
Spectral Speech Enhancement using
Deep Neural Networks

- Design, Analysis & Evaluation -

A Thesis Submitted to the Department of Electronic Systems
Aalborg University, by

Anders Post Jacobsen & Morten Kolbæk

In Partial Fulfillment of the Requirements for the Degree of
Master of Science (MSc) in Engineering (Signal Processing and Computing).

June 2015

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg

Department of Electronic Systems
Fredrik Bajers Vej 7
DK-9220 Aalborg Ø

http://es.aau.dk

Title:
Spectral Speech Enhancement with Deep
Neural Networks

Theme:
Signal Processing and Computing

Project Period:
Sep. 2014 - Jun. 2015

Project Group:
15gr1073

Participants:
Anders Post Jacobsen
Morten Kolbæk

Supervisors:
Zheng-Hua Tan
Jesper Jensen

Copies: 3

Page Numbers: 160

Date of Completion:
June 2, 2015

Abstract:

Speech enhancement is an important is-
sue within a wide range of applications
such as mobile phones, speech recog-
nition and hearing aids. In various
acoustic environments, especially at low
Signal-to-Noise Ratios (SNRs), the goal
of speech enhancement methods is to
solve the cocktail party problem. Re-
garding intelligibility, different machine
learning methods that aim to estimate
an ideal binary mask have revealed
promising results. This master’s thesis
covers the work of speech enhancement
by use of the machine learning method
Deep Neural Network (DNN). In par-
ticular, a MATLAB implementation of
a system based on DNNs for estimating
an ideal binary mask was carried out.
Simulations have revealed that the pro-
posed DNN based speech enhancement
algorithm can enhance noisy speech
in terms of an intelligibility predictor
(STOI) and a quality predictor (PESQ).
Likewise, it has been found that by us-
ing a soft mask, instead of a binary
mask, additional improvement in STOI
and PESQ can be achieved.
The project is suggested and motivated
by both Aalborg University and Oticon
A/S.

http://es.aau.dk

Contents

List of Figures vii

List of Tables ix

List of Acronyms xi

Preface xv

1 Introduction 1
1.1 The Cocktail Party Problem . 1
1.2 Deep Learning . 2
1.3 Thesis Scope . 4

2 Fundamentals of Speech 7
2.1 The Speech Signal and Production . 7
2.2 Short-Time Fourier Transform & the Spectrogram 9
2.3 The Gammatone Filter Bank & the Cochleagram 10
2.4 Speech Synthesis . 12
2.5 Acoustic Feature Representation . 13

2.5.1 Mel Frequency Cepstrum Coefficients 13
2.5.2 Relative Spectral Transform and Perceptual Linear Prediction 15
2.5.3 Amplitude Modulation Spectrogram 16
2.5.4 Delta & Delta-Delta Features 18

3 Speech Enhancement Algorithms 19
3.1 Classical Methods . 19

3.1.1 Spectral Subtraction . 20
3.1.2 Wiener Filter . 21
3.1.3 Non-Linear Estimators . 24
3.1.4 Speech and Noise PSD Estimation 27

3.2 Ideal Binary Mask Estimation . 28
3.2.1 Gaussian Mixture Models . 29
3.2.2 Support Vector Machines . 30
3.2.3 Deep Neural Networks . 32

3.3 Performance Measures . 32
3.3.1 Perceptual Evaluation of Speech Quality (PESQ) 32
3.3.2 Short-Time Objective Intelligibility (STOI) 33

iii

iv Contents

3.3.3 Hit - False Alarm (HIT-FA) . 33

4 Neural Networks 35
4.1 Biological Neural Networks . 35
4.2 Artificial Neural Networks . 37

4.2.1 The Artificial Neuron . 37
4.2.2 Artificial Neural Network Architectures 39
4.2.3 Design of Artificial Neural Networks 41
4.2.4 Backpropagation Algorithm . 43

5 Pre-training Neural Networks 45
5.1 Restricted Boltzmann Machines . 46

5.1.1 Bernoulli-Bernoulli RBM . 47
5.1.2 Gaussian-Bernoulli RBM . 49

5.2 Sampling from Restricted Boltzmann Machines 50
5.3 Training Restricted Boltzmann Machines 52

5.3.1 Contrastive Divergence for Bernoulli-Bernoulli RBMs 54
5.3.2 Contrastive Divergence for Gaussian-Bernoulli RBMs 56
5.3.3 RBM Example . 58

5.4 Deep Belief Networks . 62
5.4.1 Generative Training of Deep Belief Networks 64
5.4.2 Discriminative Training of Deep Belief Networks 65

6 Speech Enhancement Using Deep Neural Networks 67
6.1 System Overview . 68

6.1.1 Pre-processing . 68
6.1.2 Pre-training . 70
6.1.3 Fine-tuning . 71
6.1.4 Posterior Mask Feature Extraction 71
6.1.5 Speech Enhancement . 73
6.1.6 Evaluation . 74

6.2 Training & Test Data . 74
6.2.1 Unseen Noise Realizations . 77

6.3 System Implementation & Evaluation 78
6.3.1 IBM Creation, Speech Analysis & Synthesis Evaluation 80
6.3.2 AMS Feature Evaluation . 84
6.3.3 DNN Training & Pre-training Evaluation 87

6.4 Early Stopping . 94
6.5 Algorithmic Analysis . 99

6.5.1 Algorithmic Delay . 100
6.5.2 Computational Complexity . 101
6.5.3 Inherent Parallelism . 102
6.5.4 Memory Complexity . 103

Contents v

7 Test Results & Discussion 105
7.1 Visual Evaluation . 106
7.2 Effects of Pre-training, Looped Noise & Soft Mask 111

7.2.1 Plausible Causes for Deviating Performance 113
7.2.2 Discussion of Objective 1, 2 & 3 117

7.3 Evaluation of Robustness & Comparison to Classical Methods 120
7.4 System Improvements . 124

7.4.1 Increasing Performance . 125
7.4.2 Decreasing Turnaround Time 127

8 Conclusion 129

Bibliography 133

A Derivation of the Wiener Filter 143

B GMM, Latent Variables & EM 145

C Derivation of the Backpropagation Algorithm 147

D Implementation Overview 153
D.1 DNN System Environment Creation 153
D.2 DNN System Training & Evaluation 155
D.3 File Structure & Description . 155

E DNN Parameters 159
E.1 Feature Parameters . 159
E.2 DNN System Parameters . 159

vi Contents

List of Figures

2.1 The speech model . 9
2.2 The spectrogram . 10
2.3 Equivalent rectangular bandwidth . 11
2.4 Amplitude response of a gammatone filter bank 12

3.1 Spectral subtraction example . 22
3.2 Wiener filter model . 22
3.3 Wiener filter example . 25
3.4 Spectral magnitude MMSE example 27
3.5 Hyperplanes for a support vector machine 31

4.1 Biological neuron . 36
4.2 Artificial neuron . 38
4.3 Activation functions . 39
4.4 2-layer feed-forward neural network . 40

5.1 Restricted Boltzmann machine . 46
5.2 Gibbs sampling . 51
5.3 RBM example . 58
5.4 Convergence of a BBRBM Gibbs chain. 60
5.5 PDF of a GBRBM . 61
5.6 Deep belief network . 62
5.7 Greedy layer-wise training of a deep belief network 65
5.8 Deep neural network . 66

6.1 System overview of a DNN based speech enhancement system 67
6.2 Preprocessing subsystem . 69
6.3 Pre-training subsystem . 70
6.4 Fine-tuning subsystem . 71
6.5 Posterior mask feature extraction subsystem 72
6.6 Speech enhancement subsystem . 73
6.7 Evaluation subsystem . 75
6.8 Speech shaped noise . 79
6.9 Speech analysis and synthesis test . 81
6.10 IBM construction test . 83
6.11 Voiced speech segment . 85
6.12 AMS patterns . 86

vii

viii List of Figures

6.13 Backpropagation test . 88
6.14 Pre-training evaluation tests 1 . 91
6.15 Pre-training evaluation tests 2 . 94
6.16 Test error for pre-trained DNNs vs. no pre-trained DNNs 96
6.17 Effect of early stopping . 98
6.18 Speech enhancement chain . 99

7.1 Test results: Clean and noisy speech signals 107
7.2 Test results: Processed speech signals (babble noise) 108
7.3 Test results: Processed speech signals (speech shaped noise) 109
7.4 ROC curves . 116
7.5 Evaluation of robustness using babble noise 122
7.6 Evaluation of robustness using speech shaped noise 123

D.1 Folder structure of DNN based speech enhancement system 154

List of Tables

5.1 Bernoulli-Bernoulli RBM probabilities 59

6.1 Pre-training evaluation test overview 90
6.2 Pre-training evaluation test results . 93
6.3 Results using early stopping . 97

7.1 System evaluation test overview . 106
7.2 System evaluation results using babble noise 112
7.3 System evaluation results using speech shaped noise 113
7.4 System evaluation results using reduced noise duration 119

ix

x List of Tables

List of Acronyms

AI Artificial Intelligence

AMS Amplitude Modulation Spectrogram

ANN Artificial Neural Network

ASA Auditory Scene Analysis

ASR Automatic Speech Recognition

AUC Area Under ROC curve

BBRBM Bernoulli-Bernoulli RBM

BM Boltzmann Machine

BNN Biological Neural Network

CASA Computational Auditory Scene Analysis

CD Contrastive Divergence

CDF Cumulative Distribution Function

CNN Convolutional Neural Network

CPU Central Processing Unit

DBN Deep Belief Network

DBRNN Deep Bidirectional Recurrent Neural Network

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DNN Deep Neural Network

ERB Equivalent Rectangular Bandwidth

EM Expectation-Maximization

FA False Alarm

FCT Fast Cosine Transform

xi

xii List of Acronyms

FFT Fast Fourier Transform

FNN Feed-forward Neural Network

FIR Finite Impulse Response

FLOPS Floating-point Operations Per Second

GBRBM Gaussian-Bernoulli RBM

GMM Gaussian Mixture Model

GPU Graphics Processor Unit

HINT Hearing In Noise Test

HIT-FA HIT minus False Alarm

HPC High Performance Computing

IBM Ideal Binary Mask

IID Independent and Identically Distributed

IIR Infinite Impulse Response

ITS Inverse Transform Sampling

IUT Implementation Under Test

KLD Kullback-Leibler Divergence

L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno

LP Linear Prediction

LC Local Criterion

MAP Maximum a Posteriori

MCMC Markov Chain Monte Carlo

ME Miss Error

MFCC Mel-Frequency Cepstrum Coefficient

MIMD Multiple Instruction Multiple Data

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MRF Markov Random Field

List of Acronyms xiii

NN Neural Network

OIM Objective Intelligibility Measure

PT Parallel Tempering

PCD Persistent Contrastive Divergence

PESQ Perceptual Evaluation of Speech Quality

PLP Perceptual Linear Prediction

PSD Power Spectral Density

PDF Probability Density Function

PMF Probability Mass Function

RASTA Relative Spectral

RASTA-PLP Relative Spectral Transform - Perceptual Linear Prediction

RBM Restricted Boltzmann Machine

ROC Receiver Operating Characteristics

ReLu Rectified Linear unit

RNN Recurrent Neural Network

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SNR Signal-to-Noise Ratio

STFT Short-Time Fourier Transform

STOI Short-Time Objective Intelligibility

SVM Support Vector Machine

TIMIT Texas Instruments Massachusetts Institute of Technology

T-F Time Frequency

VAD Voice Activity Detection

SSN Speech Shaped Noise

WSS Wide Sense Stationary

xiv List of Acronyms

Preface

This master’s thesis consists of the work done by the students Anders Post Jacobsen
and Morten Kolbæk as part of the fulfillment of their Master of Science (MSc) degree
in Engineering (Signal Processing and Computing) at Aalborg University.

The thesis is based on a project proposal prepared by Professor Jesper Jensen
from Oticon A/S and Aalborg University and Associate Professor Zheng-Hua Tan
from Aalborg University. Both of them have functioned as supervisors during the
project period.

The scope of the thesis was to investigate how Deep Neural Networks (DNNs)
can be used in a speech enhancement context and more specifically it was of interest
to investigate if the intelligibility improvement reported in [Healy et al., 2013] is
realistic, in a real life scenario.

In the Neural Network (NN) communities an abuse of terminology is abound
specially related to the word backpropagation. To minimize the degree of confusion
about the use of backpropagation it is now described how the word is used in this the-
sis. Backpropagation is a method used to compute partial derivatives of Feed-forward
Neural Networks (FNNs) for which an optimization algorithm, such as gradient de-
scent, can be used to train [Rumelhart et al., 1986]. However, in the literature the
term backpropagation or backpropagation training is often used to describe that a
NN, of any kind, is trained using the partial derivatives computed using the back-
propagation method combined with some optimization method [Healy et al., 2013]
[Chen and Lin, 2014] [Hinton et al., 2012a]. In this thesis it has been decided that
the word backpropagation will be used in a similar way and hopefully the meaning is
clear from the context.

Another abuse of terminology is related to the terms DNN, and Deep Belief
Network (DBN). In general a DNN is just a NN with more than one hidden layer
[Hinton et al., 2012a]. NNs and DNNs have been known for decades but in 2006
the term DBN was introduced, which refers to a probabilistic generative model that
can be used to initialize a DNN [Hinton et al., 2006]. The introduction of this
new method of initializing or pre-training a DNN led to the two words being used
interchangeably [Chen and Lin, 2014] [Mohamed et al., 2012]. In this thesis the
intention was to use the two terms correct such that when the term DBN is mentioned
a probabilistic generative model is meant and when the word DNN is used a non-
probabilistic ordinary FNN is meant. In Chapters 4 and 5 a detailed description of
DNNs and DBNs are given.

A copy of this master’s thesis as well as audio samples and test results are available
on the appendix DVDs. The master’s thesis is structured in the following way:

xv

xvi Preface

Chapter 1

This chapter defines the objectives of the thesis and motivates its relevance.

Chapter 2

This chapter presents some basic theory related to signal processing of human speech.

Chapter 3

This chapter presents some classical speech enhancement algorithms.

Chapter 4

This chapter presents the basic theory about Artificial Neural Networks (ANNs).

Chapter 5

This chapter presents the basic theory about DNN pre-training using DBNs.

Chapter 6

This chapter presents the design of a speech enhancement system using DNNs.

Chapter 7

This chapter presents test results and discusses the performance of the system de-
signed in Chapter 6.

Chapter 8

This chapter concludes on the results based on the objectives defined in Chapter 1.

Appendix A, B, C, D & E

These appendices contain details about derivations of different algorithms as well
as the MATLAB implementation of the speech enhancement system designed in the
thesis.

Aalborg University, June 2, 2015

Anders Post Jacobsen
<ajacob10@student.aau.dk>

Morten Kolbæk
<mkolba13@student.aau.dk>

Chapter 1

Introduction

Improving speech quality and speech intelligibility of noisy audio, is of great interest.
Enhancing speech is vital in a vast amount of applications, such as mobile commu-
nications, speech recognition systems, Voice over IP (VoIP) and in hearing aids, to
mention a few. What all these applications have in common is that they are often
used in a noisy environment such as a metro station, a shopping mall or in a forest
on a rainy day. Situations in which the sound of interest, being a person speaking in
a cell phone for example, is being disturbed by the naturally occurring sounds from
the background.

Whether or not the sound from the background is considered as a disturbance,
depends on the situation. A musical background at a restaurant might be pleasant
to normal hearing people but perceived as a disturbance for hearing impaired people
for which the voices of their companions are the sounds of interest.

In this case a standard hearing aid, simply amplifying the audio, will not alleviate
such a problem and more intelligent speech enhancement algorithms are required if
hearing aids should be able to assist hearing impaired persons in such and similar
settings [Wang, 2008].

The primary task for an effective speech enhancement algorithm is hereby twofold.
First, the disturbance must be identified and secondly it must be attenuated effec-
tively without affecting the target signal.

Recent advances within the field of machine learning and speech processing have
introduced new methods which address primarily the second problem about segre-
gating the target signal from the disturbance and the scope of this master’s thesis is
to investigate how these new methods perform.

1.1 The Cocktail Party Problem
The problem all the applications described above are facing is similar and can be
described as the "cocktail party problem", which describes the task of hearing or
detecting a sound of interest in a complex auditory setting, just as the ones mentioned
above [McDermott, 2009].

In 1953 a paper reported that the human brain is capable of segregating a mixture
of speakers and hereby focus their auditory attention on only one speaker [Cherry,
1953]. These findings led to the research field known as Auditory Scene Analy-

1

2 Chapter 1. Introduction

sis (ASA) and the results reported in [Cherry, 1953] has, as late as in 2013, been
supported by clinical controlled experiments. Even though this effect has been known
for more than 60 years it is still unknown exactly how the brain does speech segre-
gation [Golumbic et al., 2013].

The fact that the normal human brain is so successful in auditory segregation has
lead to the research field known as Computational Auditory Scene Analysis (CASA)
[Wang and Brown, 2006]. Where ASA attempts to identify how the human brain
does speech segregation from a physiologically point of view, CASA is more practical
oriented and is attempting to develop algorithms that perform speech segregation in
practice, using techniques from ASA and traditional digital signal processing [Wang
and Brown, 2006].

The cocktail party problem is an active field of research [Simpson et al., 2015]
[Golumbic et al., 2013] and recently, advances have been made in the CASA field
with the development of the Ideal Binary Mask (IBM) which is further described in
Section 3.2. The IBM approach is a speech segregation method inspired from ASA
which has been proposed as the goal of CASA [Wang, 2005]. Since it is necessary to
have the clean signal and noise signal in isolation to obtain the IBM, it should be
emphasized that the approach is not practical applicable. Algorithms that estimates
the IBM have though been capable of significantly increasing speech intelligibility
of noisy speech signals [Kim et al., 2009] [Hang and Wang, 2012]. Combined with
recent advances in the neural network communities, known as Deep Learning, has
led to the current state-of-the-art speech segregation algorithm [Healy et al., 2013].

1.2 Deep Learning
Deep Learning is an emerging area within the field of machine learning which consti-
tute hierarchical learning algorithms based on DNNs [New York Times, 2012] [Deng
and Yu, 2014] [Bengio et al., 2015]. The concepts are inspired from nature and
from how it is believed that humans solve complex problems such as speech, speaker
and object recognition [Bengio, 2009]. What is essential in Deep Learning is that
algorithms learn their own representation of the data, which is different from the
previous machine learning paradigm where features were primarily hand-crafted and
the actual machine learning was limited to be purely discriminative, in the case of
a classification task [Le et al., 2011b] [Deng and Yu, 2014] [Bengio et al., 2015]. In
practice the feature learning is achieved by DNN pre-training which are described in
detail in Chapter 5

Deep learning has in recent years achieved remarkable results in a lot of different
applications [Le et al., 2012] [He et al., 2015] [Taigman et al., 2014] [Hannun et al.,
2014] [Töscher et al., 2009] [Kaggle, 2012] [IDSIA, 2014] [Mnih et al., 2015].

In [Le et al., 2012], for examples, a team at Google lead by Andrew Y. Ng, trained
a DNN, having 1 billion trainable parameters, on 10 million randomly chosen images
from YouYube. The training was unsupervised and a computer cluster consisting of
1000 computers trained the DNN for three days. When the training was stopped it

1.2. Deep Learning 3

was found that the DNN had, by its own, constructed high level feature detectors
capable of detecting among other things cats and human faces. This is without ever
have been told what to look for.

In [Kaggle, 2012] a team from the University of Toronto lead by George Dahl,
Ph.D student of Geoffrey Hinton who is considered one of the leading scientists of
Deep Learning, won a $22,000 competition held by the pharmaceutical company
Merck. The competition was about identifying the best statistical techniques for
predicting biological activities of different molecules, which are involved in the design
of new medicine. George Dahl and his team won the competition using a DNN.

In [Töscher et al., 2009] a team from Commendo and AT&T won a $1,000,000
competition held by Netflix where the objective was to design a collaborative filtering
algorithm used to predict user ratings for films. The winning solution was similar to
the former examples based on DNNs and Deep Learning.

One of the more spectacular achievements using Deep Learning is done by the
company DeepMind [Mnih et al., 2015]. They managed to train a DNN to play
old arcade video games and the DNN even learned to play the games better than a
human professional [Mnih et al., 2015] [BBC Newsnight, 2014]. This achievement is
similar to the IBM chess computer Deep Blue which in 1997 won over the, at that
time, chess world champion Garry Kasparov. The major difference between the two
achievements is that Deep Blue was designed for playing chess and was using a brute
force strategy [IBM Research, 2015], whereas DeepMind used a DNN that did not
know anything about the task it was supposed to solve. The DNN learned by itself
how to play the different games it was presented for. DeepMind was last year bought
by Google for 650 million dollars, which is an indication on how big a future Google
believes Deep Learning has [The Guardian, 2014].

Other remarkably results provided by Deep Learning, which has a higher com-
mercial value, are significant improvements in object recognition, face recognition
and speech recognition. Specifically, current state-of-the-art object recognition al-
gorithms has achieved above-human performance [He et al., 2015] [Taigman et al.,
2014] [Hannun et al., 2014].

Due to all the remarkably results Deep Learning has become a buzz word and a
Deep Learning hype has emerged [New Yorker, 2013] [The Huffington Post, 2015].
A hype so big that very polarized debates within the computer science community
is debating whether or not Deep Learning will lead to the technological singularity,
which is the point where Artificial Intelligence (AI) exceeds human intelligence [The
Register, 2015] [IEEE Spectrum, 2015] [Wired, 2015] [Kurzweil, 2006]. Even the
prominent engineer, founder of PayPal, Tesla Motors and SpaceX, Elon Musk has
been participating in the debate and donated $10,000,000 to a research project aiming
at ensuring AI keeps beneficial for the human race [Future of Life Institute , 2015]
[CNN Money, 2014]. Something other prominent researchers within the field believe
is nonsense [The Register, 2015] [IEEE Spectrum, 2015] [Dr. Andrew Ng, 2015].

4 Chapter 1. Introduction

1.3 Thesis Scope
Communicating in noisy environments can be a demanding task but it is even more
demanding for hearing impaired people since they often lack the ability to focus
their auditory attention on one out of many speakers [McDermott, 2009]. In Denmark
approximately 800.000 people, out of a population of approximately 5.6 million, suffer
from degraded hearing and approximately 300.000 use a hearing aid to alleviate their
hearing disability [Christensen, 2006] [Bengtsson and Røgeskov, 2010] [Danmarks
Statistik, 2014].

It is hereby of utmost relevance to solve the cocktail party problem and the ideas
presented in [Healy et al., 2013] might be a step in the right direction. In [Healy
et al., 2013] techniques from CASA and Deep Learning have been combined in the
design of a speech enhancement algorithm reportedly capable of increasing speech
intelligibility for both normal hearing and hearing impaired persons which according
to Healy et al. is the first time such results have been reported.

Despite the fact that the work presented in [Healy et al., 2013] is performed by
acknowledged researchers, recent studies have questioned the validity of their results
[May and Dau, 2014]. In [Healy et al., 2013] the same noise recordings where used
in both the training and testing phase which is not considered as good practice in
the machine learning communities and led to the suspicion that the results reported
in [Healy et al., 2013] could not be realized in practice. It is therefore of interest
to investigate if the speech enhancement method reported in [Healy et al., 2013]
performs as well as claimed, in real life scenarios. The scope of this thesis is thereby
to investigate the algorithmic performance of this method and investigate if the
results reported are realistic. If the results are as good as claimed the method
show great potential for a large range of applications where speech enhancement is
essential, including hearing aids. The scope of the thesis has been delimited into the
five objectives described below.

Objective 1

The first objective is concerned with the effect of unsupervised pre-training of DNNs.
Based on the significant interest about Deep Learning it is expected that pre-trained
DNNs perform better than DNNs trained in a purely supervised fashion. However,
recent papers using DNNs [Huang et al., 2014a] [Simpson, 2015] have not reported
the use of pre-training, presumably because they did not find any performance im-
provement by using pre-training, which is stated directly in [Maas et al., 2012].

In [Deng et al., 2013] it is argued that DNNs are difficult to train, due to the fact
that it requires a lot of experience to properly tune all parameters correctly. It is also
stated that the effect of pre-training is dependent on the amount of labeled training
data. From the arguments above it is found interesting and relevant to investigate
what effect pre-training has on the performance of the speech enhancement system
to be designed.

1.3. Thesis Scope 5

Objective 2

The second objective is related to the construction of the training and test data.
In the machine learning community common practice is to divide a data set into a
training set, a test set and perhaps a validation set [Bishop, 2009]. The machine
learning algorithm is then trained using the training and validation sets and tested
using the test set, which for the algorithm, is unknown, hence a realistic measure of
performance is achieved.

As already mentioned, in [May and Dau, 2014] it is pointed out that the method-
ology used by [Healy et al., 2013], but also in [Kim et al., 2009], was not scientifically
in line with good practice, since the same noise data (looped-noise) was used for gen-
erating training and test data. This means that the DNNs may be able to learn the
noise sequence and simply subtracting it out, hence achieving a performance which
is non-realizable in practice. It is hereby of interest to investigate how big an impact
it has on the performance of a DNN when the same noise is used for training and
testing, opposed to the scenario when unique (non-looped) noise is used for training
and testing.

Objective 3

The third objective is primarily based on inspiration found in the Automatic Speech
Recognition (ASR) community. In the ASR community it has been found that ASR
systems become more robust against noise if a pre-processing speech enhancement
stage was used, utilizing a soft mask opposed to a hard mask i.e., the IBM [Barker
et al., 2000] [Raj and Stern, 2005] [Narayanan and Wang, 2013]. It has been, and
still is, a topic of research in the speech enhancement communities whether or not a
soft mask performs better than a hard mask in a speech enhancement context [Singh
et al., 2014] [Wang, 2008] [Narayanan and Wang, 2013] [Loizou, 2013]. Even though
it has been found that the soft mask improves quality it has not yet been clarified if
a soft mask improves speech intelligibility and there are opposing arguments in the
literature whether or not a soft mask has potential to improve speech intelligibility
[Loizou, 2013, p. 614] [Wang, 2008] [Jensen and Hendriks, 2012]. Hence, investigating
the effects regarding intelligibility of using a soft mask opposed to a binary mask, in
a DNN based speech enhancement system, is of great interest.

6 Chapter 1. Introduction

Objective 4

The fourth objective is related to the robustness of the DNNs, which is evaluated
on how good the DNNs generalize to data they have not seen during training. This
is done to evaluate the performance of the algorithm in an environment as close as
possible to a real life scenario. Such an evaluation could be based on presenting a
DNN for a new noise type or the same noise type but at different SNRs. It could also
be related to the speech material, which could be altered or the speaker which could
be changed. It could also be more technical related such as presenting the algorithm
for audio recorded with different microphones. These test environments can be setup
in an unlimited number of ways and in this thesis it has been decided to investigate
how sensitive the DNNs are to new noise types and alterations in SNRs.

Objective 5

The fifth objective is included to evaluate the performance of the DNNs developed
during this thesis against two more traditional methods, namely the Short-Time
Fourier Transform (STFT) based Wiener filter and the spectral amplitude Mini-
mum Mean Square Error (MMSE) estimator [Loizou, 2007]. The argument for the
comparison is to identify possible strengths and weaknesses the DNN based speech
enhancement method might have, compared to two traditional methods.

The five objectives can be summarized into the corresponding five questions which
are to be answered during the thesis. That is, the answer to these five questions will
be presented in the conclusion in Chapter 8.

Objectives

1. Does unsupervised pre-training of DNNs, when used for IBM estimation, im-
prove performance?

2. What is the effect of using looped noise, as opposed to non-looped noise, re-
garding DNN classification performance?

3. Does using a soft decision rather than a hard decision, in a DNN based speech
enhancement system, improve speech intelligibility and/or quality?

4. How well does DNNs used for IBM estimation generalize to unseen noise types
and SNRs?

5. How do DNN based speech enhancement algorithms perform relative to the
classical STFT based Wiener filter and the spectral magnitude MMSE estima-
tor?

Chapter 2

Fundamentals of Speech

When designing speech enhancement algorithms, having some of the fundamental
theory and terminology within speech processing in place, is imperative. This chapter
will give a short introduction to some important concept used in speech processing. A
brief overview of the speech production process and characteristics of speech signals
is given since the latter is a consequence of the former. It turns out that speech
production, seen across short time durations, can be expressed as a relatively simple
linear model, which represents an approximation of the speech signal. These subjects
are discussed in Section 2.1. When analyzing and performing enhancement on speech
signals it is mostly done is some Time Frequency (T-F) domain. In this context, a
special type of the Fourier transform is very useful and widely used, namely the
STFT. Another T-F representation, that takes into account certain characteristics
of the human auditory system, is the filter bank based cochleagram. These T-F
representations are explained in Section 2.2. Since it is often desired to reconstruct
the time signal from its T-F representation, synthesis methods is also explained in
Section 2.4. When one is to represent a speech signal it can be done in a both compact
and perceptual meaningful way. This can be carried out in terms of different acoustic
features. These features can for example be used as input to a machine learning
classifier. Different such features will be discussed in Section 2.5.

2.1 The Speech Signal and Production
The very basic aim of speech is to communicate between humans, meaning that a
speech signal is generated by a speaker and received by a listener. Speech is an
acoustic signal, which is highly non-stationary and this property makes it difficult
to analyze. It should be noted that non-stationary is meant in a statistical sense,
meaning that the statistical properties vary with time. In this thesis, the term
stationary signal is therefore meant as a realization from a Wide Sense Stationary
(WSS) stochastic process. Short frames (10-30ms) of speech is though often assumed
to be stationary and this implies Fourier analysis to be applicable [Loizou, 2007, p.
31].

Since speech is signals communicated among humans, the human anatomy that
generates such signals will be subject to a brief description since any prior knowledge
of the target signal can, and should, be used when doing speech enhancement. There

7

8 Chapter 2. Fundamentals of Speech

are three main parts involved in the speech production process in terms of human
anatomy. The lungs, the larynx (also known as the voice box) and the vocal tract.
In the context of speech production, the functionality of the lungs is to deliver air
pressure used to generate speech. When inhaling, the air pressure in the lungs
decreases. When exhaling, the air pressure in the lungs increases and this causes air
to flow into the larynx. The larynx is build up of different muscles and ligaments
which control the vocal folds. When the vocal folds are vibrating in a periodic
manner, the speech signal is said to be in the voiced state. The time of one cycle
in this periodicity is called a pitch period. Furthermore, the reciprocal of a pitch
period is called the fundamental frequency. The speech signal is said to be in an
unvoiced state when the vocal folds are non-vibrating. Therefore, the speech signal
have a periodic time representation in the voiced state, and a non-periodic time
representation in the unvoiced state. In the voiced state vowels are generated and
in the unvoiced state many consonants are generated [Loizou, 2007, p. 50]. The
last stage of the speech production is the vocal tract where the oral cavity and the
nasal cavity is located. The vocal tract acts as a time-varying linear filter shaping
the speech output signal. This filtering function is depended on the placement of the
tongue, teeth, lips and jaw.

The anatomic description of the human speech production system can be modeled
in a somewhat more engineering appealing way. Here the vocal tract can be seen as a
linear filter applied to either a pulse generator or a random noise generator depending
on the voiced state. This linear filter is characterized by a set of resonance frequencies
which varies with the shape of the vocal tract. Because these resonance frequencies
form the speech spectrum they are referred to as formants[Deller et al., 1993, p. 107].
The linear speech model is illustrated in Fig. 2.1.This model can also be described
mathematically as

s(t) = e(t) ∗ v(t) (2.1)
where s(t) is the speech signal, e(t) is the excitation model that is either a pulse
train generator or a random noise generator and the ∗ is the convolution operator.
The last stage v(t) is the impulse response of the vocal filter. The speech model can
likewise be expressed in the frequency domain as

S(f) = E(f) · V (f). (2.2)

This simplified linear model of the speech production system only contains four
sets of parameters, namely the fundamental frequency, the parameters of the noise
generator, the voice state and the vocal tract parameters. From these four sets of
parameters the speech signal s(t) can be approximated. Of course this representation
of the speech signal is only an approximation but the model have been widely used in
applications such as low-bit rate speech coding, where it is an advantage to represent
the speech signal in a compact form with few parameters [Loizou, 2007, p. 55]. Since
in many applications, only the speech signal is observable the parameters of the
excitation model and the vocal filter cannot be obtained directly. Cepstral analysis,
which is described in Section 2.5, can be used to deconvolve the excitation model

2.2. Short-Time Fourier Transform & the Spectrogram 9

from the impulse response of the vocal filter. Hereby the parameters can be obtained
when only measuring the speech signal.

Vocal Fold Linear
Filter v(t)

Noise Generator

Pulse Generator

Speech Signal s(t)

Excitation Model e(t)

Figure 2.1: The speech model includes both an excitation model and a vocal filter. The switch
in the model controls if the state is voiced or unvoiced meaning that the signal from the excitation
model comes from either a pulse generator or a random noise generator.

2.2 Short-Time Fourier Transform & the Spectrogram

The Discrete Fourier Transform (DFT) is widely used in the analysis of various
types of signals. For deterministic signals one can find the frequency spectrum and
for stationary stochastic signals the Power Spectral Density (PSD) can be obtained
via its auto-correlation function. One of the drawbacks, in the context of speech
signals, is that such signals are highly non-stationary. Despite this, the DFT can
be applied to small frames of speech (10-30 ms) in which it is assumed that the
signal is approximately stationary. This is the motivation behind the Short-Time
Fourier Transform (STFT). The idea is to cut the entire signal into successive and
overlapping frames of L samples. Next, an analysis window is applied and finally the
DFT of each windowed frame is computed. Hereby, the discrete STFT will both be
a function of time and frequency. Formally, the discrete STFT is defined as in Eq.
(2.3) [Loizou, 2013, p. 31]

X(n, ω) =
∞∑

m=−∞
x(m)w(n−m)e−j

2π
N
ωm (2.3)

where x(m) is the discrete time signal and w(m) is some window function. It can
be seen that the STFT is a function of two variables, namely a time index n and a
frequency index ω where ω = 0, 1, ..., N − 1 hence a T-F representation is obtained.
N can be interpreted as the frequency resolution of the STFT. The two dimensional
function |X(n, ω)|2 is called a spectrogram [Loizou, 2007, p. 32]. In terms of speech
signals it is useful to see how the power spectrum changes over time and this makes

10 Chapter 2. Fundamentals of Speech

the spectrogram a powerful tool. Figure 2.2 shows the spectrogram of a speech signal
and it is seen that it is both a function of time and frequency. The spectrogram is
generated by the MATLAB Voicebox function spgrambw [Mike Brookes, 1997]. The
colors in the spectrogram illustrates different power intensities.

Finally, it should be noted how the window length L affects the appearance of
the spectrogram. A long duration window will give god frequency resolution but a
poor time resolution. In this case a narrow-band spectrogram is generated. On the
other hand a short duration window will give poor frequency resolution but a god
time resolution. When this is the case the spectrogram is refereed to as wideband
[Loizou, 2007, p. 43].

Time (s)

F
re

qu
en

cy
 (

kH
z)

1 2 3 4
−0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

P
ow

er
/H

z
(d

B
)

−65

−60

−55

−50

−45

−40

−35

−30

Figure 2.2: The spectrogram reveals how power at different frequencies changes over time. Above
the spectrogram, the waveform of the signal is plotted in yellow. A Matlab script of the plot can be
found on the appendix DVDs.

2.3 The Gammatone Filter Bank & the Cochleagram
The aforementioned spectrogram makes no specific assumption on how the human
auditory system works. Therefore, another approach is to make a T-F representation
related to how the human auditory system works. This implies a filter bank that
mimic the way the human hearing is functioning. One approach to model such filters
are by use of a gammatone filter bank. The impulse response of a gammatone filter
is given by [Wang and Brown, 2006, p.15]

g(t) = tN−1 exp[−2πtb(fc)] cos(2πfct+ φ)u(t) (2.4)

where N is the filter order, fc is the center frequency, φ is the phase, u(t) is the unit
step function and b(fc) is the bandwidth of the filter given a specific center frequency.

2.3. The Gammatone Filter Bank & the Cochleagram 11

A reasonable approximation for the filter has been proposed with a filter order of
N = 4 [Wang and Brown, 2006, p.16]. The bandwidth used for the gammatone filter
bank is the Equivalent Rectangular Bandwidth (ERB). The ERB is defined as the
bandwidth of a rectangular window having the same maximum amplitude and power
as a corresponding filter as illustrated in Fig. 2.3.

|H(f)|
2

f

Same Area

ERB

Figure 2.3: A rectangular window having the same maximum amplitude value and power (area
under the curve) defines the ERB of the corresponding filter.

A decent ERB conversion of an auditory filter used by humans have been shown to
be [Wang and Brown, 2006, p.16]

ERB(fc) = 24.7 + 0.108fc. (2.5)

From Eq. (2.5) it can be seen that a center frequency is converted to a bandwidth
and when applied on a filter bank with multiple center frequencies the bandwidth is
increased when going from a lower to a higher center frequency. Since the output
of the gammatone filter bank is framed, a T-F representation of the signal is now
obtained. This representation is referred to as a cochleagram [Wang and Brown,
2006, p.18]. Fig. 2.4 shows the amplitude response of a 64-band gammetone filter
bank with center frequencies from 50-8000Hz. As seen the bandwidth of the filters
increases with the center frequencies of the filters. The MATLAB implementation
of the gammetone filter bank is made by ZZ Jin, DeLiang Wang and JF Woodruff
and is available from [Jin and Wang, 2007a]. It should be noted that this implemen-
tation also contains a loudness-based gain adjustment so filters at different center
frequencies have different gains.

12 Chapter 2. Fundamentals of Speech

Frequency [Hz]
0 1000 2000 3000 4000 5000 6000 7000 8000

A
m

pl
itu

de
 [d

B
]

-50

-40

-30

-20

-10

0

10

Figure 2.4: Amplitude response of loudness-based gain adjusted Gammatone filter bank

2.4 Speech Synthesis
When a T-F representation of a speech signal is available it is often necessary to
reconstruct its corresponding time signal. This is performed by speech synthesis
which can be carried out in different ways. For example, when a signal denoted
x(n) is to be reconstructed from its STFT X(n, ω), a commonly used method in the
context of speech enhancement, is the overlap-and-add method [Loizou, 2007, p. 38].
Here it should be assumed that X(n, ω) is sampled in time for every R samples and
this will be denoted X(rR, ω). The overlap-and-add method is then given by the
expression [Loizou, 2007, p. 38]

x̂(n) =
∞∑

r=−∞

[
1
N

N−1∑
k=0

X(rR, ωk)ejωkn
]

(2.6)

where x̂(n) is the reconstructed version of x(n). The expression in the brackets of
Eq. (2.6) is the inverse DFT and this will provide the sequence [Loizou, 2007, p. 38]

yr(n) = x(n)w(rR− n). (2.7)

By inserting Eq. (2.7) into (2.6) we obtain [Loizou, 2007, p. 38]

x̂(n) =
∞∑

r=−∞
yr(n) = x(n)

∞∑
r=−∞

w(rR− n). (2.8)

The way to interpret this expression is that all sequences, that overlap at a specific
time index n, is summed. Furthermore, if the summation is constant for all n then the
time signal x(n) can be reconstructed exactly within a constant, i.e. x̂(n) = Cx(n)
where C is some constant [Loizou, 2007, p. 38]. If a L-point window is used in Eq.
(2.8) a commonly used value of R is L/2, meaning 50% frame overlap.

2.5. Acoustic Feature Representation 13

One method to synthesize an output signal from a filter bank is described in
[Wang and Brown, 2006, p.23]. Here the method is applied on a gammatone filter
bank which is described in Section 2.3. The gammatone filtered signal is time re-
versed, passed through the filter and finally time reversed again. This procedure is
carried out to remove across-channel phase shifts and produce an output with zero
phase [Wang and Brown, 2006, p.23]. However, this time reversing is non-real time
applicable and for real time applications a phase compensated gammatone filter bank
must be used [Wang and Brown, 2006, p. 17]. The phase-compensated signal in each
channel can now be divided into frames and multiplied by a Hanning window to
obtain a T-F representation. A broad class of speech enhancement methods, further
described in Chapter 3, operates in this domain by applying weights to each T-F
unit. The weighted outputs, from all channels, are then summed up to produce the
synthesized time signal.

2.5 Acoustic Feature Representation
When talking about speech signals there are, like any other types of signals, various
ways of representing it. This could include time domain, amplitude spectrum, power
spectrum and so on. Another way of representing a speech signal is in terms of
different kinds of acoustic features. By such a representation, key aspects of the
speech signal is preserved and the unimportant aspects are removed leading to a
compact representation. Therefore, such features will typically take into account the
way humans perceive sound. In the following different features will be presented.

2.5.1 Mel Frequency Cepstrum Coefficients

As just mentioned, acoustic features will typically take into account the way in
which humans perceive sound. This also includes mapping the normal frequency
representation to a representation that is based on how humans perceive tones at
different frequencies. One such mapping is the mel scale. A mel is a measure of the
perceived frequency of a tone. The relationship between mels and actual frequency
is approximate linear below 1 kHz and logarithmic above. One way to carry out this
approximation is given by [Deller et al., 1993, p. 380].

Fmel = 1000
log(2)

(
1 + FHz

1000

)
. (2.9)

The mel scale is derived by an experiment where test persons were exposed to a
reference tone at 1 kHz and then asked to increase the frequency until they perceived
certain tones [Deller et al., 1993, p. 380]. This experiment revealed that humans
are better at recognizing the differences between frequencies in the low-end of the
frequency scale than the high-end.

Since cepstral analysis was mentioned, in Section 2.1, as a deconvolution tool
of the speech model, a brief discussion on the cepstrum is given. The frequency

14 Chapter 2. Fundamentals of Speech

domain representation of the speech model from Eq. (2.2) can be separated into two
additional parts by using the logarithm as

logS(f) = logE(f) + log V (f). (2.10)

Taking the inverse DFT of the log spectrum result in two additional parts in what is
now refereed to as the quefrency domain [Deller et al., 1993, p. 360]. Even though
the signal is now represented in the quefrency domain, the excitation model and
the impulse response of the vocal tract filter is separated. More formally a general
expression of the Cepstrum can be defined as the inverse Fourier transform of the
log spectrum of a time signal s(n). Mathematically this is expressed as in Eq. (2.11)
[Deller et al., 1993, p. 355]

c(n) = F−1{log |F{s(n)}|} (2.11)

where F{.} denotes the DFT. The rather strange terminology used for cepstral
analysis is based on interchanging consonants, meaning that the word spectrum
becomes cepstrum.

The Mel-scale and the cepstrum can be combined when calculating the Mel-
Frequency Cepstrum Coefficients (MFCCs). The aim of MFCCs is to extract features
from an acoustic signal in a perceptual meaningful way. MFCCs are a commonly
used feature in speech processing and in [Healy et al., 2013, p. 3031] they are used as
input to a DNN used in a speech enhancement algorithm. The method of extracting
the MFCCs can be divided into four main parts as listed below and is based on
[Huang et al., 2001, p. 314-316].

• Apply the STFT so an estimate of the power spectrum can be obtained via the
periodogram

• Apply a mel-frequency filter bank by a triangular weighting function

• Take the logarithm of the output of the filter bank

• Apply the Discrete Cosine Transform (DCT)

Compared to the definition of the cepstrum in Eq. (2.11) the calculation of the
MFCC uses the DCT-2 instead of the inverse DFT. This can be done when the log-
energy of the output of the filter bank is an even function [Huang et al., 2001, p. 316].
The proof of this will not be investigated further in this thesis. The effect of the DCT
is a decorrelation of the signal which are beneficial since a compact representation
is then achieved. The Karhunen-Loève transform is the optimal decorrelator wrt.
energy compaction. This means that as much energy as possible is placed in as
few coefficient as possible. Unfortunately, the Karhunen-Loève transform is data
dependent. The Karhunen-Loève transform can though be estimated by the DCT
which is not data dependent [Khayam, 2003, p. 15].

