
Parameter Synthesis for Simulation Distances

Between Weighted Transition Systems

Anders Mariegaard & Julian Ringsmose

{amarie10, jrings10} @ student.aau.dk

Supervisors: Kim G. Larsen & Radu Mardare

Aalborg University, Department of Computer Science

June 1, 2015

Abstract

This thesis addresses the problem of parameter synthesis for simulation distance check-
ing of parametric weighted transition systems. The usual notion of simulation relations is
extended to allow point-wise deviations in transition weight matching, inducing a directed
distance between states. The logical implications of distances between states is investi-
gated using a parametric extension of Weighted CTL. The main contribution of this work
is the utilization of parametric symbolic dependency graphs to represent the problem of
checking whether or not the distance between two transition system states are below some
threshold using parameter synthesis of the problem. To this end we present a global fixed
point algorithm which has been implemented with a web-based front-end.

1 Introduction

Recently, within the area of embedded and distributed systems, a significant work has been
invested in various modeling formalisms for specification of quantitative properties. A particu-
larly popular modeling formalism for analyzing timing constraints of systems is timed automata
[1] used in tools such as UPPAAL [17] and KRONOS [7]. In addition to timing constraints,
general resource consumption and production has also been studied in the context of Hybrid
Automata [14, 15], Priced Timed Automata [3] and Weighted Timed Automata [6]. The seman-
tics of such quantitative systems is often defined as a Weighted (Labelled) Transition System,
which is a traditional transition system with a transition-labelling function that associates to
each transition a cost.

In this thesis we extend the concept of Weighted Transition Systems (WTS) to Parametric
Weighted Transition Systems (PWTS), where transition labels are linear expressions in param-
eters. These parameters allow for specification of unknown or unspecified cost of quantitative
behavior. A single PWTS thus represents an infinite set of WTSs - one for each possible
instantiation of the parameters.

An example PWTS is shown in Figure 1. It depicts two systems, the left one being a regular
coffee machine with states start, coffee and done. The coffee machine accepts a request by
button press after which it takes 200ms before it starts brewing the coffee, formalised by the
transition with weight 200 going to the coffee state. It then takes 5 seconds (5000 ms) before
the user can pick up the coffee, after which the machine returns to the start state after 100ms.

A group of computer scientists have been using this machine for a long time and appreciate
its coffee but consider buying a new advanced beverage machine. This machine can serve regular
coffee as well as espresso and soda and is depicted (with timing quantities) in the right part of
Figure 1. For this advanced machine, the start delay before it can brew is longer than for the

1

regular coffee machine. The time spend for the brewing part of the process is unknown, but
the manufacturer knows for a fact that espresso, tea and coffee have different brewing times,
represented by the parameters p, q, r. Furthermore the manufacturer is quite certain that the
new machine is at least as slow as the old one.

The scientists are eager to know how large the deviation in time spend by the new machine
before a hot beverage is ready compared to that of the old machine. We can see this time
deviation as an error-term ε in a relation where the old machine is simulated approximately by
the new machine. For this example the error ε is characterized by the following constraints on
the parameters p, q, r:

250− 200 ≤ ε and 5000− p ≤ ε or

230− 200 ≤ ε and 5000− q ≤ ε or

210− 200 ≤ ε and 5000− r ≤ ε
Depending on the how the performance of the new machine turns out in the different brewing
disciplines (e.g. the actual value of p, q, r) either the first, second or third pair of constraints
ends up characterizing the maximal point-wise difference between the quantitative behavior of
the beverage machines.

start{ready}

coffee

done{done}

start{ready}

coffeeespresso tea

done{done}

200

5000

100

250 230 210

p q r

100

Figure 1: Old coffee machine (left) and new beverage machine (right)

To formally discuss problems of this nature we present the classical notion of simulation-
relations between states to reason about correctness of an implementation with respect to a
specification. As the specification or implementation may contain weight estimates or unknown
values, we expand the notion of simulation by allowing for deviations in the transition weight
matching by introducing an error term ε. The transition matching is then changed to either
absolute and relative matching of weights, with ε as an upper bound on the error.

These error terms are then formally captured as directed distances between states of a
PWTS. These distances are shown to be computable as least fixed points by use of Tarski’s
fixed point theorem for complete lattices [19]. We also investigate logical properties of similar
systems by relating the notion of distance to logical properties by considering a parametric
extension to Weighted CTL [8]. This extension allows for parametric reasoning by introducing
parametric expressions on lower and upper bounds on path formulae and we show that if the
distance between a state s and a state t is less than some ε, it is the case that if s satisfies
a formula Φ, t is guaranteed to satisfy a formula Φε. The formula Φε is a modified version
of Φ, where the path formula bounds have been stretched to allow for an error of ε. For the
coffee machine example, we can this logic to state that the time delay before the machine starts
brewing is exactly 200ms and the time spend at brewing must be exactly 500ms as follows:

Φ = EX[200,200](EX[5000,5000]done)

As we know that the old machine is ε-simulated by the new, we thus know that

Φε = EX[200−ε,200+ε](EX[5000−ε,5000+ε]done)

2

is satisfied by the start state in the new machine. Notice that ε in the above Φε is given by
the constraints on the parameters from the discussion on distance between the old and new
beverage machine.

The main contribution of this thesis is an extension to the online tool, originally introduced
by [9] on pvtool.dk to model-check Parametric Weighted CTL on PWTS. Our extension uses
the concept of Parametric Symbolic Dependency Graphs (PSDGs) to represent the problem of
determining the point-wise distance between PWTS states. To this end we use a fixed point
algorithm on cost assignments to PSDG nodes to synthesize parameter valuations in order to
answer whether or not the point-wise distance meets some upper bound requirement ε. We
prove termination and correctness of our approach and briefly discuss implementation details
concerning the efficiency of our approach.

2 Related Work

In this thesis we contribute to the area of parametric quantitative modelling. In recent time
classical quantitative modelling formalisms such as Timed Automata [1], Weighted Timed Au-
tomata [6], Priced Timed Automata [3] and Hybrid Systems [14] have been extended by allowing
unknown or parametric values as quantitites, thus adding parametric analysis to the well known
quantitative analysis of systems. Alur et. al presents the notion of Parametric Timed Automata
[2] also used in [4] by Benes et. al where the decidability for the language emptiness problem
is examined by varying the number of (parametric) clocks allowed as well as the number of
parameters used in clock comparisons. In this work we look at the basic semantics of these
systems; the Weighted Transition System and extend it with parametric expressions as weights
on transitions.

Through accumulated and point-wise simulation distances, Fahrenberg et. al. provides
notions of approximate simulation relations between weighted transition systems [13]. We
instantiate the proposed point-wise distance in our parametric setting to measure both absolute
and relative point-wise distance from one state to another. In a discussion on logical implications
of the distance between Weighted Kripke Structures, Fahrenberg et. al [12] introduces a notion
of discounted satisfiability to reason about how “close” to satisfaction of a WCTL formula a
given state is. Inspired by that we introduce a parametric weighted extension of CTL with both
upper and lower bounds on path formulae. To relate the simulation-distance sfrom one state
to another to the satisfiability of logical formulae, we introduce the notion of ε-satisfiability,
allowing for expansion of lower and upper bounds in the path formulae.

Finnemann et. al [16] extends the theory of fixed point computations on Dependency Graphs
introduced by Smolka et. al [18] to the quantitative setting with Symbolic Dependency Graphs
which allows for upper bound constraints on quantitative properties. Symbolic Dependency
Graphs are then used for model-checking of weighted systems w.r.t weighted CTL by computing
fixed points on cost assignments to nodes in the graph. Inspired by this, Christoffersen et.
al [9] propose Parametric Dependency Graphs to allow for parameter synthesis for model-
checking parametric weighed systems w.r.t a parametric extension of weighted CTL. In this work
we consider Parametric Dependency Graphs for characterization of constraints on parameter
valuations in the context of simulation-distance checking. We present a fixed point algorithm
for computing the exact constraints on valuation of the parameters on transition weights for
the distance between two systems to be below some ε. Finally, our method is implemented as
an extension to the tool presented by Christoffersen et. al [9].

3 Model Specification and Behavior

In this section we define and discuss modelling formalisms for specification and verification of
quantitative systems. The basic formalism used in this work is (Labelled) Weighted Transition
Systems with transition weights from the set of non-negative rationals, Q≥0. To reason about
behavior of systems we define several notions of simulation between systems. These notions
are then lifted to what we call Parametric Weighted Transition Systems where unknown cost

3

pvtool.dk

or behavior can be encoded by linear expressions in parameters on transition weights. In both
formalisms we let AP be a fixed finite set of atomic propositions.

3.1 Weighted Transition Systems

The models we consider in this section are based on weighted transition systems extended by a
state-labelling function.

Definition 1. A Weighted Transition System (WTS) S is a triple

S = (S,−→, `), where

• S is a finite non-empty set of states.

• −→⊆ S ×Q≥0 × S is the finite transition relation.

• ` : S −→ 2AP is a labeling function mapping states in S to a set of atomic propositions

We will use S to denote the set of all WTSs, s
w−→ s′ as a shorthand notation for (s, w, s′) ∈−→

and existence and non-existence of a transition from a state s, with weight w, by s
w−→ and s 6w−→

respectively. Finally, we let WS = {w | (s, w, s′) ∈−→} denote the set of all weights present in a
WTS S.

A path π in a WTS S = (S,−→, `) is a possibly infinite sequence π = s0w1s1w2s2... where

∀i ∈ N, si ∈ S and for i > 1, wi ∈ Q≥0 s.t. si−1
wi−→ si. Π(s) denotes all paths π starting from s

and Π(S) denotes all paths in S. π(i)s denotes the state of π with index i, i.e si, π(i)w denotes
the weight with index i, i.e wi and |π| denotes the length of a finite path π given by the number
of states. For infinite paths π we let |π| =∞.

The accumulated weight, AWπ(j), of π at position j is defined by AWπ(j) =
∑j
i=1 wi if j >

0 and AWπ(j) = 0 if j = 0. Finally, we denote by out(s) = {(w, s′) | (s, w, s′) ∈−→} the set of
all weight and successor-state pairs of outgoing transitions from s.

3.2 Simulation

To reason about behavior of WTSs we introduce the usual notion of simulation preorders. The
intuition is that a given state s is simulated by another state t if t can “behave” exactly like
s. This is useful in correctness checking of systems; one may want that any implementation
behavior is allowed by the specification or that the implementation behavior is a superset of
the specification behavior.

Definition 2. Let S = (S,−→, `) be a WTS. A simulation relation on S is a binary relation
R ⊆ S × S such that whenever (s, t) ∈ R,

1. `(s) = `(t) and

2. if s
w−→ s′, then there exists a transition t

w−→ t′ s.t. (s′, t′) ∈ R.

From the definition we see that a simulation of a state s by a state t corresponds to a
point-wise exact matching of transition weights and state labels. Let S = (S,→, `) be a WTS.
A state s is simulated by another state t, written (S, s) ≤ (S, t), iff there exists a simulation R
on S s.t (s, t) ∈ R. If the WTS is clear from the context, we write s ≤ t.

Example 1. Consider the WTS S in Figure 2a. One can quickly verify that the relation
R = {(s1, t1), (s2, t2), (s3, t2), (s4, t3)} is a simulation relation i.e s1 ≤ t1, s2 ≤ t2, s3 ≤ t2 and
s4 ≤ t3 (t1 ≤ s1 is also the case). For WTS S ′ in Figure 2b, the weights have changed and
s′1 6≤ t′1 as the weights do not match exactly.

The example shows that the usual definition of simulation relations does not allow for
deviations in matching of transition weights. This may in some cases be a serious issue as
specified weights may be estimates or guesses, leading to the implementation being incorrect

4

s1{a}

s2 s3

s4{b}

t1 {a}

t2

t3 {b}

6

6

7

5

5

6

7

5

5

(a) WTS S

s′1{a}

s′2 s′3

s′4{b}

t′1 {a}

t′2

t′3 {b}

6

4

7

5

5
4

9

5

5

(b) WTS S ′

Figure 2: Two WTSs

in the traditional boolean sense while its behavior would be “close” to the requirements of
the specification in a quantitative setting. We now proceed by presenting two variations of
simulation that take these deviations into account.

Definition 3. Let S = (S,−→, `) be a WTS and δ ∈ Q≥0. A δ-simulation relation on S is a
binary relation R ⊆ S × S such that whenever (s, t) ∈ R,

1. `(s) = `(t) 1

2. if s
w−→ s′, then there exists a transition t

w′−→ t′ s.t.
|w − w′| ≤ δ and (s′, t′) ∈ R.

For δ-simulation we require label matching but now the weight matching has been relaxed to
allow for point-wise absolute deviations of at most δ. Let S = (S,→, `) be a WTS. A state s ∈ S
is δ-simulated by another state t ∈ S , written (S, s) ≤aδ (S, t), iff there exists a δ-simulation R
on S s.t (s, t) ∈ R. Again, if the WTS is clear from the context, we write s ≤aδ t. It is clear
that ≤a0 = ≤ as no deviation leads to exact matching.

