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Synopsis:

Information flow and access control are

subjects in the area of computer secu-

rity where extensive research has been

performed. However, research in re-

gards to time-based information flow

and access control have received lim-

ited attention and as such no time-

based security models based on infor-

mation flow and access control have

been developed. The Timed Decentral-

ized Label Model (TDLM) that takes

timed information flow and access con-

trol into account was developed. The

TDLM is based on timed automata and

as such it is formally defined via the use

of these, however an implementation of

the model is yet to be developed. As

such further study is needed in regards

to a complete implementation of the

TDLM which perhaps could be a new

programming language or an extension

to the implementation of the model the

TDLM is based on. UPPAAL could

be used in the implementation to stat-

ically verify that security policies are

enforced correctly.





RESUME

Information flow and access control are subjects in the area of computer security
where extensive research has been performed. However, research in regards to time-
based information flow and access control have received limited attention and as
such no time-based security models based on information flow and access control
have been developed. As a result of this, security in time-sensitive systems can be
difficult to model as there is no well-documented way of doing so.

The Decentralized Label Model (DLM) was chosen as a basis for developing a
security model that takes time into account, resulting in the Timed Decentralized
Label Model (TDLM) which extends the DLM with time-based constructs such
that security policies can be expressed in terms of who and when access to data are
allowed.

The clock expressions introduced by the TDLM can be placed on principals in a
security policy to restrict these principals’ access to data based on time. This allows
the TDLM to express security policies where principals are restricted in certain time
intervals, for example a principal may only be allowed to access some data once every
month which can be expressed via the use of clocks with certain clock parameters.

The TDLM also allows for clocks in the principal hierarchy which restricts acts-
for relationships between principals based on time intervals resulting in the possibil-
ity of defining when certain principals trust other principals to act on their behalf.

The TDLM is subject to further study in the form of formal proofs of the com-
ponents introduced in the DLM which still should hold for the TDLM. Furthermore,
a complete implementation of the TDLM could be constructed perhaps in the form
a new programming language or an extension to the implementation of the DLM
that makes use of UPPAAL to statically verify that security policies are enforced
correctly.
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PREFACE

This report studies security models in regards to secure information flow and access
control resulting in the construction of a timed extension to the well-known Decen-
tralized Label Model to be able to model time-sensitive systems such as a smart
meter system.

The report is written as a master’s thesis by a Software Engineering student and
a Computer Science student.

Chapter 1 introduces the problem area and narrows the scope of the report.
Chapter 2 presents the underlying theories needed to understand how to ap-

proach the problem.
Chapter 3 presents the extension to the Decentralized Label Model named the

Timed Decentralized Label Model. The extension adds concepts to the Decentralized
Label Model such that time can be expressed in policies and the principal hierarchy.
Furthermore, the Decentralized Label Model’s rules for complete safe relabeling is
adapted to fit the extension.

Chapter 4 uses the Timed Decentralized Label Model in a concrete real-world
example to illustrate the practical use of the model.

Chapter 6 concludes on the project.
We would like to thank Daniel Lux from Seluxit ApS for providing us with

insight on how the Danish smart meter/smart grid system works. Furthermore, we
would like to thank René Rydhof Hansen for his valuable supervision throughout
the project.

vii



CONTENTS

1 Introduction 1
1.1 Narrowing the Scope: The Decentralized Label Model or Paralocks? . 2

2 Theories 3
2.1 The Decentralized Label Model . . . . . . . . . . . . . . . . . . . . . 3
2.2 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The Timed Decentralized Label Model 10
3.1 DLM Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 TDLM Constructs . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 From Policies to Timed Automata . . . . . . . . . . . . . . . . 16
3.1.3 Clarifying TDLM Constructs . . . . . . . . . . . . . . . . . . 18
3.1.4 Trusting Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Clocks in the Principal Hierarchy . . . . . . . . . . . . . . . . 26

3.2 Safe Relabeling in the TDLM . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Confidentiality Policies . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Integrity Policies . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Declassification . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Time-based Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Access to a System After Specified Time . . . . . . . . . . . . 33
3.3.2 Change Access Rights Based on Time . . . . . . . . . . . . . . 34
3.3.3 Access to a System For Specified Time . . . . . . . . . . . . . 35
3.3.4 Time Reset Based on Events . . . . . . . . . . . . . . . . . . . 36

4 Case Study 39
4.1 Case Study: Smart Meter System . . . . . . . . . . . . . . . . . . . . 39
4.2 Smart Meter Privacy Concerns . . . . . . . . . . . . . . . . . . . . . 41

viii



4.3 Access Rights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Smart Meter System Modeled with the TDLM . . . . . . . . . . . . . 43

4.4.1 Security Label Changes . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 User Passed Permissions . . . . . . . . . . . . . . . . . . . . . 49

5 Evaluation 50
5.1 Attacking the TDLM . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 The Principal Hierarchy . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Window of Opportunity . . . . . . . . . . . . . . . . . . . . . 51
5.1.3 Security Label Complexity . . . . . . . . . . . . . . . . . . . . 55
5.1.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Improvements and Future Work . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion 60

Bibliography 63

ix



CHAPTER 1

INTRODUCTION

Extensive research has been performed in the area of information flow security and
access control [15, 7, 10, 4, 5, 6, 8], however well-known security models such as
Paralocks, the Decentralized Label Model (DLM), and Bell-LaPadula does not take
time-based access to information into account. Research has been performed in the
area of timed security protocols and the verification of these [9, 14], however this
research are based on communication protocols and not on concrete security models.
As a result of this, certain security systems are difficult to correctly model with the
current available security models as these security systems are highly dependent on
restricting access to information based on time, such that the entities in the systems
only can access information at specific time intervals.

A smart meter system which is responsible for monitoring power consumption
in households and reporting this to electrical companies, such that consumers can
be billed accordingly cannot be modeled with the current security models, due to
the fact that the system is highly dependent on being able to express that certain
entities in the system only can gain access to data at specific time intervals. The
need for expressing access to data at specific times is due to severe privacy issues
for the consumers as the electrical companies can gain access to fine-grained power
consumption data. This data could be used to derive the consumers’ daily routines,
which would be a breach of privacy [17]. Furthermore, if electrical consumption
data is leaked to third parties, the data may be used to target advertisements, and
plan criminal actions according to the consumers’ behavioral patterns for example
breaking-and-entering.

The smart meter system can also be used as a basis for a home automation
platform as the system is able to retrieve real-time electrical prices, which can be
used to determine when to turn on certain heavy power consuming devices such
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as a dishwasher or a washing machine. However, this poses security issues if the
smart meter platform is compromised as the intruder may be able to control devices
connected to the smart meter, alter the electrical prices or billing information stored
by the smart meter, or turn off the power to the household [3, 2].

In [22] we gave an overview of the problem in regards to time-based informa-
tion flow control as well as an investigation of how this problem could be solved
with focus on smart meter systems and the issues related to these. We performed
an investigation of several well-known security models to determine which of these
that would be most suitable for modeling smart meter systems. This lead to the
preliminary conclusion that the DLM and Paralocks were the most promising can-
didates. Based on this investigation, we proposed two extensions to the DLM and
Paralocks respectively which extended these well-known security models with time-
based expressiveness. These extensions were based on a smart meter system as the
one described above.

1.1 Narrowing the Scope: The Decentralized La-

bel Model or Paralocks?

Before a further investigation of the ideas proposed in [22] can be performed, the
research scope will have to be narrowed due to limited resources allocated to this
project meaning that only one of the security models and their respective extension
will be investigated. However, the results of an investigation of one security model
may be applicable to the other to some extent.

In terms of comparing the DLM and Paralocks in regards to expressiveness, an
investigation of this was done in [22] which resulted in the discovery that both ex-
tended models possesses the necessary expressiveness for modeling security systems
that are time dependent. As such the choice of which model to further study is based
on available documentation, estimated complexity, and implementation possibilities.

In regards to available documentation, the DLM is easier to comprehend than
Paralocks and more research has been done using the DLM than Paralocks. We es-
timate the complexity of the extension and implementation of the DLM to be more
accessible than the corresponding Paralocks extension/implementation because the
DLM is more comprehend-able and as such the theoretical foundation is more in-
tuitive to some extent. As such the DLM would be the focus of further study in
regard to time-based information flow and access control.
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CHAPTER 2

THEORIES

To be able to extend the DLM a deeper understanding of how the model works in
detail is needed as well as an understanding of timed automata as they can be used
to depict security policies involving time. In section 2.1 the DLM is explained and
formally defined such that an extension to the model can be formulated. In section
2.2 timed automata are presented to be able to depict timed security policies.

2.1 The Decentralized Label Model

As the DLM is the core model studied in this report, a clear understanding of how the
model is composed is essential. As the DLM is a decentralized model it supports
computation in an environment with mutually distrusting entities where security
policies are specified for each entity rather than decided by a central authority.
The DLM assumes that users of a modeled system are external to said system
meaning that programs running on the system are only leaking information if the
information leaves the system. In addition to providing rules for information flow
within a system, the DLM also specifies rules for handling release of information to
external entities and rules for reading the information that is released [16].

Authority entities in the DLM are called principals, which can be users, groups
or roles, where system processes has the capability to act on behalf of some set of
principals. Principals can be authorized to act-for other principals, which means
that if a principal a can act-for another principal a′ then the principal a also gains
the privileges of a′, formally written as a � a′. The acts-for relationship is both
reflexive and transitive; meaning that if a principal a acts-for another principal a′

then a would also be able to act-for a (reflexive), and if a′ acts-for a′′ then a would
also be able to act-for a′′ (transitive). These properties ensures that a hierarchy or
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partial order of acts-for relationships can be formed as seen in Figure 2.1 - in the
DLM called the principal hierarchy. The principal hierarchy may change over time,
however removal of acts-for relationships does not occur frequently [16].

Figure 2.1: DLM principal hierarchy where a acts-for a′ and a′ acts-for a′′ and b.

In the DLM data and programs can be associated with labels which expresses
security policies with regards to principals participating in the system. A label is
composed of one or more owners, where each owner permits a set of readers to
observe the data protected by the policy. An example of a DLM label consisting
of two security policies is {o1 : r1, r2; o2 : r2, r3}, where o1 and o2 are owners of the
data and r1, r2, r3 are readers. As this label is composed of more than one security
policy, a principal that intents to gain access to information protected by this label
can only do so if said principal can act-for at least one reader in each policy meaning
that in this example only principals that acts-for r2 can observe the data. If a policy
contains no owner and an empty reader set then all principals in the system can
gain access to the information [16]. Security labels are not defined on the actual
data but rather on variables, input channels and output channels.

Data that are labeled with security policies can be relabeled by restriction or
declassification. If a variable is labeled with a security policy an assignment to this
variable may only occur if the relabeling that is performed is a restriction, meaning
that the new label has more owners or less readers for the already existing reader
sets. For example the relabeling from {o1 : r1, r2} to {o1 : r1} is a restriction because
less readers are permitted to observe the data. A restriction is considered safe as
less principals are able to observe the data, however removing a reader r does not
necessarily make the label more restrictive as there might be readers which r acts-for
[16]. Relabeling can be safely done in the following ways:
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� Remove readers: Readers can be removed from a label thus making it at
least as restrictive as it originally was.

� Add a policy: A security policy can be safely added to a label as all policies
associated with the label must be enforced.

� Add a reader: A reader can safely be added to a security policy’s reader set
if that reader can act-for an existing reader in the set. Formally a reader r
can be added if another reader r′ is already in the reader set and r � r′.

� Replace an owner: An owner o of a security policy can safely be replace by
another owner o′ if o′ � o. The changed policy would then only allow processes
to declassify the data if that process can act-for o′ meaning that the security
policy would be more restrictive.

Formally a relabeling from a label L1 to another label L2 is safe if there, through
the relabeling rules above, is a rewrite sequence that transforms L1 to L2. The
transformation is a restriction if L1 is at most as restrictive as L2 and L2 is at least
as restrictive as L1, written as L1 v L2. A formal definition of the v relationship
requires that a function R which yields the implicitly allowed readers is defined in
Definition 2.1.1, where I is the policy, r(I) is the set of readers of I and p, p′ are
principals [16].