2.5. Acoustic Feature Representation 15

2.5.2 Relative Spectral Transform and Perceptual Linear Prediction

As explained in Section 2.1 the speech production is represented by the excitation
model and the time varying vocal tract filter shown in Fig. 2.1. This representation
of the speech production can be modeled using an all-pole system model given by
[Deller et al., 1993, p. 268]

V̂ (z) = 1
1−∑M

i=1 â(i)z−i
(2.12)

One way of estimating the parameters is by use of Linear Prediction (LP) where a
number of P previous samples are used to predict the current sample. This can be
expressed as [Makhoul, 1975, p.563]

ŝ(n) = −
P∑
i=1

ais(n− i). (2.13)

The prediction of the current sample will introduce some error compared to the
actual sample s(n) and it is desired to find a set of coefficients that minimizes this
error in some sense. A common choice is to use the squared error measure as cost
function. If this cost function is differentiated and set equal to zero, it can be written
in terms of the sample auto-correlation sequence of the samples as [Makhoul, 1975,
p.563]

−R(i) =
P∑
k=1

aiR(i− k) (2.14)

where the auto-correlation is defined as

R(i) =
N−1∑
n=i

s(n)s(n− i) (2.15)

and N is the length of the sequence. The expression in Eq. (2.14) is also called
the normal equations and can be formulated in matrix/vector notation as Ra = −r
where R is a P×P sample auto-correlation matrix. Therefore, the approach is named
the auto-correlation method. R is a Toeplitz matrix, meaning all elements along a
diagonal is constant and this special structure of the matrix can be utilized to solve
the equations by the Levinson–Durbin algorithm. By use of the Levinson–Durbin
algorithm the complexity of solving the equations is O(P 2) opposed to the O(P 3)
which is the complexity of a naive matrix inversion.

Even though the LP method is widely used it has a disadvantage when used in
terms of speech processing. The all-pole model estimated by LP makes an approxi-
mation of the power spectrum. The approximation error that is introduced is equally
weighted across frequency. This is contrary to the way the human auditory system
works where the spectral resolution decreases with increasing frequency from above
800Hz [Hermansky, 1989, p. 1738]. Hynek Hermansky introduced the Perceptual

16 Chapter 2. Fundamentals of Speech

Linear Prediction (PLP) that uses different concepts from the auditory system to
make modifications to the power spectrum, before performing the LP. The meth-
ods is described as follows [Hermansky, 1989]. First the speech signal is divided into
frames and multiplied by a Hamming window before a Fast Fourier Transform (FFT)
transforms it into the complex frequency domain. The absolute value of the real and
imaginary part is squared to obtain the power spectrum P (ω). Next, the frequency
axis of the power spectrum is warped to the Bark frequency Ω according to the
formula [Hermansky, 1989, p. 1739]

Ω(ω) = 6 ln
(
ω/1200π +

√
(ω/1200π)2 + 1

)
(2.16)

Since the level sensitivity of the human hearing is not equal for all frequencies, an
equal loudness preemphasis filter is applied. Furthermore, to simulate the nonlinear
relationship between the sound signals intensity and its perceived loudness the cubic-
root amplitude compression is applied [Hermansky, 1989, p. 1740]. The inverse DFT
is computed to yield the auto-correlation and the LP method described above can
be applied.

The PLP methods can also be combined with Relative Spectral (RASTA) filter-
ing. The basic idea of RASTA filtering is to suppress spectral content that changes
more slowly or more quickly than what is expected of typical speech. This can be
carried out as an Infinite Impulse Response (IIR) filter applied to the power spec-
trum of a specific T-F unit. The RASTA filter is given by the transfer function
[Hermansky, 1994, p. 579]

H(z) = 0.1z4 2 + z−1 − z−3 − 2z−4

1− 0.98z−1 . (2.17)

Combining the RASTA filtering with the PLP method yield the Relative Spectral
Transform - Perceptual Linear Prediction (RASTA-PLP) features.

2.5.3 Amplitude Modulation Spectrogram

Another way of representing a speech signal is in terms of the amplitude modulation.
Both neurophysiological and psychoacoustical experiments have shown that ampli-
tude modulation frequencies play an important role in the auditory system [Tchorz
and Kollmeier, 2002, p. 3-4]. In terms of digital signal processing, Kollmeier and
Koch used these findings to define the Amplitude Modulation Spectrogram (AMS)
for a binaural noise suppression method [Kollmeier and Koch, 1993]. The AMS is
a two-dimensional representation with center frequencies of some filter bank on the
ordinate and modulation frequencies on the abscissa. The overall idea of the AMS
representation is to use both spectral and temporal information captured from the
speech. The AMS representation can for example be used to make distinctions be-
tween acoustical objects such as voiced speech, unvoiced speech and various noise
types. In general, a speech signal has a characteristic AMS representation which is
different from the AMS representation of most types of noise signals [Tchorz and

2.5. Acoustic Feature Representation 17

Kollmeier, 2003, p. 184]. Therefore, the AMS could be used as a representation that
discriminate speech from noise. It should be noted that differences in the AMS repre-
sentation are more significant for voiced speech versus noise than for unvoiced speech
versus noise. For voiced speech, the energy in the AMS along the modulation axis is
intense, around the fundamental frequency and it multiples. The energy is likewise
intense at formant frequencies along the frequency axis. [Wang and Brown, 2006, p.
88]. Since unvoiced speech lacks harmonicity, there will be no intense activity along
the modulation axis. Even though the harmonicity in the AMS representation is a
very important element when classifying a sound as speech or noise, the represen-
tation will also be useful for discriminating unvoiced speech from noise, hence the
AMS cannot be replaced by a pitch detection algorithm where the computational
complexity is typically smaller [Tchorz and Kollmeier, 2003, p. 191].

Low modulation frequencies up to 8Hz have also been shown to be important
for speech intelligibility [Tchorz and Kollmeier, 2002, p. 3]. When the AMS is
calculated on short frames of perhaps 20ms, one could questioning the method since
the low modulation frequencies, important for speech intelligibility, are not captured.
Higher modulation frequencies play an important role when it comes to detection
of acoustical objects. In a noisy environment and on short segments of speech,
humans have the ability to detect signals as being speech even though the meaning
of the spoken words is not captured. The higher modulation frequencies that contain
information of the pitch seem to be important for the detection of the speech signal
[Tchorz and Kollmeier, 2002, p. 3]. Therefore, such modulation frequencies could be
of interest in a speech/interference classification type of problem.

An approach for extracting the AMS features is described in [Hang and Wang,
2012], [Kim et al., 2009] and [Healy et al., 2013]. This method will be used throughout
the thesis and is described as follows.

First, the sampled signal is bandpass filtered with a gammatone filter bank. The
envelope within each frequency channel is extracted using full wave rectification, i.e.,
taking the absolute value. The envelope signal is then decimated by a factor of 4.
The decimated envelope signal is segmented into overlapping frames of 80 samples
with overlap of 40 samples. Each frame in each channel is multiplied with a 20ms
Hanning window. The windowed signal is zero padded to a length of 256 and a
256 point FFT is calculated. The FFT computes the modulation spectrum with a
frequency bin spacing of 4000Hz/ 256 = 15.6Hz. The magnitudes of the FFT is
multiplied with 15 triangular windows uniformly spaced from 15.6-400Hz. For each
individual triangular window the FFT magnitudes are multiplied and summed up to
produce one AMS coefficient. Hereby 15 AMS coefficients are calculated.

18 Chapter 2. Fundamentals of Speech

2.5.4 Delta & Delta-Delta Features

The above mentioned features each represent the speech signal in different ways.
These representations are carried out on individual T-F units, independent on each
other Sometimes it is though also useful to have information about the rate of change
within successive frames. Therefore, a new set of coefficients called deltas, and delta-
deltas are introduced. In it simple form the delta features is just the difference
between T-F units across a number of successive frames. This can be written as

∆[n, k] = c[n+m, k]− c[n−m, k] (2.18)

where ∆[n, k] is the delta coefficient and c[n, k] is the acoustic feature at the n’th
frame and k’th frequency bin. The delta-deltas are calculated in a similar manner
just using the delta coefficient instead of the acoustic feature. Sometimes delta
coefficients are refereed to as differential coefficients, and delta-delta coefficient are
referred to as acceleration coefficients to imply their interpretations. Another and
more used way of calculating the delta features is to fit the slope of a straight line
to the acoustic features in a number of successive frames. This can be written as
[Jensen and Tan, 2015, p.188]

∆[n, k] =
∑m
t=−m tc[n+m, k]∑p

t=−p t
2 (2.19)

Compared to Eq. (2.18) this calculation includes more samples and thereby the rate
of change within a number of successive frames is found. The delta-deltas are found
in a similar way as in Eq. (2.19) just by changing c[n+m, k] by ∆[n+m, k].

Chapter 3

Speech Enhancement Algorithms

As mentioned in the introduction in Chapter 1, speech enhancement is of great inter-
est in many different applications. The basic aim of a speech enhancement algorithm
is to remove, or at least attenuate, the noise signal from a noisy observation. This
should be done in order to increase the intelligibility and quality. The following chap-
ter contains a description of different types of speech enhancement algorithms. First,
Section 3.1 contains a description of the classical methods used for speech enhance-
ment. This includes spectral subtraction, Wiener filter and the spectral amplitude
MMSE estimator. The spectral amplitude MMSE estimator is henceforth referred
to as just the MMSE estimator. In Section 3.2 the concept of the IBM is introduced.
In the same section a description of three machine learning methods, that aim to
estimate the IBM, is given. Finally, in Section 3.3 a description of the performance
measures used for evaluating intelligibility and quality is given.

3.1 Classical Methods
Before going into the description about some classical methods the signal model
considered is presented as

y(n) = x(n) + n(n) (3.1)

where y(n) is the observed noisy signal, x(n) is the speech signal and n(n) is the
noise signal. The signals are considered as realizations of a stochastic process and
the noise process and speech process are assumed independent. By use of the STFT,
Eq. (3.1) can likewise be expressed in the T-F domain as

Y (n, ω) = X(n, ω) +N(n, ω) (3.2)

where Y (n, ω), X(n, ω) andN(n, ω) is the complex valued T-F domain representation
of the noisy signal, the noise-free signal and the noise signal, respectively. Even
though the time index n strictly speaking refers to one sample, it will henceforth be
referred to as a frame index consisting of several samples without change of notation.

A broad class of speech enhancement algorithms operate in the T-F domain and
it turns out that estimates of the noise-free signal is generally a function of the noise
PSD and speech PSD [Hendriks et al., 2013, p. 8]. However, in practice these are
not available in isolation, and have to be estimated. In the following description

19

20 Chapter 3. Speech Enhancement Algorithms

of existing speech enhancement algorithms, noise PSD and speech PSD are though
assumed to be known. In Section 3.1.4 a short description of how the noise and
speech PSD can be estimated, is presented.

In general, the derivation of clean speech estimators is performed under the as-
sumption that both the noise-free and the noise signal is present in the noisy observa-
tion. This is not always the case in practice since speech pauses occur. Furthermore,
both during speech and speech pauses, some of the transform coefficients from Eq.
(3.2) will be close to zero. Therefore, a speech present probability estimator is often
included in the system [Hendriks et al., 2013, p. 8]. We will omit a discussion of the
speech present probability estimator and just be aware that it is commonly part of
a speech enhancement system. Finally, it should be noted that there in general is a
trade off between noise suppression and speech distortion in the speech enhancement
algorithms [Loizou, 2007, p. 107]

3.1.1 Spectral Subtraction

One of the most well known algorithms for noise suppression in speech processing is
based on spectral subtraction. The basic idea is to make an estimate of N(n, ω) and
then simply subtract it from Y (n, ω) to obtain an estimate of X(n, ω). The estimates
of X(n, ω) and N(n, ω) are denoted X̂(n, ω) and N̂(n, ω), respectively. Now N̂(n, ω)
can be used to obtain X̂(n, ω) as

X̂(n, ω) = Y (n, ω)− N̂(n, ω). (3.3)

Alternatively the T-F representation of the noisy speech can be expressed in polar
form as

Y (n, ω) = |Y (n, ω)|ejφy(n,ω) (3.4)

where |Y (n, ω)| is the magnitude and φy(n, ω) is the phase of the T-F representation.
The T-F representation of the noise can likewise be expressed in polar form as

N(n, ω) = |N(n, ω)|ejφn(n,ω) (3.5)

where |N(n, ω)| is the magnitude and φn(n, ω) is the phase of the T-F representation.
It has been shown that in practical applications the noisy phase can be used as a
decent estimate for the noise-free phase meaning that φy(n, ω) ≈ φn(n, ω) [Deller
et al., 1993, p. 508]. Using this approximation, Eq.(3.3) can be rewritten as

X̂(n, ω) = (|Y (n, ω)| − |N̂(n, ω)|)ejφy(n,ω). (3.6)

This implies that what have to be estimated is the T-F representation of the noise
|N̂(n, ω)|. The spectral subtraction calculation in Eq. (3.6) can also be performed
on the PSD as [Loizou, 2007, p. 100]

|X̂(n, ω)|2 = |Y (n, ω)|2 − |N̂(n, ω)|2. (3.7)

3.1. Classical Methods 21

Hereby an enhanced speech signal can be obtained by applying the inverse STFT
to Eq. (3.6). One of the major drawbacks of spectral subtraction is the hazard
of introducing distortion in the speech signal. When too much is subtracted from a
noisy T-F tile, speech is lost and if to little is subtracted noise is still present. Another
thing to notice is that when one performs spectral subtraction as in Eq. (3.6) the
result can become negative due to estimation error. Since the magnitude spectrum
cannot be negative this result is meaningless. A simple way to overcome this is to
set |X̂(n, ω)| to zero, if the calculation become negative. However, this nonlinear
approach causes isolated peaks in the spectrum and within subsequently frames,
these peaks will occur in different locations of the spectrum. In the time domain this
will result in random variations of tones at the frame rate. This generated distortion
is referred to as "musical noise" [Loizou, 2007, p. 110]. An example of how the
spectrogram is affected by "musical noise", is illustrated in Fig. 3.1. Here a clean
speech signal is corrupted by additive white Gaussian noise with a SNR of 5 dB.
The top panel shows the spectrogram of the clean signal, the middle panel shows
the spectrogram of the noisy signal and the bottom panel shows the spectrogram of
the enhanced signal. From the bottom panel the isolated peaks causing the "musical
noise" are clearly visible. Furthermore, it is seen that the algorithm also removes part
of the clean signal. An audio file with the enhanced signal is available from the file
enhanced_sig_ssub.wav on the appendix DVDs. The implementation of the Spectral
Subtraction algorithm is made by Philipos C. Loizou and the code is available from
[Loizou, 2007].

When the SNR decreases the effect of the "musical noise" will be more noticeable.
So even though the spectral subtraction approach is relative simple to interpret and
implement it has its drawbacks of introducing "musical noise" and distortion. To
avoid the effect of "musical noise" different methods have been proposed [Loizou,
2007, p. 112-136]. An investigation of such methods is, however beyond the scope of
this thesis.

3.1.2 Wiener Filter

The spectral subtraction method discussed in Section 3.1.1 is not derived in a the-
oretical optimal way. Therefore, the attention is turned toward the Wiener filter
which is optimal in a mean-square error sense when certain statistical assumptions,
that will be clarified later, is fulfilled. In the following, the Wiener filter model is
described together with its asymptotic SNR behavior. Next, the Wiener filter is
formulated in the context of speech enhancement. The aim here is to attenuate the
additive noise as described from the model in Eq. (3.1). Finally, the wiener filter is
formulated in the STFT domain.

The Wiener filter is constrained to be of a linear type and could be a Finite
Impulse Response (FIR) as well as an IIR filter. It is however, normal procedure to
consider the FIR filter, since it is inherently stable and the solution is relative easy
to evaluate. Therefore, only the FIR filter is considered in the following. The setup
of a linear filtering problem is depicted in Fig. 3.2. The assumptions made, when

22 Chapter 3. Speech Enhancement Algorithms

0.5 1 1.5 2 2.5
−0
2
4

6
8

0.5 1 1.5 2 2.5
−0
2

4

6
8

Time (s)

F
re

qu
en

cy
 (

kH
z)

0.5 1 1.5 2 2.5
−0
2
4
6
8

P
ow

er
/H

z
(d

B
)

−90

−85

−80

−75

−70

−65

−60

−55

Figure 3.1: Example of random locations of peaks in the spectrogram during spectral subtraction.
Top figure shows the spectrogram of the noise-free signal, middle figure shows the spectrogram of
the noisy signal and bottom figure shows spectrogram of enhanced signal. The "musical noise" is
clearly illustrated by the isolated peaks in the bottom figure.

deriving the Wiener filter, is that the input signal y(n) and desired signal d(n) are
assumed to be realizations of a jointly WSS process. This means that both y(n) and
d(n) are realizations of a WSS stochastic process and their cross-correlation depends
only on the time lag.

+
Linear
Filter hm

d(n)

d(n)
e(n)y(n) -

Figure 3.2: This figure presents the linear model, which forms the foundation of the Wiener filter.

The filter from Fig. 3.2 is a M -tap FIR hence a M length delay line of the input
signal is used. The signals included in the Wiener filter can be described as

• h = [h0 h1 . . . hM−1]T .

• y(n) = [y(n) y(n− 1) . . . y(n−M − 1)]T .

Here h is the filter coefficients and y(n) is the WSS input signals. The remaining
signals in the model shown in Fig. 3.2 can be defined as follows

3.1. Classical Methods 23

• d̂(n) = y(n)Th is the output signal.

• d(n) is a zero mean WSS desired signal.

• e(n) = d(n)− d̂(n) is the error signal.

A derivation of the Wiener filter, using the setup in Fig. 3.2, can be found in
Appendix A.

Since the Wiener filter is to be used for speech enhancement, the model for
a speech signal corrupted by additive noise given in Eq. (3.1) is used as input.
Therefore, the desired signal is the clean signal, i.e. d(n) = x(n). In this case, and
under the assumption that the noise is zero mean and uncorrelated with the clean
signal, the Wiener filter can be expressed as [Loizou, 2013, p. 145]

h = (Rxx + Rnn)−1rxx (3.8)

where Rxx is the auto-correlation matrix of the speech signal, Rnn is the auto-
correlation matrix of the noise signal and rxx is the cross-correlation vector.

The solution to the filter coefficients can be rewritten as [Chen et al., 2006, p.
1220]

h =
[

I
SNR

+ R̂−1
nnR̂xx

]−1

R̂−1
nnR̂xxu1 (3.9)

where the SNR is given by σ2
x/σ

2
n, R̂nn , Rnnσ

2
n, R̂xx , Rxx/σ

2
x, I is a M ×M

identity matrix and u1 is the first column of I. From the expression in Eq. (3.9)
the asymptotic behavior of the Wiener filter, when the SNR tends to either zero or
infinity, can be written as [Chen et al., 2006, p. 1220]

lim
SNR→0

h = 0 (3.10)

and
lim

SNR→∞
h = u1 (3.11)

The interpretation of Eq. (3.11) is that when the SNR tend to a very high level the
Wiener filter does not provide any attenuation of the noise since uT1 y = y(n). On
the other hand when the SNR tends towards zero the output is highly attenuated
resulting in distortion of the speech signal as seen from Eq. (3.10). From Eq. (3.9)
it is seen that the Wiener filter coefficient are dependent on Rxx and Rnn which are
not directly observable.

Until now the Wiener filter has been defined in the time domain. Most often it
is though implemented in the STFT domain so the filter is also presented in this
domain. The T-F representation of the Wiener filter can be expressed as [Loizou,
2007, p. 152]

H(n, ω) = Pxx(n, ω)
Pxx(n, ω) + Pnn(n, ω) (3.12)

24 Chapter 3. Speech Enhancement Algorithms

where Pxx(n, ω) and Pnn(n, ω) is the PSD of the clean and noise signal, respectively.
Furthermore, the a priori SNR that can be defined as [Loizou, 2007, p. 152]

ξ(n, ω) = Pxx(n, ω)
Pnn(n, ω) (3.13)

and the Wiener filter can be expressed in terms of an a priori SNR

H(n, ω) = ξ(n, ω)
ξ(n, ω) + 1 . (3.14)

The T-F representation of the output of the filter is given by

X̂(n, ω) = H(n, ω)Y (n, ω) = ξ(n, ω)
ξ(n, ω) + 1Y (n, ω). (3.15)

A T-F representation of a Wiener filter implementation based on the a priori SNR
is shown in figure 3.3. This implementation is made by Philipos C. Loizou [Loizou,
2007]. A clean speech signal is corrupted by additive white Gaussian noise with a
SNR of 5 dB. The top panel shows the spectrogram of the clean signal, the middle
panel shows the spectrogram of the noisy signal and the bottom panel shows the
spectrogram of the enhanced signal. Compared to the spectral subtraction method
shown in figure 3.1, the Wiener filter still suffers from "musical noise" but more of
the clean signal is preserved. An audio file with the enhanced signal is available from
the file enhanced_sig_wiener.wav on the appendix DVDs.

3.1.3 Non-Linear Estimators

The Wiener filter presented in the previous section is a linear estimator since there
is a linear relationship between the noisy PSD and the estimate of the clean PSD
as shown in Eq. (3.15). Non-linear estimators could potentially improve the per-
formance [Loizou, 2007, p. 209]. A popular choice of such estimator could be
the Maximum Likelihood (ML) estimator. Here we have a frame of observations
y = [y(0) y(1) . . . y(N − 1)] and some unknown but deterministic parameters of in-
terest given by θ. In the context of speech enhancement y could be a set of noisy
observations and θ could be the clean speech PSD. It is assumed that the Probability
Density Function (PDF) p(y; θ) is known and this function is called the likelihood
function. The aim is to find the θ, that most likely gave rise to the observations y.
This can be formulated as

θ̂ML = arg max
θ

p(y; θ) (3.16)

where θ̂ML is called the maximum likelihood estimate. In maximum likelihood esti-
mation it is important to notice that the parameter of interest is deterministic but
unknown. The method of ML is also used during the training of a DNN described
in Chapter 5.

3.1. Classical Methods 25

0.5 1 1.5 2 2.5
−0
2
4
6
8

0.5 1 1.5 2 2.5
−0
2
4
6
8

Time (s)

F
re

qu
en

cy
 (

kH
z)

0.5 1 1.5 2 2.5
−0
2
4
6
8

P
ow

er
/H

z
(d

B
)

−90

−85

−80

−75

−70

−65

−60

−55

Figure 3.3: Speech enhancement performed by Wiener filtering. Top figure shows the spectrogram
of the noise-free signal, middle figure shows the spectrogram of the noisy signal and bottom figure
shows spectrogram of enhanced signal. Musical noise i still present in the enhanced signal but more
of the clean signal is preserved, compared to the spectral subtraction method.

An alternative approach is to perform the estimation in a Bayesian framework.
The Bayesian approach considers the parameter of interest as a random variable and
hereby prior information can be considered. This is the fundamental difference be-
tween classical and Bayesian statistics. One such Bayesian estimator is the Maximum
a Posteriori (MAP) estimator which in general can be formulated as

θ̂MAP = arg max
θ

p(y|θ)p(θ) (3.17)

Even tough, ML and MAP estimators are popular within estimation theory and
leads to relative simple expressions, the attention is turned towards another type of
Bayesian estimators called MMSE estimators, since they often have a better perfor-
mance [Loizou, 2007, p. 219] [Hendriks et al., 2013, p. 18]. MMSE estimators use
the mean square error cost function and is expressed as the conditional mean of the
parameters of interest given the observations. This can be written as

θ̂MMSE = E[θ|y] =
∫

θp(θ|y)dθ. (3.18)

In terms of speech enhancement, this type of estimator can in general be expressed
as a gain function taking the arguments of an a posteriori SNR γ(n, ω) and an a
priori SNR ξ(n, ω), applied to the noisy STFT coefficients Y (n, ω). The a priori
SNR ξ(n, ω) is already presented in Eq. (3.13) and the a posteriori SNR γ(n, ω) is
defined as [Loizou, 2007, p. 224]

γ(n, ω) = |Y (n, ω)|2
Pnn(n, ω) . (3.19)

26 Chapter 3. Speech Enhancement Algorithms

For simplicity ξ(n, ω) and γ(n, ω) will be denoted ξnω and γnω, respectively. The
MMSE magnitude estimator is in [Loizou, 2007, p. 225] defined as

X̂(n, ω) = G(ξnω, γnω)Y (n, ω). (3.20)

Under the assumption that speech and noise STFT coefficients are uncorrelated and
both are Gaussian distributed a gain function can be defined as [Loizou, 2007, p.
225]

G(ξnω, γnω) =
√
π

2

√
vnω
γnω

exp
(
−vnω2

)[
(1 + vnω)I0

(
vnω
2

)
+ vnωI1

(
vnω
2

)]
(3.21)

and vnω is defined as
vnω = ξnω

1 + ξnω
γnω. (3.22)

Furthermore, I0 and I1 is the modified Bessel function of zero and first order [Loizou,
2007, p. 581]. The gain function will not be subject to further investigation in this
thesis but worth noting is that G(ξnω, γnω) is a function of the a priori and a posteri-
ori SNR. Other gain functions have been proposed under different assumptions. For
example, estimators derived under the assumption that STFT coefficients are super-
Gaussian (sharper peak and longer tails) distributed tends to perform better than
the estimators that assumes STFT coefficients to be Gaussian distributed [Hendriks
et al., 2013, p. 21]. When implementing an MMSE estimator the following steps
should be involved.

• Calculate the T-F representation of the noisy signal Y (n, ω).

• Calculate the a posteriori SNR γ(n, ω) from Eq. (3.19).

• Calculate a priori SNR ξ(n, ω) from Eq. (3.13).

• Calculate the enhanced T-F representation from the noisy signal using the gain
function defined in Eq. (3.21).

• Reconstruct the time domain representation of the enhanced signal.

A spectrogram representation of a non-linear MMSE implementation, based on
the gain function given in Eq. (3.21), is shown in figure 3.4. This implementation is
made by Philipos C. Loizou [Loizou, 2007]. Here a clean speech signal is corrupted by
additive white Gaussian noise with a SNR of 5 dB. The top panel shows the spectro-
gram of the clean signal, the middle panel shows the spectrogram of the noisy signal
and the bottom panel shows the spectrogram of the enhanced signal. Compared to
the Wiener filter it can be seen that the "musical noise" effect is considerable reduced.
It can also be seen that most of the clean speech signal seems to be preserved. An
audio file with the enhanced signal is available from the file enhanced_sigMMSE.wav
on the appendix DVDs.

3.1. Classical Methods 27

0.5 1 1.5 2 2.5
−0
2
4
6
8

F
re

qu
en

cy
 (

kH
z)

0.5 1 1.5 2 2.5
−0
2
4
6
8

P
ow

er
/H

z
(d

B
)

−90

−85

−80

−75

−70

−65

−60

−55

Time (s)
0.5 1 1.5 2 2.5

−0
2
4
6
8

Figure 3.4: Speech enhancement performed by spectral magnitude MMSE estimation. Top figure
shows the spectrogram of the noise-free signal, middle figure shows the spectrogram of the noisy
signal and bottom figure shows spectrogram of enhanced signal. Musical noise is considerably
reduced in the enhanced signal and most of the clean signal is preserved.

For the method mentioned so far, it is necessary to have access to both the noise
and clean PSD, in isolation. This is obviously not the case in practical speech
enhancement scenarios, where only y(n) is observed, so these quantities have to be
estimated. The next section will give a brief introduction to some principles on how
noise and speech PSD estimators can be designed.

3.1.4 Speech and Noise PSD Estimation

Speech and noise PSD estimation is an essential part of a the speech enhancement
algorithms presented so far in this chapter. As seen so far the methods depend on the
clean spectrogram and (or) the noise spectrogram. The estimates of these quantities
will therefore have a major impact on the performance of the different speech en-
hancement algorithms. Many types of both noise and speech PSD estimators exist.
The above discussion should not be seen as an overview of PSD estimators. It should
just stress the fact that the aforementioned speech enhancement systems highly de-
pend on the performance of such PSD estimators. In terms of noise estimation, a
simple approach is to estimate the noise spectrogram during "silence" periods of the
signal, where speech signal is absent and only the noise signal is present. This can
be done by use of a Voice Activity Detection (VAD) algorithm that typically makes
a binary decision, based on a time frame, whether speech is present or absent. Such
methods may work well in an environment with stationary noise. In non-stationary
environments, noise estimation based on VAD would not be sufficient, since the noise
spectrum changes over time, also during speech activity. Other types of noise esti-

28 Chapter 3. Speech Enhancement Algorithms

mation is therefore often preferred and VAD algorithms will not be subject to any
further investigation in this thesis.

One observation that can be exploited when estimating the noise PSD is that
even during speech activity, the energy of the speech is not guaranteed to be present
in every frequency band [Hendriks et al., 2013, p. 30]. This also implies that the
power of the noisy signal decays to the noise power in the individual frequency
bands[Loizou, 2007, p.379]. One can therefore obtain an estimate of the noise PSD
by tracking the minimum power in each T-F unit of the noisy signal over a fixed time
interval. This type of noise estimation is referred to as minimal-tracking algorithms.

When estimating the speech PSD this can be done by use of maximum likelihood
estimation. Here the likelihood function is given by p(y;Pxx) where a frame of noisy
observations y is given and the speech PSD have to be estimated. If assumed that the
spectral coefficients of the speech and noise signals are complex Gaussian distributed
the maximum likelihood estimator is given by [Hendriks et al., 2013, p. 37]

P̂xx(n, ω)ML = |Y (n, ω)|2 − Pnn(n, ω). (3.23)

If the speech and noise are uncorrelated Eq. (3.23) will yield an unbiased estimate
of the speech power. On the other hand this estimator will have a large variance
since a sample size of one frame is used. As it is desired to find an estimator with
a minimum variance this is obviously not desired. A way to overcome this is to
perform smoothing of L successive frames of the noisy signal. However, this requires
that the noisy signal is stationary within the L successive frames and this is often
not the case in practice. A method based on a previous clean speech estimate is
therefore considered. This is called the decision directed approach and is one of the
most commonly used speech estimators. This estimator is given by [Hendriks et al.,
2013, p. 37]

P̂xx(n, ω) = max
(
αP̂xx(n− 1, ω) + (1 + α)

(
|Y (n, ω)|2 − Pnn(n, ω)

)
, βPnn(n, ω)

)
(3.24)

where α and β is trade off parameters for noise reduction and speech distortion.

3.2 Ideal Binary Mask Estimation
What will be discussed in this section is speech enhancement methods based on the
concept of an Ideal Binary Mask (IBM). Already from this point it should be made
clear that the IBM in itself is not a practical applicable speech enhancement method
since it requires that one knows both the clean and the noise signal, in isolation. For
practical speech enhancement the goal should be to make a decent estimate of the
IBM.

The idea of the IBM arise from Albert Stanley Bregmans proposed model of
the human auditory perception, called Auditory Scene Analysis (ASA) [Wang and
Brown, 2006, p.2]. Bregman describes the human auditory system to consist of two
stages. In the first stage a decomposition of the input signal into T-F units takes

3.2. Ideal Binary Mask Estimation 29

place. This is called the segmentation stage. In the second stage, called grouping,
the different T-F unit that are likely to come from the same source are grouped.
The T-F unit within the same group is collected into a perceptual stream. It is
believed that humans, in this way, perform sound source segregation. The model has
inspired research within the field of Computational Auditory Scene Analysis (CASA)
where the goal is to extract such streams in a computationally manner [Wang and
Brown, 2006]. In a CASA system the input signal is first transformed into a T-F
representation. It is commonly done by sending a signal through a gammatone filter
bank and then divide the output into frames. This T-F representation is referred to
as a cochleagram which was explained in Section 2.3. Since the goal is to segregate
a speech signal from a noise signal, the IBM has been proposed to decide whether
a T-F unit in the cochleagram is dominated by the noise source or by speech. The
IBM is given by

M(n, ω) =

1, if ||x(n,ω)||2
||n(n,ω)||2 > θ .

0, otherwise.
(3.25)

where ||x(n, ω)||2 is the energy in a speech T-F unit, ||n(n, ω)||2 is the energy in
a noise T-F unit and θ is a threshold value. Considerable improvements in speech
intelligibility have been obtained by use of an IBM [Wang and Brown, 2006, p.23].

The interpretation of the IBM is that the decision rule in Eq.(3.25) should de-
cide whether a given T-F unit is dominated by the speech signal or the noise signal
according to some threshold. Hereby, the IBM can be used to eliminate noise dom-
inated T-F units and preserve speech dominated T-F units. To generate the IBM
it is of course necessary to have access to both the speech and noise signal in iso-
lation, which is not the case in practical speech enhancement scenarios. Therefore,
an estimate of the IBM should be obtained in some way and a binary classification
problem is faced. There are several ways to solve such a problem including different
machine learning methods. In recent work, the problem of estimating the IBM for
speech enhancement is performed by use of Gaussian Mixture Models (GMMs) [Kim
et al., 2009], Support Vector Machines (SVMs) [Hang and Wang, 2012] and DNNs
[Healy et al., 2013]. These three papers report promising results in terms of classifi-
cation performance and to gain insight into the three machine learning methods, a
description is presented in the following.

3.2.1 Gaussian Mixture Models

An approach to handle the estimation of the IBM is in terms of Gaussian mixture
models, as in [Kim et al., 2009]. Here it is assumed that two somewhat distinct
clusters appear in some feature space, one for noise dominated T-F units and one for
speech dominated T-F units. These two clusters can each be modeled as a mixture
of Gaussians. In general a mixture of K Gaussians on some variable x is given by

30 Chapter 3. Speech Enhancement Algorithms

[Bishop, 2009, p.111]

p(x) =
K∑
k=1

πkN (x|µk,Σk) (3.26)

where µk is the mean vector and Σk is the covariance matrix for the kth Gaussian
component. The parameter πk is called a mixing coefficient, and is the probability
that a sample originate from the kth Gaussian component. The approach presented in
[Kim et al., 2009] is based on training two different mixture models, each consisting
of a 256-mixture Gaussian model. One model for noise dominated T-F units and
one for speech dominated T-F units. In the training phase both clean and noise
signals are available, in isolation. In the test phase a binary decision rule will, based
on the probabilities of the two different mixture models, classify T-F units as noise
dominated or speech dominated. An often used method for training GMMs is the
Expectation-Maximization (EM) algorithm that will give the maximum likelihood
estimate of the parameters. This is also the approach used in [Kim et al., 2009]. The
EM algorithm is carried out through the use of a latent variable. The derivation of
the Gaussian mixture model expressed in terms of such latent variable is described
in Appendix B, together with the EM algorithm.

Commonly the K-means algorithm is used to initiate the parameters of the Gaus-
sian mixture model and this is also the case in [Kim et al., 2009]. The results from
[Kim et al., 2009] reveals that the GMM based method gave rise to a large intelligi-
bility improvements, especially at low SNR levels.

3.2.2 Support Vector Machines

The problem of estimating the IBM can also be performed through the use of SVMs
as in [Hang and Wang, 2012]. The SVM is as a binary classifier with a supervised
learning approach. When used for estimating the IBM the two classes correspond to
noise dominated T-F unit and speech dominated T-F units. It is for now assumed
that the two classes are linear separable in some feature space and there will exist
a decision hyperplane that separate those two classes. One such hyperplane is not
unique but the aim of the SVM is to find the hyperplane with the maximum margin.
This is illustrated in Fig. 3.5.

From figure 3.5 it is seen that three hyperplanes are defined. The hyperplanes H1
and H2 contains the support vectors which are the data points closest to the deci-
sion hyperplane H. Furthermore, the vector w is perpendicular to the hyperplanes.
During the training phase, the training data for the SVM is given by {xi, yi} where
yi ∈ {−1,+1}, xi ∈ Rd. This means that yi is one of the two class labels denoted -1
and +1 and xi is a sample from some feature space. Since all samples should belong
to one of the two classes the following must be satisfied

xTi w + b ≥ +1 for yi = +1 (3.27)

xTi w + b ≤ −1 for yi = −1 (3.28)

3.2. Ideal Binary Mask Estimation 31

H

H

1

H2

w

xTw - b = +1

xTw - b = 0

xTw - b = -1

Margin = 2
|w|| |

Figure 3.5: The SVM illustrated in a linear separable feature space. The blue and red dots
illustrate data from the two classes and the data points located on the hyperplanes H1 and H2 are
called support vectors.

where b is a bias term. If Eq. (3.27) and (3.28) is combined the following expression
is obtained

yi(xTi w + b)− 1 ≥ 0. (3.29)

This constraint should therefore be fulfilled for all i when one is to maximize the
margin. The margin is found to be 2/‖w‖ and since the objective is to maximize this
margin it is equivalent to minimizing ‖w‖. This can be formulated as the optimization
problem

arg min
w,b

1
2‖w‖

2

subject to yi(xT
i w + b)− 1 ≥ 0

(3.30)

Hereby a trained model can be used and the decision function is given by [Bishop,
2009, p. 329]

f(x) =
N∑
i=1

αiyixTi x + b (3.31)

where there is a αi for each training point and αi > 0 correspond to the support
vectors. For other points, the value of αi is 0. In order to classify test data the sign
of the decision function is evaluated.

Until now it has been assumed that the data is linear separable in feature space. If
this is not the case, a kernel trick can be applied to map xi into a higher dimensional
feature space. This means that xTi x can be substituted by some non-linear kernel
function. There exist different such kernel functions and popular choices are the
polynomial and radial basis kernel function. One drawback of the SVM is its relative
long training time where one is faced with the curse of sample size. The use of SVMs
for classification of the IBM discussed in [Hang and Wang, 2012] shows an HIT minus

32 Chapter 3. Speech Enhancement Algorithms

False Alarm (HIT-FA) improvement compared to the GMM approach described in
Section 3.2.1.

3.2.3 Deep Neural Networks

The methods of estimating the IBM can also be carried out by using a DNN as in
[Healy et al., 2013]. This method has shown very promising results as it, in terms of
HIT-FA rates, outperforms both the GMM and SVM approaches discussed so far.

As mentioned in the introduction in Chapter 1 the scope of this thesis is to
investigate the performance of such methods. A detailed description of DNNs is
hereby given in Chapters 4 and 5.

3.3 Performance Measures
In order to evaluate the performance of the different speech enhancement algorithms,
and compare them against each other, it must be decided which performance measure
to use. In the speech enhancement literature the criteria of quality and intelligibil-
ity are typically used. Quality refers to how "good" or "poor" a given speech signal
is perceived and is highly subjective since different people have different opinions
on what a "good" and "poor" speech signal sounds like. Intelligibility on the other
hand is objective in nature since it relates to how well the information in the speech
signal is perceived by the listener [Loizou, 2013, 439]. Measuring speech quality
or speech intelligibility is ideally done using subjective listening test using a repre-
sentative collection of test subjects, but unfortunately such listening test are both
time consuming and expensive. For this reason researchers have investigated objec-
tive evaluation methods with the aim of being highly correlated with the real life
listening tests.

Many such methods exist, for both speech quality and intelligibility, but the
Perceptual Evaluation of Speech Quality (PESQ) [Rix et al., 2001] and the Short-
Time Objective Intelligibility (STOI) [Taal et al., 2010] measures are two commonly
used objective performance measures used for assessing quality and intelligibility,
respectively.

For evaluating performance of binary classifiers, the classification accuracy is
the intuitive measure to consider but a measure known as HIT minus False Alarm
(HIT-FA) is commonly used for IBM based speech enhancement methods. The per-
formance measures PESQ, STOI and HIT-FA are further described in the following
section.

3.3.1 Perceptual Evaluation of Speech Quality (PESQ)

The PESQ measure is a performance measure originally invented to evaluate the
degradation of speech quality when a speech signal has been sent through a telecom-
munication network. The computation of the PESQ measure requires the clean
speech signal and the degraded speech signal and the algorithm accounts for time

3.3. Performance Measures 33

alignment and gain equalization and is based on a spectral comparison of the clean
and degraded speech signal where perceived loudness and masking effects are con-
sidered [Loizou, 2013, p. 491]. The PESQ measure has been found to be highly
correlated to subjective listening tests [Rix et al., 2001]. The implementation of
PESQ used in this thesis is available from [Loizou, 2013].

3.3.2 Short-Time Objective Intelligibility (STOI)

The STOI measure is an Objective Intelligibility Measure (OIM), which is designed
to be used in conjunction with T-F weighted speech, which encompasses IBM and
other processing types [Taal et al., 2010]. The STOI measure is designed from the
assumption that intelligibility is correlated with the similarity between neighboring
T-F units of clean speech and T-F units of processed noisy speech. The computation
of STOI can be divided into three different stages: T-F transformation, Intermediate
intelligibility measure and the Final intelligibility measure.

The T-F transformation is performed by dividing the signal under examination
into overlapping frames, which are hamming windowed. The frames are then ap-
propriately zero-padded and transformed into frequency by a DFT. The frequency
transformed frames are then divided into 15 one-third octave bands, which cover a
frequency range from approximately 150 Hz to 3.8 kHz. STOI assumes a sampling
frequency of 10 kHz so signals not fulfilling this requirements must be resampled.

The intermediate intelligibility measure is computed for each T-F unit and is
defined as the linear correlation coefficient between consecutive T-F units within the
same one-third octave band in the clean speech signal and the IBM processed noisy
speech signal.

The final intelligibility measure is computed as the average between all interme-
diate intelligibility measures across time and frequency. This means that the STOI
measure is a number between -1 and +1, with +1 being the highest intelligibility
score. Studies have revealed that the STOI measure is highly correlated to human
intelligibility supporting the use of STOI as an OIM [Taal et al., 2010] [Loizou, 2013,
p. 566]. The implementation of STOI used in this thesis is available from [Taal,
2010].

3.3.3 Hit - False Alarm (HIT-FA)

An intuitive performance measure when dealing with classifiers is the classification
accuracy computed as the ratio between the total number of correctly classified and
incorrectly classified labels. This measure however does not differentiate between
the different kind of classification errors, which, in the binary case, are the False
Alarm (FA) and Miss Error (ME). The FA is defined as the percentage of the to-
tal number of noise dominated T-F units mistakenly classified as speech dominated
and ME is defined as the percentage of the total number of speech dominated T-F
units mistakenly classified as noise dominated. It has been shown that a FA error is
more damaging regarding speech intelligibility than a ME, which lead to the HIT-FA

34 Chapter 3. Speech Enhancement Algorithms

performance measure. This measure is aimed at IBM based speech enhancement
methods [Wang, 2008] [Loizou, 2013, p. 647]. The HIT rate is defined as the per-
centage of the total number of correctly classified speech dominated T-F units. The
difference between the HIT rate and the FA rate, i.e. the HIT-FA rate, has been
reported to be highly correlated with speech intelligibility [Loizou, 2013, p. 647].

Chapter 4

Neural Networks

This chapter presents the basic theory regarding Artificial Neural Networks (ANNs).
ANNs form the foundation of the Deep Neural Network (DNN) methods used for
speech enhancement in chapter 6. ANNs are a class of machine learning methods
used for solving regression and classification problems and are motivated by research
on the human brain. The way the human brain solves problems is very different from
how a typical PC, based on a Von Neumann or Harvard architecture, solves prob-
lems. A typical silicon based PC consists of relatively few processing units and some
memory and is capable of computing several hundred billion of Floating-point Op-
erations Per Second (FLOPS) in a primarily sequential manner. The computations
are executed based on machine instructions, which are representations of algorithms
designed, by a human, to solve certain problems. From this perspective PCs are very
well suited for solving well-defined problems which can be exactly described by an
algorithm. This could be problems such as searching through a database or comput-
ing the constant π with a billion digits. Problems which are fairly simple and well
understood. Problems such as recognizing objects within an image or recognizing
noisy speech are on the other hand rather complicated. Manually designing generic
algorithms that effectively solves such problems are very difficult. The human brain
on the other hand solves such problems both faster and better than computers are
capable of today [Haykin, 1999, p. 1]. This sort of paradox and the aim of un-
derstanding human cognition lead to connectionism, which is a machine learning
paradigm aiming to understand human intellectual abilities using ANNs. Connec-
tionist research lead to the use of ANNs in engineering applications such as, pattern
recognition, speech recognition and speech enhancement. [Stanford Encyclopedia,
2014].