Example 2. Consider Figure 2b. We concluded that s′1 6≤ t′1 but it is clear, by Definition 3

that s′1 ≤aδ t′1 for any δ ≥ 2 as s′1
6−→ s′2 must be matched by t′1

4−→ t′2 and s′3
7−→ s′4 by t′2

9−→ t′3.
This means that the largest absolute deviation in a single step is bounded by 2 and the relation
R from Example 1 serves as an δ-simulation relation for any δ ≥ 2.

As shown above, δ-simulation is less strict than simulation but it also reveals a possible
flaw, depending on the application context. If we again consider the matching of the weight
6 with 4 we see that the difference 6 − 4 = 2 is equal to a relative deviation of 2

6 ≈ 33%.
For 7 and 9 the difference 7 − 9 = 2 equals an relative deviation of 2

9 ≈ 22%. To capture
a relative requirement on the point-wise transition matching we define a notion of simulation
called relative δ-simulation.

Definition 4. Let S = (S,−→, `) be a WTS with strictly positive weights and δ ∈ Q≥0. A
relative δ-simulation relation on S is a binary relation R ⊆ S×S such that whenever (s, t) ∈ R,

1. `(s) = `(t)

2. if s
w−→ s′, then there exists a transition t

w′−→ t′ s.t.
|w
′−w
w | ≤ δ and (s′, t′) ∈ R.

Let S = (S,→, `) be a WTS. A state s ∈ S is relatively δ-simulated by another state t ∈ S,
written (S, s) ≤rδ (S, t), iff there exists a relative δ-simulation R on S s.t. (s, t) ∈ R. If the
WTS is clear from the context, we write s ≤rδ t. It is clear that ≤r0 = ≤ as no deviation leads
to exact matching. We thus have ≤r0 = ≤a0 = ≤. Note that the WTS must have only positive
weights to avoid division by zero.

1Weights on labels could also be considered to allow for distances between labels.

5

Example 3. Consider Figure 3. We can now apply Definition 4 to show that s1 ≤rδ t1 for any
δ ≥ 1. This implies that the largest relative deviation in a single step of the simulation is 100%.
It is worth noting that the point(s) corresponding to the maximal relative difference may not
be the same as the point(s) that correspond(s) to the maximal absolute difference in weights (as
in Figure 2b). Figure 3 depicts a WTS where the maximal absolute difference between weights
considered by δ-simulation is |100 − 110| = 10. The minimum considered is |1 − 2| = 1. For
relative δ-simulation, weights 1 and 2 amount to a relative difference of 100% and weights 100
and 110 to a relative difference of 10%.

s1{a}

s2 s3

s4{b}

t1 {a}

t2

t3 {b}

1

1

100

6

5

2

110

4

5

Figure 3: WTS showing (small) big absolute differences that are relatively (big) small

Both δ-similarity and relative δ-similarity intuitively induces a kind of directed distance on
WTS states, based on their point-wise behavior. This we formalize in Section 4 by relating
certain hemi-metrics to the simulation preorders.

3.3 Parametric Weighted Transition Systems

In this section we lift the the notion of WTS to a parametric setting by allowing specification
of unknown quantitative behavior directly as linear expressions over parameters, as transition
weights in a Parametric Weighted Transition System (PWTS). We also lift the three simulation
relations described in the previous chapter by considering valuations of parameters (and linear
expressions in parameters) so that we can instantiate a given PWTS as a WTS. The problem
of verifying whether a given state simulates another state then changes from a simple check of
weight and label matching to an investigation of the existence of “good” parameter valuations.
We let P = {p1, . . . pn} be a fixed finite set of parameters. Then,

E = {e | e =

n∑
i=0

aipi + b where ai, b ∈ Q≥0}

denotes the set of all linear expressions over parameters drawn from the set P, with non-negative
rational coefficients.

Definition 5. A Parametric Weighted Transition System (PWTS) S is a triple

S = (S,−→, `), where

• S is a finite non-empty set of states.

• −→⊆ S × E × S is the finite transition relation.

• ` : S −→ 2AP is a labeling function mapping states in S to a set of atomic propositions

Whenever (s, e, s′) ∈−→ we use the shorthand notation s
e−→ s′. We will use SP to denote

the set of all PWTSs. We denote existence and non-existence of a transition from a state s,
with weight e, by s

e−→ and s 6 e−→ respectively. Paths, accumulated weights and out are defined
similar to those for WTS.

One can instantiate a PWTS to a WTS by mapping each parameter from the transition
weights to a number in Q≥0. A PWTS can thus be seen as an infinite set of WTSs. The notion

6

of mapping parameters to Q≥0 will be referred to as parameter valuations. We start by defining
parameter valuations directly on parameters and proceed by extending the notion to PWTS.

Definition 6. A parameter valuation is a function:

v : P −→ Q≥0

We denote the set of all parameter valuations by V and extend valuations to the domain E ;

v(x1p1 + ...+ xkpk + xk+1) = x1v(p1) + ...+ xkv(pk) + xk+1

We now extend valuations to the domain of PWTS.

Definition 7. Given a PWTS S = (S,→, `) and a parameter valuation v ∈ V, we define its
WTS instance w.r.t v to be S ′ = (S,→′, `) where

→′= {(s, v(e), s′) | (s, e, s′) ∈→}

Given a valuation v we thus simply map any transition expression to a weight w ∈ Q≥0
according to v to obtain a structurally identical WTS. We now have sufficient notational power
to define the simulation preorders on PWTS.

Definition 8. Let S = (S,−→, `) be a PWTS, s, t ∈ S two states and ε ∈ E . We define
parametric versions of the three simulation preorders for arbitrary v ∈ V as follows:

(S, s) ≤v (S, t) iff (v(S), s) ≤ (v(S), t)

(S, s) ≤aε,v(S, t) iff (v(S), s) ≤av(ε)(v(S), t)

(S, s) ≤rε,v(S, t) iff (v(S), s) ≤rv(ε)(v(S), t)

As for WTSs, we omit the system when it is clear from the context.

Example 4. Consider the PWTS depicted in Figure 4. Below we list simulation properties as
well as the characteristics of valuation witnesses w.r.t some ε ∈ E .

s1 ≤v t1 if v(r) = v(q) (1)

s1 ≤aε,v t1 if |v(p)− v(q)| ≤ v(ε) and |v(q)− v(s)| ≤ v(ε) (2)

s1 ≤rε,v t1 if

∣∣∣∣v(q)− v(r)

v(q)

∣∣∣∣ ≤ v(ε) (3)

One should note that multiple disjoint possibilities exist. For (1), another possibility is v(q) =
v(p) = v(s) due to the branching right half of the PWTS. Similarly, for (2), |v(q) − v(r)| ≤ ε
describes a set of witnesses.

s1{a}

s2{a}

s3{b}

t1 {a}

t2 {a} t3 {a}

t4 {b}

p q

r s

p

q

Figure 4: PWTS S

The above example contains parameters both in the specification and implementation. An-
other example that is interesting from a practical point of view is one where the specification
contains no parameters while the implementation has a parametrised component (e.g unknown
cost). For this example the problem entails finding an instance of the implementation that
respects the specification w.r.t a given simulation preorder. With such a characterization of

7

the correct implementations, one may be able to reject or accept a given implementation de-
sign by incorporating expert knowledge about upper and lower bounds on the cost or resource
consumption of the given part.

In the remainder of this thesis we use the models and simulation preorders defined in this
section as the basis for reasoning about quantitative systems with possible unknown or un-
specified behavior. Concretely, we consider the following four problems for two PWTS states
s, t:

1. Decide whether or not a valuation v exists such that s ≤aε,v t (s ≤rε,v t).

2. Synthesize a valuation v such that s ≤aε,v t (s ≤rε,v t).

3. Characterize the sets of valuations V1 = {v | v ∈ V and s ≤aε,v t} and
V1 = {v | v ∈ V and s ≤rε,v t}.

4. Synthesize the valuation v that minimizes ε for the relation s ≤aε,v t (s ≤rε,v t).

4 Simulation Distances

In this section we will define two directed point-wise distances on WTS states, based on abso-
lute and relative weight differences. We then show the relation between the three simulation
preorders and the distances defined. These results are finally lifted to PWTSs by applying pa-
rameter valuations to project the problem to the non-parametric setting. We start by defining
what a hemi-metric is:

Definition 9. Let X be a set. A function d : X ×X −→ Q≥0 ∪ {∞} is called a hemi-metric
if the following properties hold:

1. d(x, x) = 0 for all x ∈ X

2. d(x, z) ≤ d(x, y) + d(y, z)

If, in addition to (1)-(3), we have that d(x, y) = d(y, x) for all x, y ∈ X; and d(x, y) = 0
implies x = y for all x, y ∈ X, d is called a metric.

As in [13] we now define the notion of a point-wise distance between the states in a WTS
as a hemi-metric. Note that we make use of a metric directly on weights in the WTS.

Definition 10. Let S = (S,→, `) be a WTS and s, t ∈ S two states. Given a metric d :
WS ×WS −→ Q≥0 ∪{∞}, we define the point-wise distance d•(s, t) from s to t to be the least
fixed point of the following equations

d•(s, t) =

 ∞ if `(s) 6= `(t)
max
s

w−→s′
min
t

w′−→t′

max {d(w,w′), d•(s
′, t′)} otherwise

For the WTS S = (S,→, `) we denote the set of all mappings of the form S×S −→ Q≥0∪{∞}
by D. Then we let H : D −→ D be defined for a given metric d :WS ×WS −→ Q≥0 ∪ {∞}:

H(D)(s, t) =

 ∞ if `(s) 6= `(t)
max
s

w−→s′
min
t

w′−→t′

max {d(w,w′), D(s′, t′)} otherwise

It follows from [13] that we can order elements from D by the component-wise ordering ≤ to
obtain a lattice (D,≤). The lattice is complete as the set of non-negative rationals form a
complete lattice (Q≥0,≤) with meet (∧) and join (∨) defined by the infimum and supremum,
respectively. H is clearly monotone w.r.t (D,≤) and by Tarski’s fixed point theorem [19] we
thus have that H has a least (pre)fixed point i.e d•. By the definition we know that for a given
WTS S = (S,→, `) there is a finite number of transition matches, |w − w′|. This ensures that

8

the fixed point is found after a finite number of repeated applications. Finally, by [13], we have
that d• is a hemi-metric w.r.t any metric d.

To create point-wise distances that relate to the simulation preorders defined earlier (in
Section 3.2), we need the metric d in Definition 10 to calculate either the absolute difference

of weights, or the relative difference, i.e d(w,w′) = |w − w′| or d(w,w′) = |w
′−w
w |. The two

distances we obtain are the least fixed points to the following equations:

da•(s, t) =

 ∞ if `(s) 6= `(t)
max
s

w−→s′
min
t

w′−→t′

max {|w − w′|, da•(s′, t′)} otherwise

dr•(s, t) =


∞ if `(s) 6= `(t)

max
s

w−→s′
min
t

w′−→t′

max
{
|w
′−w
w |, dr•(s′, t′)

}
otherwise

To avoid division by zero, dr• is defined only for WTS with strictly positive weights.

