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Chapter 1

Introduction

The growing congestion of public roads and associated problems lead to a growing
need of accurate traffic information. This information can be used for traffic
safety analysis, early incident detection, improvement of infrastructure capacity
and localization of infrastructural weaknesses.

Particularly road safety is an important subject for traffic researchers. The
number of worldwide traffic crashes and injuries is growing and the impact on
society is high. Especially vulnerable road users, such as pedestrians, cyclists and
motorcyclists, are at high risk of road traffic casualties. Not only costs for medical
treatment accrue from an injury, but also physiological complications may result
for the victim and his family and friends. Even economic impacts have been
measured [Peden et al., 2004]. Therefore, already the purpose of safety analysis
justifies the research on new traffic monitoring systems and algorithms. Also does
the World Health Organization (WHO) stress the importance of accurate data
from different sources in its report on road traffic injury prevention [Peden et al.,
2004] and the United Nations [2014] invite its members in its latest resolution on
‘Improving global road safety’ to ‘investments in multisectoral road traffic crash
surveillance and analysis’.

Different traffic monitoring systems have been developed and used over the
years. Hereby has been shown that the use of cameras offers significant im-
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Chapter 1. Introduction

provements over other systems such as inductive loops or microwave detectors.
Video surveillance offers a wide band of analysis possibilities as for instance traf-
fic flow, turning movements and vehicle classification [Kastrinaki et al., 2003].
Additionally video cameras are portable, comparatively cheap in acquisition and
installation and provide rich information understandable by humans. Image pro-
cessing techniques play hereby an important role as they provide added value to
the raw data, enabling automatic extraction of relevant information [Buch et al.,
2011].

The use of cameras for monitoring purposes also introduces a significant draw-
back. Caused by the functional principle of a camera working in the visual range
of light, the quality of the data highly depends on environmental conditions such
as rain, fog or day and night cycle. A persistent monitoring of the scene is however
often desired. To overcome this problem different detectors have been introduced,
working either standalone or in combination with traditional cameras. The po-
tential of these methods has been emphasized by Buch et al. in their review of
computer vision techniques for the analysis of urban traffic.

Recently a special interest in thermal or infrared (IR) cameras developed.
Thermal cameras capture the radiation emitted by objects that depends on their
temperature [Gade and Moeslund, 2014]. Therefore, they are preferably used
for surveillance of humans whose body temperature is under normal conditions
significantly higher than the air temperature. However, the potential and field of
application is much greater as described by Gade and Moeslund. Although still
being rarely used, the value of thermal cameras in the field of traffic surveillance
has been shown in several works.

To overcome downsides of different sensors, multimodal systems have been
developed. The goal of this work is to evaluate, how the usage of two modalities,
namely visual and thermal, can assist to solve the problem of persistent traffic
analysis. A dynamic fusion method is developed, aiming to enable a situation
aware usage of the sensors and therefore compensate for their individual weak-
nesses. Different image quality heuristics are investigated and a new background
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subtraction method based on a trust-based fusion of background conformity val-
ues is presented. Concluding an in-depth analysis of the presented method fol-
lows. To demonstrate the potential of the proposed method, qualitative and
quantitative results are presented, discussed and compared to the state of the art
methods.
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Chapter 2

Analysis

This chapter provides an introduction and overview over state of the art traffic
surveillance and related methods. Hereby methods that work under challenging
conditions are of particular interest. A discussion about the term persistence and
an introduction to image fusion techniques follows. The chapter concludes with
the problem statement of this work.

2.1 Methods on Traffic Surveillance

Computer vision based traffic monitoring has been an active field of research in
the last decades and is still a subject of high interest. Decreasing hardware cost
as well as development of new sensors have opened video analytics for a wide field
of applications. Methods have been developed for various operating conditions;
however, a standard method for different purposes and conditions is yet to be
presented. Particularly research on surveillance at nighttime, difficult light and
challenging weather conditions is very limited [Buch et al., 2011].

Computer vision techniques have been developed in the field of traffic surveil-
lance for various purposes. Many of these require the system to work in real-time
(RT), which limits the complexity of possible algorithms. Cameras or similar sen-
sors are mounted either stationary, typically on a high pole, or in a vehicle. Both
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Chapter 2. Analysis

Object Segmentation Feature Extraction Target Detection State Filtering

Figure 2.1: Typical steps of a bottom-up tracking approach.

positions introduce additionally limitations and challenges. The camera position
on a pole enables a large field of view but causes also a very small level of detail.
Moving cameras on the other hand require different image processing techniques
as in typical computer vision applications as algorithms can for example not base
on fixed points or scene models. However, the scope of this work is limited to
methods working with stationary cameras. A further difference to conventional
surveillance applications is the fact, that traffic monitoring systems often have to
deal with a broad number of different classes, such as cars, trucks, buses, cyclists
and pedestrians. Each of these classes have unique properties, which increases
the complexity of a one size fits all solution.

Traffic monitoring systems fall in general in the category of surveillance sys-
tems and can be therefore categorized in one of two processing pipelines. Based
on the flow of information the two classes are named bottom-up and top-down
[Al Najjar et al., 2014, 120p]. Top-down techniques require prior knowledge
about the objects, as they ‘specify a-priori generated hypotheses based on cur-
rent image data’ [Rowe, 2008]. The process relies on the search of learned feature
patterns. This might be challenging in the field of traffic monitoring because of
the diversity of the road users. Bottom-up techniques on the other hand rely on
a segmentation of foreground objects from the background, such as background
subtraction or frame differencing. Then feature extraction, target detection and
state filtering follows as illustrated in Figure 2.1. No object model is needed and
computational costs are generally lower. This makes bottom-up techniques well
applicable to traffic surveillance systems. They are however less robust against
noise and detection errors and therefore require additional steps to handle result-
ing difficulties [Al Najjar et al., 2014, 123].
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2.1. Methods on Traffic Surveillance

Aside from the tracking of road users, their classification can be of interest
in a traffic monitoring system. To improve the working times of monitoring
systems, different sensors and sensor fusion (see Section 2.3) are being used. In
the following a short overview over crucial steps and state of the art methods in
traffic monitoring is given. An in-depth analysis has been provided in the surveys
of Kastrinaki et al. [2003] and Buch et al. [2011].

2.1.1 Object Segmentation

The task of object segmentation is a well-researched topic in the field of im-
age processing. However, a golden standard is not found and traffic monitoring
applications introduce problems that are ignored by common state of the art
techniques. Background model approaches, such as the adaptive Gaussian mix-
ture model by Stauffer and Grimson [1999], assume that foreground objects are
constantly in motion and move more or less in the same speed. For traffic, this is
obviously not the case, resulting in slow or stationary objects gradually merging
into the background. This problem has been addressed by Cheung and Kamath
[2005], Vargas et al. [2008] and Yao and Ling [2014]. Cheung and Kamath val-
idate foreground pixels by a moving object model. The latter methods update
the background model slower if the pixel was found to be foreground, making it
less likely that objects merge into the background. Yao and Ling additionally
introduce a prediction step for foreground blobs and texture similarity measures
for foreground verification.
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2.1.2 Traffic Analysis

Traffic surveillance applications require different levels of understanding of the
scene depending on the purpose of the system. Most applications fall in one of
the three following categories.

A. Vehicle Counting

Vehicle counting is a common problem of traffic analysis and is solved by the usage
of inductive loops. However, the installation causes high costs and interference
with the traffic, therefore cameras have been introduced to that field. Only a basic
understanding of scene, typically foreground detection, is necessary to perform
the task.

State of the art methods like proposed by Bas et al. [2007], Chen et al. [2007b]
and Lei et al. [2008] basically rely on background subtraction methods with suc-
cessive blob analysis. Chen et al. [2007a] provide an adaption for nighttime by
detecting the headlights of the vehicle rather than the vehicle itself.

B. Incident Detection

Traffic incident detection requires a basic interpretation of the scene. Incidents
can be for example stopped or turning cars, accidents and near accidents as
well as actions like passing, tailgating or rule violations. To perform that task,
the monitoring system needs to identify and track each vehicle. Occlusion and
merging effects of vehicles are hereby the biggest challenges [Kamijo et al., 2000].

Exemplary in this field are the works of Kamijo et al. [2000] and Zou et al.
[2009]. Both methods use a Hidden Markov Model (HMM) to classify typical
behavior patterns. A slightly different approach is followed by Ki and Lee [2007].
Their methods extract vehicle features such as acceleration, position, area and
direction to be able to detect and report accidents. Jackson et al. [2013] present
an open source software for tracking and trajectory analysis of generic traffic.
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2.1. Methods on Traffic Surveillance

Three different case studies show the potential of the software. Also different
commercial systems for incident detection are available.

C. Classification

To be able to conduct arbitrary in depth analyses of traffic and road users, a full
understanding of the scene must be present. This includes classification of road
users, trajectories and features such as current position, speed and acceleration
as well as the dimensions of the vehicles. Some commercial systems for incident
detection feature vehicle classification. An all-embracing system is however yet
to be presented. In addition, many systems have been developed for highways;
systems that can handle the challenging conditions of urban environments are
comparatively rare.

Messelodi et al. [2005] present a RT system that is capable of detecting and
classifying vehicles including cyclists. Average speed and entering lane of each ve-
hicles are additionally extracted. A significant drawback of the proposed method
is that it is not working at nighttime. It is however capable of detecting its work-
ing conditions. A method tailored for intersection with heavy pedestrian and
bicycle traffic has been presented by Zangenehpour et al. [2014]. Different clas-
sifiers have been presented to distinguish road users in the three classes cyclists,
pedestrians and motorized vehicle.
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2.1.3 Nighttime and bad Weather Surveillance

Surprisingly little work has been done dealing with nighttime and difficult light
conditions. In addition, work that covers wide ranges of weather conditions is
rare although the interest and amount of workload in that topic is large [Buch
et al., 2011].

Some special case methods for tracking during nighttime exist. Robert [2009]
presents a method for tracking cars by detection of the two headlights. Dalaff
et al. [2003] use image fusion (see Section 2.3) of RGB and thermal images to
enable their tracker to work under low light conditions. Other methods, such as
presented by Goubet et al. [2006] and Bi et al. [2009], use thermal cameras to
detect pedestrians independently of the lighting situation.

Iwasaki et al. [2011] present a pattern-based method that is capable of de-
tecting cars in thermal images under poor visibility conditions such as fog, snow,
heavy rain, and nighttime. An update has been presented recently [Iwasaki et al.,
2013]. Zhou et al. [2007] built a SVM-based classifier that is able to detect cars
by classifying image parts as car or background even under low light conditions.
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2.2. Persistence

2.2 Persistence

Video surveillance system characteristics differ by the purpose and setup of the
system. One of the most desired qualities is persistence. Persistence is the degree
of a system working at all times and under various conditions such as night
and day. Different parameters and influences might harm the persistence of a
system. Independent of the system setup, these parameters can be separated
in two groups. Geometric parameters describe the spatial setup such as camera
characteristics and scene geometry. Environmental parameters describe external
influences such as weather and lighting situation.

From the setup of a video surveillance system, potential weaknesses can be
already derived. Objects far away from the camera position appear smaller and
less detailed. Objects behind others might be occluded in the camera view.
Problems that might arise are occlusion, self-occlusion, deformation, scaling and
mirroring of scene objects. The setup of multiple cameras at different position
can lower the problems but introduces identification and registration problems.

The second and larger group of influences on a system are the environmen-
tal influences. The degree of how much a parameter harms the system highly
depends on the used cameras. In a classical video surveillance situation with
a RGB video camera, the lighting situation is of high importance. While in-
doors the lighting situation might stay more or less the same for a longer period,
outdoors it can change dramatically within minutes. Hereby conditions such as
presence of streetlights, time of day and presence of clouds or fog can play a role.
Depending on the latitude of the location, the amount of sunlight and its angle
can be highly dependent on the day of the year, resulting in drastically changing
lighting conditions over the year. For outdoor systems, using a thermal camera,
the weather condition might influence the quality of the recorded data. Other
influencing parameters are possible and will be discussed further in Section 3.2.

The spatial setup of video surveillance systems and resulting weaknesses have
been researched with some success already. Research on environmental parame-
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ters, that harm the persistence of a system, is still rare. Two parallel strategies
can be followed here: The first strategy is the usage of different sensors to min-
imize the effect on external influences. This strategy called sensor fusion will
be further discussed in Section 2.3. Secondly can be investigated on how prior
knowledge about influences, such as the lighting situation, can help to improve a
system. So have Doshi and Trivedi [2007] shown that satellite images of clouds
can help to predict shadows in standard surveillance situation and thus improve
adaptive background models, which allows the conclusion that other information
sources might be helpful too.
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2.3. Multimodal Image Fusion

2.3 Multimodal Image Fusion

As discussed earlier in this work, different sensor types produce different types
of images with individual strengths and weaknesses. Standard cameras working
in the visual range of light capture the reflected colors by a scene. This type of
sensing is very similar to the human eye. Poorly illuminated scenes or the presence
of visual obstructions such as rain or fog harm the perception. Thermal cameras
on the other hand measure the radiation emitted by an object. Images created by
this type of sensor are independent of the illumination but are less detailed and
provide an unfamiliar visual impression. Image fusion aims to compensate for the
individual weaknesses by combining two or more images from different sensors
into one. The resulting data ideally contains details from both data sources and
can even reveal new features. Generally fusion is not limited to specific types of
sensors, this section however focuses on the fusion of RGB and IR images.

Image fusion is used at different stages of a processing pipeline. The three
categories are: pixel-level fusion, feature-level fusion, and decision-level fusion
[Hall and Llinas, 2001].

Fusion at decision level combines the output from two or more parallel process-
ing pipelines. The results are merged by Boolean operators or weighted average.
Serrano-Cuerda et al. [2014] perform parallel segmenting of thermal and RGB
data and select the representative output based on confidence heuristics.

Feature-level fusion performs the fusion one step earlier in the processing
pipeline. Features from all input images are extracted individually and then fused
into a joint feature space. Kwon et al. [2002] present a technique for automatic
target recognition (ATR).