4.1 Biological Neural Networks
To fully understand the motivation behind ANNs a basic understanding of the human
brain, and especially Biological Neural Networks (BNNs), is required. The human
brain weighs on average 1.375 kg and consists of a network of approximately 100×109

interconnected brain cells called neurons, hence the term Neural Network (NN) [Moos
and Møller, 2010, p. 13]. A neuron consists primarily of three structures as illustrated
in Fig. 4.1. The dendrites, the cell body and the axon. The dendrites serves as an

35

36 Chapter 4. Neural Networks

Dendrites

Cell body

Axon

Axon terminals

Figure 4.1: Biological neuron with its three primary components. The dendrites, the cell body and
the axon with its axon terminals. The neuron receives signals on its dendrites which are accumulated
in the cell body and if the signals accumulate above a certain threshold a new signal is fired onto the
axon. Source: http://commons.wikimedia.org/wiki/Neuron#mediaviewer/File\protect\kern+
.2222em\relaxDerived_Neuron_schema_with_no_labels.svg License: CC BY-SA 3.0

input leading chemical or electrical signals to the cell body and the axon serves as an
output, leading signals away from the cell body [Moos and Møller, 2010, pp. 57-59].
The axon has several axon terminals which are connected to the dendrites on other
neurons, hence forming the NN. The connections between neurons, i.e. connections
between axon terminals and dendrites, are referred to as synapses. There can be from
a few hundred to several hundred thousand synaptic connections between one neuron
and other neurons in the NN. These synaptic connections make up an extremely large
and complicated network with several trillion synaptic connections [Haykin, 1999, p.
6]. The neurons are also connected to other parts of the body such as the optic
nerves involved in vision or the motor nerves involved in muscle contractions. These
parts act, respectively as input and output for the NN.

The general perception is that the human brain cannot produce neurons so when
the brain stops growing, a few years after birth, the brain starts to degenerate and it
looses on average 85.000 neurons everyday. However, the organization of the neurons,
i.e. their interconnections, are believed to change or at least have the capability of
doing so. This is studied within the field of brain plasticity [Gougoux et al., 2009].
For example is it shown that the visual cortex on blind people are processing hearing
signals in cooperation with the auditory cortex [Bach and Kercel, 2003]. The visual
cortex is the part of the brain processing vision on normal people and the auditory
cortex is normally the only place in the brain hearing is processed, so these results
indicate that the visual cortex has learned itself to process hearing.

What task a certain part of a BNN can perform and how a signal propagates, does
not only depend on the physical organization of neurons but also on the sensitivity of
the individual neurons within the network. Whether or not a neuron "fires" a signal

http://commons.wikimedia.org/wiki/Neuron#mediaviewer/File\protect \kern +.2222em\relax Derived_Neuron_schema_with_no_labels.svg
http://commons.wikimedia.org/wiki/Neuron#mediaviewer/File\protect \kern +.2222em\relax Derived_Neuron_schema_with_no_labels.svg

4.2. Artificial Neural Networks 37

onto its axon and further into the NN, depends on the magnitude and the number of
input signals on its dendrites. The threshold for firing a signal is not fixed and can
be changed by learning. It has been shown that the more times a given input has
been given to a certain area of a BNN the more sensitive the neurons become and
hereby more likely to generate signals on its axons. If an input has been provided
enough times the neurons have been so sensitive that activities inside the brain can
activate the same neurons resulting in the same output as if the input was present.
This phenomena is called neural facilitation and is involved in how the brain learns
[Guyton and Hall, 2011, p. 545].

These findings indicate that BNNs have capabilities of learning and handling
very complicated problems using a relatively simple structure consisting of billions
of interconnected neurons. The idea behind the ANN is to mimic the BNN exploiting
its problem solving capabilities.

4.2 Artificial Neural Networks
It has in the former section been found that the BNN has capabilities of learning and
from learning, solving rather complicated tasks such as object and speech recognition.
The capabilities of the BNN are what motivates the developing of an ANN such that
these, in a similar way, can be trained to solve complex engineering problems. This
section will introduce the basic theory behind the ANN and how it can be trained.
ANNs can be used to solve both classification problems and regression problems
but since this project is regarding classification of IBMs, ANNs will be presented
with the aim of solving classification problems. The ANN consists of primarily two
things. The artificial neuron and the network architecture are further described in
the following.

4.2.1 The Artificial Neuron

The artificial neuron, henceforth referred as the neuron, can be divided into several
components. The inputs, the weights, the accumulator, an activation function and
some outputs [Haykin, 1999, pp. 10-11]. A generalized neuron is illustrated in
Fig. 4.2. The inputs, denoted x1,...,I , are typically either a feature vector, such as
pixels or MFCCs, or outputs from other neurons in a network. The weights, w1,...,I ,
are used to scale the contribution from the input or from other neurons and can
be seen as a way of indicating the importance or relevance of individual features or
neurons. The weights are sometimes referred to as synaptic weights since they model
the sensitivity of the synaptic connection in a biological neuron. The accumulator
accumulates all the weighted inputs to the neuron. This is done to acquire the total
amount of input potential z, which has a direct influence on whether or not the
current neuron will change state and propagate a signal to other neurons in the
network. The bias function θ is used to make an affine transformation of the input
to the activation function ϕ. The activation function is the mechanism that decides

38 Chapter 4. Neural Networks

xI

x3

x2

x1

......

Σ φ

Bias

 y

Inputs

Accumulator

Activation function

Weights

w1

w2

w3

wI

θ

z

Figure 4.2: A block diagram of an artificial neuron with the inputs given by x1,...,I the weights
given by w1,...,I and the activation function ϕ. The input to the activation function is given by z
and the output of the neuron is given by y.

whether or not the neuron should "fire" and if so, how large the magnitude of the
signal should be. The accumulator, the bias and the activation function is a model
of the cell body of a biological neuron. A mathematical description of the artificial
neuron is shown in Eq. (4.1) and Eq. (4.2).

z =
N∑
j=0

wjxj (4.1)

y = ϕ(z) (4.2)

Equation (4.1) shows how the input potential is computed and Eq. (4.2) shows how
the output is computed based on the input potential z and the activation function
ϕ. In Eq. (4.1) the bias term θ has been included in the summation by adding an
extra input x0 = 1 with a weight fixed at w0 = θ.

There exists five commonly used activation functions [Haykin, 1999, pp. 12-14].
A threshold or binary function, a piecewise linear function, the sigmoid function,
the hyperbolic tangent function and the softmax function. The first four activation
functions are illustrated in Fig. 4.3. The threshold or binary function is a discrete
step function which changes state from either zero or positive one depending on the
input value and a threshold value. The piecewise linear function is either zero or
positive one outside some predefined interval and within the interval the function is
linear. This means that the piecewise linear function can take any value between
zero and positive one. The sigmoid function is a continuous, smooth and non-linear,
but differentiable, function which takes any value from zero to positive one. The
hyperbolic tangent function is also a continuous, smooth, non-linear and differen-
tiable function but it takes on values in the interval from negative one to positive
one. The softmax function is similar to the sigmoid function in that way that it has
a continuous output from zero to one. The softmax differs from the sigmoid function
by having normalized outputs with respect to all other outputs, such that the output
of the neural network represents probabilities [Bishop, 2009, p. 236].

4.2. Artificial Neural Networks 39

What activation function to use depends on the application but the sigmoid and
softmax function are the most used. This is primarily due to its simple form and its
derivative and because it leads to a distributed representation within the network,
which for the latter implies robustness [Haykin, 1999, p. 14] [Duda et al., 2001, p.
307]. The mathematical description of the sigmoid function is given as

ϕ(z) = 1
1 + e−z

. (4.3)

−10 −5 0 5 10

0

0.5

1

z

y

−10 −5 0 5 10

0

0.5

1

z

y

−10 −5 0 5 10

0

0.5

1

z

y

−10 −5 0 5 10

−1

−0.5

0

0.5

1

z

y

Figure 4.3: The four commonly used activation functions. Upper left: The binary activation
function. Upper right: The piecewise linear activation function. Lower left: The sigmoid activation
function. Lower right: The hyperbolic tangent activation function. The softmax activation function
is not displayed since it is merely just a normalization.

4.2.2 Artificial Neural Network Architectures

When several neurons are connected together they form a network and three main
network architectures exist [Haykin, 1999, pp. 21-29]. The FNN, the Recurrent
Neural Network (RNN) and the Convolutional Neural Network (CNN). ANNs are
typically represented as directed graphs and can be both cyclic or acyclic and fully
and partially connected. The property of being fully connected are not meant as
in the strict definition from graph theory. In the context of ANNs the property of
being fully connected means that all inputs are connected to all units in the first
hidden layer and all units in that layer are connected to all units in the next layer
and so on. There are typically no connections between neurons in the same layer in
ordinary ANNs. The simplest neural network and also the most used, is a FNN as
illustrated by the directed acyclic and fully connected graph in Fig. 4.4 [Bishop, 2009,
pp. 225-229]. In Fig. 4.4 a two layer FNN is presented. In general, the terminology
for ANNs is that the layer of inputs is not counted since only layers where computing
takes place are counted. The second layer and potentially all layers beyond, except
the output layer, is referred to as the hidden layers. The neurons within a hidden

40 Chapter 4. Neural Networks

xI

x1

x0

z0

z1

z2

zJ

y1

yK

Input Hidden Output

wJI
(1) wKJ

(2)

Figure 4.4: 2-Layer Feed-forward Neural Network with an input layer I consisting of I+1 input
units. A hidden layer J consisting of J+1 hidden units and an output layer K consisting of K output
units. The weights wJI

(1) correspond to the weight in layer one from input unit I to hidden unit J
and wKJ

(2) correspond to the weights in layer two from hidden unit J to output unit K.

layer are referred to as hidden units. The term "hidden" comes from the fact that
they are not being observed. The last layer in an ANN is referred to as the output
layer and since the output layer consists of neurons, that layer is included in the
number of layers. Therefore, the FNN illustrated in Fig. 4.4 has two layers. The
FNN has I + 1 input units, J + 1 hidden units and K output units. The +1 term in
the input layer and the hidden layer are due to the bias terms which are connected
to a fixed input of +1 illustrated by the dark green units on Fig. 4.4. The wJI (1)

and wKJ (2) illustrated in red represents the weights and should be interpreted in the
following way. The first subscript indicates the unit for which the weight belong and
the second subscript indicate which node the weight is connected to. The superscript
determines what layer the weights belong to. For example, w21

(2) is the weight on
the arc between the first hidden unit and the second output unit in layer 2. The
output from the kth output unit from the FNN in Fig. 4.4 is expressed mathematical
as

yk(x,w(1),w(2)) = ϕ1

 J∑
j=0

w
(2)
kj ϕ2

(
I∑
i=0

w
(1)
ji xi

) (4.4)

where yk is the kth output, x and w are the input vector and weight matrix respec-
tively, ϕ1 and ϕ2 are the activation functions and w(1)

ji and w(2)
kj are the weights for

respectively layer one and two.

4.2. Artificial Neural Networks 41

In a BNN it is found that the signals normally propagate in only one direction,
i.e. from dendrite to axon [Guyton and Hall, 2011, p. 543]. These findings motivated
the FNN architecture. However, it is also found that feed-back occurs in BNNs which
inspired the RNN architecture [Haykin, 1999, p. 18] [Freeman, 1975, p. 272]. The
RNN has feed-back elements implementing memory in the network. These networks
are represented as directed cyclic fully or partially connected graphs. Also the CNN
has been inspired from the BNN by the concept of receptive fields within the visual
cortex [LISA lab, 2014, p. 45]. CNNs are found to be powerful to solve tasks such
as object recognition since CNNs are less sensitive to certain transformations in
the input pattern such as translations, scaling and rotations [Bishop, 1995, p. 267]
[Duda et al., 2001, p. 326]. The CNN is called a CNN since the weights are shared
between neurons. This means that the "activation potential" for a given neuron
is a convolutional sum of the weights and the inputs to the neuron. The CNN is
represented as a partially connected cyclic or acyclic graph.

4.2.3 Design of Artificial Neural Networks

Until now an ANN has been defined as a network of artificial neurons consisting
of weights and activation functions. The challenge when designing an ANN is to
identify the numerical values of the weights, the types of activation functions, the
number of hidden units and the number of layers. A few things are given directly
from the application. The number of inputs must match the length of the feature
vector and the output must match the number of classes the network should classify,
if a classification problem is solved. For a MNIST classification problem there could
be 784 input units equal to a 28× 28 = 784 pixels input vector and the ANN would
have 10 output units corresponding to the 10 classes of digits from 0− 9.

Regarding the architecture there are no well defined rules. Whether it should be
a FNN, a RNN or a CNN is primarily based on heuristics [Haykin, 1999, p. 28]. The
same applies to the number of hidden units and the type of activation functions for
which the optimal is unknown. However, it can be proven by Kolmogorov’s theorem
that any continuous function can be represented, with an arbitrary accuracy, by a
2-layer ANN, given a sufficient number of hidden units, weights and non-linearities
[Bishop, 1995, p. 137] [Duda et al., 2001, p. 307]. This means that any continuous
decision boundary can be represented arbitrarily well by an ANN. Unfortunately,
the theorem requires a quadratic number of hidden units relative to the number of
inputs and it does not tell what activation functions to use but it motivates that a 2-
layer ANN, such as the one illustrated in Fig. 4.4, using non-linear sigmoid activation
functions and a relatively large number of hidden units should be able to deliver a
good starting point on an ANN design [Duda et al., 2001, p. 288].

42 Chapter 4. Neural Networks

Hidden Units & Layers

Regarding the number of hidden units and the number of layers, no method for com-
puting these quantities exists, and in practice it is often based on an educated guess
and experimentation [Duda et al., 2001, p. 310] [Haykin, 1999, p. 191]. However,
there is some intuition which can be used to get an idea of the consequences if the
number is either too small or too large. The hidden layers in an ANN can be seen as
feature extractors, which extract features from the input from the preceding layer.
The input to the first hidden layer is a vector represented in the input space but the
output of the hidden layers are represented in a feature space, which can be either
smaller or larger than the input space. The more hidden units there are in a layer,
the more complex decision boundaries the layers can construct, hence separating the
features more effectively. If the class clusters in the feature space are well separated
or evenly linearly separated, only a few hidden units are required since the decision
boundary is relatively simple. If the clusters however are highly entangled a large
amount of hidden units are required in order to represent the decision boundary
properly.

Empirical knowledge shows that the number of hidden units also relates to the
generalization capability via the size of the training set. It is known that if a large
number of hidden units are used relative to the number of training cases there is
a risk of overfitting, which results in poor generalization capabilities [Duda et al.,
2001, p. 288]. It is also to be expected that too few hidden units will give poor
performance since a too simple decision boundary is constructed. It is suggested
that good generalization capabilities are achieved if the number of training examples
N is equal to the number of hidden units w divided by the fraction of the classification
errors ε as shown in Eq. (4.5) [Haykin, 1999, p. 208] [Duda et al., 2001, p. 310].

N = w

ε
(4.5)

Equation (4.5) can be used to estimate the classification error or propose the number
of hidden unit in a given ANN architecture based on the training data available.
Equation (4.5) also indicates that using too many hidden units has a negative effect
on the performance of the ANN. Another reason to keep the number of hidden
units as low as possible is due to the computational and memory complexity of the
ANN and the time it takes to train the network. In the Backpropagation algorithm
presented in the next section it is shown that the learning is based on gradients of an
error function taking the weight vector as input. If there are too many hidden units
in the ANN there are plateaus in the error space which results in slow convergence
of the learning algorithm [Duda et al., 2001, p. 313].

Another aspect in the architecture of the ANN is the number of hidden layers. As
mentioned earlier Kolmogorov’s theorem states that one hidden layer is sufficient to
approximate any decision boundary. However, it is found that it is easier for an ANN
with several hidden layers to learn advanced features compared to an ANN with a
single hidden layer [Duda et al., 2001, p. 317] [Haykin, 1999, p. 212]. As mentioned,

4.2. Artificial Neural Networks 43

the hidden layers should be interpreted as feature extractors and in a multi hidden
layer ANN, one hidden layer improves the features provided from the layer below.
This means that the features from the first hidden layer are local compared to features
from subsequent layers, which gradually becomes more global hence increasing the
capability of class separation of the ANN. One disadvantage of using several hidden
layers is that the ANN is more prone to be caught in local minima during training,
which of course decreases the performance of the ANN [Bengio, 2009, p. 32].

4.2.4 Backpropagation Algorithm

The last thing needed in order to make an ANN practically applicable is to find suit-
able weights. The weights are the key component and they give the ANN the power
of solving complex problems. The development of an efficient training algorithm
for multilayer networks has been one of the big hurdles in the ANN community.
Even though ANNs was described in the literature in 1943 it was not until 1986
an efficient learning algorithm, capable of learning multilayer FNN, were discovered
[Haykin, 1999, pp. 38-43] [Rumelhart et al., 1986]. The algorithm was named the
backpropagation algorithm and it is capable of finding suboptimal weights in mul-
tilayer FNN. The backpropagation algorithm described in this section is limited to
FNN but can with modifications also be used to train CNNs and RNNs [Bishop,
2009, p. 269] [Haykin, 1999, p. 750].

The philosophy behind the backpropagation algorithm is that the FNN is trained
to model a function which maps a known training input to a desired output. This
form of learning is referred to as supervised learning and is the primary way shallow
ANNs are trained. It is assumed that if enough training data is present and a
proper FNN architecture is used, the weights in the network will learn the underlying
statistics that generated the training data. In this way the network can generalize
and provide a correct output based on an unknown input.

In order to train a FNN, a performance measure must be decided such that it
can be measured how the performance of the FNN changes relative to the weights.
Typical two such measures exist, the sum-of-squares measure and the cross-entropy
measure. It can be shown that minimizing the sum-of-squares is equivalent to max-
imizing the likelihood when a regression problem, involving Gaussian distributed
random variables, are solved. Likewise, it can be shown that minimizing the cross-
entropy is equivalent to maximizing the likelihood when a binary classification prob-
lem is solved [Bishop, 2009, pp. 232-235]. These findings are supported by [Simard
et al., 2003] and should be considered when deciding on the error function. When
the error function E(w) is decided, the optimal weights can theoretically be found by
setting the gradient of the error function to zero and solve for w. Unfortunately, this
cannot be done in closed-form. Even if it could it would only give globally optimal
weights if the error function was convex, which is typically not the case [Bishop, 2009,
p. 237]. A typical way to approach this problem is to use iterative methods such as
gradient descent which iteratively finds a set of sub-optimal weights using only the
gradient of the error function. Training a single layer FNN using the gradient descent

44 Chapter 4. Neural Networks

method has been known since the 1960s and is known as the delta rule [Haykin, 1999,
p. 40]. However, training a multilayer FNN is a more difficult task and was subject
to the "credit assignment problem" until 1986 when the backpropagation algorithm
was discovered [Duda et al., 2001, p. 291]. The credit assignment problem refers to
the task of assigning responsibility of an error on the output of a FNN to the weight
of a hidden unit, which lies one or more layers below the output unit. This problem
is elegantly solved by the backpropagation algorithm. A derivation of the backprop-
agation algorithm using sigmoid activation functions and the sum-of-squares error
function, is presented in Appendix C.

Even though, the backpropagation algorithm solved the problem of making ANNs
practical applicable there were still some limitations and practicalities which limited
the potential of ordinary ANNs. These limitations motivated the work on DNNs,
which will be presented in the next chapter.

Chapter 5

Pre-training Neural Networks

As mentioned in section 4.2 there were some impracticalities with FNNs that limited
the complexity of the problems the FNN could successfully solve, when it was trained
using the backpropagation algorithm. These impracticalities are described as follows.
When a complex classification problem is to be solved the ANN architecture must be
decided accordingly and as stated by Kolmogorov’s theorem any decision boundary
can be represented by a 2-layer FNN, which indicates that a good solution exists
[Bishop, 1995, p. 137]. However, representing this decision boundary would require
an exponential number of hidden units, with respect to the visible units, which
could make the FNN non-practically applicable if the complexity of the problem is
sufficiently high.

A way to circumvent this problem is to construct a Deep Neural Network (DNN)
by increasing the depth of the network in order to gain a more compact representa-
tion of the decision boundary, hence reducing the number of hidden units [Bengio,
2009, p. 18]. However, this solution also has a drawback, because the backpropaga-
tion algorithm cannot efficiently train these DNNs if they are initialized with random
weights [Bengio, 2009, p. 32]. It has been observed that the backpropagation algo-
rithm has a tendency to get stuck in local minima such that a DNN trained with
the backpropagation algorithm performing worse than a shallow FNN having 1 or 2
hidden layers [Bengio, 2009, p. 32].

Another impracticality is the aspect of supervised learning. When training an
FNN with the backpropagation algorithm, labeled data is required since this is re-
quired in the computation of the error. This means that the designer of the network
must construct these labels, which in practice can be a very difficult and time con-
suming task. Also, as illustrated by Eq. (4.5) good generalization is dependent on
the amount of training data, so it is fair to say that the more training data the better.
However, unlabeled data on the other hand is fairly easy to acquire since no manually
classification process is required after the data has been recorded. And today, with
YouTube and Google, there is easy access to enormous amount of unlabeled data.
These impracticalities, motivated the work on machine learning methods involving
unsupervised learning and a breakthrough within the field of DNNs was done in 2006
by Geoffrey Hinton et al. by introducing the Deep Belief Network (DBN) [Bengio,
2009, p. 6] [Hinton et al., 2006]. This breakthrough is what initiated the hype about
Deep Learning as described in the introduction in Chapter 1. The DBN is a gener-

45

46 Chapter 5. Pre-training Neural Networks

ative model, which in combination with a DNN has shown promising results solving
classification problems as well as performing dimensionality reduction [Hinton et al.,
2006] [Hinton and Salakhutdinov, 2006]. The main component of a DBN is the
Restricted Boltzmann Machine (RBM) which, when stacked on top of each other,
forms a DBN. The RBM is described further in the next couple of sections and the
DBN as a whole, is described in Section 5.4.

5.1 Restricted Boltzmann Machines
The RBM is a generative model and is used to represent probability distributions and
are often represented as a probabilistic graphical model as illustrated in Fig. 5.1. All
the nodes in a graphical model are random variables and their dependence on each
other is illustrated via arcs. Graphical models can be either directed or undirected.
Directed graphical models are known as Bayesian networks and undirected graphical
models are known as Markov Random Fields (MRFs) [Bishop, 2009] [Murphy, 2012].
The RBM is a special type of a broader class of MRFs known as Boltzmann Machines
(BMs) [Bengio, 2009]. The BM distinct itself from RBMs by being a fully connected
network in the correct sense meaning that all nodes are interconnected. The RBM
is not fully connected and has a structure as illustrated by Fig. 5.1. The definition
of a RBM is that it consists of two layers. One known as the visible layer and one
known as the hidden layer. The visible layer consists of visible units vm and the
hidden layer consists of hidden units hn. A weight wnm is associated with all arcs in
the network. Each visible unit and hidden unit is also associated with a bias term,
which for simplicity reasons, is not illustrated on Fig. 5.1 .

w11

v1 v2

h1 h3 hnh2

wnm

vm
Figure 5.1: Restricted Boltzmann Machine represented as an undirected graphical model. The
RBM has M visible units and N hidden units with N × M weights between each visible-hidden pair.
The biases related to the visible and hidden units are not illustrated to keep the illustration simple.
There exist a bias term for each visible unit and hidden unit.

The terminology of the visible and hidden units are similar to the terminology

5.1. Restricted Boltzmann Machines 47

of the NN explained in Section 4.2. That is, the visible units are observed and the
hidden units are not. The hidden units are, in a similar way as with the NN, used
to capture the dependencies between the visible units and are intended to provide
the model with the capability of proper generalization [Fischer and Igel, 2014, p. 10]
[Krizhevsky, 2009]. The major difference between a RBM and a one-hidden-layer-NN
is that the RBM does not have any specified inputs or outputs and then both the
visible and hidden units are considered as being random variables.

Another key difference between RBMs and NNs is that the RBM is a generative
model whereas a NN, when used for classification, is a discriminative model. By
generative it is meant that the RBM models a joint probability distribution, which
is different from the NN, which models a conditional distribution. The idea of using
RBMs in DBNs is to achieve a DNN with good initial weights, meaning that the
DNN as a generative model has a good representation of the underlying statistics
of the data. If such a model can be achieved, backpropagation can effectively be
applied making the generative model into a discriminative model, hence circumvent-
ing the impracticality of using backpropagation on randomized weights, as described
in the former section. Several different variants of the RBM exists, which are the
Bernoulli-Bernoulli RBM (BBRBM), the Gaussian-Bernoulli RBM (GBRBM) and
the Gaussian-Gaussian RBM (GGRBM) [Hinton, 2012] [Bengio et al., 2007]. Instead
of using the term Bernoulli, the term binary is also used in the literature [Hinton,
2012] [Fischer and Igel, 2012], but in this report Bernoulli is the term of choice.

The BBRBM is named as such because both the visible units and the hidden
units are distributed according to a Bernoulli distribution, meaning that both the
visible and hidden units only take values as (v,h) ∈ {0, 1}m+n. The GBRBM differs
from the BBRBM by having the visible units distributed according to a normal
distribution, meaning that the visible units are continuous, i.e., v ∈ (−∞,∞)m
and h ∈ {0, 1}n. The GGRBM differs from the former RBMs by having both the
visible and the hidden units distributed according to a normal distribution, i.e.,
(v,h) ∈ (−∞,∞)m+n.

Which RBM architecture to choose depends on the application, but in the case
of speech processing using the IBM, a common choice in the literature is to use both
a BBRBM and a GBRBM [Mohamed et al., 2012] [Healy et al., 2013]. The GBRBM
will form the input layer of the DBN, as described in Section 5.4, since the speech
features used for the DBN are real valued. The Bernoulli-Bernoulli RBMs will be
used to form the subsequent layers of the DBN, which is primarily related to a trade
off in model complexity and training capability. The design of the DBN will be
further described in Section 5.4. The BBRBM and the GBRBM will be described in
more details in the following sections.

5.1.1 Bernoulli-Bernoulli RBM

As mentioned, a BBRBM consists of visible units and hidden units and together they
form a generative model. The probability distribution that this model represents,
is given by the Gibbs distribution, also known as the Boltzmann distribution. This

48 Chapter 5. Pre-training Neural Networks

distribution is given by Eq. (5.1) [Fischer and Igel, 2012] [Bishop, 2009, 387] [Hinton,
2012].

p(v,h) = 1
Z
e−E(v,h) (5.1)

where

E(v,h) = −
n∑
i=1

m∑
j=1

wijhivj −
m∑
j=1

bjvj −
n∑
i=1

cihi (5.2)

and

Z =
∑
h,v

e−E(h,v). (5.3)

It can be shown that a BBRBM can represent any discrete probability distribution
arbitrarily well given enough hidden units [Bengio, 2009, p. 57]. Equation (5.2) is
known as the energy function and Eq. (5.3) is known as the partition function and is
a normalization factor used to ensure that Eq. (5.1) is a true probability distribution
[Fischer and Igel, 2014]. In Eq. (5.2) hi and vj denote the state of the ith hidden
unit and jth visible unit, respectively. Furthermore, wij is the weight between them.
Similarly, ci and bj are the bias terms related to the ith hidden unit and jth visible
unit, respectively.

As mentioned, a RBM is a special type of a MRF. MRFs have some very con-
venient conditional independence properties known as the local Markov property,
the pairwise Markov property and the global Markov property [Murphy, 2012, 661]
[Fischer and Igel, 2012]. These properties cause the conditional probabilities of a
MRF to factorize. This factorization makes Gibbs sampling from MRFs easy. The
next couple of paragraphs introduces these properties and argue that they can be
applied to RBMs such that the conditional probabilities of a RBM factorize as given
by Eq. (5.4) and Eq. (5.5).

The local Markov property states that a node is conditional independent of the
rest of the nodes in a MRF given its Markov blanket. The Markov blanket is defined
as the nodes that cause a given node independent of all other nodes and is given by
the immediate neighbours of the given node. The pairwise Markov property states
that two nodes are independent if no direct path are between them. Finally, the
global Markov property states that two disjoint subsets A and B of a MRF are
conditionally independent of the subset C if all paths from A to B goes through
C, i.e., A ⊥⊥ B|C. However, if the joint distribution given by the MRF is strictly
positive, the pairwise Markov property implies the global Markov property [Murphy,
2012, 661] [Fischer and Igel, 2012].

The conditional independence of the MRF and the fact that Eq. (5.2) is a strictly
positive function, implies that the conditional independence properties of the MRF
holds for the RBM. Using these properties it is seen from Fig. 5.1 that all hidden
units are conditional independent on each other when conditioned on the visible

5.1. Restricted Boltzmann Machines 49

units. Likewise, all visible units are independent on each other when conditioned on
the hidden units. They are so because no inter-visible or inter-hidden connections
are present, hence the Markov properties apply. This is also why the RBM is known
as "restricted", since paths are restricted to occur only between layers and not within
the layers [Bengio, 2009, 55] [Fischer and Igel, 2012, 11]. From these arguments the
conditional distributions p(v|h) and p(h|v) of a RBM factorizes as given by Eq. (5.4)
and Eq. (5.5) respectively.

p(v|h) =
m∏
j=1

p(vj |h), (5.4)

and

p(h|v) =
n∏
i=1

p(hi|v) (5.5)

Furthermore, the factors in Eq. (5.4) and Eq. (5.5) can be shown to be given by Eq.
(5.6) and Eq. (5.7), respectively [Fischer and Igel, 2012] [Bengio, 2009].

p(vj = 1|h) = ϕ

(
bj +

n∑
i=1

wijhi

)
(5.6)

p(hi = 1|v) = ϕ

ci +
m∑
j=1

wijvj

 (5.7)

where

ϕ(z) = 1
1 + e−z

. (5.8)

Equation (5.8) is the sigmoid function first presented in Eq. (4.3), which is an
interesting result since it allows a Bernoulli-Bernoulli RBMs to be interpreted as a
stochastic NN with sigmoid activation functions [Fischer and Igel, 2012, 11]. The
simple form of the conditionals in Eq. (5.6) and Eq. (5.7) are very convenient since
it makes inference from the RBM easy using block Gibbs sampling, which is further
described in Section 5.2.

5.1.2 Gaussian-Bernoulli RBM

The GBRBM also uses the Boltzmann distribution as given by Eq. (5.1), but the
GBRBM differs from the BBRBM by having continuous visible units and binary
hidden units, i.e., v ∈ (−∞,∞)m and h ∈ {0, 1}n. This configuration is more suited
when RBMs are used to model statistics of natural images or speech [Hinton, 2012]

50 Chapter 5. Pre-training Neural Networks

[Melchior, 2012] [Krizhevsky, 2009]. The GBRBM also differs from the BBRBM by
having a different energy function given by Eq. (5.9) [Hinton, 2012].

E(v,h) =
m∑
j=1

(vj − bj)2

2σ2
j

−
n∑
i=1

m∑
j=1

wijhi
vj
σ2
j

−
n∑
i=1

cihi (5.9)

The parameter σ2
j is the variance of the visible units and is typically set to one,

conditioned on that the visible units are normalized [Wang and Wang, 2013] [Hinton,
2012]. However, it has been shown that learning the variance as well, improve the
performance of the RBM [Cho et al., 2011]. It has further been shown that Gaussian-
Bernoulli RBMs, when used as the first layer in DBNs with binary hidden units,
possess a universal approximation property, meaning that Gaussian-Bernoulli RBMs
used in DBNs can model any strictly positive probability density arbitrarily well
[Krause et al., 2013]. Since the GBRBM represents a mixed distribution containing
both discrete and continuous variables, the partition function changes slightly, since
integration must be applied instead of summation over the visible units, as given by

Z =
∫ ∑

h
e−E(h,v)dv. (5.10)

Since the probability distribution of the GBRBM, equivalently to the BBRBM, is
strictly positive, the same properties apply: In particular, the conditional distri-
butions given by Eq. (5.4) and Eq. (5.5) also apply for the GBRBM. From this
observation the factors in Eq. (5.4) and Eq. (5.5) can for the GBRBM be shown to
be given by Eq. (5.11) and Eq. (5.12) [Melchior, 2012] [Krizhevsky, 2009].

p(vj |h) = N
(
vj ; bj +

n∑
i=1

wijhi, σ
2
j

)
(5.11)

and

p(hi = 1|v) = ϕ

ci +
m∑
j=1

wij
vj
σ2
j

 . (5.12)

5.2 Sampling from Restricted Boltzmann Machines
Sampling from a RBM is beneficial in primarily two ways. At first it is needed for
constructing the estimate of the log-likelihood function, which is used for training the
RBM, as explained in Section 5.3, and secondly samples from the RBM distribution
can be used for evaluating if the RBM captures the correct statistics by simply
looking at the samples [Bengio, 2009, p. 58].

A commonly used sample method for RBMs is the Gibbs sampler, which is a
Markov Chain Monte Carlo (MCMC) method. Other methods such as the Inverse
Transform Sampling (ITS) or the Metropolis-Hastings method could probably also be

5.2. Sampling from Restricted Boltzmann Machines 51

used but due to the simple formulation of the conditional distributions of the RBM,
the Gibbs sampler is the obvious choice. The ITS would require the Cumulative
Distribution Function (CDF) and the inverse of the joint probability function to exist
and the Metropolis-Hastings would require the choice of a proposal distribution and
its parameters. The Gibbs sampler on the other hand only requires the conditional
distributions [Bishop, 2009, p. 542].

MCMC methods are named as such because they are based on Markov chains
and the principal behind the MCMC sampling method is to construct a reversible
and ergodic Markov chain and run it for a sufficient amount of time. That the
Markov chain is reversible and ergodic means that regardless of the initial state it
will converge to a steady state or equilibrium distribution [Bishop, 2009, p. 542],
[Bengio, 2009, p. 599].

The basic idea of Gibbs sampling is to construct a Markov chain with as many
variables as hidden and visible units in the RBM. Each variable is then iteratively
updated based on the conditional distribution of a given variable, conditioned on
all the other variables. Fortunately, the RBM has no inter-hidden or inter-visible
connections meaning that all hidden variables and all visible variables can be sampled
at the same time. This can be done due to the conditional independence properties
given by Eq. (5.4) and Eq. (5.5), which state that a hidden unit and a visible unit
are only dependent on their Markov blanket, i.e., their immediate neighbours.

From this argument the Gibbs sampler for a RBM can be expressed graphically
as Fig. 5.2 and mathematical as given by Eq. (5.13).

h(1) h(2)

v(1) v(2)

h(k)

v(k+1)v(3)

Gibbs step

Figure 5.2: Gibbs sampling of a RBM. v(1) is a vector containing the state at time 1 for all M
visible units and h(1) is likewise a vector containing the state at time 1 for all N hidden units. v(2)

is hereby the vector with the state of all visible units after one Gibbs step.

52 Chapter 5. Pre-training Neural Networks

v(1) ∼ P̂ (v)
h(1) ∼ P (h|v(1))
v(2) ∼ P (v|h(1))
h(2) ∼ P (h|v(2))

...
v(k+1) ∼ P (v|h(k))

(5.13)

In Eq. (5.13) P̂ is the probability distribution of the training data and a sample from
this distribution i.e., a training example, is typically used to initialize the Gibbs
chain [Bengio, 2009] [Fischer and Igel, 2014]. An argument for doing so is that
during training of the RBM the RBM model becomes more and more accurate hence
P̂ becomes more similar to P , so using a training example as the initial state can
increase the rate of convergence of the Gibbs chain [Bengio, 2009].

Even though the Gibbs sampler is the most popular choice regarding sampling
from RBMs it has been shown that other methods exist, which perform better with-
out introducing a computational overhead [Brügge et al., 2013].

5.3 Training Restricted Boltzmann Machines
Since RBMs are generative models, they are trained in an generative fashion as well,
i.e. unsupervised. The purpose of the training is to learn the RBM the underlying
statistics of the training data. A RBM models the Boltzmann distribution as given
by Eq. (5.1), but the distribution of interest is really the marginal distribution p(v)
since this is the distribution of the visible variables. This distribution is given by

p(v) =
∑

h
p(v,h) = 1

Z

∑
h
e−E(v,h). (5.14)

The distribution given by Eq. (5.14) is parametrized with the parameters given by
either Eq. (5.2) for a BBRBM or Eq. (5.9) for a GBRBM. The parameters are
the weights w, the biases b and c and the variance σ2. In the following they are
referenced by the variable θ to simplify the derivation of the training algorithms.
The goal of training a RBM is to find parameters θ that maximizes the probability
of the data, which makes the training data more likely to have been produced by the
RBM. If p(vtrain), where vtrain is a specific training example, is large, it is assumed
that the distribution of the training data p̂(v) is similar to the distribution of the
RBM p(v). A typical approach to find estimates on such parameters is the method of
ML using the log-likelihood function, which for the BBRBM is given by Eq. (5.15).

ln L(θ; v) = ln p(v; θ) = ln
1
Z

∑
h
e−E(v,h) = ln

∑
h
e−E(v,h) − ln

∑
v,h

e−E(v,h) (5.15)

5.3. Training Restricted Boltzmann Machines 53

It can be shown that maximizing the log-likelihood corresponds to minimizing
the Kullback-Leibler Divergence (KLD) between p(vtrain) and p(v) [Fischer and Igel,
2014], which means that by maximizing the log-likelihood, p(v) becomes more similar
with p(vtrain). The optimal parameters are then found by maximizing Eq. (5.15).
This can be done exactly if an analytical solution exist or by an estimate if numerical
methods are applied. No analytical ML solution exist for Eq. (5.15) and typically the
parameters are estimated using gradient ascent with the parameters being updated
according to Eq. (5.16) based on the change in parameters given by Eq. (5.17)
[Fischer and Igel, 2014] [Bengio, 2009].

θ(t+1) = θ(t) + ∆θ(t) (5.16)

∆θ(t) = η
∂

∂θ(t)

(
ln L(θ|S)

)
− λθ(t) + γ∆θ(t−1) (5.17)

In Eq. (5.17) S = {v1, . . . ,vl} is the set of all training examples, η is a learning
rate, λ is a weight decay factor and γ is a momentum factor. The learning rate
defines how large steps, in parameter space, the algorithm should take during each
parameter update. The weight decay factor is used to penalize large weights and the
momentum factor is used to prevent oscillations during training by introducing some
memory [Fischer and Igel, 2014]. These parameters have influence on the training
and their values are primarily based on empirical knowledge [Hinton, 2012].

In order to apply the gradient ascent method as given by Eq. (5.16) and Eq.
(5.17) the gradient of the log-likelihood is needed, which for the BBRBM is given by
Eq. (5.18) [Fischer and Igel, 2014].

∂

∂θ
ln L(θ|v) = ∂

∂θ

(
ln
∑

h
e−E(v,h)

)
−

ln∑
v,h

e−E(v,h)


= − 1∑

h
e−E(v,h)

∑
h
e−E(v,h)∂E(v,h)

∂θ

+ 1∑
v,h

e−E(v,h)

∑
v,h

e−E(v,h)∂E(v,h)
∂θ

(5.18)

By applying the relation of conditional probability as given by (5.19) [Kay, 2006, p.
75]

p(h|v) = p(v,h)
p(v) =

1
Z e
−E(v,h)

1
Z

∑
h
e−E(v,h) = e−E(v,h)∑

h
e−E(v,h) (5.19)

and recalling the definition of the joint probability p(v,h) given by Eq. (5.1) , Eq.
(5.18) can be reduced to

∂

∂θ
ln L(θ|v) = −

∑
h
p(h|v)∂E(v,h)

∂θ
+
∑
v,h

p(v,h)∂E(v,h)
∂θ

. (5.20)

54 Chapter 5. Pre-training Neural Networks

From Eq. (5.20) it should be noticed that the first term is the conditional expecta-
tion of the gradient of the energy function given the visible units and likewise the
second term is the expectation of the gradient of the energy function under the joint
distribution the BBRBM models. This observation simplifies the evaluation of Eq.
(5.20) as presented next. Equation (5.20) also apply for Gaussian-Bernoulli RBMs
if the summation over v is replaced by integration and the correct energy function
is used.

5.3.1 Contrastive Divergence for Bernoulli-Bernoulli RBMs

Equation (5.20) represents the log-likelihood gradient for a BBRBM and it will now
be presented how the log-likelihood gradient for a BBRBM can be estimated with
respect to the parameters w, b and c using the principle of Contrastive Divergence
(CD). The log-likelihood gradient with respect to a particular weight wij is found
by evaluating Eq. (5.20) with parameter wij and for a single training example v it
is given by Eq. (5.21). 〈 . 〉 denotes expectation.

∂

∂wij
ln L(θ|v) = −

∑
h
p(h|v)∂E(v,h)

∂wij
+
∑
v,h

p(v,h)∂E(v,h)
∂wij

=
∑

h
p(h|v)hivj −

∑
v,h

p(v,h)hivj

= 〈hivj〉p(h|v) − 〈hivj〉p(v,h)

(5.21)

From Eq. (5.21) it is seen that the log-likelihood gradient with respect to a weight
wij is given as the difference between two expectations, which is the equivalent to
the difference between two correlations of hivj . The first term is the conditional
expectation of hivj given the visible units, which is the same as the correlation
between hivj evaluated with the conditional distribution p(hi|v). The second term is
the expectation of hivj under the RBM probability distribution or the correlation of
the same term evaluated at the joint distribution of the RBM. Since the visible units
are given by the training example, vj is deterministic hence, vj can be taken outside
the expectation. What is left is the conditional expectation of the hidden unit hi
given the visible units, which is given by Eq. (5.12). From this argumentation Eq.
(5.21) can be rewritten into Eq. (5.22) [Krizhevsky, 2009].

∂

∂wij
ln L(θ|v) = p(hi = 1|v)vj − 〈hivj〉p(v,h) (5.22)

The last term in Eq. (5.22) is a bit more tedious to evaluate since it quickly becomes
intractable, for regular sized RBMs when the sum over all possible configurations of
v and h is evaluated. To circumvent this obstacle Geoffrey Hinton proposed the Con-
trastive Divergence (CD) algorithm, which basically consists of two approximations
of the last term in Eq. (5.21) [Hinton, 2002] [Bengio, 2009, 59]. The first approxi-
mation is that the expectation is approximated by a sample of hi and a sample of

5.3. Training Restricted Boltzmann Machines 55

vj from the joint distribution p(v,h). This can be achieved by, for example, Gibbs
sampling as described in Section 5.2. However, using Gibbs sampling requires that
the Markov chain is running long enough, to ensure that it has converged to its equi-
librium distribution, before a true sample from the joint distribution can be sampled.
This is where Geoffrey Hinton proposed the second approximation by only running
the Markov chain for k-steps and usually only one [Hinton, 2002]. Using these two
approximation Eq. (5.21) can be rewritten into Eq. (5.23) where the superscript (k)
indicates the kth sample from the Gibbs chain given by Eq. (5.13).

∂

∂wij
ln L(θ|v) ≈ p(hi = 1|v(0))v(0)

j − p(hi = 1|v(k))v(k)
j (5.23)

In a similar fashion as just described for the log-likelihood gradient with respect to
a weight, the log-likelihood gradient for the biases can be defined and they are given
by Eq. (5.24) and Eq. (5.25) for the visible biases and hidden biases respectively.

∂

∂bj
ln L(θ|v) = −

∑
h
p(h|v)∂E(v,h)

∂bj
+
∑
v,h

p(v,h)∂E(v,h)
∂bj

=
∑

h
p(h|v)vj −

∑
v,h

p(v,h)vj

= 〈vj〉p(h|v) − 〈vj〉p(v,h)

≈ v(0)
j − v

(k)
j

(5.24)

∂

∂ci
ln L(θ|v) = −

∑
h
p(h|v)∂E(v,h)

∂ci
+
∑
v,h

p(v,h)∂E(v,h)
∂ci

=
∑

h
p(h|v)hi −

∑
v,h

p(v,h)hi

= 〈hi〉p(h|v) − 〈hi〉p(v,h)

≈ p(hi = 1|v(0))− p(hi = 1|v(k))

(5.25)

Equations (5.23), (5.24) and (5.25) can now be inserted into Eq. (5.16) and Eq.
(5.17) to update the parameters of a BBRBM, hence learning it to represent the
statistics underlying the training data. If η = 1 and λ = γ = 0, in Eq. (5.16) and
Eq. (5.17), the change in weights and biases for the visible and hidden units are
given by Eq. (5.26), Eq. (5.27) and Eq. (5.28) respectively.

∆wij = p(hi = 1|v(0))v(0)
j − p(hi = 1|v(k))v(k)

j (5.26)

∆bj = v
(0)
j − v

(k)
j (5.27)

∆ci = p(hi = 1|v(0))− p(hi = 1|v(k)) (5.28)
It should be mentioned that setting η = 1 and λ = γ = 0 is done for illustrative
purposes only to keep the expressions simple. Algorithm 1 illustrates the pseudo
code for a batch learning algorithm using CD for a BBRBM during one epoch.