Example 5. Consider the WTS in Figure 2b from Example 1. We now want to calculate
da•(s

′
1, t
′
1). Note that t′1, t

′
3, s
′
2, s
′
3, s
′
4 have only one outgoing transition.

da•(s
′
1, t
′
1) = max

{
max {|6− 4|, da•(s′2, t′2)} ,
max {|4− 4|, da•(s′3, t′2)}

}

= max

 max {|6− 4|,max{|5− 5|, da•(s′1, t′1)}} ,

max

{
|4− 4|,min

{
max{|7− 9|, da•(s′4, t′3)},
max{|7− 5|, da•(s′4, t′1)}

}} 
= max

{
max {|6− 4|,max{|5− 5|, da•(s′1, t′1)}} ,
max {|4− 4|,min{max{|7− 9|, da•(s′4, t′3)},∞}}

}
= max

{
max {|6− 4|,max{|5− 5|, da•(s′1, t′1)}} ,
max {|4− 4|,max{|7− 9|, da•(s′4, t′3)}}

}
= max

{
max {2, da•(s′1, t′1)}} ,
max {2, da•(s′4, t′3)}}

}
= max

{
max {2, da•(s′1, t′1)}} ,
max {2,max{|5− 5|, da•(s′1, t′1)}}}

}
= max {2, da•(s′1, t′1)}

This equation has least fixed point da•(s
′
1, t
′
1) = 2. From Example 2 we know that s′1 ≤aδ t′1 for

any δ ≥ 2, i.e for any δ ≥ da•(s′1, t′1). A similar observation is made using dr•. Consider Figure 3

9

from Example 3. Note that s2, s3, s4, t1, t3 have only one outgoing transition.

dr•(s1, t1) = max

{
max

{∣∣ 2−1
1

∣∣ , dr•(s2, t2)
}
,

max
{∣∣ 2−1

1

∣∣ , dr•(s3, t2)
} }

= max


max

{∣∣ 2−1
1

∣∣ ,max{
∣∣ 4−5

5

∣∣ , dr•(s1, t1)}
}
,

max

{∣∣ 2−1
1

∣∣ ,min

{
max{

∣∣ 110−100
100

∣∣ , dr•(s4, t3)},
max{

∣∣ 4−100
100

∣∣ , dr•(s4, t1)}

}} 
= max

{
max

{∣∣ 2−1
1

∣∣ ,max{
∣∣ 4−5

5

∣∣ , dr•(s1, t1)}
}
,

max
{∣∣ 2−1

1

∣∣ ,min{max{
∣∣ 110−100

100

∣∣ , dr•(s4, t3)},∞}
} }

= max

{
max

{∣∣ 2−1
1

∣∣ ,max{
∣∣ 4−5

5

∣∣ , dr•(s1, t1)}
}
,

max
{∣∣ 2−1

1

∣∣ ,max{
∣∣ 110−100

100

∣∣ , dr•(s4, t3)}
} }

= max

{
max

{
1, 15 , d

r
•(s1, t1)}

}
,

max
{

1, 1
10 , d

r
•(s4, t3)}

} }

= max

{
max

{
1, 15 , d

r
•(s1, t1)}

}
,

max
{

1, 1
10 ,
∣∣ 5−6

6

∣∣ , dr•(s1, t1)}}
} }

= max

{
1,

1

5
,

1

6
,

1

10
, dr•(s1, t1)

}
= max {1, dr•(s1, t1)}

Note that the second line from below, max
{

1, 15 ,
1
6 ,

1
10 , d

r
•(s1, t1)

}
, captures exactly the relative

differences we need to consider. This equation has least fixed point dr•(s1, t1) = 1. From
Example 3 we know that s1 ≤rδ t1 for any δ ≥ 1, i.e for any δ ≥ dr•(s1, t1).

As the example shows, we can for both simulation preorders define the requirements for a
state t to simulate s in terms of the distance from s to t. We now formally prove that this is
always the case.

Theorem 1. For a WTS S = (S,→, `), two states s, t ∈ S and δ ∈ Q≥0:

da•(s, t) ≤ δ iff s ≤aδ t

Proof. (=⇒) :
For this direction we prove thatR = {(s, t) | da•(s, t) ≤ δ} is a δ-simulation relation. Suppose

(s, t) ∈ R and s
w−→ s′. This implies directly that da•(s, t) ≤ δ and by the fixed point property

of da• that
da•(s, t) = max

s
w−→s′

min
t

w′−→t′

max{|w − w′|, da•(s′, t′)}.

We thus have that there exists a transition t
w′−→ t′ s.t |w − w′| ≤ δ and da•(s

′, t′) ≤ δ. By
definition of R we immediately have s′ ≤aδ t′ and we are done.

(⇐=) :
For this direction we let

D(s, t) =

{
δ if s ≤aδ t
∞ otherwise

We now prove that D is a pre-fixed point to H w.r.t the metric on transition weights
|w − w′|, i.e da• ≤ D as da• is the least pre-fixed point for H. Hence, if s ≤aδ t then
da•(s, t) ≤ D(s, t) = δ.

To show that D is a pre-fixed point we must show that H(D)(s, t) ≤ D(s, t) for all
s, t ∈ S. For arbitrary s, t ∈ S we have that if s 6≤aδ t then D(s, t) = ∞ and we are done.

If s ≤aδ t then for any transition s
w−→ s′ there exists a transition t

w′−→ t′ s.t |w − w′| ≤ δ
and s′ ≤aδ t′. Hence, D(s′, t′) = δ and

H(D)(s, t) = max
s

w−→s′
min
t

w′−→t′

max{|w − w′|, D(s′, t′)} ≤ δ = D(s, t)

10

.
�

Theorem 2. For a WTS S = (S,→, `), two states s, t ∈ S and δ ∈ Q≥0:

s ≤rδ t iff dr•(s, t) ≤ δ
s ≤ t iff da•(s, t) = 0

s ≤ t iff dr•(s, t) = 0

Proof. By Theorem 1 and ≤ = ≤r0 = ≤a0 . �

We now lift the point-wise distance d• to the parametric setting.

Definition 11. Let S = (S,→, `) be a PWTS. s, t ∈ S two states and v ∈ V. Given a metric
d :WS ×WS −→ Q≥0, we define the point-wise distance from s to t to be the least fixed point
of the following equation

d•(s, t, v) =

 ∞ if `(s) 6= `(t)
max
s

e−→s′
min
t

e′−→t′

max {d(v(e), v(e′)), d•(s
′, t′, v)} otherwise

As for the weighted distance, we instantiate the general point-wise distance to account for
absolute and relative difference; da•(s, t, v) and dr•(s, t, v). We omit the fixed point iterator as
it is essentially the same as for the weighted distance as everything is mapped to the weighted
setting by some valuation v. For the same reason, the fixed point is guaranteed after a finite
number of steps and we also have that the distance is a hemi-metric.

Example 6. Consider the PWTS in Figure 4 from Example 4. We now want to calculate
da•(s1, t1, v) for some v ∈ V:

da•(s, t, v) = min

{
max{|v(p)− v(p)|), da•(s2, t2, v)}
max{|v(p)− v(q)|, da•(s2, t3, v)}

}
= min

{
max{|v(p)− v(p)|,max{|v(q)− v(r)|, da•(s3, t4, v)}}
max{|v(p)− v(q)|,max{|v(q)− v(s)|, da•(s3, t4, v)}}

}
= min

{
max{|v(p)− v(p)|,max{|v(q)− v(r)|, 0}}
max{|v(p)− v(q)|,max{|v(q)− v(s)|, 0}}

}
= min{|v(q)− v(r)|,max{|v(p)− v(q)|, |v(q)− v(s)|}}

If we are interested in the distance being below some δ ∈ Q≥0 we have to find the exact
constraints on v for da•(s1, t1, v) ≤ δ to be true. From the above equation we see these are
v(|q−r|) ≤ δ or [v(|p−q|) ≤ δ and v(|q−s|) ≤ δ]. Similar constraints were found in Example 4
for s1 ≤aε,v t1 to be true.

We now formally state the relation between parametric distances and parametric simula-
tions.

Theorem 3. For a PWTS S = (S,→, `), two states s, t ∈ S and ε ∈ E:

• da•(s, t, v) ≤ v(ε) iff s ≤aε,v t

• dr•(s, t, v) ≤ v(ε) iff s ≤rε,v t

• da•(s, t, v) = 0 iff s ≤ t

• dr•(s, t, v) = 0 iff s ≤ t

Proof. Immediate by Theorem 1-2. �

We can now restate the problems proposed at the end of the previous section by using the
relation between the simulation preorders and the distances.

11

1. Decide whether or not a valuation v exists such that da•(s, t, v) ≤ v(ε) or dr•(s, t, v) ≤
v(ε).

2. Synthesize a valuation v such that da•(s, t, v) ≤ v(ε) or dr•(s, t, v) ≤ v(ε).

3. Characterize the sets of valuations V1 = {v | v ∈ V and da•(s, t, v) ≤ v(ε)} and
V1 = {v | v ∈ V and dr•(s, t, v) ≤ v(ε)}.

4. Synthesize the valuation v that minimizes ε for da•(s, t, v) ≤ v(ε) or dr•(s, t, v) ≤ v(ε).

Before solving the problems we consider the logical implications of a distance between
states.

5 Logical Implications of Simulation

In this section we show how the similarity of two states in a system has implications on the
logical properties of the states involved. This is useful if one wants a component to replace
(simulate) another larger component while still conforming to the logical specification with
limited deviation in behavior. To this end we define weighted variants of CTL [10] and prove
relations between these variants and the similarity of states. We start in the traditional weighted
setting with a general logic and proceed by defining subsets useful for our discussion.

5.1 Weighted Computation Tree Logic

We want a logic that is capable of reasoning about quantitative properties of WTS and further-
more parametric properties of PWTS. To reason about these properties we define Weighted
Computation Tree Logic (WCTL) [8] with both lower and upper bounds on path formula
weights. Such bounds restrict the minimum and maximum allowable accumulated weight on a
path in the WTS.

Definition 12. The set of WCTL state formulae are given by the abstract syntax:

Φ,Ψ ::= tt | a | ¬Φ | Φ ∧Ψ | Φ ∨Ψ | Eϕ | Aϕ
and the set of WCTL path formulae are given by the abstract syntax:

ϕ ::= XBΦ | ΦUBΨ

where a ∈ AP and B = [l, u] with l, u ∈ Q.

Notice that l represents a lower bound on accumulated weights over paths and u represents
an upper bound. This allows for (degenerate) interval specification on the path formulae. A
side-effect is that l > b may be the case; such formulae will never be satisfiable.

Whether a WCTL formula is satisfied by a state s or a path π of some WTS S, is given
by the satisfiability relation |=. We denote this by S, s |= Φ and S, π |= ϕ, respectively.

12

Definition 13. Given a WCTL formula, a WTS S = (S,−→, `), a state s ∈ S or a path π ∈ Π(S)
the satisfiability relation |= is inductively defined as:

S, s |= tt always

S, s |= a iff a ∈ `(s)
S, s |= ¬Φ iff it is not the case that S, s |= Φ

S, s |= Φ ∧Ψ iff S, s |= Φ and S, s |= Ψ

S, s |= Φ ∨Ψ iff S, s |= Φ or S, s |= Ψ

S, s |= Eϕ iff there exists π ∈ Π(s), such that S, π |= ϕ

S, s |= Aϕ iff for all π ∈ Π(s), it is the case that S, π |= ϕ

S, π |= X[l,u]Φ iff |π| > 0, l ≤ AWπ(1) ≤ u and S, π(1)s |= Φ

S, π |= ΦU[l,u]Ψ iff there exists j ∈ N s.t. S, π(j)s |= Ψ where

l ≤ AWπ(j) ≤ u and S, π(j′)s |= Φ for all j′ < j.

Example 7. To understand WCTL better, we return to the coffee machine example from
the introduction of the thesis. Consider the WTS S in Figure 5 representing the advanced
beverage machine which the computer scientists consider buying. For this example we assume
that the scientists know the exact timing of the new machine. We want to use WCTL to specify
requirements to the machine. For instance the scientists want to specify that the total amount
of time spend from the point where a beverage is selected until it is done, does not exceed 5200
ms which is the time spend by the old machine. Reversely the scientists does not trust the
quality of beverages if the machine is faster than 1000 ms. This can be encoded in the following
WCTL formula:

A tt U[1000;5200] done

A quick look should convince oneself that

S, start |= A tt U[1000;5200] done

start{ready}

coffeeespresso tea

done{done}

250 230 210

4950 4970 4990

100

Figure 5: WTS S

WCTL is suitable to reason about all sorts of quantitative properties of the weighted paths
but is not powerful enough to take unknown values into account. In the context of the previous
example, it would be handy to have the ability to factor in unknown time performance by a
machine they have not yet bought. We make this possible by lifting the bounds on the path
formula weights from WCTL to encompass parametric expressions from the set

E− = {e | e =

n∑
i=0

aipi + b where ai, b ∈ Q}

13

of linear expressions in parameters with rational coefficients. We name the resulting logic
Parametric Weighted CTL (PWCTL) and we denote the set of all formulae of the logic by
PWCTL.

Definition 14. The set of PWCTL state formulae are given by the abstract syntax:

Φ,Ψ ::= tt | a | ¬Φ | Φ ∧Ψ | Φ ∨Ψ | Eϕ | Aϕ
and the set of PWCTL path formulae are given by the abstract syntax:

ϕ ::= XBΨ | ΦUBΨ

where a ∈ AP and B = [l, u] with l, u ∈ E−.

Similar to how we let valuations map PWTS to WTS (Definition 6), we extend valuations
to the domain of PWCTL formulae s.t. a PWCTL formula Φ can be instantiated to a WCTL
formula given a valuation v.

Definition 15. For a PWCTL formula Φ, and any valuation v ∈ V, v(Φ) is defined inductively
as follows:

v(tt)
def
== tt

v(a)
def
== a

v(¬Φ)
def
== ¬v(Φ)

v(Φ ∧ Φ′)
def
== v(Φ) ∧ v(Φ′)

v(Φ ∨ Φ′)
def
== v(Φ) ∨ v(Φ′)

v(Eϕ)
def
== Ev(ϕ)

v(Aϕ)
def
== Av(ϕ)

v(X[l,u]Ψ)
def
== X[v(l),v(u)]v(Ψ)

v(ΦU[l,u]Ψ)
def
== v(Φ)U[v(l),v(u)]v(Ψ)

The satisfiability of a PWCTL formula relies on the existence of a valuation of the parameters
such that we can project the problem to the weighted setting by applying the valuation on
the PWTS and PWCTL formula. This problem was addressed in [9] which provided tool
support for model-checking of PWCTL on PWTS. For this we extend valuations to paths; let
π = s1e2s2e3s3... be a path with parametric expressions as weights. For arbitrary v ∈ V we
then define v(π) = s1v(e2)s2(e3)s3... to be the weighted instance of π w.r.t v. Whether a state
or path satisfies a PWCTL formula i now defined by the satisfiability relation |=v.