Definition 2.1.1: Safe Relabeling

R(I) = {p | ∃p′∈r(I) p � p′}

With the use of this function a formal definition of the complete relabeling rule
can be defined as described in Definition 2.1.2, where o(I) is the owner of the policy
I and the equation describes the relationships I v J and L1 v L2 where I, J are
security policies and L1, L2 are labels [16]. For a proof that the complete relabeling
rule is both sound and complete in regards to the formal semantics see [19]; meaning
that the rule only allows safe relabelings and allows all safe relabelings.

Definition 2.1.2: The Complete Relabeling Rule

L1 v L2 ≡ ∀I∈L1∃J∈L2 I v J

I v J ≡ o(J) � o(I) ∧R(J) ⊆ R(I)

≡ o(J) � o(I) ∧ ∀p′∈r(J)∃p∈r(I) p
′ � p

When executing a program within a system, values are often derived from other
values, for example a new value may be derived by multiplying two other values. In
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the DLM a derived value v must have a label that enforces the policies of the values
used to derived v meaning that the label of v must be at least as restrictive as the
combined label of the operands. Formally if we have two operands labeled with the
labels L1 and L2 respectively the label for a derived value would be a join of these
two which in terms is the union of the labels joined, as described in Definition 2.1.3.

Definition 2.1.3: Label Join

L1 t L2 = L1 ∪ L2

In addition to the join operation, the DLM also defines a meet operation also
referred to as the greatest lower bound of two labels. The greatest lower bound of
two labels is the most restrictive label that can be relabeled to both of them [19].
Meet can be used to determine the labels of input automatically as join can be used
for determining the labels of outputs automatically. The construction of the meet
label of two labels A and B is the pairwise meets of all the policies contained in
each label, however if there is no known acts-for relationship between the owners
of the policies at compile-time then the meet is {} because no other label can be
relabeled to both policies. As an example consider the policies Q = {o : r1, r2} and
P = {o′ : r′1, r

′
2} which are in the labels A and B respectively. If o′ can act-for or

is equal to o then the meet of the policies Q and P would be {o : r1, r2, r
′
1, r

′
2} else

if o′ is equivalent but not equal to o then the meet of the policies Q and P would
be {o : r1, r2, r

′
1, r

′
2; o′ : r′1, r

′
2, r1, r2}. Formally the meet operation can be defined as

described in Definition 2.1.4.

Definition 2.1.4: Label Meet

A =
⊔

i
ai

B =
⊔

j
bj

A uB =
⊔

i,j
(ai u bj)

Relabeling can also be done by declassification where the restrictiveness of a label
is reduced. This kind of relabeling can only be performed by owners of the policies or
processes which can act-for these owners. When a process acts-for a set of principals
it is executing with the authority of the principals that it acts-for, meaning that a
program running with the authority of a principal can declassify data by adding
readers to policies or removing policies entirely [16]. This means that a process
may weaken or alter the policies that are owned by principals that the process can
act-for. Formally, a process can declassify by relabeling the label L1 to the label L2

6



where the property L1 @ L2tLA, where LA is the label containing the policy {p : }
for every principal p in the process’ authority set. The declassification process can
then be formally defined as an inference rule as described in Definition 2.1.5 [19].

Definition 2.1.5: Relabeling by declassification

LA =
⊔

(p in current authority) {p : }

L1 @ L2 t LA

L1 may be declassified to L2

As the declassification inference rule makes use of relabeling by restriction, the
rule for relabeling L1 to L2 defines that ∀J ∈ L1 where J is policies there must be a
corresponding policy K in L2 that is at least as restrictive. For declassification this
is achieved by having a corresponding policy in LA for each principal in the process’
authority set that is at least as restrictive, for the policies that are not owned by
principals in the process’ authority set a corresponding policy must be found in L2

as the process cannot weaken these policies [19].
The DLM specifies input and output channels for obtaining information from

outside systems or releasing information to outside systems. Input and output chan-
nels are labeled with labels as any other variable in a DLM system. The information
received on the input channel would then be labeled with the same label associated
with the input channel. Information sent to output channels must be labeled with
labels that are at least as restrictive as the label for the output channel [16].

The security policies mentioned so far have all been confidentiality policies that
only considers whom that can observe the data. However, the DLM can also specify
integrity policies which considers whom that are able to modify the data protected
by the policies. The integrity policies are quality guarantees provided by the owners
of the policies that only the specified writers have modified the data. The syntactical
notation would be the same as for confidentiality policies but instead of a reader
set, a writer set would be associated with the policies. An integrity policy can
also be relabeled in the same way that a confidentiality policy may be relabeled
[16]. However, the relabeling rules for integrity labels are the inverse of those for
confidentiality labels [19]:

� A writer may be added to a policy: Adding a writer to a policy is safe
because additional writers serve as further warning of contamination.

� Remove a policy: A security policy can be safely removed from an integrity
label as an integrity policy serves as an assurance that at most the principals

7



in the policy have affected the data. The removal of the policy restricts the
principals that are allowed to modify the data.

� Replace a writer: An existing writer can safely be replaced in a security
policy’s writer set if that writer can be act-for a new writer. Formally a writer
w′ can be replaced by another writer w if w′ � w. This would in terms add
more writers to the writer set as a policy that permits w′ to write might not
permit w to write.

� A policy may be added if it is identical to an existing policy: A policy
I may be added to a label if that policy is identical to an existing policy J if
o(J) � o(I).

� Writers that acts for the owner of a policy may be removed: As the
most restrictive integrity policy is the one where only the owner is present, it
is safe to remove writers that can act-for that owner.

In the DLM a writer policy is defined in a similar manner as a reader policy, for
example the policy {o1 : r1, r2} is a reader policy and the policy {o1 : w1, w2} is
a writer policy. However, if a security label contains both a confidentiality and an
integrity policy, we will place an exclamation mark in front of the principals in the
integrity policies for example {o1 : r1, r2; !o1, !r1, !r3}, where the owner o1 permits
r1 and r2 to read and r1 and r3 to write. A security policy can also be defined with
an implicit owner as is the case in the following policy {o1 : r1, !r2}, where o1 may
read and write to the data but r1 may only read and r2 may only write.

2.2 Timed Automata

In computer science finite-state machines [18] are well known theoretical computa-
tion models used for describing logical program behavior based on transitions and
states that a program can be in. An extension of the finite-state machine with time
is called a timed automaton [1], which adds a finite set of real-valued clocks to the
finite-state machine. The clocks are increased at the same rate and can be reset
during a transition if need be. The primary use of the clocks are to set up guards
that can prevent transitions from being executed or prevent the program from being
in a certain state [1].

A timed automaton is a tuple T = (Σ, S, S0, C, E) consisting of the following
components [1]:

� Σ is the input alphabet accepted by the automaton.

� S is the set of possible finite states that the automaton can be in.
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� S0 is the set of start states which is a subset of S; S0 ⊆ S

� C is a finite set of clocks

� E is the set of possible transitions in the automaton, formally defined as
E ⊆ S × S × [Σ ∪ {ε}]× 2C × Φ(C)

[1] An edge in the timed automaton would then be defined as 〈s, s′, σ, λ, δ〉, which
represents a transition from a program state s to another program state s′ on the
input σ. λ would then be the set of clocks that should be reset with the transition,
and δ is the enabling condition (the guard). The automaton starts in one of the
start states with all clocks set to zero. The clocks then increases to reflect time
elapsed and a transition may be taken when the guards of an edge is satisfied.

An example of a system that is ideally modeled with a timed automaton is a sim-
ple smart meter system consisting of a smart meter and an electrical company. The
electrical company should be restricted to only being able to read the smart meter
data at certain time intervals. In Figure 2.2 this scenario is presented with a timed
automaton constructed in UPPAAL [21]. UPPAAL is used to verify timed automata
models, such as the model presented in Figure 2.2. The automaton consists of two
locations smd and ec, where smd is the smart meter data and ec is the electrical
company. The system can take the transition from ec to ec non-deterministically
while waiting for the clock x to be larger than 90. When the clock x is larger than
or equal to 90 the transition guarded by the expression x >= 90 can be taken thus
modeling a read of smart meter data by going to the location smd, where the only
transition that can be taken resets the clock variable to zero and leads back to ec.
This simple example models an electrical company that can read smart meter data
of a single customer every 90 days.

Figure 2.2: Simple smart meter example where an electrical company reads smart
meter data every 90 days.
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CHAPTER 3

THE TIMED DECENTRALIZED LABEL MODEL

Based on the DLM and timed automata, an extension to the DLM in regards to
time is presented along with scenarios that describes the expressiveness of the ex-
tension by defining security policies that are dependent on time. In Section 3.1 the
Timed Decentralized Label Model (TDLM) is presented. In Section 3.1.1 the new
constructs added to the TDLM along with a syntax in Extended Backus-Naur Form
are presented and explained. The TDLM is formally defined in Section 3.1.1 and in
Section 3.1.3 the constructs are used in concrete examples to clarify their meaning
and expressiveness. In Section 3.1.4 an explanation of how time can be trusted in the
TDLM is presented. In Section 3.1.5 the principal hierarchy known from the DLM
is further extended with the use of constructs from the TDLM. The complete safe
relabeling rule from the DLM is modified to cohere to the new constructs added in
the TDLM in Section 3.2. In Section 3.3 several scenarios based on timed automata
are formulated to describe the expressiveness of the TDLM.

3.1 DLM Extension

In [22] we proposed an extension to the DLM that takes time into consideration
when defining security policies. In this section we will clarify how the extension
could look syntactically and how it is supposed to work.

The main idea is to extend the DLM with clock variables to represent incre-
mentable time where the system is responsible for incrementing clock variables with
the authority of the clock owners. Incrementable clock variables are integers rep-
resenting arbitrary values defined by the owner of the clock variable and may be
increased according to the rules the owner of the clock variable has defined. In ad-
dition to this, the value of clock variables would have to be normalized for the each
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system that makes use of the TDLM to make clock comparisons unified between all
policies in a system. The clock variables could for example be normalized to strictly
model nanoseconds which would provide a more general way of depicting real-time
even though clock variables does not reflect real-time.

As in the DLM it would be the system that is responsible for enforcing that
clock variables are correctly incremented and access to data labeled with time-based
security policies are restricted in the proper manner. The principal hierarchy and
the acts-for relationship defined by the DLM would still behave in the same manner
even though the model is extended with time, however in Section 3.1.5 we propose an
extension to the principal hierarchy that can be used to restrict acts-for relationships.

The DLM does not clearly define how the principal hierarchy works at run-
time or how the acts-for relationships are enforced or the rules for changing these
relationships. As such, we make the same assumption that is made in regards
to the DLM that the principal hierarchy may change over time and that acts-for
relationships are correctly enforced when inspecting a security policy.

The DLM extension is henceforth referred to as the TDLM and extends the
regular DLM with time, which is done by adding clock variables that can be used
to restrict policies based on time. Clock variables are defined by the principal that
creates the security policy or a principal that can act-for it, and can be used to
restrict an entire owner’s reader set or specific readers.

3.1.1 TDLM Constructs

To clarify the new constructs that the TDLM adds to the DLM, an explanation
of the isolated constructs are presented to give an unambiguous understanding of
what each individual construct means before a detailed and exemplified explanation
is given. The semantics for the TDLM constructs are as follows:

� Declaring clock variables: Clock variables are used to restrict access to
data based on time and are declared within a set of parentheses () which is
placed after a principal (owner or reader/writer) to restrict that principal’s
access, after another clock variable to indicate who that can see and alter the
clock value, and in the principal hierarchy to restrict acts-for relationships. If
a clock is placed on an owner of a policy then all readers or writers associated
with this owner is restricted by the clock, however if a clock is placed on a
reader or writer then only that specific reader or writer is restricted by it. A
clock variable is identified by its unique name which can be any combination
of alphabetic characters and the value of a clock variable can be any positive
integer.