Pixel-level fusion is the most common approach. It requires all input images
to be spatially and temporally aligned. This alignment, also called registration,
is a task for itself. Automatic image registration approaches, as used for example
for image stitching, often fail, since there is no correlation between the intensity
values of the modalities [Conaire et al., 2006]. This is funded in the fact, that
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Chapter 2. Analysis

Figure 2.2: RGB image and result of a naive RGB/IR fusion

the sensors work with different wavebands. A common approach is to manually
select corresponding points in both modalities and compute a homography. A
homography matrix is a bijective mapping between image points in the different
camera views laying on the same 3D plane. This procedure will be further elab-
orated in Section 4.1.2. However special case automatic methods exist. Since
for an algorithm it is hard to tell which points correspond in the images with
the lack of correlation, features are used that are most probably present in both
modalities. Successful methods have been presented using contours [Heather and
Smith, 2005], Harris corners [Hrkać et al., 2007] and Hough lines [Istenic et al.,
2007]. However these methods have been tailored for specific datasets and are
not generally applicable.

As already discussed, the goal of pixel-level fusion is to enrich the input data.
Figure 2.2 shows a scene from the OTCBVS dataset [Davis and Sharma, 2007].
The left image shows the raw RGB image. The right image shows the result of a
negative multiplication of the RGB and IR image. Already this naive technique
reveals a person standing next to the building. Besides naive fusion though
averaging, addition or multiplication of the images, more complex methods have
been presented, trying to optimize the information content of the image.

The work of Shah et al. [2010] performs the fusion after different wavelet trans-
forms of the images. This allows a fusion rule based on frequencies rather than
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pixels. Details are preserved while simultaneously artifacts can be reduced. A
statistical approach is followed by Chen and Leung [2009]. During an expectation-
maximization the fusion result is obtained stepwise.

Lallier and Farooq [2000] perform the fusion trough adaptive weight averaging.
The weight per pixel is hereby defined by a number of equations that express the
interest in the specific pixel. In the context of the work these are the degree of
an object being warmer or colder for the thermal domain and the occurrence of
contrast differences as well as large spatial and temporal intensity variations for
the visual domain.

Instead of fusing the images to a new image that can be represented in RGB,
other methods simply combine the inputs and perform the fusion in the sub-
sequent processing. St-Laurent et al. [2007] adapt a state of the art algorithm
for moving objects extraction to work with "Red-Green-Blue-Thermal" (RGBT)
videos.
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2.4 Problem Statement

Following the analysis above, the goal of this work is to create a robust and
persistent background subtraction method for traffic monitoring systems using a
combination of a RGB and a thermal camera. Object segmentation is the initial
and crucial step for successful tracking and qualitative analysis. Therefore this
step must be robust against noise and environmental changes. Different speeds
of traffic and stopped road users have to be handled by the system.

State of the art camera based traffic monitoring is usually based on video
data of the visual domain. Thermal cameras and image fusion are rarely used,
although their potential is great especially for low light situations. Under different
conditions thermal and RGB cameras vary in data quality. When aiming for
a persistent 24 hour surveillance, a fixed fusion based on image characteristics
might be challenging, since the surveillance situation can change dramatically.
Therefore, an adaptive weighting or even a switch between the modalities might
be beneficial. This project investigates in which way prior information can help a
system to choose the best modality to work with. Different information sources
are investigated and a system design is proposed. In contrast to other works, no
situations are excluded to lay the foundation for a system that can work at all
times.

Based on this problem statement, the following chapter evaluates system re-
quirements and possible information sources.

16



Chapter 3

Requirement Specification

In the previous chapter an analysis of state of art traffic monitoring applications
and related methods was given. Based on the problem statement given in Sec-
tion 2.4, requirements are defined in this chapter. This includes an evaluation of
possible information sources that may indicate the quality or usefulness of the
two modalities as well as requirements for the background subtraction algorithm.

3.1 Background Subtraction

As discussed earlier, background subtraction or foreground detection is the first
step in many image processing applications. Foreground regions are identified for
further processing steps. The foreground is hereby defined as all objects that are
not fixed in the scene or all objects of particular interest. In traffic monitoring
foreground objects are all road users, such as cars, cyclist and pedestrians. All
road users should be marked; false positives should not occur. The coverage of
the foreground blobs should be at least on the level of state of the art methods.

Background subtraction for traffic scenes is a comparable hard task. As-
sumptions made by different background modeling techniques do not hold. In
these methods, a statistical background model is build and the current frame
is compared to the model. Large differences indicate foreground regions. The
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background model is constantly updated to adapt for environmental changes, re-
sulting that slow or stopped objects merge into the background. Other techniques
require prior information about foreground objects. The diversity of the traffic
in the given setup makes this option impossible.

Background modeling is however the right tool for traffic monitoring because
of its flexibility and real-time capability. Adjustments to common methods have
been presented, to prevent merging and ghosting effects. The model has to quickly
adapt to environmental changes such as illumination changes, shadows or mois-
ture in the RGB modality and automatic camera adjustments and temperature
changes in the thermal images and simultaneously preserve foreground objects
from merging into the background. The proposal of Yao and Ling [2014] shows
great potential and should therefore be consulted.

The background subtraction for the RGB modality should feature a shadow
detection. Since shadow detection can also produce false positives, the detection
should be triggered only for weather situations where large shadows are likely.

18



3.2. Quality Heuristics

3.2 Quality Heuristics

Knowledge about environmental conditions let us estimate how well a sensor can
work in a certain situation. Intuitively we know that a RGB camera is useless in
the absence of light. The image quality of thermal cameras is good, when objects
are warmer than their environment as it is the case for humans under normal
conditions. To adapt this common sense to a technical system, the confidence in
a sensor must be quantified. Also the quality of data produced by a camera is
dependent on a large number of influences. Therefore must be investigated which
parameter or set of parameters indicates the quality of recorded data best.

RGB and thermal cameras work in different frequency ranges. Therefore,
intensity values have different interpretations and are not correlated. Consequen-
tially influencing parameters are most likely disjoint too. In the following possible
quality indicators are evaluated separately for both modalities.

3.2.1 Visible Range

Quantified quality rating of RGB images is a hard task since we are used to this
type of sensing. The human eye can adapt to challenging conditions easily and
the human brain interprets the visual perception [Gregory, 1997]. Therefore we
need an understanding of image processing techniques, to be able to rate the
quality of an image.

Starting from the bottom-up technique as described in Section 2.1 an input
image is of good quality when the system creates acceptable results using state
of the art image processing methods. This means generally all objects of interest
are found and false positives are rare. Which results are acceptable is dependent
on specific system requirements.

Figure 3.1 shows three situations from the same intersection. While Fig-
ure 3.1a shows an ideal image for background subtraction methods, both Fig-
ures 3.1b and 3.1c display exemplary challenges. Both images show situations
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(a) Good conditions (b) Large shadows (c) Large reflections

Figure 3.1: RGB images from the same intersection under different conditions.

were ghost objects, namely drop shadows and reflections, are present. In both sit-
uations background subtraction techniques based on background modeling would
find these areas as foreground objects. Although shadows are handled quite well
nowadays [Prati et al., 2003], they still disturb the detection process. An effective
method for reflection detection is yet to be presented. In conclusion both images
should be rated as of low quality.

Following the argumentation images with low light conditions, such as dusk,
dawn and night, should be rated as low quality even though a human might be
able to identify the road users. As a heuristic input parameter the elevation angle
of the sun be can consulted. As illustrated in Figure 3.2 the solar elevation angle
is defined as the angle between the ground plane and the sun’s position vector.
The sun is visible for angles ≥ 0◦. Between 0◦ and −18◦ we speak about twilight
and below the sun does not contribute to sky illumination, it is night.

On daytime the presence and amount of drop shadows depends on two factors.
Firstly only on sunny days drop shadows can appear. A weather database can
be accessed to retrieve a description of the weather conditions. Secondly the
length of these shadows also depends on the solar elevation angle. Therefore
both, weather data and the position of the sun must be consulted to present a
heuristic to what extent cast shadows might be present in the scene.

Different weather conditions such as heavy rain, snow and fog also might harm
the image quality. The reasons for this are manifold. Examples are reflections
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Figure 3.2: Illustration of solar elevation and azimuth angle.

due to moisture, limited visibility due to rain or fog or changing illumination
by moving clouds. The quantified quality values of different conditions must be
experimentally determined.

3.2.2 Thermal Range

Thermal cameras measure the infrared radiation emitted by all objects. The
energy of the radiation is hereby mainly dependent on the temperature of the
object. A constant factor called emissivity scales the radiation for different mate-
rials [Gade and Moeslund, 2014]. Conversely, this means that objects of different
materials emit different level of radiation energy while having the same temper-
ature. With known emissivity the temperature of objects in thermal images can
be calculated using the Stefan-Boltzmann law. However many thermal cameras
built for surveillance feature Automatic Gain Control (AGC), so that the map-
ping function between radiation energy and intensity values is unknown. AGC
automatically adjusts the image gain to the optimal range. The function comes
as a build in feature with state of the art thermal cameras and is necessary to be
able to record high quality video data over a longer period.
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Figure 3.3: Different road temperatures

The quality of thermal images is high when the contrast between foreground
and background objects is high. In traffic surveillance this is the case when road
and road users emit a significant different amount of radiation; or simplified there
is a noticeable temperature difference. Assuming a more or less constant tem-
perature of road users, the temperature of the road could be a quality indicator.
Figure 3.3 shows an example on how different road temperatures affect the con-
trast between cars and road. Except from direct measurements however, the
determination of the road temperature is complicated, since it is influenced by
numerous interacting parameters [Chapman and Thornes, 2006]. Therefore, the
road temperature cannot be used, as long as this data is not present.

As described earlier, objects of different materials have different intensity val-
ues in a thermal image, even when having almost the same temperature. There-
fore a certain amount of information is in the image even when showing a scene
without foreground objects. In a situation where no objects can be distinguished,
the information content is low. Consequentially the image entropy can be used
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as a quality heuristic of thermal images. The entropy is the expectation of the
information content contained in an information source. It is defined as:

H = −
255∑
i=0

p(Ii) log2(p(Ii)) (3.1)

with p being the probability of a intensity value I in a gray scale image.

Figure 3.4 shows a side-by-side comparison of the same intersection at differ-
ent times. In the upper images the cars can hardly be seen while in the lower
images even details such as road markings stand out clearly. The corresponding
entropy values correlate with this impression. Experiments conducted during this
work have shown that for thermal images with H < 4 the foreground cannot be
separated with satisfying results.
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(a) H = 4.23 (b) H = 5.04

(c) H = 6.65 (d) H = 7.67

Figure 3.4: Thermal images of the same scene with different entropy values.
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Chapter 4

System Design

The following chapter discusses the design of a multimodal background subtrac-
tion method that uses environmental information to dynamically fuse the input
images as specified in the previous chapters. The basic system design is illustrated
in Figure 4.1. The following sections will reference this overview from time to
time for better understanding.

The system implementation consists of three major steps that are represented
through the following sections. Section 4.2 specifies the image quality heuristics
as analyzed in Section 3.2. Section 4.3 elaborates on the heart of the algorithm:
the weighted late fusion of the two input streams. Finally Section 4.4 describes
special adjustment that have been made in order to optimize the algorithm for
the purpose of traffic surveillance.

To begin with preliminary steps are described, that are needed to synchronize
and align the input data.
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4.1. Image Preprocessing

4.1 Image Preprocessing

In order to provide processable video material, preliminary steps were needed
for the main dataset of this project. The steps are not necessarily part of the
presented system as they are common methods for computer vision algorithms.
They have been however, an important part of the work and are therefore elab-
orated in the following. The presented solutions are tailored or selected for the
given dataset, which will be described in detail in Section 5.1.

4.1.1 Temporal Alignment

In order to be able to fuse information from both cameras, the frames have to
be synchronized. Hardware that is able to perform this task at recording time
is available but has not been used for the given dataset. As a result the video
sequences may have different frame rates and different starting points.

With tools like ffmpeg1 the frame rate of videos can be adjusted. While doing
so frames are doubled or dropped, leading to a slightly temporal inconsistency.

Temporal offsets of the videos have been compensated manually. After syn-
chronization an offset smaller than one frame might be still present. This offset
however is negligible, since resulting spatial offsets of moving objects are mostly
in sub-pixel level.

The algorithm as presented in the following features a compensation for tem-
poral and spacial inaccuracies.

1https://www.ffmpeg.org/ Last downloaded June 1, 2015
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4.1.2 Image Registration

The following step is the spatial alignment of the images, also called image reg-
istration. During image registration two or more images taken at different times,
from different sensors or from different viewpoints are transformed into the same
coordinate system [Brown, 1992]. For the given dataset the last two points are
the case. In order to perform the registration, the camera geometry is consulted.

The simplest camera model, which describes the projection between the 3D
world and the 2D image, is the pinhole camera model as displayed in Figure 4.3.
With the intercept theorem one can easily see that the point (X, Y, Z)T is mapped
to (fX/Z, fY/Z, f)T [Hartley and Zisserman, 2003, 153ff]. Using homogeneous
vectors, the projection can be expressed as a linear mapping:


X

Y

Z

1

 7→

fX

fY

Z

 =


f 0

f 0
1 0



X

Y

Z

1

 (4.1)

One important consequence of eq. (4.1) is the epipolar constraint as displayed
in Figure 4.4 [Hartley and Zisserman, 2003, 325ff]. Given a point in world co-
ordinates X and its image point x of the first camera, its corresponding image
point x′ of the second camera must lie on the epipolar line l′. For points located
on the plane πi therefore exists a projective transformation from the image plane
of the first camera to the image plane of the second camera:

x′ = Hπix (4.2)

where H is a 3 × 3 matrix and x and x′ are homogeneous vectors. The relative
position of the cameras is hereby irrelevant. The matrix H is called homography.

The homography between the ground planes of the two images represents
a good approximation of the mapping between all points of the two images.
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4.1. Image Preprocessing

Figure 4.2: Image pair before and after registration.

One image can be registered on the second with mapping all points with the
homography. The registration error hereby depends of the distance of a point
to the ground plane in world coordinates. For many scenarios, including traffic
surveillance, this registration process is sufficient.

To find the homography between the ground planes of the two images, corre-
sponding points are selected manually. Afterwards the homography is calculated
through the least squares method. The input and final result of the registration
process is displayed in Figure 4.2.
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W
w

C

Y

X

Z

f

Figure 4.3: Pinhole camera model with camera center C, principle axis Z, focal length f ,
world point W and corresponding image point w.