Definition 16. Given a PWCTL formula, a PWTS S = (S,−→, `), a valuation v ∈ V and a
state s ∈ S or a path π ∈ Π(S) the satisfiability relation |=v is defined as follows:

S, s |=v Φ iff v(S), s |= v(Φ)

S, π |=v ϕ iff v(S), v(π) |= v(ϕ)

Example 8. Returning to the example with the beverage machine from before, consider now
the PWTS S ′ in Figure 6. Here the states represent the same as in Figure 5, but the transition
weights have parameters associated to represent unknown quantities.

Just as before, the computer scientists want to specify requirements, but as they do not have
full knowledge of the advanced beverage machine, they encompass parameters in the PWCTL
formula specification:

A tt U[1000;5200s] done

14

By the semantics, we can derive S ′, start′ |=v A tt U[1000;5200s] done for any v ∈ V s.t

1000 ≤ 250 + v(p) ≤ v(5200s),

1000 ≤ 250 + v(q) ≤ v(5200s) and

1000 ≤ 250 + v(r) ≤ v(5200s).

start′{ready}

coffee′espresso tea

done′{done}

250 230 210

p q r

100

Figure 6: PWTS S ′

With PWCTL we are now able to reason about parametric properties of PWTS. Further,
we want to relate this ability to the notions of simulation between states proposed in Section 3.
Concretely, we want a relation between the PWCTL formulae a PWTS state s satisfies and the
formulae a PWTS state t satisfies when s ≤aε,v t or s ≤rε,v t. Such results are dependent of a
notion of ε-satisfiability and likewise we need a notion of relative ε-satisfiability. Any definition
or result in the parametric context is easily mapped to the weighted context, using the valuation
function (Definition 6) and from now on we only consider PWCTL.

Consider the PWTS S in Figure 7. It is clear that s1 ≤aε,v t1 for any v ∈ V where v(p) ≤ v(ε)

and s1 ≤rε,v t1 for any v ∈ V where 1
5 ≤ v(ε′). Obviously S, s1 |=v EX[5p;5p]a whereas

S, t1 6|=v EX[5p;5p]a. However if we allow the same inaccuracy in t’s satisfiability of the formula
as the inaccuracy represented by ε in ≤aε,v and ≤rε,v, we can create a new formula that is satisfied
by t1. The inaccuracies can be seen in the bounds of the following two formulae:

S, t1 |=v EX[5p−ε,5p+ε]a

S, t1 |=v EX[5p·(1−ε′),5p·(1+ε′)]a

The bounds in the first of the two formulae represent the inaccuracy ε given by the s1 ≤aε,v t1
relation. Similarly, the bounds in the second formula represnts the inaccuracy ε′ given by the
s1 ≤rε,v t1 relation.

t1 {a}

t2 {c} t3 {a}

t4 {b}

s1{a}

s2{a}

s3{b}

2p 4p

r 3

5p

3

Figure 7: PWTS S

In each of the formulae satisfied by t1 in the above discussion, ε and ε′ have important roles
which we can use in the definition of a new satisfiability relation |=ε

v where a deviation of ε

15

is allowed in the bounds on path formulae. The deviation can be either absolute or relative.
These two approaches are the topics of the following sections, where we consider fragments of
PWCTL and relate these to (relative) ε-simulation.

5.2 Relation Between ε-simulation and PWCTL

In this section we consider a subset of PWCTL, called Labs. For a PWTS S = (S,→, `) and
s, t ∈ S we show how s ≤aε,v t and the satisfaction of formulae by s implies the satisfaction of
formulae similar to the formula satisfied by s. Concretely, we intend to loosen the bounds by
exactly ε. We start by excluding some of the operators from PWCTL to arrive at a logic with
the desired properties. If we once again consider PWTS S in Figure 7 and the relation s ≤aε,v t
it is clear that

S, s1 |=v AX[5p,5p]tt and

S, tt 6|=v AX[5p−ε,5p+ε]tt.

Therefore we will not include universal path formulae in Labs. For until formulae, it is problem-
atic to give semantics for ε-deviated until path formulae as the bounds on an until formula does
not restrict the minimal or maximal weight expression on one transition but restrict the accu-
mulated weight of all transitions on a path. Therefore the until operator will not be included
in Labs. Moreover we can see in Figure 7 that

S, s1 |=v ¬EX[2p,4p]tt while

S, t1 6|=v ¬EX[2p,4p]tt,

which is why we will exclude the negation operator from Labs as well. Note that we could include
negated atomic propositions ¬a in Labs but one can easily add one extra atomic proposition to
the set AP for each existing atomic proposition, representing the negated proposition.

We now formally define the refined logic Labs before turning to the relation with ≤aε,v.

Definition 17. Labs denotes the set of all formulae given by the following abstract syntax:

Φ,Ψ ::= tt | a | Φ ∧Ψ | Φ ∨Ψ | EXBΨ,

where a ∈ AP and B = [l, u] with l, u ∈ E−.

The satisfiability relation |=v defined for PWCTL also gives us the semantics of Labs. As
discussed above, we need a formalism to specify deviations in Labs. The syntax of such deviated
formulae, Φε ∈ Labs, is defined as follows:

Definition 18. For any Φ,Ψ ∈ Labs and an absolute deviation ε ∈ E , Φε is defined inductively
as follows:

ttε
def
== tt

aε
def
== a

(Φ ∧Ψ)ε
def
== Φε ∧Ψε

(Φ ∨Ψ)ε
def
== Φε ∨Ψε

(EX[l,u]Ψ)ε
def
== EX[l−ε,u+ε]Ψ

ε

The subtraction from the lower bound and the addition to the upper bound of the formula
allows the PWTS state t to satisfy all the same next formulae as s with a deviation of ε when
s ≤aε,v t.

We now define the ε-satisfiability relation, |=ε
v, for Labs that allows for deviations of ε in the

bounds of formulae.

16

Definition 19. Given a Labs formula Φ, a PWTS S = (S,−→, `), a state s ∈ S, a valuation
v ∈ V, and an expression ε ∈ E , the ε-satisfiability relation |=ε

v is defined as

S, t |=ε
v Φ

def
== S, s |=v Φε

With the syntax and semantics and the ε-deviation of Labs in place, we are now able to
formally state the relation between ≤aε,v and |=ε

v for Labs:

Theorem 4. Given a PWTS S = (S,−→, `), states s, t ∈ S, an arbitrary valuation v ∈ V and
expression ε ∈ E,

s ≤aε,v t iff ∀Φ ∈ Labs : [S, s |=v Φ =⇒ S, t |=ε
v Φ]

Proof. (=⇒) :
The proof is done inductively over the structure of Labs. The arguments for cases Φ =
tt,Φ = a,Φ = Φ′ ∧Ψ and Φ = Φ′ ∨Ψ are trivial. We will therefore only argue for the case
Φ = EXBΨ.

Assume s ≤aε,v t and S, s |=v EXBΨ where B = [l, u]. Then by the semantics of

PWCTL (Definition 16) we know there exists a state s′ s.t. s
e−→ s′ where v(l) ≤ v(e) ≤ v(u)

and S, s′ |=v Ψ. By s ≤aε,v t (Definition 8) we know that for any s′ s.t. s
e−→ s′ there exists

a t′ s.t. t
e′−→ t′, |v(e) − v(e′)| ≤ v(ε) and s′ ≤aε,v t′. By induction S, s′ |=v Ψ implies

S, t′ |=ε
v Ψ which in turn implies that S, t |=v EX[v(l)−v(ε),v(u)+v(ε)]Ψ. By definition of

ε-deviation and the ε-satisfiability relation, |=ε
v, we can thus conclude that S, t |=ε

v EXBΨ
(⇐=) :

For this direction we show that the relation

R = {(s, t) | s, t ∈ S and ∀Φ ∈ Labs : [S, s |=v Φ =⇒ S, t |=ε
v Φ]}

is an ε-simulation relation. Let (s′, t′) ∈ R and s′
w−→ s′′. Suppose towards a contradiction

that ¬∃t′ w
′

−→ t′′ : |v(w) − v(w′)| ≤ v(ε) and (s′′, t′′) ∈ R, i.e ∀t′ w
′

−→ t′′ : |v(w) − v(w′)| >
v(ε) or (s′′, t′′) /∈ R. |v(w) − v(w′)| > v(ε) implies that S, s′ |=v EX[w,w]tt and S, t′ 6|=ε

v

EX[w,w]tt, leading to a contradiction as (s′, t′) ∈ R. (s′′, t′′) /∈ R implies that ∀t′′ : t′
w′−→ t′′

there exists a formula Φ′′ ∈ Labs such that S, s′′ |=v Φ′′ but S, t′′ 6|=ε
v Φ′′. As the transition

relation is finite, we can enumerate all such formulae Φ′′,Φ′′1 ,Φ
′′
2 . . .Φ

′′
n and create the

following combined formula:

Φ′ = EX[w,w][Φ
′′
1 ∧ Φ′′2 ∧ Φ′′3 . . .Φ

′′
n]

We now have that S, s′ |=v Φ′ but S, t′ 6|=ε
v Φ′, leading to a contradiction as (s′, t′) ∈ R.

The assumption that ¬∃t′ w′−→ t′′ : |v(w) − v(w′)| ≤ v(ε) and (s′′, t′′) ∈ R must therefore
be wrong and we conclude that s ≤aε,v t.

�

Corollary 1. Given a PWTS S = (S,−→, `), states s, t ∈ S, valuation v ∈ V and expression
ε ∈ E,

s ≤ t and t ≤ s iff ∀Φ ∈ Labs : [S, s |=v Φ ⇐⇒ S, t |=v Φ]

Proof. Immediate by Theorem 4 and ≤a0=≤. �

5.3 Relation Between Relative ε-simulation and PWCTL

We will now turn to the relation between ≤rε,v and a new subset of PWCTL called Lrel. For
the same reasons as for Labs stated above, Lrel will not include the negation state operator and
the universal path operator. As opposed to Labs, Lrel includes the until operator and is defined
as follows:

17

Definition 20. Lrel denotes the set of all formulae given by the following abstract syntax:

Φ,Ψ ::= tt | a | Φ ∧Ψ | Φ ∨Ψ | EXBΨ | EΦUBΨ,

where a ∈ AP and B = [l, u] with l, u ∈ E−.

The satisfiability relation |=v defined for PWCTL also gives us the semantics of Lrel. To
obtain the possibility for ε-satisfiability of Labs we subtracted ε from lower bounds and added
ε to upper bounds on the next operator. In Lrel , with similar intentions, we use ε as a
factor on lower and upper bounds on the next and until path operators. Using the relative
deviation captured by ε in ≤rε,v is what allows us to easily consider deviated until formulae.
If we again consider the PWTS S Figure 7, the idea behind the use of until formulae with a
relative deviation on bounds is visible in the following example formulae:

S, s1 |=v EaU[5p,5p]b

S, t1 |=v EaU[5p·(1−ε),5p·(1+ε)]b

If t deviates by e.g 10% in each step when trying to simulate s, the accumulated weight over
a possible matching path must also deviate by 10%. We therefore extend the bounds in both
directions by exactly 10%.

Example 9. Consider the PWTS S in Figure 8. We have two deviations if t1 was to simulate
s1; 10% and 100%. Clearly S, s1 |=v EaU[101,101]b however S, t1 6|=v EaU[101,101]b. If we modify
the bounds by extending them by the maximal point-wise relative deviation (100%), we get

S, t1 |=v EaU[0,202]b

t1{a}

t2{a}

t3{b}

s1{a}

s2{a}

s3{b}

110

2

100

1

Figure 8: PWTS S

We now define relative deviation in Lrel formulae:

Definition 21. For any Φ,Ψ ∈ Lrel and a relative deviation ε ∈ E , Φε is defined inductively
as follows:

ttε
def
== tt

aε
def
== a

(Φ ∧Ψ)ε
def
== Φε ∧Ψε

(Φ ∨Ψ)ε
def
== Φε ∨Ψε

(EX[l,u]Ψ)ε
def
== EX[l·(1−ε),u·(1+ε)]Ψ

ε

(EΦU[l,u]Ψ)ε
def
== EΦεU[l·(1−ε),u·(1+ε)]Ψ

ε

The relative deviated semantics for Lrel is given by the ε-satisfiability relation |=ε
v, defined

as follows.

