(polConstRel)):
269 H,E,C = HartreeFock(Atom ,EField[i],None ,1)
270 Energy = TotalEnergy(Atom ,H,E,C)
271 #if(Energy <bestEnergy):
272 bestEnergy = Energy

60 APPENDIX C. PYTHON CODE

273 #bestpolConst = polConstRel[const]
274 Eknold.append(bestEnergy)
275 #print(bestpolConst)
276
277 #print(Atom.Koga.Energy)
278 #print(Eknold)
279
280 fit = polyfit(EField ,Eknold ,2)
281 print(’alpha=’+str(-fit [-3]*2))
282 #print(’gamma=’+str(-fit [-1]*24))
283
284 Eknoldtest = fit[-3]* EField **2+ fit[-2]* EField+fit[-1]
285
286 rc(’text’, usetex=True)
287 rc(’font’, family=’serif ’)
288
289 fig , ax = subplots ()
290
291 ax.set_xlabel(r’Electric field strength , \mathcal{E} / a.u.’)
292 ax.set_ylabel(r’Energies , E / Hartree ’)
293 ax.set_title(’Energy levels with applied external electric field\n

Results for $Z=1$, Hydrogen ’)
294
295 rect = plot(EField ,Eknold)
296
297 fig.tight_layout ()
298
299 show()
300
301 if __name__ == ’__main__ ’:
302
303 pass

C.3 Molecules.py

1 ’’’
2 Created on 08/04/2015
3
4 @author: Sommer
5 ’’’
6 from numpy import round , empty , argmin
7 from numpy.ma.core import copy , add
8 from numpy.core.umath import multiply
9 from Classes import LoadAtom

10 from numpy.core.multiarray import zeros
11 from MatrixFunctions_Molecules import BuildTotalMolMatrices ,\
12 Overlap_Mol_Matrix , Hamilton_Mol_Matrix , Coulomb_M_Matrix
13 from builtins import sum
14 from Hartree_Fock import Eigenstates , threedot , Pulay ,\
15 Normalise
16 import matplotlib.pyplot as pp
17 from posix import getcwd
18 import matplotlib
19 from matplotlib.pyplot import rc
20
21 def Index(n,l):
22
23 if(n==1 and l==0):
24 return 0
25 elif(n==2 and l==1):
26 return 2
27 elif(n==2 and l==0):
28 return 1
29 elif(n==3 and l==2):
30 return 3
31 elif(n==3 and l==1):
32 return 4
33 elif(n==3 and l==0):
34 return 2
35
36 def UpdateHF(N,principal ,spin ,s,C,H0 ,J,K):
37 H = copy(H0)

C.3. MOLECULES.PY 61

38 for p in range(len(C[0])):
39 for q in range(len(C[0])):
40 Sum = 0
41 pold = 0
42 sold = 0
43 dH = 0
44 for e in range(N):
45 if(principal[e] != pold or spin[e] != sold):
46 dH = threedot(C[e], J[p][q], C[e])
47 if(spin[e] == s):
48 dH = dH - threedot(C[e], K[p][q], C[e])
49 pold = principal[e]
50 sold = spin[e]
51 Sum = Sum + dH
52 H[p][q] = H0[p][q] + Sum
53
54 return H
55
56 def CoefMixing(C,C0,Z,alpha =0.9):
57
58 for e in range(Z):
59 C[e] = add(multiply(alpha ,C0[e]),multiply(1-alpha ,C[e]))
60
61 return C
62
63 def RunMolecule(Z1 ,Z2,ConfLists ,Bx=0,By=0,Bz=0):
64
65 Atom1 = LoadAtom(Z1,WithDiffuse=True)
66 Atom2 = LoadAtom(Z2,WithDiffuse=True)
67
68 Number = Atom1.Configuration.Z+Atom2.Configuration.Z
69
70 size = BuildTotalMolMatrices(Atom1 , Atom2)
71
72 Overlap ,Basis = Overlap_Mol_Matrix(Atom1 , Atom2 , size ,Bx,By ,Bz)
73 Hamilton = Hamilton_Mol_Matrix(Atom1 ,Atom2 ,size ,Bx,By,Bz ,Bz)
74 Coulomb ,Exchange ,legleg ,yoloExchange , yolocoulomb =