O O′

X

x x′

e e′

l l′

Figure 4.4: Epipolar constraint for point X with its image points x and x′, epipolar lines l
and l′ and epipoles e and e′.
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4.1.3 Lens Distortion Correction

The prior assumption, that a camera follows a linear projection, is not true in
many cases. This results that straight lines in world coordinates are not mapped
to straight lines in the image [Szeliski, 2010, 52ff]. Image registration based on
a homography fails as a consequence. The reason for the nonlinear mapping lies
in a radial distortion of the lenses. Figure 4.5 displays the two common types
of lens distortion. Coordinates in the observed images are displaced away (barrel
distortion) or towards (pincushion distortion) the image center proportional to
the radial distance to the center. Fortunately, these types of distortion can be
compensated. A simplified model describing the phenomena is the following:

x̂c = xc(1 + κ1r
2 + κ2r

4)

ŷc = yc(1 + κ1r
2 + κ2r

4) (4.3)

where (xc, yc) is the normalized pixel position in reference to the image center
and κ1 and κ2 are the radial distortion parameters. In order to find the original
pixel position the parameters must be found.

Since finding the camera parameters for image undistortion is a common task,
multiple frameworks exist. Tools like the Camera Calibration Toolbox for Mat-
lab [Bouguet, 2008] or the calibration functions of the computer vision library
OpenCV [Bradski, 2000] are frequently used tools.

The common procedure that is also performed by the mentioned tools, is to
first take images of a checkerboard as shown in Figure 4.6. Then the edge points
of the squares are found in the resulting image through basic image processing
methods or by hand. Afterwards the offset of the points from their corresponding
straight line can be measured. From location and offset values, the distortion
parameters can be estimated.
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(a) Barrel distortion (b) Pincushion distortion

Figure 4.5: Different types of lens distortion.

Figure 4.6: Camera calibration with OpenCV.
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4.1. Image Preprocessing

This method however, requires access to the cameras that have been used
for the recording of the dataset. Unfortunately this was not possible during this
project. Therefore another solution had to be found.

Alemán-Flores et al. [2014] present a method that is capable of finding points
that may have lain on a straight line in world coordinates. In order to do so, a
distortion parameter is introduced as a third dimension in Hough line transform.
The distortion parameter with the n strongest lines is chosen as the best approx-
imation. Afterwards points that are possible part of these lines are extracted.
This way points on straight lines in world coordinates are found, which can then
be used for a more precise approximation of the lens distortion parameters similar
to the checkerboard method. Found lines by the algorithm in a frame from the
dataset used in this work are shown in Figure 4.7.

Once the radial distortion parameters are found through optimization of
eq. (4.3), the lens distortion can be corrected. A side-by-side comparison of a
distorted image and its corrected correspondence is displayed in Figure 4.8. As
expected from the definition, the effect is most noticeable at the corners of the
image.
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Figure 4.7: Lines extracted through Alemán-Flores et al. [2014].

Figure 4.8: Image before and after lens undistortion.
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4.2 Quality Heuristic Specification

In Section 3.2 has been discussed what information sources can be consulted
in order to give an estimate how well a background subtraction algorithm will
perform on the given modality. This estimate will be specified in the following
section in form of heuristic functions that receive the information as an input and
calculate a quality value between zero and one as its output.

4.2.1 Thermal Image Quality

The best property that has been found to estimate the thermal image quality
is the image entropy as described in Section 3.2.2. The mapping between en-
tropy values and quality is however unknown. From the definition of the entropy
images with H = 0 contain no information, what specifies the lower boundary.
During experiments conducted during this work could be found, that images with
H > 6 contain enough details for a completely satisfying background subtraction.
Images with H < 4 show already significant shortcomings.
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0

0.25
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0.75
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Q
u
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Figure 4.9: Thermal image quality heuristic.
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Since the degree of the mapping function between entropy and quality is
unknown, it has to be chosen manually. A linear function has been found to
be not sufficient. During the experiments could be seen, that the down-rating
of low entropy values is too strong. A sigmoid function appeared as a better
approximation of the mapping function. The function used during this work
is showed in Figure 4.9. However since the true model is unknown, different
functions might work better for this or other scenarios. An in-depth analysis is
beyond the scope of this work.

4.2.2 RGB Image Quality

For the image quality in the visual domain multiple information sources have been
found. In contrast to the thermal domain, all information come from external
sources, namely position of the sun and weather conditions. Three functions can
be derived from this knowledge base. These are firstly the amount of daylight
trough the position of the sun, next the presence of harming influences through
weather conditions and last the presence and amount of cast shadows depending
on both sources.

A. Illumination

The main influence for the RGB image quality is the illumination of the scene.
From the solar elevation model, which is further explained in Appendix A, we
can derive information about the illumination. The elevation angle is depended
on the hour of the day, day of the year and the location. Figure 4.10 shows the
solar elevation angle for summer and winter solstice for the location Aalborg,
Denmark.

For angles > 0◦ the sun is visible, we speak about day. Below −18◦ the sun has
no influence on the illumination of the sky. In between we speak about twilight.
Therefore −18◦ and 0◦ could set the boundaries of a quality heuristic. However
the civil twilight begins not before −6◦. Furthermore is the illumination condition
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Figure 4.10: Sun’s elevation angle for summer and winter solstice for the location Aalborg,
Denmark. −18◦ marks the beginning of the twilight.
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is not perfect as soon as the sun is visible. Buildings and the colored sunlight lead
to an imperfect illumination. Therefore a perfect illumination has been defined
in this project for elevation angles ≥ 6◦. Since the sun and therefore the input
function already follows a sine function, the mapping of quality values have been
assumed to be linear between −6◦ and 6◦. However during night streetlights and
headlights illuminate the scene. Therefore a minimum quality of 0.2 has been
assumed for illumination.

B. Shadows

Although methods for shadow detection exist, the presence of shadows is still
a challenge in computer vision. The extent of shadows depends on the solar
elevation angle through the formula:

L = h/tan(α) (4.4)

with h being the object height and α the solar elevation angle. With a unit
object height 1 − L can serve as a quality function. To prevent negative values
a minimum value qsmin is introduced. Another modification needs to be made in
order to set the quality to 100% for nighttime and bad weather leading to the
equation:

qshadows = max
(

1− (α > 0) ∧ w
tan(α) ∗ ψ , qsmin

)
(4.5)

where w indicates good weather where shadows are likely and ψ > 0 is a scaling
factor. The conditions have been hand-picked from the selection the weather
database provides. Selected have been situations with clear sky or varying and
occasional cloudiness.

The values of qsmin and ψ have been set to 0.3 and 50 respectively during this
work. Both values are arbitrary and have been hand tuned.

38



4.2. Quality Heuristic Specification

C. Weather

The influence of the weather on computer vision algorithms is manifold. Ev-
ery weather condition effects to algorithms in a different manner. The weather
database Weather Underground by The Weather Channel2 used during this work
differentiates between 133 conditions. An in-depth analysis of all conditions is
beyond the scope of the work. Therefore different conditions have been broadly
grouped into 5 categories as seen in Table 4.1.

Good conditions 1.0

Low/Varying illumination 0.8

Reflections/moisture 0.6

Particle occlusion/precipitation 0.3

Reduced visibility 0.3

Table 4.1: Different weather categories and corresponding quality rating.

Each of the categories is characterized through a set of quality harming in-
fluences, such as varying light, reflections through moisture or particle occlusion.
The quality rating of the categories are hand tuned based on experiments. A full
list of conditions and their corresponding groups can be found in Appendix B. If
a condition falls in multiple categories, the one with the lowest rating is chosen.

2http://www.wunderground.com/history/ Last downloaded June 1, 2015
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4.3 Background Distance Fusion

This section discusses the main contribution of the work. A new approach to im-
age fusion is presented. Despite other works, not the input data is fused but inter-
mediary results of two parallel background subtractions. In Figure 4.1 (page 26)
this part of the system is marked with roman number II.

The system is based on the adaptive Gaussian mixture model background
subtraction algorithm presented by Stauffer and Grimson [1999]. The necessary
adjustments have been made directly in an OpenCV implementation3 of the algo-
rithm. The implementation features improvements presented by Zivkovic [2004].
The specific implementation is however interchangeable in the presented method.

4.3.1 Gaussian Mixture Model Background Subtraction

For a better understanding of the proposed method, an introduction into back-
ground subtraction with adaptive Gaussian mixture modeling is given in the
following. The main idea is to build a statistical model of the scene. Intruding
objects can then be detected by identifying parts of the image that do not fit the
model.

As the scene model a Gaussian mixture model (GMM) is assumed. Early
approaches only assumed a single Gaussian [Wren et al., 1997]. However, it has
been shown, that background values may change between different states, e.g.
because of shadows or moving leafs. A GMM is able to model this behavior.

The model is built by choosing a time period T . At time t we have a history
per pixel x of Xt = xt, . . . , xt−T . The history is modeled by a GMM with K

components.

3http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_
tracking.html#backgroundsubtractormog2 Last downloaded June 1, 2015
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4.3. Background Distance Fusion

P (x|Xt) ≈
K∑
i=1

ωi,tN (x, µi,t,Σi,t) (4.6)

The mixing weights ωi are non-negative and add up to one. ωi describes the
prior probability of the component i. For computational reasons it is assumed
that Σ = Iσ2, i.e. the color channels of the pixels are independent.

Since in Xt are most likely values that belong to foreground objects, we ap-
proximate the background model by the first B ≤ K larges clusters such as:

B = argminb
(

b∑
k=1

ωk < T

)
(4.7)

where T describes the portion of data that should be accounted by the back-
ground.

To decide whether or not a pixel of a new image is part of the background,
P (x|Xt) can be evaluated and compared to a threshold. In practice however, the
components of P (x|Xt) are evaluated individually. A pixel is defined to match
the background if it falls within λ standard deviations of the mean of one of the
background components:

Mi,t+1 =

1, if |xt+1 − µi,t| < λσ

0, otherwise
(4.8)

When monitoring a scene over a longer time, the scene will most probably
change. Reasons can be changing illumination trough moving clouds, moving
shadows or even objects that came into the scene and should be treated as being
part of the background. Therefore the model has to be updated over time. The
update process is done as follows:
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ωi,t+1 = (1− α)ωi,t+1 + αMi,t+1 (4.9)

µi,t+1 = (1− β)µi,t + βxt+1 (4.10)

σ2
i,t+1 = (1− β)σ2

i,t + β(xt+1 − µi,t)2 (4.11)

where α is a constant update rate and β is defined as:

β = αN (xt+1, µi,t, σ
2
i,t) (4.12)

When more than one matchMi is found, only the one with the most supporting
evidence and least variance (ωi/σ) is selected and all others are set to 0. If no
match is found, a new component is generated and the least probable one is
discarded. Finally, the weights ωi are normalized at each iteration to add up to
1.

An in-depth explanation of the algorithm along with elaboration on possible
improvements is given by Power and Schoonees [2002].

4.3.2 Calculating the GMM Distance Map

During the calculation of the foreground mask with the help of the Gaussian
mixture model, each pixel is tested against each component of its background
model, if it can be accepted as part of the component’s Gaussian distribution.
The Euclidean distance of the sample value from the mean is hereby the important
factor for acceptance. When rewriting eq. (4.8) we have:

Mi,t+1 =
(
|xt+1 − µi,t|

λσi,t
< 1

)
(4.13)

The acceptance distance of the sample as background is now normalized by
the specific variance and the threshold value. Large distance values indicate a
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high probability of the pixel being foreground whilst small values show a high
conformity with the component. With this in mind an approximation of the
general conformity of a pixel with the model can be expressed with distance
values:

Dt ≈



d0,t, if M0,t

d1,t, if M1,t

. . .

db,t, if Mb,t

min(d0,t, d1,t, . . . , db,t), otherwise

(4.14)

with

di,t = |xt − µi,t−1|
λσi,t−1

(4.15)

If a match Mi,t is found, the corresponding value of di,t is used to express the
distance. Otherwise the distance to the closest component is used. The resulting
values of all pixels form a map expressing the deviation of image regions from
the background. The scaling is hereby the same for all pixels, so that a single
threshold can be applied. When thresholding the map with the value 1.0, the
resulting mask is the same as if calculated through Stauffer and Grimson [1999].
Figure 4.11 shows an image representation of the background distance map of a
traffic scene. An arbitrary scaling has been applied for viewing purposes.
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Figure 4.11: Distance map of a traffic scene.

4.3.3 Trust based Fusion and Foreground Identification

At this stage we have heuristics for the image qualities of both modalities as well
as maps expressing the background conformity of pixels. Build upon this a trust
based fusion is performed.

The trust in a modality can directly be derived from the quality heuristics.
The better the quality the higher is the trust. Therefore the different heuristics
have to be combined first. Under the assumption, that the different quality
heuristics do not interfere each other, the heuristics can simply be multiplied:

qRGB = qsun · qshadows · qweather (4.16)

qIR = qentropy (4.17)

However, with the functionality of the background subtraction in mind, these
values are not sufficient to describe the trust in each modality. Rapid changes in
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the environment can highly disturb the algorithm. The changes can for example
be rapid illumination changes for the RGB domain, or a change of the auto gain
for the IR domain. These changes are not predictable by the knowledge base
of the quality heuristics. Therefore another parameter needs to be introduced.
When the background subtraction algorithm fails, a huge number of false positives
appear. The resulting number of foreground pixels is much higher as the average
of the scene. A quality heuristic based on this phenomena is defined in eq. (4.18),
where τ defines the average foreground ratio, γ is an arbitrary scaling factor, 1
denotes an indicator function and (X, Y ) are the image dimensions.

qfg = max(1− γ(rfg − τ), 0)

rfg = 1
XY

X∑
x=1

Y∑
y=1

1 [Dx,y ≥ 1] (4.18)

Given eq. (4.18) the trust can now be calculated as follows:

TRGB = min(qfgRGB , qRGB) (4.19)

TIR = min(qfgIR , qIR) (4.20)

To prevent artifacts, the trust in a modality only increases slowly after being
rated down. When confronted with dramatic changes, the Gaussian background
model needs some time to adapt for the changes. Therefore the trust should only
slowly increase while the background is being learned. The trust T at time t+ 1
is calculated:

Tt+1 =

Tt+1 if Tt+1 ≤ Tt

αTt+1 + (1− α)Tt otherwise
(4.21)
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where α is the update speed of the Gaussian mixture model.