� Comparing clock values: Clock variables can be compared to other clock
variables and constant integers with the use of the binary comparison operators
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defined in Table 3.1. If that comparison evaluates to true then the clock
variables allows access to the entity it is associated with. The comparison is
defined within the parenthesis along with the declaration of the clock variable
for example (x > 10). The value the clock variable is compared to is called
the comparison value.

� Multiple comparisons: Multiple clock comparisons can be performed within
the same parenthesis by separating them with the logical && and || operators,
which evaluates as expected for example (x > 10 && x < 15) would evaluate
to true when x is between ten and 15. A statement of clock comparisons
placed within a single set of parenthesis is called a clock expression and must
evaluate to true before the associated principal(s) can gain access to the data.

� Parameterized clock variables: Clock variables can be parameterized with
the use of square parenthesis [] placed after the name of the clock variable.
However, if no parameters should be defined on a clock variable then the square
parenthesis may be omitted. Within the square parenthesis three optional
parameters can be declared. Parameters are separated with a semicolon ; and
are identified in the following order: Upper Limit ; Event ; Reset Value. If
only one parameter is declared and that parameter’s identifier starts with a
question mark then it is an event otherwise it would be an upper limit. A
parameterized clock variable would then be defined as (x[15; ?event; 1] > 10).

� Upper limit: An upper limit is a constant integer used to define when a clock
variable should be reset. Upon reaching the upper limit the value of the clock
variable will instantly get reset.

� Reset value: The reset value is a constant integer used to define the value
of a clock variable when it resets. If omitted from a clock variable the reset
value is always zero.

� Events: Events are defined by a unique alphabetic name starting with a
question mark ? and can be placed as a parameter on a clock variable, which
indicates that when the event is triggered then the value of the clock variable
is reset.

� Event trigger: An event trigger can be specified on any principal with the
use of square parenthesis [] placed immediately after a principal’s identifier.
An event trigger starts with the symbol ∗ and should have the exact same
name as the event that should be triggered when said principal successfully
reads or writes to some data. Several event triggers can be placed on the same
principal in the same security policy by separating the event triggers with a
comma, for example p[∗event1, ∗event2] would trigger event1 and event2 when
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p reads the data. An event can only be triggered from within the system by
those principals that have an event trigger defined on them in a given security
policy.

< Less than
> Greater than
== Equal to
<= Less than or equal to
>= Greater than or equal to
! = Not equal

Table 3.1: Operators that are allowed when comparing clock variables.

To give an overview of the TDLM syntax consider Definitions 3.1.1, 3.1.2, and
3.1.3 where a syntax in Extended Backus-Naur Form (EBNF) [12] is presented.

Definition 3.1.1: TDLM Syntax in EBNF - General

< digit > = ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6”

| ”7” | ”8” | ”9” ;

< letter > = ”a” | ”b” | ”c” | ”d” | ”e” | ”f” | ”g”

| ”h” | ”i” | ”j” | ”k” | ”l” | ”m” | ”n”

| ”o” | ”p” | ”q” | ”r” | ”s” | ”t” | ”u”

| ”v” | ”w” | ”x” | ”y” | ”z” | ”A” | ”B”

| ”C” | ”D” | ”E” | ”F” | ”G” | ”H” | ”I”

| ”J” | ”K” | ”L” | ”M” | ”N” | ”O” | ”P”

| ”Q” | ”R” | ”S” | ”T” | ”U” | ”V ” | ”W”

| ”X” | ”Y ” | ”Z” ;

< string > = < letter > , {< letter >} ;

< operators > = ” < ” | ” > ” | ” == ” | ” <= ” | ” >= ” | ”! = ” ;

< integer > = < digit > , {< digit >} ;

< logical-operators > = ”&&” | ”||” ;
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Definition 3.1.2: TDLM Syntax in EBNF - Clocks

< upper-lim > = < integer > ;

< reset > = < integer > ;

< event > = ”?” , < string > | ”?” , < string ><label>;

< clock-par > = ”[” < upper-lim > ”]” | ”[” < event > ”]” |
”[” < upper-lim > , ”; ”, < reset > ”]” |
”[” < event > , ”; ” , < reset > ”]” |
”[” < upper-lim > , ”; ” , < event > , ”; ” , < reset > ”]” |
”[” < upper-lim > , ”; ” , < event > ”]” ;

< clock > = < string > , [<label>] |
< string > , < clock-par > , [<label>] ;

< clock-com > = < clock > , < operators > , (< integer > | < clock >) ;

< clock-exp > = ”(” , < clock-com > , ”)” |
”(” , < clock-com > , {< logical-operators > ,

< clock-com >} , ”)” ;

< event-trig > = ” ∗ ” , < string > {”, ” , ” ∗ ” , < string >} ;

Definition 3.1.3: TDLM Syntax in EBNF - Label

< principal-par > = [< clock-exp >] , [< event-trig >] ;

< principal > = < string > , < principal-par > |
”!” , < string > , < principal-par > |
”!!” , < string > , < principal-par > ;

< policy > = < principal > , ” : ” |
< principal > , ” : ” , < principal > ,

{”, ” , < principal >} ;

< label > = ”{” , ”}” |
”{” , < policy > , {”; ” , < policy >} , ”}” ;
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In regards to parameterized clock variables, an upper limit was introduced to
explicitly define when a clock should reset to its original value and thereby create
a recurring time period where principals can observe the data protected by the
security policy containing a clock variable rather than just being able to specify a
single nonrecurring time period. Reset values were introduced to provide flexibility
in regards to further specifying the time period where principals can observe data and
to allow systems that require clock variables to not be zero. Events were introduced
to provide a mechanism for specifying that principals have a single one time access
to data before the clock is reset and thus limit how many times principals can read
or write to data in the time period where the policy allows so.

Formal Definition

Formally a clock Υ can be defined as described in Definition 3.1.4, where c is the
clock variable, α is the upper limit, β is the reset event, and γ is the reset value. As
mentioned above, clock expressions Φ can be placed on any principal in a security
policy and is formally defined as described in Definition 3.1.5, where Υ is either a
clock or a constant signed integer, υ is a comparison symbol from Table 3.1, τ is the
logical && or ||, and the last Φ represents another clock expression or nothing if τ
is omitted.

Definition 3.1.4: TDLM Clock

Υ = c[ α; ?βΛ; γ ]

Definition 3.1.5: TDLM Clock Expression

Φ = (ΥυΥ) τ Φ

A TDLM security policy Γ can formally be defined as described in Definition
3.1.6, where (Φ) is an optional clock expression that can be placed on any principal
in the policy, [∗β] is an optional event trigger, and rw are readers or writers of the
data owned by the owner o. A security label Λ in the TDLM consists of one or more
security policies and can be formally defined as described in Definition 3.1.7, where
Γ is a security policy and m describes the total number of policies present in the
label.

Definition 3.1.6: TDLM Security Policy

Γ = o(Φ)[∗β] : rw1(Φ)[∗β], . . . , rwn(Φ)[∗β]
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Definition 3.1.7: TDLM Security Label

Λ = {Γ1; . . . ; Γm}

3.1.2 From Policies to Timed Automata

Security policies can be constructed based on the TDLM constructs described in
Section 3.1.1 to express which principals that can access protected data and when
they can access this data. As an example consider the policy in Equation 3.1 where
all constructs in the TDLM is used to express a policy where o and r may access
data protected by this policy when the clock variable x is larger than ten and y is
larger than 15, x is reset to five when reaching the value 20 or when r successfully
reads the data protected by the policy.

{o (x[20; ?reset; 5] > 10&&y > 15) : r[∗reset]} (3.1)

The behavior of security policies can be expressed via one or more timed au-
tomata where each principal present in the security policy have their own automa-
ton describing their access restrictions, however if several principals are allowed to
access the data under the same conditions then a single timed automaton might
describe the access restrictions for multiple principals. A timed automaton that
describes the access restriction for a principal has its start location labeled with
the name of the principal that the automaton describes as depicted in Figure 3.1,
where rwi is the principal that the timed automaton depicts the access possibility
of. The location named data is used to describe that when the timed automaton is
in this location then the principal is allowed to observe the data but as the location
is committed (marked with a C) then an edge going away from this location must
be taken immediately to enforce the access restriction. The access restriction must
be placed on an ingoing edge to the data location thus modeling that the data is
protected by some time constraints Φ. If a policy contains events β that should be
triggered by certain principals then the timed automaton that describes the access
behavior of these principals must trigger the event on the edge going away from the
data location thus modeling reset only on successful read/write.

In addition to this, for each clock variable in a security policy a timed automaton
describes how this clock variable is incremented and who that can increment it. A
timed automaton that describes a clock variable consists of one location with up to
three cyclic edges that describe incrementing the value of the clock c, resetting the
clock value upon reaching an upper limit α, and resetting the clock value when an
event β is triggered. The clock value is reset to the reset value γ when an event is
triggered or an upper limit is reached. When an upper limit is present on a clock
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Figure 3.1: General timed automaton that describes the access restrictions for the
principal rwi restricted by the clock expression Φ and triggering the event β on
successful read/writes.

variable then a guard on the incrementation edge must be placed to force a reset
when reaching the upper limit. Figure 3.2 depicts a timed automaton that describes
the behavior of the clock c which can be incremented by the principal co.

Figure 3.2: General timed automaton that describes a clock c that can be incre-
mented by the principal co.

As an example consider the timed automata in Figure 3.3 which describes the
policy in Equation 3.1. The first timed automaton labeled 1. describes the access
restrictions for the owner o which is restricted by the guard placed on the edge from
the initial location to the data location meaning that the owner o may only observe
the data when the conditions for x and y are met. When o has successfully gained
access to the data (the timed automaton is in the location named data) the timed
automaton immediately goes to the initial location such that the restrictions placed
on the data can be enforced correctly.

Since o and r are restricted by the same clocks they should be modeled by the
same timed automata, however r triggers an event when successfully reading the data
and thus the access behavior for r must be modeled by a different timed automaton.
The timed automaton labeled 2. models the access behavior of r and is equivalent
to the timed automaton modeling o except for the event (reset!) that is triggered
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when r has successfully gained access to the data. Events are expressed by channel
synchronization meaning that when a timed automaton takes an edge marked with
an event trigger such as reset! then all the corresponding timed automata in the
system take any available matching edges marked with the same event name such
as reset?.

The timed automaton labeled 3. models the behavior of the clock variable x,
which can be incremented by the principal o (indicated by the name of the start
location) when the value of x is below 20 but upon reaching the value 20, o must
reset the clock to five before the clock can be incremented again thus modeling the
upper limit and reset value of x described by the policy. The edge marked with
reset? models the event that is triggered by r and resets the clock to its reset value
when the event is triggered.

The timed automaton labeled 4.models the behavior of the clock variable y which
also can be incremented by the principal o but this timed automaton contains only
one edge as there is no upper limit, reset value or event associated with y.

Figure 3.3: Timed automata describing the security policy {o(x[20; ?reset; 5] >
10&&y > 15) : r[∗reset]}

3.1.3 Clarifying TDLM Constructs

As mention earlier the TDLM extends the DLM with clock variables used to restrict
security policies for example the extended label in Equation 3.2 specifies that the
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entire reader set for o1 only can access the data when the clock variable x is above
two and that the specific reader r5 only can access the data when the clock variable y
is above five. The other readers r3, r4 have unrestricted access to the data. If another
principal p1 acts-for r5 then p1 would be restricted under the same condition that r5 is
restricted. The behavior of this security label is modeled with three timed automata
as depicted in Figure 3.4. Since this security label is composed of multiple security
policies a timed automaton cannot be constructed separately for each principal as
a principal should be able to act-for another principal in each security policy in the
security label before he can access the data. To model this a single timed automaton
is constructed which models all the different cases, so to be in a location labeled
with the names of principals then the principal must be able to act-for one of the
principals in the label name. This means that for a principal to access the data in
this case then he must be able to act-for one of the principals in the each location
towards the data location.

{o1(x > 2) : r1, r2; o2 : r3, r4, r5(y > 5)} (3.2)

Figure 3.4: The security label in Equation 3.2 modeled as three timed automata.