56 Chapter 5. Pre-training Neural Networks

Algorithm 1: k-step Contrastive Divergence
Data: RBM hidden and visible units and training batch S
Result: Gradient estimates : wij , bj and ci for i = 1, . . . , n, j = 1, . . . ,m
initialization wij = bj = ci = 0 for i = 1, . . . , n, j = 1, . . . ,m;
forall the v ∈ S do

for t = 0,. . . ,k-1 do
for i = 1,. . . ,n do h(t)

i ∼ p(hi|v(t));
for j = 1,. . . ,m do v(t+1)

j ∼ p(vj |h(t));
end
for i = 1,. . . , n, j = 1,. . . ,m do

∆wij = ∆wij + p(hi = 1|v(0))v(0)
j − p(hi = 1|v(k))v(k)

j

end
for j = 1,. . . ,m do

∆bj = ∆bj + v
(0)
j − v

(k)
j

end
for i = 1,. . . , n do

∆ci = ∆ci + p(hi = 1|v(0))− p(hi = 1|v(k))
end

end

5.3.2 Contrastive Divergence for Gaussian-Bernoulli RBMs

CD for Gaussian-Bernoulli RBMs is slightly different than CD for Bernoulli-Bernoulli
RBMs. This is because the joint distribution p(v,h) is a mixed distribution due to
the visible units being Gaussian distributed. Since p(v,h) is a mixed distribution
the gradient of the log-likelihood function changes slightly and is given by Eq. (5.29)
[Melchior, 2012] [Cho et al., 2011] [Yamashita et al., 2014].

∂

∂θ
ln L(θ|v) = −

∑
h
p(h|v)∂E(v,h)

∂θ
+
∫ ∑

h
p(v,h)∂E(v,h)

∂θ
dv (5.29)

In a similar manner as with the BBRBM, Eq. (5.29) can be evaluated with the
weights and the biases using the energy function given by Eq. (5.9), hence giving
the gradient estimates of the log-likelihood function for the GBRBM. This is for w,
b and c given by Eqs. (5.30), (5.31) and (5.32) respectively [Melchior, 2012]. The
corresponding update rules for wij , bj and ci with η = 1 and λ = γ = 0 are given by
Eqs. (5.33), (5.34) and (5.35) respectively.

5.3. Training Restricted Boltzmann Machines 57

∂

∂wij
ln L(θ|v) = −

∑
h
p(h|v)∂E(v,h)

∂wij
+
∫ ∑

h
p(v,h)∂E(v,h)

∂wij
dv

=
∑

h
p(h|v) 1

σ2
j

hivj −
∫ ∑

h
p(v,h) 1

σ2
j

hivjdv

= 1
σ2
j

(
〈hivj〉p(h|v) − 〈hivj〉p(v,h)

)
≈ 1
σ2
j

(
p(hi = 1|v(0))v(0)

j − p(hi = 1|v(k))v(k)
j

)
(5.30)

∂

∂bj
ln L(θ|v) = −

∑
h
p(h|v)∂E(v,h)

∂bj
+
∫ ∑

h
p(v,h)∂E(v,h)

∂bj
dv

=
∑

h
p(h|v)(vj − bj)

σ2
j

−
∫ ∑

h
p(v,h)(vj − bj)

σ2
j

dv

= 1
σ2
j

(∑
h
p(h|v)(vj − bj)−

∫ ∑
h
p(v,h)(vj − bj)dv

)

= 1
σ2
j

(
〈vj − bj〉p(h|v) − 〈vj − bj〉p(v,h)

)
≈ 1
σ2
j

(
(v(0)
j)− (v(k)

j)
)

(5.31)

∂

∂ci
ln L(θ|v) = −

∑
h
p(h|v)∂E(v,h)

∂ci
+
∫ ∑

h
p(v,h)∂E(v,h)

∂ci
dv

=
∑

h
p(h|v)hi −

∫ ∑
h
p(v,h)hidv

= 〈hi〉p(h|v) − 〈hi〉p(v,h)

≈ p(hi = 1|v(0))− p(hi = 1|v(k))

(5.32)

∆wij = 1
σ2
j

(
p(hi = 1|v(0))v(0)

j − p(hi = 1|v(k))v(k)
j

)
(5.33)

∆bj = 1
σ2
j

(
v

(0)
j − v

(k)
j

)
(5.34)

∆ci = p(hi = 1|v(0))− p(hi = 1|v(k)) (5.35)

58 Chapter 5. Pre-training Neural Networks

It is seen from Eq. (5.33) and Eq. (5.34) that the update rule for the weights and
the biases for the visible units of a GBRBM is just a scaled version of the update
rule for the weights and visible biases of a BBRBM, as given by Eq. (5.26) and Eq.
(5.27), with 1

σ2
j
as the scaling factor. The update rule for the biases for the hidden

units does not change compared to the BBRBM as seen by Eq. (5.35), since they
only influence the hidden variables, which are still binary.

5.3.3 RBM Example

To illustrate the concept of RBMs two examples have been constructed, one for the
BBRBM and one for the GBRBM. The examples are based on the graph shown in
Fig. 5.3, which consists of two visible units and two hidden units. This graph can be
interpreted as both a BBRBM and a GBRBM. The small size is chosen to make it
possible to plot the Probability Mass Function (PMF)/PDF as well as to compute
all conditional probabilities analytically.

h2

-1.5

h1

v2v1

1.41.7

-1.8

Figure 5.3: A RBM consisting of two visible units and two hidden units which makes it tractable
to compute all probabilities represented by the RBM analytically.

Bernoulli-Bernoulli RBM Example

This example is intended to illustrate that a BBRBM based on Fig. 5.3 represents a
Bernoulli distribution and that one can sample from the marginal PMF, using Gibbs
sampling. All possible configurations of v and h as well as the joint and marginal
PMF of the BBRBM is presented in Tab. 5.1.

Since the BBRBM consists of only two visible units and two hidden units there are
a total of 16 different configurations of v and h as seen from Tab. 5.1. This number
scales exponentially with respect to the number of visible units M and hidden units
N so that the total number of configurations is given by 2M2N .

This is the primary reason why the computation of the last term in the log-
likelihood function given by Eq. (5.15) is intractable for large networks, because it

5.3. Training Restricted Boltzmann Machines 59

v h p(v,h) p(v)
1 1 1 1 0.038

0.16931 1 0 1 0.042
1 1 1 0 0.042
1 1 0 0 0.046
0 1 1 1 0.057

0.36940 1 0 1 0.010
0 1 1 0 0.255
0 1 0 0 0.046
1 0 1 1 0.031

0.27481 0 0 1 0.189
1 0 1 0 0.007
1 0 0 0 0.046
0 0 1 1 0.046

0.18660 0 0 1 0.046
0 0 1 0 0.046
0 0 0 0 0.046

Table 5.1: Probabilities of a Bernoulli-Bernoulli RBM with two visible units and two hidden units
as shown by Fig. 5.3

has to iterate over 2M2N configurations. The joint PMF p(v,h) are computed using
Eqs. (5.1), (5.2) and (5.3). Again, it should be noticed that computing the partition
function requires 2M2N iterations. The marginal PMF p(v) is computed by summing
over all configurations of h as given by Eq. (5.14).

From the marginal distribution it is seen that the four configurations of v have
different probabilities ranging from 0.16 to 0.37, where v = [0 1] is the configuration
with the highest probability. If samples were drawn from p(v), one would expect
that 37% of the samples were equal to [0 1]. To confirm this claim, Gibbs chains
are constructed using the conditional probabilities given by Eq. (5.6) and Eq. (5.7).
Using the procedure given by Eq. (5.13) samples from the marginal distribution
p(v) of the BBRBM are drawn. To investigate how the Gibbs chain converges, 10
Gibbs chains have been constructed. The first Gibbs chain runs one Gibbs step, the
next Gibbs chain runs two Gibbs steps, and so on, up to 10 Gibbs steps has been
performed. Each Gibbs chain is initialized with a sample from a bivariate Bernoulli
distribution with P = 0.5 and repeated 500× 103 times, such that 500× 103 samples
are drawn. Finally, the occurrence of the four possible states is computed and plotted
as shown by Fig. 5.4.

From Fig. 5.4 it is seen that the probability without any Gibbs step is 0.25, which
is expected since the probability of any outcome of a Bivariate Bernoulli random
process with p = 0.5 is p2 = 0.25. Next, it is seen that the Gibbs chain is converging
and after a few Gibbs step it appears that the Gibbs chain has reached it equilibrium
distribution, which as seen from Fig. 5.4 is the correct PMF with an accuracy of three

60 Chapter 5. Pre-training Neural Networks

Gibbs step
0 1 2 3 4 5 6 7 8 9 10

P

0.15

0.2

0.25

0.3

0.35

0.4

p
v
(1,1) = 0.1697

p
v
(0,1) = 0.3691

p
v
(1,0) = 0.2743

p
v
(0,0) = 0.1869

Figure 5.4: Convergence characteristic for a Gibbs chain for a BBRBM

significant digits.

Gaussian-Bernoulli RBM Example

This example is intended to illustrate that a GBRBM based on Fig. 5.3 has a Gaus-
sian marginal PDF, from which samples can be drawn using Gibbs sampling. Since
the GBRBM is a mixed distribution, i.e., both consist of discrete and continuous
random variables, integration must be used instead of summation, when evaluating
the marginal PDF p(v). To validate that the Gibbs chain is functioning correctly
and to investigate the marginal PDF represented by the GBRBM, the marginal PDF
p(v) is computed. p(v) has been computed using Eqs. (5.1), (5.9) and (5.10). The
variances in the energy function given by Eq. (5.9) have been chosen to the following
values: σ2

1 = 5 and σ2
2 = 0.5. The Gibbs chain is constructed using Eqs. (5.11),

(5.12) and sampling is following the procedure given by Eq. (5.13).
500 × 103 samples have been drawn from p(v) each based on 100 iterations of

Gibbs sampling. The Gibbs chain was initialized with two Independent and Iden-
tically Distributed (IID) Gaussian distributed random samples with zero mean and
unit variance. The drawn samples are plotted in Fig. 5.5a with the contours of p(v)
plotted as an overlay. The PDF of p(v) is plotted in Fig. 5.5b. From the figures it is
seen that the marginal distribution p(v) is a bivariate and bimodal Gaussian distri-
bution and it appears that the samples are distributed very similar to the contours
of p(v). To investigate the immediate accuracy of the Gibbs samples the specific
number of samples within a certain range is computed and related with the analyti-
cal value of the area under the marginal distribution of p(v), given the same range.
One would expect that the number of samples within a given range is approximately
equivalent to the area under p(v) given the same range. The area chosen is illustrated
by the green enclosing on Fig. 5.5b and the samples within the area are colored green

5.3. Training Restricted Boltzmann Machines 61

as illustrated on Fig. 5.5a.

(a) Samples drawn from p(v) (b) Marginal PDF p(v)

Figure 5.5: In Fig. 5.5a samples drawn from p(v) using 100 iterations of Gibbs sampling is illus-
trated. The contour plot is the contours of the real PDF p(v) as shown in Eq. 5.14. The green
samples in Fig. 5.5a represents 5.63% of the total number of samples which is similar to the area
under p(v), for the same area as illustrated by the green enclosing in Fig. 5.5b, which is 0.0562.

To compute the expected number of samples within the green enclosure the func-
tion given by Eq. (5.14) is integrated in the interval v1 ∈ (−4,−1) and v2 ∈ (−2, 0.5)
as given by Eq. (5.36).

penclosed(v) =
∫ 0.5

−2

∫ −1

−4

1
Z

∑
h
e−E(v,h)dv1dv2 = 0.0562 (5.36)

From Eq. (5.36) it is seen that the probability of being inside the green enclosing is
0.0562. By computing the ratio of green samples with respect to the blue samples
it is found that 5.63% lies within the green enclosing. This means that the Gibbs
samples coincide with the real p(v) with two significant digits of accuracy.

62 Chapter 5. Pre-training Neural Networks

5.4 Deep Belief Networks
Until now the focus, in this chapter, has been on training and sampling from indi-
vidual RBMs, either having binary or continuous visible units. As mentioned in the
introduction to this chapter, RBMs form the basic building blocks for, what is known
as, DBNs. A DBN is a special kind of graphical model, which can be interpreted as
an ordinary, but deep, neural network. If the DBN is properly trained as a generative
model, its DNN interpretation will form a DNN where supervised training can be
effectively applied using backpropagation. This is because the weights are initialized
in a way that makes backpropagation more effective, even though the network is
deep. This is what Geoffrey Hinton showed in [Hinton et al., 2006], which lead to a
renewal of the interest in ANN.

Since a DBN is basically a collection of RBMs, the representational power of a
DBN is greater than each of the RBMs individually and it can be shown that under
some circumstances the generative model that the DBN represents is guaranteed to
improve by adding additional layers [Bengio et al., 2007].

A DBN can be illustrated as a combination of directed and undirected probabilis-
tic graphical models. The directed part of a DBN consists of all but the two topmost
layers. These layers form an undirected graph as illustrated in Fig. 5.6. The joint
distribution of a DBN is given by Eq. (5.37) [Bengio et al., 2007].

h(L)

h(L-1)

h(2)

h(1)

v(1)

W(L)

W(L-1)

W(2)

W(1)

Figure 5.6: A L layer Deep Belief Network with v(1) as the visible layer and h(1) to h(L) as the
hidden layers. Each layer can consist of an arbitrary number of element. The layers from h(1) to
h(L−1) form at directed network and the two topmost layers form a RBM

5.4. Deep Belief Networks 63

p(v,h(1),h(2), . . . ,h(L)) = p(v|h(1))p(h(1)|h(2)) . . .

p(h(L−2)|h(L−1))p(h(L−1),h(L))
(5.37)

where

p(h(k)|h(k+1)) =
∏
i

p(h(k)
i |h

(k+1)) (5.38)

and

p(h(k)
i = 1|h(k+1)) = ϕ

c(k)
i +

∑
j

w
(k)
ij h(k+1)

j

 (5.39)

In Fig. 5.6 an L layer DBN is depicted. The undirected part of the DBN is an
ordinary RBM, where the lower directed layers form a Bayesian Network also known
as a Belief Network [Neal, 1992]. Equation (5.37) shows the joint distribution of
a DBN with L hidden layers h(k) for k = 1, . . . , L and Eq. (5.38) shows how the
conditional distribution of each layer factorizes into the conditional distribution given
by Eq. (5.39), which is equivalent to the factorization of the joint distribution of the
BBRBM given by Eq. (5.7). The visible layer can be represented by v = h(0).
Furthermore c(k)

i and w
(k)
ij are respectively the bias vector and weight matrix for

layer k.
It is the constellation of both directed and undirected graphical models that

make DBNs practical applicable since both sampling and inference is easy from such
combined models. This is because Eq. (5.38) factorizes, which conditional distri-
butions in Belief Networks under some circumstances do not due to the phenomena
of "Explaining Away" [Hinton et al., 2006] [Bishop, 2009, p. 372]. The reason why
"Explaining Away" is not of a concern in DBNs is due to the RBM in the top layer,
which acts as a prior distribution that approximately counteracts the effects of ex-
plaining away [Hinton et al., 2006]. To understand why this is so the phenomena of
"Explaining Away" has to be further explained. Keep in mind that the overall goal is
to construct a deep network, which can be trained efficiently. So the question is how
to construct such a network. Large MRFs are difficult to train due to the computa-
tion of the partition function, which is intractable to compute due to an exponential
number of computations with respect to the number of units in the network. This
drawback is somewhat circumvented by the RBM and the learning algorithm CD,
although an RBM is a shallow network, it will later become clear that the RBM is
the solution to the problem of "explaining away" in Belief Networks.

A Belief Network is a directed network and differs from the MRFs by having all
of its conditional distributions normalized without the need of a partition function.
This means that Belief Network does not posses the drawback of the intractable
computation of a partition function such as the MRF. Instead Belief Networks
posses the drawback of "explaining away" [Bishop, 2009, p. 377]. In MRFs the joint
distribution factorizes into conditional distributions when conditioned on the Markov

64 Chapter 5. Pre-training Neural Networks

blanket, as earlier described in Section 5.1.1. This is an important property when
learning parameters of a MRF as described for the RBM in Section 5.1.1. With
Belief Networks this factorization does not occur for some graph structures due to
"explaining away".

The phenomena of "explaining away" relates to the fact that two independent
nodes in a Belief Network becomes dependent on each other if a shared child node is
observed. When nodes are dependent they do not factorize, which makes inference
difficult. For an in depth explanation of "explaining away" we refer to [Bishop, 2009,
p. 377].

As seen from Fig. 5.6 a DBN consists of a bottom layer of observed variables and
L layers on top consisting of hidden variables. One would then expect that when
the variables in the first layer are observed, the hidden variables in the first hidden
layer become dependent, hence being hard to train since the conditional distribution
over hidden variables given the observed variables do not factorize due to "explaining
away". This is in fact also correct, but for Sigmoid Belief Networks, which are Belief
Networks with binary units, the "explaining away" can be counteracted by a concept
proposed by Geoffrey Hinton known as "complementary priors" [Hinton et al., 2006].

A complementary prior is a prior distribution which is used to counteract the
effect of "explaining away" hence making an apparent non-factorial distribution fac-
torial. In a DBN the complimentary prior is defined as the RBM at the top of the
DBN and is given by the last p(h(L−1),h(L)) term in Eq. (5.37). This RBM can be
viewed as a perfect complimentary prior if the DBN consists of only one hidden layer
below the RBM. If additional hidden layers are introduced, with different wights, the
RBM does not provide a correct complimentary prior and the conditional distribu-
tions forming the lower layers will not factorize properly. However, it can be shown
that having a RBM as the top two layers of a DBN has the effect that the conditional
distributions of all the layers below can be considered approximately factorial, which
leads to a greedy layer-wise training procedure of deep belief nets as presented next
[Hinton et al., 2006].

5.4.1 Generative Training of Deep Belief Networks

The main purpose of the DBN is to train the network in an unsupervised fashion
such that its weights can be used as initialization of a DNN, on which supervised
training can be conducted. This unsupervised training can be conducted in a greedy
layer-wise fashion, one layer at a time, due to the concept of complementary priors,
which makes the conditional distribution of each layer approximately factorial. The
concept of the greedy layer-wise training procedure is to stack RBMs on top of each
other and then train them individually using the state of one layer as the data for
the next layer. In Fig. 5.7 a three layer DBN is illustrated. The DBN illustrated
in Fig. 5.7 consists of one layer of visible units v(1) and three layers of hidden units
h(1), h(2) and h(3). As a direct consequence, the DBN also consists of three sets of
weights W(1), W(2) and W(3). The procedure of the greedy layer-wise training is to
split the DBN into three individual RBMs, as shown in Fig. 5.7, and then train the

5.4. Deep Belief Networks 65

h
(3)

h
(2)

h
(1)

v
(1)

RBM1

RBM2

RBM3 W
(3)

W
(2)

W
(1)

Figure 5.7: Training a DBN using the procedure of greedy layer-wise training where each pair of
layers are considered as a RBM each being trained using CD.

RBMs one after another using for example CD.
In the current case three RBMs are defined. One RBM consists of v(1) and h(1)

having v(1) as the visible units and h(1) as the hidden units. In a similar fashion the
second and third RBM is defined. The first RBM will use the actual training data
when being trained, but the second and third RBM will be using the state of h(1)

and h(2) respectively as observed data.
Training a DBN in this manner can be seen as having feature detectors repre-

sented by RBMs each gradually constructing more and more abstract features based
on the features from the RBM below. In this way the first RBM detects basic and
low level features, where the topmost RBM construct abstract features [Bengio, 2009,
p. 5] Bengio et al. [2007] Larochelle et al. [2009]. When all the RBMs have been
individually trained the DBN represents a generative model suitable for fine tuning
using supervised learning such as backpropagation as described in the next section.

5.4.2 Discriminative Training of Deep Belief Networks

When a DBN has been trained in an unsupervised fashion, as described in the former
section, the DBN can be interpreted as a DNN with good initial weights [Bengio,
2009, p. 32]. These weights generally serve as a better starting point, than random
initialized weights, hence resulting in better classification performance when trained
in a supervised fashion using backpropagation [Hinton et al., 2006].

Since the DBN has no output layer an output layer has to be added before it can
be considered an ordinary DNN. A typical choice of activation function for the units
in the output layer is either the sigmoid activation function or the softmax activation
function. The DBN with the added output layer and interpreted as a deterministic
and ordinary DNN is illustrated in Fig. 5.8. The network in Fig. 5.8 is now a DNN

66 Chapter 5. Pre-training Neural Networks

h
(3)

h
(2)

h
(1)

v
(1)

h
(4)

OUTPUT

W
(2)

W
(1)

W
(3)

W
(4)

Figure 5.8: A deep neural network having one input layer and three hidden layers and one output
layer. The weights in the three hidden layers are produced by generatively training a DBN. The
weights in the output layer are found by discriminative training using backpropagation.

initialized with the weights from the DBN. The output layer has introduced some
weights which are adjusted using backpropagation. The output layer can be viewed
as a single layer classifier that is used on some advanced features produced by the
layers below [Wang and Wang, 2013].

Using the procedures described in this chapter a DNN can be constructed and
trained with a semi-supervised training procedure. In this way, non-labeled data
can be efficiently utilized in an unsupervised training fashion and labeled data can
likewise be efficiently utilized in a supervised fine tuning process. A similar approach
was used in [Healy et al., 2013] to perform speech enhancement and a similar approach
will be used in the subsequent chapters in order to investigate the performance of
DNNs, when used for speech enhancement.

Chapter 6

Speech Enhancement Using Deep
Neural Networks

This chapter presents a speech enhancement technique based on the method of Ideal
Binary Masks (IBMs) and Deep Neural Networks (DNNs). The chapter covers the
design as well as the implementation and evaluation of the system using these tech-
niques. Additionally, an algorithmic analysis of the system is given in the end of the
chapter. The speech enhancement technique is inspired by the approach described
in [Healy et al., 2013]. Figure 6.1 shows a system overview on how this technique
performs speech enhancement, as well as being trained.

Clean Training Sample

Clean Test Sample

DNN 1

Fine-tuning

Training Features

Training Labels (IBM)

Test Features

Noisy Test Sample

Initial Params. DNN 1

Final Params.

DNN 2

Processed Sample
STOI score

PESQ score

HIT-FA rate

DNN 1

Pre-training

Pre-processing

Test Labels (IBM)

Estimated IBM
Speech

Enhancement
Evaluation

DNN 2

Fine-tuning
Initial Params. DNN 2

DNN 2

Pre-training

Posterior Mask

Final Params.

DNN 1

Posterior Mask

Training Features
Posterior Mask

Feature

Extraction

Figure 6.1: This figure presents a system overview of the speech enhancement presented in this
thesis. The system is based on the method of the IBM and DNNs are used as classifiers for estimating
the IBM

67

68 Chapter 6. Speech Enhancement Using Deep Neural Networks

6.1 System Overview
As seen from Fig. 6.1 the speech enhancement system consists of eight major sub-
systems. A pre-processing subsystem, two pre-training subsystems, two fine-tuning
subsystems, a posterior mask feature extraction subsystem, a speech enhancement
subsystem and an evaluation subsystem.

The system works as follows. First, in the pre-processing subsystem clean speech
is converted into noisy speech, by adding noise, and then transformed into speech
features and labels. The training features are then used to pre-train and fine-tune
DNNs as illustrated by the DNN 1 Pre-training and DNN 1 Fine-tuning subsys-
tems. The output of the DNN 1 Fine-tuning subsystem is a posterior mask and
DNN parameters such as weights and biases. The parameters are passed to the
Speech Enhancement subsystem and the posterior mask is passed to the Posterior
Mask Feature Extraction subsystem. The Posterior Mask Feature Extraction sub-
system generates features, which are used to pre-train and fine-tune a second DNN
as illustrated by the DNN 2 Pre-training and DNN 2 Fine-tuning subsystems. The
output of the DNN 2 Fine-tuning subsystem are DNN parameters, which are passed
to the Speech Enhancement subsystem. The Speech Enhancement subsystem uses
the model parameters from the DNN 1 Fine-tuning and DNN 2 Fine-tuning sub-
systems to initialize DNNs, which are then used to estimate the IBM based on a
test sample. Finally, the performance of the system is evaluated by the Evaluation
subsystem using the performance measures presented in Section 3.3.

When a training or test sample is referred to, a speech utterance from the Hearing
In Noise Test (HINT) speech corpus is meant. This corpus is further described in
Section 6.2. Each of the subsystems just presented will now be further elaborated in
the next couple of sections.

6.1.1 Pre-processing

The purpose of the preprocessing block is to construct noisy training and test sam-
ples. Moreover, the purpose of this block is to compute features and labels from the
clean and noisy samples. The features and labels are then either sent to the speech
enhancement subsystem or to the pre-training and fine-tuning subsystems.

As seen from Fig. 6.2 the pre-processing subsystem has one input an two outputs
and it consists of a noise generation block, T-F transform blocks, a feature extraction
block and an IBM block.

The pre-processing of a training sample and a test sample is similar, hence the
pre-processing block shown in Fig. 6.2 only has one input and two outputs and not
two inputs and four outputs as shown in Fig. 6.1. The output labeled Features
consists of a feature representation of a noisy speech sample, being either a training
or test sample. The output labeled IBM consists of an IBM made out of the clean
speech sample and the noise sample generated by the noise generator.

The noise generator adds noise to the clean speech samples at a certain SNR. The
type of noise and the SNR varies depending on the scenario that is being investigated

6.1. System Overview 69

Training/

Test Sample

Noise

Generator
Noise Sample

Noisy Sample

Clean Sample

Noise Type

SNR

LC

Feature

type/

parameter

Features

IBM

Generator

Feature

ExtractIon/

Normalizatio

n

T-F

Transform

T-F

Transform

T-F

Transform

IBM

T-F

Transform

Figure 6.2: This figure presents the preprocessing subsystem, which is a subsystem of the speech
enhancement system presented in Fig. 6.1. The preprocessing subsystem constructs features and
labels for training the DNNs

and is elaborated further in Section 6.2. The noisy sequences are constructed such
that the noise begins approximately 140 ms prior to the beginning of the speech signal
and ends approximately 140 ms after the end of the speech signal [Healy et al., 2013].
The clean speech signal is padded with 140 ms of zeros in the beginning and in the
end in order to ensure that the clean signal and the noisy signal are equal in length.

To construct the data for the output labeled Features a T-F representation of the
noisy speech sample is generated by the T-F transform block. The T-F representation
is made using a gammatone filter bank as the one illustrated in Fig. 2.4 and each
frequency channel is divided into overlapping frames. The noisy speech signal is
now in a time-frequency representation where each frame, in each frequency channel,
consists of a number of filtered noisy speech samples. The number of frequency
channels used, the frame length as well as overlap can differ and is a trade off between
temporal and spectral resolution and computational complexity. A typical choice is
to use from 25 to 64 frequency channels with a frame length from 20 to 32 ms and
an overlap from 10 to 16 ms. [Healy et al., 2013] [Kim et al., 2009] [Hang and Wang,
2012]. The speech enhancement system presented in this chapter has been based on
64 frequency channels and a frame length of 20 ms with 10 ms overlap.

The T-F representation of the noisy speech sample is then processed by the
feature extraction block, which generates a feature vector for each T-F unit in the
T-F representation. The features used are MFCCs, AMSs and RASTA-PLP as
described in Section 2.5, which are similar to the once used in [Healy et al., 2013].
The feature vectors across each frequency channel is then normalized to unit variance
as assumed by Eq. (5.9) with σ2

j = 1. The features are also normalized to have zero
mean as suggested in [Hinton, 2012]. This representation is now ready to be used for
either training a DNN or performing speech enhancement using an already trained
DNN.

70 Chapter 6. Speech Enhancement Using Deep Neural Networks

To construct the data for the output labeled IBM, a T-F transformation, similar
to the one created of the noisy speech sample, is produced from the clean speech
sample as well as the noise signal in isolation. Using these two T-F representations
an IBM is created based on a Local Criterion (LC) as described in Section 3.2. In
the case of a training sample the IBM is used as labels for the discriminative training
of a DNN and in the case of a test sample the IBM is used for evaluating the IBM
estimation performance of a DNN.

6.1.2 Pre-training

The pre-training subsystems, as illustrated in Fig. 6.3, is where DBNs are trained,
one for each frequency channel. In the DNN 1 Pre-training subsystem the training
data is a noisy speech sample, represented as feature vectors in a T-F representation,
and in the DNN 2 Pre-training subsystem the training data is feature vectors con-
sisting of posterior probabilities generated by the Posterior Mask Feature Extraction
subsystem.

Subband DBN Training

Training Features

Subband DBN (K)

Subband DBN (K-1)

Subband DBN (K-2)

Subband DBN (1)

Partitioning

Initial Params. for subband DNN (K)

Initial Params. for subband DNN (K-1)

Initial Params. for subband DNN (K-2)

Initial Params. for subband DNN (1)

Batch size

Figure 6.3: This figure presents the Pre-training subsystem, which is a subsystem of the speech
enhancement system presented in Fig. 6.1. The pre-training subsystem consists of DBNs, which are
trained and used for initializing the parameters of the DNNs shown in Fig. 6.1

As seen from Fig. 6.3 the pre-training subsystem consists of a partitioning block
and some subband DBN training blocks. The partitioning block divides the training
data into batches or mini-batches, which are used to train each of the DBNs. Each
of the subband DBNs consists of several layers of hidden units and are trained and
constructed in a similar way as described in Section 5.3 and Section 5.4. When the
pre-training is completed a set of initial model parameters have been created, which
are transfered to the fine-tuning block for training each of the K subband DNNs.

6.1. System Overview 71

6.1.3 Fine-tuning

The fine-tuning subsystems, as illustrated in Fig. 6.4, is where the weights from the
trained subband DBNs are used as initial weights in subband DNNs. Since the
DBNs have no output layer, the DNNs are one layer deeper than the DBNs due to
the output layer of the DNNs. The output layer consists of 2 output units, one for a
speech dominated T-F unit and one for a noise dominated T-F unit. The activation
function for the output units is the softmax function such that the output for both
output units sum to one. This means that it can be treated as a probability. The
discriminative training or fine-tuning of the subband DNNs are performed using the
backpropagation algorithm using the cross-entropy error function. The output from
the DNN 1 Fine-tuning subsystem is posterior mask probabilities, which are used to
train a second DNN. The output from the DNN 2 Fine-tuning subsystem is a set of
DNN weights and biases, which are sent to the Speech Enhancement subsystem.

Subband DNN Training

Subband DNN (K)
Params. for subband DNN (K)

Final Params. For subband DNN (K-1)

Subband DNN (K-1)

Subband DNN (1)

Labels for subband DNN (K)

Features for subband DNN (K)

Params. for subband DNN (K-1)

Labels for subband DNN (K-1)

Features for subband DNN (K-1)

Params. for subband DNN (1)

Labels for subband DNN (1)

Features for subband DNN (1)
Final Params. For subband DNN (1)

Final Params. For subband DNN (K)

Posterior Mask Probs. for subband (K)

Posterior Mask Probs. for subband (K-1)

Posterior Mask Probs. for subband (1)

Figure 6.4: This figure presents the Fine-tuning subsystem, which is a subsystem of the speech
enhancement system presented in Fig. 6.1. The fine-tuning subsystem consists of DNNs, which are
trained using the backpropagation algorithm and used for estimating IBMs.

6.1.4 Posterior Mask Feature Extraction

The Posterior Mask Feature Extraction subsystem is used to convert a mask con-
sisting of posterior probabilities into feature vectors representing T-F units. The
posterior mask generated by the DNN 1 Fine-tuning subsystem is identical in size
to the corresponding IBM and each T-F unit in the posterior mask is a probability

72 Chapter 6. Speech Enhancement Using Deep Neural Networks

indicating how likely a given T-F unit is to be speech dominated. The idea of using
features based on a posterior mask is to incorporate information about the spectro-
temporal patterns, which are present in human speech [Healy et al., 2013]. The
features incorporating this spectro-temporal information is constructed by row-wise
concatenation of the probabilities within a window spanning 5 time frames and 17
frequency channels of the posterior mask. The label that corresponds to the feature
vector of posterior probabilities is the state of the T-F unit in the IBM that corre-
sponds to the coordinate of the T-F unit in the center of the window. The concept
of the posterior mask and how a given feature vector is constructed is illustrated
in Fig. 6.5. In Fig. 6.5 a subsection of a fictitious posterior mask and a correspond-

0.75

0.75

0.95

F
re

q
u

e
n

c
y
 C

h
a

n
n

e
l

5
7

5
8

5
9

6
0

5
6

6
2

6
3

6
4

6
1

0.5

0.5

0.75 0.75 0.75

0.95 0.75

0.75 0.75

0.75 0.75

0.75 0.75

0.75 0.75

0.5 0.5

0.5

0.5

0.25

0.25

0.25 0.25

0.25 0.25

0.25 0.25

0.25

0.1 0.1 0.1 0.1 0.1

0.1 0.1

0.1 0.1

0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0 0 0 0 0 0 0 0

0 0 0

0

0 0

0 0

0 0

0

0

0

0

0

0

0

0 0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Posterior Mask Ideal Binary Mask

0.95

0.25

0

1 1 1 1 0

0 1 1 1 1 0 0

0 1 1 1 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

15 16 17 1814 20 21 2219

Time index

F
re

q
u

e
n

c
y
 C

h
a

n
n

e
l

5
7

5
8

5
9

6
0

5
6

6
2

6
3

6
4

6
1

Time index

35 Dimensional feature vector:

Label:

1

0.1 0.1 0.1 0.10 0.75 0.75 0.750.5 0.5 0.75 0.95 0.5 0.10.95 0.75 0.50.95 0.75 0

0.75 0.75 0.25 0.1 0 0.75 0.75 0.25 0.1 0 0.75 0.75 0.25 0.1 0

15 16 17 1814 20 21 2219

1-20

21-35

Figure 6.5: This figure presents the Posterior Mask Feature Extraction subsystem, which is a
subsystem of the speech enhancement system presented in Fig. 6.1. The Posterior Mask Feature
Extraction construct features of posterior probabilities based on the output of DNNs.

ing fictitious IBM is illustrated. The window which encapsulates the probabilities,
making up a given feature vector, is represented by the red square on the posterior
mask and the corresponding feature vector is shown in the bottom of Fig. 6.5. The
window size is reduced to cover only 7 frequency channels instead of 17 to keep the
illustrations and examples simple. Hereby, the feature vector has dimension 35 and
is constructed by row-wise concatenation of the probabilities encapsulated by the

6.1. System Overview 73

window starting from the top row. The label corresponding to the feature vector is
seen from the IBM to the right where it is encapsulated by a blue square, which is
the position corresponding to the center of the red window. Feature vectors repre-
senting the whole IBM is constructed by sliding the window one T-F unit at the time
covering all T-F units in the posterior mask except at the border conditions, which
are at the three lowest and highest frequency channels and at the two first and last
time indexes.

The first border condition is handled by altering the shape and size of the window
such that the row in the window otherwise "exceeding" the posterior mask is ignored.
This means that the size of the feature vectors for the T-F units in frequency channel
3 and 62, 2 and 63 and 1 and 64 have dimension 30, 25 and 20, respectively. This
is considered acceptable since the size and the shape of the windows are constant in
each frequency channel.

The second border condition is at the two first and two last time indexes. This
is handled by ignoring the first two and last two T-F units in the posterior mask,
hence slightly reducing the number of features. This is primarily done to ensure that
the window size and shape is constant within each frequency channel and because
the first 13 time units in each frequency band is guaranteed to be noise dominated.
Therefore, leaving out the first two and last two time indexes in the posterior mask,
is considered acceptable.

6.1.5 Speech Enhancement

The Speech Enhancement subsystem as illustrated in Fig. 6.6 is where a noisy speech
signal is being processed using the method of the IBM and DNNs.

Test Features

Estimated IBM

Final Params. for DNN 1 (1,2, … K)

Processed SampleSubband DNNs

(1,2, … K)

Speech

Synthesis

Subband DNNs

(1,2, … K)

Final Params. for DNN 2 (1,2, … K)

Posterior Mask

Noisy Test Sample

Figure 6.6: This figure presents the speech enhancement subsystem, which is a subsystem of the
speech enhancement system presented in Fig. 6.1. The speech enhancement subsystem is where an
IBM is estimated using DNNs and afterwards applied to a noisy speech sample to attenuate the
noise.

The IBM is estimated using two sets of subband DNNs. The first set of subband
DNNs estimate the posterior mask by forward propagating acoustic feature vectors
representing T-F units of noisy speech. The second set of subband DNNs estimates
the IBM by forward propagating feature vectors representing a T-F unit via a window
of posterior mask probabilities. The output of a subband DNN is a probability
indicating how likely a given T-F unit, represented as a feature vector, is to be noise

74 Chapter 6. Speech Enhancement Using Deep Neural Networks

dominated or speech dominated. Whether or not a given T-F unit is classified as
noise or speech dominated is based on the output having the largest probability.

When all T-F units have been classified the IBM has been estimated. To ap-
ply the estimated IBM to the noisy speech signal each entry in the estimated IBM,
being either zero or one, is multiplied with all noisy speech samples within the cor-
responding frequency channel and frame. If 20 ms frames with 10 ms overlap and 16
kHz sampling frequency are used, this is equivalent to 320 samples which are either
preserved or discarded by the estimated IBM. Due to the overlap each frame shares
160 samples with their neighbor frames.

From this procedure ideally all noise dominated segments are discarded having
only the speech dominated segments left. The processed T-F representation of the
noisy speech is then synthesized using the overlap and add technique, which is the
addition of all the frames across frequency and time windowed using an appropriate
window function as described in [Wang and Brown, 2006, 23]. The speech signal
is then synthesized into a time-domain signal and is ready to be evaluated by the
evaluation subsystem.

When the system is tested using the soft mask approach as described in the
introduction in Chapter 1, the classification stage just described is omitted and the
output of the DNNs are directly multiplied to all samples of the T-F representation
of the noisy speech signal.

6.1.6 Evaluation

The Evaluation subsystem, as illustrated in Fig. 6.7, is where the performance of the
speech enhancement block is evaluated, which is done using HIT-FA rates, PESQ
and STOI objective performance measures. The PESQ measure is known to correlate
well to speech quality and the STOI measure is known to correlate well to speech
intelligibility as elaborated in Section 3.3. From these three measures the system will
be evaluated in terms of both quality and intelligibility. In order to have a reference
for STOI and PESQ computed for the estimated IBM processed sample, these mea-
sures are also computed for the IBM processed sample as well as the noisy sample.
This enables the STOI and PESQ score from the noisy speech signal, processed by
the estimated IBM, to be related properly. In total this gives nine different scores
per test sample. The HIT, FA and HIT-FA rates and the STOI and PESQ scores for
the noisy signal, the IBM processed signal and the estimated IBM processed signal
as shown on Fig. 6.7.

6.2 Training & Test Data
Before describing how the different subsystems are being implemented and tested a
short description of training and test data as well as different noise types is given.

Training and testing the system illustrated by Fig. 6.1 requires some speech data.
Training data is required to train the system and test data is required to investigate

6.2. Training & Test Data 75

Estimated IBM

Test Labels (IBM)

STOI (IBM)

STOI (Est. IBM)

STOI (Noisy)
Clean sample

Noisy sample

Estimated IBM Processed Sample

IBM Processed Sample Speech

Synthesis

STOI

PESQ

PESQ (IBM)

PESQ (Est. IBM)

PESQ (Noisy)

HIT rate

FA rate

HIT-FA rate

Classification

Performance

Figure 6.7: This figure presents the evaluation subsystem, which is a subsystem of the speech en-
hancement system presented in Fig. 6.1. The evaluation subsystem is where the speech enhancement
system is evaluated using the HIT rate, FA rate, HIT-FA rate as well as STOI and PESQ.

how well the system generalizes to unseen input. In speech processing applications,
datasets known as speech corpora are commonly used. A speech corpus is a dataset
consisting of spoken sentences where both the sentences themselves as well as the
speakers are carefully chosen to fulfill some specific requirements.

Regarding the speaker these requirements can be related to the gender of the
speaker, the age and the dialect and or nativity. Regarding the sentences there can
be requirements such that only voiced or unvoiced speech is present or it can be
such that the phonetic content is balanced in relation to the distribution of normal
conversational speech at the current language [Loizou, 2013, p. 445]. It is also
important, especially regarding intelligibility testing, that the predictability of the
words are considered since predictability and intelligibility can be difficult to separate
in the scoring from a listening test.

Since speech enhancement algorithms aim at being effective at enhancing noisy
conversational speech, phonetically balanced corpora are typically used for training
and testing. A commonly used speech corpus is the Texas Instruments Massachusetts
Institute of Technology (TIMIT) corpus. The TIMIT corpus consists of a total of
6300 spoken sentences divided between 630 speakers, 70% male and 30% female,
each speaking 10 sentences. The speakers cover 8 major dialect regions of the United
States and a total of 2342 different sentences are used [Garofolo et al., 1993].

Another commonly used approach in the speech enhancement literature is to use

76 Chapter 6. Speech Enhancement Using Deep Neural Networks

own recordings of speakers but based on a common accepted list of sentences. Two
commonly used of such lists are the HINT sentences and the IEEE sentences, which
are also known as the Harvard sentences [Nilsson et al., 1994] [Rothauser et al., 1969].
HINT consists of 260 sentences and IEEE consists of 720 sentences both of which are
considered to be phonetically balanced.

In order to construct training and test data which are applicable for training and
testing machine learning based speech enhancement algorithms, noise sources must
be decided. The noise source must be realistic and match the scenario one wants to
investigate. A commonly used noise corpus is Aurora, which consists of different real
life noise recordings [Pearce et al., 2000]. Another approach is to construct a noise
source based on filtered white noise such as Speech Shaped Noise (SSN) or by mixing
audio files from speech corpora such as TIMIT making competing talker noise or, if
more speakers are present, babble noise.

The general difficulty when constructing training and test data, for machine learn-
ing based techniques, is to generate enough data such that the training set and test
set are completely unique regarding both the speech signal and the noise signal and
still large enough to train and test the algorithm properly. In several papers the
limitation of especially noise material lead to the use of the same noise in both the
training and testing data [Healy et al., 2013] [Hang and Wang, 2012] [Kim et al.,
2009]. Using the same noise sequence for both training and testing may enable the
classifier to learn the noise sequence which will lead to an artificially high classifica-
tion performance since the real generalization capability of the classifier is not being
tested. This is also pointed out in [May and Dau, 2014] where it is shown that the
performance reported by [Kim et al., 2009] only applies for known noise realizations
and not unseen noise realizations.

Since the speech enhancement system illustrated in Fig. 6.1 is inspired by [Healy
et al., 2013] the same speech and noise material will be used for evaluation and
initial testing in order to be as close to the system described in [Healy et al., 2013]
as possible. This is done only to be able to compare the results produced by the
system from Fig. 6.1 with the results reported in [Healy et al., 2013]. When it has
been verified that the implementation of the system from Fig. 6.1 is correct, more
realistic training and testing material will be used to evaluate the performance of the
system.

In [Healy et al., 2013] the 260 HINT sentences are used which has been spoken
by a male. All 260 sentences have been normalized to have unit RMS power [Healy
et al., 2013]. The noise is based on a 5 s babble sequence and a 10 s SSN sequence
which are used for both training and test data. In [Healy et al., 2013] the term
"looped noise" is assumed to mean that the noise sequence is just used repeatedly,
i.e. replicated, until all clean training and test samples have been corrupted by noise.
This means that if 4000 s of training and test data is used the babble noise sequence
is replicated 1000 times in order to fit the length of the data set. Similarly, this
applies when the 10 s SSN sequence is used.

This also means that in the rest of the chapter, when looped noise is mentioned,

6.2. Training & Test Data 77

it is the 5 s babble noise sequence which is replicated an appropriately number of
times to fit the size of the training and test set. The 5s babble noise sequence and
the spoken HINT sentences are public available from [Wang, 2013] and will form the
foundation for the training and test data in the rest of this chapter.