After normalizing the values of TRGB and TIR to add up to 1, the values are
used the as weights for the adaptive fusion. Each pixel is fused in the distance
map:

DF = wRGBDRGB + wIRDIR (4.22)

with

wRGB = TRGB

TRGB + TIR

wIR = TIR
TRGB + TIR

(4.23)

Through the weighting based on the quality respectively trust values, the
fusion is adaptive and context aware.

At this stage spatial and temporal registration inaccuracies can be compen-
sated. A simple mean filter applied on the fused distance map dissolves the pixel
grid and therefore fuses information of neighboring pixels. Other functions are
possible at this stage and have been applied, as further elaborated in Section 4.4.

The final step is the decision whether a pixel is foreground or background. As
explained before, all values are scaled to the same level. A simple thresholding
per pixel is performed:

FG =

1 if DF ≥ 1

0 otherwise
(4.24)

Figure 4.12 demonstrates the fusion and its effect on the resulting mask.
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4.4 Application to Traffic Monitoring

The last section described the main contribution of this work. The presented
method is an extension to the general adaptive Gaussian mixture model back-
ground subtraction method. No constrains have been introduced, so that the
method is both applicable for indoor as well as outdoor scenarios. In the following
specific extensions for traffic surveillance are presented, showing the modularity
of the proposed algorithm. In Figure 4.1 (page 26) these extensions are labeled
by roman number III.

4.4.1 Shadow Detection

A common extension to background modeling techniques is shadow detection.
Shadows of intruding objects are found as not matching the background model
as they appear darker as prior illuminated areas and are therefore declared as
foreground. Depending on the purpose of the system, labeling shadow areas as
foreground is a false positive. In most surveillance scenarios only the objects and
not their shadow are of interest [Prati et al., 2003].

Different shadow detection algorithms have been presented. Prati et al. [2003]
distinguish between deterministic approaches that use an ’on/off decision process’
and statistical approaches that ’use probabilistic functions to describe the class
membership’. Both methods however can fail and false negatives as well as false
positives may occur. Is the task to identify all foreground objects, as it is in
traffic surveillance, especially false positives harm the results. Whole objects
may be classified as shadow and are therefore lost for further processing. To
address this issue, shadow areas have been pruned rather than removed in this
work. Since shadow detection is not in the scope of this work, a simple OpenCV
implementation of a method presented by Prati et al. [2003] has been used.

As indicated in Figure 4.1 (page 26) the results of the shadow detection are
fused into the RGB distance map. In state of the art methods a labeling in the
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resulting foreground mask is performed. Instead of making this hard decision,
the distance of areas marked as shadows has been scaled down. In this work a
fixed scaling has been used. A scaling based on the shadow certainty may be a
possible extension. Since the background distance correlates with the certainty
of a pixel being foreground, the downscaling can be seen as bringing uncertainty
to the decision. Consequentially the decision if a pixel is shadow is only made
indirectly, when deciding whether the pixel is foreground or background.

The subsequent fusion of the modalities is the important step for this method
to work. Objects that have also been found in the thermal image are most likely
found anyway and shadows are voted further down as they are not present in
the thermal domain. Especially small areas of false positives can be recovered
as being a foreground object using this technique. The mean filter subsequent
to the fusion helps the process with removing outliers. Additionally the quality
functions allow to predict scenes with drop shadows. Therefore the process can
be triggered context aware, only when shadows are most likely present.

4.4.2 Blob Prediction

As discussed in Section 3.1 a successful background subtraction for traffic surveil-
lance must handle the different speeds of the traffic. All objects have to be handled
as foreground even when staying in the scene for a longer time. For this purpose
the blob prediction method proposed by Yao and Ling [2014] has been integrated
in this work. The position of foreground blobs are predicted for each frame and
the update rate α is significantly lowered for these areas. Consequentially objects
have to stay for a very long time before merging into the background.

To predict blob positions for the current frame t + 1 blobs from t and t − 1
are matched. Afterwards the displacements between t and t − 1 is applied on t.
The matching is done with a nearest neighbor search of the blob’s centroids. If
no neighbor within a range ρ is found, the blob is supposed to be stationary as
no prediction about the movement can be made.
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Figure 4.13: Distance map before and after blob prediction based modulation.

In contrast to the method of Yao and Ling [2014] an extension has been
made. To prevent artifacts in the background model caused by inaccuracies in
the blob prediction, the predicted blobs have been dilated and the edges have
been smoothed out. The update rate α has then been calculated as:

α = bαfg + (1− b)αbg (4.25)

where 0 ≤ b ≤ 1 indicates the value in the blob prediction image and αfg and αbg

are the update rates for foreground respectively background regions.

Another purpose of the blob prediction has been found in this work. Since
the boundary of foreground objects changes only gradually, the predicted blobs
are a very good estimate of the next frame’s foreground. This can help the
segmentation as it is more likely to find an object where it is predicted than
elsewhere in the scene. Objects follow a trajectory and generally do not appear
out of sudden. To express this characteristic another modification of the distance
map is done. Analogous to the shadow suppression, predicted areas are scaled
up in the distance map. Figure 4.13 demonstrates the effect. One can clearly see
how the traffic stands out more clearly in the right image.
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By taking the predicted blob areas into account for the decision whether a
pixel belongs to the foreground, a spatial-temporal constraint is introduced. The
decision is no longer pixel-wise but aware of the history of the whole image.

4.4.3 Scene Geometry based Prior Knowledge

The principle presented in the last sections can be used for another constraint.
By looking at the scene geometry one can easily divide the image into three
classes. The first class of pixels are areas where no foreground is expected under
any circumstances. Examples may be trees or the sky. The second class of pixels
describe the areas where objects may move to. A sudden appearance of objects
is unlikely or even excluded but objects may move to these areas from other
parts of the image. These areas are referenced as neutral zones. The last class
describes areas where we expect foreground objects to appear. These areas are
called entrance areas in the following. Entrance areas can normally be found at
the borders of the image as objects enter the scenery normally from out of the
camera’s view port. Objects may however also reappear from occlusion or enter
from occluded areas. Based on this classification a mask can be manually drawn
as seen in Figure 4.14.

The scene classification is prior knowledge to the segmentation process. In
the adaptive Gaussian mixture model background subtraction by Stauffer and
Grimson [1999] all pixels are treated the same. The likelihood of a pixel being
foreground is independent to its position. With the introduction of the scene
classes this has been changed in this work. Only the entrance areas are treated
like by Stauffer and Grimson [1999]. For the other two classes modulations of the
distance maps have been made as presented before.

Firstly excluded areas are made impossible to be foreground by setting the
corresponding values in the distance map to zero. Secondly the values for neutral
zones are scaled down to make it less likely to find foreground pixels in these
areas. This is possible because the blob positions have been predicted and uprated
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Figure 4.14: Scene area classes. Green: entrance areas, red: excluded areas, rest: neutral.

beforehand. Areas where we expect objects to move to are untouched afterwards
or even uprated while unpredicted regions are rated down. This helps to remove
noise and find objects more reliable.

52



Chapter 5

Experiments

To evaluate the performance of the proposed algorithm a series of experiments
have been conducted. Hereby both quantitative and qualitative performance have
been tested. This chapter begins with an elaboration about the datasets that have
been used in this work. A description of the performance metrics and the results
of the experiments follows. Concluding an in-depth analysis of the qualitative
performance is presented.

5.1 Datasets

The main dataset used in this work contains a large number of multimodal record-
ings of intersection in Northern Jutland recorded during the year 2013. The
recordings have been kindly provided by the Department of Civil Engineering
of the Aalborg University. During this work another recording session has been
made archiving two goals. Firstly the recordings have been made in winter. Situ-
ations with sub-zero temperatures and snow were lacking in the dataset. Secondly
the acquisition process can be described better in this work.

In preparation of a recording session two cameras, one thermal and one RGB
camera, have been mounted on a high pole, typically a street light. The view
ports have been adjusted to overlap as much as possible. The setup is displayed
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Figure 5.1: Installation for multimodal image acquisition.

in Figure 5.1. A laptop with a power supply for a couple of days has been
used to store the captured scene. Through a special program to operate the
cameras, one hour videos within a given time frame have been recorded. This
way the experiment could run 2-7 days independently. The resulting dataset
includes 9 different locations with a total of over 1580 hours recording material
in a resolution of 640× 480px with varying frame rates.

Since it is impossible to test such a vast amount of data, only roughly 20
scenes have been used during the development of the proposed algorithm. For
the experiments a set of 5 different scenes have been selected. The scenes con-
tain different conditions, have been recorded at different locations and therefore
represent a good overview over the spectrum of outdoor recording conditions.

To be able to benchmark the proposed algorithm, two commonly used data-
sets have been additionally used. The OSU Color-Thermal Database [Davis and
Sharma, 2007] of the OTCBVS Benchmark Dataset Collection contains RGB
and thermal data of two surveillance scenarios. The videos contain pedestrians
recorded on the campus of the Ohio State University. The INO Video Analytics
Dataset1 contains a set of multimodal recordings of parking lot situations includ-
ing cars, cyclists and pedestrians. All scenes that have been tested during the
experiments of this work are listed in Tables 5.1 and 5.2.

1http://www.ino.ca/en/video-analytics-dataset/ Last downloaded June 1, 2015
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5.1. Datasets

RGB IR Name Description

Day
Good conditions.
High contrast in
thermal domain.

Night
Low light.
Reflections and
dark objects.

Auto Gain
AGC of thermal
camera during
the scene.

Heavy Rain
Rain and storm.
Reflections and
reduced view.

Snow
Reduced view
and low contrast
in thermal
domain.

Table 5.1: Test scenes from the Department of Civil Engineering dataset.
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RGB IR Name Description

INO ParkingEvening
Low light. Dark
car appears in
the scene.

INO ParkingSnow
Persons between
the cars not
visible in RGB.

INO CoatDeposit
Objects come
into the scene
and stay.

INO TreesAndRunner Twighlight and
moving trees.

OTCBVS 3
Changing
illumination due
to moving clouds.

OTCBVS 4
Good conditions.
High contrast in
thermal domain.

Table 5.2: Test scenes from the benchmark datasets.
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5.2 Performance Metrics

The following section explains the quantitative performance metrics that have
been used for the evaluation of the experiments. The quality of a segmentation
algorithm is commonly determined by two quality measures. Good detection
means that most foreground pixels of the image have actually been found by the
algorithm. Good discrimination means a good distinction has been made i.e. not
many pixels have been declared as foreground erroneously.

In order to calculate the two quality measures three decision states are iden-
tified. True positives (TP) are all pixels that have been correctly identified as
foreground. Two different error states are distinguished. False negatives (FN) are
pixels that have not been identified as foreground while actually being part of it,
while false positives (FP) are pixels that have been misclassified as foreground.
With these numbers the two metrics Detection Rate (DR) and False Alarm Rate
(FAR) are defined as follows:

DR = TP

TP + FN
(5.1)

FAR = FP

TP + FP
(5.2)

The Detection Rate is also known under recall or true positive rate and describes
the sensitivity of a detector. The False Alarm Rate corresponds to 1− p where p
is the detector’s precision or specificity.

In order to evaluate the performance metrics it is required to have access to
the true data, commonly referred as Ground Truth (GT). Ground Truth has to
be created manually and is a laborious task. Thus only a small sample of the
results can be tested. In this work 70 successive frames have been annotated for
each test set. Only for the Auto Gain set have been annotated 180 frames in
order to cover the whole process.
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5.3 Quantitative Experiments

In order to evaluate the performance of the proposed method extensive experi-
ments have been performed and evaluated with the described performance met-
rics. Besides with the algorithm itself, each dataset has been processed with
four alternative strategies. Each strategy bases on the Gaussian mixture model
background subtraction algorithm presented by Stauffer and Grimson [1999] and
improved by Zivkovic [2004]. Firstly both modalities RGB and IR are processed
individually. Next a pixel-wise fusion is performed with the creation of RGBT
frames. And finally the confidence based selection presented by Serrano-Cuerda
et al. [2014] has been implemented.

As this works aspires to create a system that works without the requirement
to manually tune its parameters for different conditions, one set of parameters has
been defined for all test sequences. In practice however parameters may be tuned
to fit the given location and situation. For comparability reasons this fine tuning
has not been done in this work. Solely the learning time for each scene has been
adjusted to match the specific situation. For example scenes with much traffic
need more time to learn a stable background model. For the case of the presented
algorithm, both background models first have been learned individually before
the described adjustments have been made. This is necessary since predicted
foreground regions are learned much slower and false positives are very likely
during the learning phase.

The update rate α has been set to be slower for the alternative strategies.
Since the state of the art background modeling does not differ between foreground
and background in the update step, a quick update rate would result in foreground
objects merging into the background. This is also the case in the learning phase
of the proposed method. Consequentially the same α has been used here. All
important experimental parameters are listed in Table 5.3, where the parameters
below the line only apply for the proposed method.
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Parameter Value Description

α 0.0005 Update rate

K 5 Number of components

λ 4 Number of standard deviations for
background acceptance

αBG 0.0033 Background update rate

αFG 0.000033 Foreground update rate

τ 0.1 Foreground ratio

γ 5.0 Foreground deviation weight

ρ 17 Blob match radius (px)

sshadow 0.3 Distance scaling factor for shadow
regions

spredict 1.5 Distance scaling factor for predicted
regions

sneutral 0.5 Distance scaling factor for neutral
regions

Table 5.3: Parameters used in the experiments. The parameters below the line only apply for
the proposed method.
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For all experiments containing RGB data shadow detection has been per-
formed. The OpenCV implementation described by Prati et al. [2003], the same
algorithm as in the proposed method, has been used. Pixels that have been found
to be shadow have been classified as being background in the reference methods.
Also the region masks have been applied on the resulting data. Excluded ar-
eas have been removed from the resulting foreground masks and the resulting
masks have been cleaned with morphological operations and hole closing. This
way equal conditions have been created for all strategies and differences in the
results of the proposed algorithm in contrast to the state of the art methods can
be explained by its core contributions.