18

Definition 22. Given a Lrel formula Φ, a PWTS S = (S,−→, `), a state s ∈ S, a valuation
v ∈ V and some ε ∈ E , the ε-satisfiability relation |=ε

v is defined as

S, t |=ε
v Φ

def
== S, s |=v Φε

We will now formally show the relation between ≤rε,v and |=ε
v for Lrel:

Theorem 5. Given a PWTS S = (S,−→, `), states s, t ∈ S, arbitrary v ∈ V and ε ∈ E.

s ≤rε,v t iff ∀Φ ∈ Lrel : [S, s |=v Φ =⇒ S, t |=ε
v Φ]

Proof. (=⇒) :
The proof is done inductively over the structure of Lrel. The proofs for cases Φ = tt,Φ =
a,Φ = Φ′ ∧Ψ and Φ = Φ′ ∨Ψ are trivial and the proof of the case Φ = EXBΨ follows the
argument from Theorem 4. We will therefore only prove the case Φ = EΦ′UBΨ:

Assume s ≤rε,v t and S, s |=v EΦ′U[l,u]Ψ. Then we know that there exist a path
π ∈ Π(s) and a j ∈ N s.t. S, π(j)s |=v Ψ and v(l) ≤ v(AWπ(j)) ≤ v(u). Similarly we know
that S, π(j′)s |=v Φ′ for any j′ < j.

As s ≤rε,v t, we know that the transitions represented by the path π can be relatively
matched by transitions from t and for a given successor pair (s′, t′) we have s′ ≤rε,v t′.
Therefore there must exist a path π′ ∈ Π(t) such that, for any i ∈ N, π(i)s ≤rε,v π′(i)s and∣∣∣ v(π′(i)w)−v(π(i)w)

v(π(i)w)

∣∣∣ ≤ v(ε). This means that v(l)·(1−v(ε)) ≤ v(AWπ′(j)) ≤ v(u)·(1+v(ε)).

By induction we then know that S, π′(j)s |=ε
v Ψ and S, π′(j′)s |=ε

v Φ′ for any j′ < j. We
can then conclude that

S, t |=ε
v EΦ′U[l,u]Ψ.

(⇐=) :
Follows the arguments for ⇐= of Theorem 4.

�

Corollary 2. Given a PWTS S = (S,−→, `), states s, t ∈ S, an arbitrary valuation v ∈ V and
an expression ε ∈ E,

s ≤ t and t ≤ s iff ∀Φ ∈ Lrel : [S, s |=v Φ ⇐⇒ S, t |=v Φ]

Proof. Immediate by Theorem 5 and ≤r0=≤. �

6 Distance Checking

In this section we present formalisms for analysis of point-wise distances between two states of
either a WTS or a PWTS using fixed point computations on cost assignments to the nodes of
Symbolic Dependency Graphs (SDG) and their parametrized counterpart Parametric Symbolic
Dependency Graphs (PSDG).

For both formalisms we discuss their semantics using the notion of assignments, which are
used to represent the weighted or parametric cost for some property to hold.

6.1 Symbolic Dependency Graphs

Dependency Graphs in general are structures used to represent dependencies. Such dependen-
cies may arise from a problem with optimal substructure where an aggregation of solutions to
sub-problems is the solution to the overall problem. The overall problem then depends on the
solution to all sub-problems. These dependencies we encode in a hyper-graph through the notion
of hyper-edges where the edges have multiple successors (targets), one for each dependency.

These graphs are then extended to Symbolic Dependency Graphs to consider problems
with quantitative answers (e.g. price for some problem to be solved) and lifted to Parametric
Symbolic Dependency Graphs, where the solution to a problem may also depend on unknown
values.

19

For now, we will look to SDGs which extend the traditional notion of dependency graphs
by allowing hyper-edges to have non-negative rational weights associated to represent the cost
of solving a given sub-problem. In addition to hyper-edges, SDGs also have cover-edges. A
cover edge has an associated bound as weight on the edge. This bound will be interpreted as an
upper bound constraint on the cost of solving the sub-problem represented by the node below.

We now proceed by defining SDGs formally.

Definition 23. A Symbolic Dependency Graph (SDG) is a tuple G = (N,H,C), where:

• N is a finite set of nodes,

• H ⊆ N × 2Q≥0×N is a finite set of hyper-edges.

• C ⊆ N ×Q≥0 ×N is a finite set of cover-edges.

Whenever (n, T) ∈ H we refer to T as the target-set. For each n′ ∈ T we refer to n′ as a

target node. We will use n
w
99Kn′ whenever (n,w, n′) ∈ C and n −→ ∅ to denote a hyper-edge

from n with an empty target-set. The set of all SDGs will be denoted by G.
To motivate the use of SDGs and to give an intuition of their strength, we will now consider

a small example.

Example 10. For the WTS S in Figure 9 we want to know whether or not two states s, t ∈ S
are separated by an absolute point-wise distance of at most some positive rational number δ.
We see the representation of this problem in the SDG G depicted in Figure 10. Note that we
use the notation 〈·〉 for SDG nodes. Whenever we use the 〈·〉 notation, anything written inside
the angle-brackets is to be read purely syntactically, e.g. as a name of the node.

The intuition behind the structure of G is that we want to represent the definition of da•.
Node 1 represents the constraint da•(s1, t1) ≤ δ with a cover-edge weighted with δ. The resulting
node 2 represents the problem of finding the value of da•(s1, t1). The hyper-edge with two targets

(3,4) is because 2 is dependent of `(s1) = `(t1) and the maximum over s1’s transitions s1
w−→ s′1.

The only transition of s1 is represented in 3. For this transition, we want to minimize over t1’s

transitions t1
w′−→ t′1. For each of the two transitions of t1 we thus make one hyper-edge with

two targets (9,10 and 11,12). The fact that we have two targets on those represents that we
want to take the maximal value between |w − w′| and da•(s

′
1, t
′
1). However, for this example

we see that t3 has no transitions, meaning that s1’s self-loop, s1
3−→ s1, cannot be matched.

We thus want the node 12 to represent a “bad” value, which is why it has no outgoing edges.

t2 can match s1’s self-loop by the transition t2
1−→ t1 represented in the hyper-edge from 9

to 13 and 2. The result of evaluating this SDG is the constraint 2 ≤ δ. We show how to
arrive at this conclusion for SDGs with or without circular dependencies later, using fixed point
computations.

s1

{a}

t1

{a}

t2

{a}

t3

{a}

3

5

1

2

Figure 9: WTS S = (S,→, `)

We provide an in-depth discussion of the general semantics of SDGs as well as the construc-
tion of SDGs for distance checking in the following sections.

20

〈da•(s1, t1) ≤ δ〉1

〈da•(s1, t1)〉 2

〈`(s1) = `(t1)〉4〈s1, t1, s̄1〉3 ∅

〈da•(s1, t3)〉7〈da•(s1, t2)〉6〈|3− 5|〉 5

∅

〈|3− 2|〉8 ∅

〈`(s1) = `(t2)〉10〈s1, t2, s̄1〉9 〈`(s1) = `(t2)〉11 〈s1, t3, s̄1〉12

〈|3− 1|〉13 ∅

∅ ∅

δ

2 1

2

Figure 10: SDG G = (N,H,C)

6.2 Fixed Point Computations on SDGs

We now introduce the semantics of an SDG in the form of cost assignments to nodes. These
assignments represent the price of solving the problem represented by a given node.

Definition 24. For an SDG G = (N,H,C), an assignment

A : N −→ Q≥0 ∪ {∞}
on G is a mapping from each node n ∈ N to a a positive rational number or ∞.

We denote by A the set of all assignments.

Definition 25. The ordering on assignments, v is defined for arbitrary A1, A2 ∈ A:

A1 v A2 iff ∀n ∈ N : A1(n) ≥ A2(n)

The ordering induces a complete lattice, (A,v). We interpret 0 as a “positive” value and∞
as a “negative” value. The top element is therefore the assignment A0 which maps to all nodes
the value 0, the bottom element is the assignment A∞ which maps to all nodes the value ∞.
The reasoning behind this is that we want to start from a good assumption about the solution
to the problem we solve when computing maximal fixed point and reversely for the computation
of minimal fixed points.

We are now ready to define the global function, which applied iteratively, updates SDG
node assignments. Let min{∅} =∞ and max{∅} = 0.

Definition 26. Given an SDG G = (N,H,C), F : A −→ A is a function that, given an
assignment A on G, produces a new assignment on G as follows:

F (A)(n) =



{
0 if A(n′) ≤ w
∞ otherwise

if n
w
99Kn′

min
(n,T)∈H

max
(w,n′)∈T

max{A(n′), w} otherwise

It should be clear from the function that SDG nodes without any edge at all will be assigned
∞ and a SDG nodes with one hyper-edge that has no target-set will be assigned 0. This is

21

essential in the semantics of SDGs, namely that for a node n an empty set of targets in a
hyper-edge represents truth and an empty set of hyper-edges represents falsity.

To show that the repeated application of the function F will compute a minimal or maximal
fixed point we use Tarski’s fixed point theorem [19]. To do so, we show that F is monotone
w.r.t. the complete lattice (A,v).

Lemma 1. The function F is monotone on the complete lattice (A,v).

Proof. To show that A v A′ implies F (A) v F (A′) for any A and A′ in A, we assume A1 v A2

where A1, A2 ∈ A. Then suppose towards contradiction that F (A1) 6v F (A2) which implies
that there exist a SDG node n s.t. F (A1)(n) < F (A2)(n). By definition of F , this can be true
for two different cases:

n has an outgoing cover-edge (n
w
99Kn′):

By assumption that F (A1)(n) < F (A2)(n) it must be the case that F (A1)(n) = 0 and
F (A2)(n) = ∞ which in turn implies that A1(n) ≤ w < A2(n). This contradicts the
assumption that A1 v A2.

n has no outgoing cover-edge:
By assumption that F (A1)(n) < F (A2)(n) and by definition of F we get the following
contradiction:

min
(n,T)∈H

{ max
(w,n′)∈T

max{A1(n′), w}} < min
(n,T)∈H

{ max
(e,n′)∈T

max{A2(n′), w}}

We can thus conclude that F is monotone w.r.t. (A,v). �

By Tarski’s fixed point theorem we know that F computes a maximal or minimal fixed point
and thereby the function is indeed theoretically useful. We let the assignments corresponding
to these fixed points be denoted by Amin and Amax and we use F i(A) to denote i repeated
applications of the function F on A, i.e
F i(A) = F (F i−1(. . .F 0(A))) for i > 1 and F 0(A) = A.

For F to also be suitable for practical use, we need to make sure that the fixed point is
computed in a finite number of repeated applications.

Lemma 2. Amax = F i(A0) and Amin = F j(A∞) for some i, j ∈ N.

Proof. It should be clear from the definition of SDG that a given SDG G = (N,H,C) has a
finite number of nodes n ∈ N and a finite number of hyper-edges (n, T) ∈ H and that the
number of weights on target-sets (w, n′) ∈ T is also finite. By definition of F (Definition 26) we
can thus convince ourselves that the number of repeated applications required to obtain Amax

and Amin is finite regardless of circular dependencies in G as we can always directly apply the
semantics of min and max as all weights are from the set Q≥0. �

6.3 SDGs for Distance Checking

Now that we have the semantics of SDGs in place through fixed point computations of node
assignments, we apply the fixed point function to solve the problem of verifying whether
da•(s, t) ≤ δ. In the following we will only consider the absolute point-wise distance da• but
every method and result presented can be adapted for the relative counterpart dr•.

The point-wise absolute distance between states s, t ∈ S is given by the least fixed point
of da•(s, t). Recall that we order all point-wise distances from D by ≤, which gives us the
complete lattice (D,≤). Reversely the ordering over assignments, v, is defined as A1 v A2 iff
∀n ∈ N : A1(n) ≥ A2(n). Therefore we will represent the problem of finding the least fixed
point of da•(s, t) in a SDG where the solution is the maximal fixed point over assignments. For
SDG construction we recall the definition of da• for two states s, t from a WTS S:

22

da•(s, t) =

 ∞ if `(s) 6= `(t)
max
s

w−→s′
min
t

w′−→t′

max {|w − w′|, da•(s′, t′)} otherwise

We would like to know whether or not the condition da•(s, t) ≤ δ for some δ ∈ Q≥0 is
satisfied. The construction rules for a SDG with these properties can be found in Figure 11.
We let Build•(S, s, t, δ) denote the recursive application of these rules on a WTS S with states
s, t and δ ∈ Q≥0.