6.2.1 Unseen Noise Realizations

In order to train and test the system in Fig. 6.1 in a more realistic scenario, i.e.,
without the use of looped noise, unseen noise realizations must be constructed. It
has been decided to use the same kind of noise as in [Healy et al., 2013], which are
babble noise and SSN.

Babble Noise

Babble noise is a noise source which consists of competing talkers, male or female.
Babble noise is a way to simulate the scenario of a cocktail party and is considered as
a difficult speech enhancement problem since the noise source is similar to the target
speaker as well as being non-stationary, i.e., the PSD of consecutive 20 ms frames
might differ.

The babble noise source used for non-looped noise realizations in the simulations
presented in Chapter 7 is constructed from the TIMIT corpus. The TIMIT cor-
pus consists of 6300 sentences or roughly 300 min. of speech and the babble noise
sequence has been constructed by randomly dividing these 6300 sentences into six
groups each consisting of 1050 sentences or roughly 50 min. of speech. These six
groups are then added together forming a 6-speaker babble sequence with a duration
of approximately 50 min. In [Healy et al., 2013] a similar approach was used but
as mentioned in the former section, only a babble sequence of 5 s was constructed,
which led to the use of looped noise. Having a babble noise sequence of 50 min. it is
possible to construct training and test data having the same size as in [Healy et al.,
2013] but with unique and unseen, i.e., non-looped noise realizations.

In [Kim et al., 2009] a 20-speaker babble sequence was used and in [Healy et al.,
2013] an 8-speaker babble sequence was used. In [Healy et al., 2013] it is argued that
an 8-speaker babble sequence is a more difficult noise signal than a 20-speaker babble
sequence. Accordingly, it is assumed that the 6-speaker babble sequence constructed
by the approach just presented must be even more difficult. However, since only
a limited amount of speech material is available it is decided to use the 6-speaker
babble sequence based on the TIMIT corpus as the noise source for simulations using
non-looped noise.

Speech Shaped Noise

Speech Shaped Noise (SSN) is a term used to describe a noise sequence which has
a PSD similar to the long term PSD of speech. SSN is constructed by filtering a
white Gaussian noise sequence with a filter similar to the all-pole system given by

78 Chapter 6. Speech Enhancement Using Deep Neural Networks

Eq. (2.12). The coefficients of the filter are found by minimizing a LP error term,
which is equivalent to solving the normal equations as given by Eq. (2.14).

The SSN noise source used for non-looped noise realizations in the simulations
presented in Chapter 7 is constructed in MATLAB using the lpc, wgn and filter
functions. First 12 LP coefficients are found based on 100 randomly chosen TIMIT
sentences using the lpc function. Then a 1-hour white Gaussian noise sequence
with unit variance is generated using the wgn function. To avoid aliasing the white
Gaussian noise is band-limited to 8 kHz using a 6’th order Butterworth filter. This 8
kHz band limited Gaussian noise sequence is then filtered by an all-pole filter using
the 12 LP coefficients and the filter function. The filtered noise is then having
a periodogram similar to the long term periodogram of the 100 TIMIT sentences
and is hereby known as SSN. Plots showing the different stages are depicted in
Fig. 6.8. Figure 6.8a shows the periodogram of the 100 TIMIT sentences and the
corresponding all-pole system generated using LP is shown in Fig. 6.8b. It is seen
that the all-pole system has captured the characteristics of the spectrum in Fig. 6.8a.
In Fig. 6.8c the periodogram of the 1 hour 8 kHz band-limited white Gaussian noise
signal is depicted and in Fig. 6.8d the same signal is shown after it has been filtered
using the all-pole system of Fig. 6.8b. It is seen that the periodogram of the filtered
white Gaussian noise is "shaped" very similar to the periodogram of the speech signal
based on the 100 TIMIT sentences, which is exactly what is desired when constructing
SSN.

6.3 System Implementation & Evaluation
This section describes how the speech enhancement system presented in Section 6.1
is implemented and tested. The speech enhancement system is implemented in MAT-
LAB and the implementation is a combination of public available code, toolboxes,
and code written by the authors. The MATLAB code can be found on the appendix
DVDs and an overview of the implementation can be found in Appendix D.

In order to minimize the risk of software errors the implementation of the speech
enhancement system is, as far as possible tested on a unit level. The code and
toolboxes, which are public available and was not modified in any way, are used
as is. This means that no effort has been put into verifying their implementation.
This relates to the extraction of MFCC and RASTA-PLP features as well as the
objective performance measures PESQ and STOI. MFCC and RASTA-PLP features
are extracted using the toolbox RASTAMAT, which is public available from [Ellis,
2005]. This toolbox is also used by DeLiang Wang in [Wang et al., 2012] for extracting
MFCCs and RASTA-PLP features. PESQ is available from [Loizou, 2013] and STOI
is public available from [Taal, 2010]. It is hereby assumed that the aforementioned
implementations are correct.

What is left of the speech enhancement system is the extraction of the AMS
features, the IBM creation, speech analysis and synthesis and DNN training and pre-
training. These parts of the speech enhancement system have been written partly or

6.3. System Implementation & Evaluation 79

Frequency [Hz]
0 2000 4000 6000 8000

P
ow

er
/F

re
qu

en
cy

 [d
B

W
/H

z]

-120

-110

-100

-90

-80

-70

-60

-50

-40

(a) Periodogram of 5 min. speech signal
based on 100 TIMIT sentences

Frequency [Hz]
0 2000 4000 6000 8000

M
ag

ni
tu

de
 [d

B
]

-10

-5

0

5

10

15

20

(b) Amplitude Reponse of LP
all-pole system

Frequency [Hz]
0 2000 4000 6000 8000

P
ow

er
/F

re
qu

en
cy

 [d
B

W
/H

z]

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

(c) Periodogram of 0 dBW, 8 kHz band-
limited white Gaussian noise

Frequency [Hz]
0 2000 4000 6000 8000

P
ow

er
/F

re
qu

en
cy

 [d
B

W
/H

z]

-110

-100

-90

-80

-70

-60

-50

-40

(d) Periodogram of 1 hour speech shaped
noise signal

Figure 6.8: This figure presents the stages involved when constructing speech shaped noise. In
Fig. 6.8a the periodogram of 100 TIMIT sentences is shown and the corresponding all-pole system
generated using LP is shown in Fig. 6.8b. It is seen that the all-pole system has captured the
characteristics of the spectrum in Fig. 6.8a. In Fig. 6.8c a 1 hour 8 kHz band-limited white Gaussian
noise signal is depicted and in Fig. 6.8d the same signal is depicted when it has been filtered using
the all-pole system shown in Fig. 6.8a. It is seen that the periodogram of the filtered white noise is
"shaped" similar to the periodogram of the speech signal based on the 100 TIMIT sentences, hence
a speech shaped noise source has been constructed.

80 Chapter 6. Speech Enhancement Using Deep Neural Networks

entirely by the authors and hereby require thorough testing, which are described in
the next couple of sections.

6.3.1 IBM Creation, Speech Analysis & Synthesis Evaluation

This section will describe how the implementation of the IBM construction as well
as the procedure of speech analysis and synthesis is performing. This code is primar-
ily written by the authors except for the synthesis part, where an implementation
partly written by DeLiang Wang from the department of Computer Science and
Engineering, Ohio State university, is used [Jin and Wang, 2007b].

One way to investigate if the speech analysis and speech synthesis functionality
has been implemented correctly is to compare a speech signal before and after it has
been analyzed and synthesized, i.e., without binary mask processing. If the imple-
mentation is working correctly it is assumed that the original signal and the processed
signal are almost identical if a sufficiently large number of frequency channels are
used in the gammatone filter bank.

The job of the analysis part is to process the speech signal by a gammatone filter
bank followed by framing the frequency channels into 20 ms frames with 10 ms over-
lap. The job of the synthesis part is then to convert the framed T-F representation
back to a continuous time signal, which is done using a sum-and-add approach as
described in [Wang and Brown, 2006, p. 24].

A natural criterion to measure the similarity of the processed and non-processed
speech signal is the sum of squared residuals but since intelligibility is also of a
concern, STOI will also be used. To test the implementation three TIMIT sentences
and three HINT sentences are being processed with a varying number of frequency
channels, varying from 1 to 96.

Since 64 frequency channels is used in [Healy et al., 2013] the magnitude response
of the whole analyze-synthesize system using 64 frequency channels is simulated. The
results are shown in Fig 6.9. From Fig 6.9 the STOI score and the sum of squared
residuals is presented for three TIMIT sentences and three HINT sentences. The
sum of squared residuals is represented as a SNR computed as

SNR = 10× log10

(∑
n=0 x(n)2

clean∑
n=0(x(n)clean − x(n)processed)2

)
(6.1)

where x(n)clean is the clean unprocessed speech signal and x(n)processed is the signal
which has been processed by the analysis and synthesis stages. It is seen from Fig 6.9
that STOI begins at zero but approaches one as the number of frequency channels
goes up and is approximately one, when the number of frequency channels is larger
than 40.

Likewise, is it seen that the sum of squared residuals starts low but increases
steadily as the number of frequency channels go up and approximately stagnates
when more than 60 frequency channels are used.

From the frequency response of the analyze-synthesize system using 64 frequency
channels, it is seen that the magnitude response is relatively flat up to 7 kHz with

6.3. System Implementation & Evaluation 81

Frequency Bands
10 20 30 40 50 60 70 80 90

S
T

O
I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
STOI score between unprocessed and processed signal

HINT v6278
HINT v6009
HINT v6063
TIMIT SA1 MALE
TIMIT SA1 FEMALE
TIMIT SX416

Frequency Bands
10 20 30 40 50 60 70 80 90

S
N

R
 [d

B
]

-10

0

10

20

30

40

50
Signal to Noise Ratio between unprocessed and processed signal

HINT v6278
HINT v6009
HINT v6063
TIMIT SA1 MALE
TIMIT SA1 FEMALE
TIMIT SX416

Frequency [Hz]
0 1000 2000 3000 4000 5000 6000 7000 8000

M
ag

ni
tu

de
 (

dB
)

-20

-15

-10

-5

0

5

10

15
Magnitude Response of analyze/synthesize system using 64 Frequency Channels

Figure 6.9: This figure shows how the speech analysis and synthesis functionality is performing by
comparing the a clean speech signal to a signal which has been sent through the gammatone filter
bank and afterwards has been re-synthesized. Three TIMIT and three HINT sentences has been
analyzed and synthesized using a gammatone filter bank having from 1 to 96 frequency channels.
The STOI measure (top figure) and the sum of squared residuals (middle figure) has been used for
evaluation and it is seen that after approximately 40 frequency channels a STOI of 1 is achieved
and similarly the sum of squared residuals starts to flatten out after approximately 50-60 channels.
From the bottom figure the magnitude response of the analyze-synthesize system using 64 frequency
channels is presented and it is seen that the response is relatively flat up to 7 kHz with a 6 dB gain.
After 7 kHz an unexplainable gain increase occur.

82 Chapter 6. Speech Enhancement Using Deep Neural Networks

a constant gain of 6.5 dB. Also, it is seen that an approximately 6 dB gain increase
is introduced from 7-8 kHz. It has not been possible to identify what causes this
gain increase but it has been observed that if the bandwidth of the filter bank is
changed this gain increase changes as well. It is hereby assumed that it is due to
imperfections/non-linearities in the implementation. It is though considered accept-
able since not much speech information is present at 7-8 kHz so a slight distortion
at those frequencies will not do much harm. However, since the implementation of
the gammatone filter bank is written by DeLiang Wang and hereby presumably the
implementation used in [Healy et al., 2013] the filter bank will be used as is.

From the plots shown by Fig 6.9 and from supporting listening tests of the pro-
cessed speech signal it is assumed that the speech analysis and synthesis functionality
is working as intended and is correctly implemented.

To investigate if the construction of the IBM is implemented correctly the IBM is
constructed from a test signal consisting of different sine waves mixed with Gaussian
white noise at 0 dB SNR. The LC is set to 0 dB. The verification of the IBM is
then based on visual inspection of the IBM as well as by synthesizing the noisy test
signal with the IBM being applied to see if the IBM can remove the Gaussian noise.
From visual inspection it is expected that the spectrogram of the noisy test signal
and the IBM are similar, in the sense that T-F units in the IBM corresponding to
sine wave dominated T-F units in the noisy test signal are set to one and all the
noise dominated T-F units being set to zero. When the IBM is applied to the T-F
representation of the noisy test signal, each frame in each frequency channel is being
either multiplied with zeros or ones depending on the corresponding value of the T-F
unit in the IBM, effectively removing the noise dominated T-F units.

The results from the test just described are presented in Fig. 6.10. A gammatone
filter bank with 64 filters have been used. The time domain representation as well
as the spectrogram of the noisy test signal are presented in Fig. 6.10a and Fig. 6.10b
respectively. The IBM, which is constructed based on the signal in Fig. 6.10a is
shown in Fig. 6.10c and the spectrogram of the processed test signal is shown by
Fig. 6.10d

It is seen from Fig. 6.10b that 9 distinct signal components are visible in the
spectrogram of the noisy test signal, which corresponds to the 9 different sine waves
the test signal was made of. It is also seen that the ones, i.e., the white pixels, in
the IBM in Fig. 6.10c corresponds very well to the locations of the sine waves in the
spectrogram. It is also seen from Fig. 6.10d that the spectrogram of the synthesized
test signal contains the 9 sine waves and the majority of the noisy regions have been
removed.

Another thing to notice is the non-linear frequency mapping of the gammatone
filter bank, which is seen directly from the frequency axis of the IBM in Fig. 6.10c.
It appears as a mismatch between the frequency axis of the spectrogram and the
frequency axis of the IBM, but this is not the case and is due to the non-linear
frequency mapping of the gammatone filter bank as seen from Fig. 2.4. This means
that there are more filters covering the lower part of the spectrum compared to the

6.3. System Implementation & Evaluation 83

Samples #104
0 1 2 3 4 5

A
m

pl
itu

de

-8

-6

-4

-2

0

2

4

6

8

(a) Noisy test signal

Time (s)
0.5 1 1.5 2 2.5

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(b) Spectrogram of noisy test signal

Frames (20 ms)
50 100 150 200 250

F
re

qu
en

cy
 (

kH
z)

0.1

0.27

0.52

0.89

1.46

2.31

3.59

5.53

8

(c) Ideal Binary Mask

Time (s)
0.5 1 1.5 2 2.5

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(d) Spectrogram of processed test signal

Figure 6.10: This figure presents the results of a test used to evaluate the implementation of the
construction of the IBM. A synthetic test signal was created based on 9 sine waves with different
frequency. A noisy version of the test signal was constructed by adding white Gaussian noise at 0 dB
SNR. An IBM was hereby constructed from the clean and the noisy test signal. Figure 6.10a shows
the noisy test signal and Fig. 6.10b shows the same signal represented as a spectrogram, where the
9 sine waves a easily seen. Fig. 6.10c shows the constructed IBM and it is seen that the T-F units
which are preserved, i.e., white pixels corresponds very well to the locations of the sine waves in
Fig. 6.10b. Fig. 6.10d shows the noisy test signal when it has been processed by the IBM and it is
seen that the sine waves are more or less preserved. The amount of noise which is preserved as well
is due to the non-linearities of the gammatone filter bank. See Fig. 2.4

84 Chapter 6. Speech Enhancement Using Deep Neural Networks

higher part of the spectrum where only a relatively small number of filters are used.
This is also seen on the spectrogram of the synthesized test signal where the sine
signals in the low frequencies are very well preserved with almost no visible noise. At
higher frequencies, the sine wave are also preserved but likewise is a lot of the noise.
This is due to the width of the upper filters of the gammatone filter bank which are
larger than the filters in the lower frequencies. A way to circumvent this phenomena
is to use more frequency bands, i.e., filters, or to use a linear frequency mapping with
the same number of filters. This however leads to either lower spectral resolution
at the lower regions of the spectrum, if the same number of filters are used with a
linear frequency scale, or higher computational requirements due to the use of more
filters having a non-linear frequency mapping. Since most of the energy in speech is
at low frequencies, which are also where the ear is most sensitive, a good trade off
between spectral resolution and computational complexity is to use the gammatone
filter bank. From the above argumentation, the IBM and spectrograms in Fig. 6.10
it is assumed that the IBM construction as well as the synthesis with the IBM being
applied is implemented correctly.

6.3.2 AMS Feature Evaluation

This section will justify that the implementation of the AMS features are working
as intended. As described in section 2.5.3 the implementation of the AMS features
extraction is based on the method described in [Hang and Wang, 2012], [Kim et al.,
2009] and [Healy et al., 2013].

To verify that the implementation of the AMS feature extraction works as in-
tended, a segment of voiced speech and babble noise was captured. These signal
are shown in Fig. 6.11. The pitch period of the voiced segment (top panel) is seen
to span over 115 samples. At the sampling frequency of 16 kHz this yields a pitch
period of 7.2ms or a fundamental frequency of 139Hz. Therefore, it is expected to
see activity at the modulation frequencies around the fundamental frequency and its
harmonics. From the top panel of Fig. 6.12, activity at the modulation frequency
around the fundamental frequency and its first harmonic, is visible. It can also be
observed that the activity on the modulation axis is relative broad. This is due to the
short frame of 20ms, which yields a limited modulations frequency resolution. The
middle panel of Fig. 6.12 is the AMS pattern generated from a segment of babble
noise. In this case no particular structures across the modulation frequency axis are
observed.

To further test the AMS implementation, a synthetic signal is generated. This
signal is given by

s(n) = sin
(
f0

2π
fs
n

)
+ sin

(
f1

2π
fs
n

)
(6.2)

where f0 = 500Hz, f1 = 600Hz and fs = 16 kHz. This means that the signal consist
of two equal amplitudes sinusoids at 500Hz and 600Hz. The envelope of this signal

6.3. System Implementation & Evaluation 85

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

time [ms]

Voiced speech segment

0 5 10 15 20 25
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time [ms]

Babble noise segment

Figure 6.11: The top figure shows a voiced speech segment with a fundamental frequency of
approximate 139Hz. The bottom figure shows a segment of babble noise.

can be found by use of the trigonometric identity

sinα+ sin β = 2 sin
(
α+ β

2

)
cos
(
α− β

2

)
. (6.3)

Here α = 500Hz and β = 600Hz. Putting these values into Eq. (6.3) yields

sin 500Hz + sin 600Hz = 2 sin(550Hz) cos(50Hz) (6.4)

where the cosine term at 50Hz is the envelope. The AMS feature extraction find the
envelope in each frequency band by taking the absolute value of the samples. Since
the test signal consist of sinusoids with no offset, taking the absolute value of such
signal should yield an envelope twice as big as the one calculated in Eq. (6.4). This
will be referred to as the upper envelope. Therefore, it is expected to see activity
at the modulation filter around 100Hz. From the bottom panel of Fig. 6.12 it is
seen that the signal as expected lightens up the modulation filters around 100Hz.
Likewise, quite intense activity is seen at the modulation filters around DC. This
is due to the fact that the upper envelope have a mean value different from zero.
Also, harmonics occur at 200Hz, 300Hz and 400Hz, which are caused by taking the
absolute value of the envelope found in Eq. (6.4). According to these tests it is
assumed that the implementation of the AMS feature extraction is correct.

86 Chapter 6. Speech Enhancement Using Deep Neural Networks

Modulation Frequency [Hz]

C
en

te
r

F
re

qu
en

cy
 [H

z]
AMS pattern for voiced speech segment

44 98 153 208 263 318 373

4472

2106

931

347

0

0.5

1

1.5

2

Modulation Frequency [Hz]

C
en

te
r

F
re

qu
en

cy
 [H

z]

AMS pattern for a bable noise frame

44 98 153 208 263 318 373

4472

2106

931

347

0

0.5

1

1.5

2

Modulation Frequency [Hz]

C
en

te
r

F
re

qu
en

cy
 [H

z]

AMS pattern for sum of sinusoids at 500 Hz and 600 Hz

44 98 153 208 263 318 373

4472

2106

931

347

0

0.5

1

1.5

2

Figure 6.12: The two topmost figures shows the AMS pattern for a the voiced speech segment and
the babble noise segment shown in Fig. 6.11. The bottom figure shows the AMS pattern of the test
signal from Eq. (6.4).

6.3. System Implementation & Evaluation 87

6.3.3 DNN Training & Pre-training Evaluation

This section describes how the implementation of the DNN pre-training and fine-
tuning is performing. The implementation of the DNN is based on the public available
code provided by Geoffrey Hinton [Salakhutdinov and Hinton, 2006]. This code
implements a three layer DBN consisting of Bernoulli-Bernoulli RBMs and a four
layer DNN consisting of three layers of sigmoid hidden units and one softmax output
layer. The DBN is trained using contrastive divergence with k = 1 and the DNN
is trained using the non-linear conjugate gradient algorithm where the cross-entropy
objective function is used and the method of backpropagation is used to compute
the corresponding gradients.

Since the system described in [Healy et al., 2013] uses a two layer DBN and a three
layer DNN as well as both GBRBMs and BBRBMs, the code provided by Geoffrey
Hinton has been altered to fit the described system. The alternations consists of
changing the BBRBM in the first layer of the DBN to a GBRBM as well as reducing
the number of layers to two in the DBN and three in the DNN. Changing the type
of RBM corresponds to sampling from a Gaussian distribution as the one given by
Eq. (5.11) instead of sampling from a Bernoulli distribution as the one given by Eq.
(5.6). However, instead of drawing a true sample from the Gaussian distribution it is
reported in [Wang and Wang, 2013], that a sample vj is approximated by the mean
of the Gaussian distribution, which is given by

vj ≈ bj +
n∑
i=1

wijhi. (6.5)

where bj is a bias, hi is the state of the hidden unit and wij is the corresponding
weight. To investigate if the DBN and DNN training work as expected a couple
of tests have been performed. The first test will investigate if the backpropagation
training is working and the next couple of tests will investigate if the DBN training
is working, i.e., the DNN pre-training.

Achieving Zero Training Error

One way to investigate if the backpropagation training is working is to train a DNN
for so long time that the training error approaches zero. If the number of units in
the DNN is sufficiently large, compared to the training set, such that the DNN can
capture all the variations of the training data, the training error is likely to be zero
after a given number of epochs [Montavon et al., 2012, p. 464].

A system used for testing, without pre-training and incorporating only one DNN,
is illustrated in Fig. 6.1. The DNN chosen is the one covering the frequency channel
around 1 kHz, which is assumed to be a frequency channel with large variations, when
speech data is used. The training set comprises 10 randomly chosen HINT sentences
mixed with babble noise at -5 dB SNR, which gives 2189 training samples. The LC,
used when creating the IBM, is set to -8 dB. The test set comprises 10 randomly
chosen HINT sentences, chosen from an isolated test set such that there is no overlap

88 Chapter 6. Speech Enhancement Using Deep Neural Networks

between training and test data. The test set consists of 2084 samples and is mixed
with babble noise in the same way as the training set. The DNN consists of two
hidden layers each having 50 hidden units and the DNN is trained using full-batch
training for 500 epochs. The training error is defined as the percent of misclassified
training cases, and can be calculated as

Training error =
(#Misclassified

#Training Samples

)
× 100 (6.6)

and the test error is computed in a similar fashion. The training error as well as the
test error as a function of epochs is illustrated in Fig. 6.13.

Epochs
0 50 100 150 200 250 300 350 400 450 500

T
ra

in
 E

rr
or

 [%
]

0

5

10

15

20

25

Epochs
0 50 100 150 200 250 300 350 400 450 500

T
es

t E
rr

or
 [%

]

19

20

21

22

23

24

Figure 6.13: This figure shows how a DNN can be trained to produce a training error of 0 using
the backpropagation algorithm. It is also seen that the test error gets worse after approximately 150
epochs which indicates that the DNN start to overfit the training data. These plots indicate that
the backpropagation training is implemented correct.

From Fig. 6.13 it is seen that the training error is approaching zero as the number
of epochs increases and after approximately 200 epochs the training error is zero and
stays at zero for the remaining 300 epochs. From Fig. 6.13 it is also seen that the
test error starts decreasing and then starts increasing again before it stagnates at an
error rate of approximately 22%, which is assumed to be caused by the model being
overfitted, which is the phenomena that occurs when a model is trained to much.

From the results of the test, which shows that a DNN can be trained to achieve a
training error of zero it is assumed that the backpropagation training is implemented
correctly and is working as intended.

6.3. System Implementation & Evaluation 89

Pre-training Evaluation Part 1

Evaluating the implementation of the DBN training is not a trivial task. Investigating
whether or not a DBN and more specific a RBM captures the right statistics of the
training data can be difficult, especially due to the intractable computation of the log-
likelihood function as given by Eq. (5.20). Ideally, if the log-likelihood function could
be evaluated after each epoch, it could indicate if the DBN learns the statistics of the
data and potentially also if the DBN starts to overfit the data if the log-likelihood
function was evaluated on validation data [Hinton, 2012].

A metric which is natural to use when monitoring the learning process is the so
called reconstruction error. The reconstruction error of a given training sample is
the difference between the training sample and the sample which has been generated
by the RBM after k Gibbs steps when using k steps contrastive divergence. If the
RBM has captured the statistics well, the sample from the RBM will ,with high
probability, be similar to the training sample and the difference between the two will
be small. However, the sample from the RBM is highly dependent on the mixing
rate of the Gibbs chain. This means that if the mixing rate is low and CD-1 is used
the sample from the RBM and the training sample are very similar. This will give
a small reconstruction error, even though the equilibrium distribution of the Gibbs
chain is very different from the distribution of the training data. Nevertheless, the
reconstruction error is used but as Geoffrey Hinton says "Use it but don’t trust it"
[Hinton, 2012].

Some literature also propose to look at the histogram of the weights of the RBM
and look at the non-gaussianity. Since the RBM is often initialized with Gaussian
random variables the histograms of the weights should appear Gaussian in the be-
ginning of training and then gradually become less Gaussian and more sparse as
training progress [Dieleman and Schrauwen, 2012].

The most straightforward way to investigate if DBN training is working is to
train a DNN and compare the classification performance with a DNN, which has
been initialized with parameters from a trained DBN [Dieleman and Schrauwen,
2012]. Several of such tests have been performed in order to investigate how well
the pre-training is working and under what conditions it is working. The tests
are divided into two parts. The first parts investigates the influence of the size
of the training set as well as the number of hidden units as function of epochs of
backpropagation training. The second part investigates how the learning rate of the
GBRBM and BBRBM as well as the number of pre-training epochs, influence the
classification performance as function of epochs of backpropagation. The systems
used for the two parts are similar to the system used in the former section for testing
the backpropagation learning. The first part consists of 18 Pre-training Evaluation
Tests (PET) as shown by Tab. 6.1. The 18 PETs consists of DNNs trained with
and without pre-training for three different sizes of training set and three different
number of hidden units. The training set is based on the HINT sentences and the
three training sets are based on 10, 50 and 100 sentences, i.e., approximately 2200,
11000 and 22000 training samples per frequency channel. All sentences are mixed

90 Chapter 6. Speech Enhancement Using Deep Neural Networks

Test ID # Training Sentences # Hidden Units Pre-training
PET1 10 50 No
PET2 10 200 No
PET3 10 500 No
PET4 10 50 Yes
PET5 10 200 Yes
PET6 10 500 Yes
PET7 50 50 No
PET8 50 200 No
PET9 50 500 No
PET10 50 50 Yes
PET11 50 200 Yes
PET12 50 500 Yes
PET13 100 50 No
PET14 100 200 No
PET15 100 500 No
PET16 100 50 Yes
PET17 100 200 Yes
PET18 100 500 Yes

Table 6.1: This table presents 18 pre-training evaluation tests and the purpose of these tests are to
investigate if the implementation of the DNN pre-training is working and under what circumstances
pre-training has a positive effect on the DNN training. The results can be seen in Fig. 6.14

with babble noise at -5 dB SNR and the LC for the creation of the IBM is set to -8
dB. The test set for all tests in the first part consists of 50 HINT sentences, chosen
from an isolated test such that there is no overlap between training and test data.
The test set is mixed with babble noise in the same way as the training set.

The T-F representation of the training and test data is based on a 24 channel
gammatone filter bank and to reduce the computational burden of the test, only six
out of the 24 frequency channels are used for training and classification. The overall
classification performance is then given as the average across the six DNNs which are
trained on the six frequency channels. The channels selected for the test are channel
1, 5, 10, 15, 20 and 24 in an attempt to cover the whole 8 kHz spectrum.

The six DNNs are trained with and without pre-training and with a size of either
50, 200 or 500 hidden units in each of the two layers and each DNN is trained for 250
epochs of backpropagation. Mini-batch training is used with mini-batches of 2048
samples. The results from the tests, in the first part of the pre-training evaluation,
are shown by Fig. 6.14

For clarity, the results from the tests of the first part is divided into three plots
where each plot presents results from six tests with DNNs, with and without pre-
training, having 10, 200 and 500 hidden units in each hidden layer. The topmost
plot of Fig. 6.14 shows how the classification accuracy in number of misclassified test

6.3. System Implementation & Evaluation 91

Epochs of Backpropagation
0 50 100 150 200 250

E
rr

or
 [%

]

10

12

14

16

18

20

22
Average test error after traning with 10 sentences

PET 1: No Pre-Train 50 units
PET 2: No Pre-Train 200 units
PET 3: No Pre-Train 500 units
PET 4: Pre-Train 50 units
PET 5: Pre-Train 200 units
PET 6: Pre-Train 500 units

Epochs of Backpropagation
0 50 100 150 200 250

E
rr

or
 [%

]

10

12

14

16

18

20

22
Average test error after traning with 50 sentences

PET 7: No Pre-Train 50 units
PET 8: No Pre-Train 200 units
PET 9: No Pre-Train 500 units
PET 10: Pre-Train 50 units
PET 11: Pre-Train 200 units
PET 12: Pre-Train 500 units

Epochs of Backpropagation
0 50 100 150 200 250

E
rr

or
 [%

]

10

12

14

16

18

20

22
Average test error after traning with 100 sentences

PET 13: No Pre-Train 50 units
PET 14: No Pre-Train 200 units
PET 15: No Pre-Train 500 units
PET 16: Pre-Train 50 units
PET 17: Pre-Train 200 units
PET 18: Pre-Train 500 units

Figure 6.14: This figure presents 18 pre-training evaluation tests and the purpose of these tests
are to investigate if the implementation of the DNN pre-training is working and under what circum-
stances pre-training has a positive effect on the DNN training. It is seen that pre-trained DNNs
only perform better than non pre-trained DNNs for large training sets and large models.

92 Chapter 6. Speech Enhancement Using Deep Neural Networks

samples varies as a function of epochs of backpropagation training using a training
set comprising 10 HINT sentences. The plot in the middle presents results where
the training set has increased to 50 sentences and the plot in the bottom of Fig. 6.14
show the result with a training set comprising 100 HINT sentences.

The results from Fig. 6.14 indicate that pre-training does have a positive effect on
the classification accuracy but only with large models, i.e., a large number of hidden
units, and with a large amount of training data. As it is seen from the topmost plot
of Fig. 6.14 a DNN trained with backpropagation from random initialized weights is
better than using the weights from the DBN for all three sizes of DNN.

From the plots in the middle of Fig. 6.14, where the training set is comprised of
50 HINT sentences it is seen that pre-training outperforms random initialization, but
only with the DNN having 500 hidden units. Likewise, the bottom plot of Fig. 6.14
shows that the largest DNN with pre-training performs the best but also the second
largest DNN with pre-training, having 200 hidden units performs better than the
counterpart with random initialization for most epochs.

The overall result from the tests presented in Fig. 6.14 indicate that the imple-
mentation of the pre-training is working, however pre-training is only beneficial for
large datasets and large models.

Two possible arguments explaining the seen behaviour could be the following. The
pre-training can be seen as a method to prevent backpropagation from being stuck in
a bad minimum and hereby should pre-training initialize backpropagation training
such that it starts from a more favorable location in parameter space. However if
the DNN only have a small amount of hidden units the parameter space is not as
complicated as if there were a large number of hidden units. With a small parameter
space backpropagation might have an easier job finding a good minima, compared
to the large models where the parameter space is large and where pre-training seems
to benefit.

An argument explaining the requirement of a large number of training samples
could be based on the gradient approximations done using contrastive divergence.
Two rough approximations were made in the derivation of contrastive divergence.
First, an expected value was approximated by a sample and second, that sample was
approximated by a single Gibbs step, so maybe these two approximations require a
fair amount of training data before the approximations become good enough to train
a good model.

It should be mentioned that the reconstruction error during pre-training for all
tests was observed to be decreasing as expected, which just supports a proper im-
plementation of the DNN pre-training functionality.

Pre-training Evaluation Part 2

The second part of the pre-training evaluation is related to 5 PETs where the learning
rate of the GBRBM and the BBRBM as well as the number of pre-training epochs
are monitored. The configuration of the 5 PETs are listed in Tab. 6.1. In [Hinton,
2012] Geoffrey Hinton proposes that the learning rate for a GBRBM should be an

6.3. System Implementation & Evaluation 93

Test ID Pre-training
Epochs

BBRBM
Learning rate

GBRBM
Learning rate

PET19 No Pre-training - -
PET20 100 µ = 0.01 µ = 0.001
PET21 50 µ = 0.01 µ = 0.001
PET22 100 µ = 0.1 µ = 0.01
PET23 50 µ = 0.1 µ = 0.01

Table 6.2: This table presents 5 pre-training evaluation tests and the purpose of these tests is to
investigate if the implementation of the DNN pre-training is working and under what circumstances
pre-training has a positive effect on the DNN training. The results can be seen in Fig. 6.15

order of magnitude smaller than the learning rate for a BBRBM. In [Healy et al.,
2013] learning rates of 0.01 and 0.1 were used for the GBRBM and the BBRBM
respectively and in [Wang and Wang, 2013] learning rates of 0.001 and 0.01 were
used for the GBRBM and the BBRBM respectively. To investigate how the learning
rate influences the classification performance both of these learning rates are tested
in the second part of the tests. Also the number of pre-training epochs, i.e., epochs
of contrastive divergence is investigated. Based on the results of the tests in the
first part, a large training set is used, which consists of 100 HINT sentences each
mixed with babble noise six times which increases the training set to 600 sentences.
This approach is similar to what is presumably done in [Healy et al., 2013]. Using
600 sentences for training each frequency channel is represented by approximately
132000 samples. The test set is based on 160 HINT sentences, mixed with babble
noise, which is equivalent of approximately 35000 test samples per frequency channel.
Like the former tests the noisy sentences are mixed at -5 dB SNR with a local criterion
of -8 dB. Also like the former tests, only a subset of the frequency channels were used
for training and the overall result is constructed by an average over these frequency
channels. In the current tests, frequency channel number 5, 10, 15 and 20 was used
out of a total of 24 and each DNN had 200 hidden units in each layer and was trained
for 50 epochs of backpropagation. The result for the second part of the pre-training
evaluation is presented in Fig. 6.15.

Figure 6.15 shows the results from five PETs. One test without pre-training (PET
19 blue line), which acts as a reference, and four tests with pre-training, each with
its own setting of number of pre-training epochs and learning rates (PET 20-23). It
is seen that within the duration of the 50 epochs all four DNNs with pre-training
outperforms the DNN without pre-training, which support the results from the tests
from the first part.

It is also seen that the two DNNs with the larger learning rates, i.e, 0.1 for the
BBRBM and 0.01 for the GBRBM (PET 22 and PET 23), yields the best and very
similar performance. The difference between the two is the number of pre-training
epochs which are either 50 or 100. Third best is the DNN with learning rates of 0.01
for the BBRBM and 0.001 for the GBRBM (PET 20), which has been trained for

94 Chapter 6. Speech Enhancement Using Deep Neural Networks

Epochs
0 5 10 15 20 25 30 35 40 45 50

E
rr

or
 [%

]

9

10

11

12

13

14

15

16

17

18
Average test error after traning with 600 sentences

PET 19: No Pre-Train
PET 20: Pre-Train 100 epochs, 7 BBRBM 0.01, 7 GBRBM 0.001
PET 21: Pre-Train 50 epochs, 7 BBRBM 0.01, 7 GBRBM 0.001
PET 22: Pre-Train 100 epochs, 7 BBRBM 0.1, 7 GBRBM 0.01
PET 23: Pre-Train 50 epochs, 7 BBRBM 0.1, 7 GBRBM 0.01

Figure 6.15: This figure presents 5 pre-training evaluation tests and the purpose of these tests is to
investigate if the implementation of the DNN pre-training is working and under what circumstances
pre-training has a positive effect on the DNN training. It is seen that learning rates of 0.1 and 0.01
for the BBRBM and GBRBM respectively achieves the best results and no noticeable performance
improvement is achieved by training for 100 epochs instead of 50.

100 epochs and fourth best is the same DNN with only 50 epochs of pre-training
(PET 21).

From these tests it is clear that on the current training set, learning rates of 0.1
for the BBRBM and 0.01 for the GBRBM yields the best performance and nothing
significant is gained by pre-training the DNNs for more than 50 epochs.

The overall conclusion for the pre-training evaluation is that it is assumed that
the implementation of the algorithms are correct and from tests it is justified that
pre-training under some circumstances yields improved performance.

6.4 Early Stopping
During initial training sessions, it was identified that the classification accuracy, on
the test set, for different subband DNNs peaked at different epochs. This means that
if all DNNs are trained for the same amount of time the capability of the system
will not be completely utilized hence, some DNNs are overfitted and some have not
reached their maximum classification performance yet. Another thing identified,
was that the DNNs trained with pre-training started overfitting relatively quickly
compared to DNNs trained with backpropagation alone. This means that in order
to utilize the power of pre-training, as well as potentially reducing the training time,
the length of the backpropagation training must be carefully chosen for each subband

6.4. Early Stopping 95

DNN. This is done using an early stopping technique as presented in the following.
A plot showing the observed behaviour is depicted in Fig. 6.16.

The top figure in Fig. 6.16 shows the classification test error for subband DNN
10 and 20 and the bottom figure of Fig. 6.16 shows the average classification test
error for 24 subband DNNs. The DNNs are trained similar to the tests performed
in Section 6.3.3 excepts that the size of the test set is reduced to 80 instead of 160
sentences and the batch size is set to 512 instead of 2048. The blue lines show the
test error when only backpropagation is used and the red lines show the test error
when 100 epochs of pre-training is used. From the top figure it is seen that the
DNNs achieving the smallest classification error are the DNNs with pre-training,
but the minimum is achieved at different epochs. The subband DNN for subband
10 achieves the minimum error around epoch 35 whereas the subband DNN for
subband 20 achieves the minimum error around epoch 20. It is also seen that if
subband 10 is trained for 500 epochs pre-training have no effect but if only 35 epochs
of backpropagation training is used the pre-trained DNN will perform the best.

In the bottom figure the average classification error for all 24 subband DNNs,
pre-trained and non pre-trained are computed. From this figure it is seen that the
pre-trained DNNs on average achieves the lowest classification test error after ap-
proximately 35 epochs. It is also seen that if all DNNs are trained for 150 epochs the
DNNs trained with backpropagation alone achieves the same classification error as
the pre-trained DNNs. From Fig. 6.16 it can be concluded that it is vital to detect the
minimum classification test error in order to fully utilize the power of pre-training.
Identifying such minima and stopping the training is known as early stopping.

Early stopping refers to the mechanism that stops the training before the max-
imum number of epochs have elapsed and is a mechanism, which aims at reducing
the amount of overfitting, hence improving the DNNs ability to generalize [Montavon
et al., 2012, p. 53].

To implement early stopping functionality a validation set is used to evaluate the
progress of training. The purpose of the validation set is to monitor the classification
accuracy on a data set which is not part of the training set. The validation set is
constructed such that the error on the validation set is assumed to be similar to the
error achieved if the test set was used. To fulfill this assumption the validation set
and the test set must be of similar size and variety of data. During training the error
on the validation set is repeatedly evaluated and when the performance has peaked
the training is stopped and the system can be evaluated on the test set.

Since the validation error is not a monotonically decreasing function of epochs,
early stopping is implemented in terms of a lookahead variable. This implies that
if the validation error has not decreased for a certain number of epochs, defined by
the lookahead variable, the training is stopped. The size of the lookahead variable
enables the early stopping functionality to be resilient against local minima within
the number of lookahead epochs. During each epoch the validation error is evaluated
and the DNN weights and biases are stored if the validation error is lower than it was
at the preceding epoch. In this way the parameters corresponding to the minimum

96 Chapter 6. Speech Enhancement Using Deep Neural Networks

Epochs
0 50 100 150 200 250 300 350 400 450 500

M
is

cl
as

si
fie

d
[%

]

6

8

10

12

14

16

18

20

22
Classification error for 2 subband DNNs

No Pre-training sb 10
Pre-training sb 10
No Pre-training sb 20
Pre-training sb 20

Epochs
0 50 100 150 200 250 300 350 400 450 500

M
is

cl
as

si
fie

d
[%

]

10

11

12

13

14

15

16

17

18

19
Average classification error for 24 subband DNNs

No Pre-training
Pre-training

Figure 6.16: These plots show how the test error is distributed as function of epochs. In the
top figure two DNNs have been trained both with and without pre-training and it is clear that the
distribution of the test error between the two DNNs are very different. However, the pre-trained
DNNs achieve the lowest classification error. On the bottom figure an average is made across 24
DNNs trained with both pre-training and without pre-training and it is seen that the pre-trained
DNNs achieves the lowest average classification error after 35 epochs. Achieving such a performance
in practice require the training to be stopped prematurely, and therefore early stopping has been
implemented.

6.4. Early Stopping 97

validation error is always the one being stored.
In Fig. 6.17 the same simulation as the one presented in Fig. 6.16 has been run,

but this time, with early stopping implemented. The lookahead variable was set to
30 epochs, which means that the training was terminated for a particular DNN if the
validation error has not decreased for 30 epochs. Figure 6.17 shows the classification
test error for all subband DNNs without pre-training in the top figure, all subband
DNNs with pre-training in the figure in the middle and an average across subband
DNNs in the bottom figure. The blue line in the bottom figure is the average classi-
fication test error for 24 DNNs trained with backpropagation alone and the red line
is the average classification test error for 24 pre-trained DNNs. The green circles on
the different plots indicate the epoch for which the validation error was the smallest.
This also mean that training of a given DNN is stopped 30 epochs after a green circle.
Since the different subband DNNs are trained for different number of epochs the blue
and red lines in Fig. 6.17 become more and more "noisy". During the first 40 epochs
the average is made across approximately 24 subband DNNs but after 40 epochs the
majority of the DNNs have been terminated due to early stopping. This implies that
the average is made using a small number of subband DNNs, hence producing the
noisy plots.

From Fig. 6.17 it is seen that the DNNs trained with pre-training have a lower
average classification test error as well as the shortest training time since the majority
of the DNNs are terminated before 50 epochs have elapsed. Some of the subband
DNNs trained purely with backpropagation have not even reached its minimum after
100 epochs. The average classification performance as well as the training time for
the four different simulation settings used in Fig. 6.16 and Fig. 6.17 are presented in
Tab. 6.3

Settings Results
Pre-training Early Stopping (lookahead) Classification Accuracy Training Time

No No 87.64 % 31.8 Hours
Yes No 88.27 % 34.7 Hours
No Yes (30 Epochs) 88.62 % 13.7 Hours
Yes Yes (30 Epochs) 89.17 % 6.7 Hours
Yes Yes (50 Epochs) 89.18 % 9.4 Hours

Table 6.3: Results from five different simulations where early stopping was investigated. It is seen
that early stopping improves the classification performance of the speech enhancement system for
both pre-trained and non pre-trained DNNs. It is also seen that the training time is reduced consid-
erably using early stopping but it is a trade off between training time and classification performance

From Tab. 6.3 it is seen that early stopping improves both classification accuracy
and training time regardless of the use of pre-training. However, the largest overall
performance gain is achieved when both pre-training and early stopping is applied
where a classification accuracy increase of 0.9 % is achieved together with a decrease
of training time of 28 hours or approximately 80 %. An additional simulation was
made where the lookahead variable was changed from 30 to 50 in order to investi-

98 Chapter 6. Speech Enhancement Using Deep Neural Networks

Epochs
50 100 150 200 250 300

M

is
cl

as
si

fie
d

5

10

15

20

25

30
Classification Error for 24 non pre-trained subband DNNs

Early Stopping
Median Early Stopping

Epochs
20 40 60 80 100 120 140

M

is
cl

as
si

fie
d

5

10

15

20

25

30
Classification Error for 24 pre-trained subband DNNs

Early Stopping
Median Early Stopping

Epochs
0 50 100 150 200 250 300

M
is

cl
as

si
fie

d
[%

]

10

11

12

13

14

15

16

17

18

19
Average classification error for 24 subband DNNs

No Pre-training
Pre-train
Early Stoping

Figure 6.17: Three plots showing the effect of early stopping on non pre-trained and pre-trained
DNNs. The top figure shows 24 non pre-trained DNNs and the figure in the middle shows the same
DNNs but with pre-training applied. It is seen that the median of the epochs at which the DNN
training is terminated is several epochs lower for the pre-trained DNNs compared to the non pre-
trained DNNs. This can also be seen from the bottom figure which shows the average classification
performance for both pre-trained and non pre-trained DNNs. From the figures it is clear that both
the classification error and training time is reduced using early stopping.