The scenes have been selected as each of them introduces a new scenario with
different conditions. State of the art methods often aim to perform best for one
special scenario. The proposed method however aims for a good performance
in general. Therefore a comparison to recent special case methods with best
known performance was not desired and even not necessary. The comparison to
background modeling on the other hand reveals interesting insights on strengths
and weaknesses of the proposed method.

The results of the experiments are displayed in Table 5.4. The general perfor-
mance of the proposed algorithm can be considered very good due to a minimum
Detection Rate of 0.84 and maximum False Alarm Rate of 0.56. It can clearly be
seen, that the goal of creating a robust method for a wide bandwidth of condition
is achieved. Only the proposed method shows a good performance for every test
sequence. The alternative strategies fail at different scenarios, but also better
performance as of the proposed method can be seen. The reasons for this are
manifold and will be discussed in the following section.

As expected, all fusion approaches show in general a better performance than
the single modality methods. The method presented by Serrano-Cuerda et al.
[2014] also performs well on the first look. When analyzing the results in detail
however, one can easily see, that the results are at most as good as one of the
single modalities. This is funded in the design of the algorithm, as it selects one
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Proposed RGB IR RGBT Select

Day
DR 0.99 0.93 0.95 0.97 0.93

FAR 0.30 0.09 0.31 0.29 0.09

Night
DR 0.84 0.78 0.48 0.89 0.78

FAR 0.31 0.69 0.32 0.66 0.69

Auto Gain
DR 0.94 0.86 0.73 0.91 0.81

FAR 0.25 0.09 0.76 0.40 0.58

Heavy Rain
DR 0.92 0.46 0.69 0.48 0.69

FAR 0.22 0.26 0.11 0.27 0.11

Snow
DR 0.96 0.79 0.21 0.92 0.21

FAR 0.52 0.52 0.25 0.55 0.25

INO ParkingEvening
DR 0.94 0.93 0.91 0.95 0.91

FAR 0.24 0.27 0.18 0.29 0.18

INO ParkingSnow
DR 0.98 0.86 0.99 0.96 0.99

FAR 0.32 0.78 0.40 0.35 0.40

INO CoatDeposit
DR 0.97 0.10 0.10 0.10 0.10

FAR 0.19 0.12 0.30 0.16 0.12

INO TreesAndRunner
DR 0.94 0.88 0.84 0.93 0.84

FAR 0.44 0.65 0.36 0.70 0.36

OTCBVS 3
DR 0.95 0.75 0.94 0.90 0.78

FAR 0.56 0.96 0.74 0.96 0.93

OTCBVS 4
DR 1.00 0.94 0.78 0.99 0.78

FAR 0.55 0.15 0.68 0.48 0.68

Table 5.4: Experimental results. The best DR and FAR values of each set are marked bold.
Proposed method compared to GMM background subtraction of RGB, IR, and RGBT frames.
"Select" indicates result selection based on quality heuristics [Serrano-Cuerda et al., 2014].
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(a) IR (b) Proposed Method (c) RGBT

Figure 5.2: Results of the thermal halo effect and false positive propagation in different
approaches.

result of two parallel pipelines. One important characteristic of fusion algorithms
is neglected by this design flaw. Fused data or results generally differ from its
inputs and therefore contain new features and information. A simple selection
obviously makes this impossible. As a result the approach is beaten in 10 out of
11 cases in terms of Detection Rate.

The False Alarm Rate of both, the proposed method and the RGBT approach
mirror the weaker modality. The reason is, that a high evidence of foreground in
one modality is still present after fusion the data. Only false positives based on
weak evidence are successfully smoothed out. In worst case false positives from
both modalities are present in the result. The effect is shown in Figure 5.2. It
can be seen how the errors of the IR segmentation propagate into the results of
the fusion approaches.

A good example for the superiority of fusion approaches in terms of Detection
Rate is given by the sequence INO TreesAndRunner. Obviously both fusion
approaches, the proposed method and the RGBT approach, perform much better
than the single modalities. This is the case because both RGB and IR contain
frames, that are very hard to segment. The runner passes trees and other objects.
The fusion approaches can still rely on the second modality, when the information
content of the first is low.
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5.4 Special Situation Performance

In the following results of specific test sequences are elaborated in detail. It is
shown in which way different details of the design of the proposed algorithm effect
the performance. Four different problems that arise during outdoor surveillance
are discussed. Emphasis has been put on the adaptive modality weighting of the
proposed algorithm and its effect on the segmentation results. To begin with,
this context awareness is discussed further.

5.4.1 Context Awareness

One of this work’s core contributions is the context awareness of the fusion. It
is based on a set of quality heuristics that have been defined in Section 4.2. The
goal is to evaluate the usefulness of each modality. Instead of using information
from the images itself, outside sources have been consulted. Solely the thermal
domain has been rated by its own information content. For the tested sequences,
the weights calculated with the help of the heuristics are more or less fixed. The
time frames are simply too short to see an effect based on for example the altitude
heuristic function. The overall concept however has been tested by selecting
scenes with various conditions, such as day, night, twilight, heavy rain and snow.

In Figures 5.3 and 5.4 quality functions covering a full day are plotted. Since
video data are only present from 5 a.m. to 10 p.m., the IR quality function is
only defined for that particular time frame. The tested day was a hot summer
day with rather good weather. Because of overcast, no cast shadows have been
assumed in the morning. During noon time the temperature was so high, that
the thermal camera was overexposed. This problem is represented in the graph
through the drop of the entropy based quality heuristic.

The resulting weights for the fusion of the modalities are plotted in Figure 5.5.
The foreground quality functions are not considered, due to the necessary com-
putation time. It should be noted that the steep changes in both modalities are
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Figure 5.3: RGB quality heuristics and resulting quality function of a full day.
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Figure 5.4: Entropy based quality heuristic for thermal domain of a full day.
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Figure 5.5: Varying weights of the two modalities over a full day.

only present due to the resolution. In practice the weights change rather smooth
caused by the auto averaging of the trust functions.

5.4.2 Automatic Gain Control

The first problem that will be discussed further, is the prior mentioned Automatic
Gain Control of thermal cameras. When large or hot objects enter the scenery,
the camera automatically adjusts its gain in order to preserve a high level of
detail. This behavior however highly disturbs the background subtraction. The
new background does not longer fit the model, resulting in a high number of false
positive foreground pixels. Figure 5.6 displays the described phenomena. The
challenge is hereby the short time frame of the adjustment. When the objects
leave the scene, the camera adjusts the gain back. Therefore the problem often
only persists for 100-200 frames, while highly affecting the segmentation results.
Also the background model is affected, since it is updated each frame, which
makes it invalid for following frames.
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(a) Frame 170 (b) Frame 200 (c) Frame 230 (d) Frame 260

Figure 5.6: AGC of the IR camera triggered by a big truck coming into the scenery.

As seen in Table 5.4 the proposed algorithm handles the described problem
well. No segmentation quality reduction can be detected from the raw num-
bers. The reason for this is the adaptive weighting performed in the fusion step.
Through the foreground ratio evaluation described in Section 4.3.3 is detected,
that the background model of the thermal domain is invalid. As a result, the
IR weight function drops to zero and the segmentation only relies on the RGB
domain. Figure 5.7 displays this behavior. It can clearly be seen, how the weight
of the IR domain drops parallel to the quality heuristic. After the truck leaves
the scene, the camera adjusts back to normal and the quality function instantly
rises. The weight however increases only gradually. This is necessary in order to
give the background model time, to relearn the background model.

The foreground ratio quality function also decreases while the truck enters
the scene. This behavior is normal, since the truck covers a lot of the scene and
therefore the number of foreground pixels is unnaturally high. In the end result
this however has no effect, since the overall trust in the RGB domain is still
higher.
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Figure 5.7: Plot of the effect of the IR ACG on the quality heuristics and modality weights.
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(a) Frame 375 (b) Frame 425 (c) Frame 475

Figure 5.8: Moving cloud casting a large shadow onto the scene.

5.4.3 Changing Illumination

A very similar problem that is common in outdoor surveillance is changing il-
lumination. Although the design of the Gaussian mixture model background
subtraction allows variations in the illumination, problems can still arise when
abrupt changes happen. This for example is the case when clouds cover or uncover
the sun. The algorithm is only designed to adapt for slow changes, e.g. shadows
that move over the day. Fast changes of the scenery will cause foreground objects
due to the definition of the process.

Figure 5.8 shows an example of such a situation from the OTCBVS 3 test
set. Similar to the problem discussed before, the foreground ratio of the RGB
domain is rising, since the background model does not adapt fast enough for these
changes. Consequentially a weight shift to the thermal domain is performed by
the algorithm, leading to the comparatively low False Alarm Rate of 0.56.

5.4.4 Artifact Reduction

Another contribution of the proposed algorithm can be seen in the results of
OTCBVS 3. With 0.56 the False Alarm Rate is even lower than the results of
the thermal background subtraction. This can be reasoned with the adjustments
made to the fused distance map based on the scene geometry. Artifacts are un-
likely to appear since unpredicted foreground regions are reduced in the distance
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Figure 5.9: Distance map before and after scene geometry based modulation.

map. Figure 5.9 illustrates the principle with a side-by-side comparison of the
distance map before and after applying the modulations. The effect on the fore-
ground mask can clearly be seen in Figure 5.10 in comparison to the approach
using solely the thermal domain.

5.4.5 Long Staying Objects

The Gaussian mixture model background subtraction presented by Stauffer and
Grimson [1999] assumes that foreground objects are constantly in motion. For
traffic this is obviously not the case. This has been addressed by Yao and Ling
[2014] and the proposed method has been integrated in this work. The original
algorithm causes long staying objects to gradually merge into the background.
This problem is very much visible in the INO CoatDeposit test set. The car
coming into the scene merges into the background within a few frames as seen
in Figure 5.11. This merging is stopped by predicting foreground regions and
lowering their update speed, resulting in a significantly better Detection Rate of
the proposed method. The difference is shown in Figure 5.12.
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(a) Artifacts in IR mask. (b) Reduced artifacts by proposed method.

Figure 5.10: Artifacts in resulting masks of two approaches.

Figure 5.11: Stopped car merges into the background.

Figure 5.12: Background merging prevented through blob prediction and α adjustment.
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Conclusion and Future Work

This work aimed to investigate on how the fusion of thermal and RGB video
data can assist camera based traffic monitoring. Related work has been studied
and a suitable starting point has been identified. Background subtraction is the
first and crucial step of many surveillance algorithms. A stable segmentation lays
the base for successful successive analysis. Different environmental conditions are
hereby the most challenging problem. Only very few methods have been presented
working under extreme situations, although the interest in these methods is high.
The goal of this work was therefore to present a method for stable background
subtraction as far as possible independent from environmental conditions and
thereby laying the base for persistent traffic monitoring.

A new approach to Gaussian mixture model background subtraction using
two modalities has been presented. The proposed algorithm fuses an image rep-
resentation of background model conformity values of each pixel. This allows to
include prior knowledge about the modalities in form of quality characteristics.
Different image quality heuristics based on image structure and external informa-
tion sources have been investigated and specified. To match requirements derived
from the purpose of traffic monitoring, extensions to the core contribution have
been introduced.
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The proposed method has been thoroughly tested. The results show a signifi-
cantly better performance of the proposed method than comparable background
subtraction algorithms. Special situation performance suggests that the strategy
of including image quality heuristics in the segmentation process has great poten-
tial. The modularity of the method allows the implementation of improvements
that have been developed originally for the background subtraction by Stauffer
and Grimson [1999].

A common problem of image fusion techniques can be seen from the experi-
mental results. Although the algorithm features a suppression of false positives,
a propagation to the fused mask can still be noticed. This is especially the case,
when the quality rating of the two modalities is similar and therefore informa-
tion fuses in equal proportions. Based on this observation further development
of the proposed method can be derived. Serrano-Cuerda et al. [2014] perform a
switch based on image quality heuristics. This work performs an adaptive fusion.
The next logical step would be to perform the fusion adaptive per image region.
Similar approaches based on image characteristics rather than quality heuristics
have been presented. The approaches however do not differentiate between differ-
ent conditions such as night and day. By specifying quality heuristics for image
samples, information about shadows and different lighting conditions within the
scene, the main reasons for false positives, could be considered.

The work has been limited to the usage of RGB and thermal imagery. The al-
gorithm however can easily be adapted to work with different imaging sensors. A
setup of the proposed system in combination with sensors helping to estimate the
image quality would also be an interesting extension. Weather stations and street
temperature sensors would enable the heuristics to work much more accurately.
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Appendix A

Solar elevation angle

The following formulas describe the stepwise calculation of the solar elevation
angle1.