〈da•(s, t) ≤ δ〉

〈da•(s, t)〉

δ

(a) Root node

〈da•(s, t)〉

〈s1, t, s̄〉〈`(s) = `(t)〉 〈sk, t, s̄〉
· · · · · ·

(b) Maximum over s
w−→ s′ from da•(s, t)

〈si, t, s̄〉

〈da•(si, t1)〉

〈|wi − w′1|〉

∅

〈da•(si, tl)〉

〈|wi − w′l|〉

∅

· · ·|wi − w′1| |wi − w′l|

(c) Minimum over t
w′−→ t′ from da•(s, t)

〈`(s) = `(t)〉

∅

(d) Label matching: `(s) = `(t)

〈`(s) = `(t)〉

(e) Label matching: `(s) 6= `(t)

Figure 11: Let {(w1, s1), (w2, s2) . . . (wk, sk)} ∈ out(s) and
{(w′1, t1), (w′2, t2) . . . (w′l, tl)} ∈ out(t)

The root node in Figure 11a represents the upper bound constraint δ on the point-wise
distance from s to t. For this we use a cover-edge, labeled with δ. The target node of this
cover-edge (Figure 11b) has one hyper-edge with multiple targets. By the semantics of SDG
nodes given by the function F , this corresponds to a maximum over all target nodes. One of
these targets is the node 〈`(s) = `(t)〉. If it is the case that `(s) = `(t), this node will have
fixed point assignment 0 and ∞ otherwise. This implies that the fixed point assignment of
its source node 〈da•(s, t)〉 will be ∞ if `(s) 6= `(t), representing da•(s, t) = ∞. Otherwise, we

want to consider the maximum over all transitions s
w−→ s′, and therefore create target nodes

for each such transition. Figure 11c then represents a minimum over all transitions t
w′−→ t′

by constructing a hyper-edge for each transition. Each of these hyper-edges have two targets,
one for weight matching and one for recursively checking the distance of pairs of successor

23

states. By the semantics we thus have that we compute the maximum of the immediate weight
difference and the distance between successor pairs, as defined by da•. The maximal fixed point
assignment of a node on the form 〈da•(s, t)〉 will in this way represent the least fixed point of
da•(s, t).

Before proving this method to be correct we will consider an example.

Example 11. Consider the WTS S = (S,→, `) in Figure 12. We want to know whether or
not da•(s, t) ≤ 10 for s, t ∈ S. To understand the use of SDGs and assignments we encode
this question in the SDG G = Build•(S, s, t, δ) = (N,H,C) depicted in Figure 13. In Fig-
ure 12 we see that the infinite path s3 2s4 3s3 2s4 · · · has to be matched by the infinite path
t2 12 t3 4t2 12t3 · · · . The absence of such a match would result in da•(s, t) = ∞. The matching
of these infinite paths is seen as a loop between nodes 8,12,13,16 in G.

s1{a}

s2{a} s3{a}

s4{a}

t1{a}

t2{a}

t3{a}

1 2

23

3

124

Figure 12: WTS S

〈da•(s1, t1) ≤ 10〉1

〈da•(s1, t1)〉2

〈`(s1) = `(t1)〉4〈s2, t1, s̄1〉3 〈s3, t1, s̄1〉5

∅〈da•(s2, t2)〉7〈|1− 3|〉6 〈da•(s3, t2)〉8 〈|2− 3|〉9

〈`(s3) = `(t2)〉11〈`(s2) = `(t2)〉10∅ 〈s4, t2, s̄2〉 12 ∅

∅∅ 〈da•(s4, t3)〉13 〈|2− 12|〉14

〈s3, t3, s̄4〉16〈|3− 4|〉15 〈`(s4) = `(t3)〉17 ∅

∅ ∅

10

2 1

10

1

Figure 13: SDG G = Build•(S, s, t, δ)

We now consider Table 1 to see the computation of the maximal fixed point assignments
Amax for each node n ∈ N in the SDG G. We let F i(n) denote F i(A0)(n). By looking through

24

the assignments to each node of each iteration i, it is clear that F 5(n) = Amax(n) for all n ∈ N .
If we consider Amax(2) = 10 we can infer that da•(s, t) = 10 and finally da•(s, t) ≤ 10.

n,F i(n) A0(n) F 1(n) F 2(n) F 3(n) F 4(n) F 5(n)
1 0 0 0 0 0 0
2 0 0 2 2 10 10
3 0 2 2 2 2 2
4 0 0 0 0 0 0
5 0 1 1 10 10 10
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 10 10 10 10
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 10 10 10 10 10
13 0 0 1 1 10 10
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 1 1 10 10 10
17 0 0 0 0 0 0

Table 1: Updating assignments to the nodes of SDG G in Figure 13

Now that we have seen an example of F we turn to a formal proof of the correctness of our
method of verifying da•(s, t) ≤ δ.

Theorem 6. Let S = (S,→, `) be a WTS, s, t ∈ S and G = Build•(S, s, t, δ) = (N,H,C) be
a SDG. For arbitrary δ ∈ Q≥0,

(1) Amax(〈da•(s, t) ≤ δ〉) = 0 ⇐⇒ da•(s, t) ≤ δ

(2) Amax(〈da•(s, t)〉) = da•(s, t)

Proof. By definition of F , (1) follows from (2). For (2) we will show that

(2a) Amax(〈da•(s, t)〉) ≤ da•(s, t)

(2b) Amax(〈da•(s, t)〉) ≥ da•(s, t)

(2a) :
Let a : N −→ Q≥0 ∪ {∞} be defined as:

a(n) =


{

0 if da•(s, t) ≤ δ
∞ otherwise

if n = 〈da•(s, t) ≤ δ〉

da•(s, t) if n = 〈da•(s, t)〉
min

(n,T)∈H
max

(w,n′)∈T
max {a(n′), w} otherwise

We will show that a is a post-fixed point of F , i.e.

a v F (a).

We consider the case n = 〈da•(s′, t′)〉 for some s′, t′ ∈ S. We thus want to show that
a(n) ≥ F (a)(n).

This is trivially done for a(n) =∞. Otherwise by definition of F we can rewrite F (a)(n)
as follows:

F (a)(n) = min
(n,T)∈H

max
(wi,ni)∈T

max {a(ni), wi}

25

By definition of Build• we know that there is only one pair (n, T) ∈ H. and for any

wi in pairs (wi, ni) ∈ T , wi = 0. For each transition s′
w−→ s′′ there is one target pair

in T . Furthermore there is one target-pair where the node ni represents the proposition
`(s′) = `(t′). The assignment for this node will always be 0 for the case where a(n) 6=∞.
Using this knowledge about H and T we can thus write:

F (a)(n) = max
(wi,ni)∈T

{a(ni)}

and by expanding A(ni) using F and a we know that

F (a)(n) = max
(wi,ni)∈T

min
(ni,Ti)∈H

max
(wj ,nj)∈Ti

max {a(nj), wj} .

By Build• we know that each target-set Ti ∈ H has only two target-pairs denoted as
Ti = {(wj , nj), (w′j , n′j)} and hence we know that

F (a)(n) = max
(wi,ni)∈T

min
(ni,Ti)∈H

max
{
a(nj), wj ,a(n′j), w

′
j

}
.

By Build• we know that for any transition t′
w′−→ t′′, nj = 〈da•(s′′, t′′)〉, wj = 0, n′j =

〈|w − w′|〉 and w′j = |w − w′|. Using F and a thus get:

F (a)(n) = max
(wi,ni)∈T

min
(ni,Ti)∈H

max {a(nj), |w − w′|} .

As defined in Build• we know that for all transitions s′
w−→ s′′ there is a node ni in a pair

(wi, ni) ∈ T which has a hyper-edge (ni, Ti) ∈ H for each possible match t′
w′−→ t′′. We can

thus exchange the maximum over target-pairs of T with a maximum over s′ transitions
and the minimum over hyper-edges from ni with a minimum over t′ transitions in the
definition of F (a)(n) as follows:

F (a)(n) = max
s′

w−→s′′
min

t′
w′−→t′′

max {da•(s′′, t′′), |w − w′|} .

Clearly a(n) ≥ F (a)(n) and we can conclude Amax(〈da•(s, t)〉) ≤ da•(s, t).

(2b) :
Let D(s, t) = Amax(〈da•(s, t)〉) for all s, t ∈ S s.t. 〈da•(s, t)〉 ∈ N . Let n = 〈da•(s′, t′)〉 ∈ N
and s′, t ∈ S. We will now show that D is a pre-fixed point for H i.e da•(s

′, t′) ≤ D(s′, t′).
As D(s′, t′) = Amax(〈da•(s′, t′)〉) we can rewrite D(s′, t′) using arguments similar to what
we did for F (a)(n) in (2a). We then get that

D(s′, t′) = max
(wi,ni)∈T

min
(ni,Ti)∈H

max
{
Amax(nj), wj , A

max(n′j), w
′
j

}
.

which can be simplified (by the same arguments as in (2a) to

D(s′, t′) = max
(wi,ni)∈T

min
(ni,Ti)∈H

max {da•(s′′, t′′), |w − w′|} .

and finally

D(s′, t′) = max
s′

w−→s′′
min

t′
w′−→t′′

max {da•(s′′, t′′), |w − w′|} .

Thus da•(s
′, t′) ≤ D(s′, t′) as desired.

By (2a) and (2b) we can conclude that Amax(〈da•(s, t)〉) = da•(s, t). �

6.4 Parametric Symbolic Dependency Graphs

To lift the results regarding SDGs from the rational weighted setting to the parametric setting
we use the notion of Parametric Symbolic Dependency Graphs (PSDGs), first introduced in
[9]. In PSDGs, hyper-edges and cover-edges have parametric expressions as weights. The

26

expressions used as weights on hyper-edges are on the form |e1 − e2| where e1, e2 ∈ E and the
set of such expressions will be denoted by Ea. Cover-edge weights are drawn from the set E .

Definition 27. A Parametric Symbolic Dependency Graph (PSDG) is a tuple GP = (N,H,C),
where:

• N is a finite set of nodes,

• H ⊆ N × 2E
a×N is a finite set of hyper-edges.

• C ⊆ N × E ×N is a finite set of cover-edges.

The set of all PSDGs will be denoted by GP . For PSDG nodes and edges we use the same
notation as for those of SDGs.

6.5 Fixed Point Computations on PSDGs

We now discuss derivation of constraints on parameter valuations for the problem of checking
whether the distance from a state s to a state t is below a given threshold. Instead of lifting
the concept of assignments from the weighted to the parametric context with use of the direct
semantic mapping through valuations we start by discussing assignments from a purely syntac-
tical perspective. We first define an abstract syntax used to describe assignments syntactically.
If we recall the function F , it is useful to have syntax for minimum and maximum expressions.
We also need syntax to describe the conditions in the cover-edge case stating that a node n gets
assignment 0 if A(n′) ≤ w and ∞ otherwise for a cover-edge n

w
99Kn′. Finally we would like

weight expressions from target-sets of hyper-edges on PSDGs to be represented syntactically.
The full abstract syntax for assignment expressions is thus as follows:

E1, E2 ::=

[
0 if E1 ≤ e
∞ otherwise

]
| ea | min{E1, E2} | max{E1, E2}

where ea ∈ Ea ∪ {∞, 0} and e ∈ E . Let the set of assignment expressions be denoted by E
and let v(∞) = ∞ and v(|e1 − e2|) = |v(e1) − v(e2)| for any v ∈ V. We can now define the
(denotational) semantics of the assignment expressions from E:

Definition 28. For any assignment expression E ∈ E the denotation JEK : V −→ Q≥0 is
defined inductively as follows:

s[
0 if E1 ≤ e1
∞ otherwise

]{
(v) =

{
0 if JE1K(v) ≤ v(e1)
∞ otherwise

JeaK(v) = v(ea)

Jmin{E1, E2}K(v) = min{JE1K(v), JE2K(v)}
Jmax{E1, E2}K(v) = max{JE1K(v), JE2K(v)}

For syntactic assignment expressions E ∈ E, we propose normal forms Enf and Fnf by the
following abstract syntax:

Enf ::= min
{

max
{
Fnf1.1 · · ·F

nf
1.k

}
· · ·max

{
Fnfk.1 · · ·F

nf
k.l

}}
Fnf ::=

[
0 if Enf ≤ e
∞ otherwise

]
| ea

where ea ∈ Ea∪{∞, 0} and e ∈ E . The set of all assignment expressions on such a normal form
is denoted by Enf . We now define a function nf that converts an expression into an expression
on normal form, based on the fact that, for any v ∈ V:

Jmax{min{E1, E2}, E3}K(v) = Jmin {max{E1, E3},max{E2, E3}}K(v)

27

Definition 29. Let nf : E −→ E be a function converting any assignment expression of E to
normal form:

nf (ea) = ea

nf

([
0 if E1 ≤ e1
∞ otherwise

])
=

[
0 if nf(E1) ≤ e1
∞ otherwise

]
nf (min{E1, E2}) = min { nf(E1),nf(E2) }

nf (max{min{E1, E2}, E3}) = min

{
max{nf(E1),nf(E3)},
max{nf(E2),nf(E3)}

}

We are now ready to define the mapping of PSDG nodes to assignment expressions:

Definition 30. An assignment
AE : N −→ Enf

on a PSDG GP = (N,H,C) is a mapping from each node n ∈ N to an assignment expression.

We denote the set of all assignments AE. For distance checking we introduce both syntac-
tic and semantic fixed points on assignments by ordering assignments both syntactically and
semantically. We start by ordering assignment expressions.