Coulomb_M_Matrix(Atom1 ,Atom2 ,size ,Bx,By ,Bz)
75 E = [None]*(Number)
76 C0 = [None]*(Number)
77 Cpulay = [[]]*(Number)
78 Esumold = 1
79 H0 = copy(Hamilton)
80
81 principal = ConfLists [0]
82 azimuthal = ConfLists [1]
83 spin = ConfLists [2]
84
85 for it in range (300):
86 print(it)
87 for s in range(-1,2,2):
88 if(it >0):
89 Hamilton = UpdateHF(Number ,principal ,spin ,s,C,H0 ,Coulomb ,Exchange)
90 E0, c = Eigenstates(Hamilton ,Overlap)
91 for e in range(Number):
92 if(spin[e] == s):
93 index = Index(principal[e], azimuthal[e])
94 E[e] = E0[index]
95 C0[e] = c[index]
96 C0[e][len(C0[e])/2:len(C0[e])] = C0[e][0: len(C0[e])/2]
97 if(C0[e] != None and C0[e][0] < 0):
98 C0[e] = multiply(-1,C0[e])
99 if(it <1):

100 C = copy(C0)
101 else:
102 Cpulay , C = Pulay(Cpulay , C0 , Overlap , Number)
103 C = Normalise(C, Overlap)
104 Esum = sum(E)
105 if(abs(Esum/Esumold -1) <1e-10):
106 break
107 Esumold = Esum
108
109 return H0, E, C, Number
110

62 APPENDIX C. PYTHON CODE

111 def TotalEnergy(N,H,E,C):
112
113 Sum = 0
114 for e in range(N):
115 Sum = Sum + E[e]
116 Sum = Sum + threedot(C[e], H, C[e])
117
118 return round(Sum/2,10)
119
120 def RunFullPotential(Z1 ,Z2,ConfLists ,MolName ,Rmax=8, Resolution =0.1):
121
122 R = empty(Rmax/Resolution)
123 E = empty(Rmax/Resolution)
124 V = empty(Rmax/Resolution)
125
126 for i in range(len(R)):
127 R[i] = (i+1)*Resolution
128
129 currentDirectory = getcwd ()
130 fileObject = open(currentDirectory+’/mol_results/’+MolName+’.txt’,’w’)
131
132 for i in range(len(R)):
133 #print(i)
134 H0, Eig , C, Number = RunMolecule(Z1, Z2,ConfLists , Bz=R[i])
135 E0 = TotalEnergy(Number ,H0 ,Eig ,C)
136 E[i] = E0
137 V0 = E0 + (Z1*Z2)/R[i]
138 V[i] = V0
139 fileObject.write(

str(R[i]).rjust (8)+str(E0).rjust (20)+str(V0).rjust (20)+’\n’)
140 print(str(i)+’/’+str(len(R)))
141
142 imin = argmin(V)
143 Rmin = R[imin]
144
145 fileObject.close ()
146
147 return E, V, R, Rmin
148
149 def PlotMolecule(R,E,V):
150
151 sort = 0
152
153 imin = argmin(V[sort:len(V)])
154 imin = imin + sort
155
156 fig , ax = pp.subplots ()
157 line1 , = pp.plot(R, E, label=r’E’)
158 line2 , = pp.plot(R, V, label=r’V’)
159 dot1 , = pp.plot([R[imin]],[V[imin]],’rx’,label=r’R_{min} =

’+str(R[imin])+’ Bohr’,markersize =10)
160
161 rc(’text’, usetex=True)
162 rc(’font’, family=’serif ’)
163
164 pp.ylim ((-38,-10))
165 pp.xlim ((0 ,12))
166 pp.legend(loc=4, handler_map ={dot1:matplotlib.legend_handler.