LSTM = 15◦ ·∆TGMT Local Standard Time Meridian

B = 360
365(d− 81)

EoT = 9.87 · sin(2B)− 7.52 · cos(B)

− 1.5 · sin(B) Equation of Time

TC = 4(ϕ− LSTM) + EoT Time Correction Factor

LST = LT + TC

60 Local Solar Time

HRA = 15◦(LST − 12) Hour Angle

1http://pveducation.org/pvcdrom/properties-of-sunlight/suns-position
Last downloaded June 1, 2015
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Appendix A. Solar elevation angle

δ = 23.45◦sin(B) Declination

α = sin−1(sin(δ)sin(φ)

+ cos(δ)sin(φ)cos(HRA)) Elevation

∆TGMT : Time difference to Greenwich Mean Time in hours

d : Days since start of the year

ϕ : Longitude
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Appendix B

Weather Condition Grouping

Good conditions Clear

Low/Varying lighting
conditions

Overcast

Partly Cloudy

Mostly Cloudy

Scattered Clouds

Squalls

Funnel Cloud

Light Mist

Light Drizzle

Reflections/moisture

[Heavy] Drizzle

[Light] Rain

[Light] Rain Showers

[Light/Heavy] Freezing Drizzle

[Light] Freezing Rain

[Heavy] Mist

83



Appendix B. Weather Condition Grouping

Particle occlu-
sion/precipitation

[Light/Heavy] Snow

[Light/Heavy] Snow Grains

[Light/Heavy] Ice Crystals

[Light/Heavy] Ice Pellets

[Light/Heavy] Hail

[Light/Heavy] Low Drifting Snow

[Light/Heavy] Blowing Snow

Heavy Rain Showers

[Light/Heavy] Snow Showers

[Light/Heavy] Snow Blowing Snow Mist

[Light/Heavy] Ice Pellet Showers

[Light/Heavy] Hail Showers

[Light/Heavy] Small Hail Showers

[Light/Heavy] Thunderstorm

[Light/Heavy] Thunderstorms and Rain

[Light/Heavy] Thunderstorms and Snow

[Light/Heavy] Thunderstorms and Ice Pellets

[Light/Heavy] Thunderstorms with Hail

[Light/Heavy] Thunderstorms with Small Hail

Heavy Freezing Rain

Small Hail
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Reduced visibility

[Light/Heavy] Fog

[Light/Heavy] Fog Patches

[Light/Heavy] Smoke

[Light/Heavy] Volcanic Ash

[Light/Heavy] Widespread Dust

[Light/Heavy] Sand

[Light/Heavy] Haze

[Light/Heavy] Spray

[Light/Heavy] Dust Whirls

[Light/Heavy] Sandstorm

[Light/Heavy] Low Drifting Widespread Dust

[Light/Heavy] Low Drifting Sand

[Light/Heavy] Blowing Widespread Dust

[Light/Heavy] Blowing Sand

[Light/Heavy] Rain Mist

[Light/Heavy] Freezing Fog

Patches of Fog

Shallow Fog

Partial Fog
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Abstract A new approach to background subtraction for
multimodal systems is presented. The work is an extension
to the Gaussian mixture model background subtraction of
Stauffer and Grimson. The background conformity values
of two image sources, namely thermal and RGB, are fused
in order to enable stable background subtraction for persis-
tent surveillance. Image quality heuristics based on image
characteristics and external sources are specified to evalu-
ate the usefulness of the modalities and perform the fusion
context aware. Extensions for the use of the system for the
purpose of traffic monitoring are presented. Therefor mod-
ulations of a new image representation of the conformity of
pixels with the background model are made. The potential
of the proposed method has been shown during excessive
tests of quantitative and qualitative characteristics.

Keywords Background subtraction · Image Fusion · Traffic
Surveillance · Context aware

1 Introduction

The growing congestion of public roads and associated
problems lead to a growing need of accurate traffic infor-
mation. This information can be used for traffic safety anal-
ysis, early incident detection, improvement of infrastructure
capacity and localization of infrastructural weaknesses. Par-
ticularly road safety is an important subject for traffic re-
searchers. The number of worldwide traffic crashes and in-
juries is growing and the impact on society is high. Not
only costs for medical treatment accrue from an injury, but
also physiological complications may result for the victim
and his family and friends. Especially vulnerable road users,

Thiemo Alldieck · Chris Bahnsen (B) · Thomas B. Moeslund
Visual Analysis of People Lab, Aalborg University, Aalborg, Denmark
E-mail: cb@create.aau.dk

such as pedestrians, cyclists and motorcyclists, are at high
risk of road traffic casualties [22]. Therefore, already the
purpose of safety analysis justifies the research on new traf-
fic monitoring systems and algorithms.

Different traffic monitoring systems have been devel-
oped and used over the years. Hereby has been shown that
the use of cameras offers significant improvements over
other systems such as inductive loops or microwave de-
tectors. Video surveillance offers a wide band of analysis
possibilities as for instance traffic flow, turning movements
and vehicle classification, while being comparatively cheap
in acquisition and installation [17]. Image processing tech-
niques play hereby an important role as they provide added
value to the raw data enabling automatic extraction of rele-
vant information [2].

Computer vision methods have been developed in the
field of traffic surveillance for various purposes. Many of
these require the system to work in real-time (RT), which
limits the complexity of possible algorithms. Further traffic
monitoring systems often have to deal with a broad num-
ber of different classes, such as cars, trucks, buses, cyclists
and pedestrians. Depending on the purpose of the system,
applications require different levels of understanding of the
scene in terms of objects classification and identification.
The task of object segmentation is hereby often the crucial
step. Mixture of Gaussian background modeling techniques
fail to perform this task, as they assume that foreground ob-
jects are constantly in motion and move more or less in the
same speed [28]. Different works have addressed this issue
by validating foreground pixels by a moving object model
[7] or lowering the update speed of the model [29,30]. Build
upon object detection algorithms, different monitoring sys-
tems have been presented. The range of interpretation goes
from vehicle counting [1,6,20] over incident detection [16,
33] to classification [21,31].
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Fig. 1: RGB and thermal image of the same scene

The use of cameras for monitoring purposes also intro-
duces a significant drawback. Caused by the functional prin-
ciple of a camera working in the visual range of light, the
quality of the data highly depends on environmental con-
ditions such as rain, fog or day and night cycle. Result-
ing many applications only work at daytime. A persistent
monitoring of the scene however is often desired. Special
situation methods have been developed [5,24,33], a stan-
dard method for different purposes and conditions is yet
to be presented. To overcome this problem different detec-
tors for traffic monitoring have been introduced, working ei-
ther standalone or in combination with traditional cameras.
Hereby special interest in thermal or infrared (IR) cameras
developed recently. Thermal cameras capture the radiation
emitted by objects that depends on their temperature [10].
This makes the system independent of the lighting situation
and visual obstructions caused by fog or rain. On the other
hand, as seen in Fig. 1, thermal images are less detailed and
provide an unfamiliar visual impression.

In this paper, we present a novel multimodal background
subtraction technique. Background subtraction is the first
and crucial step of bottom-up processing pipelines, as com-
monly used in RT surveillance systems. To make the sys-
tem work under different conditions, two different sensors,
namely a RGB and a thermal camera, have been used. Two
parallel background subtraction algorithms are performed
and fused at a new background conformity representation,
referred as GMM distance map. The methodology of im-
age fusion and related work is discussed in Sect. 2. The pre-
sented work integrates image quality heuristic functions for
the two modalities as elaborated in Sect. 3. The core contri-
bution of this work is presented in Sect. 4. Subsequently we
present extensions for the application of traffic monitoring
(Sect. 5). In Sect. 6 we evaluate the work with an own and
two commonly used datasets against state of the art back-
ground modeling techniques, followed by our drawn con-
clusions (Sect. 7).

2 Multimodal data fusion

Different sensors have advantages and disadvantages for fur-
ther processing. To overcome the individual downsides of

Fig. 2: RGB image and naive fusion of IR and RGB image

different sensors, multimodal systems have been developed.
These systems use information from multiple sensors and
information sources and enrich and combine it. The poten-
tial of these methods especially for traffic surveillance has
been emphasized by Buch et al. [2]. In this chapter different
fusion approaches will be discussed. The focus is hereby on
the fusion of video data from IR and RGB cameras.

Different fusion approaches can be classified into three
levels: pixel-level, feature-level, and decision-level accord-
ing to the stage of the data flow where the fusion takes place
[12].

Fusion at decision level combines the output from two or
more parallel processing pipelines. The results are merged
by Boolean operators or weighted average. Serrano et al.
[25] perform parallel segmenting of thermal and RGB data
and select the representative output based on confidence
heuristics.

Feature-level fusion performs the fusion one step earlier
in the processing pipeline. Features from all input images
are extracted individually and then fused into a joint fea-
ture space. In [18] this technique is used for automatic target
recognition (ATR).

Pixel-level fusion is the most common approach. Hereby
the input images are merged into one. Details that might
not be present in one image are hereby added by the
other modality. Common examples are structures occluded
through dark shadows or smoke in RGB images that are
revealed with the help of a thermal image. Pixel-level fu-
sion requires all input images to be spatially and temporally
aligned. This alignment, also called registration, is a task for
itself. Automatic image registration approaches often fail,
since there is no correlation between the intensity values of
the modalities [8]. A common approach is to manually select
corresponding points in both modalities and compute a ho-
mography. However special case automatic methods exist,
using features that are most likely present in both modalities
e.g. contours [13], Harris corners [14] or Hough lines [15].

Fig. 2 shows a naive pixel-level fusion example with im-
ages of the OTCBVS dataset [9]. The right image reveals
the person standing next to the building. Beside naive fusion
though averaging, addition or multiplication of the images,
more complex methods have been presented, trying to opti-
mize the information content of the image.
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Shah et al. [26] perform the fusion after different wavelet
transforms of the images. This allows a fusion rule based
on frequencies rather than pixels preserving details while
simultaneously reducing artifacts. A statistical approach is
followed in [4]. During an expectation-maximization the fu-
sion result is obtained stepwise.

Lallier and Farooq [19] perform the fusion trough adap-
tive weight averaging. The weight per pixel is hereby de-
fined by a number of equations that express the interest in
the specific pixel. In the context of the work these are the
degree of an object being warmer or colder for the thermal
domain and the occurrence of contrast differences as well as
large spatial and temporal intensity variations for the visual
domain.

Instead of fusing the images to a new image that can be
represented in RGB, other methods simply combine the in-
puts to a new format. St-Laurent et al. [27] adapt a state of
the art algorithm for moving objects extraction to work with
”Red-Green-Blue-Thermal” (RGBT) videos. This way im-
portant information are automatically revealed by the object
extraction algorithm.

In this paper we present a novel approach to image
fusion. Fusion is performed on pixel-level but not in the
input data but within two parallel background subtraction
pipelines. Therefore an image representation of the confor-
mity of the pixels with the background model is presented,
referred as GMM distance map. The fusion is performed
context aware by evaluation of the usefulness of the input
data. Different heuristics are specified, describing the qual-
ity of the modalities. After the fusion, the resulting distance
map is manipulated and thresholded in order to create a sin-
gle foreground mask.

3 Image quality heuristics

The need for image fusion bases on the fact that image pro-
cessing techniques work only well for data of high quality.
The presumption is, that after the fusion process the data is
of higher quality than before. The term quality is hereby de-
fined as how well the data fit to the method. Input data that
contains noise or unwanted objects that harm the algorithm
is of low quality. This is even the case if a human can easily
perform the equivalent task.

In the following will be discussed which conditions
harm the image quality for surveillance scenarios and which
data can be conducted to predict the data quality of a sen-
sor. The quality is hereby rated against state of the art back-
ground modeling techniques and may differ for other appli-
cations, such as top-down tracking approaches. The aim is
to build heuristic functions that express the usefulness of the
modality to be able to perform an adaptive fusion.

3.1 Thermal image quality

As already mentioned thermal cameras measure the infrared
radiation emitted by all objects. The energy of the radia-
tion is hereby mainly dependent on the object temperature.
A constant factor called emissivity scales the radiation for
different materials [10]. With known emissivity the tem-
perature of objects in thermal images can be calculated us-
ing the Stefan-Boltzmann law. However many thermal cam-
eras built for surveillance feature Automatic Gain Control
(AGC), so the mapping function between radiation energy
and intensity values is unknown.

The quality of thermal data is high when the contrast be-
tween foreground and background objects is high. In traffic
surveillance this is the case when road and road users emit
a significant different amount of radiation, resulting well
distinguishable intensity values in the images. Assuming a
more or less constant temperature of road users, the temper-
ature of the road could be a quality indicator. Except from
direct measurements however, the determination of the road
temperature is complicated, since it is influenced by numer-
ous interacting parameters [3]. Therefore, the road tempera-
ture cannot be used as long as this data is not present.

As described earlier, objects of different materials have
different intensity values in a thermal image, even when hav-
ing almost the same temperature. Therefore a certain amount
of information is in the image even when showing a scene
without foreground objects. In a situation where no objects
can be distinguished, the information content is low. Conse-
quentially the image entropy can be used as a quality heuris-
tic of thermal images. The entropy is defined as:

H =−
255

∑
i=0

p(Ii) log2(p(Ii)) (1)

with p being the probability of an intensity value I in a gray
scale image. Fig. 3 shows a side-by-side comparison of the
same location at different times. The right images appear
much more detailed and therefore of higher quality. The cor-
responding entropy values correlate with this impression.

Since the degree of the mapping function between en-
tropy and quality is unknown, it has to be chosen manually.
A linear function has been found to be not sufficient. During
the experiments could be seen, that the down-rating of low
entropy values is too strong. A sigmoid function appeared as
a better approximation of the mapping function. The func-
tion used during this work is shown in Fig. 4.

3.2 RGB image quality

Quantified quality rating of RGB images is a hard task since
we are used to this type of sensing. The human eye can adapt
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(a) H = 4.23 (b) H = 5.04 (c) H = 6.65 (d) H = 7.67

Fig. 3: Thermal images of the same scene with different entropy values
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Fig. 4: Thermal image quality heuristic.

Fig. 5: RGB images with common challenging conditions,
such as shadows, reflections and halos

to challenging conditions easily and the human brain inter-
prets the visual perception [11]. An in-depth knowledge of
a computer vision method is needed to be able to rate how
well input data fits to the selected method. State of the art
background modeling tends to produce false positives. Rea-
sons for this are discussed in the following.

3.2.1 Lighting conditions and shadows

Fig. 5 shows a scene at different times of the day. While
a human can easily label the cars in the scene, a back-
ground subtraction algorithm would be highly disturbed by
the large shadows and reflections. Although shadows are
handled quite well nowadays, it still disturbs the detection
process. An effective method for reflection detection is yet
to be presented. In addition in the night cars and back-
ground have almost the same color. In conclusion both im-
ages should be rated as low quality, even though the reasons
are different and so may be the quality rating.

Following the argumentation images with low light con-
ditions, such as twilight and night, should be rated as low
quality even though a human might be able to identify the
road users. As a heuristic input parameter the elevation an-
gle of the sun can be consulted. The solar elevation angle
is defined as the angle between the ground plane and the
sun’s position vector. The sun is visible for angles ≥ 0◦.
Between 0◦ and −18◦ we speak about twilight and below
the sun does not contribute to sky illumination, it is night.
In practice however a noticeable illumination is not present
before −6◦, known as the civil twilight. Also the illumina-
tion condition is not perfect as soon as the sun is visible.
Buildings and the colored sunlight lead to an imperfect illu-
mination. Therefore a perfect illumination has been defined
in this work for elevation angles ≥ 6◦

Secondly the image quality depends on the presence and
amount of drop shadows. Two factors specify the occur-
rence. At first only on sunny days drop shadows can appear.
A weather database can be accessed to retrieve a description
of the weather condition. The length of these shadows is de-
termined by the sun’s position. Therefore, both weather data
and the solar elevation angle must be consulted to present a
heuristic to what extent cast shadows might be present in the
scene. The lengths of shadows can be calculated through:

L = h/tan(α) (2)

with h being the object height and α the solar elevation an-
gle. With a unit object height 1−ψL can serve as a quality
function, where ψ is a scaling factor.