6.5. Algorithmic Analysis 99

gate if a performance gain could be achieved. It can be seen that the classification
accuracy is increased by 0.01 % and the training time is increased to 9.4 hours or
approximately 40 %. From this it can be concluded that setting the size of the looka-
head variable is a trade off between classification accuracy and training time. Setting
the lookahead variable to a high number can potentially lead to a better performance,
but it definitely leads to a larger training time.

From Figs. 6.16, 6.17 and Tab. 6.3 it is clear that early stopping both improves
the classification accuracy as well as reducing the training time. It is also seen that
by applying early stopping the power of pre-training can be effectively utilized.

In [Healy et al., 2013] nothing was mentioned about how the DNNs were trained
and from the above results and argumentation it is hard to believe that the DNNs
were trained equally, i.e., all subband DNNs were trained for the same number of
epochs. However, since no information about the training is available it has been
decided to perform early stopping on all simulations reported in the subsequent
chapter.

6.5 Algorithmic Analysis
This section describes some of the aspects of the speech enhancement algorithm,
which are relevant if the system is to be implemented on dedicated hardware. Some
of the major blocks that need to be implemented if the speech enhancement algorithm
shall function in a real-life scenario are illustrated by the speech enhancement chain
in Fig. 6.18.

Analog to
Digital

Conversion

Time-
Frequency
Transform

Framing
Acoustic
Feature

Extraction
DNN 1

Posterior
Mask

Feature
Extraction

DNN 2
Speech

Synthesis

Digital to
Analog

Conversion

/K /K /K

/K

/K /K

Figure 6.18: This figure presents a speech enhancement chain which is a block diagram covering
the major blocks needed if the speech enhancement system presented in Fig. 6.1 is to be implemented
on dedicated hardware.

From Fig. 6.18 it is seen that the first thing carried out is an analog to digital
conversion of the signal. Then a T-F transform is performed followed by a framing
procedure. When enough samples are recorded to form a frame, i.e., 20 ms, it can be
transformed into features and the frame can be classified as being either speech or
noise dominated by a DNN as illustrated by the DNN 1 block. When the classification

100 Chapter 6. Speech Enhancement Using Deep Neural Networks

is performed by the first K subband DNNs, new features are computed based on
probabilities from previous classified frames, hence forming a posterior mask feature
vector. The posterior mask feature vector is then used to compute a more accurate
speech domination probability using a second set of K subband DNNs, illustrated by
the DNN 2 block. This probability is used to synthesize the current frame before the
synthesized and enhanced speech signal is converted back into the analog domain by
a digital to analog converter.

All the operations just described introduces latency and use memory. The follow-
ing sections will describe some of the aspects to be aware of regarding algorithmic
delay, computational and memory complexity as well as inherent parallelism. Infor-
mation that is needed if a hardware architecture is to be designed for running the
speech enhancement algorithm in real-time.

6.5.1 Algorithmic Delay

This section describes the algorithmic delay which is meant as the time delay that
is intrinsic to the algorithm independent on the processing time. This means that
algorithmic delay is hardware independent and is the minimum delay that can be
achieved without changing the algorithm. In the speech enhancement chain three
stages contribute to the algorithmic delay: The T-F transform, the framing and the
posterior mask feature extraction. The T-F transform is based on a gammatone
filter bank, which consists of bandpass FIR filters having non-linear phase, hence
a non-constant group delay [Wang and Brown, 2006, p. 16]. Due to the group
delay the input signal will be delayed and due to the non-linear group delay, phase
distortion will occur. By analyzing the impulse responses of the different filters the
largest group delay was found to be approximately 600 samples, which is equivalent
to 3.75 ms at a 16 kHz sampling frequency. This means that the T-F transform itself
introduces up to 3.75 ms of delay. A phase-compensated gammatone filter bank
exists, which compensate for the difference in group delay between the different
filters [Wang and Brown, 2006, p. 17]. This filter bank does not remove the group
delay but it reduces the phase distortion across frequencies, something which has
been shown to be audible already at a few milliseconds [Blauert and Laws, 1978].

The framing of the T-F transformed input signal is another source of intrinsic
delay. Since a frame consists of 320 samples, 320 samples are needed before it can
be processed by the acoustic feature extraction block as shown by Fig. 6.18. Due to
the overlap of 10 ms, the effective delay will be 10 ms between consecutive frames.
This means that no matter how fast the hardware can sample and process the signal
a 10 ms delay is introduced due to the framing process. The only way to reduce this
delay is to reduce the size of the frames and/or the overlap.

The last source of intrinsic delay is the posterior mask feature extraction. The
posterior mask features are based on a window of probabilities using the probabil-
ities of frames two frames into the future. This means that in order to construct
the posterior mask feature vector a delay of two frames, i.e., 30 ms is introduced.
Combined with the delay of the 10 ms of the framing and the few ms of group delay

6.5. Algorithmic Analysis 101

the total intrinsic delay of the speech enhancement chain is between 40 and 43.75
ms. Studies has shown that delays longer than 10 to 15 ms. in hearing aids are
perceived disturbing so an intrinsic delay of approximately 40 ms. in the presented
speech enhancement algorithm might be too long to be applicable in a hearing aid
[Kates and Arehart, 2005].

6.5.2 Computational Complexity

This section describes some aspects of the computational complexity of the speech
enhancement chain. The computational complexity is highly dependent on the imple-
mentation of the individual sub algorithms which are present in the speech enhance-
ment chain. Operations such as convolution, DFTs and DCT can, if implemented
using the FFT and the Fast Cosine Transform (FCT) algorithms, be implemented
with a O(n logn) complexity opposed to the original O(n2). As mentioned, the
T-F transform in Fig. 6.18 consists of a gammatone filter bank, which is based on
bandpass FIR filters. Such filters can be implemented using multiplication in the fre-
quency domain instead of convolution in the time domain and potentially decrease
the computational complexity of the filter bank.

The DFT and DCT are both used in the acoustic feature extraction step and
they should both be implemented using the fast methods in order to decrease the
computational complexity.

The computational complexity of the DNN is linear, i.e., O(n) in the number
of hidden units and hidden layers and with respect to the dimension of the input
vector. The computational complexity of the synthesis stage is similarly linear. From
the above argumentation the computational complexity of the speech enhancement
chain is O(n logn) regarding the number of samples per frame and O(n) regarding
the number of frequency bands.

Another way to quantify the computational complexity of the speech enhance-
ment chain would be using the measure of Floating-point Operations Per Second
(FLOPS). The FLOPS measure represents the number of mathematical operations,
using a floating point number representation, per second required by a given al-
gorithm. The actual number of FLOPS of an algorithm is directly related to the
implementation and is, among other things, influenced by the order of operations
such as performing a sum operation before multiplication instead of multiplying be-
fore summing. Since the FLOPS measure is so dependent on the implementation and
since the implementation of the speech enhancement algorithm shown in Fig. 6.1 is
designed for off-line computing a FLOPS count will not be computed since a realistic
FLOPS count will require a redesign of the implementation for real-time use, which
is beyond the scope of this project.

To give an indication on how computational heavy the speech enhancement algo-
rithm is, a 2.5 s noisy speech sequence has been processed by the speech enhancement
algorithm. The current MATLAB implementation of the algorithm uses 64 frequency
channels, i.e., 64 subband DNNs and the implementation is purely sequential. The
noisy speech sequence consists of 40032 samples and it takes approximately 6.5 sec-

102 Chapter 6. Speech Enhancement Using Deep Neural Networks

onds to process the speech sequence on a standard laptop featuring a 2.7 GHz Intel
core i7 4800MQ Central Processing Unit (CPU). The feature extraction itself took
4.85 s or equivalently 76 ms per subband DNN, which is approximately 75% of the
total execution time. These numbers might reflect the O(n logn) complexity of the
T-F transformation and the feature extraction stage opposed to the O(n) complexity
of the DNN classification stages. These execution times are also comparable to the
once reported in [Healy et al., 2013] where a execution time of 123 ms per subband
DNN is reported whereas 107 ms is spent on the feature extraction. These results
were based on a 3 s speech sequence using a 2.8 GHz Xeon CPU.

6.5.3 Inherent Parallelism

Even though the computational complexity of the speech enhancement chain, as il-
lustrated in Fig. 6.18, is not precisely described the execution time can be reduced if
multi core, Single Instruction Multiple Data (SIMD) or Multiple Instruction Multiple
Data (MIMD) architectures are utilized opposed to single core and Single Instruc-
tion Single Data (SISD) architectures. The speech enhancement chain possess some
inherent parallelism and the most straight forward way to utilize this is by running
all K subband DNNs in parallel on different processor cores. Running the subband
DNNs in parallel a speedup of almost a factor of K can be achieved.

Within each subband DNN, data are propagated forward following the structure
of Eq. (4.4). Equation (4.4) can be implemented in parallel using a SIMD architec-
ture since all inputs are multiplied independently with a weight for each hidden unit.
This potentially gives a speedup of a factor of the number of input units times the
size of the first hidden layer. When the output of the first hidden layer is computed,
the second hidden layer and subsequent layers can be computed in a similar and
parallel fashion leading to even larger speedups. This can of course be achieved for
both DNN 1 and DNN 2 in Fig. 6.18.

In the current implementation, DNN 1 has 85 input units with 200 hidden units.
This means that each input is multiplied with a weight for each of the 200 units
and all these computations can be done in parallel leading to a speedup in the first
layer of 85 × 200 = 17, 000 times compared to a purely sequential implementation.
Achieving this speedup in an actual implementation is not possible since a severe
memory overhead must be expected when this many parallel processing units use the
same data. However, the speedups described in this section indicate how important
the hardware architecture is regarding an efficient real-time implementation of the
speech enhancement algorithm.

Especially in small embedded systems, such as hearing aids, where low power
consumption and real time performance are critical, new strategies might be used
and it might be beneficial to leave the traditional Von Neumann architecture and
look into the emerging field of brain inspired silicon chips, where neural networks
are hardwired in silicon [IBM Research, 2014b] [Cognimem, 2014]. These chips have
the benefit of being highly applicable to DNN applications utilizing a high degree
of parallelism while having a power consumption orders of magnitude lower than

6.5. Algorithmic Analysis 103

traditional Von Neumann inspired chips [IBM Research, 2014a].

6.5.4 Memory Complexity

The memory complexity of the speech enhancement chain is also highly dependent on
a given implementation since the amount of memory which can be shared among the
processing units depends on how the scheduling is designed, which again is highly de-
pendent on the hardware architecture. The memory analysis presented in this section
is based on the current implementation and is related to the number representation,
the sampling frequency, the number of frequency bands, the length of the gamma-
tone filters and the size of the DNNs. The analysis is not complete and the memory
estimates presented cover only the parts of the algorithm which are considered to be
the most memory demanding. Furthermore, it is assumed that the different subband
DNNs are implemented in parallel, which limit the amount of memory that can be
shared.

The number representation used for all simulations presented in this thesis is the
standard "double" in MATLAB, which is based on the IEEE 754 B64 floating point
representation. A single variable represented using this number representation takes
up 8 bytes of memory.

The individual gammatone filters used in the current implementation are 2048
samples long and if 64 frequency channels are used for the T-F transform, approx-
imately one MB (64 × 2048 × 8 = 1, 048, 576) is needed solely to store the impulse
responses required to perform the T-F transformation. To this, memory to store the
samples to be transformed should be added. Depending on the level of parallelism
utilized this could require up to an additional megabyte of memory.

The framing operation works on 20 ms frames which is 320 samples when a
sampling frequency of 16 kHz is used. For the 64 frequency channels this require
64 × 320 = 163, 840 bytes in order to store the 64 frames produced by the T-F
transformation.

The acoustic feature extraction block computes the MFCC, AMS and RASTA-PLP
features based on a single frame. Since the computation of each of the three features
require different arithmetic operations, temporary variables may be needed to store
temporary results. This could potentially require an additional 64×2×3×320×8 =
983, 040 bytes if each of the three feature computations require data memory and
temporary memory.

The DNNs are by far the most memory consuming part of the speech enhancement
chain. In the configuration used in Chapter 7, 64 subband DNNs are used having
three layers each. In the first classification stage (DNN 1 in Fig. 6.18) the input
vector has dimension 85. In the second classification stage, (DNN 2 in Fig. 6.18)
the dimension of the input vector varies from 45 to 85 due to the border conditions
of the posterior mask as described in Section 6.1.4. Each of the two hidden layers
have 200 units and the output layer has 2 units. In the first classification stage,
approximately 30 MB (64× (86×200 + 201×200 + 201×2)×8 = 29, 594, 624 bytes)
is needed to store the weights and biases needed to perform a forward pass in the

104 Chapter 6. Speech Enhancement Using Deep Neural Networks

DNNs. These 30 MB is excluding the memory needed to store the temporary results
from each hidden unit. The memory required by the second classification stage is
approximately 27 MB due to some of the input vectors having a dimension less than
85.

The posterior mask feature extraction generation requires memory to store the
past and future mask probabilities, which adds up to approximately 35 kB.

The speech synthesis process only requires a copy of a frame from each frequency
channel as well as the result from the subband DNNs which is approximately equal
to 164 kB.

From the above very rough estimates on the memory consumption of the speech
enhancement chain a total of approximately 60 MB is needed for processing a single
frame of noisy speech. The majority of the memory is used for storing weights
and biases for the subband DNNs. One way to reduce this is to consider a different
number representation for the weights and biases. It could be so that the performance
decrease due to lost numerical precision is negligible compared to the decrease in
memory complexity by using for example a fixed point number representation [Gupta
et al., 2015]. Another way to reduce the memory requirement is to share memory
resources among computational units by performing more computations in sequence
compared to parallel. Potentially, this increases the execution time so a trade off
between execution time and memory complexity may be made.

Chapter 7

Test Results & Discussion

This chapter presents the evaluation tests of the speech enhancement system pre-
sented in Chapter 6 and shows the speech enhancement capability for different train-
ing and test conditions. The reasoning behind the different training and test condi-
tions are based on the objectives described in Chapter 1.

Table 7.1 presents an overview of the tests, which has been conducted. In the
following the system presented in Chapter 6 will be referred to as the Implementation
Under Test (IUT) and a total of 16 IUTs have been tested based on the settings in
Tab. 7.1. This means that the 16 IUTs differ in the way their subband DNNs have
been trained. All results, i.e., figures, tables and wav files for the clean, noisy and
processed signals can be found on the appendix DVDs and a detailed list of the
parameters used for the system, can be found in appendix E.

As seen from Tab. 7.1 a total of 16 tests have been conducted. The tests have been
designed such that their results can be used to conclude on the objectives defined in
Chapter 1. The 16 tests can be divided into two groups. A group of 8 tests (S1-1/2
- S4-1/2) where looped noise is used and a group of 8 tests (S5-1/2 - S8-1/2) where
non-looped noise is used. Each of these two groups can similar be divided into two.
A group where generative pre-training have been utilized and a group where only
discriminative training have been used. All test IDs ending with a -1 indicate that
pre-training has not been utilized and all test IDs ending with a -2 indicate that
pre-training has been utilized.

The noise types, SNRs and LC have been chosen based on the ones used in [Healy
et al., 2013] which are the following: Babble noise at 0 dB SNR and -5 dB SNR with
a LC of -6 dB and -10 dB, respectively. SSN at -2 dB SNR and -5 dB SNR with a
LC of -6 dB and -10 dB, respectively. The speech corpus has also been chosen based
on [Healy et al., 2013], and is the HINT corpus available from [Wang, 2013]. The
babble noise and SSN sequences used for the tests with looped noise are also the
ones used in [Healy et al., 2013] which are available from [Wang, 2013].

In Section 7.2, results are presented which are related to objective 1, 2 and 3. In
Section 7.3 results are presented which are related to objective 4 and 5. In Section 7.4
suggestions on how to improve the performance of the speech enhancement system
will be presented.

105

106 Chapter 7. Test Results & Discussion

Test ID

S1-1

S1-2

S2-1

S2-2

S3-1

S3-2

S4-1

S4-2

S5-1

S5-2

S6-1

S6-2

S7-1

S7-2

S8-1

S8-2

Pre-training Corpus Noise Type SNR LC
Training Set

Size

Validation

Set Size
Test Set Size

Layers

Units/

layer

Batch

size

No HINT Babble
(looped) -5 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Yes HINT Babble
(looped) -5 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

No HINT Babble
(looped) 0 dB -6 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Yes HINT Babble
(looped) 0 dB -6 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

No HINT SSN
(looped) -5 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Yes HINT SSN
(looped) -5 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

No HINT SSN
(looped) -2 dB -6 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Yes HINT SSN
(looped) -2 dB -6 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

No HINT Babble
(non-looped) -5 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Yes HINT Babble
(non-looped) -5 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

No HINT Babble
(non-looped) 0 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Yes HINT Babble
(non-looped) 0 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

No HINT SSN
(non-looped) -5 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Yes HINT SSN
(non-looped) -5 dB -10 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

No HINT SSN
(non-looped) -2 dB -6 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Yes HINT SSN
(non-looped) -2 dB -6 dB 100 Sentences

x 6 80 Sentences 80 Sentences 2 200 512

Table 7.1: This table presents the 16 tests which have been conducted to evaluate the performance
of the speech enhancement system presented in Chapter 6.

7.1 Visual Evaluation
Before the results are presented in terms of HIT-FA, STOI and PESQ some figures
are presented to visualize noisy speech in terms of spectrograms before and after it
has been processed by the IUT. The speech material used for this particular test is
the fifth HINT sentence from list 16; The dog jumped on the chair [Nilsson et al.,
1994]. The HINT sentence has been processed by the IUT using settings from test
S1-2 and test S3-2 meaning that looped babble noise and looped SSN have been
used with a SNR of -5 dB. The clean and noisy signals are presented in Fig. 7.1.
The processed HINT sentences, with babble noise and SSN, is presented in Figs. 7.2
and 7.3, respectively.

In Fig. 7.1a the time domain representation of the HINT sentence is presented
and in Fig. 7.1b the spectrogram representation is presented. In Fig. 7.1c the time
domain representation of the clean HINT sentence is presented with -5 dB SNR

7.1. Visual Evaluation 107

Time (s)
0 0.5 1 1.5 2 2.5

A
m

pl
itu

de

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Clean speech signal

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(b) Spectrogram of clean speech signal

Time (s)
0 0.5 1 1.5 2 2.5

A
m

pl
itu

de

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) Noisy speech signal
(-5 dB SNR babble)

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(d) Spectrogram of noisy speech signal (-5 dB
SNR babble)

Time (s)
0 0.5 1 1.5 2 2.5

A
m

pl
itu

de

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(e) Noisy speech signal
(-5 dB SNR SSN)

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(f) Spectrogram of noisy speech signal (-5 dB
SNR SSN)

Figure 7.1: This figure presents a time domain representation and a spectrogram representation
of a clean speech signal. Also two noisy versions of the signal is presented. One version with babble
noise and one version with SSN. The speech material is the HINT sentence The dog jumped on the
chair.

108 Chapter 7. Test Results & Discussion

Frames (20 ms)
50 100 150 200

F
re

qu
en

cy
 (

kH
z)

0.1

0.27

0.52

0.89

1.46

2.31

3.59

5.53

8

(a) Ideal binary mask

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(b) Noisy speech signal from Fig. 7.1d pro-
cessed by the IBM

Frames (20 ms)
50 100 150 200

F
re

qu
en

cy
 (

kH
z)

0.1

0.27

0.52

0.89

1.46

2.31

3.59

5.53

8

(c) Estimated ideal binary mask

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(d) Noisy speech signal from Fig. 7.1d pro-
cessed by the estimated IBM

Frames (20 ms)
50 100 150 200

F
re

qu
en

cy
 (

kH
z)

0.1

0.27

0.52

0.89

1.46

2.31

3.59

5.53

8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) Soft Mask

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(f) Noisy speech signal from Fig. 7.1d pro-
cessed by the soft mask

Figure 7.2: This figure presents the IBM, estimated IBM and the soft mask based on the HINT
sentence The dog jumped on the chair corrupted with babble noise at -5 dB SNR (Fig. 7.1d). Also
the corresponding spectrograms of the, IUT S1-2, processed version of the signal is presented.

7.1. Visual Evaluation 109

Frames (20 ms)
50 100 150 200

F
re

qu
en

cy
 (

kH
z)

0.1

0.27

0.52

0.89

1.46

2.31

3.59

5.53

8

(a) Ideal binary mask

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(b) Noisy speech signal from Fig. 7.1f pro-
cessed by the IBM

Frames (20 ms)
50 100 150 200

F
re

qu
en

cy
 (

kH
z)

0.1

0.27

0.52

0.89

1.46

2.31

3.59

5.53

8

(c) Estimated ideal binary mask

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(d) Noisy speech signal from Fig. 7.1f pro-
cessed by the estimated IBM

Frames (20 ms)
50 100 150 200

F
re

qu
en

cy
 (

kH
z)

0.1

0.27

0.52

0.89

1.46

2.31

3.59

5.53

8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Soft Mask

Time (s)
0.5 1 1.5 2

F
re

qu
en

cy
 (

kH
z)

-0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(f) Noisy speech signal from Fig. 7.1f pro-
cessed by the soft mask

Figure 7.3: This figure presents the IBM, estimated IBM and the soft mask based on the HINT
sentence The dog jumped on the chair corrupted with SSN at -5 dB SNR (Fig. 7.1f). Also the
corresponding spectrograms of the, IUT S3-2, processed version of the signal is presented.

110 Chapter 7. Test Results & Discussion

babble noise added. In Fig. 7.1d the spectrogram representation of the noisy HINT
sentence is presented. In Figs. 7.1e and 7.1f the same HINT sentence is presented
but with SSN instead of babble noise.

By visual inspection of Figs. 7.1d and 7.1f it is clear to see the difference between
babble noise which looks similar to speech and SSN which looks more similar to
white noise.

In the next section the results from test S1-S8 are presented in Tab. 7.2 and
Tab. 7.3 and results labeled (NOISY) refers to scores computed based on signals
such as the ones presented in Figs. 7.1d and 7.1f. Results with the label (Delta ...)
is referring to the improvement of a given score with reference to the corresponding
(NOISY) score.

In Fig. 7.2 spectrograms of processed versions of the noisy signal from Fig. 7.1d
are presented and similar in Fig. 7.3 spectrograms of processed versions of the noisy
signal from Fig. 7.1f are presented. In Fig. 7.2a and Fig. 7.3a the IBM is presented
for each of the two noisy speech signals. The IBM have been constructed using a LC
of -10 dB.

In Fig. 7.2b and Fig. 7.3b a spectrogram of the IBM processed noisy speech signal
is presented for the babble noise distorted signal and the SSN distorted signal respec-
tively. It is seen that for both the babble noise distorted signal and SSN distorted
signal, the noise have been removed and the majority of the speech structures from
the clean speech signal in Fig. 7.1b is preserved.

The IBM, as the name implies, is the ideal scenario and is what the DNNs have
been trained to estimate. This means that the upper bound on the classification
performance of the DNNs is the IBM and the distortion introduced by the IBM
cannot be resolved by the DNNs. In Tab. 7.2 and Tab. 7.3, in the next section, the
label (IBM) indicates that signals have been processed by the IBM and is based on
signals such as the ones presented in Fig. 7.2b and Fig. 7.3b.

In Fig. 7.2c and Fig. 7.3c the estimated IBM is presented and the corresponding
processed signals, using this estimate, is presented in Fig. 7.2d and Fig. 7.3d respec-
tively. It is seen that the IBMs and the estimated IBMs share a lot of similarities
and so do the spectrograms of the IBM processed signals and the spectrogram of
the estimated IBM processed signals. In Tab. 7.2 and Tab. 7.3, in the next section,
labels with (IBM ESTIMATE) refer to results based on signals processed with the
estimated IBM such as Fig. 7.2d and Fig. 7.3d. The labels Correctly Classified, HIT,
FA and HIT-FA have been computed based on an IBM and an estimated IBM such
as the ones presented in Fig. 7.2 and Fig. 7.3

In Fig. 7.2e and Fig. 7.3e the soft mask is presented, which is the unprocessed
output of the DNNs. The soft mask is the data used to perform the binary classifi-
cation used in the construction of the estimated IBM. The corresponding processed
signals are presented in Fig. 7.2f and Fig. 7.3f respectively. From the soft masks it
is obvious that not all parts of the estimated IBMs have been constructed with the
same confidence, meaning that some T-F units have been preserved with only a small
amount of evidence and similar some T-F units have been discarded.

7.2. Effects of Pre-training, Looped Noise & Soft Mask 111

The hypothesis behind using the soft mask is that since the DNNs are not equally
confidence in all its decisions, better results might be achieved by utilizing this uncer-
tainty using a soft mask instead of a binary mask. From Fig. 7.2f and Fig. 7.3f it is
not obvious to see that there is a significant difference between the two processed sig-
nals. However, as presented in the next section, results labeled with (SOFT MASK)
always achieves higher PESQ and STOI scores compared to the scores achieved by
the estimated IBM.

From Figs. 7.2e and 7.3e it is also observed that the SSN seem to be harder to
discriminate since the uncertainty is considerably larger in Fig. 7.3e compared to
Fig. 7.2e where babble noise was use. This is not in line with intuition and might
be explained by the fact that the babble noise sequence is 5s compared to the SSN
sequence which is 10s. This means that the DNNs only have to learn 5s of noise in
the case of babble noise, which seem to be an easier job compared to learning 10s
of SSN, even though the SSN is an easier noise type. As seen from the results from
Tab. 7.2 and Tab. 7.3, presented in the next section, SSN seem to be an easier noise
type when tested in more comparable scenarios using non-looped noise.

7.2 Effects of Pre-training, Looped Noise & Soft Mask

This section presents the results from test S1-1/2 - S8-1/2 where the IUT has been
tested using the same settings as it was trained with, i.e., the same noise type and
SNRs. These results are related to objective 1, 2 and 3 from the introduction in
Chapter 1.

To investigate how the IUT performs compared to the system presented in [Healy
et al., 2013] the results from [Healy et al., 2013] will also be presented, which are
available from [Wang, 2013].

The results are divided into two tables. All results related to tests where babble
noise is used, is presented in Tab. 7.2 and all results related to tests where SSN
is used, is presented in Tab. 7.3. The results are presented in terms of classifier
accuracy, HIT-FA, STOI and PESQ. All scores are computed as an average over the
80 HINT sentences in the test set. Early stopping with a lookahead of 50 epochs has
been used in these tests.

In Tab. 7.2 the results from test S1-1/2, S2-1/2, S5-1/2 and S6-1/2 are presented
and in Tab. 7.3 the results from test S3-1/2, S4-1/2, S7-1/2 and S7-1/2 are presented.
The test IDDW is short for DeLiangWang and is representing the results from [Healy
et al., 2013] [Wang, 2013].

It is seen from Tab. 7.2 that both S1-1/2 and S2-1/2 have better classification
accuracy and lower FA than reported by [Healy et al., 2013] but a higher HIT and a
slightly lower STOI (Delta Est. IBM). S1-1/2 and S2-1 achieves a HIT-FA slightly
lower than reported by [Healy et al., 2013] and S2-2 achieves a HIT-FA slightly
higher.

From Tab. 7.3 it is seen that S3-1/2 for all performance measures except FA,
performs significantly worse than the system from [Healy et al., 2013]. S4-1/2 also

112 Chapter 7. Test Results & Discussion

HINT - Babble

Looped Noise

-5 dB

S1-1

Corpus - Noise Type:

Noise Realizations:

SNR:

Test ID: S1-2 DW

0 dB

S2-1 S2-2 DW

Non-looped Noise

-5 dB

S5-1 S5-2

0 dB

S6-1 S6-2

91.5 % 91.8 % 90.6 % 92.0 % 92.2 % 90.4 % 84.3 % 84.3 % 85.8 % 85.9 %

82.9 % 83.5 % 89.9 % 85.1 % 85.8 % 89.6 % 67.7 % 67.3 % 73.3 % 73.7 %

4.83 % 4.70 % 9.13 % 4.81 % 4.90 % 9.08 % 7.88 % 7.78 % 7.82 % 7.86 %

78.1 % 78.8 % 80.9 % 80.3 % 80.9 % 80.4 % 59.8 % 59.6 % 65.5 % 65.8 %

0.834 0.834 - 0.884 0.884 - 0.849 0.849 0.895 0.895

0.738 0.748 0.756 0.818 0.828 0.827 0.591 0.592 0.714 0.722

0.755 0.762 - 0.834 0.837 - 0.659 0.653 0.765 0.768

0.537 0.537 0.531 0.666 0.666 0.661 0.545 0.545 0.673 0.673

0.201 0.211 0.224 0.153 0.162 0.167 0.046 0.047 0.042 0.049

0.218 0.225 - 0.168 0.171 - 0.115 0.108 0.092 0.096

1.140 1.140 - 1.222 1.222 - 1.168 1.168 1.266 1.266

1.072 1.074 - 1.114 1.128 - 1.042 1.042 1.067 1.068

1.132 1.129 - 1.213 1.194 - 1.109 1.104 1.186 1.196

1.056 1.056 - 1.077 1.077 - 1.061 1.061 1.088 1.088

0.017 0.018 - 0.037 0.051 - -0.019 -0.019 -0.021 -0.020

0.076 0.073 - 0.136 0.118 - 0.048 0.043 0.098 0.108

Correctly Classified

HIT

FA

HIT-FA

STOI (IBM)

STOI (IBM ESTIMATE)

STOI (SOFT MASK)

STOI (NOISY)

STOI (Delta SOFT MASK)

PESQ (IBM)

PESQ (IBM ESTIMATE)

PESQ (SOFT MASK)

PESQ (NOISY)

PESQ (Delta Est. IBM)

PESQ (Delta SOFT MASK)

STOI (Delta Est. IBM)

DW = DeLiang Wang

Table 7.2: System evaluation results for IUTs S1-1/2, S2-1/2, S5-1/2 and S6-1/2 where both looped
and non-looped babble noise has been used

perform significantly worse than the system from [Healy et al., 2013] regarding HIT,
HIT-FA and STOI even though it has a higher classification accuracy.

The IUT used to produce the results in Tabs. 7.2 and 7.3 are the same. It is a
surprise that the performance of the IUTs are comparable to the results reported by
[Healy et al., 2013] only when babble noise is used and significantly worse when SSN
is used. Since SSN is a stationary noise type, it was considered as an easier noise
type compared to babble noise, since babble noise is non-stationary. However, such
reasoning might not be so trivial based on the results in Tab. 7.2 and Tab. 7.3.

The performance difference between the IUT and the system reported in [Healy
et al., 2013] is due to differences between the two systems, indicating that either
there is an error in the IUT or the system described in [Healy et al., 2013] is different

7.2. Effects of Pre-training, Looped Noise & Soft Mask 113

HINT – Speech Shaped Noise

Looped Noise

-5 dB

S3-1

Corpus - Noise Type:

Noise Realizations:

SNR:

Test ID: S3-2 DW

-2 dB

S4-1 S4-2 DW

Non-looped Noise

-5 dB

S7-1 S7-2

-2 dB

S8-1 S8-2

90.9 % 90.7 % 91.5 % 92.1 % 92.1 % 91.4 % 91.1 % 91.1 % 93.1 % 93.1 %

75.2 % 73.2 % 85.9 % 76.3 % 75.8 % 84.0 % 71.4 % 71.6 % 78.1 % 77.7 %

4.60 % 4.23 % 6.64 % 3.85 % 3.72 % 6.36 % 3.44 % 3.50 % 3.10 % 3.00 %

70.6 % 69.0 % 79.3 % 72.5 % 72.1 % 77.7 % 68.0 68.1 % 75.0 % 74.7 %

0.837 0.837 - 0.861 0.861 - 0.828 0.828 0.847 0.847

0.714 0.710 0.763 0.761 0.757 0.790 0.633 0.635 0.709 0.711

0.741 0.742 - 0.790 0.790 - 0.686 0.686 0.754 0.756

0.580 0.580 0.576 0.664 0.664 0.662 0.588 0.588 0.662 0.662

0.134 0.131 0.187 0.097 0.092 0.128 0.046 0.048 0.047 0.049

0.162 0.162 - 0.125 0.126 - 0.099 0.098 0.091 0.094

1.100 1.100 - 1.111 1.111 - 1.080 1.080 1.091 1.091

1.043 1.042 - 1.048 1.047 - 1.035 1.036 1.043 1.044

1.093 1.115 - 1.123 1.133 - 1.101 1.106 1.098 1.111

1.048 1.048 - 1.054 1.054 - 1.049 1.049 1.057 1.057

-0.005 -0.006 - -0.006 -0.007 - -0.015 -0.014 -0.014 -0.013

0.045 0.067 - 0.069 0.079 - 0.051 0.057 0.041 0.054

Correctly Classified

HIT

FA

HIT-FA

STOI (IBM)

STOI (IBM ESTIMATE)

STOI (SOFT MASK)

STOI (NOISY)

STOI (Delta SOFT MASK)

PESQ (IBM)

PESQ (IBM ESTIMATE)

PESQ (SOFT MASK)

PESQ (NOISY)

PESQ (Delta Est. IBM)

PESQ (Delta SOFT MASK)

STOI (Delta Est. IBM)

DW = DeLiang Wang

Table 7.3: System evaluation results for IUTs S3-1/2, S4-1/2, S7-1/2 and S8-1/2 where both looped
and non-looped SSN noise has been used

from the system that actually produced the results from [Wang, 2013].
Since errors never are intentional, the focus on explaining the performance dif-

ference between the IUT and the system from [Healy et al., 2013], will be on actual
known differences between the two systems.

7.2.1 Plausible Causes for Deviating Performance

This section presents some plausible causes which might explain the deviating per-
formance of IUTs S3-1/2 and S4-1/2 and the results reported in [Healy et al., 2013]
[Wang, 2013].

Several vital details needed to reconstruct the system in [Healy et al., 2013] are
unknown. These are, among other things, the number of epochs for pre-training, the

114 Chapter 7. Test Results & Discussion

number of epochs for backpropagation training as well as the learning parameters.
It is also unknown what kind of output units the output layer of the DNN consists
of and what variance has been used for the GBRBM. Furthermore it is unknown if
the features have been normalized to have unit variance and zero mean. All these
unknowns have a direct impact on the performance of the system and the settings
used for the IUT can be found in Appendix E.

For example in [Le et al., 2011a] it was found that different optimization methods
leads to different results. In the IUT non-linear Conjugate Gradient is used and in
[Healy et al., 2013] it is reported that gradient descent is used. However, in [Healy
et al., 2013] they refer to [Wang and Wang, 2013] regarding the training algorithm
in which Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) is used.
Since the optimization method used in [Healy et al., 2013] differs from the one used by
the IUT, it is difficult to directly compare the two systems, however, this contribution
to the deviating performance is considered as a minor one.

Another explanation of the deviating performance of the two systems might be
due to the way the noise is generated. In [Healy et al., 2013] it is reported that
the noise sequence is constructed randomly by selecting a starting point of the noise
sequence. A noise sequence as long as the corresponding HINT sentence is then
extracted starting from the randomly chosen starting point. It is not reported what
happens if the extracted noise sequence is shorter than the HINT sentence but since
the word "looped noise" is used, it is assumed by the authors, that the remaining
noise sequence is taken from the beginning of the noise sequence. However, in [Wang,
2013] it is reported that the noise sequence is split into 10 subsequences and a noise
sequence is then generated by randomly permuting these 10 subsequences. This
approach is different from the one reported in [Healy et al., 2013], even though they
in [Wang, 2013] directly refer to [Healy et al., 2013].

A comparison of the two approaches has not been investigated due to time lim-
itations, but it is disconcerting that the author of [Healy et al., 2013] report two
different methods without being explicit about what method has been used when.

As mentioned in Section 6.4, it was found hard to believe that the system in
[Healy et al., 2013] trained each subband DNN for the same amount of epochs, since
it has been found by the authors, that different subband DNNs peaked at different
epochs.

In [Narayanan and Wang, 2013] which is a paper about ASR using DNNs they
report that cross validation and early stopping has been used. They even refer to
[Wang and Wang, 2013] regarding the DNN based IBM estimation procedure, which
is similar to what they do in [Healy et al., 2013]. In [Narayanan and Wang, 2013],
similar to [Healy et al., 2013], information such as learning parameters and algorithm
is missing, information which are crucial if the results are to be reproduced. Since
[Narayanan and Wang, 2013], [Wang and Wang, 2013] and [Healy et al., 2013] share
the same senior author as well as referring to each other, it is natural to think that
the DNN used in the three papers share similarity and combined with the inadequate
amount of details in the papers, there might be some details which the authors of

7.2. Effects of Pre-training, Looped Noise & Soft Mask 115

this thesis are unaware of hence, preventing the system described in Chapter 6 to
perform as well as the system described in [Healy et al., 2013].

Another unknown parameter is the threshold for which the binary classification
has been performed. This parameter, defining at what level a T-F unit is classified as
either speech or noise dominated, is known to have a great impact on the performance
of a binary classifier [Fawcett, 2006]. The IUT uses 0.5 as the threshold. A way to
evaluate the performance of a binary classifier is to identify the Receiver Operating
Characteristics (ROC), which is a way to illustrate how the HIT rate of a binary
classifier relates to the FA rate, as function of the threshold for which a true positive,
i.e., a HIT is classified.

Receiver Operating Characteristic (ROC) Analysis

Since the results from Tabs. 7.2 and 7.3 show that the IUT generally achieves lower
HIT rates but also lower FA rates, compared to the results from [Healy et al., 2013]
it might be due to the classifiers from the two systems operate in different regions
of the ROC space [Fawcett, 2006]. To investigate this hypothesis the ROC curves
related to test S1-1 - S8-1 have been computed, based on the test set, and is depicted
in Fig. 7.4. With a similar approach, curves that represent HIT-FA as function of
threshold as well as STOI as function of threshold are depicted in Fig. 7.4.

Figures 7.4a, 7.4c and 7.4e are related to tests S1-1 to S4-1 and Figs 7.4a, 7.4d
and 7.4f are related to tests S5-1 to S8-1 and will be commented upon in Section 7.2.2.

As seen from Fig. 7.4a all four ROC curves related to S1-1 to S4-1 are located
primarily in the northwest quadrant of the ROC space, having relatively large HIT
rates compared to FA rates. The curves are also way above the diagonal line (gray),
which is the performance of a randomized classifier. It is also seen that S1-1 and
S2-2 performs the best, having the largest Area Under ROC curve (AUC), which
also correlate well to the results in Tabs. 7.2 and 7.3 [Fawcett, 2006].

From Fig. 7.4 it is seen that the IUT performance and especially HIT-FA, but
also to some extent STOI, are relatively sensitive to the value of the threshold and a
threshold of 0.5 is not optimal. Identifying the optimal threshold using the validation
set and then use different thresholds for different IUTs, might hereby improve overall
performance. The horizontal dashed lines on Fig. 7.4e and Fig. 7.4f are the STOI
scores when the soft mask is used, which is independent of the threshold since no
classification is performed when the soft mask is applied. It is hereby seen that the
soft mask outperforms the binary mask, regardless of the value of the threshold!

It is also seen that if the threshold is set to maximize HIT-FA, the HIT-FA rates
for S1-1, S2-1 and S4-1 is even higher than the HIT-FA rates reported in [Healy
et al., 2013]. Also an increase in STOI can be achieved by modifying the threshold.

Based on the results in Figs. 7.4a, 7.4c and 7.4e it can be concluded that the
performance of the IUT, when a binary mask is used, can be improved with respect
to HIT-FA and STOI by modifying the threshold. However, the optimal threshold
might depend on the global SNR hence, the global SNR needs to be known a priori
in order to choose such optimal threshold.

116 Chapter 7. Test Results & Discussion

False Alarm
0 20 40 60 80 100

H
IT

0

10

20

30

40

50

60

70

80

90

100

S1-1
S2-1
S3-1
S4-1

(a) ROC Curve for test S1-1 - S4-1

False Alarm
0 20 40 60 80 100

H
IT

0

10

20

30

40

50

60

70

80

90

100

S5-1
S6-1
S7-1
S8-1

(b) ROC Curve for test S5-1 - S8-1

Threshold
0 0.2 0.4 0.6 0.8 1

H
IT

-F
A

55

60

65

70

75

80

85

S1-1
S2-1
S3-1
S4-1

(c) HIT-FA vs. threshold for test S1-1 - S4-1

Threshold
0 0.2 0.4 0.6 0.8 1

H
IT

-F
A

40

45

50

55

60

65

70

75

80

85

S5-1
S6-1
S7-1
S8-1

(d) HIT-FA vs. threshold for test S5-1 - S8-1

Threshold
0 0.2 0.4 0.6 0.8 1

S
T

O
I D

el
ta

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

S1-1 Est. IBM Delta
S1-1 Soft Mask Delta
S2-1 Est. IBM Delta
S2-1 Soft Mask Delta
S3-1 Est. IBM Delta
S3-1 Soft Mask Delta
S4-1 Est. IBM Delta
S4-1 Soft Mask Delta

(e) STOI vs. threshold for test S1-1 - S4-1

Threshold
0 0.2 0.4 0.6 0.8 1

S
T

O
I D

el
ta

-0.1

-0.05

0

0.05

0.1

0.15

S5-1 Est. IBM Delta
S5-1 Soft Mask Delta
S6-1 Est. IBM Delta
S6-1 Soft Mask Delta
S7-1 Est. IBM Delta
S7-1 Soft Mask Delta
S8-1 Est. IBM Delta
S8-1 Soft Mask Delta

(f) STOI vs. threshold for test S5-1 - S8-1

Figure 7.4: ROC Curves for IUTs S1-1 to S8-1. It is seen that the performance of the IUTs,
especially relating to HIT-FA is highly dependent on the threshold used in the binary classification.
It is also seen that setting the threshold is more crucial when non-looped noise is used but regardless
of the noisy type and the threshold the soft mask achieves the best performance.

7.2. Effects of Pre-training, Looped Noise & Soft Mask 117

7.2.2 Discussion of Objective 1, 2 & 3

This section will, based on Tab. 7.2 and Tab. 7.3, discuss the results and relate them
to the objectives defined in Chapter 1.

Discussion of Objective 1

Regarding objective 1 it is seen that all tests with a -2 ID in Tab. 7.2 generally have
a slightly higher value of correctly classified compared with the tests having a -1 ID.
The tests with a -2 ID have been pre-trained whereas the tests with a -1 ID have
only been trained with backpropagation. From these results it could indicate that
pre-training has a beneficial effect when babble noise is used.

When looking at Tab. 7.3 a different pattern is seen, where pre-training in general
have a worse or equal performance compared to the tests where only backpropagation
training have been applied. This argues against that pre-training has an effect. In
[Maas et al., 2012], which is a paper from Andrew Ng who is a leading Deep Learning
scientist, it was reported that pre-training was not found beneficial for the current
application. Also, in [Deng et al., 2013], which is a paper from Geoffrey Hinton who
is also leading Deep Learning scientist, it was argued that the benefit of pre-training
was highly dependent on the amount of labeled training data and in the same time
required a lot of experience to implement in practice.

Based on these publications, the results presented in Tab. 7.2 and Tab. 7.3 might
not be a consequence of an erroneous IUT but merely a learning algorithm not prop-
erly tuned in combination with training data for which pre-training is not beneficial.

To support this argumentation a small test was conducted where the settings
of S7 was used. The difference were that the amount of training data used for
backpropagation training was reduced to 150 HINT sentences but still keeping the
600 HINT sentences for pre-training. The test was run with and without pre-training
and it was found that the test where pre-training was utilized 77% correctly classified
were achieved, whereas the test without pre-training only achieved 51%, which is a
significant difference. This test supports the argument in [Deng et al., 2013] claiming
that if enough labeled data is available, pre-training is not beneficial.