Definition 31. The syntactic ordering on assignment expressions, ≤nf is defined inductively
for any Enf ∈ Enf as follows:

ea1 ≤nf ea2 iff ea1 = ea2[
0 if Enf1 ≤ e
∞ otherwise

]
≤nf

[
0 if Enf2 ≤ e
∞ otherwise

]
iff Enf1 ≤nf Enf2 and

min{Enf1.1 · · ·E
nf
1.k} ≤nf min{Enf2.1 · · ·E

nf
2.l } iff ∀j∃i s.t. Enf1.i ≤nf E

nf
2.j

max{Enf1.1 · · ·E
nf
1.k} ≤nf max{Enf2.1 · · ·E

nf
2.l } iff ∀i∃j s.t. Enf1.i ≤nf E

nf
2.j

We can now order assignments syntactically:

Definition 32. The syntactic ordering on assignments, vE is defined for any A1
E, A

2
E ∈ AE:

A1
E vE A

2
E iff ∀n ∈ N A2

E(n) ≤nf A1
E(n)

For the semantic ordering we use the assignment expression denotations:

Definition 33. The semantic ordering on assignments, vJEK is defined for any A1
E, A

2
E ∈ AE:

A1
E vJEK A

2
E iff ∀n ∈ N ∀v ∈ V : JA1

EK(v) ≥ JA2
EK(v)

Lemma 3. For arbitrary A1
E, A

2
E ∈ AE:

A1
E vE A

2
E =⇒ A1

JEK vJEK A
2
JEK

Proof. Clear by syntactic ordering of min/max expression in Definition 31. �

We denote by A0
E and A∞E the mapping of 0 and∞ to each node in a PSDG. In order to com-

pute a fixed point over assignments we use a modified version of the function F (Definition 26):

Definition 34. Given a PSDG GP = (N,H,C), F E : AE −→ AE is a function that, given a
syntactic assignment AE on GP , produces a new assignment on GP as follows:

JF E(AE)(n)K(v) =



{
0 if JAE(n′)K(v) ≤ v(e)
∞ otherwise

if n
e
99Kn′

min
(n,T)∈H

max
(ea,n′)∈T

max{JAE(n′)K(v), JeaK(v)} otherwise

28

Similar to the notation for F in Section 6.2 we denote by F i
E(AE) the i’th application of F E

on AE.
For any valuation v ∈ V, the function is equivalent to the one defined for SDGs (Defi-

nition 26). We can thus use the same argument as in Lemma 1 for F E to be monotone on
(AE,vJEK) w.r.t some v ∈ V, meaning that we again can use Tarski’s fixed point theorem [19] to
state that the maximal and minimal fixed point are computable by repeated application of F E.
Similar to the notation in Section 6.2 we use AminE and AmaxE to denote minimal and maximal
fixed point assignments (by the semantic ordering) to a PSDG. We then get that AmaxE and
AminE can be computed in a finite number of applications of F E.

Syntactically, F E(AE)(n) represents an assignment expression E to the node n. Given
a valuation v, we can use the denotational semantics to compute a number in Q≥0. For our
method to be practically applicable we have to make sure that F E, when viewed from a syntactic
perspective, also computes a fixed point in a finite number of steps. To do this, we use the
syntactic ordering on expression on normal form from the set Enf .

Theorem 7. Let G = (N,H,C) be a PSDG. Then there exists natural numbers i, j ∈ N s.t:

1. F i
E(A0

E) vE F i−1
E (A0

E) and F i−1
E (A0

E) vE F i
E(A0

E)

2. F j
E(A∞E) vE F j−1

E (A∞E) and F j−1
E (A∞E) vE F j

E(A0
E)

Proof. For the proof of (1) we have to show that by starting with the assignment A0
E, the

function F E computes a syntactic fixed point in a finite number of steps. As the PSDG is
finite, we have a finite number of syntactic expressions on the form |e1 − e2| on the edges of a
given PSDG. Furthermore, all assignment expressions are on normal form. Thus, if the function
F does not find a fixed point after a finite number of steps, it implies that we can keep finding
new expressions on the form |e1 − e2| which is a contradiction. (2) follows similar arguments
used for (1). �

6.6 PSDGs for Distance Checking

In this section we discuss the application of PSDGs for synthesis of parameter constrains char-
acterizing the valuations v s.t da•(s, t, v) ≤ v(ε) for some ε ∈ E . The construction rules for
creating PSDGs suitable for checking the point-wise distance between pairs of PWTS states,
are similar to the rules for weighted distance checking in Figure 11. Note that we use the syntax
〈da•(s, t) ≤ ε〉 instead of 〈da•(s, t, v) ≤ v(ε)〉. This is done to represent the fact that we want
to deduce the characterization of parameter valuations instead of simply applying one specific
valuation v to instantiate everything to the weighted setting. For some PWTS S = (S,→, `)
and s, t ∈ S we denote by BuildP• (S, s, t, ε) the PSDG GP generated for da•(s, t, v) ≤ v(ε). We
thus solve problem 3 of the proposed problems in Section 4:

3 Characterize the sets of valuations V1 = {v |, v ∈ V and da•(s, t, v) ≤ v(ε)} and
V1 = {v |, v ∈ V and dr•(s, t, v) ≤ v(ε)}

Example 12. In this example we consider a parametric version of Example 10. Consider
the PWTS in Figure 14 and the PSDG in Figure 15. The assignments after each iteration is
shown in Table 2, Table 3 and Table 4. We let F i(n) denote F i(A0

E)(n) and remove duplicate
elements along with elements dominated by ∞. The exact constraints are given by the fixed
point assignment to node 1 as follows:

min{max{|p− s|, |p− q|, 0},max{|p− q|, |p− s|, |p− r|, 0}} ≤ ε
As the elements of the first max are also elements of the second max, we can simplify the above
expression to get:

max{|p− s|, |p− q|, 0} ≤ ε
From this we get the exact constraint on parameters, characterizing the set of valuations we
seek.

|p− s| ≤ ε ∧ |p− q| ≤ ε

29

s1

{a}

t1

{a}

t2

{a}

t3

{a}

p

q

s

r

Figure 14: PWTS S

〈da•(s1, t1) ≤ ε〉1

〈da•(s1, t1)〉 2

〈`(s1) = `(t1)〉4〈s1, t1, s̄1〉3 ∅

〈da•(s1, t3)〉7〈da•(s1, t2)〉6〈|p− q|〉 5

∅

〈|p− r|〉8 ∅

〈`(s1) = `(t2)〉10〈s1, t2, s̄1〉9 〈`(s1) = `(t2)〉11 〈s1, t3, s̄1〉12

〈|p− s|〉13 ∅

∅ ∅

ε

|p− q| |p− r|

|p− s|

Figure 15: PSDG GP

Given a valuation v ∈ V the correctness of this method for parametric distance checking is
given directly by the proof for the weighted counterpart in Theorem 6 and we can thus state
the following:

Theorem 8. Let S = (S,→, `) be a PWTS, s, t ∈ S states and GP = BuildP• (S, s, t, ε) =
(N,H,C) be a PSDG. For arbitrary ε ∈ E and v ∈ V:

(1) JAmaxE (〈da•(s, t) ≤ ε〉)K(v) = 0 ⇐⇒ da•(s, t, v) ≤ v(ε)

(2) JAmaxE (〈da•(s, t)〉)K(v) = da•(s, t, v)

Proof. Immediate by Theorem 6. �

We thus have by Lemma 3 that the syntactic fixed point implies a semantic fixed point,
which is guaranteed to exist by Theorem 7. Finally, this fixed point is guaranteed to be a
solution to da•(s, t, v) ≤ v(ε) by Theorem 8. In the next section we describe how the syntactic
fixed point algorithm is implemented in a tool.

30

n
A

0
(n

)
F

1 E
(n

)
F

2 E
(n

)
F

3 E
(n

)

1
0

[0
if
F

1
(2

)
≤
ε

∞
ot

h
er

w
is

e

]
[0

if
F

2
(2

)
≤
ε

∞
o
th

er
w

is
e

]
[0

if
F

3
(2

)
≤
ε

∞
o
th

er
w

is
e

]
2

0
m
in
{m

a
x
{0
}}

m
in
{m

a
x
{|
p
−
q|
,0
},
m
a
x
{|
p
−
r|
,0
}}

m
in
{m

a
x
{|
p
−
q|
,0
},
m
a
x
{|
p
−
r|
,0
}}

3
0

m
in
{m

a
x
{|
p
−
q|
,0
},
m
a
x
{|
p
−
r|
,0
}}

m
in
{m

a
x
{|
p
−
q|
,0
},
m
a
x
{|
p
−
r|
,0
}}

m
in
{m

a
x
{|
p
−
q|
,|
p
−
s|
,0
}}

4
0

0
0

0
5

0
m
in
{m

a
x
{0
}}

m
in
{m

a
x
{|
p
−
s|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,0
}}

6
0

0
0

0
7

0
m
in
{m

a
x
{0
}}

m
in
{m

a
x
{∞
}}

m
in
{m

a
x
{∞
}}

8
0

0
0

0
9

0
m
in
{m

a
x
{|
p
−
s|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
s|
,|
p
−
r|
,0
}}

1
0

0
0

0
0

1
1

0
0

0
0

1
2

0
∞

∞
∞

1
3

0
0

0
0

T
ab

le
2:

It
er

at
io

n
s

1
-3

o
f

a
ss

ig
n

m
en

t
u

p
d

a
te

s
o
n
GP

fr
o
m

F
ig

u
re

1
5

31

n
F

4 E
(n

)
F

5 E
(n

)

1

[0
if
F

4
(2

)
≤
ε

∞
ot

h
er

w
is

e

]
[0

if
F

5
(2

)
≤
ε

∞
o
th

er
w

is
e

]
2

m
in
{m

a
x
{|
p
−
s|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,0
}}

3
m
in
{m

a
x
{|
p
−
s|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
q|
,|
p
−
s|
,|
p
−
r|
,0
}}

4
0

0
5

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
q|
,|
p
−
s|
,|
p
−
r|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
q|
,|
p
−
s|
,|
p
−
r|
,0
}}

6
0

0
7

m
in
{m

a
x
{∞
}}

m
in
{m

a
x
{∞
}}

8
0

0
9

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
q|
,|
p
−
s|
,|
p
−
r|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,0
}}

1
0

0
0

1
1

0
0

1
2

∞
∞

1
3

0
0

T
ab

le
3:

It
er

at
io

n
s

4
-5

o
f

a
ss

ig
n

m
en

t
u

p
d

a
te

s
o
n
GP

fr
o
m

F
ig

u
re

1
5

32

n
F

6 E
(n

)
F

7 E
(n

)

1

[0
if
F

6
(2

)
≤
ε

∞
ot

h
er

w
is

e

]
[0

if
F

7
(2

)
≤
ε

∞
o
th

er
w

is
e

]
2

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
q|
,|
p
−
s|
,|
p
−
r|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
q|
,|
p
−
s|
,|
p
−
r|
,0
}}

3
m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
q|
,|
p
−
s|
,|
p
−
r|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
}}

4
0

0
5

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
}}

6
0

0
7

m
in
{m

a
x
{∞
}}

m
in
{m

a
x
{∞
}}

8
0

0
9

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
}}

m
in
{m

a
x
{|
p
−
s|
,|
p
−
q|
,0
},
m
a
x
{|
p
−
q|
,|
p
−
s|
,|
p
−
r|
,0
}}

1
0

0
0

1
1

0
0

1
2

∞
∞

1
3

0
0

T
ab

le
4:

It
er

at
io

n
s

5
-7

o
f

a
ss

ig
n

m
en

t
u

p
d

a
te

s
o
n
GP

fr
o
m

F
ig

u
re

1
5

33

7 Implementation

In this section we describe the tool-support for distance checking. Originally the tool was made
for model checking of PWCTL (a variant with only upper bounds on path formulae) on PWTS
using a similar PSDG structure as an abstract representation of the problem [9]. We have now
extended the tool with the fixed point algorithm, constraint generation and valuation synthesis
for point-wise absolute and relative distance checking between PWTS states presented in this
thesis. Furthermore, the tool allows for optimization objectives enabling the possibility to
compute the minimal distance possible under the synthesized constraints on parameters as well
as generating a valuation w.r.t the constraints. Constraint representation and manipulation is
done using Z3, a high-end theorem prover by Microsoft Research [11] while the optimization
objectives are implemented using a new branch of Z3 called νZ [5]. The tool can therefore be
used to solve all problems (1-4) proposed in Section 4.

7.1 Example Usage

In Figure 16 we see the simulation checking tab of the tool where the model can be specified
along with the pair of states for which the user want to check the distance. In this case the
states chosen are s1 and s2. The model specification itself is done using a very simple syntax;
the statement

s1 := {a} < p > s2+ < q > s3
is a declaration of a state s1 with atomic proposition a and two transitions with weights p and q;
one to s2 and one to s3, respectively. Note that only natural numbers are allowed for parameter
coefficients. When a model is specified, it is possible to view a graphical representations of both
the PWTS and the PSDG by pressing either Show PWTS or Show PSDG. The PWTS specified
can be seen in Figure 17 (PSDG is omitted as it has more than 50 nodes).