3.2.2 Weather conditions

The weather can disturb the background subtraction process
not only through the presence of shadows. Different condi-
tions harm the algorithm through different phenomena such
as reflections, particles and reduced visibility just to name a
few. A quantitative rating however is not so easily derived.
For a reliable image quality heuristic the influence of dif-
ferent conditions has to be experimentally determined. An
experienced person might also be able to perform a loose
rating manually.
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Good conditions 1.0

Low/Varying illumination 0.8

Reflections/moisture 0.6

Particle occlusion/precipitation 0.3

Reduced visibility 0.3

Table 1: Different weather categories and corresponding
quality rating.

For this work different conditions have been broadly
grouped into 5 categories as seen in Tab. 1. Each of the cat-
egories is characterized through a set of quality harming in-
fluences, such as varying light, reflections through moisture
or particle occlusion. The quality rating of the categories are
hand tuned based on experiments.

4 Trust based multimodal background subtraction

The following section discusses the main contribution of the
work. A new approach to image fusion is presented. Despite
other works, not the input data is fused but intermediary re-
sults of two parallel background subtractions. The results are
weighted based on the quality heuristics described before,
making the system context aware. The algorithm is based
on the adaptive Gaussian mixture model background sub-
traction algorithm presented by Stauffer and Grimson [28].
Fig. 6 illustrates the basic principle of this work.

4.1 Calculating the GMM distance map

During the calculation of the foreground mask with the help
of the Gaussian mixture model (GMM), each pixel is tested
against each component of its background model, if it can be
accepted as part of the component’s Gaussian distribution.
The Euclidean distance of the sample value from the mean
is hereby the important factor for acceptance. A pixel x at
time t + 1 is defined to match the ith component, if it falls
within λ standard deviations:

Mi,t+1 =

( |xt+1−µi,t |
λσi,t

< 1
)

(3)

The acceptance distance of the sample as background
in Eq. (3) is normalized by the specific variance σi,t and
the threshold value λ . Large distance values indicate a high
probability of the pixel being foreground whilst small val-
ues show a high conformity with the component. With this
in mind an approximation of the general conformity of a

pixel with the model can be expressed with distance values:

Dt ≈





d0,t , if M0,t

d1,t , if M1,t

. . .

db,t , if Mb,t

min(d0,t ,d1,t , . . . ,db,t), otherwise

(4)

with

di,t =
|xt −µi,t−1|

λσi,t−1
(5)

If a match Mi,t is found, the corresponding value of di,t
is used to express the distance. Otherwise the distance to
the closest component is used. The resulting values of all
pixels form a map expressing the deviation of image regions
from the background. The scaling is hereby the same for
all pixels, so that a single threshold can be applied. When
thresholding the map with the value 1.0, the resulting mask
is the same as if calculated through [28].

4.2 Trust based fusion and foreground identification

At this stage we have heuristics for the image qualities of
both modalities as well as maps expressing the background
conformity of pixels. Build upon this a trust based fusion is
performed.

The trust in a modality can directly be derived from the
quality heuristics. The better the quality the higher is the
trust. Therefore the different heuristics have to be combined
first. Under the assumption, that the different quality heuris-
tics do not interfere each other, the heuristics can simply be
multiplied:

qRGB = qsun ·qshadows ·qweather (6)

qIR = qentropy (7)

However, with the functionality of the background subtrac-
tion in mind, these values are not sufficient to describe
the trust in each modality. Rapid changes in the environ-
ment can highly disturb the algorithm. The changes can
for example be rapid illumination changes for the RGB do-
main, or a rapid change of the auto gain for the IR domain.
These changes are not predictable by the knowledge base of
the quality heuristics. Therefore another parameter needs to
be introduced. When the background subtraction algorithm
fails, a huge number of false positives appear. The resulting
number of foreground pixels is much higher than the average
of the scene. A quality heuristic based on this phenomena is
defined in Eq. (8), where τ defines the average foreground
ratio, γ is an arbitrary scaling factor, 1 denotes an indicator
function and (X ,Y ) are the image dimensions:

qfg = max(1− γ(rfg− τ),0) (8)
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Fig. 6: System design overview.

where

rfg =
1

XY

X

∑
x=1

Y

∑
y=1

1 [Lx,y ≥ 1] (9)

Given Eq. (8) the trust can now be calculated as follows:

TRGB = min(qfgRGB ,qRGB) (10)

TIR = min(qfgIR ,qIR) (11)

To prevent artifacts, the trust in a modality only increases
slowly after being rated down. When confronted with dra-
matic changes, the Gaussian background model needs some
time to adapt for the changes. Therefore the trust should only
slowly increase while the background is being learned. The
trust T at time t +1 is calculated:

Tt+1 =

{
Tt+1 if Tt+1 ≤ Tt

αTt+1 +(1−α)Tt otherwise
(12)

where α is the update speed of the Gaussian mixture model.
After normalizing the values of TRGB and TIR to add up

to 1, the values are used as weights for the adaptive fusion.
After image registration, each pixel is fused in the distance
map:

DF = wRGBDRGB +wIRDIR (13)

where

wRGB =
TRGB

TRGB +TIR

wIR =
TIR

TRGB +TIR
(14)

Through the weighting based on the quality respectively
trust values, the fusion is adaptive and context aware. This
principle is illustrated in part II of Fig. 6.

At this stage spatial and temporal registration inaccura-
cies can be compensated. A simple mean filter applied on
the fused distance map dissolves the pixel grid and therefore
fuses information of neighboring pixels. Other functions are
possible and have been applied, as further elaborated in the
following.

The final step is the decision whether a pixel is fore-
ground or background. As explained before, all values are
scaled to the same level. A simple thresholding per pixel is
performed:

FG =

{
1 if DF ≥ 1
0 otherwise

(15)

Fig. 8 displays the distance maps, their fusion and its
effect on the resulting mask.

5 Application to traffic monitoring

The preceding section described the main contribution of
this work. The presented method is an extension to the gen-
eral adaptive Gaussian mixture model background subtrac-
tion method. No constrains have been introduced, so that
the method is applicable for both indoor as well as out-
door scenarios. In the following specific extensions for traf-
fic surveillance are presented, showing the modularity of the
proposed algorithm. In Fig. 6 these extensions are labeled as
number III.
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(a) IR (b) RGB (c) Fused

Fig. 8: Distance maps of the different modalities and results after thresholding.

5.1 Shadow Detection

A common extension to background modeling techniques is
shadow detection. Shadows of intruding objects are found as
not matching the background model as they appear darker as
prior illuminated areas and are therefore declared as fore-
ground. Depending on the purpose of the system, label-
ing shadow areas as foreground is a false positive. In most
surveillance scenarios only the objects and not their shadow
are of interest [23].

Different shadow detection algorithms have been pre-
sented. Prati et al. [23] distinguish between deterministic
approaches that use an ’on/off decision process’ and sta-
tistical approaches that ’use probabilistic functions to de-
scribe the class membership’. Both methods however can
fail and false negatives as well as false positives may occur.
Is the task to identify all foreground objects, as it is in traf-
fic surveillance, especially false positives harm the results.
Whole objects may be classified as shadow. To address this
issue, shadow areas have been pruned rather than removed
in this work.

In state of the art methods a labeling in the resulting fore-
ground mask is performed. Instead of making this hard de-
cision, the distance of areas marked as shadows are scaled
down. In this work a fixed scaling has been used. A scal-
ing based on the shadow certainty may be a possible ex-
tension. Since the background distance correlates with the
certainty of a pixel being foreground, the downscaling can
be seen as bringing uncertainty to the decision. Consequen-

tially the decision whether a pixel is shadow is only made
indirectly, when deciding whether the pixel is foreground or
background.

The subsequent fusion of the modalities is the important
step for this method to work. Objects that have also been
found in the thermal image are most likely found anyway
and shadows are voted further down as they are not present
in the thermal domain. Especially small areas of false pos-
itives can be recovered as being a foreground object us-
ing this technique. The mean filter subsequent to the fusion
helps the process with removing outliers. Additionally the
quality functions allow to predict scenes with drop shadows.
Therefore the process can be triggered context aware, only
when shadows are most likely present.

5.2 Blob prediction

As discussed in Sect. 1 a successful background subtraction
for traffic surveillance must handle the different speeds of
the traffic. All objects have to be handled as foreground even
when staying in the scene for a longer time. For this purpose
the blob prediction method proposed by Yao and Ling [30]
has been integrated in this work. The position of foreground
blobs are predicted for each frame and the update rate α
is significantly lowered for these areas. Consequentially ob-
jects have to stay for a very long time before merging into
the background.

To predict blob positions for the current frame t+1 blobs
from t and t−1 are matched. Afterwards the displacements



8 T. Alldieck et al.

Fig. 9: Distance map before and after blob prediction based
modulation.

between t and t − 1 is applied on t. The matching is done
with a nearest neighbor search of the blob’s centroids. If no
neighbor within a range ρ is found, the blob is supposed to
be stationary as no prediction about the movement can be
made.

In contrast to [30] an extension has been made. To pre-
vent artifacts in the background model caused by inaccura-
cies in the blob prediction, the predicted blobs have been
dilated and the edges have been smoothed out. The update
rate α has then been calculated as:

α = bαfg +(1−b)αbg (16)

where 0 ≤ b ≤ 1 indicates the value in the blob prediction
image and αfg and αbg are the update rates for foreground
respectively background regions.

Another purpose of the blob prediction has been found in
this work. Since the boundary of foreground objects changes
only gradually, the predicted blobs are a very good estimate
of the next frame’s foreground. This can help the segmenta-
tion as it is more likely to find an object where it is predicted
than elsewhere in the scene. Objects follow a trajectory and
generally do not appear out of sudden. To express this char-
acteristic another modification of the distance map is done.
Analogous to the shadow suppression, predicted areas are
scaled up in the distance map. Fig. 9 demonstrates the effect.
One can clearly see how the traffic stands out more clearly
in the right image.

By taking the predicted blob areas into account for the
decision whether a pixel belongs to the foreground, a spatial-
temporal constraint is introduced. The decision is no longer
pixel-wise but aware of the history of the whole image.

5.3 Scene geometry based prior knowledge

The principle presented in the last sections can be used for
another constraint. By looking at the scene geometry one
can easily divide the image into three classes. The first class
of pixels are areas where no foreground is expected under
any circumstances. Examples may be trees or the sky. The
second class of pixels describe the areas where objects may
move to. A sudden appearance of objects is unlikely or even

Fig. 10: Scene area classes. Green: entrance areas, red: ex-
cluded areas, rest: neutral.

excluded but objects may move to these areas from other
parts of the image. These areas are referenced as neutral
zones. The last class describes areas where we expect fore-
ground objects to appear. These areas are called entrance ar-
eas in the following. Entrance areas can normally be found
at the borders of the image as objects enter the scenery nor-
mally from out of the camera’s view port. Objects may how-
ever also reappear from occlusion or enter from occluded
areas. Based on this classification a mask can be drawn as
seen in Fig. 10.

The scene classification is prior knowledge to the seg-
mentation process. In the adaptive Gaussian mixture model
background subtraction by Stauffer and Grimson [28] all
pixels are treated the same. The likelihood of a pixel be-
ing foreground is independent to its position. With the intro-
duction of the scene classes, this has been changed in this
work. Only the entrance areas are treated like in [28]. For
the other two classes modulations of the distance maps have
been made as presented before.

Firstly excluded areas are made impossible to be fore-
ground by setting the corresponding values in the distance
map to zero. Secondly the values for neutral zones are scaled
down to make it less likely to find foreground pixels in these
areas. This is possible because the blob positions have been
predicted and uprated beforehand. Areas where we expect
objects to move to are untouched afterwards or even uprated
while unpredicted regions are rated down. This helps to re-
move noise and find objects more reliable.

6 Experiments

To evaluate the performance of the proposed algorithm a se-
ries of experiments have been conducted. Hereby both quan-
titative and qualitative performance have been tested. This
section begins with an elaboration about the datasets that
have been used in this work. This is followed by a descrip-
tion of the performance metrics and the results of the exper-
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iments. Concluding an in-depth analysis of the qualitative
performance is presented.

6.1 The datasets

The main dataset used in this work contains a large num-
ber of multimodal recordings of intersection in Northern Jut-
land recorded during the year 2013. To be able to benchmark
the proposed algorithm, two commonly used datasets have
been additionally used. The OSU Color-Thermal Database
[9] of the OTCBVS Benchmark Dataset Collection contains
RGB and thermal data of two surveillance scenarios. The
videos contain pedestrians recorded on the campus of the
Ohio State University. The INO Video Analytics Dataset1

contains a set of multimodal recordings of parking lot sit-
uations including cars, cyclists and pedestrians. All scenes
that have been tested during the experiments of this work
are listed in Tab. 2 and 3.

6.2 Performance metrics

The following section explains the quantitative performance
metrics that have been used for the evaluation of the ex-
periments. The quality of a segmentation algorithm is de-
termined by two quality measures. Good detection means
that most foreground pixels of the image have actually been
found by the algorithm. Good discrimination means a good
distinction has been made i.e. not many pixels have been
declared as foreground erroneously. These metrics are mea-
sured by the Detection Rate (DR) and False Alarm Rate
(FAR) defined as follows:

DR =
T P

T P+FN
(17)

FAR =
FP

T P+FP
(18)

with true positives (TP), false positives (FP) and false nega-
tives (FN). The Detection Rate is also known under recall or
true positive rate and describes the sensitivity of a detector.
The False Alarm Rate corresponds to 1− p where p is the
detector’s precision or specificity.

In order to evaluate the performance metrics it is re-
quired to have access to the true data, commonly referred
as Ground Truth (GT). Ground Truth has to be created man-
ually and is a laborious task. Thus only a small sample of the
results can be tested. In this work 70 successive frames have
been annotated for each test set. Only for the Auto Gain set
have been annotated 180 frames in order to cover the whole
process.