Another effect that may explain the difference in pre-training performance is the
amount of overfitting that may occur during pre-training, which may be data specific.
All DNNs were pre-trained for 100 epochs and it is likely to believe that different
DBNs starting to overfit at different epochs. However, measuring overfitting in DBNs
is not as simple as for DNNs but it may improve performance of the IUT if an early
stopping algorithm was implemented for the DBN training as well [Hinton, 2012].

It should also be mentioned that the DNNs used in the IUT is trained discrimi-
native using backpropagation based on the cross entropy error function. This means
that it is the classification error that is minimized during DNN training and not
STOI, HIT-FA or PESQ. It can hereby not be expected that DNN training can have
a positive effect on other measures than the classification accuracy. How the DNN
training relates to STOI, HIT-FA or PESQ is definitely interesting but is outside the

118 Chapter 7. Test Results & Discussion

scope of this thesis.
From the results in Tabs. 7.2 and 7.3 it can not be concluded that pre-training is

beneficial in for the current design and training setup. However, from the small test
just described as well as the observations reported in the literature, pre-training can
be beneficial and can improve the performance of DNNs, but utilizing the power of
pre-training is not a trivial task and requires fine-tuning of the training algorithm.

Discussion of Objective 2

Regarding objective 2, which was related to the impact of using looped noise, the
following can be observed from Tab. 7.2 and Tab. 7.3. When non-looped babble
noise is used, i.e. test ID S5-1/2 and S6-1/2, it is observed that the performance
generally decreases compared to the tests where looped noise have been used, which
are S1-1/2 and S2-1/2. This applies for both the number of correctly classified T-F
units as well as for HIT-FA, STOI and PESQ. This is also in line with the findings
in [May and Dau, 2014], even though a direct comparison cannot be made since a
different classifier, noise type and speech corpus were used. What is important to
notice from S5-1/2 and S6-1/2 is that according to the STOI scores, improvement in
intelligibility is still significant when non-looped noise is used.

Quite different is it when non-looped SSN is used as seen from tests S7-1/2 and
S8-1/2 in Tab. 7.3. Tests S7-1/2 achieve a higher classification accuracy than S3-
1/2 but a slightly lower HIT-FA. Tests S7-1/2 also achieve a higher classification
accuracy but also a higher HIT-FA than S4-1/2, which is counterintuitive and not
in line with the results reported in [May and Dau, 2014]. However, according to the
STOI improvement both S7-1/2 and S8-1/2 perform worse than S3-1/2 and S4-1/2

When visualizing the performance of the classifiers using the ROC curves, similar
patterns are observed. By computing the AUCs for S3-1, S4-1, S7-1 and S8-1 it is
verified that the AUC for S3-1 and S4-1 are approximately 1% lower than the AUCs
for S7-1 and S8-1. This is quite different from the AUCs for S1-1 and S2-1 relative
to the AUCs for S5-1 and S6-1, which are approximately 5% higher. However, by
observing Fig. 7.4e and Fig. 7.4f it is seen that the IUTs trained with non-looped
noise have a STOI score which is generally lower than the IUTs trained with looped
noise, which is more in line with what was expected.

To investigate the counterintuitive behaviour of S3-1, S4-1, S7-1 and S8-1 two
additional test have been performed. The motivation behind the two tests is to
exclude suspected errors in the code. The tests, S9 and S10, are based on the
settings of S3-1 and S7-1 but with reduced duration of noise sequences. Test S9 uses
the noise sequence from S3 but the duration is reduced to the length of a HINT
sentence such that the exact same noise sequence is used for all training and test
cases. S10 uses the same noise sequence as S7 and similarly to S9, the duration is
reduced to the length of a HINT sentence such that the exact same noise sequence
is used for all training and test cases. The goal of the tests is to verify that by using
a very short noise sequence, the performance should increase, regardless of the noise
type.

7.2. Effects of Pre-training, Looped Noise & Soft Mask 119

S3-1 S9 S7-1 S10
Correctly Classified: 90.9% 91.7% 91.1% 93.0%

HIT-FA: 70.6% 73.6% 68.0% 76.6%
STOI (Delta SOFT MASK): 0.162 0.192 0.100 0.167

Table 7.4: This table presents the system evaluation results where a reduced noise duration is used.
The settings and the noise type of S3-1 and S7-1 are used for simulation S9 and S10 respectively but
the duration of the noise sequence is reduced such that the same realization is used for all training
and test cases. This is done to exclude errors in the implementation.

The results from the two tests are presented in Tab. 7.4 and it is seen that both
S9 and S10 have significant higher scores than S3-1 and S7-1 for all three reported
performance measures. These results follow intuition and may argue that S3 and S7
are not comparable since two different noise sources are used. Even though they are
both of the type SSN, they are not from the same realization, which could explain
the counterintuitive behaviour of S3-1, S4-1, S7-1 and S8-1. Maybe the noise source
used for S7 and S8 is easier to discriminate compared to the noise source used for S3
and S4, even though their duration differs significantly.

Based on Tabs. 7.2, 7.3 and 7.4 as well as the ROC curves, it is concluded that
using looped noise yields classifier performance which is significantly better than if
the classifier is trained and tested using non-looped noise. However, it is found that
comparing IUTs trained with different noise realizations, even though they are of the
same type, yield no useful information and should be avoided. Another thing that
can be concluded is that, even though the performance of the IUT decreases when
non-looped noise is used, the IUT still improves speech intelligibility, which is vital
if the IUT is to be used in a real life scenario. The last thing to conclude is that
setting the threshold at which T-F units are classified as speech dominated is crucial
and is found to affect the performance of the IUT, when the binary mask is used,
considerably.

Discussion of Objective 3

Regarding objective 3 it was assumed that using a soft mask for speech synthesis, a
better speech quality would be achieved and presumably also a better speech intelli-
gibility. From Tabs. 7.2 and 7.3 it is seen that all 16 tests achieve the highest PESQ
increase when the soft mask is used for speech synthesis. When the estimated IBM is
used an average delta PESQ of 0 is achieved meaning that the estimated IBM cannot
increase speech quality. However, when the soft mask is used the average increase
is approximately 0.1 which in many cases is even better than the PESQ score when
the IBM is used. These results were expected and in line with the literature [Loizou,
2013].

Regarding intelligibility it is seen from Tabs. 7.2 and 7.3 that the largest STOI
scores are achieved using the soft mask for all 16 simulations. The STOI score using
the soft mask is on average 0.04 larger than the binary mask. These results indicate

120 Chapter 7. Test Results & Discussion

that using a soft mask may increase speech intelligibility and with the current IUT
the soft mask even outperformed the estimated IBM with considerable improvements
in quality as well.

As already mentioned, it is seen from Figs. 7.4e and 7.4f that the STOI score
for the soft mask (horizontal dashed lines) is the largest for all values of threshold,
regardless of the use of looped noise. This supports that using the soft mask for
speech synthesis yields better performance than using a binary mask, at least for the
IUT. It is also seen from Fig. 7.4f that the STOI score, in the case where non-looped
noise is used, is highly dependent on the threshold value, which again is a good
argument for choosing the soft mask approach.

From listening tests performed by the authors it is also believed that the soft
mask is better at preserving consonants such as s, f and n sounds, for which the
binary mask in some cases completely remove these sounds.

A benefit of using a soft mask is that the classification stage is avoided and
the estimation of the optimal threshold is hereby unneeded. So using the soft mask
simplifies the IUT, while still achieving better performance than using a binary mask.

It must be mentioned that the soft mask becomes approximately binary if the
classification problem is "easy". For example in test S9, where a short noise sequence
was used, only a negligible difference between the soft mask and the binary mask
was observed but still, there is no good argument for making a binary classification
instead of using the output probabilities of the DNNs.

7.3 Evaluation of Robustness & Comparison to Classical
Methods

This section presents the results which are related to objective 4 and 5 as presented
in the introduction in Chapter 1. Objective 4 is related to the robustness of the
proposed speech enhancement system and objective 5 is related to the performance
of the proposed system compared to more classical speech enhancement algorithms.

As mentioned in Chapter 1, robustness can be evaluated in an numerous number
of ways and in Chapter 1 it was decided to evaluate the robustness of the IUT
regarding variations in noise type and SNR. To delimitate the number of tests to
run, only the IUTs that have been trained without pre-training and with non-looped
noise, will be tested. Furthermore, the IUTs will only be tested with one unseen
noise type. The IUTs subject to these tests are therefore S5-1 to S8-1.

Regarding the comparison of the proposed system to more classical speech en-
hancement methods, it was decided to evaluate the performance of the Wiener fil-
tering method described in Section 3.1.2 and the MMSE method described in Sec-
tion 3.1.3. These methods will be subject to the same test settings as IUT S5-1 to
S8-1. The IUTs and the classical methods will both be tested with SNRs from -10
dB to +30 dB, for both babble noise and SSN. Both STOI and PESQ will be used
to evaluate their performance.

7.3. Evaluation of Robustness & Comparison to Classical Methods 121

The results from the tests mentioned above are presented in Figs 7.5 and 7.6.
Fig 7.5 presents the performance of the IUTs and the classical methods, when they
are tested with babble noise and similarly, Fig 7.6 presents the results where SSN is
used. All results are based on an average over the a test set consisting of 80 HINT
sentences.

Figs 7.5a, 7.5b, 7.6a and 7.6b illustrate the performance difference between a
IUT and the classical methods, evaluated using STOI and PESQ. The black line is
produced from the noisy speech signal and is hereby a reference indicating when a
given algorithm improves or degrades the intelligibility or quality.

Figs 7.5c, 7.5d, 7.6c and 7.6d illustrate the performance difference, evaluated
using STOI and PESQ, between a IUT using the soft mask and the same IUT using
a binary mask.

It is seen from Figs 7.5a and 7.5b that IUT S5-1 and S6-1 outperform the Wiener
filtering method and the MMSE method for SNRs below 10 dB. Similarly, IUT S5-1
and S6-1 also outperform IUT S7-1 and S8-1. However, this were expected since IUT
S5-1 and S6-1 are trained with babble noise, whereas IUT S7-1 and S8-1 are trained
with SSN. It is also seen that IUT S7-1 and S8-1, even though they are trained with
SSN, achieve a higher STOI score than the Wiener filtering method and the MMSE
method for SNRs below 5 dB. In general, it can be observed that the IUT S6-1, on
average, performs better than IUT S5-1, which is natural since IUT S6-1 is trained
with 0 dB SNR whereas IUT S5-1 is trained at -5 dB SNR.

What is interesting to notice is that the classical method consistently follows the
noisy curve (black line) and achieves no improvement in intelligibility and only minor
improvement in quality. These results are also in agreement with Philipos C. Louizou
findings saying that the methods could improve the quality but not the intelligibility
[Loizou, 2007, p.609]. However, the IUTs introduce some distortion at high SNRs,
even though a relatively large improvement in both STOI and PESQ are achieved
at low SNRs. This is also supported by listening tests, performed by the authors,
where the general opinion is that IUTs introduce distortion at high SNRs, which the
classical methods do not.

However, it should be noticed that the IUTs using the soft mask always outper-
form the IUTs using the binary mask as seen from Figs 7.5c and 7.5d. This is also
supported by listening tests, performed by the authors, where the binary mask in
some cases "cuts-off" minor parts of the signal. Parts, which are better preserved
with the soft mask. Especially, at high SNRs the binary mask significantly degrade
the intelligibility whereas the soft mask in general preserves it.

From Figs 7.6a and 7.6b, which are the tests where SSN is used, a similar pattern
is observed. It is seen that IUT S7-1 and S8-1 outperforms the Wiener filtering
method and the MMSE method for SNRs below 5 dB. It is also seen that IUT S8-1,
which is the one trained with the highest SNR, has the best overall performance and
similar with the former results the soft mask achieves the best overall performance
compared to the binary mask, as seen from Figs 7.6c and 7.6d.

An interesting thing to notice from Figs 7.5a, 7.5b, 7.6a and 7.6b is that the clas-

122 Chapter 7. Test Results & Discussion

Babble noise SNR [dB]
-10 0 10 20 30

S
T

O
I

0.4

0.5

0.6

0.7

0.8

0.9

1

S5-1 (Babble)
S6-1 (Babble)
S7-1 (SSN)
S8-1 (SSN)
MMSE
Wiener
NOISY

(a) A comparison of STOI performance be-
tween IUTs and the classical methods.

Babble noise SNR [dB]
-10 0 10 20 30

P
E

S
Q

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
S5-1 (Babble)
S6-1 (Babble)
S7-1 (SSN)
S8-1 (SSN)
MMSE
Wiener
NOISY

(b) A comparison of PESQ performance be-
tween IUTs and the classical methods.

Babble noise SNR [dB]
-10 0 10 20 30

S
T

O
I

0.4

0.5

0.6

0.7

0.8

0.9

1

S5-1 Soft
S6-1 Soft
S7-1 Soft
S8-1 Soft
S5-1 Binary
S6-1 Binary
S7-1 Binary
S8-1 Binary

(c) A comparison of STOI performance be-
tween the soft mask and the binary mask.

Babble noise SNR [dB]
-10 0 10 20 30

P
E

S
Q

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
S5-1 Soft
S6-1 Soft
S7-1 Soft
S8-1 Soft
S5-1 Binary
S6-1 Binary
S7-1 Binary
S8-1 Binary

(d) A comparison of PESQ performance be-
tween the soft mask and the binary mask.

Figure 7.5: This figure presents the performance of IUT S5-1 to S8-1 as well as the Wiener filter and
MMSE estimator, when tested with babble noise from -10 dB SNR to 30 dB SNR. The performance
is quantified by both the STOI and PESQ measure and both the performance of the soft mask as
well as the binary mask is presented. It is seen that IUTs S5-1 and S6-1 achieves the highest scores
regarding both STOI and PESQ when the SNR is below 10 dB. When the SNR is above 10 dB the
classical methods perform the best. It is also seen that the soft mask performs significantly better
than the binary mask.

7.3. Evaluation of Robustness & Comparison to Classical Methods 123

Speech shaped noise SNR [dB]
-10 0 10 20 30

S
T

O
I

0.4

0.5

0.6

0.7

0.8

0.9

1

S5-1 (Babble)
S6-1 (Babble)
S7-1 (SSN)
S8-1 (SSN)
MMSE
Wiener
NOISY

(a) A comparison of STOI performance be-
tween IUTs and the classical methods.

Speech shaped noise SNR [dB]
-10 0 10 20 30

P
E

S
Q

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
S5-1 (Babble)
S6-1 (Babble)
S7-1 (SSN)
S8-1 (SSN)
MMSE
Wiener
NOISY

(b) A comparison of PESQ performance be-
tween IUTs and the classical methods.

Speech shaped noise SNR [dB]
-10 0 10 20 30

S
T

O
I

0.4

0.5

0.6

0.7

0.8

0.9

1

S5-1 Soft
S6-1 Soft
S7-1 Soft
S8-1 Soft
S5-1 Binary
S6-1 Binary
S7-1 Binary
S8-1 Binary

(c) A comparison of STOI performance be-
tween the soft mask and the binary mask.

Speech shaped noise SNR [dB]
-10 0 10 20 30

P
E

S
Q

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
S5-1 Soft
S6-1 Soft
S7-1 Soft
S8-1 Soft
S5-1 Binary
S6-1 Binary
S7-1 Binary
S8-1 Binary

(d) A comparison of PESQ performance be-
tween the soft mask and the binary mask.

Figure 7.6: This figure presents the performance of IUT S5-1 to S8-1 as well as the Wiener filter and
MMSE estimator, when tested with SSN noise from -10 dB SNR to 30 dB SNR. The performance
is quantified by both the STOI and PESQ measure and both the performance of the soft mask as
well as the binary mask is presented. It is seen that IUTs S7-1 and S8-1 achieves the highest scores
regarding both STOI and PESQ when the SNR is below 5 dB. When the SNR is above 5 dB the
classical methods perform the best. It is also seen that the soft mask performs significantly better
than the binary mask.

124 Chapter 7. Test Results & Discussion

sical methods, especially regarding quality, perform significantly better when they
are exposed to SSN as opposed to babble noise. This is also in line with intuition
since these classical methods are based on estimates of the noise spectrum. Good
estimates are assumed easier to acquire when the noise is stationary (e.g. SSN) op-
posed to non-stationary (e.g. babble noise). More specifically, the estimation of the
noise spectrum in the implementations of the wiener filter and the MMSE, involves
a Voice Activity Detection (VAD) algorithm which in general do not work well in
non-stationary environment such as with babble noise [Loizou, 2007, p.609].

It is also interesting to see that S6-1, when tested with SSN, improves both
intelligibility and quality, as well as outperforming the classical methods at SNRs
below 0 dB. This indicates that, even though S6-1 has been trained with babble
noise at 0 dB SNR, it might have the potential to generalize to the unseen SSN.

The conclusion based on the tests presented in Figs 7.5 and 7.6 is that the IUTs
are relatively robust against variations in SNR and outperforms the Wiener filtering
method and the MMSE method for SNRs approximately below 10 dB for babble
noise, and 5 dB for SSN noise. When the IUTs are tested with a noise type they have
not been trained with, they do not, in general, improve either speech intelligibility
or speech quality.

It can hereby be concluded that if the IUTs are tested with the same noise type,
they have been trained with, they have the potential to outperform the classical
methods at low SNRs. However, since the IUTs only have been trained with low
SNRs, nothing argues against that the IUTs can perform even better if they are
trained with more SNRs levels. Also, the robustness against different noise types is
assumed to be improved if the IUTs are trained with both SSN and babble noise.

7.4 System Improvements
This section will present some ideas that might improve the performance of the IUT.
The IUT is based on the design from [Healy et al., 2013], which in terms of Deep
Learning evolution, is rather young and many improvements have been made since
the techniques used in [Healy et al., 2013] were invented. This means that it is likely
that a system can be designed which outperforms the current design of the IUT as
presented in Chapter 6.

In the current contex, improvements can be categorized into two groups, which
are equally important in each their own way. The first group of improvements is
related to actual performance improvements in terms of classification accuracy, HIT-
FA, STOI, PESQ etc. The other group of performance improvements is related to
decreasing the turnaround time, i.e. the time it takes to test and evaluate a current
system.

7.4. System Improvements 125

7.4.1 Increasing Performance

Regarding the actual performance improvements several techniques can be applied,
related to both pre-training and fine-tuning. The straightforward way to improve
the performance is to increase the model size and increase the quantity of training
data. Also the robustness of the network is expected to improve if the network is
trained with different noise types and SNRs .

To set things in perspective, the best performing speech recognition system, in
the sense that it has the best speech recognition capabilities in noisy environments,
is designed by the Chinese Internet search provider Baidu. The system is based on
Deep Learning and consists of a network with over 5 billion trainable parameters
and the system is trained on over 100,000 hours of speech material. The training
data was generated by mixing the same utterance with many different noise types
found on the Internet [Hannun et al., 2014] [The Huffington Post, 2015] [Dr. Andrew
Ng, 2015]. In contrast, the system presented in this thesis consists of approximately
7,400,000 trainable parameters and is trained on approximately 20 min. of speech
material, so it is believed that scaling up the model and the amount of training
data will increase the performance of the system significantly. However, doing so
have some practical challenges and leading Deep Learning companies such as Baidu,
Facebook and Google, use large High Performance Computing (HPC) clusters for
training their models. A way to alleviate these challenges are further discussed in
Section 7.4.2.

Improving Pre-training

Apart from the obvious ways to improve the system, by using more data, other
methods exist for which a performance increase is expected, if they are properly used.
Regarding the pre-training stage the very rough approximations done by CD-1 could
be made more accurate by running the Gibbs chain in CD for longer time, hence
achieving a sample from the RBM distribution, which is statistical more accurate
compared to the sample achieved by CD-1 [Tieleman, 2008]. This is particular useful
if the mixing rate of the Gibbs chain is very slow. Other more successful alternatives
to CD also exist, which are Persistent Contrastive Divergence (PCD) and Parallel
Tempering (PT) [Tieleman, 2008] [Desjardins et al., 2010] [Fischer and Igel, 2014].

PCD is different from CD in the way that the Gibbs chain used to generate
samples is not initialized from a training sample. Instead, the states of the former
Gibbs chains are used; the chains are persistent [Tieleman, 2008].

PT is an extension of PCD where multiple Gibbs chains are used, each with their
own beneficial properties such that some have a high mixing rate but rather incor-
rect equilibrium distribution and some have a low mixing rate but a more accurate
equilibrium distribution. Using a technique called cross temperature state swaps, the
beneficial properties of these multiple Gibbs chains can be combined into a sample,
which are statistical aligned with the RBM distribution of interest [Tieleman, 2008].

126 Chapter 7. Test Results & Discussion

Modifying the Network Architecture

Another approach to improve performance is to redesign the DNNs, which can be
related to either the structural architecture or the neuron design. In [Hannun et al.,
2014], which as mentioned, is the current state-of-the-art ASR system, the network
architecture and neuron design is different from the system presented in Chapter 6.
Hereby, it is natural to be inspired from that design, since the speech enhancement
task attempted to be solved in this thesis, is very related to the problem attempted
to be solved in [Hannun et al., 2014].

The goal in [Hannun et al., 2014] is to make the ASR system robust against noisy
speech. Hereby, it is natural to think that if the system in [Hannun et al., 2014]
improves state-of-the-art ASR, the techniques could be used to improve state-of-the-
art speech enhancement systems, such as the one presented in [Healy et al., 2013] and
[Huang et al., 2014b], since their problem domains are similar. That is, retrieving
speech information from noisy recordings.

In [Hannun et al., 2014] a Deep Bidirectional Recurrent Neural Network (DBRNN)
is used, which is a neural network architecture which incorporates temporal informa-
tion by using feedback connections. The DBRNN is hereby suitable for sequential
data such as speech [Graves et al., 2013]. In [Hannun et al., 2014], this DBRNN
replaces both the Gaussian mixture models and the hidden Markov models from
traditional state-of-the-art ASR systems. In [Hannun et al., 2014] another neuron
design is also used, where the activation functions are based on Rectified Linear
units (ReLus), which is a non-linear function being zero from minus infinity to zero
and linear from zero to positive infinity. ReLus have been found to improve DNN
performance but at the same time decreasing training time [Zeiler et al., 2013] [Maas
et al., 2013] [Dahl et al., 2013].

In [Hannun et al., 2014], also a technique known as dropout is utilized, which is
a way to force each neuron to be more independent by avoiding co-adaption between
neurons and hereby improve generalization [Hinton et al., 2012b] [Dahl et al., 2013].
Dropout is a very simple technique where neurons are randomly "turned off", i.e. set
to zero, with a certain probability and in the original paper [Hinton et al., 2012b] a
probability of 0.5 was proposed but in [Hannun et al., 2014] a probability between
0.05 - 0.1 was used.

As mentioned in the introduction in Chapter 1, the Deep Learning paradigm is
based on models learning their own features, which might result in a completely new
belief of what is the best way of pre-processing acoustic signals [Deng et al., 2013].
In [Hannun et al., 2014] spectrograms are used as feature representation and no
additional features are computed. This is supported in [Deng et al., 2013] where it is
reported that spectrogram features used with DNNs outperform traditional features
such as MFCC and PLP. It is hereby likely to believe that the IUT would also benefit
from discarding the traditional features and only use a spectrogram representation.
As mentioned in Section 6.5.2, 75% of the execution time was spent on computing
features, so reducing the number of feature representations to a single spectrogram
representation, might not only improve performance but also execution time.

7.4. System Improvements 127

7.4.2 Decreasing Turnaround Time

The other group of performance improvements are related to decreasing the turnaround
time, which inevitably will increase as larger models and quantities of data is uti-
lized. On a NVIDIA conference in 2015, one of the leading Deep Learning scientists
Andrew Ng, mentioned two equally important aspect of making deep learning a suc-
cessful tool. He referred to these, as week and strong scaling [Dr. Andrew Ng, 2015].
Weak scaling is making larger neural networks and strong scaling is decreasing the
time it takes to train them. This may also explain why the majority of leading Deep
Learning scientists have been headhunted by the leading computing companies in the
world [Wired, 2013], [Baidu, 2014], [Facebook, 2013]. Baidu recently announced that
they intent to build a new supercomputer for Deep Learning, which will rank top
10 over the most powerful computers in the world, so computing power is obvious
essential in Deep Learning [The Wall Street Journal, 2015].

As mentioned in Section 6.5.3, DNNs are inherently parallel and hereby ideal for
hardware architectures such as Graphics Processor Units (GPUs), which are opti-
mized for simple parallel computations. The trend in Deep Learning is also point-
ing in the direction of using GPUs instead of CPUs for training deep architectures
[NVIDIA, 2015] [The Platform, 2015] [Hannun et al., 2014]. NVIDIA, which is one
of the world largest manufactures of GPUs, has recently announced that their next
GPU card is designed with Deep Learning in mind and will be optimized towards
fixed point precision [NVIDIA, 2015]. However, utilizing a large amount of process-
ing units in a GPU, or a CPU, is not trivial and require special designed training
algorithms in order to ensure that the hardware is fully utilized. In general, fully con-
nected DNNs, like the ones used in this thesis, are bandwidth limited and non-fully
connected networks such as CNNs are computation limited [NVIDIA, 2015]. This
means that implementing the current IUT on a GPU might not generate a speed
up since too large amounts of data are needed to be transfered between primary
memory and GPU memory. The authors of this thesis have tried using the build-in
functionality in MATLAB for GPU programming but without achieving any speed-
up, which might be due to memory bandwidth limitations. Achieving a speed-up, if
even possible, might require GPU programming on a low abstraction level.

One approach which might alleviate the problem of being bandwidth limited is to
use a numerical representation with less precision. In the IUT 64 bit floating points
is used for all computations and the effective memory bandwidth will be increased
by a factor of two if 32 bit floating points were used instead of 64 bits. Google uses
32 bit floating point for their DNN implementations and when they communicate
parameters between servers, they even cut off 16 bit of the mantissa to reduce the
memory consumption and increase the effective memory bandwidth [Jeff Dean, 2015].
In [Gupta et al., 2015] it is even shown that using a 16 bit fixed point number
representation opposed to 32 bit floating point, only a negligible error is introduced.
Google has also developed a version of gradient descent which is optimized towards
large scale distributed computing which enables DNNs to be trained on HPC clusters
including thousands of computers [Dean et al., 2012].

128 Chapter 7. Test Results & Discussion

Chapter 8

Conclusion

This master’s thesis has investigated how speech enhancement techniques from the
CASA field can be combined with the emerging machine learning field Deep Learning.
More specifically the scope of the thesis was to investigate the speech enhancement
capabilities of the method described in [Healy et al., 2013] with a special focus on
five objectives, which are reposted below for convenience. Based on the results and
discussions in Chapter 7, a concluding remark for each of the five objectives will be
given in the following paragraphs.

Objectives

1. Does unsupervised pre-training of DNNs, when used for IBM estimation, im-
prove performance?

2. What is the effect of using looped noise, as opposed to non-looped noise, re-
garding DNN classification performance?

3. Does using a soft decision rather than a hard decision, in a DNN based speech
enhancement system, improve speech intelligibility and/or quality?

4. How well does DNNs used for IBM estimation generalize to unseen noise types
and SNRs?

5. How do DNN based speech enhancement algorithms perform relative to the
classical STFT based Wiener filter and the spectral magnitude MMSE estima-
tor?

Concluding Remark Objective 1

Regarding the benefit of pre-training it was found that pre-training under some cir-
cumstances have a beneficial effect. When pre-training was beneficial it was observed
that the DNNs achieved a higher classification accuracy than the DNNs trained
purely with backpropagation. It was also found that in all cases, where pre-training
was beneficial, the lowest validation error was found considerably faster for the pre-
trained DNNs than for the non pre-trained DNNs (Tab. 6.3). Likewise, enabling
pre-training to be beneficial required that the amount of unlabeled data was consid-
erably larger than the amount of labeled data. The findings regarding pre-training

129

130 Chapter 8. Conclusion

are in line with the literature, where it is reported that achieving a beneficial effect
of pre-training requires a significant amount of experience and specialized skills of
the researcher [Deng et al., 2013].

Concluding Remark Objective 2

In [Healy et al., 2013] the same noise realization was used for both training and test-
ing of the DNN based speech enhancement method, which in [May and Dau, 2014]
was claimed led to performance, which is non-realizable in practice. These claims
led to objective 2. It has hereby been investigated how DNNs perform when they
are trained and tested using the same noise realization (looped noise) as opposed
to the case where the DNNs are trained and tested with unique and different noise
realizations (non-looped noise). The results from the DNN based speech enhance-
ment system presented in this thesis support the findings in [May and Dau, 2014]
and the performance of the system increases significantly when looped noise is used.
However, even though the performance decreases when non-looped noise is used,
consistent improvements in STOI from unprocessed to processed speech is achieved.

Concluding Remark Objective 3

In the speech recognition literature is has been found beneficial to use a soft decision
(soft mask) instead of a hard decision (binary mask) as part of a speech enhancement
stage. This has also been shown beneficial for classical speech enhancement methods
[Jensen and Hendriks, 2012]. This led to the hypothesis that using a soft mask in a
DNN based speech enhancement algorithm, aimed at increasing speech intelligibility,
would achieve better performance than using a binary mask. To ascertain if this
hypothesis is true, formal human listening tests must be conducted. Since this is a
time consuming and expensive task, speech intelligibility (STOI) and speech quality
(PESQ) predictors have been used [Taal et al., 2010] [Rix et al., 2001]. Based on the
results presented in this thesis the following can hereby concluded:

• The soft mask outperforms the binary mask in terms of STOI and PESQ,
indicating that larger improvements in speech intelligibility and quality can be
achieved by using a soft mask compared to a binary mask.

• Based on informal listening tests, as well as STOI and PESQ, it is found that
the soft mask, especially at SNR levels above 0 dB, introduces less distortion
than the binary mask.

To the authors knowledge, these results have not earlier been reported in the litera-
ture!

131

Concluding Remark Objective 4

If a speech enhancement system is to be used in a real life scenario it is exposed
to a large variety of noise types and SNRs. It is therefore of interest to identify
how robust the DNN based speech enhancement system presented in this thesis is to
unseen noise types and SNRs. When the speech enhancement system is trained and
tested with the same noise type but with a varying SNR, it is found that the system
can improve both STOI and PESQ for a processed speech signal. This applies in
situations where the unprocessed speech signal has a SNR up to approximately 10
dB larger than what the system was trained to. This holds for both babble noise and
SSN. When the speech enhancement system is trained with babble noise at -5 dB
SNR and tested with SSN, it is found that the system can improve PESQ at SNRs
up to approximately 12 dB. This is increased to approximately 17 dB if the system
is trained with babble noise at 0 dB SNR. It is also found that a system trained with
babble noise at 0 dB SNR can improve STOI when it is tested with speech signals
corrupted by SSN, in the SNR interval from approximately -10 dB to 0 dB.

Concluding Remark Objective 5

To proper evaluate the DNN based speech enhancement system presented in this
thesis a comparison, to two classical methods, have been performed. These methods
are the Wiener filter and the spectral magnitude MMSE estimator. It has been found
that the DNN based speech enhancement system, when trained and tested with the
same noise type, outperforms both the Wiener filtering method and the spectral
magnitude MMSE estimator, regarding both STOI and PESQ, for both babble noise
and SSN from -5 dB to 5 dB SNR (Figs. 7.5 and 7.6). However, it is found that
the DNN based speech enhancement system introduces a distortion at SNRs above
15 dB but this distortion is assumed to be reduced if the system is trained at these
SNR levels.

Final Remark

What motivated the work leading to this master’s thesis was the question if the
results reported in [Healy et al., 2013] are achievable in real life situations where
noise type, SNR, etc. is not known accurately. The conclusion is that these results
are not realistic and they are artificially high due to the use of the same noise sequence
during training and testing, i.e. in looped noise conditions. However, it has been
found that a speech enhancement algorithm similar to the one presented in [Healy
et al., 2013] presumably can improve speech intelligibility and quality in realistic
scenarios. Before these results can be ascertained, human listening tests must be
conducted to identify if the proposed algorithm in fact can improve intelligibility
and quality.

Currently the design of the DNN based speech enhancement system presented in
this thesis is not mature and is not considered practical applicable due to the quality

132 Chapter 8. Conclusion

of the enhanced speech, which at SNR levels at -5 dB is still considered too low to
be used in real life scenarios.

However, at SNR levels from 0 dB and up to approximately 15 dB, the quality is
considered good and the noise is considerably attenuated. This is even though the
systems have not been trained at these SNR levels and the performance is hereby
assumed to be improved, if such SNR levels are included in the training.

One especially significant finding, presented in this thesis, is that a soft mask
approach outperforms the binary mask approach as the one used in [Healy et al.,
2013], [Kim et al., 2009] and [Hang and Wang, 2012]. To the authors knowledge,
such findings have not earlier been reported.

As the final remark, the results achieved in this thesis indicate that DNN based
speech enhancement systems have a great potential and it is believed by the authors
that if a sufficient amount of training data and a sufficient amount of computing
power is available, DNN based speech enhancement systems can be practical appli-
cable and will be able to successfully assist people by enhancing noisy speech in real
life applications.

Bibliography

Bach, P. and Kercel, S. W. (2003). Sensory substitution and the human–machine
interface. TRENDS in Cognitive Sciences, 7(12):541–546.

Baidu (2014). Baidu Opens Silicon Valley Lab, Appoints Andrew Ng as
Head of Baidu Research. http://ir.baidu.com/phoenix.zhtml?c=188488&p=
irol-newsArticle&ID=1931950.

Barker, J., Josifovski, L., Cooke, M., and Green, P. (2000). Soft decisions in missing
data techniques for robust automatic speech recognition. In Proc. ICSLP-2000,
pages 373–376.

BBC Newsnight (2014). Is a.i. the problem or the solution? https://www.youtube.
com/watch?v=lge-dl2JUAM.

Bengio, Y. (2009). Learning deep architectures for ai. Found. Trends Mach. Learn.,
2(1):1–127.

Bengio, Y., Goodfellow, I. J., and Courville, A. (2015). Deep learning. Book in
preparation for MIT Press.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In In NIPS. MIT Press.

Bengtsson, S. and Røgeskov, M. (2010). Personer Med Høretab I Danmark. Viden-
scenter for Hørehandicap i samarbejde med SFI Det Nationale Forskningscenter
For Velfærd.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. CLARENDON
PRESS OXFORD., 1. edition.

Bishop, C. M. (8th printing, 2009). Pattern Recognition and Machine Learning.
Springer., 1. edition.

Blauert, J. and Laws, P. (1978). Group delay distortions in electroacoustical systems.
The Journal of the Acoustical Society of America, 63(5).

Brügge, K., Fischer, A., and Igel, C. (2013). The flip-the-state transition operator
for restricted boltzmann machines. Machine Learning, 93(1):53–69.

Chen, J., Benesty, J., Huang, Y. A., and Doclol, S. (2006). New insights into the
noise reduction wiener filter. IEEE Transactions on Audio, Speech and Language
Processing, 14(2):1218–1234.

133

http://ir.baidu.com/phoenix.zhtml?c=188488&p=irol-newsArticle&ID=1931950
http://ir.baidu.com/phoenix.zhtml?c=188488&p=irol-newsArticle&ID=1931950
https://www.youtube.com/watch?v=lge-dl2JUAM
https://www.youtube.com/watch?v=lge-dl2JUAM

134 Bibliography

Chen, X. and Lin, X. (2014). Big data deep learning: Challenges and perspectives.
Access, IEEE, 2:514–525.

Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and
with two ears. The Journal of the Acoustical Society of America, 25(5).

Cho, K., Ilin, A., and Raiko, T. (2011). Improved learning of gaussian-bernoulli
restricted boltzmann machines. In Proceedings of the 21th International Conference
on Artificial Neural Networks - Volume Part I, ICANN’11, pages 10–17, Berlin,
Heidelberg. Springer-Verlag.

Christensen, V. T. (2006). UHØRT - Betydningen Af Nedsat Hørelse For Arbejds-
markedstilknytning og Arbejdsliv. SFI Det Nationale Forskningscenter For Velfærd.

CNN Money (2014). Elon musk warns against unleashing artificial in-
telligence ’demon’. http://money.cnn.com/2014/10/26/technology/
elon-musk-artificial-intelligence-demon/.

Cognimem (2014). Cm1k chip. http://www.cognimem.com/products/
chips-and-modules/CM1K-Chip/index.html.

Dahl, G. E., Sainath, T. N., and Hinton, G. E. (2013). Improving deep neural net-
works for LVCSR using rectified linear units and dropout. In IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver,
BC, Canada, May 26-31, 2013, pages 8609–8613.

Danmarks Statistik (2014). Folketal i danmark 1. januar 2015. http://www.dst.dk/
da/Statistik/emner/befolkning-og-befolkningsfremskrivning/folketal.
aspx.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z.,
Ranzato, M., Senior, A. W., Tucker, P. A., Yang, K., and Ng, A. Y. (2012). Large
scale distributed deep networks. In Bartlett, P. L., Pereira, F. C. N., Burges, C.
J. C., Bottou, L., and Weinberger, K. Q., editors, NIPS, pages 1232–1240.

Deller, J. R., Hansen, J. H., and Proakis, J. G. (1993). Discrete-Time Processing of
Speech Signals. Wiley Interscience, 1. edition.

Deng, L., Hinton, G., and Kingsbury, B. (2013). New types of deep neural network
learning for speech recognition and related applications: An overview. In in Proc.
Int. Conf. Acoust., Speech, Signal Process.

Deng, L. and Yu, D. (2014). Deep learning: Methods and applications. Technical
Report MSR-TR-2014-21.

Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and Delalleau, O. (2010). Tem-
pered Markov Chain Monte Carlo for training of restricted Boltzmann machines.

http://money.cnn.com/2014/10/26/technology/elon-musk-artificial-intelligence-demon/
http://money.cnn.com/2014/10/26/technology/elon-musk-artificial-intelligence-demon/
http://www.cognimem.com/products/chips-and-modules/CM1K-Chip/index.html
http://www.cognimem.com/products/chips-and-modules/CM1K-Chip/index.html
http://www.dst.dk/da/Statistik/emner/befolkning-og-befolkningsfremskrivning/folketal.aspx
http://www.dst.dk/da/Statistik/emner/befolkning-og-befolkningsfremskrivning/folketal.aspx
http://www.dst.dk/da/Statistik/emner/befolkning-og-befolkningsfremskrivning/folketal.aspx

Bibliography 135

In Teh, Y. W. and Titterington, M., editors, Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and Statistics, May 13-15, 2010,
Chia Laguna Resort, Sardinia, Italy, pages 145–152.

Dieleman, S. and Schrauwen, B. (2012). Accelerating sparse restricted boltzmann
machine training using non-gaussianity measures. In Bengio, Y., Bergstra, J., and
Le, Q., editors, Deep Learning and Unsupervised Feature Learning, Proceedings,
page 9.

Dr. Andrew Ng (2015). Gpu technology conference 2015. http://www.ustream.tv/
recorded/60113824.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. John
Wiley & Sons., 2. edition.

Ellis, D. P. W. (2005). PLP and RASTA (and MFCC, and inversion) in Matlab.
http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/.

Facebook (2013). Yann lecun director of research lab at facebook. https://www.
facebook.com/yann.lecun/posts/10151728212367143.

Fawcett, T. (2006). Roc graphs with instance-varying costs. Pattern Recogn. Lett.,
27(8):882–891.

Fischer, A. and Igel, C. (2012). An Introduction to Restricted Boltzmann Machines,
pages 14–36. Lecture Notes in Computer Science. Springer.

Fischer, A. and Igel, C. (2014). Training restricted boltzmann machines: an intro-
duction. Pattern Recognition, 47(1):25–39.

Freeman, W. J. (1975). Mass Action in the Nervous System. Academic Press, 1.
edition.

Future of Life Institute (2015). Elon musk donates $10m to keep ai beneficial.
http://futureoflife.org/misc/AI.

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D., Dahlgren, N., and Zue, V.
(1993). Timit acoustic-phonetic continuous speech corpus. philadelphia: Linguistic
data consortium.

Golumbic, E. M. Z., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A., McKhann,
G. M., Goodman, R. R., Emerson, R., Mehta, A. D., Simon, J. Z., Poeppel, D.,
and Schroeder, C. E. (2013). Mechanisms underlying selective neuronal tracking
of attended speech at a cocktail party. Neuron, 77(5):980 – 991.

Gougoux, F., Belin, P., Voss, P., Lepore, F., Lassonde, M., and Zatorre., R. J. (2009).
Voice perception in blind persons: A functional magnetic resonance imaging study.
Neuropsychologia, 47(13):2967–2974.

http://www.ustream.tv/recorded/60113824
http://www.ustream.tv/recorded/60113824
http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
https://www.facebook.com/yann.lecun/posts/10151728212367143
https://www.facebook.com/yann.lecun/posts/10151728212367143
http://futureoflife.org/misc/AI

136 Bibliography

Graves, A., Mohamed, A., and Hinton, G. E. (2013). Speech recognition with deep
recurrent neural networks. CoRR, abs/1303.5778.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). Deep learn-
ing with limited numerical precision. CoRR, abs/1502.02551.

Guyton and Hall (2011). Textbook of Medical Physiology. SAUNDERS ELSEVIER,
12. edition.

Hang, K. and Wang, D. (2012). A classification based approach to speech segregation.
Acoustical Society of America, 28:3475–3483.

Hannun, A. Y., Case, C., Casper, J., Catanzaro, B. C., Diamos, G., Elsen, E.,
Prenger, R., Satheesh, S., Sengupta, S., Coates, A., and Ng, A. Y. (2014). Deep
speech: Scaling up end-to-end speech recognition. CoRR, abs/1412.5567.

Haykin, S. (1999). Neural Networks - A Comprehensive Foundation. Prentice Hall
International Inc., 2. edition.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. CoRR, abs/1502.01852.

Healy, E. W., Yoho, S. E., Wang, Y., and Wang, D. (2013). An algorithm to improve
speech recognition in noise for hearing-impaired listeners. Acoustical Society of
America, 134(4):3029–3038.

Hendriks, R. C., Gerkmann, T., and Jensen, J. (2013). Dft-domain based single-
microphone noise reduction for speech enhancement - a survey of the state-of-the-
art. Synthesis Lecture on Speech Processing and Audio Processing, pages 1–62.

Hermansky, H. (1989). Perceptual linear predictive (plp) analysis of speech. Acous-
tical Society of America 87(4) 1900, pages 1738–1752.

Hermansky, H. (1994). Rasta processing of speech. IEEE Transactions on Speech
and Audio Processing, Volume:2, Issue: 4, pages 578–589.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Comput., 14(8):1771–1800.

Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines.
In Neural Networks: Tricks of the Trade - Second Edition, pages 599–619.

Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., and Kingsbury, B. (2012a). Deep
neural networks for acoustic modeling in speech recognition: The shared views of
four research groups. IEEE Signal Process. Mag., 29(6):82–97.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for
deep belief nets. Neural Comput., 18(7):1527–1554.

Bibliography 137

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. (2012b). Improving neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580.

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., and Smaragdis, P. (2014a). Deep
learning for monaural speech separation. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1562–1566.

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., and Smaragdis, P. (2014b). Deep
learning for monaural speech separation. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEE International Conference on, pages 1562–1566.

Huang, X., Acero, A., and Hon, H.-W. (2001). Spoken Language Processing - A
Guide to Theory, Algorithm and System Development. Prentice Hall, 1. edition.

IBM Research (2014a). Brain power. http://www.research.ibm.com/
cognitive-computing/neurosynaptic-chips.shtml#fbid=CkowsRIXNT6.

IBM Research (2014b). Introducing a brain-inspired computer. http://www.
research.ibm.com/articles/brain-chip.shtml.

IBM Research (2015). How deep blue works. https://www.research.ibm.com/
deepblue/meet/html/d.3.2.html.

IDSIA (2014). Deep learning successes obtained by idsia. http://deeplearning.
net/2013/10/08/deep-learning-successes-obtained-by-idsia/.

IEEE Spectrum (2015). Facebook ai director yann lecun on his
quest to unleash deep learning and make machines smarter. http:
//spectrum.ieee.org/automaton/robotics/artificial-intelligence/
facebook-ai-director-yann-lecun-on-deep-learning#qaTopicEight.