Clock variables can also be combined to form complex logical expressions that
must be true for the restricted principals to access the data, for example the label in
Equation 3.3 expresses that before r6, r7 can access the data then the logical clock
expression must be true, which is modeled by the timed automata in Figure 3.5.
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{o3(z > 10 && p < 15 || k == 12) : r6, r7} (3.3)

Figure 3.5: The security label in Equation 3.3 modeled as timed automata.

In addition to defining when principals should be able to access the data, it is
also possible to specify when a clock variable should be reset. Consider the label in
Equation 3.4 where a clock variable is defined to be reset to the value three when
it reaches the value ten, meaning that the principal r8 would be able to access the
data when the clock variable q is larger than five and less or equal to ten. The reset
value can be omitted which would result in the clock variable being reset to zero. In
Figure 3.6 two timed automata models this scenario, where the principals can access
the data when the value of q is larger than five and less or equal to ten indicating
that the clock resets when reaching the value ten.

{o4(q[10; 3] > 5) : r8} (3.4)

Security policies involving clock variables can be defined such that the data
protected by the policy only can be accessed in an infinitely small amount of time
meaning that no principal actually can access the data. For example the policy in
Equation 3.5, the clock is reset as soon as it reaches the value where the data can
be accessed resulting in no principals being able to gain information about the data
in a practical scenario, but theoretically there could be an infinite small amount of
time where the principal could observe the information as modeled with the timed
automata in Figure 3.7.
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Figure 3.6: The security label in Equation 3.4 modeled as timed automata.

{o5(x[90] >= 90) : r9} (3.5)

Figure 3.7: The security label in Equation 3.5 modeled as timed automata.

Furthermore, the extension to the DLM has the possibility of defining events
that can be used to reset clock variables. An event can be defined as a part of
the clock variable’s parameters but must be placed in between the upper limit and
the reset value such that these can be clearly distinguished as both are optional.
In addition to this, the event is defined by placing a question mark in front of an
alphabetic string and for the event to be triggered a star symbol is placed in front
of a matching string on for example a reader or writer. This means that the specific
reader or writer triggers the event when they successfully read or write to the data
thus resetting the clock variable. In practice, this means that the particular reader or
writer may only access the data once before the clock value is reset. As an example
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consider Equation 3.6 where the clock variable y is specified to have an upper limit
of 15, a reset value of one, and an event called ?reset, which means that the clock is
reset to one when reaching the value 15 or when the event is triggered. Furthermore,
the reader r7 is specified to trigger the event via the event trigger ∗reset so when r7

successfully reads the data then the clock variable is reset. However, if the data is
not read successfully the event will not be triggered for example if the reader tries
to read when the clock condition is not met. This system behavior is depicted in
Figure 3.8.

{o6(y[15; ?reset; 1] > 10) : r7[∗reset]} (3.6)

Figure 3.8: The security label in Equation 3.6 modeled with three timed automata.

In addition to this, it is possible to specify that an event trigger is applied to
all principals for a given security policy by placing the event trigger on the owner
of the policy as depicted in Equation 3.7. Figure 3.9 models this behavior with two
timed automata that is responsible for resetting the clock value y to one when the
event reset? is triggered by either o6 or r7 accessing the data when y is greater than
ten.

{o6(y[?reset; 1] > 10)[∗reset] : r7} (3.7)

Furthermore, events can be triggered from security policies even though they
were not defined in these policies, which means that events names are unique in
regards to the system they are defined in. This also indicates that the principal
who owns the clock variable data gives permission such that the defined event can
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Figure 3.9: The security label in Equation 3.7 modeled with two timed automata.

reset the clock even though it is triggered from a different security policy. However,
security policies may also be defined on events to indicate which principals that are
allowed to trigger the given event no matter from which policy the event is triggered
but if no security label is defined on an event then all principals may trigger it.
An example of an event with a security policy where only r8 is allowed to trigger
the event is defined in Equation 3.8. Figure 3.10 depicts this behavior, however the
timed automaton that is responsible for resetting the clock value is annotated with
the names of the principals that can trigger the event. As such, the event has its
own timed automaton instead of being an edge in the clock automaton as usual to
model that o6 and r8 may trigger the event but it is only o6 that can increment the
clock value of y.

{o6(y[?reset{!o6:!r8}; 1] > 10) : r8[∗reset]} (3.8)

In regards to integrity policies, potential writers are defined to have a default
write behavior of non-destructive writes (append) and the owner of the integrity
policy may perform both appends and destructive writes, which means that any
principal who can act-for the owner of an integrity policy may also perform both
append and destructive write operations. In addition to this, principals can be
defined to be allowed to perform destructive writes by explicitly placing two ex-
clamation marks !! in front of the principal that should be allowed to do so. An
example of an integrity policy with a principal that can perform destructive writes
is defined in Equation 3.9, where r8 may perform destructive writes but r9 may only
append.

{!o7 :!!r8, !r9} (3.9)

Clocks in integrity policies ensure that principals that are restricted by the clocks

23



Figure 3.10: The security label in Equation 3.8 modeled with four timed automata.

are only allowed to alter the data protected by the integrity policy at the defined
time intervals. Time in integrity policies does not provide the same degree of utility
as time in confidentiality policies, however in some cases time in integrity policies
might be useful for example to identify in which time period changes happened at
run-time such that appropriate measures can be taken. As an example consider
the integrity label {!o :!w(x[15] > 5)} where the principal w only can alter the
data when x is between five and 15 meaning that errors resulting from w’s write
operations only can occur in the specified time interval.

As in the DLM relabeling is done through rewrite sequences that transforms a
label L1 to L2. Relabeling should still be a restriction to ensure that it is safe,
meaning that the relationship L1 v L2 should hold. Clock expressions would then
have to be at least as restrictive in L2, meaning that new clock variables could
be added or the existing variable could be made more restrictive. In addition to
this, declassification should still work as described in the DLM where principals or
processes can declassify data if and only if they have the authority of the data owners.
Declassification would then remove or lessen the restrictions of clock expressions.

3.1.4 Trusting Clocks

The system with the authority of the clock variable creator is responsible for making
sure that incrementable clocks are increased according to the security policies defined
by the owner of the clock. The clock variables are considered untrustworthy as they
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are defined exclusively by owners of security policies and principals who can act-
for the owner meaning that they can only be trusted in the policy where they are
defined. Furthermore, clocks can only be incremented by the principal that defined
them or the system acting for the defining principal. Implicitly, this means that a
clock c defined by the principal p would have the security policy {!p : }. This is the
default behavior of the system if no labels are defined on the clock variables.

In addition to relying on the default behavior, security policies (both confiden-
tiality and integrity) can also be defined on clock variables to describe who can
observe the value of the clock and who can modify the clock value. As such it can
be defined how trustworthy a clock is by explicitly defining who have influence in
regards to the clock value, making it possible for principals that make use of the
specific clock to determine if they trust the value of the clock. An example of a
security label that contains a clock with a security label could be the label defined
in Equation 3.10, where o1 is the owner of the data security label and the clock
security label, r1 may read the data and the value of the clock x, however r2 cannot
observe the value of the clock.

Even though r2 cannot observe the actual value of the clock he may be able
to infer the value by observing a pattern in regards to how the data protected by
the security policy is handled, for example if the data is read in the same interval
each time then r2 can infer when the clock is reset and what value the clock must
have before the data can be observed. However, the ability to infer clock values
is an acceptable consequence of trying to make clock variables confidential because
the trust of clock variables are more dependent on the integrity of the clock value
than the confidentiality. If a principal can infer the value of the clock but not
modify it, the clock value can still be trusted as it is only the specified principals
that may update the value. However, if a system requires that clock variables are
confidential and cannot be inferred then some other methods must be used to ensure
this property holds, but this is out of scope and will not be further investigated.

{o1(x[10]{o1:r1} > 5) : r1, r2} (3.10)

Furthermore, the security policies that can be defined on clocks can also contain
other clocks such that it is possible to express that a clock is only trustworthy
in certain time periods. This form of security labeling clocks forms a recursive
evaluation process as the clocks used to describe security policies can also contain
clocks and so on. As an example consider the security label in Equation 3.11,
where the addition of the clock y in the clock x’s security label further restricts the
possibility of observing the clock value of x.

{o1(x[10]{o1(y[20]>10):r1} > 5) : r1, r2} (3.11)

Theoretically, security labeling clocks makes the TDLM more expressive and
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secure as it can explicitly be defined if a clock is trustworthy in a certain context or
not. However, practically this would be challenging to implement and enforce due
to the recursive behavior of clock labeling.

Formally labeling clocks with a security label requires a change in the formal
definition of a clock Υ which is redefined as described in Definition 3.1.8, where a
security label Λ now can be placed on a clock.

Definition 3.1.8: TDLM Clock

Υ = c[ α; ?β; γ ]Λ

3.1.5 Clocks in the Principal Hierarchy

To further increase the flexibility of the TDLM, clock variables can also be placed
directly on the acts-for relationships in the principal hierarchy to express that a
principal has a limited acts-for relationship to another principal. Specifically, this
means that a principal can be defined to act-for another principal in a given time
period, which may be relevant to model certain systems. For example if a principal
p1 can act-for another principal p2 but the principal p2 only trusts p1 when a certain
amount of time has passed for example if p2 is responsible for performing certain
critical system updates and does not want any other principals to be able to interfere
whilst the update is being performed. In this case a clock variable is placed on the
acts-for relationship as depicted in Figure 3.11, where p1 may act-for p2 when the
clock variable x is larger than ten and p2 is the only principal that may update the
value of the clock x.

Figure 3.11: Principal hierarchy with a time restricted acts-for relationship.

Another example is when several principals are involved in acts-for relationships
as depicted in Figure 3.12, where a principal p1 may act-for another principal p2

which can act-for a third principal p3 and a forth principal p4. A time restriction is
placed on the acts-for relationship between p1 and p2, and between p2 and p4. This
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means that for p1 to be capable of acting for p4 then both clock variables x and y
must allow so, and for p1 to act-for p3 the clock variable x must be satisfied. The
event that resets the clock variable y can be triggered from other security policies.

Figure 3.12: Principal hierarchy with several time restricted acts-for relationships
that propagates.

The expressiveness of clocks in the principal hierarchy is equivalent to the clocks
in security policies meaning that security policies can be placed on the clock variables
and events can be expressed as well.

3.2 Safe Relabeling in the TDLM

As the TDLM extends the DLM, the possibility of relabeling data can be performed
either by restriction or declassification. Restriction is said to be a safe relabeling as
it restricts the principals that can observe or alter the data protected by the security
policy.

3.2.1 Confidentiality Policies

As with the DLM safe relabeling for confidentiality labels can be done for the TDLM
in the following manner:

� Remove readers: As is the case for the DLM, readers can be freely remove
even though it has an associated clock variable because this would still make
the label at least as restrictive.
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� Add policy: Adding a security policy to a label would also be a safe relabeling
as it would only make the label more restrictive.

� Add a reader: A reader r can be added to a security policy’s reader set if
that reader can act-for a reader r′ that is already present in the reader set
such that r � r′. However, in the TDLM clock variable that are present on r′

would also have to be associated with r.

� Replace an owner: As in the DLM, an owner o may be replaced by another
owner o′ if o′ � o, which would restrict the policy by only allowing processes
to declassify the data with the authority of o′ instead of o. In the TDLM the
clock variables associated with o should be associated with o′ as well.

� Add clock variables: A clock variable that is not already associated with a
principal p can be added to that principal safely as it would cause the security
policy to be at least as restrictive as before.

� Access time: The comparison value in a clock expression may be altered
safely if it reduces the window of opportunity for observing the data. Specif-
ically, this means that if a clock variable x with an upper limit of 15 allows
access for a principal when the value is above ten then increasing the compar-
ison value to 12 would reduce the window of opportunity. Formally, the policy
{o : p(x[15] > 10)} can be safely relabeled to {o : p(x[15] > 12)} as this would
make the label more restrictive because the principal p has less time access the
data. Another example is the policy {o : p(x[15] < 10)} which can be safely
relabeled to {o : p(x[15] < 5)} as this relabeling reduces the time p can access
the data from nine time units to four time units.