34

F
ig

u
re

16
:

C
on

st
ra

in
t

g
en

er
a
ti

o
n

fo
r

a
b

so
lu

te
d

is
ta

n
ce

b
et

w
ee

n
st

a
te

s

35

s1{a}

s2 s3

s4{b}

t1 {a}

t2

t3 {b}

p

q

p

5

2
7

p+ q

q

6

Figure 17: WTS S

The user can also specify minimum and maximum objectives in the two input boxes next to
the chosen states. The objectives are linear expressions in parameters with natural coefficients.
In the screenshot we see that ε (denoted by “epsilon”) has been selected for minimization. ε
is a unique parameter in the tool, always representing the bound on the distance between two
states. In this example we synthesize constraints on parameters for the absolute point-wise
distance between states s1, t1; this is done by choosing Absolute next to the optimization
objectives. We thus want to characterize the valuations v for da•(s1, t1, v) ≤ v(ε). The result
of the synthesis of valuations is shown in the bottom area of the picture and is contains the
following information ((\ 7.0 2.0) should be read as 7

2):

• Generated model for constraints w.r.t optimization objective. p −→ x should be read as
“the parameter p is evaluated to x.

• Result for optimization objectives e.g min(ε) −→ 7
2

• Synthesized constraints on parameters.

The minimal possible distance is thus 7
2 , for any v ∈ V where v(p) = v(q) = 7

2 . Note that if
no optimization objective is chosen, a randomly generated model is presented along with the
constraints.

7.2 Manipulating Assignments

In the tool we directly represent the min/max expressions computed by the fixed point algorithm
discussed in Section 6.5. As the assignment expressions are not guaranteed to be on normal
form after each iteration, we use the rule

max{min{E1, E2}, E3} = min {max{E1, E3},max{E2, E3}}
recursively to normalize them.

We also eliminate any duplicates and any max expressions dominated by an ∞ element.
Finally, we use the rule

min{max{E1, E2},max{E1, E2, E2}} = min{max{E1, E2}}
to further reduce the size of assignments. In this way we keep the size of assignments low at
all times, greatly reducing the amount of time needed for assignment updates. It also speeds
up the syntactic fixed point checking which is based on the syntactic ordering of assignments
presented in Definition 31.

When the fixed point is found we consider the assignment to the root node. As this is always
a cover-node we impose the bound constraint on the assignment to the target of the cover-edge.
We do this using the following constraint generation rule:

min{max{E1, E2},max{E3, E4}, . . . ,max{En−1, En}} ≤ ε =

(E1 ≤ ε ∧ E2 ≤ ε) ∨ (E3 ≤ ε ∧ E4 ≤ ε) ∨ . . . ∨ (En−1 ≤ ε ∧ En ≤ ε)

36

7.3 Z3 integration

To work with parameter constraints we have integrated our tool with Z3, a high-end theorem
prover developed at Microsoft Research [11]. The integration consists of:

1. Representation of constraints directly as Z3 abstract syntax trees.

2. Simplifying constraints.

3. Checking whether a set of constraints has a model and generate a random model.

4. Optimizing a given goal with respect to parameter constraints and provide a model.

For constraint representation we use the theory of linear real arithmetic. We convert the
assignment to constraints as described in the previous section and add the constraint p ≥ 0
for any parameter p present in the model. This is to ensure positivity of parameter valuations
when looking for a model of the constraints. If no model is found, false is the output. Oth-
erwise a valid model is generated and presented to the user along with simplified constraints.
The simplification option used is the most efficient and therefore there may in some cases be
redundant information. This is however rarely a problem since the assignments on which the
constraints are based, are normalized and simplified before constraint generation.

For the problem of verifying da•(s, t, v) ≤ ε or dr•(s, t, v) ≤ ε, we get as an answer a set
of constraints involving the parameters of the PWTS in which s, t are states and the unique
parameter ε. It is then interesting to find a model which has the property that it assigns to ε
the minimal value possible, without violating the constraints. As shown in Section 5, this has
consequences on the logical properties of s and t and is therefore of great interest.

To find such a minimal model (w.r.t ε) we use a new branch of Z3 called νZ [5], capable of
solving optimization problems modulus theories. Concretely, we allow for both minimization
and maximization objectives on the form a0 · p0 + a1 · p1 . . . an · pn where each pi is a parameter
from the PWTS under consideration (or the unique parameter ε), and each ai is a natural
number. Each objective is evaluated independently and the minimal and maximal values are
generated along with parameter constraints and a model.

8 Conclusion

In this work we have provided formalisms to reason about similarities in behavior of Parametric
Weighted Transition Systems. This is done using extensions to the traditional notion of weighted
simulation where small deviations of ε in the matching of transitions weights is allowed. This
naturally leads to a distance between states, capturing the point-wise deviation allowed by the
error term ε.

To examine the logical properties of ε-similarity we provide a discussion on the relations
between a parametrized weighted CTL, called PWCTL, and ε-similarity. To this end we define
the notion of ε-satisfiability, capturing the error ε directly in formulae. For PWTS states s, t we
then show the direct correlation between the ε-similarity of s,t and t’s ε-satisfaction of formulae
satisfied by s.

Finally we present Parametric Symbolic Dependency Graphs (PSDGs), used to model para-
metric quantitative dependencies between problems, and fixed point computation on these.
The algorithm can be used to both find minimal and maximal fixed points on these graphs
by globally updating cost assignments to nodes. The point-wise semantics as well as the finite
PSDG structure then ensures that a fixed point is found after a finite number of steps. We
then show how the distance checking problem can be characterized as a maximal fixed point
on PSDGs specifically created for distance checking. Our method has been implemented in a
working tool, available online with a web-based front-end.

In the end of Section 4 we stated four problems which we wanted our methods to solve:

1. Decide whether or not a valuation v exists such that da•(s, t, v) ≤ v(ε) or dr•(s, t, v) ≤ v(ε).

37

2. Synthesize a valuation v such that da•(s, t, v) ≤ v(ε) or dr•(s, t, v) ≤ v(ε).

3. Characterize the sets of valuations V1 = {v | v ∈ V and da•(s, t, v) ≤ v(ε)} and
V1 = {v | v ∈ V and dr•(s, t, v) ≤ v(ε)}.

4. Synthesize the valuation v that minimizes ε for da•(s, t, v) ≤ v(ε) or dr•(s, t, v) ≤ v(ε).

Each of the four problems have been solved through the implementation of our tool. The
combination of tool support for parametric distance checking and the relation between PWCTL
and ε-similarity provides a strong framework for reasoning about correctness of Parametric
Weighted Transition Systems.

For future work, multiple possibilities exist. One obvious choice is to consider accumulating
distances in addition to point-wise distances; in this case the fixed point algorithm of [9] for
model-checking PWTS w.r.t PWCTL with only upper bounds may be useful as it is capable
of capturing the accumulating nature of path formula satisfiability. For both point-wise and
accumulating distances it would also be interesting to add the possibility of more than one type
of weight on transitions, or distances between atomic propositions such that e.g propositions
coffee and espresso are “close” to each other. Finally, from a practical point of view, an
on-the-fly approach and general optimizations would significantly increase the applicability of
the proposed techniques for solving complex real world problems.

References

[1] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In ICALP,
pages 322–335, 1990.

[2] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
May 16-18, 1993, San Diego, CA, USA, pages 592–601, 1993.

[3] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen, Paul Petters-
son, Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachability for priced timed
automata. In Hybrid Systems: Computation and Control, 4th International Workshop,
HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings, pages 147–161, 2001.

[4] Nikola Benes, Peter Bezdek, Kim G. Larsen, and Jiŕı Srba. Language emptiness of
continuous-time parametric timed automata. CoRR, abs/1504.07838, 2015.

[5] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz-an optimizing smt solver.
In Tools and Algorithms for the Construction and Analysis of Systems, pages 194–199.
Springer, 2015.

[6] Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jiŕı
Srba. Infinite runs in weighted timed automata with energy constraints. In Formal Model-
ing and Analysis of Timed Systems, 6th International Conference, FORMATS 2008, Saint
Malo, France, September 15-17, 2008. Proceedings, pages 33–47, 2008.

[7] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. Kronos: A model-checking tool for real-time systems. In Computer Aided Verifi-
cation, 10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July
2, 1998, Proceedings, pages 546–550, 1998.

[8] Thomas Brihaye, Véronique Bruyere, and Jean-François Raskin. Model-checking for
weighted timed automata. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pages 277–292. Springer, 2004.

38

[9] Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, Julian Trier Ringsmose,
Kim Guldstrand Larsen, and Radu Mardare. Parametric verification of weighted systems.
http://lipn.univ-paris13.fr/SynCoP2015/Parametric%20Verification%20of%20Weighted
%20Systems%20DRAFT.pdf, To Appear.

[10] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. Springer, 1982.

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[12] U. Fahrenberg. A quantitative characterization of weighted kripke structures in temporal
logic. 29:1311–, 2012.

[13] Uli Fahrenberg, Kim G Larsen, and Claus Thrane. Metrics for weighted transition systems:
Axiomatization and complexity. Theoretical Computer Science, 412(28):3358–3369, 2011.

[14] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30,
1996, pages 278–292, 1996.

[15] Thomas A. Henzinger and Howard Wong-Toi. Using hytech to synthesize control param-
eters for a steam boiler. In Jean-Raymond Abrial, Egon Börger, and Hans Langmaack,
editors, Formal Methods for Industrial Applications, volume 1165 of Lecture Notes in Com-
puter Science, pages 265–282. Springer Berlin Heidelberg, 1996.

[16] Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jǐŕı Srba, and Lars Kaerlund Oester-
gaard. Local model checking of weighted ctl with upper-bound constraints. In Model
Checking Software, pages 178–195. Springer, 2013.

[17] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[18] Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed points.
In Automata, Languages and Programming, pages 53–66. Springer, 1998.

[19] Alfred Tarski et al. A lattice-theoretical fixpoint theorem and its applications. Pacific
journal of Mathematics, 5(2):285–309, 1955.

39

A Resume

This thesis addresses the problem of parameter synthesis for simulation distance checking
on parametric weighted transition systems. The traditional weighted transition systems are
parametrized by adding linear expressions in parameters as transition weights to allow for spec-
ification of unknown or unspecified quantitative behavior. For interpretation of parametric
values we introduce a function that maps all parameters to a positive rational value, thus mak-
ing it possible to map a parametric weighted transition system to an infinite set of traditional
weighted transition systems.

We then extend the usual notion of simulation relations by allowing point-wise deviations
in transition weight matching, inducing a directed point-wise distance between states of both
weighted transition systems and their parametrized counterpart. This simulation-distance is
characterized by a least fixed point to a set of equations and is naturally a point-wise distance
between pairs of states of (parametric) weighted transition systems.

Furthermore we show how the point-wise distance between states of parametric weighted
transition systems have implications to the logical properties of systems by considering a para-
metric extension of weighted CTL. Concretely, we show that if a set of parametric weighted
CTL formulae is satisfied by a state s which is simulated by another state t, the simulating
state t satisfies a related set of formulae. For this related set of formulae, the bounds on path
formulae have been stretched to capture the error in weight matching, characterized by the
point-wise distance between s and t.

As the main contribution of our thesis we consider the problem of characterizing constraints
on parameter valuations for the distance between states to be below a specified threshold.
To do this we introduce Parametric Symbolic Dependency Graphs suitable for simulation-
distance checking, and provide a fixed-point theory for cost assignments to nodes of these graphs.
Termination of this method is guaranteed using Tarski’s fixed point theorem for complete
lattices.

Finally we discuss a web-based implementation with functionality to synthesize the exact
constraints on parameters for the point-wise distance between two states to be below a cer-
tain threshold. The tool can also be used to generate a model (parameter valuation) for the
constraints and applying optimization objectives w.r.t the constraints to e.g find the minimal
possible distance between systems. This functionality has been added with the help from Z3
which is a high-end theorem prover developed by Microsoft and νZ which is an extensions to
Z3.

40

	Introduction
	Related Work
	Model Specification and Behavior
	Weighted Transition Systems
	Simulation
	Parametric Weighted Transition Systems

	Simulation Distances
	Logical Implications of Simulation
	Weighted Computation Tree Logic
	Relation Between -simulation and PWCTL
	Relation Between Relative -simulation and PWCTL

	Distance Checking
	Symbolic Dependency Graphs
	Fixed Point Computations on SDGs
	SDGs for Distance Checking
	Parametric Symbolic Dependency Graphs
	Fixed Point Computations on PSDGs
	PSDGs for Distance Checking

	Implementation
	Example Usage
	Manipulating Assignments
	Z3 integration

	Conclusion
	Resume