1 http://www.ino.ca/en/video-analytics-dataset/

6.3 Quantitative results

In order to evaluate the performance of the proposed method
extensive experiments have been performed and evaluated
with the described performance metrics. Besides with the
algorithm itself, each dataset has been processed with four
alternative strategies. Each strategy bases on the Gaussian
mixture model background subtraction algorithm presented
by Stauffer and Grimson [28] and improved by Zivkovic
[32]. Firstly both modalities RGB and IR are processed in-
dividually. Next a pixel-wise fusion is performed with the
creation of RGBT frames. And last the confidence based se-
lection presented by Serrano-Cuerda et al. [25] is used.

As this works aspires to create a system that works with-
out the requirement to manually tune its parameters for dif-
ferent conditions, one set of parameters has been defined for
all test sequences. In practice however parameters may be
tuned to fit the given location and situation. For comparabil-
ity reasons this fine tuning has not been done in this work.
Solely the learning time for each scene has been adjusted to
match the specific situation. For example scenes with much
traffic need more time to learn a stable background model.
For the case of the presented algorithm, both background
models first have been learned individually before the de-
scribed adjustments have been made. This is necessary since
predicted foreground regions are learned much slower and
false positives are very likely during the learning phase.

The update rate α has been set to be slower for the alter-
native strategies. Since the state of the art background mod-
eling does not differ between foreground and background
in the update step, a quick update rate would result in fore-
ground objects merging into the background. This is also
the case in the learning phase of the proposed method. Con-
sequentially the same α has been used here. All important
experimental parameters are listed in Tab. 4, where the pa-
rameters below the line only apply for the proposed method.

For all experiments containing RGB data shadow detec-
tion has been performed. Pixels that have been found to be
shadow have been classified as being background in the ref-
erence methods. Furthermore the region masks have been
applied on the resulting data. Excluded areas have been re-
moved from the resulting foreground masks and the result-
ing masks have been cleaned with morphological operations
and hole closing. This way equal conditions have been cre-
ated for all strategies and differences in the results of the
proposed algorithm in contrast to the state of the art meth-
ods can be explained by its core contributions.

The scenes have been selected, as each of them intro-
duces a new scenario with different conditions. State of the
art methods often aim to perform best for one special sce-
nario. The proposed method however aims for a good perfor-
mance in general. Therefore a comparison to recent special
case methods with best known performance was not desired
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Day Night Auto Gain Heavy Rain Snow

Table 2: Test scenes from our own dataset.

INO ParkingEvening INO ParkingSnow INO CoatDeposit INO TreesAndRunner OTCBVS 3 OTCBVS 4

Table 3: Test scenes from the benchmark datasets.

and even not necessary. The comparison to simple back-
ground modeling on the other hand reveals interesting in-
sights on strengths and weaknesses of the proposed method.

The results of the experiments are displayed in Tab. 5.
The general performance of the proposed algorithm can be
considered very good due to a minimum Detection Rate of
0.84 and maximum False Alarm Rate of 0.56. It can clearly
be seen, that the goal of creating a robust method for a
wide bandwidth of condition is achieved. Only the proposed
method shows a good performance for every test sequence.
The alternative strategies fail for different scenarios, but also
better performance than the proposed method can be seen.
The reasons for this are manifold and will be discussed in
the following section.

As expected, all fusion approaches show in general a
better performance than the single modality methods. The
method presented by Serrano-Cuerda et al. [25] also per-
forms well on the first look. When analyzing the results in
detail however, one can easily see, that the results are at most
as good as one of the single modalities. This is funded in
the design of the algorithm, as it selects one result of two

parallel pipelines. One important characteristic of fusion al-
gorithms is neglected by this design flaw. Fused data or re-
sults generally differ from its inputs and therefore contain
new features and information. A simple selection obviously
makes this impossible. As a result the approach is beaten in
10 out of 11 cases in terms of Detection Rate.

The False Alarm Rate of both, the proposed method and
the RGBT approach mirror the weaker modality. The reason
is, that a high evidence of foreground in one modality is still
present after fusion the data. Only false positives based on
weak evidence are successfully smoothed out. In worst case
false positives from both modalities are present in the result.

A good example for the superiority of fusion approaches
in terms of Detection Rate is given by the sequence INO
TreesAndRunner. Obviously both fusion approaches, the
proposed method and the RGBT approach, perform much
better than the single modalities. This is the case because
both RGB and IR contain frames, that are very hard to seg-
ment. The runner passes trees and other objects. The fusion
approaches can still rely on the second modality, when the
information content of the first is low.
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Parameter Value Description

α 0.0005 Update rate

K 5 Number of components

λ 4 Number of standard deviations for
background acceptance

αBG 0.0033 Background update rate

αFG 0.000033 Foreground update rate

τ 0.1 Foreground ratio

γ 5.0 Foreground deviation weight

ρ 17 Blob match radius (px)

sshadow 0.3 Distance scaling factor for shadow regions

spredict 1.5 Distance scaling factor for predicted regions

sneutral 0.5 Distance scaling factor for neutral regions

Table 4: Parameters used in the experiments. The parameters
below the line only apply for the proposed method.

Proposed RGB IR RGBT Select

Day
0.99 0.93 0.95 0.97 0.93

0.30 0.09 0.31 0.29 0.09

Night
0.84 0.78 0.48 0.89 0.78

0.31 0.69 0.32 0.66 0.69

Auto Gain
0.94 0.86 0.73 0.91 0.81

0.25 0.09 0.76 0.40 0.58

Heavy Rain
0.92 0.46 0.69 0.48 0.69

0.22 0.26 0.11 0.27 0.11

Snow
0.96 0.79 0.21 0.92 0.21

0.52 0.52 0.25 0.55 0.25

INO ParkingEvening
0.94 0.93 0.91 0.95 0.91

0.24 0.27 0.18 0.29 0.18

INO ParkingSnow
0.98 0.86 0.99 0.96 0.99

0.32 0.78 0.40 0.35 0.40

INO CoatDeposit
0.97 0.10 0.10 0.10 0.10

0.19 0.12 0.30 0.16 0.12

INO TreesAndRunner
0.94 0.88 0.84 0.93 0.84

0.44 0.65 0.36 0.70 0.36

OTCBVS 3
0.95 0.75 0.94 0.90 0.78

0.56 0.96 0.74 0.96 0.93

OTCBVS 4
1.00 0.94 0.78 0.99 0.78

0.55 0.15 0.68 0.48 0.68

Table 5: Experimental results. First line DR, second line
FAR. The best DR and FAR values of each set are marked
bold. Proposed method compared to GMM background sub-
traction of RGB, IR, and RGBT frames. ”Select” indicates
result selection based on quality heuristics [25].

6.4 Special situation performance

In the following results of specific test sequences are elab-
orated in detail. It is shown in which way different details
of the design of the proposed algorithm effect the perfor-
mance. Four different problems that arise during outdoor
surveillance are discussed. Emphasis has been put on the
adaptive modality weighting of the proposed algorithm and
its effect on the segmentation results. To begin with, this
context awareness is discussed further.

6.4.1 Context awareness

One of this work’s core contributions is the context aware-
ness of the fusion. It is based on a set of quality heuristics
that have been defined in Sect. 3. The goal is to evaluate the
usefulness of each modality. Instead of using information
from the images itself, outside sources have been consulted.
Solely the thermal domain has been rated by its own infor-
mation content. For the tested sequences, the weights calcu-
lated with the help of the heuristics are more or less fixed.
The time frames are simply too short to see an effect based
on for example the altitude heuristic function. The overall
concept however has been tested by selecting scenes with
various conditions.

In Fig. 11 quality functions covering a full day are plot-
ted. Since video data are only present from 5 a.m. to 10
p.m., the IR quality function is only defined for that particu-
lar time frame. The plotted day was a hot summer day with
rather good weather. Because of overcast, no cast shadows
have been assumed in the morning. During noon time the
temperature was so high, that the thermal camera was over-
exposed. This problem can be seen in the drop of the quality
heuristic.

6.4.2 Automatic Gain Control

The first problem that will be discussed further, is the prior
mentioned Automatic Gain Control of thermal cameras.
When large or hot objects enter the scenery, the camera au-
tomatically adjusts its gain in order to preserve a high level
of detail. This behavior however highly disturbs the back-
ground subtraction. The new background does not longer
fit the model, resulting in a high number of false positive
foreground pixels. Fig. 12 displays the described phenom-
ena. The challenge is hereby the short time frame of the
adjustment. When the objects leaves the scene, the camera
adjusts the gain back. Therefore the problem often only per-
sists for 100-200 frames, while highly affecting the segmen-
tation results. Also the background model is affected, since
it is updated each frame, which makes it invalid for follow-
ing frames.

As seen in 5 the proposed algorithm handles the de-
scribed problem well. No segmentation quality reduction
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(a) RGB quality heuristics and resulting qual-
ity function of a full day.
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(b) Entropy based quality heuristic for thermal
domain of a full day.
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Fig. 11: RGB and IR quality heuristics and resulting weights of a full day.

(a) Frame 170 (b) Frame 200 (c) Frame 230 (d) Frame 260

Fig. 12: AGC of the IR camera triggered by a big truck coming into the scenery.

can be detected from the raw numbers. The reason for
this is the adaptive weighting performed in the fusion step.
Through the foreground ratio evaluation described in 4 is
detected, that the background model of the thermal domain
is invalid. As a result, the IR weight function drops to zero
and the segmentation only relies on the RGB domain. 13
displays this behavior. It can clearly be seen, how the qual-
ity heuristic drops parallel to the weight of the IR domain.
After the truck leaves the scene, the camera adjusts back to
normal and the quality function instantly rises. The weight
however increases only gradually. This is necessary in or-
der to give the background model time, to relearn the back-
ground model.

The foreground ratio quality function also decreases
while the truck enters the scene. This behavior is normal,
since the truck covers a lot of the scene and therefore the
number of foreground pixels is unnaturally high. In the end
result this however has no effect, since the overall trust in
the RGB domain is still higher.

6.4.3 Changing illumination

A very similar problem that is common in outdoor surveil-
lance is changing illumination. Although the design of
the Gaussian mixture model background subtraction allows
variations in the illumination, problems can still arise when
abrupt changes happen. This for example is the case when

clouds cover or uncover the sun. The algorithm is only de-
signed to adapt for slow changes, e.g. shadows that move
over the day. Fast changes of the scenery will cause fore-
ground objects due to the definition of the process.

Similar to the problem discussed before, the foreground
ratio of the RGB domain is rising, since the background
model does not adapt fast enough for these changes. Con-
sequentially a weight shift to the thermal domain is per-
formed by the algorithm, leading to the comparatively low
False Alarm Rate of 0.56.

6.4.4 Artifact reduction

Another contribution of the proposed algorithm can be seen
in the results of OTCBVS 3. With 0.56 the False Alarm Rate
is even lower than the results of the thermal background sub-
traction. This can be reasoned with the adjustments made to
the fused distance map based on the scene geometry. Ar-
tifacts are unlikely to appear since unpredicted foreground
regions are reduced in the distance map. The effect on the
foreground mask can clearly be seen in 14 in comparison to
the approach using solely the thermal domain.

6.4.5 Long staying objects

Gaussian mixture model background subtraction presented
by Stauffer and Grimson [28] assumes that foreground ob-
jects are constantly in motion. For traffic this is obviously
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Fig. 13: Quality heuristics for the Auto Gain test sequence.

Fig. 14: Distance map before and after scene geometry
based modulation.

Fig. 15: Stopped car merges into the background.

not the case. This has been addressed by Yao and Ling [30]
and the proposed method has been integrated in this work.
The original algorithm causes long staying objects to gradu-
ally merge into the background. This problem is very much
visible in the INO CoatDeposit test set. The car coming into
the scene merges into the background within a few frames
as seen in Fig. 15. This merging is stopped by predicting
foreground regions and lowering their update speed, result-
ing in a significantly better Detection Rate of the proposed
method.

7 Conclusions and future work

This work aimed to investigate on how the fusion of thermal
and RGB video data can assist camera based traffic moni-
toring. Related work has been studied and a suitable starting
point has been identified. Background subtraction is the first
and crucial step of many surveillance algorithms. A stable

segmentation lays the base for successful successive analy-
sis. Different environmental conditions are hereby the most
challenging problem. Only very few methods have been pre-
sented working under extreme situations, although the in-
terest in these methods is high. The goal of this work was
therefore to present a method for stable background sub-
traction as far as possible independent from environmental
conditions and thereby laying the base for persistent traffic
monitoring.

A new approach to Gaussian mixture model background
subtraction using two modalities has been presented. The
proposed algorithm fuses an image representation of back-
ground model conformity values of each pixel. This allows
to include prior knowledge about the modalities in form
of quality characteristics. Different image quality heuristics
based on image structure and external information sources
have been investigated and specified. To match requirements
derived from the purpose of traffic monitoring, extensions to
the core contribution have been introduced.

The proposed method has been thoroughly tested. The
results show a significantly better performance of the pro-
posed method than comparable background subtraction al-
gorithms. Special situation performance suggests that the
strategy of including image quality heuristics in the seg-
mentation process has great potential. The modularity of
the method allows the implementation of improvements that
have been developed originally for the background subtrac-
tion by Stauffer and Grimson [28].

A common problem of image fusion techniques can be
seen from the experimental results. Although the algorithm
features a suppression of false positives, a propagation to
the fused mask can still be noticed. This is especially the
case, when the quality rating of the two modalities is sim-
ilar and therefore information fuses in equal proportions.
Based on this observation further development of the pro-
posed method can be derived. Serrano-Cuerda et al. [25] per-
form a switch based on image quality heuristics. This work
performs an adaptive fusion. The next logical step would be
to perform the fusion adaptive per image region. Similar ap-
proaches based on image characteristics rather than quality
heuristics have been presented. The approaches however do
not differentiate between different conditions such as night
and day. By specifying quality heuristics for image samples,
information about shadows and different lighting conditions
within the scene, the main reasons for false positives, could
be considered.

The work has been limited to the usage of RGB and ther-
mal imagery. The algorithm however can easily be adapted
to work with different imaging sensors. A setup of the pro-
posed system in combination with sensors helping to esti-
mate the image quality would also be an interesting exten-
sion. Weather stations and street temperature sensors would
enable the heuristics to work much more accurately.
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