The DLM defines a safe relabeling to be a rewrite sequence that via the safe
relabeling rules transforms a label L1 to the label L2 where L1 is at most as restrictive
as L2 and L2 is at least as restrictive as L1, written formally as L1 v L2. In the
TDLM this definition should still be upheld when performing safe relabeling for
confidentiality labels. To describe the formal definition for safe relabeling in the
TDLM we still need the function R(I) presented in Definition 2.1.1 which yields
the implicitly allowed readers. However, in the TDLM clocks can also be placed
on acts-for relationships which would result in a different implicit reader set based
on the current values of clocks. A function which yields clocks associated with a
principal for a policy I is needed to define the safe relabeling rule for the TDLM.
Definition 3.2.1 describes this function where p is a principal in the policy I, c(I) is
the set of clocks present in the policy I, and c is the clock associated with p. C(p)
would then be the set of clocks associated with the principal p.
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Definition 3.2.1: Safe Relabeling: Clock Function

C(p) = {c | ∀c(I)∈p c}

Furthermore, a definition for the concept of a clock restriction is presented in
Definition 3.2.3 which is dependent on the function T (c) defined in Definition 3.2.2
which yields the available time units t that a principal restricted by the clock c can
access some data protected by the clock. The clock restriction states that for a clock
to be at least as restrictive then the window of opportunity (time units where clock
allows access) must be equal to or less than the original clock.

Definition 3.2.2: Safe Relabeling: Time Function

T (c) = {t | time units t where clock c allows access}

Definition 3.2.3: Safe Relabeling: Clock Restriction

C(p) v C(p′) = ∀c′∈C(p′)∃c∈C(p)T (c′) <= T (c)

The safe relabeling rule for the TDLM extends the safe relabeling rule for the
DLM by adding two new rules regarding clock variables and how these may be safe
relabeled. The complete safe relabeling rule for the TDLM is defined in Definition
3.2.4, where the first three statements are equal to the ones presented for the DLM
but two additional statements are added. The first states that for all clocks associ-
ated with a principal p in the reader set for the policy I there exist clocks associated
with the principal p′ in the policy J such that the clocks associated with p′ is equiva-
lent to those of p but with the possibility of additional clocks not already associated
with p′ being added. The second statement says that the set of clocks associated
with the principal p′ in J must be at least as restrictive as those associated with p
in the policy I, meaning that the window of opportunity for observing the data in
C(p′) should be less than or equal to the ones present in C(p).

Definition 3.2.4: The Complete Relabeling Rule for the TDLM

L1 v L2 ≡ ∀I∈L1∃J∈L2 I v J

I v J ≡ o(J) � o(I) ∧R(J) ⊆ R(I)

≡ o(J) � o(I) ∧ ∀p′∈r(J)∃p∈r(I) p
′ � p

≡ o(J) � o(I) ∧ ∀p∈r(I)∃p′∈r(J) C(p) ⊆ C(p′)

≡ o(J) � o(I) ∧ ∀p∈r(I)∃p′∈r(J) C(p) v C(p′)
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As an example of all the safe relabeling rules consider the security policy {o1(x[15] >
10) : r1, r2} with the principal hierarchy depicted in Figure 3.13 which corresponds
to the timed automata in Figure 3.14.

Figure 3.13: Principal hierarchy for safe relabeling rules example.

The first relabeling rule for confidentiality is that a reader may be removed such
as removing r2 which would result in the policy {o1(x[15] > 10) : r1} and the timed
automata that describes the principals access to the data would be refined to only
have o1 and r1 as principals in its start location. In regards to adding a policy to a
security label this would be the equivalent of adding the required timed automata
to the existing system of timed automata, which means that if a principal is able
to gain access to the data then there should exist a system state where all timed
automata in the system is in the data location at the same time. In regards to
adding a reader to the reader set, which may only be done if the new reader can
act-for an existing reader, the label on start location of the timed automaton that
models principals’ access to the data would be refined to reflect the new reader set.
If an owner is replaced than all timed automata in the system should be refined to
reflect that there is a new owner in this example if o1 is replaced with o2 then all
labels in the timed automata should refine their labels such that o2 is placed instead
of o1.

If a clock variable is added to a specific reader in a policy then a timed automaton
must be created to reflect that principal’s access to the data as it would be different
from the other existing principals’ access rights. However, there are certain cases
where a new timed automaton is not needed such as if a new clock variable is added
to an owner’s clock expression for example if the clock variable y is added to the
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Figure 3.14: Timed automata expressing the security policy {o1(x[15] > 10) : r1, r2}.

policy {o1(x[15] > 10) : r1} resulting in the relabeled policy {o1(x[15] > 10 && y >
12) : r1} then the timed automaton that models access restriction could be refined
to the timed automaton depicted in Figure 3.15, where the guard on the edge to the
data has been refined to include the clock variable y and a new timed automata has
been added to model the increase of the clock value for y. Finally, the comparison
value for a clock variable may be changed if it reduces the window of opportunity
for accessing the data for example if the comparison value of x is changed to 11 then
the window of opportunity for accessing the data would shorten.

3.2.2 Integrity Policies

In regards to integrity labels a different set of safe relabeling rules need to be defined,
as integrity policies are quality guarantees provided by the owners of the policies.
Integrity rules are concerned with how trustworthy data are an as such the safe
relabeling rules allows policy changes that warns of contamination or increases the
trustworthiness. The relabeling rules for integrity labels can generally be expressed
as the inverse of the safe relabeling rules for confidentiality labels and is defined in
the TDLM as follows:

� A writer may be added to a policy: As in the DLM, a writer can be
safely added to the writer set of an integrity policy as more writers serves as a
warning of data contamination, which in terms means that as the more writer
that are added the less trustworthy the data becomes.

� Remove a policy: A security policy may be removed from an integrity policy
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Figure 3.15: A refined timed automata expressing the relabeled security policy
{o1(x[15] > 10 && y > 12) : r1}.

as this would make the data more trustworthy as less principals are allowed
to modify the data.

� Replace a writer: As in the DLM, a new writer w can be replace an existing
writer w′ if that writer can be acted-for by the existing writer w′ � w. This
would allow more principals to modify the data and thus serve as a warning
of contamination.

� A policy may be added if it is identical to an existing policy: A policy
I may be safely added to an integrity label if it is identical to an existing policy
J such that o(J) � o(I).

� Writers that acts for the owner of a policy may be removed: Principals
that can act-for the owner of the integrity policy may be removed as they can
already modify the data through the acts-for relationship with the owner.

� Removal of clock expressions: Clock expressions may be removed from
security policies to warn of potential contamination as principals would be
allowed to modify the data at any time.

3.2.3 Declassification

Declassification is a type of relabeling where the restrictiveness of the label is reduced
and can only be performed by processes or principal which can act-for the owner of
the security policy they want to declassify. This also means that if a label contains
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more than one security policy then the process or principal may only change the
policies where they have the authority of the owners. In the TDLM declassification
should work in the same manner as it does in the DLM, and since clock variables only
can be defined by owners or principals who can act-for these owners then processes
or principals that have the authority to declassify a label also have the authority to
change clock variables. Concretely this means that a process which has the authority
of a policy owner may increase the time window where the data can be observed or
changed for example the policy {o(x > 10) : r} may be declassified to {o(x > 5) : r}
as this increases the time windows where readers associated with o may access the
data protected by this security policy. This also means that clock variables may
be removed entirely which corresponds to the largest possible increase in the time
windows where the data may be accessed. However, comparison operators cannot
be changed via declassification and as such the only parts of a clock expression that
are allowed to change are upper limit, events, reset value, and comparison value.
The inference rule defined by the DLM L1 @ L2 t LA would then also hold for
the TDLM as LA contains the policy {p : } for every principal in the declassifying
process’ or principal’s authority set.

3.3 Time-based Scenarios

To explore the capabilities of the TDLM, several security modeling scenarios which
are only possible to model with the use of time are presented. These scenarios
are used to depict the expressiveness of the TDLM and to serve as templates for
constructing timed automata for common security policies.

3.3.1 Access to a System After Specified Time

A security modeling scenario that requires time-based access control is when a prin-
cipal should only be able to access certain data after a specified amount of time
has passed. An example smart meter security policy that enforces this constraint
in the TDLM would be {c : e (x[91] >= 90)}, depicted as three timed automata in
Figure 3.16, where c is the consumer, e is the electrical company, and x is a clock
variable that specifies that e may only access the data protected by this label when
x is equal to 90 or above. However, x is reset to zero when reaching the value 91
meaning that e may only access the data when x is equal to 90. This example de-
picts an electrical company accessing a consumer’s smart meter data every 90 days
which is a necessary constraint in regards to protecting the consumer’s privacy as
more fine grained data could be used to derive the consumer’s daily routines [17],
and as such time is required to model this scenario.
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Figure 3.16: An example smart meter security policy {c : e (x[91] >= 90)}

Another security modeling scenario that models access to a system after a spec-
ified time is when an owner of some data specifies a time constraint on the entire
reader set combined with a time constraint on a single principal. For example con-
sider the label {o1 (y > 10) : r1 (z < 15), r2} where a time constraint on the entire
reader set and a time constraint on the single principal r1 are present as depicted
with five timed automata in Figure 3.17. In this scenario both time constraints
would be in effect meaning that r1’s access to the data is more restricted than r2’s
access, meaning that r2 would be able to access the data when y is between above
10 but r1’s time constraint should be viewed as a combined logical expression, which
would in this case be (y > 10 && z < 15).

3.3.2 Change Access Rights Based on Time

Principals’ access rights are not modeled directly with security labels but are en-
forced via the principal hierarchy, which may change on run-time meaning that
principals may lose or gain the possibility to access certain data when changes
in the hierarchy occurs. Hierarchy changes may occur when certain events hap-
pen. However, label restriction may be used to depict change to access rights
for specific data, for example if a variable v1 is labeled with a security policy
{o1 : r1, r2 (x >= 5), r3 (y > 15)} and another variable v2 is labeled with a se-
curity policy {o1 : r1, r2 (x > 5)} and v2 is assigned the data stored in v1 then a join
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Figure 3.17: An example smart meter security policy {o1 (y > 10) : r1 (z < 15), r2}

of the two labels would occur resulting in a policy {o1 : r1, r2 (x > 5)} which is a
restriction of access to the data originally stored in v1. This could be viewed as a
restriction to access rights as the clock variable would be further restricted and the
possible reader set would also be further restricted.

Another example of label joining would be if a variable v3 stores data labeled with
the security policy {o1 ((x > 15 && y > 10) || z < 5) : r1} and another variable
v4 stores data labeled with the security policy {o1 (p < 30 && x < 10) : r1} which
would result in the joined label {o1 (((x > 15 && y > 10) || z < 5) && (p <
30 && x < 10)) : r1} where time restrictions would be combined with the logical
&& resulting in a combined time constraint. Six timed automata can be used to
depict this scenario as shown in Figure 3.18.

3.3.3 Access to a System For Specified Time

A security modeling scenario that models access to a system for a specified amount
of time is when clocks are reset at specific times or a combination of clock constraints
only allows the readers or writes of the security policy to access the data for a limited
amount of time. For example consider the label {o1(x[10] > 5) : r1} where the reader
set of o1 only would be able to access the data for four time units because the clock
is reset to zero when reaching 10 and the data can only be accessed when the clock
variable x is above five. The access to the data labeled with this policy would be
reoccurring as the clock variable is reset meaning that the principal r1 can access
the data more than once. This is depicted with two timed automata as shown in
Figure 3.19.
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Another example would be the policy {o1(x > 10 && x =< 15) : r1} where the
access to the data is restricted to five time units by using the same clock variable,
however the clock variable is never reset in this policy meaning that r1 would only
be able to access the data when x is between 11 and 15 and when x is above 15 then
the data can never be accessed again unless some other event or policy resets x.

A final scenario is the policy {o1(x > 10 && y < 20) : r1} where the access to
the data is restricted by two clock variables resulting in an access time of nine time
units. This is also a non-reoccurring event as the clock variables are never reset,
however if only y is reset to zero then the access to the data could reoccur while
maintaining the original constraint.