HandlerLine2D(numpoints =1)})
167
168 ax.set_xlabel(r’R / Bohr radii’)
169 ax.set_ylabel(r’Energy / Hartree ’)
170 ax.set_title(r’Electron energy and effective potentials for Li_2 ’)
171
172 pp.show()
173
174 pass
175
176 def LoadCalculatedResults(MolName):
177
178 currentDirectory = getcwd ()
179 fileObject = open(currentDirectory+’/mol_results/’+MolName+’.txt’,’r’)
180
181 R = list()

C.4. VIBRATIONAL DIATOMIC.PY 63

182 E = list()
183 V = list()
184
185 for line in fileObject:
186 splittedline = line.split()
187 R.append(float(splittedline [0]))
188 E.append(float(splittedline [1]))
189 V.append(float(splittedline [2]))
190
191 fileObject.close ()
192
193 return R, E, V
194
195 if __name__ == ’__main__ ’:
196
197 #afstand = 0.001
198
199 #H,E,C,N = RunMolecule (1,1,0,0, afstand)
200 #Energy = TotalEnergy(N, H, E, C)
201 #print(Energy)
202 ’’’
203 Principal = [1,1,2,2,3,3]
204 Azimuthal = [0,0,0,0,0,0]
205 Spin = [-1,1,-1,1,-1,1]
206
207 ConfLists = [Principal , Azimuthal , Spin]
208
209 E, V, R, Rmin = RunFullPotential (3,

3,ConfLists ,’Li2_final_eat ’,12,0.01)
210 ’’’
211
212 R, E, V = LoadCalculatedResults(’Li2_final_combined ’)
213
214 PlotMolecule(R,E,V)
215
216 pass

C.4 Vibrational Diatomic.py

1 ’’’
2 Created on Mar 18, 2015
3
4 @author: anders
5 ’’’
6 from numpy import add , argmin , sin , pi, trapz , empty , ones , zeros ,

multiply
7 from scipy.linalg.decomp import eigh
8 from matplotlib.pyplot import subplots , plot , ylim , show , xlim
9 from Molecules import LoadCalculatedResults

10
11 def NumericalVibrationalStates(InternuclearDist ,Potential ,BasisSize):
12
13 EqIndex = argmin(Potential)
14 #EquilibriumDist = InternuclearDist[EqIndex]
15
16 X = add(InternuclearDist ,-InternuclearDist [0])
17 V = add(Potential ,-Potential[EqIndex])
18 D_e = -1-Potential[EqIndex]
19 d = InternuclearDist [-1]- InternuclearDist [1]
20
21 H_vib = empty ([BasisSize ,BasisSize])
22
23 for n in range(BasisSize):
24 for m in range(BasisSize):
25 chi_n = (2/d)**(1/2)*sin((n+1)*pi*X/d)
26 chi_m = (2/d)**(1/2)*sin((m+1)*pi*X/d)
27 if n != m:
28 E = 0
29 else:
30 E = 1/(2*((1836*1836) /(1836+1836))) * ((n+1)*pi / d)**2
31 Vnm = trapz(chi_n*V*chi_m ,X)
32 H_vib[n][m] = E + Vnm

64 APPENDIX C. PYTHON CODE

33
34 e,c = eigh(H_vib)
35
36 return e, c, V, D_e , d,X
37
38 def PlotVibrationalStates(InternuclearDist ,Potential ,e,c,d,X,D_e):
39
40 V = add(Potential ,-D_e)
41 chi = zeros([len(c),len(V)])
42
43 fig , ax = subplots ()
44 rect = plot(InternuclearDist ,V)
45 for i in range(len(e)):
46 chi = zeros(len(V))
47 if(e[i]-D_e <0):
48 for n in range(len(c[i])):
49 chi = add(chi ,c[n][i]*(2/d)**(1/2)*sin((n+1)*pi*X/d))
50 flot = add(ones(len(InternuclearDist))*e[i],-D_e)
51 flot = add(flot ,0.003* chi)
52 rect1 = plot(InternuclearDist ,flot ,’r’)
53
54 ylim ((-0.13 ,0))
55 xlim ((0.5 ,3))
56
57 D_0 = D_e -e[0]
58 omega = abs(e[0]-e[1])
59
60 ax.set_xlabel(r’R / Bohr radii’)
61 ax.set_ylabel(r’Energy / Hartree ’)
62 ax.set_title(’Vibrational states for H_2 \n

$D_e=$’+str(round(D_e ,5))+’. $D_0=$’+str(round(D_0 ,5))+’.
$\omega_e=$’+str(round(omega ,6))+’.’)