Jeff Dean (2015). Gpu technology conference 2015. http://www.ustream.tv/
channel/gpu-technology-conference-2015.

Jensen, J. and Hendriks, R. C. (2012). Spectral magnitude minimum mean-square
error estimation using binary and continuous gain functions. IEEE Trans. Audio,
Speech, Language Process, Volume:20, No: 1, pages 92–102.

Jensen, J. and Tan, Z.-H. (2015). Minimum mean-square error estimation of mel-
frequency cepstral features - a theoretically consistent approach. IEEE/AMC
Transactions on Audio, Speech and Language Processing, Volume:23, No: 1, pages
186–197.

Jin, Z. and Wang, D. (2007a). gammatone.m. http://web.cse.ohio-state.edu/
pnl/shareware/cochleagram.

http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=CkowsRIXNT6
http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=CkowsRIXNT6
http://www.research.ibm.com/articles/brain-chip.shtml
http://www.research.ibm.com/articles/brain-chip.shtml
https://www.research.ibm.com/deepblue/meet/html/d.3.2.html
https://www.research.ibm.com/deepblue/meet/html/d.3.2.html
http://deeplearning.net/2013/10/08/deep-learning-successes-obtained-by-idsia/
http://deeplearning.net/2013/10/08/deep-learning-successes-obtained-by-idsia/
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/facebook-ai-director-yann-lecun-on-deep-learning#qaTopicEight
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/facebook-ai-director-yann-lecun-on-deep-learning#qaTopicEight
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/facebook-ai-director-yann-lecun-on-deep-learning#qaTopicEight
http://www.ustream.tv/channel/gpu-technology-conference-2015
http://www.ustream.tv/channel/gpu-technology-conference-2015
http://web.cse.ohio-state.edu/pnl/shareware/cochleagram
http://web.cse.ohio-state.edu/pnl/shareware/cochleagram

138 Bibliography

Jin, Z. and Wang, D. (2007b). synthesis.m. http://web.cse.ohio-state.edu/
pnl/shareware/cochleagram.

Kaggle (2012). Merck molecular activity challenge. https://www.kaggle.com/c/
MerckActivity/details/winners.

Kates, J. M. and Arehart, K. H. (2005). Multichannel dynamic-range compression
using digital frequency warping. EURASIP J. Adv. Sig. Proc., 2005(18):3003–3014.

Kay, S. M. (2006). Intuitive Probability and Random Processes using MATLAB.
Springer.

Khayam, S. A. (2003). The discrete cosine transform - theory and application. http:
//www.lokminglui.com/DCT_TR802.pdf.

Kim, G., Lu, Y., Hu, Y., and Loizoua, P. C. (2009). An algorithm that improves
speech intelligibility in noise for normal hearing listeners. Acoustical Society of
America., pages 1486–1494.

Kollmeier, B. and Koch, R. (1993). Speech enhancement based on physiological
and psychoacoustica models of modulation perception and binaural interaction.
Acoustical Society of America 95, 1593 (1994), pages 1593–1602.

Krause, O., Fischer, A., Glasmachers, T., and Igel, C. (2013). Approximation prop-
erties of dbns with binary hidden units and real-valued visible units. JMLR:
Workshop and Conference Proceedings, 28:419–426.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech-
nical report, Department of Computer Science, University of Toronto, Canada.

Kurzweil, R. (2006). The Singularity Is Near: When Humans Transcend Biology.
Penguin (Non-Classics).

Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring strate-
gies for training deep neural networks. J. Mach. Learn. Res., 10:1–40.

Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., and
Ng, A. (2012). Building high-level features using large scale unsupervised learning.
In International Conference in Machine Learning.

Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and Ng, A. Y. (2011a).
On optimization methods for deep learning. In Getoor, L. and Scheffer, T., editors,
ICML, pages 265–272. Omnipress.

Le, Q. V., Zou, W. Y., Yeung, S. Y., and Ng, A. Y. (2011b). Learning hierarchical in-
variant spatio-temporal features for action recognition with independent subspace
analysis. In Proceedings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’11, pages 3361–3368. IEEE Computer Society.

http://web.cse.ohio-state.edu/pnl/shareware/cochleagram
http://web.cse.ohio-state.edu/pnl/shareware/cochleagram
https://www.kaggle.com/c/MerckActivity/details/winners
https://www.kaggle.com/c/MerckActivity/details/winners
http://www.lokminglui.com/DCT_TR802.pdf
http://www.lokminglui.com/DCT_TR802.pdf

Bibliography 139

LISA lab, U. o. M. (2014). Deep learning tutorial. http://deeplearning.net/
tutorial/deeplearning.pdf.

Loizou, P. C. (2007). Speech Enhancement -Theory and Practice. Taylor and Francis,
1. edition.

Loizou, P. C. (2013). Speech Enhancement -Theory and Practice. Taylor and Francis,
2. edition.

Maas, A., Le, Q., O’Neil, T., Vinyals, O., Nguyen, P., and Ng, A. (2012). Recur-
rent neural networks for noise reduction in robust asr. In Proceedings of INTER-
SPEECH.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. International Conference on Machine Learning.

Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE
(Volume:63 Issue: 4), pages 561–580.

May, T. and Dau, T. (2014). Requirements for the evaluation of computational
speech segregation systems. Acoustical Society of America 136(6), pages 398–404.

McDermott, J. H. (2009). The cocktail party problem. Current Biology, 19(22):R1024
– R1027.

Melchior, J. (2012). Learning natural image statistics with gaussian-binary restricted
boltzmann machine. Technical report, Institute for neural computation, Ruhr
University Bochum, Germany.

Mike Brookes, I. C. L. (1997). Voicebox. http://www.ee.ic.ac.uk/hp/staff/dmb/
voicebox/voicebox.html.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

Mohamed, A., Dahl, G., and Hinton, G. (2012). Acoustic modeling using deep
belief networks. Audio, Speech, and Language Processing, IEEE Transactions on,
20(1):14 –22.

Montavon, G., Orr, G. B., and Müller, K.-R., editors (2012). Neural Networks:
Tricks of the Trade. Springer Berlin Heidelberg.

Moos, T. and Møller, M. (2010). Basal Neuro Anatomi. FADL’s Forlag, 3. edition.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT
Press.

http://deeplearning.net/tutorial/deeplearning.pdf
http://deeplearning.net/tutorial/deeplearning.pdf
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

140 Bibliography

Narayanan, A. and Wang, D. (2013). Ideal ratio mask estimation using deep neural
networks for robust speech recognition. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pages 7092–7096.

Neal, R. M. (1992). Connectionist learning of belief networks. Artif. Intell., 56(1):71–
113.

New York Times (2012). Scientists see promise in deep-learning
programs. http://www.nytimes.com/2012/11/24/science/
scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.
html?_r=1.

New Yorker (2013). Hyping artificial intelligence, yet again. http://www.newyorker.
com/tech/elements/hyping-artificial-intelligence-yet-again.

Nilsson, M., Soli, S. D., and Sullivan, J. A. (1994). Development of the hearing in
noise test for the measurement of speech reception thresholds in quiet and in noise.
The Journal of the Acoustical Society of America, 95(2).

NVIDIA (2015). Gpu technology conference 2015 - leaps in visual computing. http:
//www.ustream.tv/channel/gpu-technology-conference-2015.

Pearce, D., günter Hirsch, H., and Gmbh, E. E. D. (2000). The aurora experimental
framework for the performance evaluation of speech recognition systems under
noisy conditions. In in ISCA ITRW ASR2000, pages 29–32.

Raj, B. and Stern, R. (2005). Missing-feature approaches in speech recognition.
Signal Processing Magazine, IEEE, 22(5):101–116.

Rix, A., Beerends, J., Hollier, M., and Hekstra, A. (2001). Perceptual evaluation of
speech quality (pesq)-a new method for speech quality assessment of telephone net-
works and codecs. In Acoustics, Speech, and Signal Processing, 2001. Proceedings.
(ICASSP ’01). 2001 IEEE International Conference on, volume 2, pages 749–752
vol.2.

Rothauser, E. H., Chapman, W. D., Guttman, N., Hecker, M. H. L., Nordby, K. S.,
Silbiger, H. R., Urbanek, G. E., and Weinstock, M. (1969). IEEE recommended
practice for speech quality measurements. IEEE Transactions on Audio and Elec-
troacoustics, 17:225–246.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representa-
tions by back-propagating errors. Nature, 323(9):533–536.

Salakhutdinov, R. and Hinton, G. (2006). Training a deep autoencoder
or a classifier on mnist digits. http://www.cs.toronto.edu/~hinton/
MatlabForSciencePaper.html.

http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?_r=1
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?_r=1
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?_r=1
http://www.newyorker.com/tech/elements/hyping-artificial-intelligence-yet-again
http://www.newyorker.com/tech/elements/hyping-artificial-intelligence-yet-again
http://www.ustream.tv/channel/gpu-technology-conference-2015
http://www.ustream.tv/channel/gpu-technology-conference-2015
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

Bibliography 141

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best practices for convolutional
neural networks applied to visual document analysis. In International Conference
on Document Analysis and Recognition, volume 2, pages 958–962.

Simpson, A. J., Roma, G., and Plumbley, M. D. (2015). Deep karaoke: Extracting
vocals from musical mixtures using a convolutional deep neural network. Book in
preparation for MIT Press.

Simpson, A. J. R. (2015). Deep transform: Cocktail party source separation via
probabilistic re-synthesis. CoRR, abs/1503.06046.

Singh, S., Tripathy, M., and Anand, R. (2014). A fuzzy mask based on wavelet
packet for improving speech quality and intelligibility. In Signal Processing and
Integrated Networks (SPIN), 2014 International Conference on, pages 1–4.

Stanford Encyclopedia (2014). Connectionism. http://plato.stanford.edu/
entries/connectionism/.

Taal, C., Hendriks, R., Heusdens, R., and Jensen, J. (2010). A short-time objec-
tive intelligibility measure for time-frequency weighted noisy speech. In Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on,
pages 4214–4217.

Taal, C. H. (2010). Stoi - short-time objective intelligibility measure. http://www.
ceestaal.nl/matlab.html.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the
gap to human-level performance in face verification.

Tchorz, J. and Kollmeier, B. (2002). Estimation of the signal-to-noise ratio with
amplitude modulation spectrograms. Speech Communication 38, pages 1–17.

Tchorz, J. and Kollmeier, B. (2003). Snr estimation based on amplitude modulation
analysis with applications to noise suppression. IEEE Transactions on Speech and
Audio Processing, Volume:11 , Issue: 3, pages 184 – 192.

The Guardian (2014). Google buys uk artificial intelligence startup deep-
mind for $650m. http://www.theguardian.com/technology/2014/jan/27/
google-acquires-uk-artificial-intelligence-startup-deepmind.

The Huffington Post (2015). Inside the mind that built google brain: On life, cre-
ativity, and failure. http://www.huffingtonpost.com/2015/05/13/andrew-ng_
n_7267682.html.

The Platform (2015). Deep learning pioneer pushing gpu neu-
ral network limits. http://www.theplatform.net/2015/05/11/
deep-learning-pioneer-pushing-gpu-neural-network-limits/.

http://plato.stanford.edu/entries/connectionism/
http://plato.stanford.edu/entries/connectionism/
http://www.ceestaal.nl/matlab.html
http://www.ceestaal.nl/matlab.html
http://www.theguardian.com/technology/2014/jan/27/google-acquires-uk-artificial-intelligence-startup-deepmind
http://www.theguardian.com/technology/2014/jan/27/google-acquires-uk-artificial-intelligence-startup-deepmind
http://www.huffingtonpost.com/2015/05/13/andrew-ng_n_7267682.html
http://www.huffingtonpost.com/2015/05/13/andrew-ng_n_7267682.html
http://www.theplatform.net/2015/05/11/deep-learning-pioneer-pushing-gpu-neural-network-limits/
http://www.theplatform.net/2015/05/11/deep-learning-pioneer-pushing-gpu-neural-network-limits/

142 Bibliography

The Register (2015). Ai guru ng: Fearing a rise of killer robots is like worrying about
overpopulation on mars. http://www.theregister.co.uk/2015/03/19/andrew_
ng_baidu_ai/.

The Wall Street Journal (2015). Baidu leads in artificial intel-
ligence benchmark. http://blogs.wsj.com/digits/2015/05/12/
baidu-leads-in-artificial-intelligence-benchmark/.

Tieleman, T. (2008). Training restricted boltzmann machines using approximations
to the likelihood gradient. In Proceedings of the 25th international conference on
Machine learning, pages 1064–1071.

Töscher, A., Jahrer, M., and Bell, R. M. (2009). The bigchaos solution to the netflix
grand prize.

Wang, D. (2005). On ideal binary mask as the computational goal of auditory scene
analysis. In Divenyi, P., editor, Speech Separation by Humans and Machines, pages
181–197. Springer US.

Wang, D. (2008). Time-frequency masking for speech separation and its potential
for hearing aid design.

Wang, D. and Brown, G. J. (2006). Computational Auditory Scene Analysis. Wiley
and Sons.

Wang, Y. (2013). Intelligibility test data from hi and nh listeners. http://web.cse.
ohio-state.edu/~dwang/pnl/corpus/Healy-jasa13/YWang.html.

Wang, Y., Han, K., and Wang, D. (2012). Exploring monaural features for
classification-based speech segregation.

Wang, Y. and Wang, D. (2013). Towards scaling up classification-based speech
separation. Audio, Speech, and Language Processing, IEEE Transactions on,
21(7):1381–1390.

Wired (2013). Google hires brains that helped supercharge machine learning. http:
//www.wired.com/2013/03/google_hinton/.

Wired (2015). How ray kurzweil will help google make the ultimate ai brain. http:
//www.wired.com/2013/04/kurzweil-google-ai/.

Yamashita, T., Tanaka, M., Yoshida, E., Yamauchi, Y., and Fujiyoshi, H. (2014).
To be bernoulli or to be gaussian, for a restricted boltzmann machine. In 22nd
International Conference on Pattern Recognition, pages 1520–1525.

Zeiler, M. D., Ranzato, M., Monga, R., Mao, M. Z., Yang, K., Le, Q. V., Nguyen,
P., Senior, A. W., Vanhoucke, V., Dean, J., and Hinton, G. E. (2013). On rectified
linear units for speech processing. In ICASSP, pages 3517–3521. IEEE.

http://www.theregister.co.uk/2015/03/19/andrew_ng_baidu_ai/
http://www.theregister.co.uk/2015/03/19/andrew_ng_baidu_ai/
http://blogs.wsj.com/digits/2015/05/12/baidu-leads-in-artificial-intelligence-benchmark/
http://blogs.wsj.com/digits/2015/05/12/baidu-leads-in-artificial-intelligence-benchmark/
http://web.cse.ohio-state.edu/~dwang/pnl/corpus/Healy-jasa13/YWang.html
http://web.cse.ohio-state.edu/~dwang/pnl/corpus/Healy-jasa13/YWang.html
http://www.wired.com/2013/03/google_hinton/
http://www.wired.com/2013/03/google_hinton/
http://www.wired.com/2013/04/kurzweil-google-ai/
http://www.wired.com/2013/04/kurzweil-google-ai/

Appendix A

Derivation of the Wiener Filter

This appendix describes the derivation of the Wiener filter from Section 3.1.2. The
signals from the model in Fig. 3.2 is recalled as

• h = [h0 h1 . . . hM−1]T is the filter coefficients.

• y(n) = [y(n) y(n− 1) . . . y(n−M − 1)]T is the WSS input signals.

• d̂(n) = y(n)Th is the output signal.

• d(n) is a zero mean WSS desired signal.

• e(n) = d(n)− d̂(n) is the error signal.

As mentioned in Section 3.1.2, the aim is to make the filter optimal in a mean-squared
error sense and since it is desired to minimize the error signal e(n), a cost function
can be formulated as Eq. (A.1) and rewritten as Eq. (A.2).

J(w) = E[e(n)2]. (A.1)

J(h) = E[e(n)2] = E[(d(n)− yT (n)h)2] = E[(d(n)− yT (n)h)T (d(n)− yT (n)h)]
= E[d(n)2] + E[hTy(n)uT (n)h]− E[d(n)yT (n)h]− E[hTy(n)yT (n)d(n)]
= E[d(n)2] + hTE[y(n)yT (n)]h− 2hTE[y(n)d(n)]
= σ2

d + hTRyyh− 2hT ryd
(A.2)

where Ryy is the auto-correlation matrix of y(n) and ryd is the cross-correlation
vector between y(n) and d(n). The gradient of Eq. (A.2) is found as

∇J(h) = 2Ryyh− 2ryd. (A.3)

An optimum is desired such ∇J(h) = 2Ryyh − 2ryd = 0 and the so-called Wiener
Hopf equations is hereby given as

Ryyh = ryd. (A.4)

Assuming that Ryy is invertible the filter coefficient can be expressed as

h = R−1
yy ryd. (A.5)

If Ryy is positive definite then Eq. (A.5) will yield the optimal filter coefficients.

143

144 Appendix A. Derivation of the Wiener Filter

Appendix B

GMM, Latent Variables & EM

This appendix describes how a Gaussian mixture model, as described in Section
3.2.1, can be expressed in terms of a latent variable in order to use the Expectation-
Maximization (EM) algorithm. First, the general Gaussian mixture model is recalled
as

p(x) =
K∑
k=1

πkN (x|µk,Σk) (B.1)

where µk is the mean vector, Σk is the covariance matrix for the kth Gaussian
component and πk is the mixing coefficient. The K × 1 latent random vector z
is next introduced. The elements satisfy zk ∈ {0, 1} and ∑k zk = 1 meaning one
element is 1 and K − 1 elements are 0. Furthermore, zk = 1 is the assignment of
a sample x to the kth Gaussian component. The marginal probability of z can be
expressed such that p(zk = 1) = πk. The probability of z is given by

p(z) =
K∏
k=1

πzkk (B.2)

The conditional distribution of x given z can be written as

p(x|z) =
K∏
k=1
N (x|µk,Σk)zk . (B.3)

The joint distribution p(x, z) = p(z)p(x|z) and summed over all z we obtain the
marginal distribution of x. With the expression from Eq. (3.26) in mind, this allows
that

p(x) =
∑

z
p(z)p(x|z) =

K∑
k=1

πkN (x|µk,Σk). (B.4)

An expression of a mixture of Gaussians involving the latent variable z is now avail-
able. By using Bayes rule one can express the conditional probability of z given x.
The probability p(zk = 1|x) is denoted γ(zk). This can be thought of as the a poste-
riori probability that some observed x comes from the kth Gaussian component. It
is also called the responsibility and is defined as

γ(zk) , p(zk = 1|x) = p(zk = 1)p(x|zk = 1)
p(x) . (B.5)

145

146 Appendix B. GMM, Latent Variables & EM

Since p(zk = 1) = πk, p(x|zk = 1) = N (x|µk,Σk) and p(x) is given by Eq. (3.26)
the responsibility can be written as

γ(zk) = πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

. (B.6)

Note the change of the index from k to j. The responsibility for the nth observation xn
is denoted γ(znk) and one can interpret this as how much the kth Gaussian component
is responsible for the nth observation. For an observation xn with dimension D
the data set of N observations can be represented by the N × D matrix X. The
corresponding latent variables can be represented by the N ×K matrix Z. The log
likelihood function is given by [Bishop, 2009, p. 433]

ln p(X|π,µ,Σ) =
N∑
n=1

ln
K∑
k=1

πkN (x|µk,Σk). (B.7)

To obtain maximum likelihood estimates of µk the derivative wrt. µk of Eq. (B.7)
is set equal to 0 and solved for µk. This yields [Bishop, 2009, p. 435]

µk = 1
Nk

N∑
n=1

γ(znk)xn (B.8)

where

Nk =
N∑
n=1

γ(znk). (B.9)

Likewise, the covariance matrix can be estimated as [Bishop, 2009, p. 436]

Σk = 1
Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)T (B.10)

and finally the mixing coefficient can be estimated as

πk = Nk

N
. (B.11)

The formulation of the Gaussian mixture model using a latent variable allows the
use of the EM algorithm as described in algorithm 2.
Algorithm 2: Expectation-Maximization
Step 1: Initiate the parameters µk, Σk and πk for each Gaussian component.
Step 2:Assign each data point xn an responsibility score given by Eq. (B.6).
This is also called the E-step.
Step 3: Given the responsibilities, the parameters µk, Σk and πk is adjusted
for each component. This is also called the M-step.
Step 4:Evaluate the log likelihood function. Furthermore, check convergence
criterion for the parameters. If convergence is not met, go to step 2.

Appendix C

Derivation of the Backpropaga-
tion Algorithm

In this appendix the backpropagation algorithm and the learning rules, used to train
a multilayer FNN, will be derived. In the current derivation, the backpropagation
algorithm is based on the sum-of-squares error function and the learning rules are
based on the gradient descent optimization method. The derivation is based on a
2-layer fully connected FNN similar to the one shown in Fig. 4.4 with generalized
neurons as shown in Fig. 4.2. The input layer is referred to as layer I, the hidden layer
is referred to as layer J and the output layer is referred to as layer K. Furthermore,
wji is a weight in the hidden layer, on the arch between input unit i and hidden unit
j. Likewise, wkj is a weight in the output layer, on the arch between hidden unit j
and output unit k. The kth neuron output, using a sigmoid activation function, is
given by

yk = ϕ(zk) = 1
1 + e−zk

(C.1)

where the corresponding accumulator output is given by

zk =
J∑
j=0

wkjxj . (C.2)

Let w = [wk0, wk1, . . . , wkJ]T denote a weight vector consisting of J weights to
unit k. As mentioned earlier, the bias terms are included in the summation in Eq.
(C.2) such that they are treated as weights connected to a fixed input having the
value of positive one. In order to develop a learning rule using gradient descent, the
gradient must be computed. The gradient of interest is the rate of change of the error
function relative to the weights at a given layer. The gradient descent algorithm is
given by

w(n+ 1) = w(n) +∇w(n) (C.3)

where ∇w(n), is given by

∇w(n) = −µ∂E(w(n))
∂w(n) (C.4)

147

148 Appendix C. Derivation of the Backpropagation Algorithm

and µ is the learning rate. Equation (C.4) can be expressed in component form as

∇wkj(n) = −µ∂E(w(n))
∂wkj(n) . (C.5)

The error function E(w(n)) is the sum-of-squares of the difference between the output
yk and a training case tk and is given by

E(w(n)) = 1
2
∑
k∈K

(yk(n)− tk(n))2. (C.6)

Equation (C.6) shows the error function for a single training case and the index n
refers to the different training cases. To keep the notation simple the index n is
omitted in the following derivation. In Eq. (C.3) it is assumed that the weights w
are updated after every training case. This form of learning is referred to as on-line
learning. If all training examples were evaluated before the weights were updated it is
referred to as batch learning. Also a stochastic learning approach exists where a fixed
number of training cases are selected by random. What learning method to choose
depends on the application and influences the learning speed, memory consumption
and generalization capabilities [Duda et al., 2001, p. 316].

The learning rule for a FNN can be divided into two phases. The feed-forward
phase and the feed-backward phase. The feed-forward phase is where a training case
is added to the input of the FNN and the data is propagated forward through the
FNN in a manner like Eq. (4.4). The output yk is then compared to the test case
tk and the error is computed according to Eq. (C.6). The second phase is where
the error is propagated backwards into the network in order to update the weights.
This forward and backward operation is repeated for all training cases several times
until the error is below some defined threshold which indicates that the FNN has
satisfactory performance on the training cases. When all training cases have been
applied to the FNN once, an epoch has elapsed. Typically it is needed to run several
epochs before the error is below the desired threshold.

The backpropagation phase can also be divided into two. One phase for updating
the weights belonging to an output and one phase for updating weights belonging to a
hidden unit. The first phase is handled by the delta rule and the second phase, which
is the solution to the credit assignment problem, is handled by the backpropagation
algorithm.

The first phase of the backpropagation algorithm is to develop a rule to update
a weight in an output layer based on the current outputs and the test data. This is
done by rearranging Eq. (C.5) such that the gradient is expressed in terms outputs
and training data. For simplicity, the learning rate −µ will be omitted for now. The
error derivative of interest is given by

∂E(w)
∂wkj

= ∂

∂wkj

1
2
∑
k∈K

(yk − tk)2. (C.7)

149

By applying the chain rule and observing that wkj only depends on one k, Eq. (C.7)
can be rewritten as

∂E(w)
∂wkj

= ∂

∂wkj

1
2(yk − tk)2 = ∂yk

∂wkj
(yk − tk). (C.8)

By observing that yk depends on zk through Eq. (C.1) and that zk depends on wkj
through Eq. (C.2) and furthermore applying the chain rule to Eq. (C.8) the following
expression can be obtained

∂E(w)
∂wkj

= ∂yk
∂zk

∂zk
∂wkj

(yk − tk). (C.9)

From Eq. (C.9) the two partial derivatives are solved separately. yk is given by Eq.
(C.1) so ∂yk

∂zk
is simply the derivative of the sigmoid function with respect to zk as

given by

∂yk
∂zk

= d

dz
(ϕ(zk)) = d

dz

(1
1 + e−zk

)
= ϕ(zk)(1− ϕ(zk)). (C.10)

Likewise, zk is given by Eq. (C.2) so ∂zk
∂wkj

is the derivative of zk with respect to wkj .
As seen from Eq. (C.11), ∂zk

∂wkj
= xk, which is the input to the output layer but since

the output of the hidden layer is input to the output layer xk = yj .

∂zk
∂wkj

= ∂

∂zk

J∑
j=0

wkjxj = xk = yj (C.11)

inserting (C.10) and (C.11) into (C.9), we find

∂E(w)
∂wkj

= (yk − tk)ϕ(zk)(1− ϕ(zk))yj (C.12)

By recognizing that ϕ(zk) = yk, Eq. (C.12) can be rewritten as

∂E(w)
∂wkj

= (yk − tk)yk(1− yk)yj . (C.13)

By defining δk = (yk − tk)yk(1− yk), Eq. (C.13) can be rewritten as

∂E(w)
∂wkj

= δkyj . (C.14)

Combining Eq. (C.14) and (C.5) the delta learning rule is obtained [Duda et al.,
2001, p. 291]

∇wkj = −µδkyj . (C.15)

150 Appendix C. Derivation of the Backpropagation Algorithm

Equation (C.15) describes how a given weight wkj in the output layer must be
changed in terms of the outputs yj , yk and the target value tk.

The second phase of the backpropagation algorithm is to find a learning rule
similar to Eq. (C.15) but with respect to the weights in the hidden layer wji. The
error derivatives of interest are the partial derivative of the error function with respect
to the weights of the hidden units wji, which is given by

∂E(w)
∂wji

= ∂

∂wji

1
2
∑
k∈K

(yk − tk)2. (C.16)

Since the FNN is assumed to be fully connected, meaning that a single weight in the
hidden layer influences all the outputs in the output layer, the summation in (C.16)
cannot be omitted, as in the derivation of the delta rule. The first step is then to
move the differentiation inside the summation and apply the chain rule which gives

∂E(w)
∂wji

=
∑
k∈K

(yk − tk)
∂yk
∂wji

. (C.17)

It can be observed that yk depends directly on zk and zk depends indirectly on wji
so by applying the chain rule to Eq. (C.17), it follows that

∂E(w)
∂wji

=
∑
k∈K

(yk − tk)
∂yk
∂zk

∂zk
∂wji

. (C.18)

As shown in Eq. (C.10) ∂yk
∂zk

= ϕ(zk)(1−ϕ(zk)), and by recognizing that zk depends
on wji via yj , the chain rule can once again be applied to obtain

∂E(w)
∂wji

=
∑
k∈K

(yk − tk)ϕ(zk)(1− ϕ(zk))
∂zk
∂yj

∂yj
∂wji

. (C.19)

By applying the relation ϕ(zk) = yk and recognizing that ∂zk
∂yj

= wkj the following is
given

∂E(w)
∂wji

=
∑
k∈K

(yk − tk)yk(1− yk)wkj
∂yj
∂wji

(C.20)

Intuitively, it makes sense that ∂zk
∂yj

= wjk since the only change that happens, on
the arc between output unit yj in the hidden layer and input unit zk in the output
layer, is the weight on that arc wkj .

The chain rule can be applied once again by recognizing that yj depends on wji
via zj hence

∂E(w)
∂wji

=
∑
k∈K

(yk − tk)yk(1− yk)wkj
∂yj
∂zj

∂zj
∂wji

. (C.21)

151

Similar to the step from Eq. (C.18) to (C.19), it can be found that ∂yj
∂zj

= ϕ(zj)(1−
ϕ(zj) = yj(1− yj). Moreover, ∂zj

∂wji
is just the derivative of Eq. (C.2) with indices ji

which yields ∂zj
∂wji

= xj = yi. Applying these steps to Eq. (C.21) leads to

∂E(w)
∂wji

=
∑
k∈K

(yk − tk)yk(1− yk)wkjyj(1− yj)yi. (C.22)

Rearranging Eq.(C.22) and recalling the definition of δk from Eq. (C.14), it follows
that

∂E(w)
∂wji

= yiyj(1− yj)
∑
k∈K

δkwkj . (C.23)

By defining δj = yj(1− yj)
∑
k∈K δkwkj we arrive at

∂E(w)
∂wji

= δjyi. (C.24)

Equation (C.24) shows how a weight in the hidden layer depends on all outputs in
the subsequent layer. By combining this expression with Eq. (C.5) the learning rule
for updating the weights of a hidden unit is given by

∇wji = −µδjyi. (C.25)

The backpropagation algorithm has now been derived and is given by Eq. (C.15) and
Eq. (C.25) [Duda et al., 2001, p. 292]. Equation (C.15) is used to change a weight in
an output layer and Eq. (C.25) is used to change a weight in a hidden layer and can
theoretically be used on any number of hidden layers. Equation (C.25) is also the
solution to the credit assignment problem since it shows how a weight in a hidden
layer can be expressed in terms of all the outputs in the subsequent layers which is the
core concept of backpropagation. The algorithm used to update the weights does not
need to be the gradient descent method as shown in Eq. (C.3). The gradient descent
method is a first order method since it only uses the gradient and faster convergence
could be achieved if second order methods such as the Conjugate-Gradient method
or the Newtons method was used [Haykin, 1999, p. 236] [Duda et al., 2001, pp.
318-323].

152 Appendix C. Derivation of the Backpropagation Algorithm

Appendix D

Implementation Overview

This appendix describes some of the details about the implementation of the DNN
based speech enhancement system which is illustrated in Fig. 6.1. The system is
implemented in MATLAB and the source files, noise files as well as the HINT corpora,
are located in the matlab\DNN_Speech_Enhancement folder on the appendix DVDs.
This appendix is not a complete description about the implementation but merely a
help if one is intending to run or modify the code.

D.1 DNN System Environment Creation
To train and test the system, a DNN environment must be set up, which is done
by running either gen_test_env_windows.m or gen_test_env_linux.m depending
on the operating system. Before running one of these files a number of parameters
must be set such as the name of the environment, the path to store the environment,
the noise type to use, the number of training cases, the test cases and the validation
cases, the SNR levels of the noisy signal, the local criterion, the number of frequency
channels used etc. The default parameters are the once used for test S5-1/2 from
Tab. 7.1. Also the number of layers can be set by changing the dnn_env_source_dir
variable to point at the folder containing the source files for a 2, 3 or 4 layer system.
When the file is executed a DNN environment is created and depending on the size
of the training set it can take from a few minutes to several hours to create and
take up tens of gigabytes of hard disk space. Using the default settings of S5-1/2 the
DNN environment takes up approximately 27 GB. The DNN environment follows the
structure shown by Fig. D.1. The metadata.txt file contains a list of all the settings
as well as lists of all the speech files used for generating the training, validation and
test data. The train_dnn_sys.m is used to train the system and eval_dnn_sys.m is
used to evaluate the performance of the system. The different folders are described
in Section D.3 and the training and evaluation procedure is described in D.2.

153

154 Appendix D. Implementation Overview

dnn_env

dnn_1

params_no_pre_training

params_pre_training

pre_training_tmp_files

test_data

training_data

validation_data

dnn_2

params_no_pre_training

params_pre_training

pre_training_tmp_files

test_data

training_data

validation_data

dnn_source_files

DNN

FEATURES

rastamat

IBM

MEASURES

UTILS

voicebox

result

metadata.txt

eval_dnn_sys.m

train_dnn_sys.m

Figure D.1: This figure presents the folder structure of the implementation of the DNN based
speech enhancement system presented in this thesis

D.2. DNN System Training & Evaluation 155

D.2 DNN System Training & Evaluation
To train the speech enhancement system, the file train_dnn_sys.m must be setup
and run. The parameters to set are the following. The use of pre-training or not, the
batch size, the number of hidden units for the hidden layers, the number of epochs for
pre-training, the number of maximum epochs for fine-tuning for the first and second
classification stage, the number of parallel workers used to speedup the training
and the early stopping criteria. When these parameters are set the file can be run.
MATLAB Parallel Computing Toolbox Version 6.5 (R2014b) is required if parallel
computing is utilized. When the training is finished the generated parameters, i.e.
the DNN weights and biases are stored in dnn_1 and dnn_2. On an Intel Core i7
920 CPU running 2.67 GHz it takes approximately 67 hours to complete the training
when 8 parallel workers are utilized. Likewise, 6 GB of memory is required to train
the system with the S5-1/2 settings.

To evaluate the performance of the trained speech enhancement system the
eval_dnn_sys.m file must be setup and run. The parameters to setup are the fol-
lowing. Whether or not to use weights computed from pre-trained DNNs or weights
computed from DNNs trained with backpropagation alone. Whether or not the train-
ing, test or validation data should be used. What SNR to use, what noise type to
use, the LC and the threshold for which a T-F unit is classified as speech dominated.
Each test, validation or training sample is then processed by the speech enhancement
system and HIT, FA, HIT-FA, STOI and PESQ are computed and stored in a text
file. Also the clean, noisy, the IBM processed signal, the estimated IBM processed
signal and the soft mask processed signal are stored as wav files. Likewise are the
time domain representations and spectrograms of all the different signals. All these
outputs are stored in individual folders in the result folder.

D.3 File Structure & Description
This section describes the folders and some of the most used files in the DNN environ-
ment. The folder dnn_env, illustrated as the top yellow box in Fig. D.1 is named after
the variable env_name in gen_test_env_xxxxx.m and contain all the files and folders
required to train and test the speech enhancement system. The dnn_1 folder contains
the data structures which are related to the first DNN classifier illustrated by the
DNN 1 boxes on Fig. 6.1. These data structures contain the training, validation and
testing data, which are based on the HINT speech corpus and the chosen noise. When
the system is trained it can be chosen whether or not pre-training should be utilized.
If pre-training is utilized the DNN parameters, i.e., the weights and biases, for all
subband DNNs will be saved in params_pre_training. If only backpropagation is
used the DNN parameters are saved in the params_no_pre_training folder. All the
temporary files regarding the pre-training are stored in pre_training_tmp_files.

This is similar for the dnn_2 but these are related to the second classification stage
where the training, validation and test data is based on a posterior mask created from

156 Appendix D. Implementation Overview

the output of the first classification stage. This is related to the boxes labeled with
DNN 2 on Fig. 6.1.

The dnn_source_files folder contains all source files, which make up the DNN
system. This includes the files used for feature extraction and IBM creation as well
as speech analysis and synthesis. As far as possible a single struct is used to store all
variables regarding the DNN training except for the weights and biases. This struct
is called DnnData and is the argument used for many of the functions. Some of the
important files will briefly be described in the following.

The DNN folder contains all files related to the DNN training and the most im-
portant ones are the following:

• trainDNN.m

• makebatches.m

• rbmvislinear.m

• rbm.m

• backpropclassify.m

• minimize.m

• CG_CLASSIFY.m

The trainDNN.m file is a function which train a single DNN. This function
is called several times from train_dnn_sys.m located in the root of the dnn_env
directory, one function call per subband DNN. The makebatches.m file generates
mini-batches by randomly permuting the training data based on the data structures
in the dnn_1/2 folders. The rbmvislinear.m implements a GBRBM trained with
one step contrastive divergence and rbm.m implements in a similar fashion a BBRBM.
In rbmvislinear.m and rbm.m the different learning rates are defined as well as the
momentum and weight decay.

In backpropclassify.m a forward neural network is implemented initialized ei-
ther by random or by the weights stored in the pre_training_tmp_files folder.
The neural network is trained using backpropagation and the conjugate gradient al-
gorithm is implemented in minimize.m and the backpropagation gradients are com-
puted in CG_CLASSIFY.m.

The Features folder contains all files related to feature extraction. The folder
also contains the rastamat toolbox [Ellis, 2005]. The following two files perform the
top level feature extraction.

• gen_AMS.m

• gen_features_and_labels.m

D.3. File Structure & Description 157

The gen_AMS.m file computes the AMS features based on the DnnData struct
containing the raw acoustic signal and the gen_features_and_labels.m file com-
putes the IBM, MFCC and RASTA-PLP features using the rastamat toolbox and
the labels based on the IBM, also using the DnnData struct.

The IBM folder contains all files related to speech synthesis. These files are pri-
marily from [Jin and Wang, 2007b]. The most important files are the following two:

• ibm_synthesis.m

• gammatone.m

The ibm_synthesis.m file makes speech synthesis based on a binary mask or a
mask based on rational numbers. The gammatone.m implements a gammatone filter
bank, which is used to construct a T-F representation.

The MEASURES folder contains the implementation of the PESQ quality measure
and the STOI intelligibility measure. These implementations are from [Loizou, 2013]
and [Taal et al., 2010] respectively and is implemented in the following two files:

• pesq.m

• stoi.m

The UTILS folder contains different helper functions as well as the voicebox tool-
box. Two helper functions which are worth mentioning are the following:

• gen_post_mask.m

• gen_post_mask_feature_and_label.m

The gen_post_mask.m makes a posterior mask based on the DNN parameters as
well as the training, validation and test data in the dnn_1 folder.
The gen_post_mask_feature_and_label.m file uses this posterior mask to construct
new training, validation and test data for the second classification stage, which are
stored in their respective folders in the dnn_2 folder. The posterior mask features are
constructed using a window of posterior probabilities similar to Fig. 6.5. If 24 bands
are used the window span 5 time frames and 7 frequency bands and if 64 channels
are used the window span 5 time frames and 17 channels.

158 Appendix D. Implementation Overview

Appendix E

DNN Parameters

This appendix lists the DNN parameters which are common for all simulations in
Chapter 7.

E.1 Feature Parameters
• 31 MFCC features are used computed using the melfcc RASTAMAT function.

The parameters can be found on line 57 in gen_features_and_labels.m file.

• 15 AMS features are used which are computed based on the implementation
described in Section 6.3.2. The implementation can be found in the gen_AMS.m
file.

• 13 RASTA-PLP features are used computed by the rastaplp RASTAMAT func-
tion. The parameters can be found on line 61 in gen_features_and_labels.m
file.

• 13 RASTA-PLP delta features and 13 RASTA-PLP delta-delta features are
used which are computed using the deltas RASTAMAT function. The param-
eters can be found on line 62-63 in gen_features_and_labels.m file.

• A Posterior Mask window consisting of 5 time frames and 17 frequency frames
is used. This is further described in Section 6.3.1.

E.2 DNN System Parameters
• A learning rate for BBRBM of 0.1 is used.

• A learning rate for BBRBM of 0.01 is used.

• A weight decay of 0.0002 were used for RBM training.

• An initial momentum factor of 0.5 were used for the first 5 epochs of RBM
training and 0.9 for the remaining epochs.

• Batch size: 512

159

160 Appendix E. DNN Parameters

• A DNN with two hidden layers is used.

• 200 hidden units are used for each hidden layer in the DNN

• A non-linear conjugate gradient algorithm is used for supervised training. The
implementation is taken from [Salakhutdinov and Hinton, 2006]

• A maximum number of 500 epochs are used for all supervised training.

• The early stopping criterion is set to 50 epochs.

• 100 epochs of pre-training is used for all DNNs where pre-training is utilized.

• 64 frequency channels are used.

• The bandwidth is from 0.1 kHz - 8 kHz

• The frame width is 20 ms.

• The frame overlap is 10 ms.

• The sampling frequency is 16 kHz.

• Binary classification threshold for speech dominated T-F unit is 0.5.

• In the sampling step of the GBRBM in CD only the mean value is used and
no actual sample is drawn [Wang and Wang, 2013].

	Front page
	English title page
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Preface
	1 Introduction
	1.1 The Cocktail Party Problem
	1.2 Deep Learning
	1.3 Thesis Scope

	2 Fundamentals of Speech
	2.1 The Speech Signal and Production
	2.2 Short-Time Fourier Transform & the Spectrogram
	2.3 The Gammatone Filter Bank & the Cochleagram
	2.4 Speech Synthesis
	2.5 Acoustic Feature Representation
	2.5.1 Mel Frequency Cepstrum Coefficients
	2.5.2 Relative Spectral Transform and Perceptual Linear Prediction
	2.5.3 Amplitude Modulation Spectrogram
	2.5.4 Delta & Delta-Delta Features

	3 Speech Enhancement Algorithms
	3.1 Classical Methods
	3.1.1 Spectral Subtraction
	3.1.2 Wiener Filter
	3.1.3 Non-Linear Estimators
	3.1.4 Speech and Noise PSD Estimation

	3.2 Ideal Binary Mask Estimation
	3.2.1 Gaussian Mixture Models
	3.2.2 Support Vector Machines
	3.2.3 Deep Neural Networks

	3.3 Performance Measures
	3.3.1 Perceptual Evaluation of Speech Quality(PESQ)
	3.3.2 Short-Time Objective Intelligibility(STOI)
	3.3.3 Hit - False Alarm(HIT-FA)

	4 Neural Networks
	4.1 Biological Neural Networks
	4.2 Artificial Neural Networks
	4.2.1 The Artificial Neuron
	4.2.2 Artificial Neural Network Architectures
	4.2.3 Design of Artificial Neural Networks
	4.2.4 Backpropagation Algorithm

	5 Pre-training Neural Networks
	5.1 Restricted Boltzmann Machines
	5.1.1 Bernoulli-Bernoulli RBM
	5.1.2 Gaussian-Bernoulli RBM

	5.2 Sampling from Restricted Boltzmann Machines
	5.3 Training Restricted Boltzmann Machines
	5.3.1 Contrastive Divergence for Bernoulli-Bernoulli RBMs
	5.3.2 Contrastive Divergence for Gaussian-Bernoulli RBMs
	5.3.3 RBM Example

	5.4 Deep Belief Networks
	5.4.1 Generative Training of Deep Belief Networks
	5.4.2 Discriminative Training of Deep Belief Networks

	6 Speech Enhancement Using Deep Neural Networks
	6.1 System Overview
	6.1.1 Pre-processing
	6.1.2 Pre-training
	6.1.3 Fine-tuning
	6.1.4 Posterior Mask Feature Extraction
	6.1.5 Speech Enhancement
	6.1.6 Evaluation

	6.2 Training & Test Data
	6.2.1 Unseen Noise Realizations

	6.3 System Implementation & Evaluation
	6.3.1 IBM Creation, Speech Analysis & Synthesis Evaluation
	6.3.2 AMS Feature Evaluation
	6.3.3 DNN Training & Pre-training Evaluation

	6.4 Early Stopping
	6.5 Algorithmic Analysis
	6.5.1 Algorithmic Delay
	6.5.2 Computational Complexity
	6.5.3 Inherent Parallelism
	6.5.4 Memory Complexity

	7 Test Results & Discussion
	7.1 Visual Evaluation
	7.2 Effects of Pre-training, Looped Noise & Soft Mask
	7.2.1 Plausible Causes for Deviating Performance
	7.2.2 Discussion of Objective 1, 2 & 3

	7.3 Evaluation of Robustness & Comparison to Classical Methods
	7.4 System Improvements
	7.4.1 Increasing Performance
	7.4.2 Decreasing Turnaround Time

	8 Conclusion
	Bibliography
	A Derivation of the Wiener Filter
	B GMM, Latent Variables & EM
	C Derivation of the Backpropagation Algorithm
	D Implementation Overview
	D.1 DNN System Environment Creation
	D.2 DNN System Training & Evaluation
	D.3 File Structure & Description

	E DNN Parameters
	E.1 Feature Parameters
	E.2 DNN System Parameters