3.3.4 Time Reset Based on Events

Another scenario is one time access to data which can be done via the use of events
which resets a clock variable such that principals no longer can access the data and
thus enforces a one time access to data within a time limit. For example, consider
the policy {o(x[?reset] > 10) : r1[∗reset]} where the owner o can access the data
when x is above ten and so can r1 but when r1 successfully reads the data then the
clock x is reset thus enforcing a one time access for r1 every ten or more time units.
The timed automata in Figure 3.20 depicts this behavior via the use of channel
synchronization such that when r1 successfully reads the data the reset channel is
synchronized causing the clock x to be reset.
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Figure 3.18: An example smart meter security policy {o1 (((x > 15 && y >
10) || z < 5) && (p < 30 && x < 10)) : r1}
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Figure 3.19: An example smart meter security policy {o1(x[10] > 5) : r1}

Figure 3.20: An example smart meter security policy {o(x[?reset] > 10) : r1[∗reset]}

38



CHAPTER 4

CASE STUDY

A study of how a real world system can be modeled with the TDLM is presented to
show how the TDLM can be applied to an actual system that is dependent on secure
information flow and access control. In Section 4.1 the smart meter system that the
case study is based on is presented and clarified. In Section 4.2 several concerns in
regards to privacy and confidentiality in the smart meter system is explored and in
Section 4.3 the requirements for how access control should be handled is investigated
to obtain knowledge of how to model the system’s security. Section 4.4 describes,
based on the previous investigations, how the smart meter system could be modeled
with the TDLM.

4.1 Case Study: Smart Meter System

To explore the capabilities of the TDLM, a case study of a real world scenario is
presented where most of the expressiveness of the TDLM is explored in detail.

The case study involves a smart meter system which consists of multiple users
(household owners and residents), smart meters, electrical companies, distribution
companies, smart meter manufactures, third parties, a data hub and a government
entity as depicted in Figure 4.1. A definition of each entity in the smart meter
system is as follows:

� Users: Two types of users exist in the smart meter system - household owners
and residents. Household owners own one or more households, which each have
a smart meter installed, and may also be residents in the households they own.
Residents are permitted to live in a household by the household owner.
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� Smart meters: A smart meter is responsible for collecting electricity con-
sumption data for the household it is installed in. Furthermore, it also serves
as a platform for other devices to connect to and communicate with for exam-
ple for doing home automation.

� Electrical companies: An electrical company is responsible for delivering
electricity to one or more customers and billing the customers according to
their electricity consumption.

� Distribution companies: A distribution company is responsible for main-
taining the power distribution grid and keeping track of which electrical com-
panies users are associated with. Furthermore, it is responsible for processing
raw smart meter data and making this data available to electrical companies
via a data hub.

� Data hub: The data hub serves as a storage center for processed smart
meter data which electrical companies or third parties can gain access to when
appropriate.

� Smart meter manufactures: Smart meter manufactures are responsible for
producing the smart meters and updating the firmware if need be.

� Third parties: Third parties are entities that might have an interest in the
data collected by the smart meters such as research companies.

� Government: The government is interested in obtaining power consumption
reports such that they can optimize the smart grid.

The users can monitor their own power consumption by directly communicating
with the smart meter in their household such that they can identify how power can
be saved. However, the household owner is capable of granting and revoking access
to the smart meter for residents living in the household. The distribution companies
request data from the smart meters they are associated with and perform necessary
processing of the data in order to protect the privacy of the users. The processed
data is delivered to a data hub which enforces which entities that can gain access to
the data, when they can gain access to the data, for how long they may access the
data, and the granularity of the data that may be accessed. The government and
potential third parties can access the data they need through the data hub, however
the permissions of each entity may vary for example a research company may be
able to access more fine-grained data than the government. The electrical companies
deliver electricity to the users and bill them according to billing data obtained from
the data hub and as such an electrical company is implicitly associated with one or
more smart meters/users.
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Figure 4.1: Overview of the smart meter system with communication outlined.

4.2 Smart Meter Privacy Concerns

A smart meter system makes it possible to observe fine-grained electricity consump-
tion data of users associated with a smart meter. The system allows users to observe
their own power consumption down to the minute which opens up the possibility of
optimizing their usage patterns to lower overall power consumption [17]. In addition
to this, the smart meter system provides users with a platform for home automation
which can further lower their power consumption by automatically turning of un-
used devices or starting devices based on electricity prices [3]. Electricity prices are
publicly available through the electrical companies and the power market, which in
northern Europe is Nord Pool. However, the price the customer pays is dependent
on which deal the customer has agreed to with their electrical company that regu-
lates the electricity prices via Nord Pool or based on prices from the power plants
[11]. This means that the smart meters can obtain the current electricity prices
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directly from the electrical companies.
However, the possibility of reading fine-grained power consumption data also

posses several privacy issues due to the possibility of deriving personal behavior
patterns from the power consumption data, for example it is possible to figure out
if a person is home during their sick leave or if they left late for work by observing
when they consume power [17]. As such it would be favorable to regulate whom
that has access to this data and in how fine a granularity the data can be extracted
in relation to the entity that wants to observe the data.

Furthermore, the smart meter system contains certain strategic vulnerabilities
that can be exploited by malicious third parties to alter the properties of the system
such as changing the billing information, electrical prices, and consumption data [3].
In regards to communication outside the smart meter system, additional security
vulnerabilities exist in regards to protecting the data collected by the smart meters,
as a third party might perform man-in-the-middle attacks or retrieve the data for
malicious use.

4.3 Access Rights

As there are several privacy and security issues in regards to smart meters, it should
not be possible for all entities in- and outside the system to obtain data collected
by smart meters or data transferred internally between entities. The smart meter
collects data about the user’s electrical consumption and as such the data collected
by the smart meter are directly related to the user, meaning that there is no need
to restrict the user’s access to the data in any form. The user is able to observe and
analyze the data collected by the smart meter at any time via for example a web
interface.

As the smart meter data reveals private information about the user, the data
should not be available in its original form to any other entity than the user. This
means that the electrical company associated with the smart meter should not be
able to observe the data at their convenience but rather a restriction should be
placed on their capability to view the data. This restriction could for example be
that the electrical company only can observe the data once every quarter which is
enough for billing purposes. In addition to this, the data observed by the electrical
company should not be the same fine-grained data that the user can observe but
rather a summation of the total power consumption for the last quarter.

Access rights for each entity that have an interest in the smart meter data can
be enforced by the data hub as all entities are required to fetch smart meter data
through the data hub. Different access rights and data observation capabilities (how
fine-grained data that can be accessed) can be giving to each entity according to
their intentions in regards to the smart meter data. The distribution companies are
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responsible for converting the raw smart meter data into data with a granularity
of 15 minutes but the data hub is responsible for further processing the data as
needed. The data hub is responsible for converting the data according to which
entity that requests access to smart meter data such that each user’s privacy is
protected, for example the data hub may change the granularity of the data from 15
minute intervals to 24 hour intervals before sending the data depending on the entity
that requests it. In addition to this, the data hub is responsible for only providing
entities with data that are at least two weeks old such that the privacy of the users
that the data involves are further protected. The reason for not providing entities
with the newest data is that the most recent data may reveal what the user is doing
at the current moment but if the data is a couple of weeks old then this would not
be an issue.

In regards to the government entity, which is interested in obtaining power con-
sumption reports to be able to regulate and optimize the power grid, they should
not be able to obtain data directly from the smart meters as this would violate
the individual user’s privacy but instead they can obtain power consumption report
from the data hub. This could be done by only providing the government with
total power consumption for specific geographical sections for example total power
consumption for a street, city district, city, or province. The data hub is responsible
for performing this alteration of the data before sending it to the government.

If it is necessary to provide smart meter data to outside entities the data would
need to be declassified with the authority of the corresponding smart meter and
user, which means that per default no outside entity has access to any data residing
within the smart meter system. However, if the outside entity enforces the security
label placed on the variable and output channel then the data can be transferred to
a third party without any need for declassification indicating that the system trusts
the third party to enforce the security policies.

4.4 Smart Meter System Modeled with the TDLM

The smart meter system cannot be described by the DLM alone as this model lacks
the possibility of defining time-based security policies, which are crucial in regards
to modeling smart meter security. However, the TDLM extends the DLM with
the required components for describing a smart meter system in regards to secure
information flow and access control.

The principal hierarchy in the smart meter system would consist of all the users,
the smart meters associated with those users, the electrical companies associated
with users, distribution companies associated with smart meters, the data hub,
smart meter manufactures and the government. Each user is associated directly
with a smart meter in an acts-for relationship, meaning each smart meter can act-
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for their associated user. Figure 4.2 depicts that a smart meter
n∑

i=1

si can act-for their

associated user
n∑

i=1

ui, where i represents the specific user and smart meter and n

represents the maximum amount of users and smart meters. Specifically, this means

that a smart meter s1 can act-for the user u1. The electrical company
m∑
j=1

ej can be

associated with many smart meters and as such j represents the specific electrical
company and m the maximum amount of electrical companies. This means that
a smart meter s1 and s2 both can be associated with an electrical company e1.
Each smart meter, and thereby users associated with this smart meter, is affiliated

with a distribution company
p∑

k=1

dk which owns the smart meter and as such it can

act-for the smart meter. The relationships between smart meters and distribution
companies are that a single distribution company can be associated with one or
more smart meters. As previously mentioned, users consists of both residents and
household owners, however household owners can act-for residents meaning that
the residents trust the household owners to update and maintain their personal
information. The government g, the data hub dh, and the smart meter manufactures
l∑

x=1

mx are not in any acts-for relationships. Furthermore, it is assumed that no

potential third party can act-for any of the other entities in the system.
The smart meter data can be divided into three segments; the first containing

the personal information about the user that is associated with the smart meter at
the current time, the second containing the real-time electrical readings recorded
by the smart meter, and the third being the smart meter firmware which controls
how the smart meter behaves. The first part of the data is owned by the user as it
is sensitive information about them, but the electrical company that is associated
with the user at the current time is allowed to read the data for billing purposes. In
addition to this, the data should have an integrity policy which expresses that the
user is the owner of the data but trusts the electrical company to change the data if
needed, for example if the user moves to a different household. This gives the first
part of the data the security label in Equation 4.1, where ui corresponds to a user
and ej corresponds to the electrical company associated with the user.

{ui : ej; !ui :!!ej} (4.1)

The second part of the smart meter data is the actual electrical readings that
are saved by the smart meter every minute. As this data posses privacy concerns in
regards to the user’s behavioral patterns, the data should not be accessible for the
electrical company associated with the smart meter at all times. To enforce this, the
TDLM introduces time-based security policies such that it can be defined that the
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Figure 4.2: Smart meter system principal hierarchy. Only acts-for relationship is
between distribution companies and smart meters, smart meters and users.

electrical company only should have access to the data once every quarter, which
is the requirement for quarterly billing. The owner of the electrical readings is the
smart meter and because the user should be able to monitor their own consumption,
the user has unrestricted read access to the data. However, the electrical company
associated with the smart meter is restricted by a clock variable indicating allowed
access once when at least 90 days have passed. Equation 4.2 expresses these concerns
in a security label, where the smart meter si is the only principal that can change
the value of the clock x, which should be incremented once every day, and it is also
the only principal that can alter the smart meter readings. In addition to this, the
distribution company has unrestricted access to the data as it can act-for the smart
meter such that it can read and process the data before making it available at the
data hub. However, this means that the user trusts the distribution company to not
modify the data in a harmful way as the distribution company has the power to do
so. Furthermore, the electrical company is allowed to read the smart meter data
once before the clock is reset, which is expressed by the event reset. The behavior
of this security label is depicted in Figure 4.3 by four timed automata.

{si : ui, ej(x[?reset : 1]{!si: } > 90)[∗reset]; !si : } (4.2)

Furthermore, before the data is made available at the data hub a declassifica-
tion of the data is performed to add the data hub as reader and writer such that
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Figure 4.3: The security policies in Equation 4.2 modeled with four timed automata.

it can modify the data according to which principal that requests access to the
data. Equation 4.3 describes the declassified label with the data hub dh added as
both reader and writer. The distribution company is responsible for performing
this declassification which can be done on the smart meter data without the user’s
authority as the distribution company can act-for the smart meter. The data hub is
then capable of performing the necessary alteration to the data depending on which
entity that requests access to it. The security label on the personal information
linked to the smart meter data will not be altered, meaning that the identity of the
user associated with the data is only known to the user and the electrical company
associated with the user.