63
64 show()
65
66 if __name__ == ’__main__ ’:
67 ’’’
68 res = 0.01
69 Rmax = 8
70
71 R = empty(Rmax/res)
72 for i in range(len(R)):
73 R[i] = (i+1)*res
74 ’’’
75
76 R, E, V = LoadCalculatedResults(’H2_final_withcheat ’)
77 e, c, v, D_e , d,X = NumericalVibrationalStates(R,V,100)
78 print(D_e)
79 PlotVibrationalStates(R,v,e,c,d,X,D_e)
80
81
82 pass

Appendix D

DVD with code

This page has been left black intentionally for code attachments.

65

66 APPENDIX D. DVD WITH CODE

Bibliography

[1] Hans Albrecht Bethe, Roman W Jackiw, et al. Intermediate quantum
mechanics. 1968.

[2] S Francis Boys. Electronic wave functions. i. a general method of calcula-
tion for the stationary states of any molecular system. In Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, volume 200, pages 542–554. The Royal Society, 1950.

[3] Jens Peder Dahl and Bjarne Amstrup. Introduction to the quantum world
of atoms and molecules, volume 1. World Scientific, 2001.

[4] KP Huber and G Herzberg. Molecular structure and molecular spectra iv:
constants of diatomic molecules. Van Rostrand-Reinhold, New York, 1979.

[5] Toshikatsu Koga, Hiroshi Tatewaki, and Tsuyoshi Shimazaki. Chemically
reliable uncontracted gaussian-type basis sets for atoms h to lr. Chemical
Physics Letters, 328(4):473–482, 2000.

[6] Toshikatsu Koga, Shinya Watanabe, Katsutoshi Kanayama, Ryuji Yasuda,
and Ajit J Thakkar. Improved roothaan–hartree–fock wave functions for
atoms and ions with n¡=54. The Journal of chemical physics, 103(8):3000–
3005, 1995.

[7] N.N. Lebedev. Special Functions and their Applications. Prentice-Hall,
1965.

[8] Tomas Petersson and Bo Hellsing. A detailed derivation of gaussian orbital-
based matrix elements in electron structure calculations. Eur. Phys. J.,
31(1):37, 2010.

[9] Peter Pulay. Improved scf convergence acceleration. Journal of Computa-
tional Chemistry, 3(4):556–560, 1982.

[10] Peter Schwerdtfeger. Table of experimental and calculated static dipole
polarizabilities for the electronic ground states of the neutral elements
(in atomic units). Schwerdtfeger.–2012.–[URL] http://ctcp. massey. ac.
nz/dipole-polarizabilities, 2014.

[11] Richard E Sitter Jr and RP Hurst. Hyperpolarizabilities for hartree-fock
atoms. Physical Review A, 5(1):5, 1972.

67

68 BIBLIOGRAPHY

[12] Johannes Stiehler and Juergen Hinze. Calculation of static polarizabilities
and hyperpolarizabilities for the atoms he through kr with a numerical rhf
method. Journal of Physics B: Atomic, Molecular and Optical Physics,
28(18):4055, 1995.

[13] Jos Thijssen. Computational physics. Cambridge University Press, 2007.

[14] Thomas Voegel, Juergen Hinze, and Frank Tobin. Numerical scf method for
the calculation of static polarizabilities and hyperpolarizabilities for atoms,
he through ne. The Journal of Chemical Physics, 70(3):1107–1111, 1979.

	Front page
	English title page
	Danish title page
	Preliminaries
	The many-electron problem
	The Aufbau principle
	The Adiabatic approximation
	Slater Determinants
	Matrix operations on Slater Determinants
	The Hartree-Fock equations
	The Hartree-Fock-Roothaan equations

	Implementation for atoms
	Gaussian basis functions
	The matrix elements
	Self Consistent Field procedure
	Convergence schemes
	Results
	Discussion
	Ions
	Conclusion

	Polarizability calculations
	Polarizability
	The Hamiltonian with an external electric field
	Implementation
	Results

	Implementation for molecules
	Calculation of molecular matrix elements
	Procedure
	Results
	Discussion
	Vibrational states
	Conclusion

	Conclusion
	Matrix elements for atomic calculations
	The coulomb elements
	The exchange elements

	Hermite Polynomials
	Python code
	Hartree_Fock.py
	Polarizability.py
	Molecules.py
	Vibrational_Diatomic.py

	DVD with code