{si : ui, dh, ej(x[?reset : 1]{!si: } > 90)[∗reset]; !si :!!dh} (4.3)

The third part of the smart meter data is the smart meter firmware which is the
software that dictates how the smart meters behave and what functionality that the
smart meters have. The smart meter manufactures are responsible for maintaining
and updating the smart meter software as needed and therefore they are the only
principal that can change the smart meter firmware, as described by Equation 4.4
where mx is the smart meter manufacturer.

{!mx : } (4.4)

The user associated with the smart meter can monitor their own power con-
sumption in real-time via an output channel. As the user is the only principal that
should be able to do this, the output channel is labeled with the security policy in
Equation 4.5.

{ui : } (4.5)
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The government can obtain a report from the data hub that contains total power
consumption for a geographic location. The data used to fabricate this report comes
from the smart meter data, which the government is not permitted to read and as
such a declassification with the authority of the smart meters (and hence the users)
are needed for passing the altered data on to the government. The data hub is
responsible for altering the smart meter data so that it masks the users’ behavioral
patterns before giving the report to the government. As the data in the report is
confidential it is declassified with the authority of the users, which means that the
report will only contain the data of the users that have agreed to have their data
declassified, so that the data hub is the owner of the data, the government is the
sole reader, and the data hub is the only principals who can alter the integrity of
the report as depicted in Equation 4.6.

{dh : g; !dh : } (4.6)

Figure 4.4 gives and overview of the information flow and security labels that
are present in the smart meter system. The arrows indicate information flow; the
users can change and observe their personal information stored on their smart meter,
and obtain electrical readings from their smart meter which can be viewed via an
output channel. The electrical companies can obtain electrical readings from the
smart meters they are associated with through the data hub, and change personal
information about users they are associated with. Finally, the arrow between reports
and government indicates that the government can obtain information from reports
generated by the data hub when requested. The lines indicate associations, which
means that an entity is associated with another entity in some way.

4.4.1 Security Label Changes

Two distinct events can occur in the smart meter system that forces a change to
the security labels; a user moves from one household to another and a user changes
electrical company.

When a user moves from one household to another the security label placed
on both parts of the smart meter data would have to be changed to account for
the change in smart meter ownership. The first step of the move process is that the
distribution company declassifies the smart meter readings with the authority of the
smart meter/user to be able to remove the time constraint such that a final billing
can occur based on the user’s electricity consumption since last billing period. This
means that the electrical company can gain extraordinary access to the smart meter
readings for this sole purpose. After the necessary data readings have occurred,
the electrical company clears the personal information and the smart meter resets
the electrical readings and the distribution company places a new security labels
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Figure 4.4: Smart meter system with security labels as per the definition of TDLM.
Arrows depict information flow.

containing the new user associated with the smart meter. The same process occurs at
both households to account for all affected smart meters. In addition to this, all user
passed permissions would have to be revoked such that unintended residents does
not have access to the new residents’ electrical readings and personal information.

A user can also change electrical company as often as they want, which means
that the security labels placed on the smart meter data would have to change. The
first part of the process is identical to moving household, where the distribution
company declassifies the electrical readings with the authority of the smart meter
to be able to give the electrical company extraordinary access to the smart meter
readings such that they can bill the user one last time. After this process the security
label is changed to reflect that a new electrical company is associated with the smart
meter. In regards to the first part of the smart meter data, which contains personal
information about the user, the user would have to declassify the data and place a
new security label reflecting the change.
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In regards to the data hub creating consumption reports for the government,
the data used for the reports would have to be declassified with the authority of the
users (smart meters) meaning that if a user does not want to participate in electrical
consumption statistics they can deny the data hub the possibility of declassifying
their data thereby excluding them from the report.

4.4.2 User Passed Permissions

Users are capable of granting permission to other principals in regards to observing
smart meter readings, which for example could be a husband that owns a property
with a smart meter installed that gives his wife permission to observe the smart
meter readings. This would be done by establishing an acts-for relationship between
the principal that needs access to the smart meter data and the current owner of
the data, which would indicate that the principal that is granted permission only
has access to the data as long as the permission given principal has access.

However, if a resident moves to a new household the relationship between the
resident and the current smart meter would be invalidated but the acts-for rela-
tionships established by the resident would still be in place, which means that the
principals that were given permission would have access to the smart meter data in
the resident’s new household which may not be intended. As such, a clock variable
can be placed on all new acts-for relationship created by the resident that gives the
resident for example two days where the resident can decide which acts-for relation-
ships to keep. This means that the other principals would not be able to act-for
the resident in a given time period, which can be achieved via the clock expression
in Equation 4.7, where the event user i moves will reset the clock variable y to
zero giving the resident two days where no resident defined acts-for relationships are
active. The event will then occur when the last electricity reading is performed by
the resident’s current electrical company, meaning that the distribution company is
responsible for declassifying the smart meter readings and placing the event in the
security policy.

{(y[?user i moves]{!ui: } > 2)} (4.7)

The security label for the smart meter data that is declassified when the resident
moves to a new household would be the label defined in Equation 4.8, where the
clock restriction on the electrical company is removed such that they can read the
remaining data needed for the final billing and the event user i moves is triggered
causing the clocks in the principal hierarchy relating to the resident to be reset.

{si : ui, ej[∗user i moves]; !si : } (4.8)
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CHAPTER 5

EVALUATION

An evaluation of the TDLM is performed to identify which parts of the model
that can be improved and how it may be done. Section 5.1 explores vulnerabilities
that might exist in the TDLM and presents possible solutions to the identified
vulnerabilities. Specifically, section 5.1.1 explores the problems associated with the
principal hierarchy from the DLM. Section 5.1.2 studies window of opportunity
exploits that might occur according to how policies are understood and implemented.
An analysis is performed to visualize the impact on the window of opportunity
according to clock parameters. Section 5.1.3 presents a complex security policy
and explains the complications associated with complex security policies. Section
5.1.4 explains that the TDLM constructs are largely dependent on how they are
implemented. Section 5.2 lists possible improvements and future work that can be
done on the TDLM to provide a more complete solution.

5.1 Attacking the TDLM

To evaluate different security aspects of the TDLM, an investigation of the areas
where we think that the TDLM could be vulnerable in regards to security loop holes
and exploits is performed.

5.1.1 The Principal Hierarchy

In the TDLM the principal hierarchy works in the same manner as in the DLM
except for the addition of clocks that restricts acts-for relationships. The addition
of time-based restrictions in the principal hierarchy makes it more clearly defined
and flexible as a certain set of rules for how acts-for relationships can described are
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now present. However, the principal hierarchy is still loosely defined as there are
no rules for changing relationships at run-time or defined who that can add these
acts-for relationships.

As such the principal hierarchy is a vulnerability in both the DLM and TDLM
because it could be subject to exploitation by a malicious third party that for ex-
ample some how is able to add an acts-for relationship that makes him capable
of observing or modifying restricted data. The likelihood of this happening is un-
known at the moment as there are no clear rules for how the principal hierarchy
works. However, the weakness of the principal hierarchy would be largely depen-
dent on the implementation as there is no formal definition of how the hierarchy
should behave and as such the vulnerability lies on the implementation.

To remove all doubt about the vulnerability of the principal hierarchy a certain
set of rules should be defined that describe who that can add acts-for relationships
to the principal hierarchy, when they can add acts-for relationships, who and when
that can alter acts-for relationships at run-time, and which entity that enforces the
principal hierarchy. However, these definitions of the principal hierarchy is out of
scope for this report.

5.1.2 Window of Opportunity

Small windows of opportunity for performing non intended actions might exist in
the TDLM when permissions (acts-for relationships) are altered in the principal
hierarchy and when clocks are being reset.

When a system change occurs that requires the principal hierarchy to change,
the revocation of acts-for relationships might be slow to propagate throughout the
hierarchy compared to the change of the system and as such there could be acts-
for relationships that are still present in the changed system state, which could
cause a principal to gain access to restricted data that he was not suppose to access
in the new system state. As an example consider the case study in Chapter 4
where a resident moves from a household to a new household which requires a
system change, however as described in Section 4.4.2 a small window of opportunity
exists where the resident still can observe data associated with his old household.
To close this window of opportunity clocks which reset on certain events can be
placed in the principal hierarchy, for example the clock (x[?event] > 10) could be
placed on an acts-for relationship to indicate that when the event occurs then the
relationship is invalidated for ten days, which gives the system and the principal
time to react to an eventual system change. Another solution to this problem could
be to define that time cannot pass and access to any data is prohibited when changes
in the principal hierarchy occurs. However, this solution requires that the principal
hierarchy is formally defined in regards to how it should behave during changes to
acts-for relationships.
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Another scenario is a security policy with a clock that resets precisely when
principals can start to observe the data {o : r(x[10] >= 10)}. In such a policy
there might be an infinitely small amount of time where the principal r can observe
the data even though the meaning of the policy might be that r never should be
able to access the data. The reason for this window of opportunity comes down
to how the reset event is handled, for example if the clock variable is reset an
infinitesimally small amount of time before reaching ten then there is no window
of opportunity but if it is reset an infinite small amount of time after reaching ten
then the window persists. As such the window of opportunity in regards to security
policies is dependent on how resetting clock variables are implemented and in which
programming language it is implemented.

Analysis

To analyze the window of opportunity UPPAAL is used to verify a simple security
policy {c : reader(x[15] >= 15)} which is modeled in UPPAAL by two timed
automata. Figure 5.1 depicts this scenario where the timed automaton P models
the principal reader’s access rights and the timed automaton C models the behavior
of the clock x. However, in UPPAAL the incrementation of clocks are handled by
UPPAAL and as such the edge that increments the clock is left out. Four verification
properties are checked via UPPAAL to verify the access possibilities within the
modeled system:

� A[] P.data imply x >= 15: States that for all possible system states when in
the location data in the automaton P then the value of the clock x is larger
than or equal to 15. This property is verified to be true which is the intended
behavior of the system.

� E <> P.data and x == 14: States that there exists a system state where the
automaton P is in the location data and the value of the clock x is 14. This
property is verified to be false which is the intended behavior of the system,
as the security policy states that x should be larger than or equal to 15 before
reader can access the data.

� E <> P.data and x == 15: States that there exists a system state where the
automaton P is in the location data and the value of the clock x is 15. This
property is verified to be true which is the intended behavior of the system.

� E <> P.data and x == 16: States that there exists a system state where the
automaton P is in the location data and the value of the clock x is 16. This
property is verified to be false which is the intended behavior of the system,
as the security policy states that x should be reset to zero after reaching the
value 15 meaning that x never reaches the value 16.
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The verification done by UPPAAL shows that the system only allows access to
the data according to the intended security properties defined in the policy meaning
that the window of opportunity in this case is limited to access when the value of
the clock x is exactly 15 giving the reader one time unit to access the data.

Figure 5.1: UPPAAL window of opportunity analysis where upper limit is set to 15.

Figure 5.2 depicts that the upper limit for the clock x has been altered to 16
which should expand the window of opportunity to allow the reader two time units
to observe the data. According to the verifications done by UPPAAL the data can
now be accessed when x is 15 and 16 but as the clock value never reaches 17 due to
the new upper limit no system states exists where the reader can access the data
when the clock value is 17 or above. The consequence of increasing the upper limit
on the clock x from 15 to 16 effectively increases the window of opportunity from
one time unit to two time units as reader now can gain access to the data when the
clock value is 15 and 16.

Figure 5.3 depicts a scenario where the upper limit has been set to 14 which
tighten the window of opportunity to zero time units as the clock value is reset
before allowing the reader to observe the data. The property of the system being
in the location data when x is larger than or equal to 15 still holds, however there
does not exist a system state where the automaton is in the location data when the
value of x is 14, 15, 16, or 17 meaning that the reader never can observe the data
according to the verification performed by UPPAAL.

To show that changing the comparison value also affects the window of opportu-
nity in the same manner that the upper limits affects it, consider the security policy
{c : reader(y[10] >= 10)} which is modeled and verified in UPPAAL as depicted in
Figure 5.4 where the principal reader only can gain access to the data when the value
of y is ten giving reader one time unit to observe the data. However, when modifying
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Figure 5.2: UPPAAL window of opportunity analysis where upper limit is set to 16.

the comparison value to nine yielding the security policy {c : reader(y[10] >= 9)},
reader now has two time units to observe the data as depicted in Figure 5.5. Finally,
Figure 5.6 depicts when changing the comparison value to 11 yielding the security
policy {c : reader(y[10] >= 11)}, reader now has zero time units to observe the
data. The window of opportunity is as such expanded and tightened according to
the comparison value.

If a security policy with an equals comparison {c : reader(y[10] == 10)} is
modified in regards to the comparison value or upper limit then if and when the
window of opportunity occurs would change but the window would not expand as
where the case with the other scenarios above. For example if the comparison value
is changed to 11 or the upper limit is set to nine then the window of opportunity
would disappear as the data would be inaccessible for the principal reader.

A preliminary conclusion of this analysis is that the window of opportunity is
either expanded or tighten when modifying the upper limit or comparison value for
a clock variable meaning that caution should be taken when altering how clocks are
compared and reset as significant changes to how principals can observe data occurs
when changing these values.

If an implementation of the TDLM was to be constructed where policies are
verified by turning them into timed automata that are statically checked in UPPAAL
then window of opportunity analysis could be performed on these timed automata
to give the programmer of a system an idea of when and for how long each principal
has access to the data protected by the policies.
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Figure 5.3: UPPAAL window of opportunity analysis where upper limit is set to 14.

5.1.3 Security Label Complexity

Complex security systems can be expressed with the use of the TDLM but the
complexity of the security labels and the principal hierarchy may reach a point
where it is hard to comprehend the actual meaning of the policies. As an example
consider the security label in Equation 5.1 and the principal hierarchy in Figure 5.7
this simple security label becomes rather complex as it is combined with a principal
hierarchy where the acts-for relationships are dependent on the value of the clocks
placed on them.

{p3 : p2(f [20] < 5)[∗reset]} (5.1)

To illustrate the complexity of this label the different restrictions for each prin-
cipal are explicitly described below:

� p3: The principal p3 is the owner of the security policy defined in the security
label in Equation 5.1 and as such there is no restrictions for p3 when accessing
the data protected with the label.

� p2: The principal p2 is restricted by either the clock expression (f [20] < 5),
which states that he may only access the data when this expression is true,
or the clock expression placed in the principal hierarchy which states that he
may act-for p3 and thus freely access the data if the expression (y[25] >= 10)
is true. This effectively results in the combined clock restriction (f [20] <
5 || y[25] >= 10) for the principal p2.

� p1: The principal p1 may act-for p2 to gain access to the data when the clock
expression (x[15] >= 5) evaluates to true, however this also requires that the
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Figure 5.4: UPPAAL window of opportunity analysis where comparison value is
ten.

clock expression placed on the relationship between p2 and p3 evaluates to true
or the clock expression placed directly on p2 in the security label is true. Fur-
thermore, p1 may act-for p3 directly if the clock expression (z[?reset] >= 35)
is true but when p2 successfully reads the data then the value of z would be
reset making this acts-for relationship dependent on the actions of p2. The ex-
plicit restrictions for p1 would then be (x[15] >= 5 && (f [20] < 5 || y[25] >=
10) || z[?reset] >= 35).

As illustrated, the complexity of a rather simple security label may quickly es-
calate if combined with other TDLM constructs and as such the creator of security
policies within a system should be cautious not to define security policies that may
seem to express the intended behavior but expresses a different behavior when com-
bined with other constructs.

To make sure that a policy actually enforces the security properties that were
intended, UPPAAL could be used to perform a static analysis of the timed automata
constructed based on the policies within a system written in an implementation of
TDLM that allows this. This would provide a tool for the programmer to verify
that the policies defined for the system actually corresponds to the intended security
properties of the system.

5.1.4 Implementation

The TDLM provides a way of defining what security means within a system, but
even though the model may be considered secure it is the implementation of the
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Figure 5.5: UPPAAL window of opportunity analysis where comparison value is
nine.

TDLM that would be the target of a security violation attack. As a consequence
of this, an implementation of the TDLM would need to be strict in regards to the
implementation of the individual TDLM constructs and the way the constructs in-
teract. A crucial part of the TDLM implementation would be the clock variables
and how they are incremented and reset. Resetting a clock may be done in dif-
ferent ways which would impact how security policies are enforced, for example a
clock may be reset just before reaching a certain value, exactly when reaching the
value, or just after reaching the value. Concretely, consider the clock expression
(x[10] >= 10) where the meaning of the security policy changes according to when
the implementation handles the reset upon reaching the upper limit. The three ways
of handling reset impacts the security policy in the following way:

� Before: If the value of the clock variable x is reset an infinitely small amount of
time before reaching the value ten then the clock variable blocks any principals
associated with it from accessing the data.

� Equal: If x is reset exactly when reaching ten then then principals associated
with the clock have an infinitely small amount of time to access the data, which
may result in the principals being able to access the data or not depending on
the concrete implementation.

� After: If x is reset an infinitely small amount of time after reaching ten then
the principals have a small time window to access the data reliably.
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Figure 5.6: UPPAAL window of opportunity analysis where comparison value is 11.

5.2 Improvements and Future Work

Some aspects of the TDLM have been left unstudied as other areas have been the
focus of this report. As such there are still several improvements and possible future
work that can be done in regards to the TDLM.

A proof for the DLM constructs that are present in the TDLM would have to be
constructed such as a formal proof that the join, meet, declassification, and complete
safe relabeling rule still are sound and complete in regards to the TDLM even though
additional constructs have been added to the model. In addition to this, the syntax
for the TDLM could be improved to make it easier to use and understand and a
formal syntax for the how to describe the principal hierarchy syntactically other
than with a graph could be constructed. Ensuring confidentiality of clocks may
prove difficult as the value of a clock may be inferred according to how often certain
principals access data protected by the clock. In some systems the confidentiality
of clocks may be required and as such a method of ensuring clock confidentiality
should be further researched as the TDLM accepts that clock confidentiality does
not adhere to the rule of noninterference [13].

Furthermore, the principal hierarchy and its acts-for relationships are not clearly
defined in either the DLM or the TDLM and as such a formal definition of how
the principal hierarchy is supposed to behave and how acts-for relationships may
be defined and changed at run-time could be constructed. In addition to this,
the TDLM introduces time in to acts-for relationships which means that a formal
definition of how time in acts-for relationships can be defined is needed and a proof
of that it does not interfere with the current definition of the principal hierarchy.
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Figure 5.7: Principal hierarchy with time restrictions on all the acts-for relationships.

Finally, a complete implementation of the TDLM could be constructed such
that it can be used in practice to ensure that systems developed with the TDLM
implementation are secure in regards to the policies that are defined for each system.
An implementation could for example be a new programming language that has the
TDLM constructs built-in or an extension to the current implementation of the
DLM, JIF [20, 23]. Furthermore, an implementation of the TDLM could utilize
UPPAAL to statically check that security policies are correctly enforced in systems
developed with the TDLM implementation by constructing timed automata based
on the security policies defined in a system. In addition to this, UPPAAL could
also be used to perform window of opportunity analysis when compiling to give the
programmer an overview of when an for how long principals can access data, which
can be used to asses whether the policies in a system are correctly defined.
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CHAPTER 6

CONCLUSION

Information flow and access control are subjects in the area of computer security
where extensive research has been performed, however none of the current security
models [15, 7, 10, 4, 5, 6, 8] that have been developed take time into account when
modeling systems. However, research in regards to time-based information flow
and access control have been performed resulting in time-based security protocols
and verification of these [9, 14] but currently no time-based security model that
is based on information flow and access control has been developed. As a result
of this, security in time-sensitive systems can be difficult to model as there is no
well-documented and structured way of doing so.

Based on our previous research in regards to time-based information flow and
access control [22], the Decentralized Label Model (DLM) was chosen as a basis
for developing a security model that takes time into account. Security policies
constructed via the DLM can be expressed as timed automata and as such these
topics were extensively investigated to build a knowledge base for extending the
DLM based on timed automata. The resulting extension to the DLM was the
Timed Decentralized Label Model (TDLM) which extends the DLM with time-
based constructs such that security policies can be expressed in terms of who and
when access to data are allowed.

As the TDLM extends the DLM with new constructs a syntax was defined with
the use of an Extended Backus-Naur Form that clearly defines how the syntax can be
put together. One of the constructs introduced by the TDLM was clock expressions
which can be placed on principals in a security policy to restrict their access to data
based on time. More specifically, clock expressions consist of clock variables which
are associated with clock parameters. Clock parameters consists of an upper limit,
which resets the clock variable when a certain value is reached, a reset value, which
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sets the value of the clock when reset, and events, which resets the clock when a
principal reads or writes to data containing the event trigger. This allows the TDLM
to express security policies where principals are restricted in certain time intervals
for example a principal may only be allowed to access some data once every month
which can be expressed via the use of clocks with certain clock parameters.

In addition to restricting principals’ access to data in security policies, the TDLM
also introduces clocks in the principal hierarchy which allows acts-for relationships
between principals to be restricted based on time intervals resulting in the possibility
of defining when certain principals trust other principals to act on their behalf. This
allows for even more complex systems to be model with the TDLM as the principal
hierarchy becomes more flexible than the one defined in the DLM.

The TDLM introduces incrementable time which is controlled by the principals
that own the data protected by security policies. The clocks within security policies
are incremented by the owner of the clock which is by default the owner of the policy,
however principals that can act-for the owner of a policy may also define a clock in
the policy. As a result of this, the TDLM introduces security labels on each clock
such that it can be explicitly expressed who are allowed to increment and observe
the clock which in terms means that principals can decide if a clock is trustworthy
be observing who that may have incremented it.

The semantics of the TDLM is expressed via timed automata and a series of
templates for how certain scenarios should be modeled semantically were presented,
to give the users of the TDLM a foundation for understanding how security policies
are enforced. The TDLM was used to model a real-world smart meter case to
illustrate its use in time-sensitive systems as such a scenario could not be fully
modeled with the use of DLM or any other well-known information flow and access
control models. The case study involved making use of most of the added TDLM
constructs and was a base for showing how the constructs could be used in real-world
systems.

An evaluation of how the TDLM could be further improved was performed to
identify vulnerabilities in the core model. The principal hierarchy was identified
to be subject for further study and improvement as the DLM does not provide a
clear and formal definition of how the principal hierarchy works in terms of adding
and changing acts-for relationships, and as the TDLM makes use of the principal
hierarchy from the DLM this problems persists in the extended model. A solution to
the problem is a formal definition of the principal hierarchy along with a definition
of the TDLM’s additions to the hierarchy.

A window of opportunity analysis was performed to identify exactly how chang-
ing clock parameters in security policies affected the intended behavior of the poli-
cies. This resulted in the preliminary conclusion that clock parameters alter the
window of opportunity for when principals may access data and caution should be
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taken to ensure that security policies are defined correctly as even slight changes
to clock parameters greatly impacts the meaning of the policy. In addition to this,
it is possible to define rather complex security labels in the TDLM that may be
incalculable for the user to comprehend. As such an automatic and generalized way
of providing the users with information about the meaning of their defined security
policies could be added to an implementation of the TDLM, such that defined poli-
cies are converted into timed automata which can be verified in UPPAAL to ensure
correctness of the defined security policies and in terms correctness of the system
implemented with the use of the TDLM implementation.

In regards to further study of the TDLM, formal proofs that the join, meet,
declassification, and complete safe relabeling rule still holds for the TDLM should
be constructed to verify the correctness of the model. Furthermore, a complete
implementation of the TDLM could be constructed perhaps in the form a new pro-
gramming language or an extension to the implementation of the DLM that makes
use of UPPAAL to statically verify that security policies are enforced correctly.
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